(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 December 2003 (04.12.2003)

PCT

(10) International Publication Number

WO 03/100583 Al

(51) International Patent Classification”: GOG6F 1/00

(21) International Application Number: PCT/GB03/02326

(22) International Filing Date: 28 May 2003 (28.05.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

0212318.0 28 May 2002 (28.05.2002) GB

(71) Applicant (for all designated States except US): SYM-
BIAN LIMITED [GB/GB]; Sentinel House, 16 Harcourt
Street, London W1H 1DS (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): DIVE-RECLUS,
Corinne [FR/GB]; 51 Charmouth Road, St Albans, Herts
ALl 4SE (GB).

(74) Agent: LANGLEY, Peter, James; Origin Limited, 52
Muswell Hill Road, London N10 3JR (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: TAMPER EVIDENT REMOVABLE MEDIA STORING EXECUTABLE CODE

~~ (57) Abstract: A mobile wireless device operable to install code on a removable medium, in which the device is programmed to
calculate and store a digest of this code into a persistent nonremovable store inside the device. When the removable medium is
plugged back, and when the code is invoked, the device recalculates a digest from the code it wants to load from the removable
medium and compares it with the one stored inside the persistent non-removable store. If they do not match, the code has been
tampered with and therefore cannot be trusted by the device. The digest is accessible only by components in the Trusted Computing
Base so is itself secure. The digest may be a hash or other unique and representative value.

3/100583 Al

10

15

20

25

WO 03/100583 .) PCT/GB03/02326

TAMPER EVIDENT REMOVABLE MEDIA STORING EXECUTABLE CODE

FIELD OF THE INVENTION
This invention telates to an apparatus providing tamper evidence for executable code stored

on removable media. This apparatus forms an element in a platform secutity architecture.

DESCRIPTION OF THE PRIOR ART

Platform secutity covers the philosophy, architecture and implementation of platform
defence mechanisms against malicious ot badly written code. These defence mechanisms
prevent such code from causing harm. Malicious code generally has two components: 2
payload mechanism that does the damage and a propagation mechanism to help it spread.

They ate usually classified as follows:

Trojan horse: poses.as a legitimate application that appears benign and attractive to
the usert.
Wotm: can replicate and spread without further manual action by theit perpetrators
ot usets.

Vitus: Infiltrates legitimate programs and alters ot destroys data.

Secutity threats encompass (a) a potential breach of conﬁdenﬂaﬁty, integrity ot availability of
services or data in the value chain and integtity of services and (b) compromise of service
function. Threats are classified into the following categories:

1. Threats to confidentiality and integtity of data. Examples: Get uset’s passwotd; corrupt
files.

2. Threats to confidentiality and integtity of services. Examples: Use bandwidth from
phone netwotk subscriber without paying for it; repudiate transaction with network
setvice provider.

3. Threats to availability of setvice (also called denial of setvice). Examples: Prevent the

user from sending a text message; prevent the user from accepting a telephone call.

10

15

WO 03/100583 PCT/GB03/02326

Hence, mobile wireless devices offer vety considerable challenges to the designer of a
platform secutity architecture. One critical aspect of this challenge is that mobile wireless
devices will regularly install progtams on temovable storage devices. The main motivation is
to provide extra storage that the wireless device uset can change, based on which set of
programs he/she wishes to use. A well-known example is the usage of floppy diskettes or
memoty cards in personal computer environments. The removable storage device might, in
principle, be tampeted with in some way when not plugged into the mobile wireless device
and the programs stored on the device would hence lose their integtity. It is vital that, in all
citcumstances, 2 wireless device is confident in the integtity of executable code, including
when a removable storage device is to be re-inserted (e.g. that no malicious alterations to

override secutity features have been made and no viruses introduced etc).

To date, there have however been no efficient proposals for ensuting the integrity of
executable code which has been transferred off from a mobile wireless device and is being

returned to the original device.

10

15

20

25

30

WO 03/100583 PCT/GB03/02326

SUMMARY OF THE PRESENT INVENTION

In a first aspect of the present invention, there is 2 mobile wireless device operable to install
native executable code on a removable medium, in which the device is programmed to
calculate and store a digest (a digest is a value generated from the full content of the code
using an algorithm guaranteeing that the same value cannot be regenerate if the content has
changed) of this code into a persistent non-removable store inside the device. Native code is

composed of instructions ditectly executed by 2 CPU on a device.

When the removable medium is plugged back, and when the executable is invoked, the
device recalculates a digest from the code it wants to load from the removable medium and
compates it with the one stored inside the petsistent non-removable stote. If they do not
match, the executable has been tampered with and therefore cannot be trusted by the device.
The digest is accessible only by components in the Trusted Computing Base (see later) so is
itself secure. The digest may be a hash or other unique and represehtative value that can be

recomputed from the entire executable.

This approach differs from conventional watetmarking, in which a hash is derived from a

media file and then inserted back into the file, modifying it imperceptibly.

In one implementation, the digest as well as the executable’s ‘capability” are securely stored
on the device. A ‘capability’ can be thought of as an access token that cotresponds to a
permission to undertake a sensitive action. (The purpose of the capability model is to
control access to sensitive system resoutces.) At load time, the loader verifies the hash before
loading. If the verification fails, the executable will not be loaded. If the executable is
unknown (no associated digest), the executable is loaded with no capability (i.e no access
rights to sensitive resoutces) and no identity (no access tights to data that is private to an
identified operating system procéss). If the verification succeeds, then the executable is

loaded and the stored capability assigned to the newly loaded code.

WO 03/100583 PCT/GB03/02326

The present invention allows users to share memory catds and other forms of removable
medium between devices without restriction. It also allows each user to keep the privileges

he/she has granted to applications stored on these cards independent from the medium and

other usets’.choices.

10

15

20

25

WO 03/100583 PCT/GB03/02326

DETAILED DESCRIPTION

The present invention will be desctibed with reference to the secutity architecture of the
Symbian OS object otiented operating system, designed for single user wireless devices. The
Symbian OS operating system has been developed for mobile wireless devices by Symbian

Ltd, of London United Kingdom.

The basic outline of the Symbian OS security architectute is analogous to a medieval castle’s
defences. In a similar fashion, it employs simple and staggeted layers of security above and
beyond the installation petimeter. The key threats that the model is trying to address are
those that are linked with unauthorised access to user data and to system services, in
patticular the phone stack. The phone stack is especially important in the context of a smart
phone because it will be controlling a permanent data connection to the phone network.
Thete are two key design drivers lying behind the model:

* Firewall protection of key system resources through the use of capability-based

access control. .

* Data partitioning which creates a protected part of the file system which standard

software is not able to access.

The main concept of the capability model desctibed below is to control what a process can do
rather than what a user can do. This approach is quite different to well-known operating
systems as Windows NT and Unix. ;I'he main reasons are:
- The very nature of Symbian OS is to be mono-user.
- Symbian OS provides services through independent server processes. They
always run and are not attached to a user session. As long as power is supplied,
Symbian OS is always on even if no user is logged on.
- Symbian OS is aimed to be used in devices used by a large public with no
technology knowledge. When ins;calling software, the user may not have the skills

to decide what permissions to grant to an application. Furthermore, with always-

10

15

20

25

WO 03/100583 PCT/GB03/02326

connected devices, the consequences of a wrong or malevolent decision may

impact 2 domain much larger than the device itself.

1 Trusted Computing Platform

1.1 Trusted Computing Base

A trusted computing base (TCB) is a basic architectural requirement for robust platform
secutity. The trusted corhputing base consists of a number of architectural elements that
cannot be subverted and that guarantee the integrity of the device. It is important to keep
this base as small as possible and to apply the principle of least ptivilege to ensure system
servers and applications do not have to be given privileges they do not need to function. On
closed devices, the TCB consists of the ketnel, loader and file setver; on open devices the
software installer is also required. All these processes atre system-wide trusted and have
therefore full access to the device. This trusted cote would run with a “root” capability not

available to other platform code (see section 2.1).

Thete is one other important element to maintain the integtity of the trusted computing base
that is outside the scope of the present invention, namely the hardware. In particular, with
devices that hold trusted computing base functionality in flash ROM, it is necessary to
provide a secure boot loader to ensure. that it is not possible to subvert the trusted

computing base with a malicious ROM image.
1.2 Trusted Cornputing Environment

Beyond the core, othet system components would be granted restricted orthogonal system
capability and would constitute the Trusted Computing Environment (TCE); they would
include system servers such as socket, phone and window setvets. For instance the window
server would not be granted the capability of phone stack access and the phone setver would

not be granted the capability of direct access to keyboard events. It is strongly

10

15

20

25

WO 03/100583 PCT/GB03/02326

recommended to give as few system capabilities as possible to a software component to limit

potential damage by any misuse of these privileges.

The TCB ensutes the integrity of the full system as each element of the TCE ensures the
integrity of one service. The TCE cannot exist without a TCB but the TCB can exist by

itself to guarantee a safe “sand box™ for each process.

2 Process Capabilities

A capability can be thought of as an access token that cottesponds to a permission to
undertake a sensitive action. The putpose of the capability model is to control access to
sensitive system resoutces. The most impottant resource that requites access control is the
kernel executive itself and a systerz capability (see section 2.1) is requited by a client to access
certain functionality through the ketnel APL All other resources reside in user-side servers
accessed via IPC [Inter Process Communication]. A small set of basic capabilities would be
defined to police specific client actions on the servers. For example, possession of a make
calls capability would allow a client to use the phone setvet. It would be the responsibility of
the cotresponding setver to police client access to the resoutces that the capability
represents. Capabilities would also be associated with each library (DLL) and program
(EXE) and combined by the loader at run time to produce net process capabilities that
would be held by the kernel. For open devices, thitd party software would be assigned
capabilities either duting software installation based on the certificate used to sign their
installation packages or post softwate installation by the uset,. The policing éf clapabilities
would be managed between the loader, the ketnel and affected setvers but would be kernel-

mediated through the IPC mechanism.

The key features of the process capability model are:
e Itis primarily focused around system servers and client-server IPC interactions between

these entities. .

10

15

20

25

WO 03/100583 PCT/GB03/02326

* Capabilities are associated with processes and not threads. Threads in the same process
share the same address space and memory access permissions. ‘This means that any data
being used by one thread can be read and modified by all other threads in the same
process.

* The policing of the capabilities is managed by the loader and ketnel and through
capability policing at the target servers. The kernel IPC mechanism is involved in the
latter.

e When the code is not running, capabilities are stored inside of libraries and programs.
Capabilities stored in libraties and programs are not modifiable, as they would be stored
during installation in a location that is only accessible by the Trusted Computing Base.

e Not all servers would have to handle client capabilities. Servers would be responsible for
interpreting capabilities as they wish.

* The only cryptography involved in this scheme might be at the softwate installation stage

where certificates would be checked off against a suitable root certificate.
2.1 System capabilities: Protecting the integrity of the device

Root. "Full access to all files - Can modify capabilities associated with executables "
“Root” capability — Used by the Trusted Computing Base only, it gives full access to
all files in the device.

System capabilities
Some system setvers require some specific access to the Trusted Computing Base.
Because of the object-otiented implementation of Symbian OS, the kind of resources |
required by a system servet is most of the time exclusive to it. Thetefore, one system
server would be granted some system capability that would be orthogonal to those
requited by another. For instance, the window server would be granted access to
keyboard and pen events issued by the kernel but it would not have permission to
access the phone stack. In the same way, the phone servet would be granted access
to the phone stack but would not have petmission to collect events from the ketnel.
As examples, we can name:

WriteSystemData Allows modification of configuration system data

10

15

20

25

WO 03/100583 PCT/GB03/02326

9
CommDD Grants access to all communication and Ethernet card device
drivets.
DiskAdmin Can perform administration task on the disk (teformat,

rename a dtive,...).

2.2 Uset-exposed capabilities: Mapping real-world permissions

The process of generating capabilities can be difficult. One has first to identify those
accesses that require policing and then to map those requirements into something that is
meaningful for a user. In addition, more capabilities means greater complexity and
complexity is widely recognised as being the chief enemy of security. A solution based on
capabilities should thetefote seek to minimise the overall numbet deployed. The following
capabilities map faitly broadly onto the main threats which are unauthorised access to

system setvices (eg. the phone stack) and presetving the confidentiality/integrity of user data.

PhoneNetwork. "Can access phone netwotk services and potentially spend user
money"

“Make telephone calls”

“Send short text messages™.

WriteUserData. ""Can read and modify usets private information"

“Add a contact”.
“Delete an appointment”.

ReadUserData. "Can read usets private information"

“Access contacts data”.
“Access agenda data”.
LocalNetwork. ""Can access local network”
“Send Bluetooth messagés”.
“Establish an IR connection”
“Establish an USB connection”

Location. * Can access the current location of the device”

10

15

20

25

WO 03/100583 PCT/GB03/02326
10

“Locate the device on a map”

“Display closest restaurants and cinema”

Root and system capabilities are mandatory; if not granted to an executable, the user of the

device cannot decide to do it. Their strict control ensures the integrity of the Trusted

*Computing Platform. However the way servers check user-exposed capabilities ot interpret

them may be fully flexible and even user-discretionary.

2.3 Assigning capabilities to a process

The association of a run-time capability with a process involves the loader. In essence, it
transforms the static capability settings associated with individual libraries and programs into
a run-time capability that the kernel holds and can be quetied through a kernel user library
APL The loader applies the following rules:

Rule 1. When creating a ptocess from a program, the loader assigns the same set of
capabilities as its program’s.

Rule 2. When loading a library within an executable, the library capability set must be greaser
than or equal to the capability set of the loading executable. If not true, the library is not loaded
into the executable.

Rule 3. An executable can load a libraty with higher capabilities, but does not gain
capabilities by doing so.

Rule 4. The loader refuses to load any executable not in the data caged part of the file system
reserved to the TCB.

It has to be noted that:
¢ Libraties’ capabilities are checked at load time only. Beyond that, all code contained in
libraries is run freely and is assigned the same capability set as the program it runs into

when initiating some IPC calls.

10

15

20

25

WO 03/100583 PCT/GB03/02326

11

* For ROM images with execution in place, the ROM build tool tesolves all symbols doing

the same task as the loader at runtime. Therefore the ROM build tool must enforce the
same trules as the loader when building a ROM image.

These rules

* Prevent malware from being loaded in sensitive processes, for example, a plug-in in 2

SyS tem server

* Encourage

The examples

encapsulation of sensitive code inside processes with no possible bypass

below show how these rules are applied in the cases of statically and

dynamically loaded libraries respectively.

2.3.1 Examples for linked DLLs

The program P.EXE is linked to the library L1.DLL.
The library I.1.DLL is linked to the library LO.DLL.

Case 1:

Case 2:

P.EXE holds Capl & Cap2

L1.DLL holds Capl & Cap2 & Cap3

L0.DLL holds Capl & Cap?2.

Process P cannot be created, the loader fails it because L1.DLL cannot load
LO.DLL. Since LO.DLL does not have a capability set gteater than or equal
to L1.DLL, Rule 2 applies.

P.EXE holds Cap1 & Cap2

L1.DLL holds Cap1 & Cap2 & Cap3

LO0.DLL holds Capl & Cap2 & Cap3 & Cap4

Process P is created, the loader succeeds it and the new process is‘ assigned
Capl & Cap2. The capability of the new process is determined by applying
Rule 1; L1.DLL cannot acquire the Cap4 capability held by LO.DLL, and
P1.EXE cannot acquite the Cap3 capability held by L1.DLL as defined by
Rule 3.

10

15

20

WO 03/100583 PCT/GB03/02326

12

2.3.2 Examples for dynamically loaded DLLs

The program P.EXE dynamically loads the library L1.DLL.
The library L1.DLL then dynamically loads the library LO.DLL.

Case 1:

Case 2:

P.EXE holds Capl & Cap2

L1.DLL holds Cap1 & Cap2 & Cap3

LO0.DLL holds Capl & Cap2

Process P is successfully created and assigned Capl & Cap2.

When P requests the loader to load L1.DLL & L0.DLL, the loader succeeds
it because P can load L1.DLL and LO.DLL. Rule 2 does apply here the
loading executable being the process P not the library L1.DLL: the IPC load
request that the loader processes is sent by the process P. The fact that the
call is within L1.DLL is here irrelevant. Rule 1 & 3 apply as before and P
does not acquire Cap3 by loac{ing L1.DLL

P.EXE holds Cap1 & Cap2

L1.DLL holds Capl&CépZ&CapS

LO0.DLL holds Cap1&Cap2&Cap4

Process P is successfully created and assigned Capl & Cap2. When P
tequests the loader to load L1.DLL & LO.DLL, the loader succeeds it
because P can load L1.DLL and LO.DLL. Once again, Rule 2 does apply with
P as the loading executable rather than L1.DLL, while Rule 3 ensures P
acquires neither Cap3 nor Cap4.

10

15

20

25

WO 03/100583 PCT/GB03/02326
13

2.4 How to combine the flexibility of removable media with Platform Security

241 Today

2.4.1.1 Device integrity

Today, files stored on removable media are completely unprotected. They are fully
accessible and can be modified. When a removable medium is plugged back in the device, no

checks ate petformed to ensure the integrity of the system. Risks associated with this fact

may be seen as low because possession of the medium is needed for subversion. However a

malicious user may install malware and damage not her device but use it as a weapon against
network operators, for instance. Today without platform security, the only protection is to
implement a loader that refuses to load code from removable media. However in the long
term, motre memoty space will be required to store more applications and this strategy will
prevent users buying software for their device and potentially might discourage them to buy

open platfdrms if they could not take advantage of it.

2.4.1.2 Data confidentiality

Threats on data confidentiality are feal but limited only to data contained on the stolen
removable medium. Most of the threats can be already prevented without the support of
platform security:
1. Hardware control access to the medium
Even off the device, the medium is password-protected; for instance Secure MMC,
PIN-protected SIM, etc.
2. File encryption
If 2 uset is concetned about the security of some sensitive data and wants to store it
on a removable medium, he/she may encryptit.
3. File system encryption

File system encryption may be provided at disk device driver level.

10

15

20

25

30

WO 03/100583 PCT/GB03/02326
14

2.4.2 Proposed Invention

The proposed invention aims not only to prevent curtent threats but also to keep the

interoperability and code distribution uses of temovable media.

No platform security architecture can prevent the modification of removable media when
off the wireless device. Even with a password-protected removable medium, an authorised
user can alter it. Therefore, the best Platform Security can provide is a tamper evidence

mechanism for known executables and a secure execution of unknown code

2.4.2.1 Software Installer

At install time, when an application package has to be stored on a removable medium:
Step 1. The software installer verifies that executables to be installed on removable
media have got a correct secure identifier (SID) and have not impersonated anothetr
legitimate executable to access to its private data.
Step 2 The software installer assigns some system and user capabilities to executables
included in the application package.
Step 3. The software installer hashes the executables.
Step 4. The software installer stores all capabilities and the hash (i.e. digest) in a

TCB-restricted area of a permanent file system (e.g. that cannot be removed).

At de-install time, the software installer removes the executables from the removable

medium if present and destroys the associated file created at installation step 4

For preformatted removable media (files already installed), a lighter version of the
application package must be provided too in order to let the Software Installer petrform steps
1 to 3. The present invention does not specify any apparatus for detecting new applications
on pre-formatted removable media; a possible option may be to detect the presence of new
applications at the time of insertion of the removable medium in the Wiréless device and to
consider the removal of a pre-formatted removable medium as the de-installation of

applications it contains.

10

15

20

25

WO 03/100583 PCT/GB03/02326
15

2.4.2.2 Loadet

At load time, the loader identifies an executable to load from a removable medium. It looks
at ‘the cotresponding HASH file: the hash in a TCB-restricted area of a permanent file
system (e.g: that cannot be removed). |
- Ifit exists, it hashes the executable and compares both hashes.
- Ifidentical, the loader assigns system and user capabilities extracted from the
HASH file to the executable and performs the standard loading process.
- If not, the loader returns an error.
If no cotresponding HASH file exists, the loader assigns no system and user
capability to the executable and performs the standard loading process. It also
assigns the secure identifier (SID) (the SID (secure identifier) of a process is a
way of uniquely identifying a piece of code capable of running on the OS and is
stored in the related executable) to ‘unknown’ to prevent impersonation of a
legitimate process. As no capability and no SID ate granted to unknown code,

this one cannot compromise the integtity of the Trusted Computing Platform.

The hashing process must be independent of the removable medium. What has to be
achieved is to authenticate a piece of code, not the removable medium it comes from. The
preferred implementation uses SHA-1 as it is reasonably secure and fast for use in a wireless

device.

2.4.3 Use cases

2.4.3.1 Actors

U an uset.

P1, P2 two witeless devices owned by U.

C1, C2 two removable media owned by U.
APP an application with only one executable.
Loader

| SWinstall, the software installer

IS O T o S

10

15

20

25

30

o7,

WO 03/100583 PCT/GB03/02326

16

ETEL the process controlling access to the phone network.

2.4.3.2 Assumptions

1.

2
3.
4

APP is delivered as a signed application package APP.sis with PhoneNetwork capability.
C: is the internal drive
D: is a removable medium drive.

C1 contains APP.sis under root. APP.sis is the installation package of APP.

2.4.3.3 Use Case 1~-TU installs APP on P1.

N |

o ®

AN A

U plugs C1 into P1.

U uses P1.

U asks SWinstall to install D:\ APP.sis on drtive D:\.
SWinstall verifies the signing certificate. {E1}
SWinstall extracts APP.app.

" SWinstall removes system and user capabilities from the executable and copies them to a

to c:\<directory accessible to TCB only>\APP.cap.

. SWlnstall hashes APP.app and stores it in c:\<directory accessible to TCB

only>\APP.cap.

. SWinstall copies APP.app to D:

SWinstall completes the installation.

E1- Invalid signature

1.

End of the use case.

2.4.3.4 Use Case 2 ~U copies Cl into C2 off line and uses C2 with P1.

N R e

U copies C1 into C2 offline.
U plugs C2 in P1.

YU uses P1.

U asks Loader to start APP.

Loader finds APP.app in D:\

Loadet opens c:\<directory accessible to TCB only>\APP.cap.
Loader verifies hashes successfully. {E2}

10

15

20

25

WO 03/100583
17

8. Loader extracts system and uset capabilities from APP.cap
9. Loader loads APP.app and assigﬁs capabilities to APP.app.
10. U asks APP to dial a numbet. ’

11. APP asks ETEL to dial a number

12, BTEL successfully checks APP has got PhoneNetwork.
13. ETEL dials the number. - |

14. U uses the phone connection.

E2- Hashes mismatch
1. Loader does not load APP and returns Binary Hash Mismatch etror.
2. U cannot use APP.

2.4.3.5 Use Case 3-U uses Cl with P2
U plugs C1 in P2.
U uses P2.
U asks Loader to start APP.
Loader finds APP.app in D:\
Loader does not find c:\<ditectory accessible to TCB only>\APP.cap.
Loader loads APP.app and assigns no uset and system capabilities to APP.app
U asks APP to dial 2 number.
APP asks ETEL to dial a number
ETEL detects APP has not got PhoneNetwork.
. ETEL asks U if she wants to make the call.
. U accepts.{E1}
. ETEL dials the number.

W oo Ny Ut =

[T
w N = O

. U uses the phone connection.

E1- U does not accepts
1. ETEL does not dial the numbet.
2. APP displays an error to U.

PCT/GB03/02326

10

15

20

25

30

WO 03/100583

PCT/GB03/02326
18

2.4.3.6 Use Case 4 — U installs APP on P2 and demotes APP’s PhoneNetwork

1.

ur. >

o Lo N

10.
1L
12.
13,
14.
15.
16.
17.
18.
19.
20.
21.
22.
23,
24,

U plugs C1 in P2.

U uses P2.

U successfully installs APP on P2 D:\ (refer to Use case 1)‘

U asks SWinstall to remove PhoneNetwork from APP’s capabilities.
SWinstall modifies c:\<directory accessible to TCB only>\APP.cap and reset user
capabilities in the file.

U asks Loader to start APP.

Loader finds APP.app in D:\

Loader opens c:\<directory accessible to TCB only>\APP.cap.
Loader verifies hashes successfully. {E2}

Loader extracts capabilities from APP.cap

Loader loads APP.app and assigns capabilities to APP.app.

U asks APP to dial a number.

APP asks ETEL to dial a number

ETEL detects APP has not got PhoneNetwork.

ETEL asks U if she wants to make the call.

U accepts.{E1}

ETEL dials the number.

U uses the phone connection.

U plugs C1 on P1.

U asks APP to dial a numbet.

APP asks ETEL to dial a number

ETEL successfully checks APP has got PhoneNetwotk.

ETEL dials the number. |

U uses the phone connection.

E1- U does not accepts

1.
2.

ETEL does not dial the number.
APP displays an etror to U.

10

15

20

25

30 .

IR -BEEN RN T o S

WO 03/100583 PCT/GB03/02326

19

E2- Hashes mismatch
1. Loader does not load APP and returns Binary Hash Mismatch etror.
2. U cannot use APP.

2.4.3.77 Use Case 5— U uninstalls APP from P2 with C2

U plugs C2 in P2.

U uses. P2,

U asks SWinstall to uninstall APP.

SWinstall deletes c:\<directory accessible to TCB only>\APP.cap.
SWinstall asks U to confirm deletion on D:.

U confirms.{E1}

SWinstall deletes APP.app from D:.

U cannot use C2 on P1 or P2 to start APP.

e B o S A

E2- U does not confitm
1. SWiastall does not delete APP.app on D.
2. U can still use C2 with P1 to start APP.

2.4.3.8 Use Case 6~ U hackes APP.app to add some system capability.
U modifies APP.app system capabilities off line on C1.

U plugs C1 in P1.

U uses P1.

U asks Loader to start APP.

Loader finds APP.app in D:

Loader opens c:\<ditectory accessible to TCB only>\APP.cap.

Loader does not verify the hash successfully.

Loadet does not load APP and returns Binary Hash Mismatch estor.

U cannot use APP.

'2.4.3.9 Conclusion

These use cases show that even with Platform Security, the flexibility provided by removable

media is kept:

WO 03/100583 PCT/GB03/02326
20

- To share cards between devices with different user capability settings.
- To duplicate cards and use the copies without restriction.

- To secutely execute code from removable media.

10

15

20

25

WO 03/100583

PCT/GB03/02326
21

CLAIMS

A mobile witeless device operable to install native executable code on 2 removable
medium, in which the device is programmed to calculate and store a digest of this

code into a petsistent non-removable stote inside the device.

The device of Claim 1 programmed such that, when the removable medium is
plugged back into the device, and the code is invoked, the device recalculates a digest
from the code it wants to load from the removable medium and compares it with

the one stored inside the petsistent non-temovable store, preventing use if the

calculated digest and the stored digest differ.

The device of Claim 1 in which the stoted digest is accessible only by components in

a trusted computing base.

The device of Claim 1 in which the digest as well as the executable’s capability are

securely stored on the device.

The device of Claim 1 in which, if no verification is possible because the executable

is unknown, the executable is loaded without any capability and identity.

The device of Claim 2 in which if the verification fails, then the executable is not

loaded.

The device of Claim 1 in which if the verification succeeds then the executable is

loaded and assigned capabilities secutely stored on the device.

10

15

20

25

WO 03/100583 PCT/GB03/02326

8.

22

A method of using executable code stored on a removable medium, compzising the

steps of:

10.

11.

12.

13.

() calculating and storing a first digest of this code into a persistent non-
removable store inside a mobile wireless device

(b) transferring the ‘executable code onto a removable medium coupled to the
device;

© de-coupling the removable medium;

d re-coupling the removable medium;

(® calculating a new digest from the code stored on the removable medium;

® compating the new digest with the first digest;

) preventing use of the code if the new digest and the first digest differ.

The method of Claim 8 in which the first digest is accessible only by components in a

trusted computing base.

The method of Claim 8 in which the first digest as well as the executable’s capability

are securely stored on the device.

" The method of Claim 8 in which, if no verification is possible because the executable

is unknown, the executable is loaded without any capability and identity.

The method of Claim 8 in which if the verification fails, then the executable is not

loaded.

The method of Claim 8 in which if the verification succeeds then the executable is

loaded and assigned capabilities securely stored on the device.

Intern | Application No

INTERNATIONAL SEARCH REPORT PCT/GB 03/02326

CLASSIFICATION OF SUBJECT MATTER

A
IPC 7 GO6F1/00

According to International Patent Classification (IPC) or fo both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F HO04Q

Documentation searched other than minimum documentation to the extent that such documents are included In the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 00 18162 A (QUALCOMM INC) 1-8
30 March 2000 (2000-03-30)
page 1, Tine 30 -page 2, line 33
page 8, line 21 — 1ine 29
abstract; claims 1-30; figure 4

A US 6 026 293 A (OSBORN WILLIAM R) 1-4
15 February 2000 (2000-02-15)
claims 1-50

A US 5 495 518 A (HAYASHI TAKEHIKO)
27 February 1996 (1996-02-27)

the whole document

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

'L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

'O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited {_o understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
_meﬂr:ts, ﬁuch combination being obvious to a person skilled
in the art.

'&" document member of the same patent family

Date of the actual complstion of the interational search

26 September 2003

Date of mailing of the intemational search report

07/10/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL. - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31~70) 340-3016

Authorized officer

Coppieters, S

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

mrormation on patent family members

Inten

11 Application No

PCT/GB 03/02326

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 0018162 A 30-03-2000 AU 6042899 A 10-04-2000
WO 0018162 Al 30-03-2000

US 6026293 A 15-02-2000 AU 734212 B2 07-06-2001
AU 4172297 A 26-03-1998
BR 9712007 A 24-08-1999
CN 1235743 A 17-11-1999
EE 9900084 A 15-10-1999
EP 0923842 AZ 23-06-1999
JP 2001500293 T 09-01-2001
PL 332050 Al 16-08-1999
Wo 9810611 A2 12-03-1998

US 5495518 A 27-02-1996 JP 5167496 A 02-07-1993
GB 2262686 A ,B 23-06-1993
-SE 520372 C2 01-07-2003
SE 9203738 A 17-06-1993

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Search_Report

