A versatile construction hoist system comprises a hoist trolley (2) having a first pair (16, 18) of connection members, and a work platform (32) having a second pair (38, 40) of connection members. The work platform is releasably connectable to the trolley through interconnection of the first and second pairs of connection members with the work platform in a horizontal position in which the work platform floor is situated at the first level (55) relative to the trolley. A transport platform (60), which has a third pair (74, 76) of connection members, is releasably connectable to the trolley (2) through interconnection of the first (16, 18) and third pairs (74, 76) of connection members with the transport platform in a horizontal position in which its floor (62) is situated at a second level (80) relative to the trolley, said second level being below said first level. An adapter (66) enables use of standard transport platform elements.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia AM Armenia FI Finland LT Lithuania SK Slovakia AT Austria FR France LU Luxembourg SN Senegal AU Australia GB United Kingdom LV Latvia SZ Swaziland AZ Azerbaijan GE Georgia MC Monaco TD Chad BA Bosnia and Herzegovina GH Ghana MD Republic of Moldova TG Togo BB Barbados GN Guinea MG Madagascar TJ Tajikistan BE Belgium GR Greece MK The former Yugoslav Republic of Macedonia TR Turkey BF Burkina Faso HU Hungary ML Mali TT Trinidad and Tobago BG Bulgaria IE Ireland MN Mongolia UA Ukraine BJ Benin IL Israel MR Mauritania UG Uganda BY Belarus IS Iceland MS Malawi US United States of America CA Canada IT Italy MX Mexico UZ Uzbekistan CG Central African Republic JP Japan NE Niger VN Viet Nam CH Switzerland KE Kenya NL Netherlands YU Yugoslavia CM Cameroon KG Kyrgyzstan NO Norway ZW Zimbabwe CN China KZ Kazakhstan NZ New Zealand DE Germany LC Saint Lucia SD Sudan DK Denmark LK Sri Lanka SE Sweden EE Estonia LR Liberia SG Singapore
Construction hoist system

The present invention relates to a construction hoist system, comprising at least one mast having two adjacent parallel corner rails, a trolley running on the corner rails, and a motor on the trolley for driving the trolley along the corner rails. The system further comprises a first pair of connection members on the trolley, a work platform having a substantially flat work floor, and a second pair of connection members on the work platform. The work platform is releasably connectable to the trolley through interconnection of the first and second pairs of connection members with the work platform in a horizontal position in which the work floor is situated at a first level relative the trolley.

Such a construction hoist system is disclosed in SE-B-462 336. At one end the work platform of this known system is hinged on the trolley through the first and second pairs of connection members, and at the opposite end the work platform is hinged to another trolley on another adjacent mast through further pairs of connection members similar to said first and second pairs of connection members. As a result the work platform is allowed to tilt somewhat as it is hoisted or lowered between the two adjacent masts. A levelling device controls the trolley motors on the respective masts in response to sensors sensing the deviation of the work platform from a desired normal horizontal position of the work platform, so that the work platform substantially maintains its horizontal position during hoisting and lowering. Thus, the known system is limited to a two-mast configuration.

The prime object of the present invention is to provide a new construction hoist system, which is more versatile than the above known system and which is not limited to a two-mast configuration but can include a single-mast configuration as well.

Another object of the invention is to provide a versatile
construction hoist system comprising simple and easy-to-use components to facilitate tailor-made configurations of the system for any buildings.

These objects are obtained by the construction hoist system described initially, which is characterised by a transport platform having a substantially flat load carrier floor, and a third pair of connection members provided on the transport platform, the transport platform being releasably connectable to the trolley through interconnection of the first and third pairs of connection members with the transport platform in a horizontal position in which the load carrier floor is situated at a second level relative the trolley, said second level being below said first level.

As a result, the advantage is obtained that besides the option of connecting the work platform, typically of a conventional type with a raised work floor, to the trolley there is also the alternative option of connecting the transport platform, typically with a low load carrier floor, to the trolley. Said second level relative the trolley is suitably selected so that the load carrier floor of the transport platform is close to or rests on the ground when the trolley is in its lowermost position on the mast, in order to facilitate material handling, i.e. loading and unloading the transport platform.

The construction hoist system of the invention preferably comprises an adapter having said third pair of connection members and being releasably connected to the transport platform. The adapter enables use of conventional types of transport platforms, which is cost beneficial.

In accordance with a simple and inexpensive design of the adapter, the adapter comprises a lateral beam, and two spaced apart posts extending upwardly from the lateral beam, said third pair of connection members being formed on the posts at their upper free ends.
For a single mast configuration, when the transport platform is relatively short, typically extending not longer than about 1.5 metres from the trolley, the construction hoist system of the invention suitably comprises a horizontal support beam, which is releasably attachable to the lateral beam of the adaptor to form a rigid unit consisting of the support beam and the adaptor. The support beam is releasably attachable to the trolley in such a manner that the load carrier floor of the transport platform is fixed in a horizontal position when the transport platform is attached to the trolley through the support beam.

In the case when the transport platform is relatively long, typically from two to about six metres, the construction hoist system of the invention comprises an additional mast with an additional trolley, and an additional adapter, which is releasably connected to the transport platform at an end thereof which is opposite the end of the platform which is provided with said first-mentioned adapter.

Suitably, said third pair of connection members of the first-mentioned adapter are hingeable on said first pair of connection members of the trolley and the pair of connection members on the additional adapter are hingeable on an additional pair of connection members on the additional trolley, such that the transport platform is tiltable about a horizontal axis through said third and first pairs of connection members and about a horizontal axis through the pairs of connection members on the additional trolley and the additional adapter.

The construction hoist system of the present invention is explained in more detail in the following with reference to the accompanying drawings, in which

Figure 1 is a perspective view of a trolley of the construction hoist system of the invention,

Figure 2 is a perspective view of a work platform section
fitting the trolley in Fig.1,

Figure 3 is a perspective view of a trolley of the type shown in Fig.1 running on a left mast and a perspective view of the left end of the work platform of Fig.2,

Figure 4 is a perspective view of a trolley of the type shown in Fig.1 running on a right mast and a perspective view of the right end of the work platform of Fig.2,

Figure 5 is a perspective view of a transport platform of the construction hoist system of the invention,

Figure 6 is a perspective view of an adapter fitting the trolley in Fig.3,

Figure 7 is a perspective view of an adapter of the same type as the adapter of Fig.6, but provided with a support beam and fitting the trolley of Fig.1 and 4, respectively,

Figure 8 illustrates a two-mast configuration according to the construction hoist system of the invention, comprising a transport platform of the type of Fig.5 connected to the trolleys of Figs.3 and 4 with the aid of two adapters of the type shown in Fig.6, and

Figures 9 and 10 illustrate tailor-made examples of the construction hoist system of the invention.

Figure 1 shows a trolley 2 in accordance with the construction hoist system of the present invention comprising a generally rectangular vertically extending trolley frame 4, guide wheels 6 journalled on the trolley frame 4, and a platform connection frame 8 rigidly attached to the trolley frame 4. The platform connection frame 8 has a horizontal top beam 10, a horizontal lower beam 12, and two side beams 14 tapering from the top beam 10 to the lower beam 12. Two upper connection members 16 and 18 are mounted on the top beam 10 at opposite ends thereof, and a lower connection member 20 in
the shape of a bracket is releasably attached to the lower beam 12. Each upper connection member 18 comprises a single bracket 18A with a horizontal hinge hole and an adjacent double bracket 18B with horizontal hinge holes. A mitre-wheel gearing 22 with an electric motor 24 is mounted on the upper part of the trolley frame 4 and a safety device 26 of a well-known type is mounted on the lower part of the trolley frame 4. On the lower part of the trolley frame 4 there is also mounted a level sensor 28 with a lever arm 30.

Figure 2 shows a rectangular work platform section 32 of a conventional design comprising a work floor 34 and a strengthening framework structure 36 under the work floor 34. As shown in Fig. 2 there are two upper right connection members 38 and 40 rigidly attached to two adjacent corners of the work floor 34, two upper left connection members 42 and 44 rigidly attached to the other two corners of the rectangular work floor 34, and lower right and left connection members 46 and 48, respectively, rigidly attached to the lower part of the framework structure 36. Each upper right connection member 38, 40 is designed as a double bracket with horizontal hinge holes, whereas each upper left connection member 42, 44 is designed as a single bracket with a horizontal hinge hole. Likewise, the lower right connection member 46 is designed as a double bracket, whereas the lower left connection member 48 is designed as a single bracket.

The construction hoist system of the invention further comprises at least one mast 50 having four vertical corner rails 52 and at least one vertical rack 54, see Fig. 4. The trolley 2 runs by means of its guide wheels 6 on two adjacent corner rails 52. A pinion, not shown, of the gearing 22 is in mesh with the rack 54 to enable the motor 24 to drive the trolley 2 along the mast 50. However, other types of transmissions, such as cable and pulley transmission, may be substituted for the described rack and pinion transmission.

In a single mast configuration, the work platform section 32 is hinged to the trolley 2 by interconnecting the upper right
double brackets 38,40 of the work platform section 32 and the upper single brackets 16A,18A of the connection frame 8 by means of hinge pins, not shown, extending through the horizontal holes of the brackets. In this case the lower right double bracket 46 of the work platform section 32 is secured to the lower bracket 20 of the connection frame 8, so that the work floor 34 extends horizontally from the trolley 2. As a result, the work floor 34 is situated at an upper level 55 relative the trolley 2.

If desired, a number of work platforms sections 32 may be interconnected by means of the brackets 38-48, to form a longer work platform 32, up to about 19 metres would be possible. In such a case, the construction hoist system of the invention provides a double mast configuration as will be explained with reference to Figs.3 and 4. The components shown in Figs.3 which correspond to the components shown in Figs.1,2 and 4 have the same reference numerals with the addition of a 'prime'. An additional mast 50' with an additional trolley 2' is provided to be connected to the left end of the work platform 32. The additional trolley 2' is equivalent to the trolley 2, except that the upper connection members 16',18' of the trolley 2' are turned upside down, so that the double brackets 16B',18B' are situated above the single brackets 16A',18A'. As a result the upper left single brackets 42,44 of the work platform 32 fit the double brackets 16B',18B' of the trolley 2'.

In the same manner as described above in connection with the single mast configuration, the right end of the work platform 32 is hinged to the trolley 2 by means of the brackets 16A,18A,38,40. The lower bracket 46 of the work platform 32 is connected to the lever arm 30. Likewise, the left end of the work platform 32 is hinged to the trolley 2'. As a result, the work platform 32 is tiltable about a horizontal axis 56 through the brackets 16A,18A,38,40 and about a horizontal axis 58 through the brackets 16B',18B',42,44. A levelling device, known per se, controls the trolley motors 24,24' in response to the level sensors 28,28' sensing the
deviation of the work platform 32 from a desired horizontal position of the work platform, so that the work platform 32 substantially maintains its horizontal position during hoisting and lowering.

Fig.5 shows a rectangular transport platform 60 in accordance with the construction hoist system of the invention, comprising a load carrier floor 62 mounted on a rectangular frame 64. An adapter 66 for the transport platform 60 comprises two parallel fork elements 68, which are attachable to the frame 64 at each short end of the transport platform 60, a lateral beam 70 extending between the fork elements 68, and two spaced apart posts 72 extending vertically upwardly from the lateral beam 70. Two double brackets 74 and 76 of the same type as the brackets 38,40 on the work platform 32 are attached to the posts 72 at their upper free ends. A connection element 78 projects from the lateral beam 70.

With the transport platform 60 provided with two adapters 66, of which one has single brackets attached to the posts 72, the transport platform 60 is connectable to the trolleys 2 and 2′ in substantially the same manner as described above for the connection of the work platforms to the trolleys 2,2′ see Fig.8. The lever arms 30 and 30′ are attached to the respective connection elements 78. As a result, the transport platform is tiltable about the horizontal axes 56 and 58. When the transport platform 60 is in a horizontal position the carrier load floor 62 is situated at a level 80 relative the trolley 2 well below said level 55 of the work floor of the work platform 32.

In the case of a single mast configuration, a support beam 82 is releasably attached to the adapter 66 as illustrated in Fig.7. When the transport platform 60 provided with one adapter 66 is connected to the trolley 2, the support beam 82 is releasably attached to the lower beam 12 of the connection frame 8 on the trolley 2.

Accordingly, the components of the construction hoist system
of the present invention including masts 50, trolleys 2, work platforms 32, transport platforms 60 and adapters 66 with or without support beams 82 enable tailor-made configurations for any buildings, as by way of example are schematically illustrated in Figs. 9 and 10.
Claims

1. A construction hoist system, comprising at least one mast (50) having two adjacent parallel corner rails (52), a trolley (2) running on the corner rails, a motor (24) on the trolley for driving the trolley along the corner rails, a first pair (16,18) of connection members on the trolley, a work platform (32) having a substantially flat work floor (34), a second pair (38,40) of connection members on the work platform, the work platform being releasably connectable to the trolley through interconnection of the first and second pairs of connection members with the work platform in a horizontal position in which the work floor is situated at a first level (55) relative the trolley, characterized by a transport platform (60) having a substantially flat load carrier floor (62), and a third pair (74,76) of connection members provided on the transport platform, the transport platform being releasably connectable to the trolley (2) through interconnection of the first (16,18) and third pairs (74,76) of connection members with the transport platform in a horizontal position in which the load carrier floor (62) is situated at a second level (80) relative the trolley, said second level being below said first level.

2. A construction hoist system according to claim 1, further comprising an adapter (66) having said third pair (74,76) of connection members, the adapter being releasably connected to the transport platform (60).

3. A construction hoist system according to claim 2, wherein the adapter (66) comprises a lateral beam (70), and two spaced apart posts (72) extending upwardly from the lateral beam, said third pair (74,76) of connection members being formed on the posts at their upper free ends.

4. A construction hoist system according to claim 3, further comprising a horizontal support beam (82), which is releasably attachable to the lateral beam (70) of the adapter (66) to form a rigid unit consisting of the support beam and
the adapter, the support beam (82) being releasably attachable to the trolley (2), such that the load carrier floor (62) of the transport platform (60) is fixed in a horizontal position when the transport platform is attached to the trolley through the support beam.

5. A construction hoist system according to claim 1, further comprising an additional mast (50') having two adjacent parallel corner rails (52'), an additional trolley (2') running on the corner rails of the additional mast, a motor (24') on the additional trolley for driving the additional trolley along the corner rails, a fourth pair (16',18') of connection members on the additional trolley, a fifth pair (42,44) of connection members on the work platform (32), the work platform being releasably connectable to the additional trolley (2') through interconnection of the fourth (16',18') and fifth (42,44) pairs of connection members with the work platform in a horizontal position in which the work floor (34) is situated at a third level relative the additional trolley, and a sixth pair of connection members provided on the transport platform (60), the transport platform being releasably connectable to the additional trolley (2') through interconnection of the fourth (16',18') and sixth pairs of connection members with the transport platform in a horizontal position in which the load carrier floor is situated at a fourth level relative the additional trolley, said fourth level being below said third level.

6. A construction hoist system according to claim 5, further comprising a first adapter (66) having said third pair (74,76) of connection members and a second adapter having said sixth pair of connection members, the adapters being releasably connected to the transport platform (60) at mutual ends thereof.

7. A construction hoist system according to claim 6, wherein the first adapter (66) and the second adapter, respectively, comprises a lateral beam (70), and two spaced apart posts (72) extending upwardly from the lateral beam, said third
pair (74,76) of connection members being formed on the posts of the first adapter at their upper free ends and said sixth pair of connection members being formed on the posts of the second adapter at their upper free ends.

8. A construction hoist system according to claim 7, wherein said third pair (74,76) of connection members of the transport platform (60) are hingeable on said first pair (16,18) of connection members of the trolley (2) and said sixth pair of connection members of the transport platform are hingeable on said fourth pair (16′,18′) of connection members of the additional trolley (2′), such that the transport platform is tiltable about a horizontal axis (56) through said third and first pairs of connection members and about a horizontal axis (58) through said sixth and fourth pairs of connection members.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: B66B 9/16, E04G 1/20
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: B66B, E04G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 3426985 A1 (ALBERT BÜCKER GMBH & CO KG), 21 March 1985 (21.03.85), abstract, figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>SE 423893 B (T. HEDSTRÖM), 14 June 1982 (14.06.82), abstract, figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>SE 462336 B (G. MALMQVIST), 11 June 1990 (11.06.90), abstract, figures</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 12 July 1999
Date of mailing of the international search report: 30-07-1999

Name and mailing address of the ISA:
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Mariana Eddin
Telephone No. +46 8 782 25 00
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 3426985 A1</td>
<td>21/03/85</td>
<td>AT 45558 T</td>
<td>15/09/89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0135703 A,B</td>
<td>03/04/85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 0135703 T3</td>
<td></td>
</tr>
<tr>
<td>SE 423893 B</td>
<td>14/06/82</td>
<td>EP 0049234 A,B</td>
<td>07/04/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 8006848 A</td>
<td>02/04/82</td>
</tr>
<tr>
<td>SE 462336 B</td>
<td>11/06/90</td>
<td>SE 8601542 A</td>
<td>08/10/87</td>
</tr>
</tbody>
</table>

Form PCT/ISA/110 (patent family annex) (July 1992)