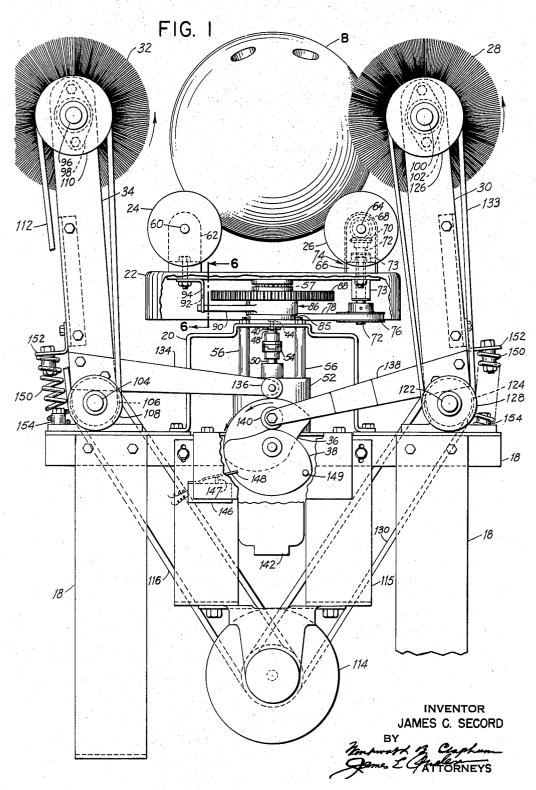
May 10, 1966


J. C. SECORD

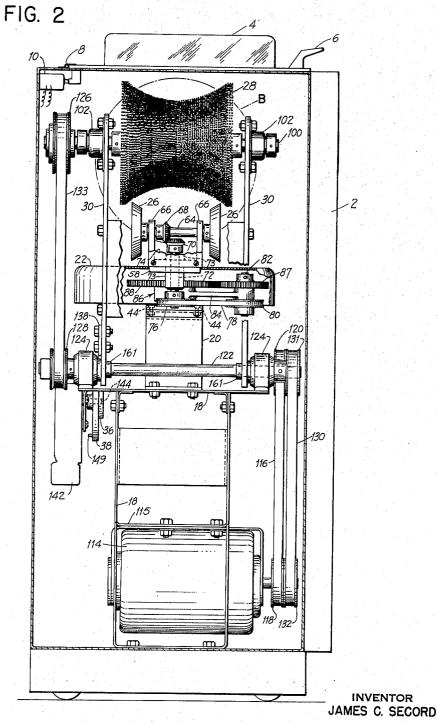
APPARATUS FOR CLEANING AND/OR POLISHING A BOWLING
BALL OR THE LIKE

4 Shorts Shorts

Filed Jan. 9, 1963

4 Sheets-Sheet 1




May 10, 1966

APPARATUS FOR CLEANING AND/OR POLISHING A BOWLING
BALL OR THE LIKE

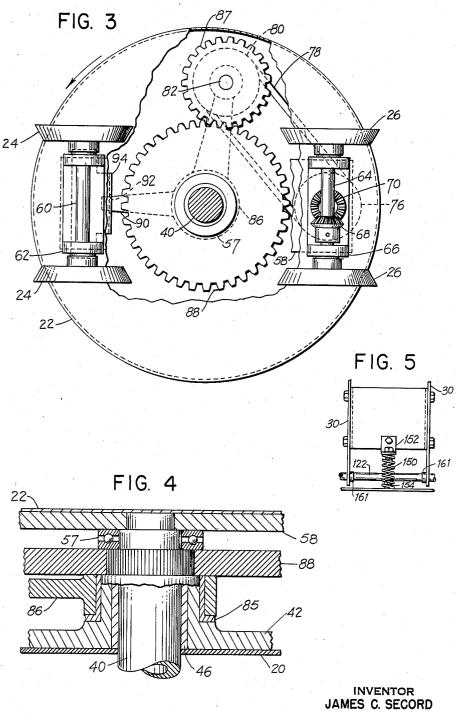
4 Shorts Short R

Filed Jan. 9, 1963

4 Sheets-Sheet 2



BY ATTORNEYS


May 10, 1966

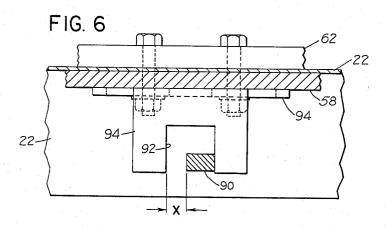
APPARATUS FOR CLEANING AND/OR POLISHING A BOWLING
BALL OR THE LIKE

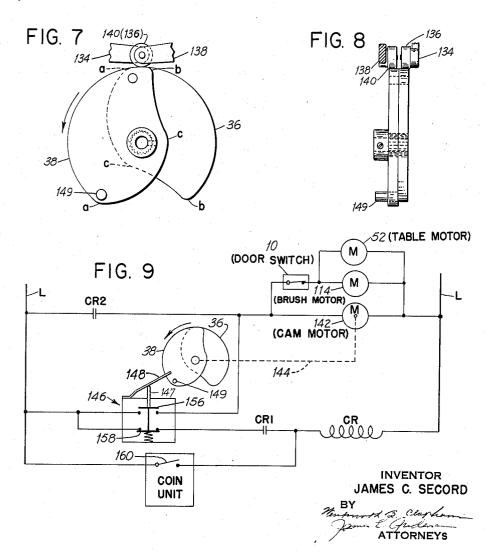
4 Shorts-Short 7

Filed Jan. 9, 1963

4 Sheets-Sheet 3




ATTORNEYS


May 10, 1966

DE J. C. SECORD 3,249,957
APPARATUS FOR CLEANING AND/OR POLISHING A BOWLING
BALL OR THE LIKE

Filed Jan. 9, 1963

4 Sheets-Sheet 4





1

3,249,957
APPARATUS FOR CLEANING AND/OR POLISHING A BOWLING BALL OR THE LIKE
James Charles Secord, Mansfield, Ohio, assignor to American Machine & Foundry Company, a corporation of
New Jersey

Filed Jan. 9, 1963, Ser. No. 250,400 11 Claims. (Cl. 15—21)

This invention relates to improved apparatus for cleaning and/or polishing a bowling ball or the like. In the cleaning and polishing of a bowling ball it is a principal object to effect thorough and uniform surface treatment. To this end various types of apparatus have been devised wherein a progressive shifting of the position of the ball relative to a travelling brush or the like is intended to result in coverage of the entire surface.

It is the principal object of the invention to provide a machine which will very rapidly, thoroughly, uniformly and safely effect the desired surface treatment on a bowling ball, and which is smoothly operating and simple in construction

In accordance with the invention the ball is continuously revolved about a pair of crossed axes as it is being acted upon by the cleaning and polishing devices. Because of this continuous change in position, as distinguished from periodic shifting of position, the treatment of the ball surface necessarily is very uniform. Specifically, the principal parts of the subject apparatus are a travelling, ball-engaging brush assembly and a ball supporting assembly. This ball supporting assembly comprises a turret-like table which revolves continuously about a central vertical axis and which carries means for imparting to a ball supported thereon a continuous rotational movement about another axis. Because of the nature of the particular nature of this arrangement for supporting and spinning the ball, it can be caused to travel at a desirably high peripheral speed relative to the cleaning and polishing means. Furthermore, this invention is in the form of a highly feasible product from a commercial manufacturing standpoint. Also, the ball is handled and motions imparted to it in a manner which minimizes the possibilities of scratching thereof or other damage.

Further objects, details and advantages will become apparent from the following description, read in conjunction with the accompanying drawings in which:

FIGURE 1 is a front view of the operating mechanism of the ball polishing and cleaning machine with the cabinet removed, constructed in accordance with the invention,

FIGURE 2 is a vertical cross-section of the machine, providing a side view of the operating mechanism shown in FIGURE 1.

FIGURE 3 is a plan view of the rotary table unit, with parts thereof broken away to show the planetary gear unit,

FIGURE 4 is an axial section through the central table spindle, bearing and epicyclic gearing assembly,

FIGURE 5 is a side view illustrating the spring arrangement acting on each brush assembly,

FIGURE 6 is a view taken as indicated by lines 6—6 in FIGURE 1,

FIGURES 7 and 8 are face and edge views respectively, of the cams for controlling positioning of the brushes, and

FIGURE 9 is a schematic wiring diagram of controls for this machine.

As shown in FIGURE 2, the machine selected for illustration of the embodiment of the invention has an outer cabinet 2 which shields the machine parts and protects them from unauthorized tampering while also presenting an attractive appearance. On the top of the

2

cabinet there is a lid or door 4 through which a bowling ball is put into and removed from the machine, the door 4 preferably being of a transparent material such as plastic to permit a person to view the cleaning and polishing operation. Door 4 has a handle 6 and is mounted by a piano type of hinge 8. A switch 10 (FIGURE 9) the operation of which will be described hereafter, is mounted for actuation by the opening and closing movements of the door 4.

The operating machine parts are supported on a structure comprising a main frame 18. An upper frame section 20 provides a platform for mounting of the ball supporting turret or table 22 which is rotatable about a vertical axis in a counterclockwise direction (FIGURE 3). On the table 22 a ball rest is comprised of a plurality of rollers or wheels which are tapered inwardly (see FIGURE 2) so that they securely cradle a spherical bowling ball designated B. Of these rollers, the two rollers indicated at 24 are idlers and the two rollers indicated at 26 are driven about their common axis by means described hereafter. (In an optional assembly, three triangularly arranged rollers may be used instead of four rollers.) By virtue of the rotation of rollers 26 simultaneously with rotation of table 22, a ball B which is supported on the table 22 is constantly being moved in a pattern which is the resultant of spinning about a horizontal axis which in turn sweeps, about a vertical central axis, through a horizontal plane. While the ball is being continuously handled in such manner, in a single cleaning and polishing cycle of operation it is rubbed first by a wire brush 28 which is mounted on arms 30 and then rubbed by a soft polishing or buffing brush 32 which is mounted on arms 34. This bringing of the brushes 28 and 32 alternately into engagement with the ball B is effected by means of cams 36 and 38 for moving the arms 30 and 34, respectively, inwardly and outwardly relative to the spinning ball B. The above represents only a brief, introductory description of the operation of this machine and will be followed by a more detailed de-40 scription.

A hub or spindle 40 is rotatably journalled in a collar 42 which is affixed to the frame member 20 by bolts 44 and has an Oilite bearing insert 46 therein. Spindle 40 has a reduced lower end 48 which is connected to the output 45 shaft 50 of an electric motor 52 by means of a coupling 54. Motor 52 is suspended from frame member 20 by rod and bolt means 56. The upper end of spindle 40 is press-fitted or otherwise secured in a plate 58 which constitutes a rigid understructure for table 22. A thrust bearing 57 supports the table 22 on the upper end of collar 42.

On table 22 the rollers 24 are carried by a shaft 60 which is freely mounted for rotation in bearings provided by the spaced upstanding arms of a bracket 62 secured to the table. Rollers 26 are keyed to a shaft 64 which 55 is rotatably journalled in the vertical arms of a bracket 66 secured to the table 22. A bevel gear 68 affixed on shaft 64 meshes with a similar bevel gear 70 affixed to a vertical shaft 72 that is rotatable in bearing portions 73 provided by the bracket 66. The gears 68 and 70 are shielded by a cover 74 secured to the bracket 66. The lower end of shaft 72 carries a pulley 76, and a V-belt 78 is trained between pulley 76 and a pulley 80 which is carried by a spindle 82 rotatable in an arm 84 of a two-armed member 86. Member 86 contains a bearing insert 85 which rides on collar 42, with the member 86 being freely rotatable about the bearing provided by the upstanding hub thereof. A sun gear 88 is pressed on to the upper end of the hub provided by collar 42 and is thereby fixed against rotation. Gear 88, however, meshes with a planet gear 87 that is fixed on vertical spindle 82, and therefore if arm 84 is carried about the axis of central spindle 40

0,2 ±0,0

this will result in a driving of pulley 76 through pulley 80 and, consequently, a rotation of wheels 26 through gearing 68, 70. This desired rotation of the arm 84 about the axis of central spindle 40 is effected by the connection of an arm 90 of member 86 with the table 22, whereby rotation of table 22 carries with it the number 86. The connection between arm 90 and table 22 comprises a bracket 94 extending downwardly from plate 58 and having a wide slot 92 in which the end of arm 90 is received with substantial lateral clearance. This clearance x, which represents the difference between the widths of slot 92 and arm 90, is evident from FIGURE 6 and its significance will be more fully explained hereafter.

3

The brush 32 is affixed to a shaft 96 which is journalled in bearings 98 on the spaced arms 34 and, similarly, brush 15 28 is affixed to a shaft 100 journalled in bearings 102 on the spaced arms 30. Arms 34 are affixed to Oilite bearings, by means of which the arms are pivotally journalled on a shaft 104. Shaft 104 is mounted in pedestal bearings 106 on the frame 18, and motion is transmitted from 20 a pulley 108 on shaft 104 to a pulley 110 on shaft 96 by a V-belt 112. Shaft 104, in turn, is driven by an electric motor 114, carried by supporting framework 115, through means of a belt 116 trained between the motor drive pulley 118 and a pulley 120 on the rearward end of shaft 104. Arms 30 also are affixed to Oilite bearings, by means of which the arms are pivotally journalled on a a shaft 122. Shaft 122 is rotatably journalled in pedestal bearings 124, and motion is transmitted from a pulley 128 on shaft 122 to a pulley 126 on shaft 100 by a V-belt 130. The shaft 122 is driven by motor 114 through means of a belt 130 trained between a motor drive pulley 132 and a pulley 131 on the rearward end of shaft 122. Though in the illustrated case the brushes 28 and 32 rotate counterclockwise, they may be rotated in the opposite direction.

The connection of arm 34 to cam 36 to effect movement of the polishing brush 32 toward and away from the ball B is effected through an arm 134 rigidly connected to arm 34 and having a follower 136 adapted to ride on the cam 36. The corresponding connection of arm 30 to cam 38 is effected through an arm 138 having a follower 140 adapted to ride on cam 38. Referring to FIG-URE 7 in particular, it may be seen that each of the cams 36 and 38 is characterized by a circular portion of uniform radius extending from a to b, and when either of the cam followers 136 and 140 is in one of these cam portions its associated brush 32 or 28, respectively, will be in a fully withdrawn, outer position in which it will not touch bowling ball B. A further portion extending from b to c has a progressively decreasing radius which will cause lowering of a cam follower to bring its associated brush into a ball engaging position. As a cam follower rides from c back to a it will then be engaged and lifted by the cam to return its associated brush to an inactive outer position. Further, it will be noted that cams 36 and 38 are approximately out of phase so that when one follower is resting on a cam portion extending from b to c and its associated brush is in the active position wherein a ball is being scrubbed, the other cam follower will be riding upon the portion a to b to maintain its associated brush in a withdrawn, inactive position. As one cam follower rides from c to a to begin withdrawal of its associated brush to an inactive position the other cam follower will ride from b to c so as gradually to move its associated brush into an active scrubbing position. Finally, both cam followers 136 and 140 will arrive at a position, shown at the overlapping portion of these cams at the top of FIGURE 7, in which both of the brushes, 28 and 32, will be in the inactive, withdrawn position. This is the point at which a cycle of cleaning by brush 28 and polishing by brush 32 begins and ends. Thus, in FIG-URE 1 the apparatus is shown in a condition in which the cams 36 and 38 have rotated counterclockwise more than 60° from their starting position, and the follower 140 75

having been lowered to the point where the brush 28 rests by its own weight against the ball B and the follower 136 being fully raised to maintain the brush 32 completely out of contact with the ball.

The cams 36 and 38 are driven by a small motor unit 142 having an output shaft 144 on which these cams are fixed. The driving of this unit 142 is controlled by a circuit, shown in FIGURE 9, having a pushbutton-type switch 146. The actuator 147 of the switch 146 is normally urged upwardly by a spring, thereby holding the contacts 156 open and the contacts 158 closed. A pin 149 extending from the face of cam 38 protrudes sufficiently to engage spring 148 in the course of counterclockwise rotation, thereby depressing the same, and operating switch 146 in the manner hereafter described.

Associated with each of the arms 30 and 34 is a coil spring 150 which is anchored at 154 and resiliently acts upwardly against a bracket 152 on the associated arm. By means of springs 150, as the arms 30 and 34 withdraw to their inactive positions they are prevented from dropping backwardly by their own weight. It will be noted in this respect that as either of the brushes 28 and 32 is moved from its inactive to its active position its central axis moves past a position in which it is directly above either the axis at 104 or 122, and its weight then begins to urge it toward the ball. After the brush contacts the ball the cam follower associated with this brush leaves its cam and the moment of force of the brush weight about the pivot of its associated arms becomes partially responsible for the scrubbing pressure exerted against the ball. Also, this action is resiliently supplemented by the action of one of the springs 150. Automatic compensation is thereby afforded for changes in diameter of brushes caused by wear and for the usual differences in diameter among bowling balls.

The means for controlling the cycle of operation of the machine will be described with reference to FIGURE 9. For commercial purposes the operation of a bowling ball cleaning and polishing machine ordinarily is initiated only in response to and consideration for the deposit of money. In the circuit shown, operation of the machine is initiated by momentarily closing a switch 160, and this switch is shown as being controlled by a conventional coin operated control unit shown in block diagram. However, it should be understood that the switch 160 can be an ordinary pushbutton switch operated independently of any means for receiving money as a precedent condition for operation.

The cams 36 and 38 are shown in FIGURE 9 in the position which they occupy at the beginning and end of each cycle of operation. Pin 149 has released the spring 148 allowing switch 156 to open and switch 158 to close. Thus, the rotation of pin 149 in a counterclockwise direction away from the position shown will not affect the switch spring 148 until just prior to completion of a revolution. Spring 148 will then be momentarily depressed by pin 149 until the cams rotate sufficiently for pin 149 to release the spring. Cam 38 and pin 149 will then have returned to their zero position. A relay has its coil indicated at CR and its two sets of normally open contacts indicated at CR1 and CR2. Thus the contacts CR1 and CR2 will be closed as long as coil CR is energized through either switch 158 and its holding contacts CR1 or through momentary closing of the switch 160 of the coin operated unit. It will be noted that the door switch 10 is in series with both the table motor 52 and the brush motor 114, whereby these motors cannot be operated when the door is lifted open and its switch 10 thereby opened.

In the operation of the control circuit, upon the insertion in the machine of the required coin or coins the switch 160 is closed momentarily to energize relay coil CR, which in turn effects the closing of contacts CR1 and CR2. Immediately upon closing of contacts CR2 the cam motor 142 begins rotation of cams 36 and 38.

The closing of CR1 contacts establishes a hold-in circuit for relay coil CR through normally closed switch 158. Thus, the subsequent opening of coin operated switch 160 does not interrupt energization of relay coil CR. Relay coil CR will remain energized through the entire 5 ball cleaning cycle until pin 149 approaches the completion of a revolution and contacts spring 148. At this point, as spring 148 is depressed by pin 149, switch 158 will be opened, de-energizing relay coil CR, and the normally open switch 156 will close to provide an alternate 10 path to the ball cleaner motors as CR2 contact opens. The cam motor 142, brush motor 114, and table motor 52 will continue to operate through the now closed switch 156 until the pin 149 is rotated sufficiently to release spring 148, at which point the cycle of operation has been com- 15 pleted.

During the rotation of cams 36 and 38, each cam follower 136, 140 will ride progressively on the portions a, b and c of these cams. By virtue of the contours of these cams, and their out of phase physical relation, 20 the cleaning brush 28 will first be brought into contact with ball B for a brief period of time and then withdrawn to an active position as its associated follower 140 rides along portion b-c-a of cam 38. Throughout most of this period the follower 136, associated with polishing 25 brush 32, will ride along portion a-b of cam 36 and will be maintained thereby in its withdrawn, inactive position. As cleaning brush 28 begins to withdraw from operative contact with the ball B, polishing brush 32 will be brought into contact and withdraw from contact with 30 ball B due to riding of cam follower 136 along the portion b-c-a of cam 36.

During operation of brushes 28 and 32, these brushes then being driven by motor 114, the ball is being reoriented continually in relation to the brushes as it rests 35 on table 22. Table 22 rotates by virtue of direct connection to motor 52, and as it does so it rotates member 86 (by virtue of the bracket 94 connecting arm 90 to the table), which causes planet gear 87 to revolve around fixed sun gear 88 and be rotated about its axis. The rota- 40 tion of gear 87 is transmitted to rollers 26 through pulleys 76 and 80, belt 78, and gearing 68 and 70. Therefore, as the ball rests on the table 22, which spins on a vertical axis, it is rotated about an intersecting horizontal axis which is fixed in relation to the table but actually sweeps through a horizontal plane. Thus the ball is moved in such a way that thoroughness and uniformity of surface treatment is assured.

In a preferred embodiment of the invention, the table 22 rotates at approximately 55 revolutions per minute 50 and the rollers 26 rotate at approximately 82.5 revolutions per minute. Assuming a maximum bowling ball diameter of approximately nine inches (actually less than nine inches according to regulations), the peripheral, tangential component of movement in a horizontal plane, attributable to rotation of the table 22 about a vertical axis, is approximately 130 feet per minute. The peripheral, tangential component of motion in a vertical axial plane and at right angles to the axis of spindle 64, attributable to the rotation of rollers 26, is approximately 65 feet per minute. The actual pattern of motion by which the surface of the ball is subjected to the cleaning and polishing brushes, of course, involves summation of vector components due to spinning of the ball on different axes.

When the ball is placed in and removed from the machine through the opened door 4, it is desirable that the user of the machine can freely move the ball about on the rest provided by rollers 24 and 26. For example, it may be desired to shift the ball to bring the finger holes into uppermost position to facilitate lifting of the ball. To this end, a declutching feature is incorporated, in that when the machine is at rest the driving rollers 26 (the rollers 24 being merely idlers) are not tightly coupled to their driving mechanism, whereby rollers 26 do not resist shifting of the ball. Referring to FIGURE 6, when the 75 face of a bowling ball or the like comprising a support-

table 22 rotates in a counterclockwise direction (FIG-URE 3) it pushes on the arm 90, thereby taking up the clearance x and pulling taut the belt 78. However, when the table 22 is at rest, due to the clearance x the tension on belt 78 is relaxed. Now, due to the play in belt 78 the rollers 26 can be turned easily and they do not, therefore, resist the rotation of the ball B by the user of the machine as previously mentioned.

A significant advantage of the aforedescribed arrangement is that the arrangement whereby the ball is moved is such that the possibility of scuffing, scratching, or otherwise damaging the ball surface is not present. As far as the ball is concerned, it does not have members simultaneously acting upon it directly in different directions so as to give frictional reaction. The ball is acted upon directly only by the rollers 26, which act in one direction only, while the second mode of spinning is imparted only indirectly through bodily rotation of the entire table assembly 22.

Thus it will be seen that present objects are attained in a smoothly operating machine which imparts a very uniform and continuous pattern of motion to the ball; which represents a rugged, simply operating and commercially feasible apparatus; and which affords other desirable details and advantages.

It will be understood that various departures from the specifically disclosed embodiments of the invention can be effected without departing from the scope thereof as defined in the following claims.

What is claimed is:

1. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising a single turret-like means for supporting said ball, said turret-like means being unobstructed from above for manual placement of the ball thereon, means for rotating said supporting means about a central vertical axis, means carried by said supporting means for rotating said ball about a central axis transverse to said vertical axis and having a fixed relation to said supporting means, and brush means stationarily located adjacent the rotational path of travel of said ball for cleaning and polishing the surface thereof.

2. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising means freely supporting said ball for continuous rotation simultaneously about a vertical axis and about a transverse axis intersecting said vertical axis, means for rotating said ball continuously about both said axes simultaneously, and a pair of automatically operable brush means adjacent the rotational path of travel of said ball for alternately cleaning and polishing the surface thereof.

3. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising means for freely supporting said ball and for continuously rotating the same simultaneously on a vertical central axis and on an intersecting central axis which sweeps about said vertical axis in a substantially horizontal plane, and rotary brush means adjacent the rotational path of travel of said ball for cleaning and polishing the surface thereof.

4. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising a supporting structure, a single turret mounted on said structure for rotation about a substantially vertical axis, a plurality of rollers arranged on said turret to support a bowling ball thereon, said turret being unobstructed from above and said supporting structure permitting access thereto for manual placement of said ball on the turret, means for simultaneously rotating said turret on said vertical axis and driving at least one of said rollers to impart components of rotational movement to said ball, and brush means movably supported by said structure adjacent the path of rotational movement of said ball for movement bodily into contact with the surface thereof.

5. Apparatus for cleaning and/or polishing the sur-

8

ing structure, a single ball-supporting turret mounted on said structure for rotation about a substantially vertical axis, means carried by said turret for rotating a ball supported thereon about a substantially horizontal axis having a constantly fixed relation to said turret, said turret being unobstructed from above and said supporting structure permitting access thereto for manual placement of said ball on the turret, means continuously operable during a cycle of operation to rotate said turret and drive said ball rotating means simultaneously, and brush means positioned by said structure adjacent the rotational path of travel of said ball for cleaning and polishing the surface thereof.

6. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising a supporting structure, a single turret mounted on said structure for rotation about a substantially vertical axis, a plurality of spaced ball-supporting rollers carried by said turret on at least two horizontal parallel axes whereby said rollers are suitably arranged to cradle and support said ball, 20 said apparatus including said supporting structure providing unobstructed access to said single turret to permit manual placement of a ball on said rollers, drive means for rotating at least one of said rollers to effect rotation of the ball and for rotating said turret, a pair of travelling brushes adjacent said turret, means for moving said brushes independently in turn into and out of the range of rubbing contact with said ball, and control means for said drive means and the last-mentioned means effecting a complete cycle of operation thereof during a predetermined period of time.

7. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising a supporting structure, a single turret mounted on said structure for rotation about a substantially vertical axis, means supported by said structure adjacent said turret for rubbing a ball supported thereon, means carried by said turret for rotating said ball supported thereon, means for rotating said turret, and epicyclic gear means for driving said ball rotating means carried by the turret, the last-mentioned means comprising a fixed sun gear coaxial with the rotational axis of the turret, a freely journalled planet gear connected to said turret to be carried thereby around said sun gear, and means transmitting the rotation of said planet gear to said ball rotating means.

8. The invention according to claim 7, wherein said transmitting means comprises belt drive means having considerable slack to permit slippage of said ball rotating means relative to said gearing when the turret is at rest, and being taut to transmit driving motion when the turret is rotating.

9. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising a supporting structure, means carried by said structure for supporting said ball or the like and for imparting rotational 55

movement thereto, pairs of arms extending upwardly from said structure at opposite sides of said means and pivotally mounted on parallel horizontal axes, rotating brushes carried by said pairs of arms on axes parallel to the first-mentioned axes, said pairs of arms being pivotally operable to move said brushes independently into and out of contact with said ball, a single assembly of cams located between said pairs of arms and coaxially operable on a common horizontal axis parallel to the first and second-mentioned axes, a pair of cam-follower levers operatively connected between said respective arms and said cam assembly, said cams being contoured to effect movement of each of said wheels in turn into and out of rubbing contact with said ball in a single cycle of operation, and timer control and driving means for said cam assembly operable to effect said cycles of operation thereof.

10. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising a supporting structure, a turret mounted on said structure for rotation about a substantially vertical axis, a plurality of ball-gripping rollers arranged on said turret to cradle and support a ball thereon, drive means including means for rotating said turret and a drive train for driving at least one of said rollers to impart components of rotational movement to said ball, clutch means interposed in said drive train automatically permitting slippage between said driven roller and drive means when said drive means is inactive, and means supported by said structure adjacent said turret for rubbing a ball supported thereon.

11. Apparatus for cleaning and/or polishing the surface of a bowling ball or the like comprising a supporting structure; a turret mounted on said structure for rotation about a substantially vertical axis; a plurality of ballgripping rollers arranged on said turret to cradle and support a ball thereon; drive means including means for rotating said turret and a drive train for driving at least one of said rollers to impart components of rotational movement to said ball, said drive train including a belt drive; means acting on said belt drive to produce slack therein when the drive means is inactive and to tension said belt drive when the drive means is in operation; and means supported by said structure adjacent said turret for rubbing a ball supported thereon.

## References Cited by the Examiner

## UNITED STATES PATENTS

| 2.588,714 | 3/1052 | Fleming 15—21.1 X |
|-----------|--------|-------------------|
|           |        |                   |
| 2,628,462 | 2/1953 | Babcock 15—21.1 X |
| 2,733,464 | 2/1956 | Mieux 15—21.1     |
| 3,103,677 | 9/1963 | Gallant 15—21.1   |

WALTER A. SCHEEL, Primary Examiner.