
(12) STANDARD PATENT (11) Application No. AU 2020226567 B2 
(19) AUSTRALIAN PATENT OFFICE 

(54) Title 
Joint coding of palette mode usage indication 

(51) International Patent Classification(s) 
HO4N 19/186 (2014.01) 

(21) Application No: 2020226567 (22) Date of Filing: 2020.02.24 

(87) WIPO No: W020/169104 

(30) Priority Data 

(31) Number (32) Date (33) Country 
PCT/CN2019/077454 2019.03.08 CN 

(43) Publication Date: 2020.08.27 
(44) Accepted Journal Date: 2025.05.22 

(71) Applicant(s) 
Beijing Bytedance Network Technology Co., Ltd.;ByteDance Inc.  

(72) Inventor(s) 
ZHU, Weijia;ZHANG, Li;XU, Jizheng;ZHANG, Kai;LIU, Hongbin;WANG, Yue 

(74) Agent / Attorney 
Griffith Hack, Level 15, 376-390 Collins Street, Melbourne, VIC, 3000, AU 

(56) Related Art 
CN 105704491 A



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) 

(19) World Intellectual Property 
(1) Organization11111111111111111111111I1111111111111i1111liiiii 

International Bureau (10) International Publication Number 

(43) International Publication Date W O 2020/169104 Al 
27 August 2020 (27.08.2020) W IP0I PCT 

(51) International Patent Classification: PCT/CN2019/098204 
H04N19/186 (2014.01) 29 July 2019 (29.07.2019) CN 

(21) International Application Number: (71) Applicants: BEIJING BYTEDANCE NETWORK 
PCT/CN2020/076368 TECHNOLOGY CO., LTD. [CN/CN]; Room B-0035,2/ 

(22) International Filing Date: F, No.3 Building, No.30, Shixing Road, Shijingshan Dis

24 February 2020 (24.02.2020) trict, Beijing 100041 (CN). BYTEDANCE INC. [US/US]; 
12655 West Jefferson Boulevard, Sixth Floor, Suite No.  

(25) Filing Language: English 137, Los Angeles, California 90066 (US).  

(26) Publication Language: English (72) Inventors: ZHU, Weijia; 12655 West Jefferson Boule

(30) Priority Data- vard, Sixth Floor, Suite No. 137, Los Angeles, California 

PCT/CN2019/075994 90066 (US). ZHANG, Li; 12655 West Jefferson Boule

24 February 2019 (24y02.2019) CN vard, Sixth Floor, Suite No. 137, Los Angeles, California 

PCT/CN2019/077454 021 90066 (US). XU, Jizheng; 12655 West Jefferson Boule

08 March 2019 (08y03.2019) CN vard, Sixth Floor, Suite No. 137, Los Angeles, California 

PCT/CN2019/081863 830 90066 (US). ZHANG, Kai; 12655 West Jefferson Boule

09 April 2019 (09y04.2019) CN vard, Sixth Floor, Suite No. 137, Los Angeles, California 

PCT/CN2019/096933 940 90066 (US). LIU, Hongbin; Jinritoutiao Post Office, Chi

20 July 2019 (20.07.2019) CN na Satellite Communications Tower, No.63, Zhichun Road, 

PCT/CN2019/097288 Haidian District, Beijing 100080 (CN). WANG, Yue; Jin

23 July 2019 (23.07.2019) CN ritoutiao Post Office, China Satellite Communications Tow

(54) Title: JOINT CODING OF PALETTE MODE USAGE INDICATION 

2600 

determining, for a conversion between a 
block of a video region in a video and a 
bitstream representation of the video, a 
prediction mode based on one or more 2610 

allowed prediction modes that include at 
least a palette mode of the block 

performing the conversion basedonthe 2620 
determining 

FIG. 26 

(57) Abstract: Devices, systems and methods for palette mode coding are described. An exemplary method for video processing 
includes determining, for a conversion between a block of a video region in a video and a bitstream representation of the video, a 
prediction mode based on one or more allowed prediction modes that include at least a palette mode of the block. An indication of 
usage of the palette mode is determined according to the prediction mode. The method also includes performing the conversion based 
on the one or more allowed prediction modes.



W O 2020/169 104 A 1 |||1||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

er, No.63, Zhichun Road, Haidian District, Beijing 100080 
(CN).  

(74) Agent: LIU, SHEN & ASSOCIATES; 10th Floor, Build
ing 1, 10 Caihefang Road, Haidian District, Beijing 100080 
(CN).  

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available): AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 
DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN, 
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 
KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, 
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.  

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available): ARIPO (BW, GH, 
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 
KM, ML, MR, NE, SN, TD, TG).  

Declarations under Rule 4.17: 
- ofinventorship (Rule 4.17(iv)) 

Published: 
- with international search report (Art. 21(3))



1 

JOINT CODING OF PALETTE MODE USAGE INDICATION 

CROSS REFERENCE TO RELATED APPLICATIONS 

[001] This application is based on International Patent Application No.  

PCT/CN2020/076368, filed on February 24, 2020, which claims the priority to and benefits of 

International Patent Application No. PCT/CN2019/077454, filed on March 8, 2019. All the 

aforementioned patent applications are hereby incorporated by reference in their entireties.  

TECHNICAL FIELD 

[002] This document is related to video and image coding technologies.  

BACKGROUND 

[003] Digital video accounts for the largest bandwidth use on the internet and other digital 

communication networks. As the number of connected user devices capable of receiving and 

displaying video increases, it is expected that the bandwidth demand for digital video usage 

will continue to grow.  

SUMMARY 

[004] The disclosed techniques may be used by video or image decoder or encoder 

embodiments for in which palette mode coding is used.  

[005] In one example aspect, a method of video processing is disclosed. The method 

includes performing a conversion between a block of a video region of a video and a 

bitstream representation of the video. The bitstream representation is processed according to a 

first format rule that specifies whether a first indication of usage of a palette mode is signaled 

for the block and a second format rule that specifies a position of the first indication relative 

to a second indication of usage of a prediction mode for the block.  

[006] In one example aspect, a method of video processing is disclosed. The method 

includes determining, for a conversion between a block of a video region in a video and a 

bitstream representation of the video, a prediction mode based on one or more allowed 

prediction modes that include at least a palette mode of the block. An indication of usage of 

18019688_1 (GHMatters) P117156.AU



2 

the palette mode is determined according to the prediction mode. The method also includes 

performing the conversion based on the one or more allowed prediction modes.  

[007] In another example aspect, a method of video processing is disclosed. The method 

includes performing a conversion between a block of a video and a bitstream representation of 

the video. The bitstream representation is processed according to a format rule that specifies a 

first indication of usage of a palette mode and a second indication of usage of an intra block 

copy (IBC) mode are signaled dependent of each other.  

[008] In another example aspect, a method of video processing is disclosed. The method 

includes determining, for a conversion between a block of a video and a bitstream 

representation of the video, a presence of an indication of usage of a palette mode in the 

bitstream representation based on a dimension of the block; and performing the conversion 

based on the determining.  

[009] In another example aspect, a method of video processing is disclosed. The method 

includes determining, for a conversion between a block of a video and a bitstream 

representation of the video, a presence of an indication of usage of an intra block copy (IBC) 

mode in the bitstream representation based on a dimension of the block; and performing the 

conversion based on the determining.  

[0010] In another example aspect, a method of video processing is disclosed. The method 

includes determining, for a conversion between a block of a video and a bitstream 

representation of the video, whether a palette mode is allowed for the block based on a second 

indication of a video region containing the block; and performing the conversion based on the 

determining.  

[0011] In another example aspect, a method of video processing is disclosed. The method 

includes determining, for a conversion between a block of a video and a bitstream 

representation of the video, whether an intra block copy (IBC) mode is allowed for the block 

based on a second indication of a video region containing the block; and performing the 

conversion based on the determining.  

[0012] In another example aspect, a method of video processing is disclosed. The method 

includes determining that palette mode is to be used for processing a transform unit, a coding 

block, or a region, usage of palette mode being coded separately from a prediction mode, and 

performing further processing of the transform unit, the coding block, or the region using the 

palette mode.  

18019688_1 (GHMatters) P117156.AU



3 

[0013] In another example aspect, a method of video processing is disclosed. The method 

includes determining, for a current video block, that a sample associated with one palette 

entry of a palette mode has a first bit depth that is different from a second bit depth associated 

with the current video block, and performing, based on at least the one palette entry, further 

processing of the current video block.  

[0014] In another example aspect, another method of video processing is disclosed. The 

method includes performing a conversion between a current video block of a picture of a 

video and a bitstream representation of the video in which information about whether or not 

an intra block copy mode is used in the conversion is signaled in the bitstream representation 

or derived based on a coding condition of the current video block; wherein the intra block 

copy mode comprises coding the current video block from another video block in the picture.  

[0015] In yet another example aspect, another method of video processing is disclosed. The 

method includes determining whether or not a deblocking filter is to be applied during a 

conversion of a current video block of a picture of video, wherein the current video block is 

coded using a palette mode coding in which the current video block is represented using 

representative sample values that are fewer than total pixels of the current video block and 

performing the conversion such that the deblocking filter is applied in case the determining is 

that the deblocking filter is to be applied.  

[0016] In yet another example aspect, another method of video processing is disclosed. The 

method includes determining a quantization or an inverse quantization process for use during 

a conversion between a current video block of a picture of a video and a bitstream 

representation of the video, wherein the current video block is coded using a palette mode 

coding in which the current video block is represented using representative sample values that 

are fewer than total pixels of the current video block and performing the conversion based on 

the determining the quantization or the inverse quantization process.  

[0017] In yet another example aspect, another method of video processing is disclosed. The 

method includes determining, for a conversion between a current video block of a video 

comprising multiple video blocks and a bitstream representation of the video, that the current 

video block is a palette-coded block; based on the determining, performing a list construction 

process of most probable mode by considering the current video block to be an intra coded 

block, and performing the conversion based on a result of the list construction process; 

18019688_1 (GHMatters) P117156.AU



4 

wherein the palette-coded block is coded or decoded using a palette or representation sample 

values.  

[0018] In yet another example aspect, another method of video processing is disclosed. The 

method includes 

[0019] In yet another example aspect, another method of video processing is disclosed. The 

method includes determining, for a conversion between a current video block of a video 

comprising multiple video blocks and a bitstream representation of the video, that the current 

video block is a palette-coded block; based on the determining, performing a list construction 

process of most probable mode by considering the current video block to be a non-intra coded 

block, and performing the conversion based on a result of the list construction process; 

wherein the palette-coded block is coded or decoded using a palette or representation sample 

values.  

[0020] In yet another example aspect, another method of video processing is disclosed. The 

method includes determining, for a conversion between a current video block of a video 

comprising multiple video blocks and a bitstream representation of the video, that the current 

video block is a palette-coded block; based on the determining, performing a list construction 

process by considering the current video block to be an unavailable block, and performing the 

conversion based on a result of the list construction process; wherein the palette-coded block 

is coded or decoded using a palette or representation sample values.  

[0021] In yet another example aspect, another method of video processing is disclosed. The 

method includes determining, during a conversion between a current video block and a 

bitstream representation of the current video block, that the current video block is a palette 

coded block, determining, based on the current video block being the palette coded block, a 

range of context coded bins used for the conversion; and performing the conversion based on 

the range of context coded bins.  

[0022] In yet another example aspect, the above-described method may be implemented by 

a video encoder apparatus that comprises a processor.  

[0023] In yet another example aspect, these methods may be embodied in the form of 

processor-executable instructions and stored on a computer-readable program medium.  

[0024] These, and other, aspects are further described in the present document.  

18019688_1 (GHMatters) P117156.AU



5 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0025] FIG. 1 shows an example of intra block copy.  

[0026] FIG. 2 shows an example of a block coded in palette mode.  

[0027] FIG. 3 shows an example of use of a palette predictor to signal palette entries.  

[0028] FIG. 4 shows an example of horizontal and vertical traverse scans.  

[0029] FIG. 5 shows an example of coding of palette indices.  

[0030] FIG. 6 is a block diagram of an example of a video processing apparatus.  

[0031] FIG. 7 shows a block diagram of an example implementation of a video encoder.  

[0032] FIG. 8 is a flowchart for an example of a video processing method.  

[0033] FIG. 9 shows an example of pixels involved in filter on/off decision and strong/weak 

filter selection.  

[0034] FIG. 10 shows an example of binarization of four modes.  

[0035] FIG. 11 shows an example of binarization of four modes.  

[0036] FIG. 12 shows examples of 67 intra mode prediction directions.  

[0037] FIG. 13 shows examples of neighboring video blocks.  

[0038] FIG. 14 shows examples of ALF filter shapes (chroma: 5x5 diamond, luma: 7x7 

diamond).  

[0039] FIG. 15 (a) shows an examples of subsampled Laplacian calculation for vertical 

gradient.  

[0040] FIG. 15 (b) shows an examples of subsampled Laplacian calculation for horizontal 

gradient.  

[0041] FIG. 15 (c) shows an examples of subsampled Laplacian calculation for diagonal 

gradient.  

[0042] FIG. 15 (d) shows an examples of subsampled Laplacian calculation for diagonal 

gradient.  

[0043] FIG. 16 shows an examples of modified block classification at virtual boundaries.  

[0044] FIG. 17 shows an examples of modified ALF filtering for luma component at virtual 

boundaries.  

[0045] FIG. 18 shows an example of four 1-D 3-pixel patterns for the pixel classification in 

EO.  

[0046] FIG. 19 shows an example of four bands are grouped together and represented by its 

starting band position.  

18019688_1 (GHMatters) P117156.AU



6 

[0047] FIG. 20 shows an example of top and left neighboring blocks used in CIIP weight 

derivation.  

[0048] FIG. 21 shows an example of luma mapping with chroma scaling architecture.  

[0049] FIG. 22 shows an examples of scanning order for a 4x4 block.  

[0050] FIG. 23 shows another example of scanning order for a 4x4 block.  

[0051] FIG. 24 is a block diagram of an example video processing system in which disclosed 

techniques may be implemented.  

[0052] FIG. 25 is a flowchart representation of a method for video processing in accordance 

with the present technology.  

[0053] FIG. 26 is a flowchart representation of another method for video processing in 

accordance with the present technology.  

[0054] FIG. 27 is another flowchart representation of another method for video processing in 

accordance with the present technology.  

[0055] FIG. 28 is another flowchart representation of another method for video processing in 

accordance with the present technology.  

[0056] FIG. 29 is another flowchart representation of another method for video processing in 

accordance with the present technology.  

[0057] FIG. 30 is another flowchart representation of another method for video processing in 

accordance with the present technology.  

[0058] FIG. 31 is yet another flowchart representation of another method for video processing 

in accordance with the present technology.  

DETAILED DESCRIPTION 

[0059] The present document provides various techniques that can be used by a decoder of 

image or video bitstreams to improve the quality of decompressed or decoded digital video or 

images. For brevity, the term "video" is used herein to include both a sequence of pictures 

(traditionally called video) and individual images. Furthermore, a video encoder may also 

implement these techniques during the process of encoding in order to reconstruct decoded 

frames used for further encoding.  

[0060] Section headings are used in the present document for ease of understanding and do 

not limit the embodiments and techniques to the corresponding sections. As such, 

embodiments from one section can be combined with embodiments from other sections.  

18019688_1 (GHMatters) P117156.AU



7 

[0061] 1. Summary 

[0062] This document is related to video coding technologies. Specifically, it is related to 

palette coding with employing base colors based representation in video coding. It may be 

applied to the existing video coding standard like HEVC, or the standard (Versatile Video 

Coding) to be finalized. It may be also applicable to future video coding standards or video 

codec.  

[0063] 2. Initial Discussion 

[0064] Video coding standards have evolved primarily through the development of the well

known ITU-T and ISO/IEC standards. The ITU-T produced H.261 and H.263, ISO/IEC 

produced MPEG-i and MPEG-4 Visual, and the two organizations jointly produced the 

H.262/MPEG-2 Video and H.264/MPEG-4 Advanced Video Coding (AVC) and 

H.265/HEVC standards. Since H.262, the video coding standards are based on the hybrid 

video coding structure wherein temporal prediction plus transform coding are utilized. To 

explore the future video coding technologies beyond HEVC, Joint Video Exploration Team 

(JVET) was founded by VCEG and MPEG jointly in 2015. Since then, many new methods 

have been adopted by JVET and put into the reference software named Joint Exploration 

Model (JEM). In April 2018, the Joint Video Expert Team (JVET) between VCEG (Q6/16) 

and ISO/IEC JTCI SC29/WG11 (MPEG) was created to work on the VVC standard targeting 

at 50% bitrate reduction compared to HEVC.  

[0065] Fig. 7 is a block diagram of an example implementation of a video encoder. Fig 7 

shows that the encoder implementation has a feedback path built in in which the video 

encoder also performs video decoding functionality (reconstructing compressed 

representation of video data for use in encoding of next video data).  

[0066] 2.1 Intra block copy 

[0067] Intra block copy (IBC), a.k.a. current picture referencing, has been adopted in HEVC 

Screen Content Coding extensions (HEVC-SCC) and the current VVC test model (VTM-4.0).  

IBC extends the concept of motion compensation from inter-frame coding to intra-frame 

coding. As demonstrated in FIG. 1, the current block is predicted by a reference block in the 

same picture when IBC is applied. The samples in the reference block must have been already 

reconstructed before the current block is coded or decoded. Although IBC is not so efficient 

for most camera-captured sequences, it shows significant coding gains for screen content. The 

reason is that there are lots of repeating patterns, such as icons and text characters in a screen 

18019688_1 (GHMatters) P117156.AU



8 

content picture. IBC can remove the redundancy between these repeating patterns effectively.  

In HEVC-SCC, an inter-coded coding unit (CU) can apply IBC if it chooses the current 

picture as its reference picture. The MV is renamed as block vector (BV) in this case, and a 

BV always has an integer-pixel precision. To be compatible with main profile HEVC, the 

current picture is marked as a "long-term" reference picture in the Decoded Picture Buffer 

(DPB). It should be noted that similarly, in multiple view/3D video coding standards, the 

inter-view reference picture is also marked as a "long-term" reference picture.  

[0068] Following a BV to find its reference block, the prediction can be generated by copying 

the reference block. The residual can be got by subtracting the reference pixels from the 

original signals. Then transform and quantization can be applied as in other coding modes.  

[0069] However, when a reference block is outside of the picture, or overlaps with the current 

block, or outside of the reconstructed area, or outside of the valid area restricted by some 

constrains, part or all pixel values are not defined. Basically, there are two solutions to handle 

such a problem. One is to disallow such a situation, e.g. in bitstream conformance. The other 

is to apply padding for those undefined pixel values. The following sub-sessions describe the 

solutions in detail.  

[0070] 2.2 IBC in HEVC Screen Content Coding extensions 

[0071] In the screen content coding extensions of HEVC, when a block uses current picture as 

reference, it should guarantee that the whole reference block is within the available 

reconstructed area, as indicated in the following spec text (bold): 

[0072] The variables offsetX and offsetY are derived as follows: 

[0073] offsetX=(ChromaArrayType==0)?0:(mvCLX[0]&0x7?2:0) (8

106) 

[0074] offsetY=(ChromaArrayType==0)?0:(mvCLX[1]&0x7?2:0) (8

107) 

[0075] It is a requirement of bitstream conformance that when the reference picture is 

the current picture, the luma motion vector mvLX shall obey the following constraints: 

[0076] - When the derivation process for z-scan order block availability as specified in 

clause 6.4.1 is invoked with (xCurr, yCurr )set equal to (xCb, yCb ) and the 

neighbouring luma location (xNbY, yNbY )set equal to (xPb + (mvLX[ 0 ] >> 2) 

offsetX, yPb + ( mvLX[ 1 ] >> 2)- offsetY ) as inputs, the output shall be equal to 

TRUE.  

18019688_1 (GHMatters) P117156.AU



9 

[0077] - When the derivation process for z-scan order block availability as specified in 

clause 6.4.1 is invoked with ( xCurr, yCurr ) set equal to ( xCb, yCb ) and the 

neighbouring luma location (xNbY, yNbY) set equal to (xPb + (mvLX[ 0 ] >> 2) + 

nPbW - 1 + offsetX, yPb + (mvLX[ 1 ] >> 2) + nPbH - 1 + offsetY) as inputs, the 

output shall be equal to TRUE.  

[0078] - One or both the following conditions shall be true: 

[0079] - The value of ( mvLX[ 0 ] >> 2 ) + nPbW + xB1 + offsetX is less than or equal 

to 0.  

[0080] - The value of ( mvLX[ 1 ] >> 2 ) + nPbH + yB1 + offsetY is less than or equal 

to 0.  

[0081] - The following condition shall be true: 

[0082] ( xPb + ( mvLX[ 0 ] >> 2 ) + nPbSw - 1 + offsetX) /CtbSizeY - xCurr/ 

CtbSizeY <= yCurr/CtbSizeY - ( yPb + ( mvLX[ 1 ] >> 2 )+ nPbSh - 1 + offsetY)/ 

CtbSizeY (8-108) 

[0083] Thus, the case that the reference block overlaps with the current block or the 

reference block is outside of the picture will not happen. There is no need to pad the 

reference or prediction block.  

[0084] Thus, the case that the reference block overlaps with the current block or the reference 

block is outside of the picture will not happen. There is no need to pad the reference or 

prediction block.  

[0085] 2.3 IBC in VVC Test Model 

[0086] In the current VVC test model, e.g., VTM-4.0 design, the whole reference block 

should be with the current coding tree unit (CTU) and does not overlap with the current block.  

Thus, there is no need to pad the reference or prediction block. The IBC flag is coded as a 

prediction mode of the current CU. Thus, there are totally three prediction modes, 

MODEINTRA, MODEINTER and MODEIBC for each CU.  

[0087] 2.3.1 IBC Merge mode 

[0088] In IBC merge mode, an index pointing to an entry in the IBC merge candidates list is 

parsed from the bitstream. The construction of the IBC merge list can be summarized 

according to the following sequence of steps: 

[0089] Step 1: Derivation of spatial candidates 

[0090] Step 2: Insertion of HMVP candidates 

18019688_1 (GHMatters) P117156.AU



10 

[0091] Step 3: Insertion of pairwise average candidates 

[0092] In the derivation of spatial merge candidates, a maximum of four merge candidates are 

selected among candidates located in the positions depicted in the figures. The order of 

derivation is A1, B1, B, AO and B2. Position B2 is considered only when any PU of position 

A1, B1, B, AO is not available (e.g. because it belongs to another slice or tile) or is not coded 

with IBC mode. After candidate at position Al is added, the insertion of the remaining 

candidates is subject to a redundancy check which ensures that candidates with same motion 

information are excluded from the list so that coding efficiency is improved. To reduce 

computational complexity, not all possible candidate pairs are considered in the mentioned 

redundancy check. Instead only the pairs linked with an arrow in depicted in the figures are 

considered and a candidate is only added to the list if the corresponding candidate used for 

redundancy check has not the same motion information.  

[0093] After insertion of the spatial candidates, if the IBC merge list size is still smaller than 

the maximum IBC merge list size, IBC candidates from HMVP table may be inserted.  

Redundancy check are performed when inserting the HMVP candidates.  

[0094] Finally, pairwise average candidates are inserted into the IBC merge list.  

[0095] When a reference block identified by a merge candidate is outside of the picture, or 

overlaps with the current block, or outside of the reconstructed area, or outside of the valid 

area restricted by some constrains, the merge candidate is called invalid merge candidate.  

[0096] It is noted that invalid merge candidates may be inserted into the IBC merge list.  

[0097] 2.3.2 IBC AMVP mode 

[0098] In IBC AMP mode, an AMVP index point to an entry in the IBC AMVP list is 

parsed from the bitstream. The construction of the IBC AMVP list can be summarized 

according to the following sequence of steps: 

[0099] Step 1: Derivation of spatial candidates 

[00100] Check AO, Al until an available candidate is found.  

[00101] Check BO, B1, B2 until an available candidate is found.  

[00102] Step 2: Insertion of HMVP candidates 

[00103] Step 3: Insertion of zero candidates 

[00104] After insertion of the spatial candidates, if the IBC AMVP list size is still smaller 

than the maximum IBC AMVP list size, IBC candidates from HMVP table may be inserted.  

[00105] Finally, zero candidates are inserted into the IBC AMVP list.  

18019688_1 (GHMatters) P117156.AU



l1 

[00106] 2.4 Palette Mode 

[00107] The basic idea behind a palette mode is that the samples in the CU are represented by 

a small set of representative color values. This set is referred to as the palette. It is also 

possible to indicate a sample that is outside the palette by signaling an escape symbol 

followed by (possibly quantized) component values. This is illustrated in FIG. 2.  

[00108] 2.5 Palette Mode in HEVC Screen Content Coding extensions (HEVC-SCC) 

[00109] In the palette mode in HEVC-SCC, a predictive way is used to code the palette and 

index map.  

[00110] 2.5.1 Coding of the palette entries 

[00111] For coding of the palette entries, a palette predictor is maintained. The maximum size 

of the palette as well as the palette predictor is signaled in the SPS. In HEVC-SCC, a 

palettejpredictorinitializerpresentflag is introduced in the PPS. When this flag is 1, entries 

for initializing the palette predictor are signaled in the bitstream. The palette predictor is 

initialized at the beginning of each CTU row, each slice and each tile. Depending on the value 

of the palettepredictor-initializerpresent flag, the palette predictor is reset to 0 or initialized 

using the palette predictor intializer entries signaled in the PPS. In HEVC-SCC, a palette 

predictor initializer of size 0 was enabled to allow explicit disabling of the palette predictor 

initialization at the PPS level.  

[00112] For each entry in the palette predictor, a reuse flag is signaled to indicate whether it is 

part of the current palette. This is illustrated in FIG. 3. The reuse flags are sent using run

length coding of zeros. After this, the number of new palette entries are signaled using 

exponential Golomb code of order 0. Finally, the component values for the new palette entries 

are signaled.  

[00113] 2.5.2 Coding of palette indices 

[00114] The palette indices are coded using horizontal and vertical traverse scans as shown in 

FIG. 4. The scan order is explicitly signaled in the bitstream using the palette transposeflag.  

For the rest of the subsection it is assumed that the scan is horizontal.  

[00115] The palette indices are coded using two main palette sample modes: 'INDEX' and 

'COPYABOVE'. As explained previously, the escape symbol is also signaled as an'INDEX' 

mode and assigned an index equal to the maximum palette size. The mode is signaled using a 

flag except for the top row or when the previous mode was'COPYABOVE'. In the 

'COPYABOVE' mode, the palette index of the sample in the row above is copied. In the 

18019688_1 (GHMatters) P117156.AU



12 

'INDEX' mode, the palette index is explicitly signaled. For both'INDEX' and 

'COPYABOVE' modes, a run value is signaled which specifies the number of subsequent 

samples that are also coded using the same mode. When escape symbol is part of the run in 

'INDEX' or'COPYABOVE' mode, the escape component values are signaled for each 

escape symbol. The coding of palette indices is illustrated in FIG. 5.  

[00116] This syntax order is accomplished as follows. First the number of index values for 

the CU is signaled. This is followed by signaling of the actual index values for the entire CU 

using truncated binary coding. Both the number of indices as well as the the index values are 

coded in bypass mode. This groups the index-related bypass bins together. Then the palette 

sample mode (if necessary) and run are signaled in an interleaved manner. Finally, the 

component escape values corresponding to the escape samples for the entire CU are grouped 

together and coded in bypass mode.  

[00117] An additional syntax element, last runtypeflag, is signaled after signaling the 

index values. This syntax element, in conjunction with the number of indices, eliminates the 

need to signal the run value corresponding to the last run in the block.  

[00118] In HEVC-SCC, the palette mode is also enabled for 4:2:2, 4:2:0, and monochrome 

chroma formats. The signaling of the palette entries and palette indices is almost identical for 

all the chroma formats. In case of non-monochrome formats, each palette entry consists of 3 

components. For the monochrome format, each palette entry consists of a single component.  

For subsampled chroma directions, the chroma samples are associated with luma sample 

indices that are divisible by 2. After reconstructing the palette indices for the CU, if a sample 

has only a single component associated with it, only the first component of the palette entry is 

used. The only difference in signaling is for the escape component values. For each escape 

sample, the number of escape component values signaled may be different depending on the 

number of components associated with that sample.  

[00119] In VVC, the dual tree coding structure is used on coding the intra slices, so the luma 

component and two chroma components may have different palette and palette indices. In 

addition, the two chroma component shares same palette and palette indices.  

[00120] 2.6 Deblocking scheme in VVC 

[00121] Note that, in the following descriptions, pNM denotes the left-side N-th sample in the 

M-th row relative to the vertical edge or the top-side N-th sample in the M-th column relative 

to the horizontal edge, qNM denotes the right-side N-th sample in the M-th row relative to the 

18019688_1 (GHMatters) P117156.AU



13 

vertical edge or the bottom-side N-th sample in the M-th column relative to the horizontal 

edge. An example of pNM and qNM is depicted in FIG. 9.  

[00122] Note that, in the following descriptions, pN denotes the left-side N-th sample in a row 

relative to the vertical edge or the top-side N-th sample in a column relative to the horizontal 

edge, qN denotes the right-side N-th sample in a row relative to the vertical edge or the 

bottom-side N-th sample in a column relative to the horizontal edge.  

[00123] Filter on/off decision is done for four lines as a unit. FIG. 9 illustrates the pixels 

involving in filter on/off decision. The 6 pixels in the two red boxes for the first four lines are 

used to determine filter on/off for 4 lines. The 6 pixels in two red boxes for the second 4 lines 

are used to determine filter on/off for the second four lines.  

[00124] In some embodiments, the vertical edges in a picture are filtered first. Then the 

horizontal edges in a picture are filtered with samples modified by the vertical edge filtering 

process as input. The vertical and horizontal edges in the CTBs of each CTU are processed 

separately on a coding unit basis. The vertical edges of the coding blocks in a coding unit are 

filtered starting with the edge on the left-hand side of the coding blocks proceeding through 

the edges towards the right-hand side of the coding blocks in their geometrical order. The 

horizontal edges of the coding blocks in a coding unit are filtered starting with the edge on the 

top of the coding blocks proceeding through the edges towards the bottom of the coding 

blocks in their geometrical order.  

[00125] 2.6.1 Boundary decision 

[00126] Filtering is applied to 8x8 block boundaries. In addition, it must be a transform block 

boundary or a coding subblock boundary (e.g., due to usage of Affine motion prediction, 

ATMVP). For those which are not such boundaries, filter is disabled.  

[00127] 2.6.2 Boundary strength calculation 

[00128] For a transform block boundary/coding subblock boundary, if it is located in the 8x8 

grid, it may be filterd and the setting of bS[ xDi ][ yDj ] (wherein [ xDi ][ yDj ] denotes the 

coordinate) for this edge is defined as follows: 

- If the sample po or qo is in the coding block of a coding unit coded with intra prediction 

mode, bS[ xDi ][ yDj ] is set equal to 2.  

- Otherwise, if the block edge is also a transform block edge and the sample po or qo is in 

a transform block which contains one or more non-zero transform coefficient levels, 

bS[ xDi ][ yDj ] is set equal to 1.  

18019688_1 (GHMatters) P117156.AU



14 

- Otherwise, if the prediction mode of the coding subblock containing the sample po is 

different from the prediction mode of the coding subblock containing the sample qo, 

bS[ xDi ][ yDj ] is set equal to 1.  

- Otherwise, if one or more of the following conditions are true, bS[ xDi ][ yDj ] is set 

equal to 1: 

- The coding subblock containing the sample po and the coding subblock containing 

the sample qo are both coded in IBC prediction mode, and the absolute difference 

between the horizontal or vertical component of the motion vectors used in the 

prediction of the two coding subblocks is greater than or equal to 4 in units of 

quarter luma samples.  

- For the prediction of the coding subblock containing the sample po different 

reference pictures or a different number of motion vectors are used than for the 

prediction of the coding subblock containing the sample qo.  

NOTE 1 - The determination of whether the reference pictures used for the 

two coding sublocks are the same or different is based only on which 

pictures are referenced, without regard to whether a prediction is formed 

using an index into reference picture list 0 or an index into reference picture 

list 1, and also without regard to whether the index position within a 

reference picture list is different.  

NOTE 2 - The number of motion vectors that are used for the prediction of a 

coding subblock with top-left sample covering ( xSb, ySb ), is equal to 

PredFlagLO[ xSb ][ ySb ] + PredFlagLl[ xSb ][ ySb ].  

- One motion vector is used to predict the coding subblock containing the sample po 

and one motion vector is used to predict the coding subblock containing the sample 

qo, and the absolute difference between the horizontal or vertical component of the 

motion vectors used is greater than or equal to 4 in units of quarter luma samples.  

- Two motion vectors and two different reference pictures are used to predict the 

coding subblock containing the sample po, two motion vectors for the same two 

reference pictures are used to predict the coding subblock containing the sample qo 

and the absolute difference between the horizontal or vertical component of the 

two motion vectors used in the prediction of the two coding subblocks for the same 

reference picture is greater than or equal to 4 in units of quarter luma samples.  

18019688_1 (GHMatters) P117156.AU



15 

- Two motion vectors for the same reference picture are used to predict the coding 

subblock containing the sample po, two motion vectors for the same reference 

picture are used to predict the coding subblock containing the sample qo and both 

of the following conditions are true: 

- The absolute difference between the horizontal or vertical component of list 0 

motion vectors used in the prediction of the two coding subblocks is greater 

than or equal to 4 in quarter luma samples, or the absolute difference between 

the horizontal or vertical component of the list 1 motion vectors used in the 

prediction of the two coding subblocks is greater than or equal to 4 in units of 

quarter luma samples.  

- The absolute difference between the horizontal or vertical component of list 0 

motion vector used in the prediction of the coding subblock containing the 

sample po and the list 1 motion vector used in the prediction of the coding 

subblock containing the sample qo is greater than or equal to 4 in units of quarter 

luma samples, or the absolute difference between the horizontal or vertical 

component of the list 1 motion vector used in the prediction of the coding 

subblock containing the sample po and list 0 motion vector used in the 

prediction of the coding subblock containing the sample qo is greater than or 

equal to 4 in units of quarter luma samples.  

- Otherwise, the variable bS[ xDi ][ yDj ] is set equal to 0.  

Table 2-1 and 2-2 summarize the BS calculation rules.  

Table 2-1. Boundary strength (when SPS IBC is disabled) 

Priority Conditions Y U V 

5 At least one of the adjacent blocks is intra 2 2 2 

4 TU boundary and at least one of the adjacent blocks has I I I 
non-zero transform coefficients 

3 Reference pictures or number of MVs (1 for uni-prediction, 1 N/A N/A 
2 for bi-prediction) of the adjacent blocks are different 

18019688_1 (GHMatters) P117156.AU



16 

Absolute difference between the motion vectors of same 

2 reference picture that belong to the adjacent blocks is 1 N/A N/A 

greater than or equal to one integer luma sample 

Otherwise 0 0 0 

Table 2-2. Boundary strength (when SPS IBC is enabled) 

Priority Conditions Y U V 

8 At least one of the adjacent blocks is intra 2 2 2 

TU boundary and at least one of the adjacent blocks has I I I 
non-zero transform coefficients 

6 Prediction mode of adjacent blocks is different (e.g., one is I 
IBC, one is inter) 

Both IBC and absolute difference between the motion 

5 vectors that belong to the adjacent blocks is greater than or 1 N/A N/A 

equal to one integer luma sample 

4 Reference pictures or number of MVs (1 for uni-prediction, 1 N/A N/A 
2 for bi-prediction) of the adjacent blocks are different 

Absolute difference between the motion vectors of same 

3 reference picture that belong to the adjacent blocks is 1 N/A N/A 

greater than or equal to one integer luma sample 

1 Otherwise 0 0 0 

[00129] 2.6.3 Deblocking decision for luma component 

[00130] The deblocking decision process is described in this sub-section.  

[00131] Wider-stronger luma filter is filters are used only if all of the Condition1, 

Condition2 and Condition 3 are TRUE.  

[00132] The condition 1 is the "large block condition". This condition detects whether the 

samples at P-side and Q-side belong to large blocks, which are represented by the variable 

18019688_1 (GHMatters) P117156.AU



17 

bSidePisLargeBlk and bSideQisLargeBlk respectively. The bSidePisLargeBlk and 

bSideQisLargeBlk are defined as follows.  

bSidePisLargeBlk = ((edge type is vertical and po belongs to CU with width >= 32) (edge 

type is horizontal and po belongs to CU with height >= 32))? TRUE: FALSE 

bSideQisLargeBlk = ((edge type is vertical and qo belongs to CU with width >= 32) (edge 

type is horizontal and qo belongs to CU with height >= 32))? TRUE: FALSE 

[00133] Based on bSidePisLargeBlk and bSideQisLargeBk, the condition 1 is defined as 

follows.  

Conditions = (bSidePisLargeBlk || bSidePisLargeBlk) ? TRUE: FALSE 

Next, if Condition 1 is true, the condition 2 will be further checked. First, the following 

variables are derived: 

- dp, dp3, dq, dq3 are first derived as in HEVC 

- if (p side is greater than or equal to 32) 

dpO = ( dpO + Abs( p5o - 2 * p4 o + p3o )+ 1 ) >> 1 

dp3 = ( dp3 + Abs( p5 3 - 2 * p4 3+ p3 3 )+ 1 )>> 1 

- if (q side is greater than or equal to 32) 

dqO =( dqO + Abs( q5o - 2 * q4 o + q3o )+ 1 )>> 1 

dq3 = ( dq3 + Abs( q53 - 2 * q43 + q33 )+ 1 ) >> 1 

Condition2 = (d < P) ? TRUE: FALSE 

where d= dpO + dqO + dp3 + dq3, as shown in section 2.2.4.  

If ConditionI and Condition2 are valid, whether any of the blocks uses sub-blocks is further 

checked: 

If (bSidePisLargeBlk) 

If (mode block P == SUBBLOCKMODE) 

Sp =5 

else 

Sp =7 

else 

Sp = 3 

If (bSideQisLargeBlk) 

18019688_1 (GHMatters) P117156.AU



18 

If (mode block Q == SUBBLOCKMODE) 

Sq=5 

else 

Sq=7 

else 

Sq = 3 

Finally, if both the Condition 1 and Condition 2 are valid, the proposed deblocking method 

will check the condition 3 (the large block strong filter condition), which is defined as follows.  

In the Condition3 StrongFilterCondition, the following variables are derived: 

dpq is derived as in HEVC.  

sp3 = Abs( p3 - po ), derived as in HEVC 

if (p side is greater than or equal to 32) 

if(Sp==5) 

sp3 = ( sp3+ Abs( p5 - p3 ) + 1) >>1 

else 

sp3 = ( sp3+ Abs( p7 - p3 ) + 1) >>1 

sq3 = Abs( qo - q3 ), derived as in HEVC 

if (q side is greater than or equal to 32) 

If(Sq==5) 

sq3 = ( sq3+ Abs( q5 - q3) + 1) >> 1 

else 

sq3= (sq3+ Abs( q7 - q3) + 1)>> 1 

[00134] As in HEVC, StrongFilterCondition = (dpq is less than( >> 2 ),sp3 + sq3 is less 

than ( 3*P >> 5 ), and Abs( po - qo ) is less than ( 5 * tc + 1 ) >> 1) ? TRUE :FALSE.  

[00135] 2.6.4 Stronger deblocking filter for luma (designed for larger blocks) 

[00136] Bilinear filter is used when samples at either one side of a boundary belong to a large 

block. A sample belonging to a large block is defined as when the width >= 32 for a vertical 

edge, and when height >= 32 for a horizontal edge.  

[00137] The bilinear filter is listed below.  

[00138] Block boundary samples pi for i= to Sp-1 and qi forj= to Sq-1 (pi and qi are the i

th sample within a row for filtering vertical edge, or the i-th sample within a column for 

18019688_1 (GHMatters) P117156.AU



19 

filtering horizontal edge) in HEVC deblocking described above) are then replaced by linear 

interpolation as follows: 

- pi' = (fj * Middles,t + (64 - fi)* P + 32) > 6),clipped to pi ± tcPD 

- q;' = (g * Middles,t + (64 - g) * Q, + 32) » 6),clipped to q; ± tcPDj 

where tcPDj and tcPDj term is a position dependent clipping described in Section 2.3.6 and 

gj, fi, Middles,t, Ps and Qs are given in Table 2-3: 

Table 2-3. Long tap deblocking filters 

f = 59 - i *9, can also be described asf= {59,50,41,32,23,14,5} 

Sp,Sq = 59 - j *9, can also be described asg= {59,50,41,32,23,14,5} 
7, 7 

.i7 Middle7,7 = (2 * (po + qO) + p1 + q1 + P2 + q 2 +p3 + q+p4 + q4 +p5 
(p side: 7, 

q side: 7) + qs+P6 + q6 + 8) » 4 

P7 = (P 6 + p7 + 1) » 1, Q 7 = (q 6 + q7 + 1) » 1 

f = 59 - i *9, can also be described as f = {59,50,41,32,23,14,5} 

7,3 gj = 53 - j * 21, can also be described as g = {53,32,11} 

(p side: 7 Middle7,3 = (2* (po + O) + q O + 2 * (q1 + q2) + P1 + q1 + P2+P3+P4+PS + 

q side: 3) P6 + 8 ) » 4 

P7 = (P 6 + p7 + 1) » 1, Q 3 = (q 2 + q 3 + 1) » 1 

9; = 59 - j *9, can also be described as g = {59,50,41,32,23,14,5} 

3,7 f = 53 - i * 21, can also be described as f = {53,32,11} 

(p side: 3 Middle3.7 = (2* (qO + po) + po + 2 * (P1 + P2) + q1 + p1 + q 2+q+q 4 +qs + 

q side: 7) q 6 + 8) » 4 

Q7 =(q 6 + q7 + 1) » 1, P3 = (P2 + p3 + 1) »1 

9; = 58 - j * 13, can also be described as g = {58,45,32,19,6} 

7,5 f = 59 - i * 9, can also be described as f = {59,50,41,32,23,14,5} 

(p side: 7 Middle7,5 = (2 * (po + qO + p 1 + q 1) + q2 + P2 + q3 + p3 + q4 + p4 + q5 

q side: 5) + Ps + 8) » 4 

Q5 =(q4 + q 5 + 1) » 1, P7 = (P 6 + p7 + 1) » 1 

5, 7 
d9: = 59 - *9, can also be described as g = {59,50,41,32,23,14,5} 

side:7 = 58 - i * 13, can also be described as f = {58,45,32,19,6} 
q side: 7) 

18019688_1 (GHMatters) P1 17156.AU



20 

Middle5,7= (2* (q,+p0 +p1+q 1 )+q 2 +P2+q 3 +P3+q 4 +P4+q 5 

+ps+8)»4 

Q7 = (q6 + q7 + 1) » 1, PS = (p4 + PS + 1) »1 
g; = 58 - j * 13, can also be described asg= {58,45,32,19,6} 

5,5 f = 58 - i * 13, can also be described asf= {58,45,32,19,6} 

(pside:5 Middle5,5=(2*(qO+po+p 1 +q 1 +q 2 +P 2 )+q 3 +p 3 +q 4 +p 4 +8) 

q side: 5) » 4 

Q5 = (q 4 + q 5 + 1) » 1, PS = (p4 + PS + 1) » 1 

5,3 g; = 53 - j * 21, can also be described as g = {53,32,11} 

(p side:5 = 58 - i * 13, can also be described as f = {58,45,32,19,6} 

q side: 3) Middle5,3 = (qO + po + p1 + qi + q 2 + P2 + q 3 + P3 + 4 ) » 3 

Q3 = (q 2 + q 3 + 1) » 1, PS = (p4 + PS + 1) » 1 

3,5 g; = 58 - j * 13, can also be described as g = {58,45,32,19,6} 

(p side:3 = 53 - i * 21, can also be described as f = {53,32,11} 

(pside:5) 
q side: 5) Middle3,5 = (qO + po + p1 + qi + q2 + P2 + q3 + P3 + 4) »> 3 

Q5 = (q 4 + q 5 + 1) » 1, P3 = (P2 + p3 + 1) » 1 

[00139]2.6.5 Deblocking control for chroma 

[00140] The chroma strong filters are used on both sides of the block boundary. Here, the 

chroma filter is selected when both sides of the chroma edge are greater than or equal to 8 

(chroma position), and the following decision with three conditions are satisfied: the first one 

is for decision of boundary strength as well as large block. The proposed filter can be applied 

when the block width or height which orthogonally crosses the block edge is equal to or larger 

than 8 in chroma sample domain. The second and third one is basically the same as for HEVC 

luma deblocking decision, which are on/off decision and strong filter decision, respectively.  

[00141] In the first decision, boundary strength (bS) is modified for chroma filtering as shown 

in Table 2-2. The conditions in Table 2-2 are checked sequentially. If a condition is satisfied, 

then the remaining conditions with lower priorities are skipped.  

[00142] Chroma deblocking is performed when bS is equal to 2, or bS is equal to 1 when a 

large block boundary is detected.  

18019688_1 (GHMatter) P117156.AU



21 

[00143] The second and third condition is basically the same as HEVC luma strong filter 

decision as follows.  

[00144] In the second condition: 

d is then derived as in HEVC luma deblocking.  

The second condition will be TRUE when d is less than.  

[00145] In the third condition StrongFilterCondition is derived as follows: 

dpq is derived as in HEVC.  

sp3 = Abs( p3 - po ),derived as in HEVC 

sq3 = Abs( qo - q3 ),derived as in HEVC 

[00146] As in HEVC design, StrongFilterCondition = (dpq is less than( >> 2 ),sp3 + sq3 is 

less than ( P >> 3 ), and Abs( po - o ) is less than ( 5 * tc + 1 ) >> 1) 

[00147] 2.6.6 Strong deblocking filter for chroma 

[00148] The following strong deblocking filter for chroma is defined: 

P2'= (3*p3+2*p2+pi+po+qo+4) >> 3 

pi'= (2 *p3+p2+ 2 *pi+po+qo+qi+4) >> 3 

po'= (p3+p2+pi+2*po+qo+q+q2+4) >> 3 

[00149] The proposed chroma filter performs deblocking on a 4x4 chroma sample grid.  

[00150] 2.6.7 Position dependent clipping 

[00151] The position dependent clipping tcPD is applied to the output samples of the luma 

filtering process involving strong and long filters that are modifying 7, 5 and 3 samples at the 

boundary. Assuming quantization error distribution, it is proposed to increase clipping value 

for samples which are expected to have higher quantization noise, thus expected to have 

higher deviation of the reconstructed sample value from the true sample value.  

[00152] For each P or Q boundary filtered with asymmetrical filter, depending on the result of 

decision-making process in section 2.3.3, position dependent threshold table is selected from 

two tables (i.e., Tc7 and Tc3 tabulated below) that are provided to decoder as a side 

information: 

Tc7 ={6, 5, 4, 3, 2, 1, 1; 

Tc3 ={6, 4, 2} 

18019688_1 (GHMatters) P117156.AU



22 

tcPD = (Sp== 3) ? Tc3. Tc7; 

tcQD = (Sq ==3) ? Tc3 . Tc7; 

[00153] For the P or Q boundaries being filtered with a short symmetrical filter, position 

dependent threshold of lower magnitude is applied: 

Tc3 = { 3, 2, 1}; 

[00154] Following defining the threshold, filteredp'; and q'; sample values are clipped 

according to tcP and tcQ clipping values: 

p'i= Clip3(p'i + tcPi, p'i - tcPi, p',); 

q';= Clip3(q'; + tcQi, q'; - tcQi, q';),; 

[00155] where p' and q'i are filtered sample values, p " and q'' "are output sample value after 

the clipping and tcPi tcPi are clipping thresholds that are derived from the VVC tc parameter 

and tcPD and tcQD. The function Clip3 is a clipping function as it is specified in VVC.  

[00156] 2.6.8 Sub-block deblocking adjustment 

[00157] To enable parallel friendly deblocking using both long filters and sub-block 

deblocking the long filters is restricted to modify at most 5 samples on a side that uses sub

block deblocking (AFFINE or ATMP or DMVR) as shown in the luma control for long 

filters. Additionally, the sub-block deblocking is adjusted such that that sub-block boundaries 

on an 8x8 grid that are close to a CU or an implicit TU boundary is restricted to modify at 

most two samples on each side.  

[00158] Following applies to sub-block boundaries that not are aligned with the CU 

boundary.  

If (mode block Q == SUBBLOCKMODE && edge!=0){ 

if (!(implicitTU && (edge == (64 / 4)))) 

if (edge == 2 || edge == (orthogonalLength - 2)| edgee= (56 /4) edge== (72 /4)) 

Sp = Sq = 2; 

else 

Sp=Sq=3; 

else 

Sp = Sq = bSideQisLargeBlk ? 5:3 

} 

18019688_1(GHMaters) P117156.AU



23 

[00159] Where edge equal to 0 corresponds to CU boundary, edge equal to 2 or equal to 

orthogonalLength-2 corresponds to sub-block boundary 8 samples from a CU boundary etc.  

Where implicit TU is true if implicit split of TU is used.  

[00160] 2.6.9 Restriction to 4CTU/2CTU line buffers for luma/chroma 

[00161] Filtering of horizontal edges is limiting Sp = 3 for luma, Sp=1 and Sq=1 for chroma, 

when the horizontal edge is aligned with the CTU boundary.  

[00162] 2.7 Intra mode coding in VVC 

[00163] To capture the arbitrary edge directions presented in natural video, the number of 

directional intra modes in VTM5 is extended from 33, as used in HEVC, to 65. The new 

directional modes not in HEVC are depicted as red dotted arrows in FIG. 12, and the planar 

and DC modes remain the same. These denser directional intra prediction modes apply for all 

block sizes and for both luma and chroma intra predictions.  

[00164] In VTM5, several conventional angular intra prediction modes are adaptively 

replaced with wide-angle intra prediction modes for the non-square blocks. Wide angle intra 

prediction is described in Section 3.3.1.2.  

[00165] In HEVC, every intra-coded block has a square shape and the length of each of its 

side is a power of 2. Thus, no division operations are required to generate an intra-predictor 

using DC mode. In VTM5, blocks can have a rectangular shape that necessitates the use of a 

division operation per block in the general case. To avoid division operations for DC 

prediction, only the longer side is used to compute the average for non-square blocks.  

[00166] To keep the complexity of the most probable mode (MPM) list generation low, an 

intra mode coding method with 6 MPMs is used by considering two available neighboring 

intra modes. The following three aspects are considered to construct the MPM list: 

i. Default intra modes 

ii. Neighbouring intra modes 

iii. Derived intra modes 

[00167] A unified 6-MPM list is used for intra blocks irrespective of whether MRL and ISP 

coding tools are applied or not. The MPM list is constructed based on intra modes of the left 

and above neighboring block. Suppose the mode of the left block is denoted as Left and the 

mode of the above block is denoted as Above, the unified MPM list is constructed as follows 

(The left and above blocks are shown in FIG. 13.  

18019688_1 (GHMatters) P117156.AU



24 

- When a neighboring block is not available, its intra mode is set to Planar by default.  

- If both modes Left and Above are non-angular modes: 

o MPM list 4 {Planar, DC, V, H, V-4, V+4} 

- If one of modes Left and Above is angular mode, and the other is non-angular: 

o Set a mode Max as the larger mode in Left and Above 

o MPM list 4 {Planar, Max, DC, Max -1, Max +1, Max -2} 

- If Left and Above are both angular and they are different: 

o Set a mode Max as the larger mode in Left and Above 

o if the difference of mode Left and Above is in the range of 2 to 62, inclusive 

• MPM list 4 {Planar, Left, Above, DC, Max -1, Max +1} 

o Otherwise 

• MPM list 4 {Planar, Left, Above, DC, Max -2, Max +2} 

- If Left and Above are both angular and they are the same: 

o MPM list 4 {Planar, Left, Left -1, Left +1, DC, Left -2} 

[00168] Besides, the first bin of the mpm index codeword is CABAC context coded. In total 

three contexts are used, corresponding to whether the current intra block is MRL enabled, ISP 

enabled, or a normal intra block.  

[00169] During 6 MPM list generation process, pruning is used to remove duplicated modes 

so that only unique modes can be included into the MPM list. For entropy coding of the 61 

non-MPM modes, a Truncated Binary Code (TBC) is used.  

[00170] For chroma intra mode coding, a total of 8 intra modes are allowed for chroma intra 

mode coding. Those modes include five traditional intra modes and three cross-component 

linear model modes (CCLM, LM_A and LML). Chroma mode signalling and derivation 

process are shown in Table 2-4. Chroma mode coding directly depends on the intra prediction 

mode of the corresponding luma block. Since separate block partitioning structure for luma 

and chroma components is enabled in I slices, one chroma block may correspond to multiple 

luma blocks. Therefore, for Chroma DM mode, the intra prediction mode of the 

corresponding luma block covering the center position of the current chroma block is directly 

inherited.  

Table 2-4 -Derivation of chroma prediction modefrom luma mode when cclmis enabled 

18019688_1 (GHMatters) P117156.AU



25 

Corresponding luma intra prediction mode 

Chroma prediction mode 0 50 18 1 X 

(0 <= X <= 66) 

0 66 0 0 0 0 

1 50 66 50 50 50 

2 18 18 66 18 18 

3 1 1 1 66 1 

4 81 81 81 81 81 

5 82 82 82 82 82 

6 83 83 83 83 83 

7 0 50 18 1 X 

[00171] 2.8 Quantized residual Block Differential Pulse-code Modulation(QR-BDPCM) 

[00172] In JVET-M0413, a quantized residual block differential pulse-code modulation (QR

BDPCM) is proposed to code screen contents efficiently.  

[00173] The prediction directions used in QR-BDPCM can be vertical and horizontal 

prediction modes. The intra prediction is done on the entire block by sample copying in 

prediction direction (horizontal or vertical prediction) similar to intra prediction. The residual 

is quantized and the delta between the quantized residual and its predictor (horizontal or 

vertical) quantized value is coded. This can be described by the following: For a block of size 

M (rows) x N (cols), let ri,, 0 i M - 1, 0 1 j N - 1 be the prediction residual after 

performing intra prediction horizontally (copying left neighbor pixel value across the the 

predicted block line by line) or vertically (copying top neighbor line to each line in the 

predicted block) using unfiltered samples from above or left block boundary samples. Let 

Q(ri,j), 0 i M - 1, 0 j N - 1 denote the quantized version of the residual ri,, 

where residual is difference between original block and the predicted block values. Then the 

block DPCM is applied to the quantized residual samples, resulting in modified M x N array 

R with elements ri,. When vertical BDPCM is signaled: 

Q (ri,), i = 0, 0 j (N-i) (2-7-1) 
ri, Q (ri) - Q (r(i l)j), 1 i (M - 1), 0 j (N - 1) 

18019688_1 (GHMatters) P117156.AU



26 

[00174] For horizontal prediction, similar rules apply, and the residual quantized samples are 

obtained by 

fQ((ri,), 0 ! i ! (M - 1), (2-7-2) 
ri,j Q (ri,) - Q _), 0 i (M - 1), 1 j (N - 1) 

[00175] The residual quantized samples ij are sent to the decoder.  

[00176] On the decoder side, the above calculations are reversed to produce Q(ri,j), 0 i 

M - 1, 0 j N - 1. For vertical prediction case, 

Q (ri,) = Zk O rk,j, 0 i (M - 1), 0 j (N - 1) (2-7-3) 

[00177] For horizontal case, 

Q (ri,) = Z r j i,k, 0 i (M -1), 0 j (N -1) (2-7-4) 

[00178] The inverse quantized residuals, Q(Q(ri,)), are added to the intra block 

prediction values to produce the reconstructed sample values.  

[00179] The main benefit of this scheme is that the inverse DPCM can be done on the fly 

during coefficient parsing simply adding the predictor as the coefficients are parsed or it can 

be performed after parsing.  

[00180] 2.9 Adaptive Loop Filter 

[00181] In the VTM5, an Adaptive Loop Filter (ALF) with block-based filter adaption is 

applied. For the luma component, one among 25 filters is selected for each 4x4 block, based 

on the direction and activity of local gradients.  

[00182] 2.9.1 Filter Shape 

[00183] In the VTM5, two diamond filter shapes (as shown in FIG. 14) are used. The 7x7 diamond 

shape is applied for luma component and the 5x5 diamond shape is applied for chroma 

components.  

[00184] 2.9.2 Block classification 

[00185] For luma component, each 4 x 4 block is categorized into one out of 25 classes. The 

classification index C is derived based on its directionality D and a quantized value of activity 

A, as follows: 

C = 5D + A (2-9-1) 

18019688_1 (GHMatters) P117156.AU



27 

[00186] To calculate D and A, gradients of the horizontal, vertical and two diagonal direction 

are first calculated using 1-D Laplacian: 

k=i-2 I=j-2 kU, Vki =2R(k, 1) - R(k, 1 - 1) - R(k, 1 + 1)1 (2-9-2) 

g9 -2 I£j-2 HUi, Hkj 12R(k, 1) - R(k - 1, 1) - R(k + 1, 1)1 (2-9-3) 

1 k=i-2 j3 D1k,11, D1k,1 = 12R(k, 1) - R(k - 1, 1 - 1) - R(k + 1, 1 + 1)1 (2-9-4) 

z - D2, =2RD(k,) - R(k - 1, 1 + 1) - R(k + 1, 1 - 1) 1(2-9-5) 

[00187] Where indices i and j refer to the coordinates of the upper left sample within the 

4 x 4 block and R(ij) indicates a reconstructed sample at coordinate (ij).  

[00188] To reduce the complexity of block classification, the subsampled 1-D Laplacian 

calculation is applied. As shown in FIG. 15 (a)-(d), the same subsampled positions are used 

for gradient calculation of all directions.  

[00189] Then D maximum and minimum values of the gradients of horizontal and vertical 

directions are set as: 

max = max(gh,g), gmi = min(gh, g) (2-9-6) 

[00190] The maximum and minimum values of the gradient of two diagonal directions are set 

as: 

max = mmx gdmindgd0 ,gdi) 
gdodl max(gdo, g), go = (g ga) (2-9-7) 

[00191] To derive the value of the directionality D, these values are compared against each 

other and with two thresholds ti and t2 : 

Step 1. If bothy 5 t- g andgdO ti - gdo',1 are true, D is set to 0.  

Step 2.Jf Ig /g*> giof/g i, continue from Step 3; otherwise continue from Step 

4.  

Stp 3>2 - g , D is set to 2; otherwise D is set to 1.  
Step34.If gmax~   min 

Step4.Ifgo > t2 go,1 , D is set to 4; otherwise D is set to 3.  

[00192] The activity value A is calculated as: 

18019688_1 (GHMatters) P117156.AU



28 

A =_2 -IIL2 (Vk~i + Hki) (2-9-8) 

[00193] A is further quantized to the range of 0 to 4, inclusively, and the quantized value is 

denoted as A.  

[00194] For chroma components in a picture, no classification method is applied, i.e. a single 

set of ALF coefficients is applied for each chroma component.  

[00195] 2.9.3. Geometric transformations of filter coefficients and clipping values 

[00196] Before filtering each 4x4 luma block, geometric transformations such as rotation or 

diagonal and vertical flipping are applied to the filter coefficients f (k, 1) and to the 

corresponding filter clipping values c(k, 1) depending on gradient values calculated for that 

block. This is equivalent to applying these transformations to the samples in the filter support 

region. The idea is to make different blocks to which ALF is applied more similar by aligning 

their directionality.  

[00197] Three geometric transformations, including diagonal, vertical flip and rotation are 

introduced: 

Diagonal: fD (k, 1) = f (1, k), cD(k, 1) = c(1, k), (2-9-9) 

Vertical flip: fy(k, 1) f(k, K - 1 - 1), cv (k, 1) c(k, K - 1 - 1) (2-9-10) 

Rotation: fR (k, 1) f (K - 1 - 1, k), cR (k, 1) c(K - 1 - 1, k) (2-9-11) 

[00198] where K is the size of the filter and 0 < k, 1 I K - 1 are coefficients coordinates, 

such that location (0,0) is at the upper left corner and location (K - 1, K - 1) is at the lower 

right corner. The transformations are applied to the filter coefficients f (k, 1) and to the 

clipping values c(k, 1) depending on gradient values calculated for that block. The 

relationship between the transformation and the four gradients of the four directions are 

summarized in the following table.  

Table 2-5 - Mapping of the gradient calculatedfor one block and the transformations 

Gradient values Transformation 

gd2< gdl and gh < gv No transformation 

gd2< gdl and gv< gh Diagonal 

gdl < gd2 and gh < gv Vertical flip 

gdl < gd2 and gv< gh Rotation 

[00199] 2.9.4 Filter parameters signalling 

18019688_1 (GHMatters) P117156.AU



29 

[00200] In the VTM5, ALF filter parameters are signaled in Adaptation Parameter Set (APS).  

In one APS, up to 25 sets of luma filter coefficients and clipping value indexes, and up to one 

set of chroma filter coefficients nd clipping value indexes could be signaled. To reduce bits 

overhead, filter coefficients of different classification can be merged. In slice header, the 

indices of the APSs used for the current slice are signaled.  

[00201] Clipping value indexes, which are decoded from the APS, allow determining clipping 

values using a Luma table of clipping values and a Chroma table of clipping values. These 

clipping values are dependent of the internal bitdepth. More precisely, the Luma table of 

clipping values and Chroma table of clipping values are obtained by the following formulas: 

{ N-n+1 AlfClipL= round (2 B N for n [1.. N], (2-9-12) 

AlfClipc= round( 2 (B8)+8 N-1) foT n [1. .N]} (2-9-13) 

with B equal to the internal bitdepth and N equal to 4 which is the number of allowed clipping 

values in VTM5.O.  

[00202] The filtering process can be controlled at CTB level. A flag is always signaled to 

indicate whether ALF is applied to a luma CTB. A luma CTB can choose a filter set among 

16 fixed filter sets and the filter sets from APSs. A filter set index is signaled for a luma CTB 

to indicate which filter set is applied. The 16 fixed filter sets are pre-defined and hard-coded 

in both the encoder and the decoder.  

[00203] The filter coefficients are quantized with norm equal to 128. In order to restrict the 

multiplication complexity, a bitstream conformance is applied so that the coefficient value of 

the non-central position shall be in the range of -27 to 27 - 1, inclusive. The central position 

coefficient is not signaled in the bitstream and is considered as equal to 128.  

[00204] 2.9.5 Filtering process 

[00205] At decoder side, when ALF is enabled for a CTB, each sample R(ij) within the CU 

is filtered, resulting in sample value R'(i,j) as shown below, 

R'(i,j) = R(i,j)+ ((Zk1o Eif(k, 1) x K(R(i + k,j + 1) - R(ij), c(k, 1)) + 64) » 7) 

(2-9-14) 

where f (k, 1) denotes the decoded filter coefficients, K(x, y) is the clipping function and 
L L 

c(k, 1) denotes the decoded clipping parameters. The variable k and 1 varies between - and
2 2 

18019688_1(GHMaters) P117156.AJ



30 

where L denotes the filter length. The clipping function K(x, y) = min(y, max(-y, x)) which 

corresponds to the function Clip3 (-y, y, x).  

[00206] 2.9.6 Virtual boundary filtering process for line buffer reduction 

In VTM5, to reduce the line buffer requirement of ALF, modified block classification and 

filtering are employed for the samples near horizontal CTU boundaries. For this purpose, a 

virtual boundary is defined as a line by shifting the horizontal CTU boundary with "N" 

samples as shown in FIG. 16, with N equal to 4 for the Luma component and 2 for the 

Chroma component.  

[00207] Modified block classification is applied for the Luma component as depicted in FIG.  

2-11. For the ID Laplacian gradient calculation of the 4x4 block above the virtual boundary, 

only the samples above the virtual boundary are used. Similarly for the ID Laplacian gradient 

calculation of the 4x4 block below the virtual boundary, only the samples below the virtual 

boundary are used. The quantization of activity value A is accordingly scaled by taking into 

account the reduced number of samples used in ID Laplacian gradient calculation.  

[00208] For filtering processing, symmetric padding operation at the virtual boundaries are 

used for both Luma and Chroma components. As shown in FIG. 17, when the sample being 

filtered is located below the virtual boundary, the neighboring samples that are located above 

the virtual boundary are padded. Meanwhile, the corresponding samples at the other sides are 

also padded, symmetrically.  

[00209] 2.10 Sample Adaptive Offset (SAO) 

[00210] Sample adaptive offset (SAO) is applied to the reconstructed signal after the 

deblocking filter by using offsets specified for each CTB by the encoder. The HM encoder 

first makes the decision on whether or not the SAO process is to be applied for current slice.  

If SAO is applied for the slice, each CTB is classified as one of five SAO types as shown in 

Table 2-6. The concept of SAO is to classify pixels into categories and reduces the distortion 

by adding an offset to pixels of each category. SAO operation includes Edge Offset (EO) 

which uses edge properties for pixel classification in SAO type 1-4 and Band Offset (BO) 

which uses pixel intensity for pixel classification in SAO type 5. Each applicable CTB has 

SAO parameters including saomerge_left flag, saomerge-upflag, SAO type and four 

offsets. If sao mergeleft flag is equal to 1, the current CTB will reuse the SAO type and 

18019688_1 (GHMatters) P117156.AU



31 

offsets of the CTB to the left. If sao mergeupflag is equal to 1, the current CTB will reuse 

SAO type and offsets of the CTB above.  

Table 2-6 - Specification of SA O type 

SAO type sample adaptive offset type to Number of 

be used categories 

0 None 0 

1 1-D 0-degree pattern edge offset 4 

2 1-D 90-degree pattern edge offset 4 

3 1-D 135-degree pattern edge 4 

offset 

4 1-D 45-degree pattern edge offset 4 

5 band offset 4 

[00211] 2.10.1. Operation of each SAO type 

[00212] Edge offset uses four 1-D 3-pixel patterns for classification of the current pixel p by 

consideration of edge directional information, as shown in FIG. 18. From left to right these 

are: 0-degree, 90-degree, 135-degree and 45-degree.  

[00213] Each CTB is classified into one of five categories according to Table 2-7.  

Table 2-7- Pixel classification rulefor EO 

Category Condition Meaning 

0 None of the below Largely monotonic 

1 p < 2 neighbours Local minimum 

2 p < 1 neighbour && p =1 Edge 

neighbour 

3 p > 1 neighbour && p =1 Edge 

neighbour 

4 p > 2 neighbours Local maximum 

[00214] Band offset (BO) classifies all pixels in one CTB region into 32 uniform bands by 

using the five most significant bits of the pixel value as the band index. In other words, the 

pixel intensity range is divided into 32 equal segments from zero to the maximum intensity 

value (e.g. 255 for 8-bit pixels). Four adjacent bands are grouped together and each group is 

18019688_1 (GHMatters) P117156.AU



32 

indicated by its most left-hand position as shown in FIG. 19. The encoder searches all 

position to get the group with the maximum distortion reduction by compensating offset of 

each band.  

[00215] 2.11 Combined inter and intra prediction (CIIP) 

[00216] In VTM5, when a CU is coded in merge mode, if the CU contains at least 64 luma 

samples (that is, CU width times CU height is equal to or larger than 64), and if both CU 

width and CU height are less than 128 luma samples, an additional flag is signaled to indicate 

if the combined inter/intra prediction (CIIP) mode is applied to the current CU. As its name 

indicates, the ClIP prediction combines an inter prediction signal with an intra prediction 

signal. The inter prediction signal in the ClIP mode Pinter is derived using the same inter 

prediction process applied to regular merge mode; and the intra prediction signal Pintra is 

derived following the regular intra prediction process with the planar mode. Then, the intra 

and inter prediction signals are combined using weighted averaging, where the weight value is 

calculated depending on the coding modes of the top and left neighbouring blocks (depicted 

in FIG. 20) as follows: 

- If the top neighbor is available and intra coded, then set isIntraTop to 1, otherwise set 

isIntraTop to 0; 

- If the left neighbor is available and intra coded, then set isIntraLeft to 1, otherwise set 

isIntraLeft to 0; 

- If (isIntraLeft + isIntraLeft) is equal to 2, then wt is set to 3; 

- Otherwise, if (isIntraLeft + isIntraLeft) is equal to 1, then wt is set to 2; 

- Otherwise, set wt to 1.  

The ClIP prediction is formed as follows: 

Pcjjp ((4- wt)*inter +wt * intra+2)2 (3-1) 

[00217] 2.12 Luma mapping with chroma scaling (LMCS) 

[00218] In VTM5, a coding tool called the luma mapping with chroma scaling (LMCS) is 

added as a new processing block before the loop filters. LMCS has two main components: 1) 

in-loop mapping of the luma component based on adaptive piecewise linear models; 2) for the 

chroma components, luma-dependent chroma residual scaling is applied. FIG. 21 shows the 

LMCS architecture from decoder's perspective. The light-blue shaded blocks in FIG. 21 

indicate where the processing is applied in the mapped domain; and these include the inverse 

quantization, inverse transform, luma intra prediction and adding of the luma prediction 

18019688_1 (GHMatters) P117156.AU



33 

together with the luma residual. The unshaded blocks in FIG. 21 indicate where the 

processing is applied in the original (i.e., non-mapped) domain; and these include loop filters 

such as deblocking, ALF, and SAO, motion compensated prediction, chroma intra prediction, 

adding of the chroma prediction together with the chroma residual, and storage of decoded 

pictures as reference pictures. The light-yellow shaded blocks in FIG. 21 are the new LMCS 

functional blocks, including forward and inverse mapping of the luma signal and a luma

dependent chroma scaling process. Like most other tools in VVC, LMCS can be 

enabled/disabled at the sequence level using an SPS flag.  

[00219] 3. Examples of Problems Solved by Embodiments 

[00220] One palette flag is usually used to indicate whether the palette mode is employed on 

the current CU, which can have different limitations and variances on its entropy coding.  

However, how to better code the palette flag has not been fully studied in the previous video 

coding standards.  

[00221] The palette samples may have visual artifact if they are processed by post loop 

filtering process.  

[00222] The palette scanning order could be improved for non-square blocks.  

[00223] 4. Examples of Embodiments 

[00224] The detailed inventions below should be considered as examples to explain general 

concepts. These inventions should not be interpreted in a narrow way. Furthermore, these 

inventions can be combined in any manner.  

1. Indication of usage of palette mode for a transform unit/prediction unit/coding 

block/region may be coded separately from the prediction mode.  

a. In one example, the prediction mode maybe coded before the indication of usage 

of palette.  

i. Alternatively, furthermore, the indication of usage of palette may be 

conditionally signaled based on the prediction mode.  

1. In one example, when the prediction mode is the intra block copy 

mode (i.e., MODE_IBC), the signalling of the indication ofusage 

of palette mode may be skipped. Alternatively, furthermore, the 

indication of usage of palette may be inferred to false when the 

current prediction mode is MODEIBC.  

18019688_1 (GHMatters) P117156.AU



34 

2. In one example, when the prediction mode is the inter mode (i.e., 

MODEINTER), the signalling of the indication of usage of 

palette mode may be skipped. Alternatively, furthermore, the 

indication of usage of palette mode may be inferred to false when 

the current prediction mode is MODEINTER.  

3. In one example, when the prediction mode is the intra mode (i.e., 

MODEINTRA), the signalling of the indication of usage of 

palette mode may be skipped. Alternatively, furthermore, the 

indication of usage of palette mode may be inferred to false when 

the current prediction mode is MODEINTRA.  

4. In one example, when the prediction mode is the skip mode (i.e., 

the skip flag equal to 1), the signalling of the indication of usage 

of palette mode may be skipped. Alternatively, furthermore, the 

indication of usage of palette mode may be inferred to false when 

the skip mode is employed on the current CU.  

5. In one example, when the prediction mode is the intra mode (e.g., 

MODEINTRA), the indication of usage of palette mode may be 

signaled. Alternatively, furthermore, when the prediction mode 

is the inter mode or intra block copy mode, the signalling of the 

indication of usage of palette mode may be skipped.  

a) Alternatively, furthermore, when the prediction mode is 

the intra mode and not the Pulse-code modulation (PCM) 

mode, the indication of usage of palette mode may be 

signaled.  

b) Alternatively, furthermore, when the prediction mode is 

the intra mode, the indication of usage of palette mode 

may be signaled before the indication of usage of the 

PCM mode. In one example, when palette mode is 

applied, the signalling of usage of PCM mode may be 

skipped.  

18019688_1 (GHMatters) P117156.AU



35 

c) Alternatively, furthermore, when the prediction mode is 

the inter mode or intra block copy mode, the signalling of 

the indication of usage of palette mode may be skipped.  

6. In one example, when the prediction mode is the inter mode (e.g 

MODEINTER), the indication of usage of palette mode may be 

signaled.  

a) Alternatively, when the prediction mode is the intra 

mode, the signalling of the indication of usage of palette 

mode may be skipped.  

7. In one example, when the prediction mode is the intra block copy 

mode, the indication of usage of palette mode may be signaled.  

Alternatively, furthermore, when the prediction mode is the inter 

mode or intra mode, the signalling of the indication of usage of 

palette mode may be skipped.  

ii. Alternatively, furthermore, the indication of usage of palette mode may 

be conditionally signaled based on the picture/slice/tile group type.  

b. In one example, the prediction mode may be coded after the indication of usage 

of palette mode.  

c. In one example, indication of usage of palette mode may be signaled when the 

prediction mode is INTRA mode or INTERMODE.  

i. In one example, the indication of usage of palette mode may be coded 

after the skip flag, prediction mode and the flag of PCM mode.  

ii. In one example, the indication of usage of palette mode may be coded 

after the skip flag, prediction mode, before the flag of PCM mode 

iii. In one example, when the current block is coded with intra mode, the 

indications of palette and IBC modes may be further signaled.  

1. In one example, one bit flag may be signaled to indicate whether 

palette or IBC mode is signaled.  

2. In one example, signalling of the bit flag may be skipped under 

certain conditions, such as block dimension, whether IBC or 

18019688_1 (GHMatters) P117156.AU



36 

palette mode is enabled for one tile/tile 

group/slice/picture/sequence.  

d. In one example, the prediction mode (such as whether it is intra or inter mode) 

may be coded firstly, followed by the conditional signalling of whether it is 

palette mode or not.  

i. In one example, when the prediction mode is the intra mode, another flag 

may be further signaled to indicate whether it is palette mode or not.  

1. In one example, the 'another flag' may be signaled when the 

palette mode is enabled for one video data unit (e.g., 

sequence/picture/tile group/tile).  

2. In one example, the 'another flag' may be signaled under the 

condition of block dimension.  

3. Alternatively, furthermore, if it is not palette mode, one flag may 

be further signaled to indicate whether it is PCM mode or not.  

4. In one example, the 'another flag' may be context coded 

according to information of neighboring blocks. Alternatively, 

the 'another flag' may be context coded with only one context.  

Alternatively, the 'another flag' may be bypass coded, i.e., 

without context.  

ii. Alternatively, when the prediction mode is the inter mode, another flag 

may be further signaled to indicate whether it is IBC mode or not.  

1. In one example, the 'another flag' may be signaled when the IBC 

mode is enabled for one video data unit (e.g., 

sequence/picture/tile group/tile).  

2. In one example, the 'another flag' may be signaled under the 

condition of block dimension 

2. It is proposed to add the palette mode as an additional candidate for prediction mode.  

The indication of usage of palette mode can be determined/signaled based on the 

prediction mode, e.g., as discussed in example embodiment 1 above. In some 

embodiments, there is no need to signal the indication of usage of palette mode 

separately from the prediction mode.  

18019688_1 (GHMatters) P117156.AU



37 

a. In one example, the prediction modes may include intra, intra block copy and 

palette modes for intra slices/I pictures/intra tile groups.  

b. Alternatively, the prediction modes may include intra, palette modes for intra 

slices/I pictures/intra tile groups.  

c. In one example, the prediction modes may include intra, intra block copy and 

palette modes for 4x4 blocks.  

d. In one example, the prediction modes may include intra, inter, intra block copy 

and palette modes for inter slices/P and/or B pictures/inter tile groups.  

e. In one example, the prediction modes may include intra, inter, intra block copy 

modes for inter slices/P and/or B pictures/inter tile groups.  

f. Alternatively, the prediction modes may include at least two of intra, inter, intra 

block copy and palette mode.  

g. In one example, the inter mode may be not included in the prediction modes for 

4x4 blocks.  

h. In one example, when the block is not coded as the skip mode (which is a special 

case for the inter mode), the prediction mode index may be contextually coded 

using different bins. In some embodiments, signaling of one or more bins can be 

skipped due to a condition, such as the block dimension (e.g., 4x4) or a 

prediction mode is disabled (e.g., the IBC mode is disabled so the corresponding 

bin is skipped).  

i. In one example, the binarization of the four modes is defined as: intra 

(1), inter (00), IBC (010) and Palette (011). Here, three bins are used, 

with each bit corresponding to a bin value.  

ii. In one example, the binarization of the four modes is defined as: intra 

(10), inter (00), IBC (01) and Palette (11), as shown in FIG. 10. Here, 

two bins are used, with each bit corresponding to a bin value.  

iii. In one example, if the current slice is an intra slice and IBC is not enabled 

in the SPS, the binarization of the Palette and intra modes is defined as: 

Palette (1) and intra (0). Here, one bin is used.  

iv. In one example, if the current slice is not an intra slice and IBC is not 

enabled in the SPS, the binarization of the Palette, inter and intra modes 

18019688_1 (GHMatters) P117156.AU



38 

is defined as: intra (1), inter (00), and Palette (01). Here, two bins are 

used, with each bit corresponding to a bin value.  

v. In one example, if the current slice is an intra slice and IBC is enabled in 

the SPS, the binarization of the Palette and intra modes is defined as: 

IBC (1), Palette (01), and intra (00). Here, two bins are used, with each 

bit corresponding to a bin value.  

vi. In one example, the binarization of the four modes is defined as: inter 

(1), intra(01), IBC (001) and Palette (000). Here, three bins are used, 

with each bit corresponding to a bin value.  

vii. In one example, the binarization of the four modes is defined as: intra 

(1), inter (01), IBC (001) and Palette (000). Here, three bins are used, 

with each bit corresponding to a bin value.  

viii. In one example, the binarization of the four modes is defined as: inter 

(0), intra (10), IBC (111) and Palette (110), as shown in FIG. 11. Here, 

three bins are used, with each bit corresponding to a bin value.  

3. The signaling of the indication of usage of palette/IBC mode may depend on the 

information of other mode.  

a. In one example, the indication of usage of palette mode may be signaled when 

the current prediction mode is an intra mode and not a IBC mode.  

b. In one example, the indication of usage of IBC mode may be signaled when the 

current prediction mode is an intra mode and not a palette mode.  

4. How to signal the mode information may depend on the slice/picture/tile group type.  

a. In one example, when it is I-slice/Intra tile group, one flag may be signaled to 

indicate whether it is IBC mode. If it is not the IBC mode, another flag may be 

further signaled to indicate whether it is palette or intra mode.  

b. In one example, when it is I-slice/Intra tile group, one flag may be signaled to 

indicate whether it is intra mode. If it is not the intra mode, another flag may be 

further signaled to indicate whether it is palette or IBC mode.  

5. The indication of usage of palette mode may be signaled and/or derived based on the 

following conditions.  

a. block dimension of current block 

18019688_1 (GHMatters) P117156.AU



39 

i. In one example, the indication of usage of palette mode may be signaled 

only for blocks with width * height smaller than or equal to a threshold, 

such as 64*64.  

ii. In one example, the indication of usage of palette mode may be signaled 

only for blocks with both width and height larger than or equal to a 

threshold, such as 64 

iii. In one example, the indication of usage of palette mode may be signaled 

only for blocks with all below conditions are true: 

1. width and/or height larger than or equal to a threshold, such as 

16; 

2. width and/or height smaller than or equal to a threshold, such as 

32 or 64 

iv. In one example, the indication of usage of palette mode may be signaled 

only for blocks with width equal to height (i.e., square blocks) 

b. prediction mode of current block 

c. Current quantization parameter of current block 

d. The palette flag of neighboring blocks 

e. The intra block copy flags of neighboring blocks 

f. Indication of the color format (such as 4:2:0, 4:4:4) 

g. Separate/dual coding tree structure 

h. Slice/tile group type and/or picture type 

6. The indication of usage of IBC mode may be signaled and/or derived based on the 

following conditions.  

a. block dimension of current block 

i. In one example, the indication of usage of IBC mode may be signaled 

only for blocks with both width or height smaller than 128 

b. prediction mode of current block 

c. Current quantization parameter of current block 

d. The palette flag of neighboring blocks 

e. The intra block copy flags of neighboring blocks 

f. Indication of the color format (such as 4:2:0, 4:4:4) 

g. Separate/dual coding tree structure 

18019688_1 (GHMatters) P117156.AU



40 

h. Slice/tile group type and/or picture type 

7. The palette mode may be treated as intra mode (e.g MODEINTRA) in the deblocking 

decision process.  

a. In one example, if the samples at p side or q side are coded with palette mode, 

the boundary strength is set to 2.  

b. In one example, if the samples both at p side and q side are coded with palette 

mode, the boundary strength is set to 2 

c. Alternatively, the palette mode may be treated as inter mode (e.g 

MODEINTER) in the deblocking decision process.  

8. The palette mode maybe treated as a separate mode (e.gMODE_PLT) in the deblocking 

decision process.  

a. In one example, if the samples at p side and q side are coded with palette mode, 

the boundary strength is set to 0.  

i. Alternatively, if samples at one side are coded with palette mode, the 

boundary strength is set to 0.  

b. In one example, if the samples at p side are coded with IBC mode and the 

samples at q side are coded with palette mode, the boundary strength is set to 1, 

vice versa.  

c. In one example, if the samples at p side are coded with intra mode and the 

samples at q side are coded with palette mode, the boundary strength is set to 2, 

vice versa.  

9. The palette mode may be treated as a transform-skip block in the deblocking process 

a. Alternatively, the palette mode may be treated as a BDPCM block in the 

deblocking process.  

10. The indication of usage of palette mode for a block may be signaled and/or derived 

based on the slice/tile group/picture level flag 

a. In one example, the flag indicates whether fractional motion vector difference 

(MVD) is allowed in the merge with motion vector difference (MMVD, a.k.a., 

UMVE) and/or adaptive motion vector resolution (AMVR) mode, (e.g.  

slicefracmmvdflag). Alternatively, furthermore, if the slice_fracmmvdflag 

indicates fractional MVD is enabled, the signalling of indication of usage of 

palette mode is skipped and palette mode is inferred to be disabled.  

18019688_1 (GHMatters) P117156.AU



41 

b. In one example, the flag indicates whether palette mode is enabled for the 

slice/tile group/picture. Alternatively, furthermore, when such a flag indicates 

palette mode is disabled, the signaling of usage of palette mode for a block is 

skipped and palette mode is inferred to be disabled.  

11. The indication of usage of intra block copy mode (IBC) for a block may be signaled 

and/or derived based on the slice/tile group/picture level flag.  

a. In one example, the flag indicates whether fractional motion vector difference 

(MVD) is allowed in the merge with motion vector difference (MMVD, a.k.a., 

UMVE) and/or adaptive motion vector resolution (AMVR) mode, (e.g.  

slice-fracmmvdflag). Alternatively, furthermore, if the slicefracmmvdflag 

indicates fractional MVD is enabled, the signalling of indication of usage of IBC 

mode is skipped and IBC mode is inferred to be disabled.  

b. In one example, the flag indicates whether IBC mode is enabled for the slice/tile 

group/picture. Alternatively, furthermore, when such a flag indicates IBC mode 

is disabled, the signaling of usage of IBC mode for a block is skipped and IBC 

mode is inferred to be disabled.  

12. The sample associated with one palette entry may have different bit depths from the 

internal bit depth and/or the bit depth of original/reconstructed samples.  

a. In one example, denote the sample associated with one may have the bit depth 

equal to N, the following may apply: 

i. In one example, N may be a integer number (e.g. 8).  

ii. In one example, N may be larger than the internal bit depth and/or the bit 

depth of original/reconstructed samples.  

iii. In one example, N may be smaller than the internal bit depth and/or the 

bit depth of original/reconstructed samples.  

iv. In one example, N may depend on 

1. Block dimension of current block 

2. Current quantization parameter of current block 

3. Indication of the color format (such as 4:2:0, 4:4:4) 

4. Separate/dual coding tree structure 

5. Slice/tile group type and/or picture type 

6. Number of palette entries 

18019688_1 (GHMatters) P117156.AU



42 

7. Number of prediction palette entries 

8. Index of color component 

b. In one example, the sample associated with multiple palette entries may have 

different bit depths.  

i. In one example, let CO, C1 be two palette entries in the current palette, 

and they may have bit depth equal to bO and b1, respectively. bO may be 

unequal to bI 

1. In one example, bO may be larger/smaller than the internal bit 

depth and/or the bit depth of original/reconstructed samples 

and/or bl may be larger/smaller than the internal bit depth and/or 

the bit depth of original/reconstructed samples.  

c. In one example, in the palette mode, the samples maybe reconstructed according 

to the shifted values of samples associated with palette entries.  

i. In one example, the samples may be reconstructed by left shifting the 

samples in the palette entries by M bits.  

ii. In one example, the reconstructed value may be (C«M) + (l«(M-1)), 

wherein C is the palette entry.  

iii. In one example, the samples may be reconstructed by right shifting the 

samples in the palette entries by M bits.  

iv. In one example, the reconstructed value may be clip((C+(l«(M

1)))>>M, 0, (1«N)-1), wherein C is the palette entry and N is the bit

depth of reconstruction.  

v. Alternatively, furthermore, in one example, the M may depend on the bit 

depth difference between samples associated with palette entries and the 

internal bit depth of reconstructed samples/original samples.  

1. In one example, M may be equal to the internal bit depth minus 

the bit depth of samples in the palette entries 

2. In one example, M may be equal to the bit depth of samples in 

the palette entries minus the internal bit depth 

3. In one example, M may be equal to the bit depth of the original 

samples minus the bit depth of samples in the palette entries 

18019688_1 (GHMatters) P117156.AU



43 

4. In one example, M may be equal to the bit depth of samples in 

the palette entries minus the bit depth of the original samples.  

5. In one example, M may be equal to the bit depth of the 

reconstructed samples minus the bit depth of samples in the 

palette entries 

6. In one example, M may be equal to the bit depth of samples in 

the palette entries minus the bit depth of the reconstructed 

samples 

vi. In one example, M may be an integer number (e.g. 2).  

vii. Alternatively, furthermore, in one example, the M may depend on 

1. Block dimension of current block 

2. Current quantization parameter of current block 

3. Indication of the color format (such as 4:2:0, 4:4:4) 

4. Separate/dual coding tree structure 

5. Slice/tile group type and/or picture type 

6. Number of palette entries 

7. Number of prediction palette entries 

8. Sample position in a block/picture/slice/tile 

9. Index of color component 

viii. In one example, a look up operation based on the samples in the palette 

entries may be used during the sample's reconstruction.  

1. In one example, the values in the look up table may be signaled 

in the SPS/VPS/PPS/picture header/slice header/tile group 

header/LCU row/group of LCUs.  

2. In one example, the values in the look up table may be inferred 

in the SPS/VPS/PPS/picture header/slice header/tile group 

header/LCU row/group of LCUs.  

13. The signaled/derived quantization parameter (QP) for palette coded blocks may be 

firstly modified before being used to derive escape pixel/samples, such as being clipped.  

a. In one example, the applied QP range for palette coded blocks may be treated in 

the same way as transform skip mode, and/or BDPCM mode.  

18019688_1 (GHMatters) P117156.AU



44 

b. In one example, the applied QP for palette coded blocks may be revised to be 

max(Qp, 4 + T), where T is an integer value and Qp is the signaled or derived 

quantization parameter for the block.  

i. In one example, T may be a predefined threshold.  

ii. In one example, T may be equal to (4 + min_qpprime_ts_ minus) 

wherein minqpprime_ts_ minus may be signaled.  

14. How to code escape samples/symbols may be unified regardless whether transquant 

bypass is enabled or not.  

a. In one example, escape sample may be signaled with fixed length.  

b. In one example, an escape sample may be signaled in fixed length using N bits.  

i. In one example, N may be an integer number (e.g. 8 or 10) and may 

depend on 

1. A message signaled in the SPS/VPS/PPS/picture header/slice 

header/tile group header/LCU row/group of LCUs.  

2. Internal bit depth 

3. Input bit depth 

4. Block dimension of current block 

5. Current quantization parameter of current block 

6. Indication of the color format (such as 4:2:0, 4:4:4) 

7. Separate/dual coding tree structure 

8. Slice/tile group type and/or picture type 

c. In one example, the code length to signal an escape pixel/sample may depend 

on internal bit depth.  

i. Alternatively, the code length to signal an escape pixel/sample may 

depend on input bit depth.  

d. In one example, the code length to signal an escape pixel/sample may depend 

on the quantization parameter.  

i. In one example, the code length for signalling an escape pixel/sample 

may be f(Qp) 

1. In one example, the function f may be defined as (internal 

bitdepth - (Qp - 4)/6).  

18019688_1 (GHMatters) P117156.AU



45 

15. The quantization and/or inverse quantization process for palette coded blocks and non

palette coded blocks may be defined in different ways.  

a. In one example, right bit-shifting may be used for quantizing escape sample 

instead of using the quantization process for transform coefficients or residuals.  

b. In one example, left bit-shifting may be used for inverse quantizing escape 

sample instead of using the inverse quantization process for transform 

coefficients or residuals.  

c. At the encoder side, the following may apply: 

i. In one example, the escape pixel/sample value may be signaled as f(p, 

Qp), where p is the pixel/sample value.  

ii. In one example, the function f may be defined as p>>((Qp-4)/6), where 

p is the pixel/sample value and Qp is the quantization parameter.  

iii. In one example, the escape pixel/sample value may be signaled as p>>N, 

where p is the pixel/sample value.  

1. In one example, N may be an integer number (e.g. 2) and may 

depend on 

a) A message signaled in the SPS/VPS/PPS/picture 

header/slice header/tile group header/LCU row/group of 

LCUs.  

b) Internal bit depth 

c) Input bit depth 

d) Block dimension of current block 

e) Current quantization parameter of current block 

f) Indication of the color format (such as 4:2:0, 4:4:4) 

g) Separate/dual coding tree structure 

h) Slice/tile group type and/or picture type 

d. At the decoder side, the following may apply: 

i. In one example, the escape pixel/sample value may be signaled as 

f(bd,p,Qp) 

1. In one example, the function f maybe defined as clip(0, (1«(bd

(Qp-4)/6))-1, (p + (1«(bd-1)))>>((Qp-4)/6)).  

18019688_1 (GHMatters) P117156.AU



46 

ii. In one example, the escape pixel/sample value may be reconstructed as 

f(p,Qp), where p is the decoded escape pixel/sample value.  

1. In one example, f may be defined as p<<((Qp-4)/6) 

iii. In one example, the escape pixel/sample value may be reconstructed as 

f(bd,p,Qp), where p is the decoded escape pixel/sample value.  

1. In one example, the function clip may be defined as clip(O, 

(1<<bd)-1, p«((Qp-4)/6)) 

iv. In the above examples, the clip function clip(a,i,b) may be defined as (i 

< a ? a : (i > b ? b : i)).  

v. In the above examples, the clip function clip(a,i,b) may be defined as (i 

<= a ? a: (i >= b ? b: i)).  

vi. In the above examples, p may be the pixel/sample value, bd may be the 

internal bit depth or input bit depth, and Qp is the quantization parameter.  

16. A palette-coded block may be treated as an intra block (e.g. MODEINTRA) during the 

list construction process of most probable modes (MPM).  

a. In one example, when fetching the intra modes of neighboring (adjacent or non

adjacent) blocks during the construction of the MPM list, if a neighboring block 

(e.g., left and/or above) is coded with palette mode, it may be treated as 

conventional intra-coded block (e.g. MODEINTRA) with a default mode.  

i. In one example. the default mode may be DC/PLANAR/VER/HOR 

mode.  

ii. In one example, the default mode may be any one intra prediction mode.  

iii. In one example, the default mode may be signaled in the 

DPS/SPS/VPS/PPS/APS/picture header/slice header/tile group header/ 

Largest coding unit (LCU)/Coding unit (CU)/LCU row/group of 

LCUs/TU/PU block/Video coding unit.  

17. A palette-coded block may be treated as a non-intra block (e.g. treated as a block with 

prediction mode equal to MODEPLT) during the list construction process of most 

probable modes (MPM).  

a. In one example, when fetching the intra modes of neighboring blocks during the 

construction of the MPM list, if a neighboring block (e.g., left and/or above) is 

18019688_1 (GHMatters) P117156.AU



47 

coded with palette mode, it may be treated in the same way or a similar way as 

those coded with inter mode.  

b. In one example, when fetching the intra modes of neighboring blocks during the 

construction of the MPM list, if a neighboring block (e.g., left and/or above) is 

coded with palette mode, it may be treated in the same way or a similar way as 

those coded with IBC mode.  

18. The luma block coded with palette mode corresponding to a chroma block coded with 

the DM mode may be interpreted as having a default intra prediction mode.  

a. In one example, the corresponding luma block coded with palette mode may be 

treated as an intra block (e.g. MODEINTRA) or a palette block (e.g.  

MODEPLT) when a chroma block is coded with the DM mode.  

b. In one example, the default prediction mode may be DC/PLANAR/VER/HOR 

mode.  

c. In one example, the default prediction mode may be any one intra prediction 

mode.  

d. In one example, the default prediction mode may be signaled in the 

DPS/SPS/VPS/PPS/APS/picture header/slice header/tile group header/Largest 

coding unit (LCU)/Coding unit (CU)/LCU row/group of LCUs/TU/PU 

block/Video coding unit.  

19. A palette-coded block may be treated as an unavailable block during the list construction 

of history-based motion vector prediction (HMVP), the merge (MERGE) and/or the 

advanced motion vector prediction (AMVP) modes.  

a. In one example, an unavailable block may denote a block which does not have 

any motion information or its motion information could not be used as a 

prediction for other blocks.  

b. In one example, a block coded with palette mode may be treated as an intra block 

(e.g. MODEINTRA) or a palette block (e.g. MODEPLT) in the process of list 

construction in HMVP, MERGE and/or AMVP modes.  

i. Alternatively, in one example, when fetching the motion information of 

neighboring blocks during the construction of the HMVP, MERGE 

and/or AMVP list, a neighboring block coded with palette mode may be 

treated as a block with an invalid reference index.  

18019688_1 (GHMatters) P117156.AU



48 

ii. Alternatively, in one example, when fetching the motion information of 

neighboring blocks during the construction of the HMVP, MERGE 

and/or AMVP list, a neighboring block coded with palette mode may be 

treated as a inter block with a reference index equal to 0.  

iii. Alternatively, in one example, when fetching the motion information of 

neighboring blocks during the list construction of the HMVP, MERGE 

and/or AMVP modes, a neighboring block coded with palette mode may 

be treated as a inter block with a zero-motion vector.  

20. How to treat a block coded with palette mode (e.g. whether to and/or how to apply above 

methods) may be based on: 

a. Video contents (e.g. screen contents or natural contents) 

b. A message signaled in the DPS/SPS/VPS/PPS/APS/picture header/slice 

header/tile group header/ Largest coding unit (LCU)/Coding unit (CU)/LCU 

row/group of LCUs/TU/PU block/Video coding unit 

c. Position of CU/PU/TU/block/Video coding unit 

d. Block dimension of current block and/or its neighboring blocks 

e. Block shape of current block and/or its neighboring blocks 

f. Indication of the color format (such as 4:2:0, 4:4:4, RGB or YUV) 

g. Coding tree structure (such as dual tree or single tree) 

h. Slice/tile group type and/or picture type 

i. Color component (e.g. may be only applied on luma component and/or chroma 

component) 

j. Temporal layer ID 

k. Profiles/Levels/Tiers of a standard 

21. Context coded bins for palette coded blocks may be restricted to be within a certain 

range.  

a. In one example, a counter is assigned to a block to record how many bins have 

been context coded. When the counter exceeds a threshold, bypass coding is 

applied instead of using context coding.  

i. Alternatively, NumColorComp counters may be assigned to record how 

many bins have been context coded for each color component.  

18019688_1 (GHMatters) P117156.AU



49 

NumColorComp is the number of color components to be coded in one 

block (e.g., for one CU in YUV format, NumColorComp is set to 3).  

ii. Alternatively, a counter may be initialized to be zero, and after coding 

one bin with context, the counter is increased by one.  

b. Alternatively, a counter may be initialized with some value greater than zero 

(e.g., W*H*K) and after coding one bin with context, the counter is decreased 

by one. When the counter is smaller than or equal to T, bypass coding is applied 

instead of using context coding.  

i. In one example, T is set to 0 or 1.  

ii. In one example, T is set according to decoded information or number of 

coding passes, etc. al.  

c. In one example, the palette coded blocks may have a same or different threshold 

compared with TS coded blocks or non-TS coded blocks in terms of context 

coded bins.  

i. In one example, number of context coded bins for a palette coded block 

may be set to (W*H*T) wherein W and H are the width and height of 

one block, respectively and T is an integer. In one example, T is set to 

be the same as that used for TS coded blocks, such as 1.75 or 2.  

ii. In one example, number of context coded bins for a palette coded block 

may be set to (W*H*NumColorComp*T) wherein W and H are the 

width and height of one block, respectively; NumColorComp is the 

number of color components to be coded in one block (e.g., for one CU 

in YUV format, NumColorComp is set to 3). and T is an integer. In one 

example, T is set to be the same as that used for TS coded blocks, such 

as 1.75 or 2.  

d. In one example, the threshold of palette-coded blocks may be smaller than TS 

coded blocks or non-TS coded blocks in terms of context coded bins.  

e. In one example, the threshold of palette-coded blocks may be larger than TS 

coded blocks or non-TS coded blocks in terms of context coded bins.  

22. A palette-coded block may be treated as a non-intra block (e.g. treated as a block with 

prediction mode equal to MODEPLT) during the process of counting neighboring intra 

blocks in ClIP mode.  

18019688_1 (GHMatters) P117156.AU



50 

a. In one example, when fetching the intra modes of neighboring blocks during 

counting neighboring intra blocks in ClIP mode, if a neighboring block (e.g., 

left and/or above) is coded with palette mode, it may be treated in the same way 

or a similar way as those coded with inter mode.  

b. In one example, when fetching the intra modes of neighboring blocks during 

counting neighboring intra blocks in ClIP mode, if a neighboring block (e.g., 

left and/or above) is coded with palette mode, it may be treated in the same way 

or a similar way as those coded with IBC mode.  

c. Alternatively, a palette-coded block may be treated as an intra block during the 

process of counting neighboring intra blocks in ClIP mode.  

23. It is proposed to skip the pre- and/or post- filtering processes for palette coded samples.  

a. In one example, the palette coded samples may be not deblocked.  

b. In one example, the palette coded samples may be not compensated an offset in 

the SAO process.  

c. In one example, the palette coded samples may be not filtered in the ALF 

process.  

i. In one example, the classification in the ALF process may skip palette 

coded samples.  

d. In one example, the LMCS may be disabled for palette coded samples.  

24. It is proposed to add more scanning orders in the palette mode.  

a. In one example, reverse horizontal transverse scanning order defined as follows 

may be used.  

i. In one example, the scanning direction for the odd rows may be from left 

to right.  

ii. In one example, the scanning direction for the even rows may be from 

right to left.  

iii. In one example, the scanning order for a 4x4 block may be as shown in 

Fig. 22.  

b. In one example, reverse vertical transverse scanning order defined as follows 

may be used.  

i. In one example, the scanning direction for the odd rows may be from top 

to bottom.  

18019688_1 (GHMatters) P117156.AU



51 

ii. In one example, the scanning direction for the even rows may be from 

bottom to top.  

iii. In one example, the scanning order for a 4x4 block may be as shown in 

Fig. 23.  

25. The combination of allowed scanning orders may depend on block shape.  

a. In one example, when the ratio between width and height of a block is larger 

than a threshold, only horizontal traverse and reverse horizontal traverse 

scanning orders may be applied.  

i. In one example, the threshold is equal to 1.  

ii. In one example, the threshold is equal to 4.  

b. In one example, when the ratio between height and width of a block is larger 

than a threshold, only vertical traverse and reverse vertical traverse scanning 

orders may be applied.  

i. In one example, the threshold is equal to 1.  

ii. In one example, the threshold is equal to 4.  

26. It is proposed to only allow one intra prediction direction and/or one scanning direction 

in the QR-BDPCM process.  

a. In one example, only vertical direction is allowed on a block with width larger 

than height.  

b. In one example, only horizontal direction is allowed on a block with width 

smaller than height.  

c. In one example, the indication of direction of QR-BDPCM may be inferred for 

a non-square block.  

i. In one example, furthermore, the indication of direction of QR-BDPCM 

may be inferred to vertical direction for a block with width larger than 

height.  

ii. In one example, furthermore, the indication of direction of QR-BDPCM 

may be inferred to horizontal direction for a block with width smaller 

than height.  

27. The methods in bullet 24,25 and 26 may be only applied on a block with w*Th >= h or 

h*Th >= w, where the w and h are the block width and height respectively, and Th is a 

threshold.  

18019688_1 (GHMatters) P117156.AU



52 

a. In one example, Th is an integer number (e.g. 4 or 8) and may be based on 

i. Video contents (e.g. screen contents or natural contents) 

ii. A message signaled in the DPS/SPS/VPS/PPS/APS/picture header/slice 

header/tile group header/ Largest coding unit (LCU)/Coding unit 

(CU)/LCU row/group of LCUs/TU/PU block/Video coding unit 

iii. Position of CU/PU/TU/block/Video coding unit 

iv. Block dimension of current block and/or its neighboring blocks 

v. Block shape of current block and/or its neighboring blocks 

vi. Indication of the color format (such as 4:2:0, 4:4:4, RGB or YUV) 

vii. Coding tree structure (such as dual tree or single tree) 

viii. Slice/tile group type and/or picture type 

ix. Color component (e.g. may be only applied on luma component and/or 

chroma component) 

x. Temporal layer ID 

xi. Profiles/Levels/Tiers of a standard 

[00225] 5. Additional Embodiments 

[00226] 5.1 Embodiment 1 

[00227] This section shows an example embodiment in which the bitstream representation of 

video may be changed as compared to the baseline bitstream syntax. The changes are 

highlighted using bold italicized text entries.  

seqparametersetrbsp() { Descriptor 

sps-max-sub-layers_minus u(3) 

spsgbienabled_flag u(1) 

sps-ibc-enabledflag u(1) 

sps_pLtenabledjflag u(1) 

} 
sps_pLtenabledflag equal to 1 specifies thatpalette mode may be used in decoding of 

pictures in the CVS. sps_pltenabledjflag equal to 0 specifies thatpalette mode is not used 

in the CVS. When spspLtenabledjflag is notpresent, it is inferred to be equal to 0.  

18019688_1 (GHMatters) P117156.AU



53 

codingunit( x, yO, cbWidth, cbHeight, treeType){ Descriptor 

if( tilegrouptype != I | spsibc_enabledflag || spspltenabled flag) 

{ 
if( treeType DUALTREECHROMA) 

cuskipflag[ x ][ yO ] ae(v) 

if( cu skipflag[ x0 ][y = = 0 && tilegroup type != I) 

predmodeflag ae(v) 

if( ( ( tilegrouptype = I && cu skipflag[ x ][ yO ]= =0) 

(tilegrouptype I && CuPredMode[ x0 ][ yO] MODEINTRA) 

) && 

(spsibc_enabledflag || spspltenabled flag) 

pred mode scc_flag ae(v) 

if(scc-mode flag){ 

if(spsibc-enabledJflag) [ ae(v) 

pred mode ibc_flag 

I 

if(sps_pltenabledJflag) { 

pred mode pIt flag ae(v) 

} 

} 

} 

} 

predmode scc_flag equal to 1 specifies that the current coding unit is coded by a screen 

contnet coding mode. pred mode scc_flag equal to 0 specifies that the current coding unit is 

not coded by a screen content coding mode 

When predmodescc_flag is notpresent, it is inferred to be equal to 0.  

18019688_1 (GHMatters) P117156.AU



54 

predmode pIt flag equal to 1 specifies that the current coding unit is coded in the palette 

mode. pred mode pIt flag equal to 0 specifies that the current coding unit is not coded in 

the palette mode.  

When pred modejpIt flag is not present, it is inferred to be equal to the value of 

sps_pLtenabledjflag when decoding an I tile group, and 0 when decoding a P or B tile group, 

respectively.  

When predmodescc_flag is equal to 1 and sps_ibcenabledjflag is euqal to 0, the 

predmode pIt flag is inferred to be equal to 1.  

When predmodeibc_flag is equal to 1, the variable CuPredMode[x][ y] is set to be equal 

to MODEPL Tfor x =x0..xO + cbWidth - 1 and y y0..yO + cbHeight - 1.  

codingunit( x, yO, cbWidth, cbHeight, treeType ){ Descriptor 

if( tilegrouptype != I | spsibc_enabledflag || sps-pltenabled flag) 

{ 
if( treeType DUALTREECHROMA) 

cuskipflag[ x ][ yO ] ae(v) 

if( cu skipflag[ x0 ][y = = 0 && tilegroup type != I) 

predmodeflag ae(v) 

if( ( ( tilegrouptype = I && cu skipflag[ x ][ yO ]= =0) 

(tilegrouptype I && CuPredMode[ x0 ][ yO] MODEINTRA) 

) && 

(spsibcenabledflag) 

predmode_ibcflag ae(v) 

if( ((tilegroup type== I && cu-skip_flag[x0 ][y0] ==0 ) II 
(tilegrouptype!= I && CuPredMode[x0][ yO]!= MODEINTRA 

) ) && 

sps_plt_enabledjflag && 

CuPredMode[x0f yO]!= MODEIBC 

pred mode pIt flag ae(v) 

} 

} 

18019688_1(GHMaters) P117156.AU



55 

codingunit( x, yO, cbWidth, cbHeight, treeType){ Descriptor 

if(tilegrouptype != I spsibc_enabled flag|spsult enabledflag) 

{ 
if( treeType DUALTREECHROMA) 

cuskipflag[ x ][ yO ] ae(v) 

if( cu skipflag[ x0 ][y = = 0 && tilegroup type != I) 

predmodeflag ae(v) 

if( ( ( tilegrouptype = I && cu skipflag[ x ][ yO ]= =0) 

(tilegrouptype I && CuPredMode[ x0 ][ yO] MODEINTRA) 

) && 

(spsibc_enabledflag) 

predmode_ibcflag ae(v) 

if( CuPredMode[xO][ y] == MODEINTRA && 

sps_pltenabledjflag) 

pred mode pIt flag ae(v) 

} 

} 

pred_modeptjflag equal to 1specifies that the current coding unit is coded in the palette 

mode. pred mode pItjflag equal to 0 specifies that the current coding unit is not coded in 

the palette mode.  

When pred modejpItjflag is not present, it is inferred to be equal to the value of 

sps_pLtenabledjflag when decoding an I tile group, and 0 when decoding a P or B tile group, 

respectively.  

When predmodeibc_flag is equal to 1, the variable CuPredMode[x][ y] is set to be equal 

to MODEPL Tfor x =x0..x0 + cbWidth - 1 and y y0..y0 + cbHeight - 1.  

codingunit( x, yO, cbWidth, cbHeight, treeType ){ Descriptor 

if(tilegrouptype != I spsibcenabled flag|spsjpltenabledjflag) 

{ 

18019688_1(GHMaters) P117156.AU



56 

if( treeType DUALTREECHROMA) 

cuskipflag[ x ][ yO ] ae(v) 

if( cu skipflag[ x0 ][y = = 0 && tilegroup type != I) 

predmode_flag ae(v) 

if( ((tilegroup type== I && cu-skip_flag[xO][y0]==0) || 

( tilegrouptype!= I && CuPredMode[xOf y0 ]==MODEINTRA 

) ) && 

(spsibc-enabledjflag) 

predmode_ibc_flag ae(v) 

if( ((tilegrouptype== I && cu-skip_flag[x0 ]fyO I ==0 ) II 

( tilegrouptype!= I && CuPredMode[xOf y0 ]==MODEINTRA 

&& (spsibc_enabledflag? CuPredMode[xO][y0] != MODE_IBC 

TRUE) ) ) && 

sps_plt_enabledjflag 

) 
predimode pIt flag ae(v) 

predmode pit flag equal to 1 specifies that the current coding unit is coded in the palette 

mode. pred mode pIt flag equal to 0 specifies that the current coding unit is not coded in 

the palette mode.  

When pred modejpItjflag is not present, it is inferred to be equal to the value of 

sps_ptenabledflag when decoding an I tile group, and 0 when decoding a P or B tile group, 

respectively.  

When predmodeibc_flag is equal to 1, the variable CuPredMode[x][ y] is set to be equal 

to MODEPL Tfor x =x..xO + cbWidth - 1 and y yO..y0 + cbHeight - 1.  

codingunit( x, y, cbWidth, cbHeight, treeType ){ Descriptor 

if(tilegrouptype != I spsibcenabledflag|sps.pltenabled flag) 

18019688_1 (GHMatters) P117156.AU



57 

if( treeType !=DUALTREECHROMA) 

cuskipflag[ x ][ yO ] ae(v) 

if(cu-skip_flag[xO[ y0J== 0) 

pred modes(xO, yO, cbWidth, cbHeight) 

} 

pred modes (xO, yO, cbWidth, cbHeight){ Descripto 

r 

if(tilegrouptype== I)[ 

if(spsibc enabledJflag) 

pred mode ibcjflag ae(v) 

if(CuPredMode[xO[ yO!= MODEIBC){ 

if(spspiltenabledJflag && cbWidth <=64 & & cbHeight <= 64) 

pitmode_flag ae(v) 

} 
else{ 

pred modejflag ae(v) 

if(CuPredMode[xO][yOJ == MODEINTRA || 

(CuPredMode[xO[ yOJ!= MODEINTRA && ! spsibc enabled flag))[ 

if(sps_pItenabledJflag && cbWidth <=64 & & cbHeight <= 64) 

pltmodejflag ae(v) 

I 

else{ 

if(spsibc enabled flag) 

pred mode ibcjflag ae(v) 

} 

} 
} 

18019688_1(GHMatters) P117156.AU



58 

pred modes (xO, yO, cbWidth, cbHeight){ Descriptor 

if(tilegrouptype== 

if(spsibc-enabledJflag || spspitenabled flag) 

predimode flag ae(v) 

if(CuPredMode[xOf yO]!= MODEINTRA){ 

if(spspitenabledflag && cbWidth <=64 && cbHeight <= 64) 

pitmode_flag ae(v) 

} 
else{ 

pred modejflag ae(v) 

if(CuPredMode[ x0][ y] == MODEINTRA || 

(CuPredMode[xOf yO]!= MODEINTRA && ! spsibc-enabled flag))t 

if(sps_p/tLenabledJflag && cbWidth <=64 && cbHeight <= 64) 

pitmodejflag ae(v) 

} 
else{ 

if(spsibc-enabled flag) 

pred mode ibc_flag ae(v) 

} 

} 

pred modes (xO, yO, cbWidth, cbHeight){ Descriptor 

if(tilegrouptype== 

if(spsibc-enabledJflag || spspitenabled flag) 

predimode flag ae(v) 

if(CuPredMode[xOf yO]!= MODEINTRA){ 

if(spspitenabledJflag && cbWidth <=64 && cbHeight <= 64) 

pitimode_flag ae(v) 

else{ 

18019688_1 (GHMatters) P117156.AU



59 

pred modejflag ae(v) 

if(CuPredMode[ x0][ y] == MODEINTRA || 

(CuPredMode[xOf yO!= MODEINTRA && ! spsibc-enabled flag))t 

if(sps_p/itenabledJflag && cbWidth <=64 && cbHeight <= 64) 

pitmodejflag ae(v) 

} 
else{ 

if(spsibc-enabled flag) 

pred mode ibc_flag ae(v) 

} 

} 

} 

pred modes (xO, yO, cbWidth, cbHeight){ Descriptor 

if(tilegrouptype== 

if(spsibc-enabledJflag || sps_pltenabled flag) 

predimode flag ae(v) 

if(CuPredMode[xOf yO]!= MODEINTRA){ 

if(sps_pLtenabledJflag) 

pitimode_flag ae(v) 

else{ 

pred modejflag ae(v) 

if(CuPredMode[ x0 ][y == MODEINTRA || 

(CuPredMode[xO yO!= MODEINTRA && spsibc-enabledjflag)){ 

if(sps_pLtenabledJflag) 

pitimodejflag ae(v) 

else{ 

if(spsibc-enabled flag) ae(v) 

pred mode ibc_flag 

18019688_1 (GHMatters) P117156.AU



60 

} 

} 

} 

pitmodejflag equal to 1 specifies that the current coding unit is coded in palette mode.  

intra_mode ptjflag equal to 0 specifies that the current coding unit is coded in the palette 

mode.  

When pitmode flag is notpresent, it is inferred to be equal tofalse.  

When predmodescc_flag is equal to 1, the variable CuPredMode[x][ y] is set to be equal 

to MODEPL Tfor x =x0..xO + cbWidth - 1 and y =yO..yO + cbHeight -1 

predmode flag equal to 0 specifies that the current coding unit is coded in interprediction 

mode or IBCprediction mode. pred mode flag equal to 1 specifies that the current coding 

unit is coded in intra prediction mode or PL T mode. The variable CuPredMode[ x ]f y ] is 

derived as follows for x =x0..x0 + cbWidth - 1 and y =y0..y0 + cbHeight - 1: 

- Ifpred modejflag is equal to 0, CuPredMode[x][ y] is set equal to MODEINTER.  

- Otherwise (pred mode flag is equal to 1), CuPredMode[x][y] is set equal to 

MODEINTRA.  

When pred mode flag is not present, it is inferred to be equal to 1 when decoding an I tile 

group, and equal to 0 when decoding a P or B tile group, respectively.  

Table 9-4 Syntax elements and associated binarization.  

Syntax Binarization 

structure Syntax element proce 
Inputparameter 

ss 

pred mode FL 
PLT_mode_flag cMax = 1 

s() 
Table 9-10 -Assignment of ctxInc to syntax elements with context coded bins 

binkdx 
Syntax element 

0 1 2 3 4 5 

PLTmodeflag 0 na na na na na 

18019688_1 (GHMatters) P117156.AU



61 

[00228] 5.2 Embodiment #2 

[00229] This embodiment decribes the modeType. The newly added texts are bold italicized.  

[00230] A variable modeType specifying whether Intra, IBC, Palette and Inter coding modes 

can be used (MODETYPEALL), or whether only Intra, Palette and IBC coding modes can 

be used (MODETYPEINTRA), or whether only Inter coding modes can be used 

(MODETYPEINTER) for coding units inside the coding tree node.  

[00231] 5.3 Embodiment #3 

[00232] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_modeplt flag is signaled after the predmodeibc-flag. The newly added texts are bold 

italicized and the deleted texts are marked by"[[]]".  

7.3.7.5 Coding unit syntax 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !sps_ibcenabled-flag) ]] 

( (cbWidth == 4 && cbHeight == 4) modeType-= 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y] = = 0 && slicetype I 

&& !( cbWidth== 4 && cbHeight== 4 )&& modeType-= 

MODETYPEALL) 

predmodeflag ae(v) 

[[if( ( ( slicetype = I && cu-skipflag[ xO ][ yO ] = =0) 

( slicetype I && (CuPredMode[ xO ][ yO ] != MODEINTRA 

( cbWidth = 4 && cbHeight = 4 && cuskipflag[ xO ][ yO ] 

0 ) ) ) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight!= 128 ))[[==]] 

18019688_1 (GHMatters) P117156.AU



62 

if( ((slice-type== I && cu-skip_flag[x0][y0] ==0) II 
( slice type =I && ( CuPredMode[x0][y0] !=MODEINTRA II 

(cbWidth ==4 && cbHeight== 4 && cuskip_flag[ x0][ y0-  

0 ) ) ) ) && 

cbWidth <=64 && cbHeight <=64) && modeType 

MODETYPEINTER ) [ 

if(sps_ibcenabledLag &&treeType! DUAL_TREECHROMA) 

pred-mode-ibcflag ae(v) 

I 
if( CuPredMode[x0][y01 == MODEINTRA || (slice type != I 

&& !(cbWidth = = 4 

&& cbHeight == 4 ) && !spsibcenabledjflag && 

CuPredMode[ x0 [ yO ! 

MODEINTRA )) && cbWidth <= 64 && cbHeight <= 64 && 

sps pltenabledjflag 

&& cuskip_flag[x0[ y0 == 0&& modeType!= MODEINTER) 

pred mode pltjflag ae(v) 

} 

} 

[00233]5.4 Embodiment #4 

[00234] This embodiment decribes the coding unit syntax. In this embodiment, the 

predmode_plt flag is signaled after the predmodeibc-flag and the pred mode-plt flag is 

signaled only when the current prediction mode is MODEINTRA. The newly added texts are 

bold italicized and the deleted texts are marked by"[[]]".  

7.3.7.5 Coding unit syntax 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I ||sps ibcenabled-flag I Isps pltenabledjflag) { 

18019688_1 (GHMatter) P117156.AU



63 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !spsibcenabled-flag) ]] 

( (cbWidth == 4 && cbHeight == 4) modeType-= 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y]= = 0 && slicetype I 

&& !( cbWidth== 4 && cbHeight== 4 )&& modeType-= 

MODETYPEALL) 

predmodeflag ae(v) 

[[if( ( ( slicetype == I && cu skipflag[ xO ][ yO ]= =0) 

( slicetype I && ( CuPredMode[ xO ][ yO ] != MODEINTRA 

( cbWidth = 4 && cbHeight = 4 && cu_skipflag[ xO ][ yO ] 

0 ) ) ) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight != 128 ))]] 

if( ( ( slice-type == I && cu-skip_flag[xO][yO] ==0 ) I 
( slice type != I && ( CuPredMode[xO ][yO ] != MODEINTRA I I 

(cbWidth==4 && cbHeight==4 &&cuskip_flag[xO]yO] == 

0 ) ) ) ) && 

cbWidth<=64 && cbHeight<=64) && modeType != MODE_ 

TYPEINTER ){ 

if(sps_ibc enabledfag &&treeType! DUALTREECHROMA) 

pred modeibcflag ae(v) 

I 

if(cuskip_flag[xO][y0] == 0 && CuPredMode[xO][ y] == 

MODEINTRA && 

cbWidth <= 64 && cbHeight <= 64 && sps_pltenabledjflag && 

modeType != 

MODE TYPEINTER) 

pred mode ptjflag ae(v) 

} 

18019688_1(GHMaters) P117156.AU



64 

} 

[00235] 5.5 Embodiment #5 

[00236] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_mode-ibc-flag is signaled after the pred modepltflag. The newly added texts are bold 

italicized and the deleted texts are marked by"[[]]".  

7.3.7.5 Coding unit syntax 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !sps_ibcenabled-flag) ]] 

( (cbWdth == 4 && cbHeight == 4) || modeType == 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y ] = = 0 && slicetype I 

&& !( cbWidth = 4 && cbHeight = 4) && modeType== 

MODETYPEALL) 

predmodeflag ae(v) 

[[if( ( ( slicetype == I && cu-skipflag[ xO ][ yO ] = =0 ) 

( slicetype != I && (CuPredMode[ xO ][ yO ] != MODEINTRA || 

( cbWidth ==4 && cbHeight ==4 && cuskipflag[ xO ][ yO]== 0)) 

) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight != 128))]] 

if( CuPredMode[xO][yO]== MODEINTRA || (slice type ! I 

&& !(cbWidth = = 4 

&& cbHeight == 4 ) && !sps_ibcenabledflag && 

CuPredMode[xOfy0]!= 

MODEINTRA )) && cbWidth <= 64 && cbHeight <= 64 && 

sps_p/tenabledjflag 

&& cu skip_flag[ xO ][ yO ] ==0 && modeType != MODEINTER) 

18019688_1 (GHMatters) P117156.AU



65 

pred mode pt flag ae(v) 

if( ( ( slice type == I && cu-skip_flag[xO]y0] ==0) |1 

( slice type != I && ( CuPredMode[xO][y0] != MODEINTRA II 

(cbWidth ==4 && cbHeight 4 && cuskip_flag[xO][y0]==0)) 

) ) && 

cbWidth <= 64 && cbHeight <= 64) && modeType ! MODE_ 

TYPEINTER ){ 

if(spsibc enabledfag &&treeType! DUALTREECHROMA) 

pred modeibcflag ae(v) 

} 

} 

} 

[00237] 5.6 Embodiment #6 

[00238] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_mode-ibc-flag is signaled after the pred modeplt flag and the pred modepltflag is 

signaled only when the current prediction mode is MODEINTRA. The newly added texts are 

bold italicized and the deleted texts are marked by"[[]]".  

7.3.7.5 Coding unit syntax 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !sps_ibcenabled-flag) ]] 

( ( cbWidth == 4 && cbHeight == 4 ) || modeType-= 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y ] = = 0 && slicetype I 

&& !( cbWidth == 4 && cbHeight == 4 )&& modeType-= 

MODETYPEALL) 

18019688_1 (GHMatters) P117156.AU



66 

predmodeflag ae(v) 

if cu-skip_flag[xO]y0] == 0 && (CuPredMode[x0]{y0] == 

MODEINTRA && 

cbWidth<= 64 && cbHeight <= 64 && sps_ptenabledjflag&& 

modeType != 

MODETYPEINTER) 

pred mode pt flag ae(v) 

} 
[[if( ((slicetype == I && cu-skipflag[ x ][ yO ]= =0 ) 

( slicetype != I && ( CuPredMode[ x ][ yO ] != MODEINTRA || 

( cbWidth ==4 && cbHeight ==4 && cu_skipflag[ x ][ y]==0 )) 

) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight != 128))]] 

if( ( ( slice type == I && cu-skip_flag[xO][y0] ==0) | 

(slice type != I && (CuPredMode[xO][y0] !=MODEINTRA I I 

(cbWidth==4 && cbHeight=4 && cuskip_flag~x0][y ]==0)) 

) ) && 

cbWidth <= 64 && cbHeight <= 64) && modeType 

MODETYPEINTER ){ 

if(spsibc enabledfag &&treeType! DUALTREECHROMA) 

pred modeibcflag ae(v) 

} 

} 

} 

[00239] 5.7 Embodiment #7 

[00240] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_modeplt flag and pred-modeibcflag are signaled when the prediction mode is 

MODEINTRA. The newly added texts are bold italicized and the deleted texts are marked 

by "[[ ]]".  

7.3.7.5 Coding unit syntax 

18019688_1 (GHMatters) P117156.AU



67 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !sps_ibcenabled-flag) ]] 

( (cbWidth == 4 && cbHeight == 4) || modeType == 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO][ y] = = 0 && slicetype I 

&& !( cbWidth== 4 && cbHeight == 4 )&& modeType-= 

MODETYPEALL) 

predmodeflag ae(v) 

[[ if( ( ( slicetype = = I && cu-skipflag[xO][yO] = =0 ) 

( slicetype != I && ( CuPredMode[ xO ][ yO ] != MODEINTRA 

( cbWidth ==4 && cbHeight ==4 && cu_skipflag[ xO ][ yO]== 0 )) 

) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight != 128))]] 

if( ( ( slice type == I && cu-skip_flag[xO][y0] ==O) | 

(slice type!= I && (CuPredMode{x0][y0]== MODEINTRA I I 

(cbWidth==4 && cbHeight=4 && cuskip_flag[xO][y0]==0)) 

) ) && 

cbWidth <= 64 && cbHeight <= 64) && modeType 

MODETYPEINTER ){ 

if(sps_ibc enabledfag &&treeType! DUALTREECHROMA) 

pred mode_ibcflag ae(v) 

I 
if(CuPredMode[x0][ y0] ==MODEINTRA && cbWidth <= 64 && 

cbHeight <= 64 

&& sps_pltenabled flag && cu-skip_flag[xOfy0]== 0 && 

modeType != 

MODEINTER) 

pred mode ptjflag ae(v) 

18019688_1 (GHMatters) P117156.AU



68 

} 

} 

[00241] 5.8 Embodiment #8 

[00242] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_modeplt flag and pred modeibcflag are signaled when the prediction mode is not 

MODEINTRA. The newly added texts are bold italicized and the deleted texts are marked 

by "[[ ]]".  

7.3.7.5 Coding unit syntax 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !sps_ibcenabled-flag) ]] 

( (cbWidth == 4 && cbHeight == 4) || modeType == 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y ] = = 0 && slicetype I 

&& !( cbWidth== 4 && cbHeight == 4 )&& modeType-= 

MODETYPEALL) 

predmodeflag ae(v) 

[[if( ( ( slicetype = = I && cu skipflag[xO][yO] = =0 ) 

( slicetype != I && ( CuPredMode[ xO ][ yO ] != MODEINTRA || 

( cbWidth ==4 && cbHeight ==4 && cu_skipflag[ xO ][ yO]== 0 )) 

)) && 
spsibcenabledflag && (cbWidth!= 128 || cbHeight != 128))]] 

18019688_1 (GHMatters) P117156.AU



69 

if( ((slice type == I && cu-skip_flag[x0][y0] ==0) | 

(slice type != I && (CuPredMode[x0][y0] !=MODEINTRA I I 

(cbWidth==4 && cbHeight=4 && cuskip_flag[x0][y0]==0)) 

) ) && 

cbWidth <= 64 && cbHeight <= 64) && modeType 

MODETYPEINTER ){ 

if(sps_ibc enabledfag &&treeType! DUALTREECHROMA) 

pred mode_ibcflag ae(v) 

I 
if( CuPredMode[x][ y0]! MODEINTRA && cbWidth <= 64 && 

cbHeight <= 64 

&& sps_pltenabled flag && cuskip_flag[x0fy0]== 0 && 

modeType != 

MODEINTER) 

pred mode pt flag ae(v) 

} 

} 

[00243] 5.9 Embodiment #9 

[00244] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_modeplt flag and pred-modeibcflag are signaled when the prediction mode is 

MODEINTER. The newly added texts are bold italicized and the deleted texts are marked by 

"[[1]".  

7.3.7.5 Coding unit syntax 

codingunit( x, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

18019688_1 (GHMatters) P117156.AU



70 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !spsibcenabled-flag) ]] 

( (cbWidth == 4 && cbHeight == 4) modeType-= 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y] = = 0 && slicetype I 

&& !( cbWidth== 4 && cbHeight== 4 )&& modeType-= 

MODETYPEALL) 

predmodeflag ae(v) 

[[if( ( ( slicetype == I && cu skipflag[ xO ][ yO ] = =0) 

( slicetype I && ( CuPredMode[ xO ][ yO ] != MODEINTRA 

( cbWidth = 4 && cbHeight = 4 && cu_skipflag[ xO ][ yO ] 

0 ) ) ) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight != 128 ))]] 

if( ( ( slice-type == I && cu-skip_flag[xO][yO] ==0 ) I 
( slice type != I && ( CuPredMode[xO ][ yO ] == MODEINTER I I 

(cbWidth==4 && cbHeight==4 &&cuskip_flag[xO]yO] == 

0 ) ) ) ) && 

cbWidth<=64 && cbHeight<=64) && modeType 

MODETYPEINTER ){ 

if(sps_ibc enabledfag &&treeType! DUALTREECHROMA) 

pred modeibcflag ae(v) 

I 
if(CuPredModex][ y0] == MODEINTER && cbWidth <= 64 && 

cbHeight <= 64 

&& sps_pltenabledjflag && cu-skip_flag[xO][y] == 0 && 

modeType != 

MODEINTER) 

pred mode ptjflag ae(v) 

} 

18019688_1(GHMaters) P117156.AU



71 

} 

[00245] 5.10 Embodiment #10 

[00246] This embodiment describes the semantic of the pred modeplt flag. The newly 

added texts are bold italicized.  

predmode_plt-flag specifies the use of palette mode in the current coding unit.  

predmode pt flag = = 1 indicates that palette mode is applied in the current coding unit.  

predmode pt flag = = 0 indicates that palette mode is not appliedfor the current coding 

unit. When pred mode pt flag is notpresent, it is inferred to be equal to 0.  

[00247] 5.11 Embodiment #11 

[00248] This embodiment describes the semantic of the pred mode_plt flag. The newly 

added texts are bold italicized.  

predmode pit flag specifies the use of palette mode in the current coding unit.  

predmode pt flag = = 1 indicates that palette mode is applied in the current coding unit.  

predmode pt flag = = 0 indicates that palette mode is not appliedfor the current coding 

unit. When pred mode pt flag is notpresent, it is inferred to be equal to 0.  

When pred mode ptjflag is equal to 1, the variable CuPredMode[x][ y] is set to be equal 

to MODEPL Tfor x =x0..x0 + cbWidth - 1 and y =y 0..y 0 + cbHeight - 1.  

[00249] 5.12 Embodiment #12 

[00250] This embodiment describes the boundary strength derivation. The newly added texts 

are bold italicized.  

8.8.3.5 Derivation process of boundary filtering strength 

Inputs to this process are: 

a picture sample array recPicture, 

a location ( xCb, yCb ) specifying the top-left sample of the current coding block relative to the 

top-left sample of the current picture, 

a variable nCbW specifying the width of the current coding block, 

a variable nCbH specifying the height of the current coding block, 

18019688_1 (GHMatters) P117156.AU



72 

a variable edgeType specifying whether a vertical (EDGEVER) or a horizontal (EDGEHOR) 

edge is filtered, 

a variable cIdx specifying the colour component of the current coding block, 

a two-dimensional (nCbW)x(nCbH) array edgeFlags.  

Output of this process is a two-dimensional (nCbW)x(nCbH) array bS specifying the boundary 

filtering strength.  

The variable bS[ xDi ][ yDj ] is derived as follows: 

If cldx is equal to 0 and both samples po and qo are in a coding block with intra-bdpcmflag 

equal to 1, bS[ xDi ][ yDj ] is set equal to 0.  

Otherwise, if the sample po or qo is in the coding block of a coding unit coded with intra 

prediction mode, bS[ xDi ][ yDj ] is set equal to 2.  

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a coding 

block with ciip_flag equal to 1, bS[ xDi ][ yDj ] is set equal to 2.  

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a 

transform block which contains one or more non-zero transform coefficient levels, 

bS[ xDi ][ yDj ] is set equal to 1.  

Otherwise, if the block edge is also a transform block edge and the sample po and qo are in 

two coding blocks withpred mode pltjflag equal to 1, bS[xDi][yDj ]is set equal to 0.  

Otherwise, if the prediction mode of the coding subblock containing the sample po is different 

from the prediction mode of the coding subblock containing the sample qo, bS[ xDi ][ yDj ] is 

set equal to 1.  

Otherwise, if cldx is equal to 0 and one or more of the following conditions are true, 

bS[ xDi ][ yDj ] is set equal to 1: 

The coding subblock containing the sample po and the coding subblock containing the sample 

qo are both coded in IBC prediction mode, and the absolute difference between the horizontal 

or vertical component of the motion vectors used in the prediction of the two coding subblocks 

is greater than or equal to 4 in units of quarter luma samples.  

For the prediction of the coding subblock containing the sample po different reference pictures 

or a different number of motion vectors are used than for the prediction of the coding subblock 

containing the sample qo.  

18019688_1 (GHMatters) P117156.AU



73 

NOTE 1- The determination of whether the reference pictures used for the two coding 

sublocks are the same or different is based only on which pictures are referenced, without regard 

to whether a prediction is formed using an index into reference picture list 0 or an index into 

reference picture list 1, and also without regard to whether the index position within a reference 

picture list is different.  

NOTE 2 - The number of motion vectors that are used for the prediction of a coding subblock 

with top-left sample covering (xSb,ySb), is equal to PredFlagLO[xSb][ySb] + 

PredFlagLl[ xSb ][ ySb ].  

One motion vector is used to predict the coding subblock containing the sample po and one 

motion vector is used to predict the coding subblock containing the sample qo, and the absolute 

difference between the horizontal or vertical component of the motion vectors used is greater 

than or equal to 4 in units of quarter luma samples.  

Two motion vectors and two different reference pictures are used to predict the coding subblock 

containing the sample po, two motion vectors for the same two reference pictures are used to 

predict the coding subblock containing the sample qo and the absolute difference between the 

horizontal or vertical component of the two motion vectors used in the prediction of the two 

coding subblocks for the same reference picture is greater than or equal to 4 in units of quarter 

luma samples.  

Two motion vectors for the same reference picture are used to predict the coding subblock 

containing the sample po, two motion vectors for the same reference picture are used to predict 

the coding subblock containing the sample qo and both of the following conditions are true: 

The absolute difference between the horizontal or vertical component of list 0 motion vectors 

used in the prediction of the two coding subblocks is greater than or equal to 4 in quarter luma 

samples, or the absolute difference between the horizontal or vertical component of the list 1 

motion vectors used in the prediction of the two coding subblocks is greater than or equal to 4 

in units of quarter luma samples.  

The absolute difference between the horizontal or vertical component of list 0 motion vector 

used in the prediction of the coding subblock containing the sample po and the list 1 motion 

vector used in the prediction of the coding subblock containing the sample qo is greater than or 

equal to 4 in units of quarter luma samples, or the absolute difference between the horizontal 

or vertical component of the list 1 motion vector used in the prediction of the coding subblock 

18019688_1 (GHMatters) P117156.AU



74 

containing the sample po and list 0 motion vector used in the prediction of the coding subblock 

containing the sample qo is greater than or equal to 4 in units of quarter luma samples.  

Otherwise, the variable bS[ xDi ][ yDj ] is set equal to 0.  

[00251] 5.13a Embodiment #13a 

[00252] This embodiment describes the boundary strength derivation. The newly added texts 

are bold italicized.  

8.8.3.5 Derivation process of boundary filtering strength 

Inputs to this process are: 

a picture sample array recPicture, 

a location ( xCb, yCb ) specifying the top-left sample of the current coding block relative to the 

top-left sample of the current picture, 

a variable nCbW specifying the width of the current coding block, 

a variable nCbH specifying the height of the current coding block, 

a variable edgeType specifying whether a vertical (EDGEVER) or a horizontal (EDGEHOR) 

edge is filtered, 

a variable cIdx specifying the colour component of the current coding block, 

a two-dimensional (nCbW)x(nCbH) array edgeFlags.  

Output of this process is a two-dimensional (nCbW)x(nCbH) array bS specifying the boundary 

filtering strength.  

The variable bS[ xDi ][ yDj ] is derived as follows: 

If cldx is equal to 0 and both samples po and qo are in a coding block with intra-bdpcmflag 

equal to 1, bS[ xDi ][ yDj ] is set equal to 0.  

Otherwise, if the sample po or qo is in the coding block of a coding unit coded with intra 

prediction mode, bS[ xDi ][ yDj ] is set equal to 2.  

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a coding 

block with ciip_flag equal to 1, bS[ xDi ][ yDj ] is set equal to 2.  

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a 

transform block which contains one or more non-zero transform coefficient levels, 

bS[ xDi ][ yDj ] is set equal to 1.  

18019688_1 (GHMatters) P117156.AU



75 

Otherwise, if the block edge is also a transform block edge and the sample po or qo is in a 

coding blocks with pred mode pItjflag equal to1, bS[xDi][yDj ] is set equal to 0.  

Otherwise, if the prediction mode of the coding subblock containing the sample po is different 

from the prediction mode of the coding subblock containing the sample qo, bS[ xDi ][ yDj ] is 

set equal to 1.  

Otherwise, if cdx is equal to 0 and one or more of the following conditions are true, 

bS[ xDi ][ yDj ] is set equal to 1: 

The coding subblock containing the sample po and the coding subblock containing the sample 

qo are both coded in IBC prediction mode, and the absolute difference between the horizontal 

or vertical component of the motion vectors used in the prediction of the two coding subblocks 

is greater than or equal to 4 in units of quarter luma samples.  

For the prediction of the coding subblock containing the sample po different reference pictures 

or a different number of motion vectors are used than for the prediction of the coding subblock 

containing the sample qo.  

NOTE 1 - The determination of whether the reference pictures used for the two coding 

sublocks are the same or different is based only on which pictures are referenced, without regard 

to whether a prediction is formed using an index into reference picture list 0 or an index into 

reference picture list 1, and also without regard to whether the index position within a reference 

picture list is different.  

NOTE 2 - The number of motion vectors that are used for the prediction of a coding subblock 

with top-left sample covering (xSb,ySb), is equal to PredFlagLO[xSb][ySb] + 

PredFlagLl[ xSb ][ ySb ].  

One motion vector is used to predict the coding subblock containing the sample po and one 

motion vector is used to predict the coding subblock containing the sample qo, and the absolute 

difference between the horizontal or vertical component of the motion vectors used is greater 

than or equal to 4 in units of quarter luma samples.  

Two motion vectors and two different reference pictures are used to predict the coding subblock 

containing the sample po, two motion vectors for the same two reference pictures are used to 

predict the coding subblock containing the sample qo and the absolute difference between the 

horizontal or vertical component of the two motion vectors used in the prediction of the two 

coding subblocks for the same reference picture is greater than or equal to 4 in units of quarter 

luma samples.  

18019688_1 (GHMatters) P117156.AU



76 

Two motion vectors for the same reference picture are used to predict the coding subblock 

containing the sample po, two motion vectors for the same reference picture are used to predict 

the coding subblock containing the sample qo and both of the following conditions are true: 

The absolute difference between the horizontal or vertical component of list 0 motion vectors 

used in the prediction of the two coding subblocks is greater than or equal to 4 in quarter luma 

samples, or the absolute difference between the horizontal or vertical component of the list 1 

motion vectors used in the prediction of the two coding subblocks is greater than or equal to 4 

in units of quarter luma samples.  

The absolute difference between the horizontal or vertical component of list 0 motion vector 

used in the prediction of the coding subblock containing the sample po and the list 1 motion 

vector used in the prediction of the coding subblock containing the sample qo is greater than or 

equal to 4 in units of quarter luma samples, or the absolute difference between the horizontal 

or vertical component of the list 1 motion vector used in the prediction of the coding subblock 

containing the sample po and list 0 motion vector used in the prediction of the coding subblock 

containing the sample qo is greater than or equal to 4 in units of quarter luma samples.  

Otherwise, the variable bS[ xDi ][ yDj ] is set equal to 0.  

[00253] 5.13b Embodiment #13b 

[00254] This embodiment describes escape samples coding and reconstruction. The newly 

added texts are bold italicized and the deleted texts are marked by "[[ ]]".  

palette coding(x, yO, cbWidth, cbHeight, startComp, numComps){ Descriptor 

/* Parsing escape values*/ 

if(palette escapeval presentJflag) [ 

for(cIdx = startComp; cIdx < (startComp + numComps); cIdx++) 

for( sPos = 0; sPos < cbWidth* cbHeight; sPos++) { 

xC = TraverseScanOrder[ cbWidth][ cbHeight ][ sPos ][ 0 ] 

yC = TraverseScanOrder[ cbWidth][ cbHeight][ sPos ][ 1 ] 

if( PaletteIndexMap[ cIdx] [ xC][yC] == 

(MaxPaletteIndex - 1)) { 

18019688_1 (GHMatters) P117156.AU



77 

palette_escapeval [[ae(v) 

] u(v) 

PaletteEscapeVaf cdx ] xC][ yC] =palette escapeval 

} 

} 

} 

Decoding process for palette mode 

Inputs to thisprocess are: 

a location (xCb, yCb) specifying the top-left luma sample of the current block relative to the 

top-left luma sample of the currentpicture, 

a variable startComp specifies thefirst colour component in thepalette table, 

a variable cdx specifying the colour component of the current block, 

two variables nCbW and nCbH specifying the width and height of the current block, 

respectively.  

Output of this process is an array recSamples[x] y], with x = 0.. nCbW - 1, y = 0.. nCbH 

- 1 specifying reconstructed sample valuesfor the block 

Depending on the value of cdx, the variables nSubWidth and nSubHeight are derived as 

follows: 

If cldx is equal to 0, nSubWidth is set to 1 and nSubHeight is set to 1.  

Otherwise, nSubWidth is set to SubWidthC and nSubHeight is set to SubHeightC.  

The (nCbWxnCbH) block of the reconstructed sample array recSamples at location 

(xCb,yCb) is represented by recSamples[x][y] with x=0..nCTbW- 1 and 

y = 0..nCbH - 1, and the value of recSamples[ x ][ y ] for each x in the range of 0 to 

nCbW - 1, inclusive, and each y in the range of 0 to nCbH - 1, inclusive, is derived as 

follows: 

The variables xL and yL are derived asfollows: 

xL =palette transposeflag ? x * nSubHeight : x * nSubWidth (8-69) 

yL =palette transpose_flag ? y * nSubWidth : y * nSubHeight (8-70) 

The variable bsEscapeSample is derived asfollows: 

18019688_1 (GHMatters) P117156.AU



78 

If PaletteIndexMap[xCb+xL][ yCb+yL] is equal to MaxPaletteIndex and 

paletteescapevalpresent fagisequalto1,bIsEscapeSample is set equal to 1.  

Otherwise, bIsEscapeSample is set equal to 0.  

If bIsEscapeSample is equal to 0, thefollowing applies: 

recSamples[x ][y ] 

CurrentPaletteEntries[cIdxfPaletteIndexMap[xCb+xL][ yCb+yL]] (8-71) 

Otherwise, if cu-transquant bypass_flag is equal to 1, thefollowing applies: 

recSamples[x][y]=PaletteEscapeVal[cIdx][xCb+xL][yCb+yL] (8-72) 

Otherwise (HsEscapeSample is equal to 1 and cutransquant bypass-flag is equal to 0), the 

following ordered steps apply: 

The derivation process for quantization parameters as specified in clause 8.7.1 is invoked 

with the location (xCb, yCb) specifying the top-left sample of the current block relative to 

the top-left sample of the currentpicture.  

The quantization parameter qP is derived asfollows: 

If cIdx is equal to 0, 

qP =Max( 0, Qp'Y) (8-73) 

Otherwise, if cIdx is equal to 1, 

qP =Max( 0, Qp'Cb) (8-74) 

Otherwise (cIdx is equal to 2), 

qP =Max( 0, Qp'Cr) (8-75) 

The variables bitDepth is derived asfollows: 

bitDepth = (cIdx = = 0) ? BitDepthy : BitDepthc (8-76) 

[[The list levelScale[ ] is specified as levelScale[ k ]= 40, 45, 51, 57, 64, 72 } with k= 0..5.]] 

The following applies: 

[[tmpVal = ( PaletteEscapeVal[ cldx ][ xCb + xL ][ yCb + yL] * 

levelScale[ qP%6 ] ) « ( qP / 6 ) + 32 ) >> 6 (8-77) 

recSamples[ x ][ y ]= Clip3( 0, ( 1 « bitDepth ) - 1, tmpVal ) (8-78)]] 

recSamples[ x ][ y ]= Clip3( 0, ( 1 << bitDepth)- 1, PaletteEscapeVal[ cIdx ][ xCb + 

xL ][ yCb +yL ]) (8-78) 

When one of thefollowing conditions is true: 

cIdx is equal to 0 and num Comps is equal to 1; 

cIdx is equal to 3; 

18019688_1 (GHMatters) P117156.AU



79 

the variable PredictorPaletteSize[startComp] and the array PredictorPaletteEntries are 

derived or modified asfollows: 

for( i = 0; i < CurrentPaletteSize[ startComp ]; i++ ) 

for( ckdx = startComp; ckdx < (startComp + numComps); cIdx++ ) 

newPredictorPaletteEntries[cIdx][i] = CurrentPaletteEntries[cIdx][ i] 

newPredictorPaletteSize = CurrentPaletteSize[ startComp ] 

for(i = 0; i < PredictorPaletteSize && newPredictorPaletteSize < PaletteMaxPredictorSize; 

i++) 

if( !PalettePredictorEntryReuseFlags[i] ) { 

for( cdx = startComp; cdx < (startComp + numComps); cIdx++) (8-79) 

newPredictorPaletteEntries[cIdx ][newPredictorPaletteSize ] 

PredictorPaletteEntries[cIdx][ i] 

newPredictorPaletteSize++ 

} 
for( ckdx = startComp; ckdx < ( startComp + numComps ); cIdx++ ) 

for( i = 0; i < newPredictorPaletteSize; i++ ) 

PredictorPaletteEntries[cIdx][i] = newPredictorPaletteEntries[cIdx][ i] 

PredictorPaletteSize[ startComp ] = newPredictorPaletteSize 

It is a requirement of bitstream conformance that the value of 

PredictorPaletteSize[startComp] shall be in the range of 0 to PaletteMaxPredictorSize, 

inclusive.  

[00255] 5.14 Embodiment #14 

[00256] The newly added texts are bold italicized and the deleted texts are marked by"[[]".  

8.4.5.3 Decoding process for palette mode 

Inputs to this process are: 

- a location ( xCb, yCb ) specifying the top-left luma sample of the current block relative to 

the top-left luma sample of the current picture, 

- a variable startComp specifies the first colour component in the palette table, 

- a variable cldx specifying the colour component of the current block, 

- two variables nCbW and nCbH specifying the width and height of the current block, 

respectively.  

18019688_1 (GHMatters) P117156.AU



80 

Output of this process is an array recSamples[ x ][ y ], with x = 0.. nCbW - 1, y = 0.. nCbH - 1 

specifying reconstructed sample values for the block.  

Depending on the value of cdx, the variables nSubWidth and nSubHeight are derived as 

follows: 

- If cldx is equal to 0, nSubWidth is set to 1 and nSubHeight is set to 1.  

- Otherwise, nSubWidth is set to SubWidthC and nSubHeight is set to SubHeightC.  

The (nCbW x nCbH ) block of the reconstructed sample array recSamples at location 

(xCb,yCb) is represented by recSamples[x][y] with x= 0..nCTbW- 1 and 

y = 0..nCbH - 1, and the value of recSamples[ x ][ y ] for each x in the range of 0 to nCbW - 1, 

inclusive, and each y in the range of 0 to nCbH - 1, inclusive, is derived as follows: 

- The variables xL and yL are derived as follows: 

xL = palettetransposeflag ? x * nSubHeight: x *nSubWidth (8-234) 

yL = palettetransposeflag ? y * nSubWidth: y* nSubHeight (8-235) 

- The variable bIsEscapeSample is derived as follows: 

- If PalettelndexMap[xCb+xL][yCb+yL] is equal to MaxPaletteIndex and 

paletteescape valjpresent flag is equal to 1, bIsEscapeSample is set equal to 1.  

- Otherwise, bIsEscapeSample is set equal to 0.  

- If bIsEscapeSample is equal to 0, the following applies: 

recSamples[ x ][ y ] 

CurrentPaletteEntries[ cdx ][ PalettendexMap[ xCb + xL ][ yCb + yL ]] (8-236) 

- Otherwise, if cutransquant bypassflag is equal to 1, the following applies: 

recSamples[ x ][ y ] = PaletteEscapeVal[ cdx ][ xCb + xL ][ yCb + yL ] (8-237) 

- Otherwise (bIsEscapeSample is equal to 1 and cu-transquant bypassflag is equal to 0), 

the following ordered steps apply: 

1. The derivation process for quantization parameters as specified in clause 8.7.1 is invoked 

with the location ( xCb, yCb ) specifying the top-left sample of the current block relative 

to the top-left sample of the current picture.  

[Ed. (BB): QPs are already derived at the beginning of the intra CU decoding process 

so there is no need to derive them again within this subclause. Althought it is like that 

in HEVC v4 SCC, I think this redundancy can be removed. Please confirm.] 

2. The quantization parameter qP is derived asfollows: 

- If cldx is equal to 0, 

18019688_1 (GHMatters) P117156.AU



81 

qP = Max(QpPrimeTsMin, Qp'Y) (8-238) 

- Otherwise, if cIdx is equal to 1, 

qP = Max(QpPrimeTsMin, Qp'Cb) (8-239) 

- Otherwise (cIdx is equal to 2), 

qP = Max(QpPrimeTsMin, Qp'Cr) (8-240) 

Where min qp_primetsminus4 specifies the minimum allowed quantization parameterfor 

transform skip mode asfollows: 

QpPrimeTsMin = 4 + min qpprime_ts_ minus4 

3. The variables bitDepth is derived as follows: 

bitDepth = ( cldx = = 0 ) ? BitDepthy : BitDepthc (8-241) 

4. The list levelScale[ ] is specified as levelScale[ k]= { 40, 45, 51, 57, 64, 72 } with k= 

0..5.  

[Ed. (BB): For non-palette CUs, levelScale depends on rectNonTsFlag, should that be 

applied here too?] 

5. The following applies: 

tmpVal = (PaletteEscapeVal[cldx][xCb + xL][yCb + yL] * 

levelScale[ qP%6 ] ) « ( qP / 6 ) + 32 ) >> 6 (8-242) 

recSamples[ x ][ y ] = Clip3( 0, ( 1 « bitDepth)- 1, tmpVal) (8-243) 

When one of the following conditions is true: 

- cldx is equal to 0 and numComps is equal to 1; 

- cldx is equal to 3; 

the variable PredictorPaletteSize[startComp] and the array PredictorPaletteEntries are derived 

or modified as follows: 

for( i = 0; i < CurrentPaletteSize[ startComp ]; i++) 

for( cldx = startComp; cldx < (startComp + numComps); cldx++) 

newPredictorPaletteEntries[ cdx ][ i ] = CurrentPaletteEntries[ cldx ][ i ] 

newPredictorPaletteSize = CurrentPaletteSize[ startComp ] 

for( i = 0; i < PredictorPaletteSize && newPredictorPaletteSize < 

PaletteMaxPredictorSize; i++ ) 

if( !PalettePredictorEntryReuseFlags[ i ]){ 

for( cldx = startComp; cldx < (startComp + numComps); cldx++) (8-244) 

newPredictorPaletteEntries[ cldx ][ newPredictorPaletteSize ]= 

18019688_1 (GHMatters) P117156.AU



82 

PredictorPaletteEntries[ cIdx ][ i ] 

newPredictorPaletteSize++ 

} 
for( cIdx = startComp; cIdx < ( startComp + numComps ); cldx++) 

for( i = 0; i < newPredictorPaletteSize; i++ ) 

PredictorPaletteEntries[ cdx ][ i ] = newPredictorPaletteEntries[ cdx ][ i ] 

PredictorPaletteSize[ startComp ] = newPredictorPaletteSize 

It is a requirement of bitstream conformance that the value of 

PredictorPaletteSize[ startComp ] shall be in the range of 0 to PaletteMaxPredictorSize, 

inclusive.  

[00257] 5.15 Embodiment # 15 

[00258] The newly added texts are bold italicized and the deleted texts are marked by"[[]]".  

8.4.2 Derivation process for luma intra prediction mode 

Otherwise (skipintra flag[ xPb ][ yPb ] and DimFlag[ xPb ][ yPb ] are both equal to 0), 

IntraPredModeY[ xPb ][ yPb ] is derived by the following ordered steps: 

1. The neighbouring locations ( xNbA, yNbA ) and ( xNbB, yNbB ) are set equal to 

( xPb - 1, yPb ) and ( xPb, yPb - 1 ), respectively.  

2. For X being replaced by either A or B, the variables candntraPredModeX are 

derived as follows: 

• - The availability derivation process for a block in z-scan order as specified 

in clause 6.4.1 is invoked with the location ( xCurr, yCurr ) set equal to ( xPb, 

yPb ) and the neighbouring location ( xNbY, yNbY ) set equal to ( xNbX, 

yNbX ) as inputs, and the output is assigned to availableX.  

• - The candidate intra prediction mode candlntraPredModeX is derived as 

follows: 

• - If availableX is equal to FALSE, candlntraPredModeX is set equal 

to INTRADC.  

• [[- Otherwise, if CuPredMode[ xNbX ][ yNbX ] is not equal to 

MODEINTRA or pcmflag[ xNbX ][ yNbX ] is equal to 1 or , 

candlntraPredModeX is set equal to INTRADC, ]] 

18019688_1 (GHMatters) P117156.AU



83 

- Otherwise, if CuPredMode[ xNbX ][ yNbX ] is not equal to 

MODEINTRA, pcm_flag[ xNbX ][ yNbX ] is equal to 1 or 

palette modejflag is equal to 1, candIntraPredModeX is set equal 

to INTRA_DC, 

• - Otherwise, if X is equal to B and yPb - 1 is less than ((yPb >> 

CtbLog2SizeY ) « CtbLog2SizeY ), candntraPredModeB is set 

equal to INTRADC.  

• - Otherwise, if IntraPredModeY[ xNbX ][ yNbX ] is greater than 

34, candIntraPredModeX is set equal to INTRADC.  

[00259] 5.16 Embodiment #16 

[00260] The newly added texts are bold italicized and the deleted texts are marked by"[[]]".  

8.4.2 Derivation process for luma intra prediction mode 

Input to this process are: 

- a luma location ( xCb , yCb ) specifying the top-left sample of the current luma coding block 

relative to the top-left luma sample of the current picture, 

- a variable cbWidth specifying the width of the current coding block in luma samples, 

- a variable cbHeight specifying the height of the current coding block in luma samples.  

In this process, the luma intra prediction mode IntraPredModeY[ xCb ][ yCb ] is derived.  

1. For X being replaced by either A or B, the variables candntraPredModeX are derived 

as follows: 

- The availability derivation process for a block as specified in clause 6.4.X[Ed. (BB): 

Neighbouring blocks availability checkingprocess tbd] is invoked with the location 

( xCurr, yCurr) set equal to ( xCb, yCb ) and the neighbouring location 

( xNbY, yNbY )set equal to ( xNbX, yNbX ) as inputs, and the output is assigned to 

availableX.  

- The candidate intra prediction mode candlntraPredModeX is derived as follows: 

- If one or more of the following conditions are true, candntraPredModeX is set 

equal to INTRAPLANAR.  

- The variable availableX is equal to FALSE.  

- CuPredMode[ xNbX ][ yNbX ] is not equal to MODEINTRA.  

- pred mode ptjflag is equal to 1.  

18019688_1 (GHMatters) P117156.AU



84 

- intra mipflag[ xNbX ][ yNbX ] is equal to 1.  

- X is equal to B and yCb - 1 is less than 

((yCb >> CtbLog2SizeY) « CtbLog2SizeY).  

- Otherwise, candlntraPredModeX is set equal to 

IntraPredModeY[ xNbX ][ yNbX ].  

The variable IntraPredModeY[ x ][ y] with x = xCb..xCb + cbWidth - 1 and 

y = yCb..yCb + cbHeight - 1 is set to be equal to IntraPredModeY[ xCb ][ yCb ].  

[00261] 5.17 Embodiment #17 

[00262] The newly added texts are bold italicized and the deleted texts are marked by"[[]]".  

8.4.3 Derivation process for luma intra prediction mode 

Input to this process are: 

- a luma location ( xCb , yCb ) specifying the top-left sample of the current luma coding block 

relative to the top-left luma sample of the current picture, 

- a variable cbWidth specifying the width of the current coding block in luma samples, 

- a variable cbHeight specifying the height of the current coding block in luma samples.  

In this process, the luma intra prediction mode IntraPredModeY[ xCb ][ yCb ] is derived.  

2. For X being replaced by either A or B, the variables candntraPredModeX are derived 

as follows: 

- The availability derivation process for a block as specified in clause 6.4.X [Ed. (BB): 

Neighbouring blocks availability checking process tbd] is invoked with the location 

( xCurr, yCurr) set equal to ( xCb, yCb ) and the neighbouring location 

( xNbY, yNbY )set equal to ( xNbX, yNbX ) as inputs, and the output is assigned to 

availableX.  

- The candidate intra prediction mode candlntraPredModeX is derived as follows: 

- If one or more of the following conditions are true, candntraPredModeX is set 

equal to [[INTRAPLANAR]] INTRADC.  

- The variable availableX is equal to FALSE.  

- CuPredMode[ xNbX ][ yNbX ] is not equal to MODEINTRA.  

- intra mipflag[ xNbX ][ yNbX ] is equal to 1.  

18019688_1 (GHMatters) P117156.AU



85 

- X is equal to B and yCb - 1 is less than 

((yCb >> CtbLog2SizeY) « CtbLog2SizeY).  

- Otherwise, candlntraPredModeX is set equal to 

IntraPredModeY[ xNbX ][yNbX].  

The variable IntraPredModeY[ x][ y] with x = xCb..xCb + cbWidth - 1 and 

y = yCb..yCb + cbHeight - 1 is set to be equal to IntraPredModeY[ xCb ][ yCb ].  

[00263] 5.18 Embodiment #18 

[00264] The newly added texts are bold italicized and the deleted texts are marked by"[[]]".  

8.4.3 Derivation process for luma intra prediction mode 

Input to this process are: 

- a luma location ( xCb , yCb ) specifying the top-left sample of the current luma coding block 

relative to the top-left luma sample of the current picture, 

- a variable cbWidth specifying the width of the current coding block in luma samples, 

- a variable cbHeight specifying the height of the current coding block in luma samples.  

In this process, the luma intra prediction mode IntraPredModeY[ xCb ][ yCb ] is derived.  

3. For X being replaced by either A or B, the variables candntraPredModeX are derived 

as follows: 

- The availability derivation process for a block as specified in clause 6.4.X[Ed. (BB): 

Neighbouring blocks availability checkingprocess tbd] is invoked with the location 

( xCurr, yCurr) set equal to ( xCb, yCb ) and the neighbouring location 

( xNbY, yNbY )set equal to ( xNbX, yNbX ) as inputs, and the output is assigned to 

availableX.  

- The candidate intra prediction mode candlntraPredModeX is derived as follows: 

- If one or more of the following conditions are true, candntraPredModeX is set 

equal to [[INTRAPLANAR]] INTRADC.  

- The variable availableX is equal to FALSE.  

- CuPredMode[ xNbX ][ yNbX ] is not equal to MODEINTRA.  

- intra mipflag[ xNbX ][ yNbX ] is equal to 1.  

- pred mode ptjflag is equal to 1.  

18019688_1 (GHMatters) P117156.AU



86 

- X is equal to B and yCb - 1 is less than 

((yCb >> CtbLog2SizeY) « CtbLog2SizeY).  

- Otherwise, candIntraPredModeX is set equal to 

IntraPredModeY[ xNbX ][yNbX].  

The variable IntraPredModeY[ x][ y] with x = xCb..xCb + cbWidth - 1 and 

y = yCb..yCb + cbHeight - 1 is set to be equal to IntraPredModeY[ xCb ][yCb].  

[00265]5.19 Embodiment #19 

[00266] The newly added texts are bold italicized and the deleted texts are marked by"[[]]".  

Codingunit( x, yO, cbWidth, cbHeight, treeTypeCurr, isInSCIPURegion, Descriptor 

SCIPUConsMode) { 

if( slice type != I ||sps ibcenabled-flag || sps pltenabledflag ) { 

if( treeTypeCurr != DUALTREECHROMA && 

!( ( (cbWidth == 4 && cbHeight == 4) || SCIPUConsMode-= 

MODENONINTER) && !sps ibcenabled flag)) 

cuskipflag[ x ][ yO ] ae(v) 

if( cu skipflag[ x ][y0] == 0 && slicetype != I 

&& !( cbWidth ==4 && cbHeight ==4 ) && SCIPUConsMode-= 

MODEALL) 

pred mode flag ae(v) 

if( ( ( slicetype== I && cu skipflag[ x ][ yO] ==0 ) | 

( slicetype !=I && ( CuPredMode[ x ][ yO ] != MODEINTRA || 

( cbWidth ==4 && cbHeight ==4 && cu skipflag[ x ][ yO ] 

0 ) ) ) ) && 

sps ibc_enabled flag && (cbWidth!= 128 || cbHeight!= 128) && 

SCIPUConsMode != MODEINTER) 

pred modeibc_flag ae(v) 

if( CuPredMode[xO[y0 ]== MODEINTRA || (slice type ! I 

&& !(cbWidth = = 4 

18019688_1 (GHMatter) P117156.AU



87 

&& cbHeight == 4 ) && !spsibcenabledjflag && 

CuPredMode[x0]fy0]!= 

MODEINTRA )) && cbWidth <= 64 && cbHeight <= 64 && 

sps_pltenabled flag 

&& cu-skip_flag[x0fy0 == 0 && SCIPUConsMode!= 

MODEINTER) 

pred mode pt flag ae(v) 

} 
if(isInSCIPURegion && SCIPUConsMode == MODEALL && 

CuPredMode[ xO ][ yO ] = MODEINTER){ 

treeType= DUALTREELUMA 

}else { 

treeType= treeTypeCurr 

} 

} 

[00267] 5.20 Embodiment #20 

[00268] The newly added texts are bold italicized and the deleted texts are marked by"[[]]" 

Codingunit( xO, yO, cbWidth, cbHeight, treeTypeCurr, isInSCIPURegion, Descriptor 

SCIPUConsMode ) { 

if( slice type != I spsibcenabled-flag || spspltenabled flag ) { 

if( treeTypeCurr DUALTREECHROMA && 

!( ( (cbWidth == 4 && cbHeight == 4) || SCIPUConsMode-= 

MODENONINTER) && !spsibcenabledflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[xO][yO] = = 0 && slicetype I 

&& !( cbWidth = 4 && cbHeight = 4 ) && SCIPUConsMode-= 

MODEALL) 

predmodeflag ae(v) 

18019688_1 (GHMatters) P117156.AU



88 

if( ((slicetype == I && cu-skipflag[ xO ][ yO ]= =0) 

( slicetype I && ( CuPredMode[ xO ][ yO ] != MODEINTRA 

( cbWidth = 4 && cbHeight = 4 && cu_skipflag[ xO ][ yO ] 

0 ) ) ) ) && 

spsibc_enabledflag && (cbWidth!= 128 || cbHeight != 128 ) && 

SCIPUConsMode != MODEINTER) 

predmode_ibc_flag ae(v) 

if(CuPredMode[x0][y0] == MODEINTRA && cbWidth <= 64 && 

cbHeight <= 64 

&& sps_pltenabled flag && cu-skip_flag[x0][y0] == 0 && 

SCIPUConsMode!= 

MODEINTER) 

pred mode pt flag ae(v) 

} 
if(isInSCIPURegion && SCIPUConsMode == MODEALL && 

CuPredMode[ xO ][ yO] != MODEINTER){ 

treeType= DUALTREELUMA 

}else { 

treeType= treeTypeCurr 

} 

} 

[00269] 5.21 Embodiment #21 

[00270] The newly added texts are bold italicized and the deleted texts are marked by"[[]]" 

Codingunit( xO, yO, cbWidth, cbHeight, treeTypeCurr, isInSCIPURegion, Descriptor 

SCIPUConsMode ) { 

if( slice type != I spsibcenabled-flag || spspltenabled flag ) { 

18019688_1 (GHMatters) P117156.AU



89 

if( treeTypeCurr DUALTREECHROMA && 

!( ( (cbWidth == 4 && cbHeight == 4) || SCIPUConsMode-= 

MODENONINTER) && !spsibcenabledflag)) 

cu skipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[xO][yO] == 0 && slice type I 

&& !( cbWidth = 4 && cbHeight = 4 ) && SCIPUConsMode-= 

MODEALL) 

predmodeflag ae(v) 

if( ( ( slicetype == I && cu-skipflag[ xO ][ yO ] = =0) 

( slicetype I && ( CuPredMode[ xO ][ yO ] != MODEINTRA || 

( cbWidth = 4 && cbHeight = 4 && cu_skipflag[ xO ][ yO] == 

0 ) ) ) ) && 

spsibc_enabledflag && (cbWidth!= 128 || cbHeight != 128 ) && 

SCIPUConsMode != MODEINTER) 

predmodeibc_flag ae(v) 

if((((slice type == I (cbWidth ==4 && cbHeight= =4)| 

spsibcenabledflag) && CuPredMode[x0f[y0] ==MODEINTRA) || 

(slice type != I && !(cbWidth== 4 

&& cbHeight == 4 ) && !sps ibcenabledjfag && 

CuPredMode[x0]f[y0!= 

MODEINTRA )) && cbWidth <= 64 && cbHeight <= 64 && 

sps-plt 

_enabledjflag && cu-skip_flag[ xO ][y] = = 0 && 

SCIPUConsMode!= MODEINTER) 

pred mode ptjflag ae(v) 

} 
if(isInSCIPURegion && SCIPUConsMode == MODEALL && 

CuPredMode[ xO ][ yO] != MODEINTER){ 

treeType= DUALTREELUMA 

}else { 

treeType= treeTypeCurr 

} 

18019688_1(GHMaters) P117156.AU



90 

[00271] 5.22 Embodiment #22 

[00272] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_modeplt flag is signaled after the predmodeibc-flag. The newly added texts are bold 

italicized and the deleted texts are marked by"[[]]".  

7.3.7.5 Coding unit syntax 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !sps_ibcenabled-flag) ]] 

( cbWidth == 4 && cbHeight == 4) modeType-= 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y] = = 0 && slicetype I 

&& !( cbWidth== 4 && cbHeight== 4 )&& modeType-= 

MODETYPEALL) 

predmodeflag ae(v) 

[[ if( ( ( slicetype == I && cu-skipflag[ xO ][ yO ] = =0) 

( slicetype I && ( CuPredMode[ xO ][ yO ] != MODEINTRA || 

( cbWidth = 4 && cbHeight = 4 && cuskipflag[ xO ][ yO] == 

0 ) ) ) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight != 128 ))]] 

if( ( ( slice-type == I && cuskip_flag[xO][y0] ==O ) || 

( slice type != I && ( CuPredMode[xO ][yO ] != MODEINTRA I I 

(cbWidth==4 && cbHeight==4 &&c skip_flag[xO]yO] == 

0 ) ) ) ) && 

cbWidth<=64 && cbHeight<=64) && modeType 

MODETYPEINTER){ 

18019688_1 (GHMatters) P117156.AU



91 

if(sps_ibcenabledLag &&treeType! DUAL_TREECHROMA) 

pred modeibcflag ae(v) 

I 
if((((slice type == I (cbWidth = =4 && cbHeight==4)|| 

spsibcenabled_flag) && CuPredMode[ x [ y == MODE_INTRA) 

(slicetype!= I &&.(cbWidth == 

&& cbHeight == 4 ) && !spsibcenabledjflag && 

CuPredMode[ x [ yO I!= 

MODE_INTRA ) )&& cbWidth <= 64 && cbHeight<= 64 && 

spsit 

_enabledflag && cu_skip_flag[x0[y0J== 0 && modeType! 

MODE_INTE R) 

pred mode pltjflag ae(v) 

} 

} 

[00273]5.23 Embodiment #23 

[00274] The newly added texts are bold italicized and the deleted texts are marked by"[[]]".  

Codingunit( x, yO, cbWidth, cbHeight, treeTypeCurr, isInSCIPURegion, Descriptor 

SCIPUConsMode) { 

if( slice type != I ||sps ibcenabled-flag || sps pltenabledflag ) { 

if( treeTypeCurr != DUALTREECHROMA && 

!( ( (cbWidth = = 4 && cbHeight = = 4) || SCIPUConsMode== 

MODENONINTER) && !sps ibcenabled flag)) 

cuskipflag[ x ][ yO ] ae(v) 

if( cu skipflag[ x][y ] = = 0 && slicetype != I 

&& !( cbWidth = 4 && cbHeight = 4 ) && SCIPUConsMode== 

MODEALL) 

pred mode flag ae(v) 

18019688_1 (GHMatter) P117156.AU



92 

if( ((slicetype == I && cu-skipflag[ xO ][ yO ] ==0 ) 

( slicetype != I && ( CuPredMode[ xO ][ yO ] != MODEINTRA 

( cbWidth ==4 && cbHeight ==4 && cu_skipflag[ xO ][ yO]== 0 )) 

) ) && 

spsibc_enabledflag && (cbWidth!= 128 || cbHeight != 128 ) && 

SCIPUConsMode != MODEINTER) 

predmode_ibc_flag ae(v) 

if((((slice type = = I || (cbWidth == 4 && cbHeight= = 4)|| 

pred mode ibc_flag) && CuPredMode[x0f[y0 ==MODEINTRA) | 

(slice type != I && !(cbWidth== 4 

&& cbHeight == 4 ) && !predmodeibc_flag && 

CuPredMode[x0]f[y0!= 

MODEINTRA)) && cbWidth <= 64 && cbHeight<= 64&& 

sps_pltenabled flag && cu-skip_flag[ xf0 ]y == 0 && 

SCIPUConsMode!= MODEINTER) 

pred mode pt flag ae(v) 

} 
if(isInSCIPURegion && SCIPUConsMode == MODEALL && 

CuPredMode[ xO ][ yO ] != MODEINTER){ 

treeType =DUALTREELUMA 

}else { 

treeType =treeTypeCurr 

} 

} 

[00275] 5.24 Embodiment #24 

[00276] This embodiment decribes the coding unit syntax. In this embodiment, the 

pred_modeplt flag is signaled after the predmodeibc-flag. The newly added texts are bold 

italicized and the deleted texts are marked by"[[]]".  

7.3.7.5 Coding unit syntax 

18019688_1 (GHMatters) P117156.AU



93 

codingunit( xO, yO, cbWidth, cbHeight, treeType, modeType){ Descriptor 

if( slice type != I spsibcenabled-flag I Isps_pltenabled flag ) { 

if( treeType DUALTREECHROMA && 

!([[cbWidth = = 4 && cbHeight = = 4 && !sps_ibcenabled-flag) ]] 

( cbWidth == 4 && cbHeight == 4) || modeType-= 

MODETYPEINTRA ) 

&& !spsibc enabledjflag)) 

cuskipflag[ xO ][ yO ] ae(v) 

if( cu skipflag[ xO ][y ] = = 0 && slice type I 

&& !( cbWidth== 4 && cbHeight == 4 )&& modeType-= 

MODETYPEALL) 

predmodeflag ae(v) 

[[ if( ( ( slicetype == I && cu-skipflag[ xO ][ yO ] = =0) 

( slicetype I && ( CuPredMode[ xO ][ yO ] != MODEINTRA 

( cbWidth = 4 && cbHeight = 4 && cu_skipflag[ xO ][ yO ] 

0 ) ) ) ) && 

spsibcenabledflag && (cbWidth!= 128 || cbHeight 128 ))]] 

if( ( ( slice type == I && cu-skip_flag[xO][yO] ==0 ) I 

(slice type!= I && (CuPredMode[xO ][yO]!= MODEINTRA I I 

(cbWidth== 4 && cbHeight 4 && cuskip_flag[xO]{yO] = = 

0 ) ) ) ) && 

cbWidth <= 64 && cbHeight <= 64) && modeType 

MODETYPEINTER ){ 

if(sps_ibcenabdflag&& treeType! DUALTREECHROMA 

) 
pred mode_ibcflag ae(v) 

} 

18019688_1(GHMaters) P117156.AU



94 

if((((slice type == I (cbWidth ==4 && cbHeight= =4)| 

pred mode ibc_flag) && CuPredMode[ xA ][ y0 ] == MODEINTRA ) II 

(slice type != I && !(cbWidth== 4 

&& cbHeight == 4 ) && ! predmodeibc_flag && 

CuPredMode[xOfy0]!= 

MODEINTRA)) && cbWidth <= 64 && cbHeight <= 64 && 

sps-pIt 

_enabledflag && cuskip_flag[xO ][y ] == 0 && modeType! 

MODEINTER) 

pred mode pt flag ae(v) 

} 

} 

[00277] 5.25 Embodiment #25 

[00278] This embodiment decribes the coding unit syntax. In this embodiment, the palette 

syntax is signaled if the current prediction mode is MODEPLT. The newly added texts are 

bold italicized and the deleted texts are marked by"[[]]".  

7.3.7.5 Coding unit syntax 

codingunit( x, yO, cbWidth, cbHeight, cqtDepth, treeType, modeType){ Descriptor 

chType = treeType = DUALTREECHROMA? 1 : 0 

if( slicetype != I spsibcenabled_flag | spspaletteenabled-flag){ 

if( treeType DUALTREECHROMA && 

!( ( ( cbWidth == 4 && cbHeight == 4 ) modeType == 

MODETYPEINTRA ) 

&& !spsibcenabled_flag)) 

cu skipflag[ x ][ yO ] ae(v) 

if( cu skipflag[ x ][y ] = = 0 && slicetype I 

&& !( cbWidth == 4 && cbHeight == 4 ) && modeType == 

MODETYPEALL) 

predmodeflag ae(v) 

18019688_1 (GHMatters) P117156.AU



95 

if( ((slicetype == I && cu-skipflag[ x0 ][ yO ] ==0) 

(slicetype!= && (CuPredMode[chType][xO][yO]!=MODEINTRA 

(cbWidth ==4 && cbHeight ==4 && cu-skipflag[ x ][ yO] == 

0)))) && 

cbWidth <= 64 && cbHeight <= 64 && modeType != 

MODETYPEINTER && 

sps-ibc-enabledflag && treeType != DUALTREECHROMA) 

pred-modeibcflag ae(v) 

if( ((( slicetype == I (cbWidth== 4 && cbHeight== 4 ) 

sps_ibc_enabledflag ) && 

CuPredMode[ x0 ][ yO] MODEINTRA) || 

(slicetype != I && !(cbWidth== 4 && cbHeight == 4) && 

!sps_ibc_enabledflag 

&& CuPredMode[ x ][ yO] != MODEINTRA)) && 

spspalette-enabledflag && 

cbWidth<=64 && cbHeight<=64 && && cu_skipflag[xO[yO]==0 

&& 

modeType!= MODEINTER) 

predmodeplt flag ae(v) 

} 
} 
if([[CuPredMode[ chType ][ x ][y] == MODEINTRA |] 

CuPredMode[ chType ][ x ][ yO ] == MODEPLT ) { 

if( treeType == SINGLETREE | treeType ==DUALTREELUMA ){ 

if( pred_modeplt flag ) { 

if( treeType == DUALTREELUMA) 

palettecoding( x, yO, cbWidth, cbHeight, 0, 1 ) 

else /* SINGLETREE */ 

palettecoding( x, yO, cbWidth, cbHeight, 0, 3 ) 

}else{ 

18019688_1 (GHMatters) P117156.AU



96 

} 

} 

[00279] 5.26 Embodiment #26 

[00280] This embodiment decribes the derivation process of chroma intra prediction mode.  

The newly added texts are bold italicized.  

Derivation process for chroma intra prediction mode 

Input to this process are: 

- a luma location ( xCb, yCb ) specifying the top-left sample of the current chroma coding 

block relative to the top-left luma sample of the current picture, 

- a variable cbWidth specifying the width of the current coding block in luma samples, 

- a variable cbHeight specifying the height of the current coding block in luma samples.  

In this process, the chroma intra prediction mode IntraPredModeC[ xCb ][ yCb ] is derived.  

The corresponding luma intra prediction mode lumaIntraPredMode is derived as follows: 

- If intra mipflag[ xCb ][ yCb ] is equal to 1, lumaIntraPredMode is set equal to 

INTRAPLANAR.  

- Otherwise, if CuPredMode[ 0 ][ xCb ][ yCb ] is equal to MODEIBC or MODEPLT, 

lumaIntraPredMode is set equal to INTRADC.  

- Otherwise, lumaIntraPredMode is set equal to 

IntraPredModeY[ xCb + cbWidth / 2 ][ yCb + cbHeight / 2].  

[00281] 5.27 Embodiment #27 

[00282] This embodiment decribes the picture reconstruction process with mapping process 

for luma samples. The newly added texts are bold italicized.  

[00283] Picture reconstruction with mapping process for luma samples. Inputs to this process 

are: 

- a location ( xCurr, yCurr ) of the top-left sample of the current block relative to the top-left 

sample of the current picture, 

- a variable nCurrSw specifying the block width, 

- a variable nCurrSh specifying the block height, 

18019688_1 (GHMatters) P117156.AU



97 

- an (nCurrSw)x(nCurrSh) array predSamples specifying the luma predicted samples of the 

current block, 

- an (nCurrSw)x(nCurrSh) array resSamples specifying the luma residual samples of the 

current block.  

Outputs of this process is a reconstructed luma picture sample array recSamples.  

The (nCurrSw)x(nCurrSh) array of mapped predicted luma samples predMapSamples is 

derived as follows: 

- If one of the following conditions is true, predMapSamples[ i][j] is set equal to 

predSamples[ i ][ j ] for i = O..nCurrSw - 1, j = O..nCurrSh - 1: 

- CuPredMode[ 0 ][ xCurr ][ yCurr ] is equal to MODEINTRA.  

- CuPredMode[ 0 ][ xCurr ][ yCurr ] is equal to MODEIBC.  

- CuPredMode[ 0 ][ xCurr ][ yCurr ] is equal to MODEPL T.  

- CuPredMode[ 0 ][ xCurr ][ yCurr ] is equal to MODEINTER and 

ciipflag[ xCurr ][ yCurr ] is equal to 1.  

- Otherwise (CuPredMode[0][xCurr][yCurr] is equal to MODEINTER and 

ciipflag[ xCurr ][ yCurr ] is equal to 0), the following applies: 

[00284] 5.28 Embodiment #28 

[00285] This embodiment decribes example scanning orders correponding to the Example 24 

in Section 4.  

Input to this process is a block width blkWidth and a block height blkHeight.  

Output of this process are the arrays hReverScan[ sPos ][ sComp ] and 

vReverScan[ sPos ][ sComp ]. The array hReverScan represents the horizontal reverse scan 

order and the array vReverScan represents the vertical traverse scan order. The array index sPos 

specifies the scan position ranging from 0 to ( blkWidth * blkHeight ) - 1, inclusive. The array 

index sComp equal to 0 specifies the horizontal component and the array index sComp equal 

to 1 specifies the vertical component. Depending on the value of blkWidth and blkHeight, the 

array hTravScan anfd vTravScan are derived as follows: 

i = 0 

for(y = 0; y < blkHeight; y++) 

18019688_1 (GHMatters) P117156.AU



98 

{ 
if(y % 2 != 0) 

for( x = 0; x < blkWidth; x++){ 

hReverScan[ i ][0]= x 

hReverScan [ i ][1]= y 

i++ 

} 
} 
else 

{ 
for( x = blkWidth - 1; x >= 0; x- 

hReverScan i ]0]= x 

hReverScan i ]1]= y 

i++ 

} 
} 

} 
i = 0 

for( x= 0; x < blkWidth; x++) 

{ 
if(x0%2 != 0) 

{ 
for( y = 0; y < blkHeight; y++){ 

vReverScan[ i][ 0] x 

vReverScan [ i ][1]= y 

i++ 

} 
} 
else 

{ 

18019688_1 (GHMatters) P117156.AU



99 

for( y = blkHeight - 1; y >= 0; y- 

vReverScan[ i ][0] x 

vReverScan [i ][1]= y 

i++ 

} 
} 

} 

[00286] FIG. 6 is a block diagram of a video processing apparatus 600. The apparatus 600 

may be used to implement one or more of the methods described herein. The apparatus 600 

may be embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so 

on. The apparatus 600 may include one or more processors 602, one or more memories 604 

and video processing hardware 606. The processor(s) 602 may be configured to implement 

one or more methods described in the present document. The memory (memories) 604 may 

be used for storing data and code used for implementing the methods and techniques 

described herein. The video processing hardware 606 may be used to implement, in hardware 

circuitry, some techniques described in the present document.  

[00287] FIG. 8 is a flowchart for a method 800 of processing a video. The method 800 includes 

determining (805) that palette mode is to be used for processing a transform unit, a coding block, 

or a region, usage of palette mode being coded separately from a prediction mode, and 

performing (810) further processing of the transform unit, the coding block, or the region using 

the palette mode.  

[00288] With reference to method 800, some examples of palette mode coding and its use are 

described in Section 4 of the present document.  

[00289] With reference to method 800, a video block may be encoded in the video bitstream 

in which bit efficiency may be achieved by using a bitstream generation rule related to palette 

mode coding.  

[00290] The methods can include wherein the prediction mode is coded before indication of 

the usage of the palette mode.  

[00291] The methods can include wherein the usage of palette mode is conditionally signaled 

based on the prediction mode.  

[00292] The methods can include wherein the prediction mode is intra block copy mode, and 

18019688_1 (GHMatters) P117156.AU



100 

signaling of the indication of the usage of palette mode is skipped.  

[00293] The methods can include wherein the indication of the usage of palette mode is 

determined to be false based on a current prediction mode being intra block copy mode.  

[00294] The methods can include wherein the prediction mode is inter mode, and signaling of 

the indication of the usage of palette mode is skipped.  

[00295] The methods can include wherein the indication of the usage of palette mode is 

determined to be false based on a current prediction mode being inter mode.  

[00296] The methods can include wherein the prediction mode is intra mode, and signaling of 

the indication of the usage of palette mode is skipped.  

[00297] The methods can include wherein the indication of the usage of palette mode is 

determined to be false based on a current prediction mode being intra mode.  

[00298] The methods can include wherein the prediction mode is intra mode, and signaling of 

the indication of the usage of palette mode is skipped.  

[00299] The methods can include wherein the prediction mode is intra block copy mode, and 

signaling of the indication of the usage of palette mode is performed.  

[00300] The methods can include wherein the indication of the usage of palette mode is 

signaled based on a picture, a slice, or a tile group type.  

[00301] The methods can include wherein the palette mode is added as a candidate for the 

prediction mode.  

[00302] The methods can include wherein the prediction mode includes one or more of: intra 

mode, intra block copy mode, or palette modes for intra slices, inter slices, I pictures, P pictures, 

B pictures, or intra tile groups.  

[00303] The methods can include wherein the prediction mode includes two or more of: intra 

mode, inter mode, intra block copy mode, or palette mode.  

[00304] The methods can include wherein the usage of palette mode is indicated via signaling 

or derived based on a condition.  

[00305] The methods can include wherein the condition includes one or more of: a block 

dimension of a current block, a prediction mode of the current block, a quantization parameter 

(QP) of the current block, a palette flag of neighboring blocks, an intra block copy flag of 

neighboring blocks, an indication of a color format, a separate or a dual coding tree structure, 

or a slice type or a group type or a picture type.  

[00306] The methods can include wherein the usage of palette mode is signaled or derived 

18019688_1 (GHMatters) P117156.AU



101 

based on a slice level flag, a tile group level flag, or a picture level flag.  

[00307] The methods can include wherein indication of usage of intra block copy mode is 

signaled or derived based on a slice level flag, a tile group level flag, or a picture level flag.  

[00308] With reference to items 6 to 9 disclosed in the previous section, some embodiments 

may preferably use the following solutions.  

[00309] One solution may include a method of video processing, comprising performing a 

conversion between a current video block of a picture of a video and a bitstream representation 

of the video in which information about whether or not an intra block copy mode is used in the 

conversion is signaled in the bitstream representation or derived based on a coding condition of 

the current video block; wherein the intra block copy mode comprises coding the current video 

block from another video block in the picture. The following features may be implemented in 

various embodiments 

[00310] - wherein the coding condition includes block dimensions of the current video block.  

[00311]- wherein the coding condition includes a prediction mode of the current video block 

or a quantization parameter used in the conversion for the current video block.  

[00312] With reference to items 13-15 disclosed in the previous section, some embodiments 

may preferably implement the following solutions.  

[00313] A solution may include a method for determining whether or not a deblocking filter is 

to be applied during a conversion of a current video block of a picture of video, wherein the 

current video block is coded using a palette mode coding in which the current video block is 

represented using representative sample values that are fewer than total pixels of the current 

video block; and performing the conversion such that the deblocking filter is applied in case the 

determining is that the deblocking filter is to be applied.  

[00314] Another solution may include a method of video processing, comprising determining 

a quantization or an inverse quantization process for use during a conversion between a current 

video block of a picture of a video and a bitstream representation of the video, wherein the 

current video block is coded using a palette mode coding in which the current video block is 

represented using representative sample values that are fewer than total pixels of the current 

video block; and performing the conversion based on the determining the quantization or the 

inverse quantization process. Additional features may include: 

18019688_1 (GHMatters) P117156.AU



102 

[00315] - wherein the quantization or the inverse quantization process determined for the 

current video block is different from another quantization or another inverse quantization 

process applied to another video block that is coded differently from the palette coding mode.  

[00316] - wherein the conversion includes encoding the current video block into the bitstream 

representation.  

[00317] - wherein the conversion includes decoding the bitstream representation to generate 

the current video block of the video.  

[00318] - wherein the determining uses a decision process that is identical to another decision 

process used for conversion of another video block that is intra coded.  

[00319] It will be appreciated that the disclosed techniques may be embodied in video 

encoders or decoders to improve compression efficiency using enhanced coding tree structures.  

[00320] With reference to items 16 to 21 in the previous section, some solutions may be as 

follows: 

[00321] A method of video processing, comprising: determining, for a conversion between a 

current video block of a video comprising multiple video blocks and a bitstream representation 

of the video, that the current video block is a palette-coded block; based on the determining, 

performing a list construction process of most probable mode by considering the current video 

block to be an intra coded block, and performing the conversion based on a result of the list 

construction process; wherein the palette-coded block is coded or decoded using a palette or 

representation sample values.  

[00322] The above method, wherein the list construction process treats a neighboring palette

coded block as an intra block with a default mode.  

[00323] A method of video processing, comprising: determining, for a conversion between a 

current video block of a video comprising multiple video blocks and a bitstream representation 

of the video, that the current video block is a palette-coded block; based on the determining, 

performing a list construction process of most probable mode by considering the current video 

block to be a non-intra coded block, and performing the conversion based on a result of the list 

construction process; wherein the palette-coded block is coded or decoded using a palette or 

representation sample values.  

[00324] The above method, wherein the list construction process treats a neighboring palette

coded block as an inter-coded block when fetching an intra mode of the neighboring palette 

coded block.  

18019688_1 (GHMatters) P117156.AU



103 

[00325] A method of video processing, comprising: determining, for a conversion between a 

current video block of a video comprising multiple video blocks and a bitstream representation 

of the video, that the current video block is a palette-coded block; based on the determining, 

performing a list construction process by considering the current video block to be an 

unavailable block, and performing the conversion based on a result of the list construction 

process; wherein the palette-coded block is coded or decoded using a palette or representation 

sample values.  

[00326] The above method, wherein the list construction process is for a history based motion 

vector prediction.  

[00327] The above method, wherein the list construction process is for a MERGE or an 

advanced motion vector prediction mode.  

[00328] The above methods, wherein the determining further includes determining based on 

content of the video.  

[00329] The above methods, wherein the determining corresponds to a filed in the bitstream 

representation.  

[00330] A method of video processing, comprising: determining, during a conversion between 

a current video block and a bitstream representation of the current video block, that the current 

video block is a palette coded block, determining, based on the current video block being the 

palette coded block, a range of context coded bins used for the conversion; and performing the 

conversion based on the range of context coded bins.  

[00331] The above method, wherein bins of the current video block that fall outside the range 

are coded using bypass coding technique or decoded using a bypass decoding technique during 

the conversion.  

[00332] The above methods, wherein the conversion comprises encoding the video into the 

bitstream representation.  

[00333] The above methods, wherein the conversion comprises decoding the bitstream 

representation to generate the video.  

[00334] FIG. 24 is a block diagram showing an example video processing system 2400 in 

which various techniques disclosed herein may be implemented. Various implementations 

may include some or all of the components of the system 2400. The system 2400 may include 

input 2402 for receiving video content. The video content may be received in a raw or 

uncompressed format, e.g., 8 or 10 bit multi-component pixel values, or may be in a 

18019688_1 (GHMatters) P117156.AU



104 

compressed or encoded format. The input 1902 may represent a network interface, a 

peripheral bus interface, or a storage interface. Examples of network interface include wired 

interfaces such as Ethernet, passive optical network (PON), etc. and wireless interfaces such 

as Wi-Fi or cellular interfaces.  

[00335] The system 2400 may include a coding component 2404 that may implement the 

various coding or encoding methods described in the present document. The coding 

component 2404 may reduce the average bitrate of video from the input 2402 to the output of 

the coding component 2404 to produce a coded representation of the video. The coding 

techniques are therefore sometimes called video compression or video transcoding 

techniques. The output of the coding component 2404 may be either stored, or transmitted via 

a communication connected, as represented by the component 2406. The stored or 

communicated bitstream (or coded) representation of the video received at the input 2402 

may be used by the component 2408 for generating pixel values or displayable video that is 

sent to a display interface 2410. The process of generating user-viewable video from the 

bitstream representation is sometimes called video decompression. Furthermore, while certain 

video processing operations are referred to as "coding" operations or tools, it will be 

appreciated that the coding tools or operations are used at an encoder and corresponding 

decoding tools or operations that reverse the results of the coding will be performed by a 

decoder.  

[00336] Examples of a peripheral bus interface or a display interface may include universal 

serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on.  

Examples of storage interfaces include SATA (serial advanced technology attachment), PCI, 

IDE interface, and the like. The techniques described in the present document may be 

embodied in various electronic devices such as mobile phones, laptops, smartphones or other 

devices that are capable of performing digital data processing and/or video display.  

[00337] FIG. 25 is a flowchart representation of a method 2500 for video processing in 

accordance with the present technology. The method 2500 includes, at operation 2510, 

performing a conversion between a block of a video region of a video and a bitstream 

representation of the video. The bitstream representation is processed according to a first format 

rule that specifies whether a first indication of usage of a palette mode is signaled for the block 

and a second format rule that specifies a position of the first indication relative to a second 

indication of usage of a prediction mode for the block.  

18019688_1 (GHMatters) P117156.AU



105 

[00338] In some embodiments, the video region comprises a transform unit, a coding unit, a 

prediction unit, or a region of the video. In some embodiments, the second indication of usage 

of the prediction mode is positioned prior to the first indication of usage of the palette mode in 

the bitstream representation.  

[00339] In some embodiments, the first indication of usage of the palette mode is conditionally 

included in the bitstream representation based on the second indication of usage of the 

prediction mode. In some embodiments, the first indication of usage of the palette mode is 

skipped in the bitstream representation in case the second indication of usage of the prediction 

mode indicates an intra block copy (IBC) prediction mode. In some embodiments, the first 

indication of usage of the palette mode is skipped in the bitstream representation in case the 

second indication of usage of the prediction mode indicates an inter prediction mode. In some 

embodiments, the first indication of usage of the palette mode is skipped in the bitstream 

representation in case the second indication of usage of prediction mode indicates an intra 

prediction mode. In some embodiments, the first indication of usage of the palette mode is 

skipped in the bitstream representation in case the second indication of usage of prediction 

mode indicates a skip mode. In some embodiments, skipping the first indication of usage of the 

palette mode in the bitstream representation indicates that the palette mode is not used.  

[00340] In some embodiments, the first indication of usage of the palette mode is coded in the 

bitstream in case the second indication of usage of prediction mode indicates an IBC prediction 

mode. In some embodiments, the first indication of usage of the palette mode is coded in the 

bitstream in case the second indication of usage of prediction mode indicates an intra prediction 

mode. In some embodiments, the prediction mode is not a Pulse-Code Modulation (PCM) mode.  

In some embodiments, the first indication of usage of the palette mode is coded prior to an 

indication of usage of a PCM mode in the bitstream representation. In some embodiments, an 

indication of usage of a PCM mode is skipped in the bitstream representation. In some 

embodiments, an indication of the IBC mode is coded in the bitstream representation. In some 

embodiments, in case an intra prediction mode is used, a flag in the bitstream representations 

indicates whether the palette mode or the IBC mode is signaled in the bitstream representation.  

In some embodiments, the flag is skipped based on a condition of the block, the condition 

comprising a dimension of the block, whether the IBC mode is enabled for a region associated 

with the block, or whether the palette mode is enabled for the region associated with the block.  

18019688_1 (GHMatters) P117156.AU



106 

[00341] In some embodiments, the first indication of usage of the palette mode is coded in the 

bitstream in case the second indication of usage of prediction mode indicates an inter prediction 

mode. In some embodiments, the first indication of usage of the palette mode is coded after at 

least one of: an indication of a skip mode, the prediction mode, or an indication of usage of a 

PCM mode. In some embodiments, the first indication of usage of the palette mode is coded 

after an indication of a skip mode or the prediction mode and is coded before an indication of 

usage of a PCM mode.  

[00342] In some embodiments, the first indication of usage of the palette mode is positioned 

prior to the second indication of usage of the prediction mode in the bitstream representation.  

In some embodiments, the first indication of usage of the palette mode is positioned after the 

second indication of usage of the prediction mode, the second indication of usage of the 

prediction mode indicating an intra or an inter prediction mode in the bitstream representation.  

In some embodiments, the first indication of usage of the palette mode is signaled based on a 

picture, a slice, or a tile group type. In some embodiments, the first indication of usage of the 

palette mode comprises a first flag indicating that the palette mode is enabled for the block. In 

some embodiments, the first indication of usage of the palette mode is conditionally included 

in the bitstream representation based on a first flag indicating that the palette mode is enabled 

in a sequence level, a picture level, a tile group level, or a tile level. In some embodiments, 

another flag indicating a PCM mode of the block is included in the bitstream representation in 

case the palette mode is disabled for the block. In some embodiments, the first flag is context 

coded based on information of one or more neighboring blocks of the current block. In some 

embodiments, the first flag is coded without context information from one or more neighboring 

blocks of the current block.  

[00343] In some embodiments, the second indication of usage of a prediction mode comprises 

a second flag indicating the prediction mode. In some embodiments, in case the second flag in 

the bitstream representation indicates that the prediction mode is an inter mode, the bitstream 

representation further comprising a third flag indicating whether an intra block copy mode is 

enabled. In some embodiments, in case the second flag in the bitstream representation indicates 

that the prediction mode is an intra mode, the bitstream representation further comprising a 

third flag indicating whether an intra block copy mode is enabled. In some embodiments, the 

third flag is conditionally included in the bitstream representation based on a dimension of the 

block.  

18019688_1 (GHMatters) P117156.AU



107 

[00344] In some embodiments, the block is a coding unit, and the second flag in the bitstream 

representation indicates that the prediction mode is an intra mode. In some embodiments, the 

first flag is conditionally included in the bitstream representation based on a dimension of the 

block.  

[00345] FIG. 26 is a flowchart representation of a method 2600 for video processing in 

accordance with the present technology. The method 2600 includes, at operation 2610, 

determining, for a conversion between a block of a video region in a video and a bitstream 

representation of the video, a prediction mode based on one or more allowed prediction modes 

that include at least a palette mode of the block. An indication of usage of the palette mode is 

determined according to the prediction mode. The method 2600 includes, at operation 2620, 

performing the conversion based on the determining.  

[00346] In some embodiments, the one or more allowed prediction modes comprise an intra 

mode. In some embodiments, the one or more allowed prediction modes comprise an intra block 

copy (IBC) mode. In some embodiments, the one or more allowed prediction modes comprise 

an inter mode.  

[00347] In some embodiments, the video region includes an intra slice, an intra picture, or an 

intra tile group. In some embodiments, the one or more allowed prediction modes comprise the 

intra mode, the intra block copy mode, and the palette mode.  

[00348] In some embodiments, the video region includes an inter slice, an inter picture, an inter 

tile group, a P slice, a B slice, a P picture, or a B picture. In some embodiments, the one or more 

allowed prediction modes comprise the intra mode, the intra block copy mode, the palette mode, 

and the inter mode.  

[00349] In some embodiments, the block has a dimension of 4x4. In some embodiments, the 

one or more allowed prediction modes exclude the inter mode in case the block has a dimension 

of 4x4.  

[00350] In some embodiments, the bitstream representation includes at least a prediction mode 

index representing the one or more allowed prediction modes in case the block is not coded in 

a skip mode, wherein the prediction mode index is represented using one or more binary bins.  

[00351] In some embodiments, the prediction mode index is represented using three binary bins, 

wherein a first bin value of '1' indicates an intra mode, wherein the first bin value of '0' and a 

second bin value of '0' indicate an inter mode, wherein the first bin value of '0', the second 

18019688_1 (GHMatters) P117156.AU



108 

bin value of '1', and a third bin value of '0' indicate an IBC mode, and wherein the first bin 

value of '0', the second value of '1', and the third bin value of '1' indicate a palette mode.  

[00352] In some embodiments, the prediction mode index is represented using two binary bins, 

wherein a first bin value of '1' and a second bin value of '0' indicate an intra mode, wherein 

the first bin value of '0' and the second bin value of '0' indicate an inter mode, wherein the first 

bin value of '0' and the second bin value of '1' indicate an IBC mode, and wherein the first bin 

value of '1' and the second bin value of '1' indicate a palette mode.  

[00353] In some embodiments, the prediction mode index is represented using one binary bin 

in case a current slice of the video is an intra slice and an IBC mode is disabled, a first bin value 

of '0' indicating an intra mode, and a second bin value of '1' indicating a palette mode.  

[00354] In some embodiments, the prediction mode index is represented using two binary bins 

in case a current slice of the video is not an intra slice and an IBC mode is disabled, wherein a 

first bin value of '1' indicates an intra mode, wherein the first bin value of '0' and a second bin 

value of '0' indicate an inter mode, and wherein the first bin value of '0' and the second bin 

value of '1' indicate a palette mode. In some embodiments, the prediction mode index is 

represented using two binary bins in case a current slice of the video is an intra slice and an 

IBC mode is enabled, wherein a first bin value of '1' indicates the IBC mode, wherein the first 

bin value of '0' and a second bin value of '1' indicate a palette mode, and wherein the first bin 

value of '0 and the second bin value of '0' indicate an intra mode. In some embodiments, the 

indication of the usage of the IBC mode signaled in a Sequence Parameter Set (SPS) of the 

bitstream representation.  

[00355] In some embodiments, the prediction mode index is represented using three binary bins, 

[00356] wherein a first bin value of '1' indicates an inter mode, wherein the first bin value of 

'0' and a second bin value of '1' indicate an intra mode, wherein the first bin value of '0', the 

second bin value of '0', and a third bin value of '1' indicate an IBC mode, and wherein the first 

bin value of '0', the second bin value of '0', and the third bin value of '0' indicate a palette 

mode.  

[00357] In some embodiments, the prediction mode index is represented using three binary bins, 

[00358] wherein a first bin value of '1' indicates an intra mode, wherein the first bin value of 

'0' and a second bin value of '1' indicate an inter mode, wherein the first bin value of '0', the 

second bin value of '0', and a third bin value of '1' indicate an IBC mode, and wherein the first 

18019688_1 (GHMatters) P117156.AU



109 

bin value of '0', the second bin value of '0', and the third bin value of '0' indicate a palette 

mode.  

[00359] In some embodiments, the prediction mode index is represented using three binary bins, 

wherein a first bin value of '0' indicates an inter mode, wherein the first bin value of '1' and a 

second bin value of '0' indicate an intra mode, wherein the first bin value of '1', the second bin 

value of '1', and a third bin value of '1' indicate an IBC mode, and wherein the first bin value 

of '1', the second bin value of '1', and the third bin value of '0' indicate a palette mode.  

[00360] In some embodiments, signaling of one of the one or more binary bins is skipped in 

the bitstream representation in case a condition is satisfied. In some embodiments, the condition 

comprises a dimension of the block. In some embodiments, the condition comprises a prediction 

mode being disabled, and wherein a binary bin corresponding to the prediction mode is skipped 

in the bitstream representation.  

[00361] FIG. 27 is a flowchart representation of a method 2700 for video processing in 

accordance with the present technology. The method 2700 includes, at operation 2710, 

performing a conversion between a block of a video and a bitstream representation of the video.  

The bitstream representation is processed according to a format rule that specifies a first 

indication of usage of a palette mode and a second indication of usage of an intra block copy 

(IBC) mode are signaled dependent of each other.  

[00362] In some embodiments, the format rule specifies that the first indication is signaled in 

the bitstream representation in case a prediction mode of the block is equal to a first prediction 

mode that is not the IBC mode. In some embodiments, the format rule specifies that the second 

indication is signaled in the bitstream representation in case a prediction mode of the block is 

equal to a first prediction mode that is not the palette mode. In some embodiments, the first 

prediction mode is an intra mode.  

[00363] FIG. 28 is a flowchart representation of a method 2800 for video processing in 

accordance with the present technology. The method 2800 includes, at operation 2810, 

determining, for a conversion between a block of a video and a bitstream representation of the 

video, a presence of an indication of usage of a palette mode in the bitstream representation 

based on a dimension of the block. The method 2800 includes, at operation 2820, performing 

the conversion based on the determining.  

[00364] FIG. 29 is a flowchart representation of a method 2900 for video processing in 

accordance with the present technology. The method 2900 includes, at operation 2910, 

18019688_1 (GHMatters) P117156.AU



110 

determining, for a conversion between a block of a video and a bitstream representation of the 

video, a presence of an indication of usage of an intra block copy (IBC) mode in the bitstream 

representation based on a dimension of the block. The method 2900 includes, at operation 2920, 

performing the conversion based on the determining. In some embodiments, the dimension of 

the block comprises at least one of: a number of samples in the block, a width of the block, or 

a height of the block.  

[00365] In some embodiments, the indication is signaled in the bitstream representation in case 

the width of the block is equal to or smaller than a threshold. In some embodiments, the 

indication is signaled in the bitstream representation in case the height of the block is equal to 

or smaller than a threshold. In some embodiments, the threshold is 64.  

[00366] In some embodiments, the indication is signaled in the bitstream representation in case 

the width and the height of the block is larger than a threshold. In some embodiments, the 

threshold is 4. In some embodiments, the indication is signaled in the bitstream representation 

in case the number of samples in the block is larger than a threshold. In some embodiments, the 

threshold is 16. In some embodiments, the indication is signaled in the bitstream representation 

in case a width of the block is equal to a height of the block.  

[00367] In some embodiments, the indication is not present in the bitstream representation in 

case (1) the width of the block is greater than a first threshold, (2) the height of the block is 

greater than a second threshold, or (3) the number of samples in the block is equal to or smaller 

than a third threshold. In some embodiments, the first threshold and the second threshold are 

64. In some embodiments, the third threshold is 16.  

[00368] In some embodiments, the determining is further based on a characteristic associated 

with the block. In some embodiments, the characteristic comprises a prediction mode of the 

block. In some embodiments, the characteristic comprises a quantization parameter of the block.  

In some embodiments, the characteristic comprises a palette flag of a neighboring block of the 

block. In some embodiments, the characteristic comprises an IBC flag of a neighboring block 

of the block. In some embodiments, the characteristic comprises an indication of a color format 

of the block. In some embodiments, the characteristic comprises a coding tree structure of the 

block. In some embodiments, the characteristic comprises a slice group type, a tile group type, 

or a picture type of the block.  

[00369] FIG. 30 is a flowchart representation of a method 3000 for video processing in 

accordance with the present technology. The method 3000 includes, at operation 3010, 

18019688_1 (GHMatters) P117156.AU



l11 

determining, for a conversion between a block of a video and a bitstream representation of the 

video, whether a palette mode is allowed for the block based on a second indication of a video 

region containing the block. The method 3000 also includes, at operation 3020, performing the 

conversion based on the determining.  

[00370] In some embodiments, the video region comprises a slice, a tile group, or a picture. In 

some embodiments, the bitstream representation excludes an explicit indication of whether the 

palette mode is allowed in case the second indication indicates that a fractional motion vector 

difference is enabled. In some embodiments, the second indication is represented as a flag that 

is present in the bitstream representation. In some embodiments, the second indication indicates 

whether the palette mode is enabled for the video region. In some embodiments, the bitstream 

representation excludes an explicit indication of whether the palette mode is allowed in case 

the second indication indicates the palette mode is disabled for the video region. In some 

embodiments, the palette mode is disallowed for the block in case the bitstream representation 

excludes an explicit indication of whether the palette mode is allowed.  

[00371] FIG. 31 is a flowchart representation of a method 3100 for video processing in 

accordance with the present technology. The method 3100 includes, at operation 3110, 

determining, for a conversion between a block of a video and a bitstream representation of the 

video, whether an intra block copy (IBC) mode is allowed for the block based on a second 

indication of a video region containing the block. The method 3100 also includes, at operation 

3120, performing the conversion based on the determining.  

[00372] In some embodiments, the video region comprises a slice, a tile group, or a picture. In 

some embodiments, the bitstream representation excludes an explicit indication of whether the 

IBC mode is allowed in case the second indication indicates that a fractional motion vector 

difference is enabled. In some embodiments, the second indication is represented as a flag that 

is present in the bitstream representation. In some embodiments, the second indication indicates 

whether the IBC mode is enabled for the video region. In some embodiments, the bitstream 

representation excludes an explicit indication of whether the IBC mode is allowed in case the 

second indication indicates the IBC mode is disabled for the video region. In some 

embodiments, the IBC mode is disallowed for the block in case the bitstream representation 

excludes an explicit indication of whether the IBC mode is allowed.  

18019688_1 (GHMatters) P117156.AU



112 

[00373] In some embodiments, the conversion generates the current block from the bitstream 

representation. In some embodiments, the conversion generates the bitstream representation 

from the current block.  

[00374] Some embodiments of the disclosed technology include making a decision or 

determination to enable a video processing tool or mode. In an example, when the video 

processing tool or mode is enabled, the encoder will use or implement the tool or mode in the 

processing of a block of video, but may not necessarily modify the resulting bitstream based on 

the usage of the tool or mode. That is, a conversion from the block of video to the bitstream 

representation of the video will use the video processing tool or mode when it is enabled based 

on the decision or determination. In another example, when the video processing tool or mode 

is enabled, the decoder will process the bitstream with the knowledge that the bitstream has 

been modified based on the video processing tool or mode. That is, a conversion from the 

bitstream representation of the video to the block of video will be performed using the video 

processing tool or mode that was enabled based on the decision or determination.  

[00375] Some embodiments of the disclosed technology include making a decision or 

determination to disable a video processing tool or mode. In an example, when the video 

processing tool or mode is disabled, the encoder will not use the tool or mode in the conversion 

of the block of video to the bitstream representation of the video. In another example, when the 

video processing tool or mode is disabled, the decoder will process the bitstream with the 

knowledge that the bitstream has not been modified using the video processing tool or mode 

that was enabled based on the decision or determination.  

[00376] The disclosed and other solutions, examples, embodiments, modules and the 

functional operations described in this document can be implemented in digital electronic 

circuitry, or in computer software, firmware, or hardware, including the structures disclosed 

in this document and their structural equivalents, or in combinations of one or more of them.  

The disclosed and other embodiments can be implemented as one or more computer program 

products, i.e., one or more modules of computer program instructions encoded on a computer 

readable medium for execution by, or to control the operation of, data processing apparatus.  

The computer readable medium can be a machine-readable storage device, a machine

readable storage substrate, a memory device, a composition of matter effecting a machine

readable propagated signal, or a combination of one or more them. The term "data processing 

apparatus" encompasses all apparatus, devices, and machines for processing data, including 

18019688_1 (GHMatters) P117156.AU



113 

by way of example a programmable processor, a computer, or multiple processors or 

computers. The apparatus can include, in addition to hardware, code that creates an execution 

environment for the computer program in question, e.g., code that constitutes processor 

firmware, a protocol stack, a database management system, an operating system, or a 

combination of one or more of them. A propagated signal is an artificially generated signal, 

e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to 

encode information for transmission to suitable receiver apparatus.  

[00377] A computer program (also known as a program, software, software application, 

script, or code) can be written in any form of programming language, including compiled or 

interpreted languages, and it can be deployed in any form, including as a stand-alone program 

or as a module, component, subroutine, or other unit suitable for use in a computing 

environment. A computer program does not necessarily correspond to a file in a file system.  

A program can be stored in a portion of a file that holds other programs or data (e.g., one or 

more scripts stored in a markup language document), in a single file dedicated to the program 

in question, or in multiple coordinated files (e.g., files that store one or more modules, sub 

programs, or portions of code). A computer program can be deployed to be executed on one 

computer or on multiple computers that are located at one site or distributed across multiple 

sites and interconnected by a communication network.  

[00378] The processes and logic flows described in this document can be performed by one 

or more programmable processors executing one or more computer programs to perform 

functions by operating on input data and generating output. The processes and logic flows 

can also be performed by, and apparatus can also be implemented as, special purpose logic 

circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific 

integrated circuit).  

[00379] Processors suitable for the execution of a computer program include, by way of 

example, both general and special purpose microprocessors, and any one or more processors 

of any kind of digital computer. Generally, a processor will receive instructions and data 

from a read only memory or a random-access memory or both. The essential elements of a 

computer are a processor for performing instructions and one or more memory devices for 

storing instructions and data. Generally, a computer will also include, or be operatively 

coupled to receive data from or transfer data to, or both, one or more mass storage devices for 

storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer 

18019688_1 (GHMatters) P117156.AU



114 

need not have such devices. Computer readable media suitable for storing computer program 

instructions and data include all forms of non-volatile memory, media and memory devices, 

including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and 

flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto 

optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be 

supplemented by, or incorporated in, special purpose logic circuitry.  

[00380] While this patent document contains many specifics, these should not be 

construed as limitations on the scope of any subject matter or of what may be claimed, but 

rather as descriptions of features that may be specific to particular embodiments of particular 

techniques. Certain features that are described in this patent document in the context of 

separate embodiments can also be implemented in combination in a single embodiment.  

Conversely, various features that are described in the context of a single embodiment can also 

be implemented in multiple embodiments separately or in any suitable subcombination.  

Moreover, although features may be described above as acting in certain combinations and 

even initially claimed as such, one or more features from a claimed combination can in some 

cases be excised from the combination, and the claimed combination may be directed to a 

subcombination or variation of a subcombination.  

[00381] Similarly, while operations are depicted in the drawings in a particular order, this 

should not be understood as requiring that such operations be performed in the particular 

order shown or in sequential order, or that all illustrated operations be performed, to achieve 

desirable results. Moreover, the separation of various system components in the embodiments 

described in this patent document should not be understood as requiring such separation in all 

embodiments.  

[00382] Only a few implementations and examples are described and other 

implementations, enhancements and variations can be made based on what is described and 

illustrated in this patent document.  

18019688_1 (GHMatters) P117156.AU



115 

CLAIMS 

1. A method of processing video data, comprising: 

determining, for a conversion between a current video block of a video and a bitstream 

of the video, that a first prediction flag is included in the bitstream, wherein the current video 

block is not skipped, and wherein the first prediction flag indicates whether an inter prediction 

mode or an intra prediction mode is applied; 

determining a second prediction flag or a third prediction flag is further included in the 

bitstream at least based on a value of the first prediction flag, wherein the second prediction 

flag indicates whether a first prediction mode is applied, and wherein in the first prediction 

mode, prediction samples are derived from reconstructed sample values of the same picture 

containing the current video block, and wherein the third prediction flag indicates whether a 

second prediction mode is applied, and wherein in the second prediction mode, reconstructed 

samples are represented by a set of representative color values, and the set of representative 

color values comprises at least one of 1) palette predictors, 2) escaped samples, or 3) palette 

information included in the bitstream; and 

performing the conversion between the first video block and the bitstream.  

2. The method of claim 1, wherein the second prediction flag is further included in the 

bitstream in a case that the first prediction flag indicating the inter prediction mode is applied.  

3. The method of claim 1 or 2, wherein the third prediction flag is further included in the 

bitstream in a case that the first prediction flag indicating the intra prediction mode is applied.  

4. The method of any one of claim 1-3, wherein the third prediction flag is context coded 

with a single context.  

5. The method of any one of claims 1-4, wherein whether the second prediction flag and 

the third prediction flag are included in the bitstream is based on a size of the current video 

block.  

18019688_1 (GHMatters) P117156.AU



116 

6. The method of any one of claims 1-5, wherein whether the second prediction flag is 

included in the bitstream is further based on an enable flag related to the first prediction mode 

in a higher level, and whether the third prediction flag is included in the bitstream is further 

based on an enable flag related to the second prediction mode in the higher level, and 

wherein the higher level includes sequence level, picture level, tile group level or tile 

group.  

7. The method of any one of claims 1-6, wherein a first bin and a second bin are used to 

indicate which one of the intra prediction mode, the inter prediction mode, the first prediction 

mode, and the second prediction mode is applied for the current video block, and 

wherein M is equal to a value of the first bin and N is equal to a value of the second 

bin, and 

wherein in a case that (M, N)= (0, 0), the inter prediction mode is applied for the 

current video block.  

8. The method of claim 7, wherein in a case that (M, N) = (0, 1), the first prediction 

mode is applied for the current video block.  

9. The method of claim 7 or 8, wherein in a case that (M, N)= (0, 0) or (0, 1), the first 

bin is corresponding to the first prediction flag and the second bin is corresponding to the 

second prediction flag, and wherein the third prediction flag is not included in the bitstream.  

10. The method of any one of claims 7-9, wherein in a case that (M, N) = (1, 0), the intra 

prediction mode is applied for the current video block.  

11. The method of any one of claims 7-10, wherein in a case that (M, N)= (1, 1), the 

second prediction mode is applied for the current video block 

12. The method of any one of claims 7-11, wherein in a case that (M, N)= (1, 0) or (1, 1), 

the first bin is corresponding to the first prediction flag and the second bin is corresponding to 

the third prediction flag, and wherein the second prediction flag is not included in the 

bitstream.  

18019688_1 (GHMatters) P117156.AU



117 

13. The method of any one of claims 7-12, wherein in a case that (M, N)= (0, 0), (0, 1) or 

(1, 1), a third bin indicating whether to apply a third prediction mode is excluded from the 

bitstream, and wherein in the third prediction mode, a difference between a quantized residual 

and a prediction of the quantized residual is represented in the bitstream using a pulse coding 

modulation representation.  

14. The method of any one of claims 7-13, wherein a third bin indicating whether to apply 

a third prediction mode is included in the bitstream in a case that (M, N) = (1, 0), and wherein 

in the third prediction mode, a difference between a quantized residual and a prediction of the 

quantized residual is represented in the bitstream using a pulse coding modulation 

representation.  

15. The method of any one of claims 1-14, wherein the conversion includes encoding the 

current video block into the bitstream.  

16. The method of any one of claims 1-14, wherein the conversion includes decoding the 

current video block from the bitstream.  

17. An apparatus for processing video data comprising a processor and a non-transitory 

memory with instructions thereon, wherein the instructions upon execution by the processor, 

cause the processor to: 

determine, for a conversion between a current video block of a video and a bitstream 

of the video, that a first prediction flag is included in the bitstream, wherein the current video 

block is not skipped, and wherein the first prediction flag indicates whether an inter prediction 

mode or an intra prediction mode is applied; 

determine a second prediction flag or a third prediction flag is further included in the 

bitstream at least based on a value of the first prediction flag, wherein the second prediction 

flag indicates whether a first prediction mode is applied, and wherein in the first prediction 

mode, prediction samples are derived from reconstructed sample values of the same picture 

containing the current video block, and wherein the third prediction flag indicates whether a 

second prediction mode is applied, and wherein in the second prediction mode, reconstructed 

18019688_1 (GHMatters) P117156.AU



118 

samples are represented by a set of representative color values, and the set of representative 

color values comprises at least one of 1) palette predictors, 2) escaped samples, or 3) palette 

information included in the bitstream; and 

perform the conversion between the first video block and the bitstream.  

18. The apparatus of claim 17, wherein the second prediction flag is further included in 

the bitstream in a case that the first prediction flag indicating the inter prediction mode is 

applied.  

19. A non-transitory computer-readable storage medium storing instructions that cause a 

processorto: 

determine, for a conversion between a current video block of a video and a bitstream 

of the video, that a first prediction flag is included in the bitstream, wherein the current video 

block is not skipped, and wherein the first prediction flag indicates whether an inter prediction 

mode or an intra prediction mode is applied; 

determine a second prediction flag or a third prediction flag is further included in the 

bitstream at least based on a value of the first prediction flag, wherein the second prediction 

flag indicates whether a first prediction mode is applied, and wherein in the first prediction 

mode, prediction samples are derived from reconstructed sample values of the same picture 

containing the current video block, and wherein the third prediction flag indicates whether a 

second prediction mode is applied, and wherein in the second prediction mode, reconstructed 

samples are represented by a set of representative color values, and the set of representative 

color values comprises at least one of 1) palette predictors, 2) escaped samples, or 3) palette 

information included in the bitstream; and 

perform the conversion between the first video block and the bitstream.  

20. A non-transitory computer-readable recording medium storing a bitstream of a video 

which is generated by a method performed by a video processing apparatus, wherein the 

method comprises: 

determining, for a current video block of the video, that a first prediction flag is 

included in the bitstream, wherein the current video block is not skipped, and wherein the first 

18019688_1 (GHMatters) P117156.AU



119 

prediction flag indicates whether an inter prediction mode or an intra prediction mode is 

applied; 

determining a second prediction flag or a third prediction flag is further included in the 

bitstream at least based on a value of the first prediction flag, wherein the second prediction 

flag indicates whether a first prediction mode is applied, and wherein in the first prediction 

mode, prediction samples are derived from reconstructed sample values of the same picture 

containing the current video block, and wherein the third prediction flag indicates whether a 

second prediction mode is applied, and wherein in the second prediction mode, reconstructed 

samples are represented by a set of representative color values, and the set of representative 

color values comprises at least one of 1) palette predictors, 2) escaped samples, or 3) palette 

information included in the bitstream; and 

generating the bitstream for the current video block.  

18019688_1 (GHMatters) P117156.AU



Reference block

X

Current block

BV

Current picture

FIG. 1



Block coded in

palette

palette mode

R/Y G/Cb B/Cr

Index 0

2

0

3

Index 1 Index 2 Index 3

the

escape

FIG. 2



WO

previous palette

current palette

Index

G/Y

B/Cb

R/Cr

Pred flag

Index

G/Y

B/Cb

R/Cr

0

G0

BO

RO

1

0

GO

BO

RO

1

G1

B1

R1

0

2

G2

B2

R2

1

1

G2

B2

R2

3

G3

B3

R3

1

2

G3

B3

R3

4

G4

B4

R4

0

5

G5

B5

R5

0

3

G3N

B3N

R3N

Re-used palette entries (3)

4

G4N

B4N

R4N

New palette entries (2), signalled

FIG. 3



vertical traverse scan

horizontal traverse scan

Q0n00000

+11110

01111100

+1110

01111100

00

11000

11000

00011000

00011000

00011000

0011000

00000000

0000000 00000

00000000

FIG. 4



00000000

00000000

01011100

01011100

01011100

0

10111 00

run Length = 4

00 11000

002 11000

10111

00011000

00011000

10111

00011000

00011000

00000000

00000000

00000000

00000000

'copy above' mode + run-length

input CU

palette indices Block

00000000

run Length = 2

palette

01011100

G/Y B/Cb R/Cr

010

111

11100

0

00

11000
00011000

'index' mode + run-length

2

00011000

escape

00000000

escape: 'index' mode

00000000

FIG. 5



600

602

Processor

Video processing

604

Circuitry

Memory

606

FIG. 6



WO

Input

General Crities

General

Contact

Control

Signal

to

Data

2

Transform

Station &

Quantiszed

Quantization

&

Transform

Split into CTUs

Coefficients

/

tetre Preduction

Formatting &

CASNO

where Picture

Estimation

Files Control

Filter Control

Drive

/

THE

Miction

SWO

Created

Output

Selection

8

Video

Described

Signal

Estimation

When

FIG. 7



800

Determine that palette mode is to be used

805

for processing a transform unit, a coding

block, or a region, usage of palette mode

being coded separately from a prediction

mode

Perform further processing of the transform

unit, the coding block, or the region using

810

the palette mode

FIG. 8



p30

p20

p1o

p00

q0o

910

q20

q30

p3

p2,

p1,

p0

q0

q1,

q2,

q3

p32

first 4 lines

p2

p12

pO2

q02

912

q22

q3

p33

p23

p13

pO3

q03

q13

q23

q33

p34

p24

p14

pO4

q04

914

q24

q34

p35

p25

p15

p05

q05

q15

q25

q35

p36

p25

p16

p05

q06

second 4 lines

916

q26

q35

p37

p2

p17

p0

q07

q17

q2

q37

FIG. 9



Skip - 0 0

1

MODE INTRA

MODE INTER

0

1

0

1

Intra

Palette

Inter

IBC

FIG. 10



Skip =0 0

1

MODE INTRA

MODE INTER

0

11

10

Inter

Intra

IBC

Palette

FIG. 11



0: Planar

1:00

FIG. 12



Above

Left

FIG. 13



C
028

C

66393

S

total OM



if

V

:

is

9

H.

is

V

is

"

"

us

:

3

H

H

V

%

Hi

W

is

H

V

V

%

is

it

19

35

us

%

H

it

H

H

i

V

V

if

i

:

e

H

r

is

FIG. 15 (a)

FIG. 15 (b)

D?

or

or

or

a

a

OZ

02

(2)

OZ

or

or

or

or

02

or

it

52

OZ

DE

or

21

ST

or

in

in

2%

OF

02

OZ

02

D2

or

oz

or

D2

32

is

OZ

235

21/

C

or

D2

52

as

oz

D1

in

or

02

02

DZ

DZ

or

or

or

in

or

a

02

02

DZ

is

FIG. 15 (c)

FIG. 15 (d)



CTU

Boundary

Virtual

Boundary

Padline

CTU

Boundary

CTU Boundary

Looka

FIG. 16



WO

Value Boundary

Pad line

Pad line

Virtual Boundary

Pad line

Pad line

Virtual Boundary

Virtual Boundary

Pad line

Pad line

Pad line

Pad line

Pad line

Virtual Boundary

Virtual Boundary

Pad line

Pad line

FIG. 17



WO 2020/169104 PCT/CN2020/076368

d

1610.12

F16

a

d

18/31



INSURED

Starting band position

Minimum pixel value

Signal four offsets from

Maximum pixel value

starting band

FIG. 19



WO 2020/169104 PCT/CN2020/076368

dog

left

F19.20

20/31



Reconstruction

&

Mapping:

Loop

GAT

OPB

Yes

8, Yess pres

Eithers

Y is

Intra Prediction

intra mode

2094

Inter mode

Forman Marging

Your

Motion Compensation

"

Year From

issue

hima

%

chroma

chroma

Chroma sealing

Reconstruction

= Euroum s

Loop

OP8

determined based

from

a x from Guest

Eithers

on was with

Cares

Intra Prediction

intra mode inter mode

Green

Motion Compensation

FIG. 21



PCT/CN2020/076368WO 2020/169104

#2-22

22/31



WO 2020/169104 PCT/CN2020/076368

FRE23

23/31



WO

2400

2410

2402

2404

2406

2408

FIG. 24



2500

2510

performing a conversion between a block

of a video region of a video and a

bitstream representation of the video,

wherein the bitstream representation is

processed according to a first format rule

and a second format rule

FIG. 25



2600

determining, for a conversion between a

block of a video region in a video and a

bitstream representation of the video, a

prediction mode based on one or more

2610

allowed prediction modes that include at

least a palette mode of the block

performing the conversion based on the

2620

determining FIG. 26



2700

performing a conversion between a blockof a video and a bitstream representation

2710

of the video, wherein the bitstream

representation is processed according to

a format rule that specifies a first

indication of usage of a palette mode and

a second indication of usage of an intra

block copy (IBC) mode are signaled

dependent of each other.

FIG. 27



2800

determining, for a conversion between a

block of a video and a bitstream

representation of the video, a presence

2810

of an indication of usage of a palette

mode in the bitstream representation

based on a dimension of the block

performing the conversion based on the

2820

determining FIG. 28



2900

determining, for a conversion between a

block of a video and a bitstream

representation of the video, a presence

2910

of an indication of usage of an intra block

copy (IBC) mode in the bitstream

representation based on a dimension of

the block

performing the conversion based on the

2920

determining
FIG. 29



3000

determining, for a conversion between a

block of a video and a bitstream

representation of the video, whether a

3010

palette mode is allowed for the block

based on a second indication of a video

region containing the block

performing the conversion based on the

3020

determining FIG. 30



3100

determining, for a conversion between a

block of a video and a bitstream

representation of the video, whether a

3110

palette mode is allowed for the block

based on a second indication of a video

region containing the block

performing the conversion based on the

3120

determining

FIG. 31


	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

