International Application Published under the Patent Cooperation Treaty (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 August 2009 (13.08.2009)

(72) Inventors; and

(74) Agents: WILSON SONSINI GOODRICH & ROSATI et al; 650 Page Mill Road, Palo Alto, California 94304 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, Uganda, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.1(1)(i))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.1(1)(ii))

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: IV-vi-DISUBSTITUTEDAMINOALKYLBI PHENYL ANTAGONISTS OF PROSTAGLANDIN D2 RECEPTORS

(57) Abstract: Described herein are compounds that are antagonists of PGD2 receptors. Also described are pharmaceutical compositions and medicaments that include the compounds described herein that are antagonists of PGD2 receptors. Also described herein are methods of using such antagonists of PGD2 receptors, alone and in combination with other compounds, for treating respiratory, cardiovascular, and other PGD2-dependent or PGD2-mediated conditions or diseases.
AyV-DISUBSTITUTED AMINOALKYLBIPHENYL ANTAGONISTS OF PROSTAGLANDIN D₂ RECEPTORS

RELATED APPLICATIONS

[001] This application claims the benefit of U.S provisional patent application no. 61/025,597 entitled "N,N-disubstituted aminoalkylbiphenyl antagonists of prostaglandin D2 receptors" filed on February 1, 2008 and U.S provisional patent application no. 61/10,496 entitled "N,N-disubstituted aminoalkylbiphenyl antagonists of prostaglandin D2 receptors" filed on October 31, 2008, all of which are incorporated by reference in their entirety.

FIELD OF THE INVENTION

[002] Described herein are compounds, methods of making such compounds, pharmaceutical compositions and medicaments comprising such compounds, and methods of using such compounds to treat, prevent or diagnose diseases, disorders or conditions associated with prostaglandin D₂.

BACKGROUND OF THE INVENTION

[003] Prostaglandins are acidic lipids derived from the metabolism of arachidonic acid by the action of cyclooxygenase enzymes and downstream synthases. Prostaglandins have a diverse range of activities and have a well recognized role in pain and inflammation. Prostaglandin D₂ (PGD₂) is an acidic lipid mediator derived from the metabolism of arachidonic acid by cyclooxygenases and PGD₂ synthases. PGD₂ is produced by mast cells, macrophages and T_{H2} lymphocytes in response to local tissue damage as well as allergic inflammation in diseases such as asthma, rhinitis, and atopic dermatitis. Exogenous PGD₂ applied to bronchial airways elucidates many characteristics of an asthmatic response suggesting that PGD₂ plays an important pro-inflammatory role in allergic diseases.

[004] PGD₂ binds to a number of receptors, which include the thromboxane-type prostanoid (TP) receptor, PGD₂ receptor (DP, also known as DP₁) and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2; also known as DP₂). DP₂ is associated with promoting chemotaxis and activation of T_{H2} lymphocytes, eosinophils and basophils. In particular, PGD₂ binds to DP₂, and mediates its effects through a Gi-dependant elevation in calcium levels and reduction of intracellular cyclic AMP. In T_{H2} lymphocytes, IL4, IL5 and IL13 cytokine production is stimulated. These cytokines have been implicated in numerous biological actions including, by way of example only, immunoglobulin E production, airway response, mucous secretion, and eosinophil recruitment.

SUMMARY OF THE INVENTION

[005] Presented herein are compounds, pharmaceutical compositions and medicaments, methods, for (a) diagnosing, preventing, or treating allergic and non-allergic inflammation, (b)
mitigating adverse signs and symptoms that are associated with inflammation, and/or (c) controlling immunological, proliferative disorders. These disorders may arise from one or more of a genetic, iatrogenic, immunological, infectious, oncological, toxic, surgical, and/or traumatic etiology. In one aspect, the methods, compounds, pharmaceutical compositions, and medicaments described herein comprise antagonists of PGD$_2$ receptors. In one aspect, the methods, compounds, pharmaceutical compositions, and medicaments described herein comprise antagonists of DP$_2$

[006] In one aspect provided herein are compounds of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), and Formula (VIII), pharmaceutically acceptable salts, pharmaceutically acceptable prodrugs, and pharmaceutically acceptable solvates thereof, which are antagonists of DP$_2$, and are used to treat mammals suffering from one or more PGD$_{2}$ dependent conditions or diseases, including, but not limited to, asthma, rhinitis, chronic obstructive pulmonary disease, pulmonary hypertension, interstitial lung fibrosis, arthritis, allergy, psoriasis, inflammatory bowel disease, adult respiratory distress syndrome, myocardial infarction, aneurysm, stroke, cancer, endotoxic shock, proliferative disorders and inflammatory conditions. In some embodiments, PGD$_{2}$-dependent conditions or diseases include those wherein an absolute or relative excess of PGD$_{2}$ is present and/or observed. In one aspect, the mammal is a human.

[007] In one aspect is a compound having the structure of Formula (I), pharmaceutically acceptable salts, pharmaceutically acceptable solvates, or pharmaceutically acceptable prodrugs thereof:

![Formula (I)](image)

wherein,

Q is tetrazolyl or -Cl=O)-Q1;

Q1 is -OH, -O(C,-C$_4$alkyl), -NHSO$_2$R2, -N(R3)$_2$, -NH-OH, or -NH-CN;

each R1 is independently selected from H, F, and -CH$_3$;

each of R2, R3, R4, R5, R6, R7 and R9 is independently H, halogen, -CN, -NO$_2$, -OH, -OR3, -SR9, -S(K)R9, -S(=O)2R9, -NHS(=O)$_2$R9, -C(=O)R9, -OC(=O)R9, -CO$_2$R9, -OCO$_2$R9, -CH$_3$(R9)$_2$, -N(R9)$_2$, -NHCH$_2$CO$_2$R9, -OCH$_2$CO$_2$R9, -SCH$_2$CO$_2$R9, -Cl(=O)N(R9)$_2$, -OC(=O)N(R9)$_2$, -NH(=O)NH(R9)$_2$, -NHC(=O)OR9, -NHC(=O)OR$_2$;

c(=O)R9, d-C$_6$atlyl, C$_s$fluoroalkyl, d-C$_s$fluoroalkoxy, C$_r$QralkOxy, C$_r$
C₄heteroalkyl, C₅-C₁₀cycloalkyl, a substituted or unsubstituted C₂-C₁₀heterocycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted monocyclic heteroaryl, or a substituted or unsubstituted bicyclic heteroaryl, -OCH₂-(C₅-C₆cycloalkyl), -OCH₂-(substituted or unsubstituted phenyl), or -OCH₂-(substituted or unsubstituted monocyclic heteroaryl);
each R₈ is H;
R¹⁰ is -C(=O)R₁⁴, -C(=O)OR₁⁵, -C(=O)N(R₁⁶)₂, -C(=NR₁⁹)N(R₁⁶)₂, -S(^O)N(R₁⁶)₂ or -S(=O)₂R₁⁵;
R₁⁴ is C₁-C₆alkyl, C₁-C₆fluoroalkyl, C₁-Ceheteroalkyl, C₃-Ciocycloalkyl, a substituted or unsubstituted C₂-C₆heterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -Cᵢ-Cᵢ₈alkyl-(C₃-C₆cycloalkyl), -Cᵢ-Cᵢ₈alkyl-(a substituted or unsubstituted C₂-Ciocycloalkyl), -Cᵢ-Cᵢ₈alkyl-(a substituted or unsubstituted aryl), or -Cᵢ-Cᵢ₈alkyl-(a substituted or unsubstituted heteroaryl);
R₁⁵ is Cᵢ-Qalkyl, Cᵢ-C₆fluoroalkyl, d-C₆heteroalkyl, C₃-Ciocycloalkyl, a substituted or unsubstituted C₂-Ciocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -Cᵢ-Cᵢ₈alkyl-Cᵢ₈cycloalkyl, -Cᵢ-Cᵢ₈alkyl-(a substituted or unsubstituted C₂-Ciocycloalkyl), -d-Cᵢ₈alkyl-(a substituted or unsubstituted aryl), or -Cᵢ-Cᵢ₈alkyl-(a substituted or unsubstituted heteroaryl);
each R₁⁶ is independently H, -CN, Cᵢ-Cᵢ₈alkyl, CrC₈fluoroalkyl, Ci-C₈heteroalkyl, C₃-Ciocycloalkyl, a substituted or unsubstituted C₂-Ciocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -Cᵢ-Cᵢ₈alkyl-Cᵢ₈cycloalkyl, -Cᵢ-Cᵢ₈alkyl-(substituted or unsubstituted C₂-Ciocycloalkyl), -CrC₈alkyl-(substituted or unsubstituted aryl), or -Cᵢ-Cᵢ₈alkyl-(substituted or unsubstituted heteroaryl); or
two R₁⁶ groups attached to the same N atom are taken together with the N atom to which they are attached to form a substituted or unsubstituted heterocycloalkyl;
R¹⁰ is selected from among H, -Sf=O)₂R₁², -S(=O)₂NH₂, -C(=O)R₁², -CN, and -NO₂;
R₁¹ is Cᵢ-Cᵢ₈alkyl, Cᵢ-Cᵢ₈heteroalkyl, Cᵢ-Cᵢ₈haloalkyl, C₃-C₈cycloalkyl, -Cᵢ-Cᵢ₈alkylene-OHᵢ, -Cᵢ-Cᵢ₈alkylene-O-(Cᵢ-Cᵢ₈alkyl), -CrC₈alkylene-S-(Cᵢ-Cᵢ₈alkyl), -Cᵢ-Cᵢ₈alkylene-S(=O)-(Cᵢ-Cᵢ₈alkyl)
In one aspect, the compound of Formula (T) has the structure of Formula (H):
[013] In certain embodiments, each R\textsubscript{1} is H.

[014] In some embodiments, each of R\textsubscript{2}, R\textsubscript{3}, R\textsubscript{6}, R\textsubscript{7} and R\textsubscript{9} is independently selected from H, halogen, -CN, -OH, -OR15, -SR12, -S(=O)R12, -S(=O)\textsubscript{2}R12, -C(=O)R12, -d-C\textsubscript{3}alkyl, C\textsubscript{3}fluoroalkyl, C\textsubscript{3}C\textsubscript{6}cycloalkyl, Ci-C\textsubscript{4}fluoroalkoxy, Ci-C\textsubscript{4}alkoxy, and Crdheteroalkyl. In some other embodiments, each of R\textsubscript{2}, R\textsubscript{3}, R\textsubscript{6}, R\textsubscript{7} and R\textsubscript{9} is independently selected from H, halogen, -OH, C\textsubscript{2}C\textsubscript{3}alkyl, C\textsubscript{4}alkoxy, and Ci-C\textsubscript{4}fluoroalkyl. In yet other embodiments, each of R\textsubscript{2}, R\textsubscript{3}, R\textsubscript{6}, R\textsubscript{7} and R\textsubscript{9} is independently selected from H, halogen, -OH, -CH\textsubscript{3}, -OCH\textsubscript{3}, and -CF\textsubscript{3}.

[015] In some embodiments, R\textsubscript{4} is H, halogen, -CN, -NO\textsubscript{2}, -OH, -OR13, -SR12, -S(=O)R12, -S(=O)\textsubscript{2}R12, -C(=O)R12, -OC(=O)R12, -CO\textsubscript{2}R13, -OCO\textsubscript{2}R13, -CH(R13)\textsubscript{2}, -N(R13)\textsubscript{2}, -NHCH\textsubscript{2}CO\textsubscript{2}R13, -OCH\textsubscript{2}CO\textsubscript{2}R13, -SCH\textsubscript{2}CO\textsubscript{2}R13, -C(O)N(R11)\textsubscript{2}, Ci-C\textsubscript{6}alkyl, C\textsubscript{3}C\textsubscript{6}fluoroalkyl, C\textsubscript{2}C\textsubscript{6}heterocycloalkyl, substituted or unsubstituted C\textsubscript{2}-C\textsubscript{6}heterocycloalkyl, Ci-C\textsubscript{4}fluoroalkoxy, Ci-C\textsubscript{4}alkoxy, C\textsubscript{1}-C\textsubscript{4}heteroalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted monocyclic heteroaryl, -OCH\textsubscript{2}-(C\textsubscript{3}-C\textsubscript{6}cycloalkyl), -OCH\textsubscript{2}-(substituted or unsubstituted phenyl), or -OCH\textsubscript{2}-(substituted or unsubstituted monocyclic heteroaryl).

[016] In some other embodiments, R\textsubscript{4} is H, F, Cl, Br, I, -CN, -OH, -C\textsubscript{2}C\textsubscript{3}alkyl, C\textsubscript{4}fluoroalkyl, Ci-C\textsubscript{4}fluoroalkoxy, C\textsubscript{2}C\textsubscript{6}alkoxy, d-C\textsubscript{6}heteroalkyl, -OCH\textsubscript{2}CO\textsubscript{2}R13, -OCH\textsubscript{2}C(=O)N(R11)\textsubscript{2}, -OCH\textsubscript{2}C\textsubscript{2}-C\textsubscript{6}cycloalkyl, or -OCH\textsubscript{2}-(substituted or unsubstituted phenyl).

[017] In some embodiments, R\textsubscript{5} is H, halogen, -CN, -NO\textsubscript{2}, -OH, -OR13, -SR12, -S(=O)R12, -S(=O)\textsubscript{2}R12, -NHS(=O)R12, -C(=O)R12, -OC(=O)R12, -CO\textsubscript{2}R13, -OCO\textsubscript{2}R13, -CH(R13)\textsubscript{2}, -N(R13)\textsubscript{2}, -NHCH\textsubscript{2}CO\textsubscript{2}R13, -OCH\textsubscript{2}CO\textsubscript{2}R13, -SCH\textsubscript{2}CO\textsubscript{2}R13, -C(=O)N(R11)\textsubscript{2}, -OC(=O)N(R11)\textsubscript{2}, -NH\textsubscript{2}C(=O)R13, -NHC(=O)R13, -NH(=O)OR12, -NHC(=O)OR12, -C(=O)NHR13, -d-C\textsubscript{6}alkyl, C\textsubscript{2}C\textsubscript{4}fluoroalkyl, C\textsubscript{3}C\textsubscript{6}cycloalkyl, substituted or unsubstituted C\textsubscript{2}-C\textsubscript{6}heterocycloalkyl, Ci-C\textsubscript{4}fluoroalkoxy, C\textsubscript{2}Qalkoxy, Ci-C\textsubscript{4}heteroalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted naphtyl, substituted or unsubstituted monocyclic heteroaryl, substituted or unsubstituted bicyclic heteroaryl.

[018] In some embodiments, R\textsubscript{10} is -C(=O)R14, -C(=O)OR15, or -C(=O)N(R11).
In some embodiments, R_{14} is C_1-C_6 alkyl, C_1-C_6 fluoroalkyl, C_1-C_6 heteroalkyl, or C_3-C_6 cycloalkyl; or R_{14} is $L_1-L_3-Q^3$: L_1 is a C_1-C_4 alkylene; X^3 is a bond, -O-, -S-, -S(=O)-, -S(=O)$_2$-, or -NR$_1^3$-; Q^3 is C_1-C_4 alkyl, C_1-C_4 fluoroalkyl, or C_3-C_6 cycloalkyl, or a substituted or unsubstituted C_2-Cioheterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, or C_1-C_4 alkyl-C_3-C_6 cycloalkyl, -C_1-C_4 alkyl-(a substituted or unsubstituted aryl), or -C_1-C_4 alkyl-(a substituted or unsubstituted heteroaryl).

In some embodiments, R_{15} is C_1-C_6 alkyl, C_1-C_6 fluoroalkyl, C_1-C_6 heteroalkyl, or C_3-C_6 cycloalkyl, or R_{15} is $L_1-L_3-Q^3$: L_1 is a C_1-C_4 alkylene; X^3 is a bond, -O-, -S-, -S(=O)-, -S(=O)$_2$-, or -NR$_1^3$-; Q^3 is C_1 Qalkyl, C_1-C_6 fluoroalkyl, C_3-C_6 cycloalkyl, or a substituted or unsubstituted phenyl, or a substituted or unsubstituted monocyclic heteroaryl, or -C_2-(a substituted or unsubstituted phenyl), or -C_2-(a substituted or unsubstituted monocyclic heteroaryl).

In some embodiments, each R_{16} is independently H, C_1-C_6 alkyl, C_1-C_6 fluoroalkyl, C_1-C_6 heteroalkyl, or C_1-C_6 cycloalkyl, or R_{16} is $L_1-L_3-Q^3$: L_1 is a C_1-C_4 alkylene; X^3 is a bond, -O-, -S-, -S(=O)-, -S(=O)$_2$-, or -NR$_1^3$-; Q^3 is C_1-C_6 alkyl-C_1-C_6 cycloalkyl, -C_1-C_6 alkyl-(a substituted or unsubstituted phenyl), or -C_1-C_6 alkyl-(a substituted or unsubstituted monocyclic heteroaryl) or -C_2-(a substituted or unsubstituted monocyclic heteroaryl).

In some embodiments, each R_{16} is independently H, C_1-C_6 alkyl, C_1-C_6 fluoroalkyl, C_1-C_6 heteroalkyl, or C_1-C_6 cycloalkyl, or R_{16} is $L_1-L_3-Q^3$: L_1 is a C_1-C_4 alkylene; X^3 is a bond, -O-, -S-, -S(=O)-, -S(=O)$_2$-, or -NR$_1^3$-; Q^3 is C_1-C_6 alkyl-C_1-C_6 cycloalkyl, -C_1-C_6 alkyl-(a substituted or unsubstituted phenyl), or -C_1-C_6 alkyl-(a substituted or unsubstituted monocyclic heteroaryl) or -C_2-(a substituted or unsubstituted monocyclic heteroaryl).

In one aspect, R_{16} is -C(O)R_{14}.

In one aspect, the compound of Formula (I) has the structure of Formula (UI):
In some embodiments, \(R_{14} \) is Ci-C alkyl, Ci-Qfluoroalkyl, or \(C_3-C_6 \) cycloalkyl; or \(R_{14} \) is \(I\Lambda X^3 Q^3 \).

In other embodiments, \(R_{14} \) is \(C_1-C_6 \) alkyl, d-C \(_6 \) fluoroalkyl, or \(C_3-C_6 \) cycloalkyl. In other embodiments, \(R_{14} \) is \(L^3 X^3 Q^3 \); \(L^3 \) is \(-\text{CH}_2\), \(-\text{CH} \left(\text{CH}_3 \right)_2\), or \(-C \left(\text{CH}_3 \right)_2\); \(X^3 \) is \(-\text{O}\), \(-\text{S}\), \(-\text{S}(=\text{O})\), or \(-\text{S}(=\text{O})_2\); \(Q^3 \) is a substituted or unsubstituted phenyl, or \(-\text{CH}_2\)- (a substituted or unsubstituted phenyl).

In one aspect, \(R_{10} \) is \(^{\text{C}(=\text{O})\text{OR}}_{15}\).

In one aspect, the compound of Formula (I) has the structure of Formula (IV):

In one aspect, \(R_{15} \) is \(C_1-C_6 \) alkyl, \(-\text{CH}_2\)-(substituted or unsubstituted phenyl), \(-\text{CH} \left(\text{CH}_3 \right)_2\)- (substituted or unsubstituted phenyl), \(-\text{CH}_2\)-(substituted or unsubstituted monocyclic heteroaryl) or \(-\text{CH} \left(\text{CH}_3 \right)_2\)-(substituted or unsubstituted monocyclic heteroaryl).

In another aspect, \(R_{15} \) is \(-\text{CH}_2\)-(substituted or unsubstituted phenyl), or \(-\text{CH} \left(\text{CH}_3 \right)_2\)- (substituted or unsubstituted phenyl). In another aspect, \(R_{15} \) is \(-\text{CH}_2\)-(substituted or unsubstituted phenyl).

In one aspect, \(R_{10} \) is \(-C(=\text{O})\text{N} \left(R_{16} \right)_2 \).
In one aspect, the compound of Formula (I) has the structure of Formula (V):

![Structure](image)

Formula (V).

In some embodiments, each R^{16} is independently H, Ci-C_6alkyl, C_3-C_6cycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted monocyclic heteroaryl, -CH_2-(a substituted or unsubstituted phenyl), -CH(CH_3)-(a substituted or unsubstituted phenyl), -CH_2-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH_3)-(a substituted or unsubstituted monocyclic heteroaryl). In other embodiments, one R^{16} is H and the other R^{16} is -CH_2-(a substituted or unsubstituted phenyl), -CH(CH_3)-(a substituted or unsubstituted phenyl), -CH_2-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH_3)-(a substituted or unsubstituted monocyclic heteroaryl). In yet other embodiments, one R^{16} is H and the other R^{16} is -CH_2-(a substituted or unsubstituted phenyl), or -CH(CH_3H a substituted or unsubstituted phenyl). In one aspect, one R^{16} is H and the other R^{16} is -CH_2-(a substituted or unsubstituted phenyl).

In one aspect, R^{10} is -S(O)_2-R^{15}. In some embodiments, R^{15} is C_1-C_6alkyl, C_1-C_6cycloalkyl, an optionally substituted phenyl, an optionally substituted naphthyl, or an optionally substituted heteroaryl. In some other embodiments, R^{15} is C_1-C_6alkyl, C_3-C_6cycloalkyl, an optionally substituted phenyl, an optionally substituted naphthyl, or an optionally substituted heteroaryl. In yet other embodiments, R^{15} is C_1-C_6alkyl, or an optionally substituted phenyl.

In some embodiments, R^{10} is -C(=NR^{19})N(R^{16})_2; each R^{16} is independently H, -CN, C_1-C_6alkyl, C_1-C_6fluoroalkyl, C_1-C_6cycloalkyl, an optionally substituted C_3-C_6alkyl, an optionally substituted C_2-C_6heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, -C_1-C_6alkyl-(optionally substituted C_3-C_6cycloalkyl), -C_1-C_6alkyl-(optionally substituted C_2-C_6heterocycloalkyl), -C_1-C_6alkyl-(optionally substituted aryl), and -C_1-C_6alkyl-(optionally substituted heteroaryl); or two R^{16} groups attached to the same N atom are taken together with the N atom to which they are attached to form an optionally substituted C_2-C_6heterocycloalkyl.
In some embodiments, R₁₀ is -C(=NR₁⁹)NH(R₁₆); R₁₆ is C₆₃alkyl, C₆₃fluoroalkyl, C₆₃heteroaryl, C₃₃C₆cycloalkyl, an optionally substituted phenyl, an optionally substituted heteroaryl, -CH₂(C₃₃C₆cycloalkyl), -CH₂-(optionally substituted phenyl), or -CH₂-(optionally substituted heteroaryl); R₁⁹ is -CN.

In one aspect, R² and R₃ are H.

In one aspect, R⁴ is H, F, Cl, Br, I, -CN, -OH, -C₆₃alkyl, C₆₃fluoroalkyl, C₆₃heteroaryl, Q-CSalkoxy, or C₆₃heteroaryl. In some embodiments, R⁴ is H, F, Cl, Br, -OH, -CH₃, -OCH₃, -CF₃, or -OCF₃. In other embodiments, R⁴ is -OCH₃.

In some embodiments, R⁵ is F, Cl, Br, I, -CN, -NO₂, -OH, -CH₃, -CH₂CH₃, i-propyl, tBu, -CF₃, -CH₂CF₃, -OCH₃, -OCF₃, -C(CHj)₂OH, -C(CH₂CHj)₂OH, -S(=O)₂(C₆₃alkyl). -S(=O)₂(substituted or unsubstituted phenyl), -NHS(O)₂(C₆₃alkyl), -NHS(O)₂(substituted or unsubstituted phenyl), -NHS(O)₂(substituted or unsubstituted heteroaryl), -C(=O)(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted monocyclic heteroaryl), -NHS(=O)(C₆₃alkyl), -NHC(=O)(substituted or unsubstituted phenyl), -NHC(O)(substituted or unsubstituted monocyclic heteroaryl), -NHC(O)(substituted or unsubstituted phenyl), -NHC(O)(substituted or unsubstituted monocyclic heteroaryl), -NH₃(=O)(C₆₃alkyl), -NH₃(=O)(substituted or unsubstituted phenyl). In some other embodiments, R⁵ is F, Cl, Br, I, -CN, -NO₂, -OH, -CH₃, -CH₂CH₃, i-propyl, tBu, -CF₃, -CH₂CF₃, -OCH₃, -OCF₃, -C(CHj)₂OH, -C(CH₂CHj)₂OH, -S(=O)₂(C₆₃alkyl), -S(=O)₂(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted monocyclic heteroaryl), -C(=O)(substituted or unsubstituted phenyl), -NHS(O)₂(C₆₃alkyl), -C(O)(CH₃)₂CO₂H, -C(O)(CH₂CH₃)₂OH, -C(O)(CH₂CHj)₂OH, -S(=O)₂(C₆₃alkyl), -S(=O)₂(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted monocyclic heteroaryl), -C(=O)(substituted or unsubstituted phenyl). In some other embodiments, R⁵ is F, Cl, Br, I, -CN, -NO₂, -OH, -CH₃, -CH₂CH₃, i-propyl, tBu, -CF₃, -CH₂CF₃, -OCH₃, -OCF₃, -C(CHj)₂OH, -C(CH₂CHj)₂OH, -S(=O)₂(C₆₃alkyl), -S(=O)₂(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted monocyclic heteroaryl), -C(=O)(substituted or unsubstituted phenyl), -NHS(O)₂(C₆₃alkyl), -C(O)(CH₃)₂CO₂H, -C(O)(CH₂CH₃)₂OH, -C(O)(CH₂CHj)₂OH, -S(=O)₂(C₆₃alkyl), -S(=O)₂(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted phenyl), -C(=O)(substituted or unsubstituted monocyclic heteroaryl), -C(=O)(substituted or unsubstituted phenyl). In some other embodiments, R⁵ is C₃₃C₆cycloalkyl, substituted or unsubstituted C₂-C₆heterocycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted monocyclic heteroaryl, or substituted or unsubstituted bicyclic heteroaryl.
benzimidaolyl, benzthiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl.

[047] In yet other embodiments, R⁵ is a substituted or unsubstituted group selected from phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, oxazolyl, thiadiazolyl, pyrazolyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, benzofuranyl, benzothenyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl. In one aspect, R⁵ is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl. In another aspect, R⁵ is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl.

[048] In some embodiments, R¹¹ is C₁-C₆alkyl, C₁-C₆haloalkyl, or C₃-C₈alkyl. In other embodiments, R¹¹ is -CH₃, -CH₂CH₃, -CF₃, -CH₂CF₃, cyclopropyl, cyclobutyl, or cyclopentyl. In yet other embodiments, Rⁿ is -CH₃, -CH₂CH₃, or -CH₂CF₃.

[049] In one aspect, the compound of Formula (J) has the structure of Formula (VII).

[050] In one aspect, described herein is a compound having the structure of Formula (VII), pharmaceutically acceptable salts, pharmaceutically acceptable solvates, or pharmaceutically acceptable prodrugs thereof:

![Formula (VII)](attachment:image)

wherein,

R⁴ is H, halogen, -CN, -OH, C₁-C₄alkyl, C₁-C₄fluoroalkyl, C₁-C₄fluoroalkoxy, or C₁-C₄haloalkyl;

R⁵ is H, halogen, -CN, -NO₂, -OH, -OR¹³, -SR¹³, -S(=O)R¹², -S(=O)J¹², -NHS(=O)₂R¹², -C(O)R¹², -OC(O)R¹², -CO₂R¹³, -OCO₂R¹³, -CH(R¹³)₂, -N(R¹³)₂, -Cl=O)N(R¹³)₂, -OC(O)N(R¹³)₂, -NHC(O)NH(R¹³)₂, -NHC(O)R¹², -NHC(O)OR¹², -C(OH)(R¹³)₂, -Cl-C₆alkyl, C₁-C₆fluoroalkyl, C₁-C₆fluoroalkoxy, or Q-C₁-C₆haloalkyl;
R20 is C\textsubscript{i} C\textsubscript{4}alkyl, C\textsubscript{3}-C\textsubscript{6}cycloalkyl, -CH\textsubscript{2}-O-C\textsubscript{4}alkyl, -CH(CH\textsubscript{3})-O-C\textsubscript{4}alkyl, -C(CH\textsubscript{3})\textsubscript{2}-(substituted or unsubstituted phenyl), -CH(CH\textsubscript{3})-O-(substituted or unsubstituted phenyl), -C(CH\textsubscript{3})\textsubscript{2}-(substituted or unsubstituted phenyl), -CH\textsubscript{2}OCH\textsubscript{2}-(substituted or unsubstituted phenyl), -O-C\textsubscript{4}alkyl, -O-CH\textsubscript{2}-(substituted or unsubstituted phenyl), -O-CH(CH\textsubscript{3})-(substituted or unsubstituted phenyl), -NR\textsubscript{16}C\textsubscript{4}alkyl, -NR\textsubscript{16}-C\textsubscript{3}-C\textsubscript{6}cycloalkyl, -NR\textsubscript{16}-CH\textsubscript{2}-(substituted or unsubstituted phenyl), or -NR\textsubscript{16}-CH(CH\textsubscript{3})-(substituted or unsubstituted phenyl), wherein if the phenyl of R\textsubscript{20} is substituted, then the phenyl is substituted with 0, 1, or 2 R\textsubscript{21} groups;
each R\textsubscript{21} is independently selected from halogen, -OH, -OC\textsubscript{4}alkyl, Cl-C\textsubscript{4}alkyl, and -CF\textsubscript{3};
R\textsubscript{16} is H or C\textsubscript{1}-C\textsubscript{4}alkyl;
R\textsubscript{11} is C\textsubscript{i} C\textsubscript{4}alkyl, C\textsubscript{3}-C\textsubscript{6}fluoroalkyl, or C\textsubscript{3}-C\textsubscript{6}cycloalkyl;
R\textsubscript{12} is Cl-C\textsubscript{4}alkyl, C\textsubscript{i} C\textsubscript{4}fluoroalkyl, or C\textsubscript{i} C\textsubscript{4}heteroalkyl;
each R\textsubscript{13} is independently selected from H, C\textsubscript{i} C\textsubscript{4}alkyl, Cl-C\textsubscript{4}heteroalkyl, and C\textsubscript{i} C\textsubscript{4}fluoroalkyl.

[051] In one aspect, the compound of Formula (VII) has the structure of Formula (VIII):

![Formula (VIII)](image)

[052] In one aspect, R11 is -CH\textsubscript{3}, -CH\textsubscript{2}CH\textsubscript{3}, -CF\textsubscript{3}, -CH\textsubscript{2}CF\textsubscript{3}, cyclopropyl, cyclobutyl, or cyclopentyl.

[053] In some embodiments, R5 is H, halogen, -CN, -NO\textsubscript{2}, -OH, -OR\textsubscript{13}, -SR\textsubscript{12}, -S(K)R\textsubscript{12}, -Sf=O)\textsubscript{2}R\textsubscript{12}, -NHS(=O)\textsubscript{2}R\textsubscript{12}, -C(=O)R\textsubscript{12}, -OC(=O)R\textsubscript{12}, -CO\textsubscript{2}R\textsubscript{13}, -OCO\textsubscript{2}R\textsubscript{13}, -N(R\textsubscript{13})\textsubscript{2}, -C(=O)N(R\textsubscript{13})\textsubscript{2}, -OC(=O)N(R\textsubscript{13})\textsubscript{2}, -NHC(K)NH(R\textsubscript{13}), -NHC(K)NR\textsubscript{12}, -NHC(K)NOR\textsubscript{12}, -C(OH)(R\textsubscript{13})\textsubscript{2}, -C\textsubscript{i} C\textsubscript{4}alkyl, C\textsubscript{i} C\textsubscript{4}fluoroalkyl, C\textsubscript{i} C\textsubscript{4}fluoroalkoxy, C\textsubscript{i} C\textsubscript{4}alkoxy, ord-Qheteroalkyl;
R\textsubscript{12} is Cl-C\textsubscript{4}alkyl; each R\textsubscript{13} is independently selected from H, and C\textsubscript{i} C\textsubscript{4}alkyl.

[054] In some embodiments, R\textsubscript{20} is C\textsubscript{i} C\textsubscript{4}alkyl, C\textsubscript{3}-C\textsubscript{6}cycloalkyl, -CH\textsubscript{2}O-C\textsubscript{4}alkyl, -CH\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH(CH\textsubscript{3})-O-(substituted or unsubstituted phenyl), -C(CH\textsubscript{3})\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH\textsubscript{2}OCH\textsubscript{2}-(substituted or unsubstituted phenyl), -OC\textsubscript{4}alkyl, -O-CH\textsubscript{2}-(substituted or unsubstituted phenyl), -O-CH(CH\textsubscript{3})-(substituted or
unsubstituted phenyl), -NR^1^alkyl, -NR^1^alkyl-(substituted or unsubstituted phenyl), or -NR^1^alkyl-(substituted or unsubstituted phenyl), wherein if the phenyl of R^2^0 is substituted, then the phenyl is substituted with 0, 1, or 2 R^2^1 groups.

[055] In other embodiments, R^2^0 is -CH^3, -CH^2^CH^3, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, -CH^2^OCH^3, -CH^2^O-(substituted or unsubstituted phenyl), -CH(CH^3)_2-O-(substituted or unsubstituted phenyl), -C(CH^3)_2-O-(substituted or unsubstituted phenyl), wherein if the phenyl of R^2^0 is substituted, then the phenyl is substituted with 0, 1, or 2 R^2^1 groups; each R^2^1 is independently selected from F, Cl, Br, -OH, -OCH^3^, -CH^3^, and -CF^3^.

[056] hi some embodiments, R^4^ is H, F, Cl, Br, -OH, -CH^3^, -OCH^3^, -CF^3^, or -OCF^3^.

[057] In some embodiments, R^5^ is H, halogen, -CN, -NO^2^, -OH, -S(O)^2^-CH^3, -NHS(O)^2^-CH^3, -C(O)CH^3, -OC(O)CH^3, -CO^2^-H, -CO^2^-CH^3, -CO^2^-CH^2^CH^3, -NH^2, -C(O)NH^2, -NHC(O)CH^3, -CH^3, -CF^3, -OCF^3, -OCH^3^, -CH^2^OH, or -C(CH^3)_2OH.

[058] hi some embodiments, R^4^ is H, F, Cl, Br, -CH^3^, -OCH^3^, -CF^3^, or -OCF^3^.

[059] hi other embodiments, R^5^ is halogen, -CH^3^, -CF^3^, -OCF^3^, or -OCH^3^.

[060] hi other embodiments, R^2^0 is -CH^3, cyclopropyl, -CH^2^OCH^3, -CH^2^O-(substituted or unsubstituted phenyl), -CH^2^OCH^2^- (substituted or unsubstituted phenyl), wherein if the phenyl of R^2^0 is substituted, then the phenyl is substituted with 0, 1, or 2 R^2^1 groups; each R^2^1 is independently selected from F, Cl, Br, -OH, -OCH^3^, -CH^3^, and -CF^3^.

[061] hi one aspect, R^2^0 is -OCl^4^-alkyl, O-CH^2^- (substituted or unsubstituted phenyl), or O-CH(CH^3)_2^- (substituted or unsubstituted phenyl); wherein if the phenyl of R^2^0 is substituted, then the phenyl is substituted with 0, 1, or 2 R^2^1 groups; each R^2^1 is independently selected from F, Cl, Br, -OH, -OCH^3^, -CH^3^, and -CF^3^.

[062] In another aspect, R^2^0 is O-CH^2^- (substituted or unsubstituted phenyl), wherein if the phenyl of R^2^0 is substituted, then the phenyl is substituted with 0, 1, or 2 R^2^1 groups; each R^2^1 is independently selected from F, Cl, and Br.

[063] In one aspect, the compound of Formula (VIII) has the following structure:
wherein, \(m \) is 0, 1, or 2.

[064] In one aspect, \(R^4 \) is F, Cl, Br, -CH\(_3\), -OCH\(_3\), -CF\(_3\), or -OCF\(_3\).

[065] In one aspect, \(R^5 \) is F, Cl, Br, -CH\(_3\), -CF\(_3\), -OCF\(_3\), or -OCH\(_3\).

[066] In one aspect, \(R^{11} \) is -CH\(_3\), -CH\(_2\)CH\(_3\), or -CH\(_2\)CF\(_3\).

[067] In some embodiments, \(R^{20} \) is -NR\(^{16}\)C\(_1\)alkyl, -NR\(^{16}\)-CH\(_2\)-(substituted or unsubstituted phenyl), or -NR\(^{16}\)-CH(CH\(_3\))-(substituted or unsubstituted phenyl), wherein if the phenyl of \(R^{20} \) is substituted, then the phenyl is substituted with 0, 1, or 2 \(R^{21} \) groups; each \(R^{21} \) is independently selected from F, Cl, Br, -OH, -OCH\(_3\), -CH\(_3\), and -CF\(_3\); \(R^{16} \) is H, -CH\(_3\), or CH\(_2\)CH\(_3\).

[068] In one aspect, \(R^{20} \) is NH-CH\(_2\)-(substituted or unsubstituted phenyl), wherein if the phenyl of \(R^{20} \) is substituted, then the phenyl is substituted with 0, 1, or 2 \(R^{21} \) groups; each \(R^{21} \) is independently selected from F, Cl, Br, -OH, -OCH\(_3\), -CH\(_3\), and -CF\(_3\).

[069] In one aspect, \(m \) is 0. In another aspect, \(m \) is 1. In another aspect, \(m \) is 2.

[070] In one aspect, the compound of Formula (VIII) has the following structure:

wherein, \(m \) is 0, 1, or 2.
(VIE)

Formula (VIE)

wherein,

\(R^4 \) is H, halogen, -CN, -OH, C\(_1\)-C\(_4\)alkyl, C\(_1\)-C\(_4\)alkoxy, C\(_1\)-C\(_4\)fluoroalkyl, C\(_1\)-
C\(_4\)fluoroalkoxy, or C-Gj heteroalkyl;

\(R^5 \) is C\(_1\)-C\(_4\)cycloalkyl, a substituted or unsubstituted C\(_2\)-C\(_4\)heterocycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted monocyclic heteroaryl, or a substituted or unsubstituted bicyclic heteroaryl, wherein if \(R^5 \) is substituted, then \(R^5 \) is substituted with 1, or 2 \(R^{5 \text{a}} \) groups

\(R^{20} \) is C\(_1\)-C\(_4\)alkyl, C\(_3\)-C\(_4\)cycloalkyl, -CH\(_2\)O-C\(_1\)-C\(_4\)alkyl, -CH\(_2\)O-(substituted or unsubstituted phenyl), -CH(CH\(_3\))O-(substituted or unsubstituted phenyl), -C(CH\(_3\))\(_2\)-
O-(substituted or unsubstituted phenyl), -CH\(_2\)OCH\(_2\)-(substituted or unsubstituted phenyl), -OC\(_3\)-C\(_4\)alkyl, -O-CH\(_2\)-(substituted or unsubstituted phenyl), -O-CH\(_3\)-(substituted or unsubstituted phenyl), -NR\(_{16}\)-C\(_4\)alkyl, -NR\(_{16}\)-CH\(_2\)-(substituted or unsubstituted phenyl), or -NR\(_{16}\)-CH(CH\(_3\))-(substituted or unsubstituted phenyl), wherein if the phenyl of \(R^{20} \) is substituted, then the phenyl is substituted with 1, or 2 \(R^{5 \text{a}} \) groups;
each R21 is independently selected from halogen, -OH, -OC\textsubscript{i}-C\textsubscript{4}alkyl, C\textsubscript{4}alkyl, and -CF\textsubscript{3}.

R16 is H or Cl-C\textsubscript{4}alkyl;

R2 is Cl-C\textsubscript{4}alkyl, C\textsubscript{4}fluoroalkyl, or C\textsubscript{3}-C\textsubscript{6}cycloalkyl;

R12 is Cl-C\textsubscript{4}alkyl, Crheteroalkyl, or C\textsubscript{6}fluoroalkyl;

each R13 is independently selected from H, Cl-C\textsubscript{4}alkyl, C\textsubscript{4}heteroalkyl, and Cl-C\textsubscript{4}fluoroalkyl.

[081] In one aspect, R4 is H, F, Cl, Br, -OH, -CH\textsubscript{3}, -OCH\textsubscript{3}, -CF\textsubscript{3}, or -OCF\textsubscript{3}; R13 is -CH\textsubscript{3}, -CH\textsubscript{2}CH\textsubscript{3}, -CF\textsubscript{3}, -CH\textsubscript{2}CF\textsubscript{3}, cyclopropyl, cyclobutyl, or cyclopentyl.

[082] In one aspect, R5 is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperidinyl, morpholinyl, piperaizinyl, thiomorpholinyl, or a substituted or unsubstituted group selected from phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxa diazolyl, triazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, benzofuranyl, benzothienyl, indazolyl, benzimidazolyl, benzhiazo ly, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl, where if R5 is substituted, then R5 is substituted with 1, or 2 R21 groups.

[083] In some embodiments, R5 is a substituted or unsubstituted group selected from phenyl, naphthyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxa diazolyl, triazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, benzofuranyl, benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl, where if R5 is substituted, then R5 is substituted with 1, or 2 R21 groups.

[084] In one aspect, R5 is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxa diazolyl, triazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, benzofuranyl, benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, where if R5 is substituted, then R5 is substituted with 1, or 2 R21 groups; each R21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}.

[085] In some embodiments, R20 is -CH\textsubscript{3}, -CH\textsubscript{2}CH\textsubscript{3}, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, -CH\textsubscript{2}OCH\textsubscript{3}, -CH\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH(CH\textsubscript{3})O-(substituted or unsubstituted phenyl), -C(CH\textsubscript{3})\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH\textsubscript{2}OCH\textsubscript{2}-(substituted or unsubstituted phenyl), wherein if the phenyl of R20 is substituted, then the phenyl is substituted with 0, 1, or 2 R21 groups; each R21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}.

[086] In one aspect, R20 is -CH\textsubscript{2}cyclopropyl, -CH\textsubscript{2}OCH\textsubscript{3}, -CH\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH\textsubscript{2}OCH\textsubscript{2}-(substituted or unsubstituted phenyl), wherein if the phenyl of R20 is
substituted, then the phenyl is substituted with 1, or 2 R₂¹ groups; each R₂¹ is independently selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃.

[087] In some embodiments, R²⁰ is -OCi-C₄alkyl, -O-CH₂-(substituted or unsubstituted phenyl), or-O-CH(CH₃)₃-(substituted or unsubstituted phenyl); wherein if the phenyl of R²⁰ is substituted, then the phenyl is substituted with 1, or 2 R₂¹ groups; each R₂¹ is independently selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃.

[088] In other embodiments, R²⁰ is -O-CH₂-(substituted or unsubstituted phenyl), wherein if the phenyl of R²⁰ is substituted, then the phenyl is substituted with 1, or 2 R₂¹ groups; each R₂¹ is independently selected from F, Cl, Br.

[089] In some embodiments, R²⁰ is -NR¹⁶Ci-C₄alkyl, -NR¹⁶CH₂-(substituted or unsubstituted phenyl), or -NR¹⁶CH(CH₃)₃-(substituted or unsubstituted phenyl), wherein if the phenyl of R²⁰ is substituted, then the phenyl is substituted with 1, or 2 R₂¹ groups; each R₂¹ is independently selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃; R¹⁶ is H, -CH₃, or-CH₂CH₃.

[090] In other embodiments, R²⁰ is-NH-CH₂-(substituted or unsubstituted phenyl), wherein if the phenyl of R²⁰ is substituted, then the phenyl is substituted with 1, or 2 R₂¹ groups; each R₂¹ is independently selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃.

[091] In one aspect, R⁴ is F, Cl, Br, -CH₃, -OCH₃, -CF₃, or -OCF₃; R¹¹ is -CH₂CH₃, -CH₂CH₃, or -CH₂CF₃.

[092] In yet other embodiments, R⁴ is -OCH₃. In still further embodiments, R¹¹ is -CH₃, or -CH₂CH₃.

[093] In one aspect, R⁵ is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, quinolyl, and isoquinolyl, where if R⁵ is substituted, then R⁵ is substituted with 1, or 2 R₂¹ groups; each R₂¹ is independently selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃.

[094] In one aspect, R²⁰ is -R¹⁴, -OR¹⁵, or -N(R¹⁶)₂ as described herein. In one aspect, R²⁰ is -R¹⁴ as described herein. In some embodiments, R²⁰ is -OR¹⁵ as described herein. In some embodiments, R²⁰ is -N(R¹⁶)₂ as described herein.

[095] Any combination of the groups described above for the various variables is contemplated herein. Throughout the specification, groups and substituents thereof are chosen by one skilled in the field to provide stable moieties and compounds.

[096] Compounds of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), and Formula (VII), are antagonists OfDP₂. In specific embodiments, the antagonist OfDP₂ is selective for DP₂. In other embodiments, the antagonist of DP₂ is also an antagonist of DRI. In some embodiments, the antagonist OfDP₂ is also an antagonist of TP (thromboxane receptor).
In other embodiments, presented herein are compounds selected from active metabolites, solvates, pharmaceutically acceptable salts or pharmaceutically acceptable prodrugs of a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

In one aspect, provided herein is a pharmaceutical composition comprising a therapeutically effective amount of a compound provided herein. In some embodiments, the pharmaceutical composition includes at least one pharmaceutically acceptable excipient.

In certain embodiments, presented herein are methods for treating a PGD$_2$-dependent condition or disease in a patient comprising administering to the patient a therapeutically effective amount of an antagonist of DP$_2$ having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). In certain aspects, provided herein is a method for treating inflammation in a mammal comprising administering a therapeutically effective amount of a compound provided herein to the mammal in need.

In a specific aspect, provided herein is a method for treating asthma in a mammal comprising administering a therapeutically effective amount of a compound provided herein to the mammal in need. In a further or alternative embodiment, provided herein is a method for treating asthma in a mammal comprising administering a therapeutically effective amount of a compound provided herein, such as, for example, a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) to the mammal in need.

In another aspect are compounds presented in Table 1 and Table 2 or pharmaceutically acceptable salts, pharmaceutically active metabolites, pharmaceutically acceptable prodrugs, and pharmaceutically acceptable solvates thereof, which antagonize DP$_2$ and are used to treat patients suffering from one or more PGD$_2$-dependent conditions or diseases, including, but not limited to, asthma, rhinitis, chronic obstructive pulmonary disease, pulmonary hypertension, interstitial lung fibrosis, arthritis, allergy, psoriasis, inflammatory bowel disease, adult respiratory distress syndrome, myocardial infarction, aneurysm, stroke, cancer, endotoxic shock, proliferative disorders and inflammatory conditions.

Compounds of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are antagonists of DP$_2$. In still further or alternative embodiments such antagonists of DP$_2$ also antagonize other related PGD$_2$ receptors. Related PGD$_2$ receptors include, but are not limited to, DPi and TP.

In further or alternative embodiments, the compounds of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are
included into pharmaceutical compositions or medicaments used for treating a PGD₂-dependent or PGD₂ mediated condition or disease in a patient.

[0104] In another aspect, compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are used to treat or prevent inflammatory conditions. Inflammatory conditions include, but are not limited to, asthma, rhinitis, chronic obstructive pulmonary disease, pulmonary hypertension, interstitial lung fibrosis, atherosclerosis, aortic aneurysm, myocardial infarction, and stroke.

[0105] In another aspect, compounds of any of Formula (J), Formula (IT), Formula (II), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIE) are used to treat or prevent immunological disorders. In one aspect the immunological disorders include, but are not limited to, allergy or to excessive or inappropriate response to an endogenous or exogenous antigen. In certain embodiments, the immunological disorder that is characterized by immune dysregulation that is not accompanied by inflammation.

[0106] In another aspect, compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VII) are used to treat or prevent proliferative disorders. In one aspect the proliferative disorders include, but are not limited to, cancer and noncancerous disorders, including, but not limited to, those involving the skin or lymphatic tissues.

[0107] In another aspect, compounds of any of Formula (I), Formula (IT), Formula (II), Formula (TV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are used to treat or prevent pain.

[0108] In additional aspects, such conditions are iatrogenic and increases in, or abnormal localization of, PGD₂ is induced by other therapies or medical or surgical procedures. In other embodiments, the PGD₂-dependent or PGD₂ mediated condition or disease is caused by surgery.

[0109] In other aspects, the methods, compounds, pharmaceutical compositions, and medicaments described herein are used to prevent the cellular activity of PGD₂. In other aspects, such methods, compounds, pharmaceutical compositions, and medicaments comprise DP₂ antagonists disclosed herein for the treatment of asthma by modulating the activity of enzymes or proteins in a patient wherein such enzymes or proteins are involved in the PGD₂ pathway such as, by way of example, DP₂. In yet other aspects, the methods, compounds, pharmaceutical compositions, and medicaments described herein are used in combination with other medical treatments or surgical modalities.

[0110] In one aspect are methods for reducing/antagonizing the PGD₂ activation of DP₂ in a mammal comprising administering to the mammal at least once an effective amount of a compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VUI).
In another aspect are methods for modulating, including reducing and/or antagonizing the activation of DP\textsubscript{2} directly or indirectly, in a mammal comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (VI), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII).

In a further embodiment of this aspect, the respiratory disease is rhinitis.

In another aspect, presented herein are methods for modulating, including reducing and/or antagonizing the activity of PGD\textsubscript{2} in a mammal, directly or indirectly, comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (TT), Formula (UT), Formula (TV), Formula (V), Formula (VI), Formula (VTT) or Formula (VTU).

In another aspect are methods for treating PGD\textsubscript{2} -dependent or PGD\textsubscript{2} mediated conditions or diseases, comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (UT), Formula (IV), Formula (V), Formula (VT), Formula (VII) or Formula (VIII).

In another aspect are methods for treating inflammation comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (U), Formula (UT), Formula (TV), Formula (V), Formula (VI), Formula (VU) or Formula (VIII).

In another aspect are methods for treating immunological abnormalities comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (III), Formula (FV), Formula (V), Formula (VT), Formula (VTT) or Formula (VTU).

In another aspect are methods for treating respiratory diseases comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (TT), Formula (UT), Formula (TV), Formula (V), Formula (VT), Formula (VII) or Formula (VIII). In a further embodiment of this aspect, the respiratory disease is asthma. In a further embodiment of this aspect, the respiratory disease includes, but is not limited to, adult respiratory distress syndrome and allergic (extrinsic) asthma, non-allergic (intrinsic) asthma, acute severe asthma, chronic asthma, clinical asthma, nocturnal asthma, allergen-induced asthma, aspirin-sensitive asthma, exercise-induced asthma, neutrophilic asthma, isocapnic hyperventilation, child-onset asthma, adult-onset asthma, cough-variant asthma, occupational asthma, steroid-resistant asthma, seasonal asthma.

In another aspect are methods for treating respiratory diseases comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (TT), Formula (HT), Formula (IV), Formula (V), Formula (VI), Formula (VTT) or Formula (VIII). In a further embodiment of this aspect, the respiratory disease is rhinitis.
In a further embodiment of this aspect, the respiratory disease includes, but is not limited to, allergic (extrinsic) rhinitis, non-allergic (intrinsic) rhinitis, chronic rhinitis, allergen-induced rhinitis, aspirin-sensitive rhinitis, child-onset rhinitis, adult-onset rhinitis, occupational rhinitis, steroid-resistant rhinitis, seasonal rhinitis, perennial rhinitis, rhinosinusitis, and rhinopolyposis.

[0118] In another aspect are methods for treating chronic obstructive pulmonary disease comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII). In a further embodiment of this aspect, chronic obstructive pulmonary disease includes, but is not limited to, chronic bronchitis and/or emphysema, pulmonary hypertension, interstitial lung fibrosis and/or airway inflammation and cystic fibrosis.

[0119] In another aspect are methods for preventing increased mucosal secretion and/or edema in a disease or condition comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII).

[0120] In another aspect are methods for treating vasoconstriction, atherosclerosis and its sequelae, myocardial ischemia, myocardial infarction, aortic aneurysm, vasculitis, cardiac arrhythmia, and stroke comprising administering to the mammal an effective amount of a compound having the structure of any of Formula (T), Formula (II), Formula (III), Formula (FV), Formula (V), Formula (VT), Formula (VII) or Formula (VIII).

[0121] In another aspect are methods for treating organ reperfusion injury following organ ischemia and/or endotoxic shock comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (TT), Formula (ID), Formula (IV), Formula (V), Formula (VT), Formula (VII) or Formula (VIII).

[0122] In another aspect are methods for reducing the constriction of blood vessels in a mammal comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (TTT), Formula (IV), Formula (V), Formula (VT), Formula (VTT) or Formula (VTTT).

[0123] In another aspect are methods for lowering or preventing an increase in blood pressure of a mammal comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VTTT).

[0124] In another aspect are methods for preventing eosinophil and/or basophil and/or dendritic cell and/or neutrophil and/or monocyte or TH2 cell recruitment comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of
Formula (T), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII).

[0125] A further aspect are methods for the prevention or treatment of abnormal bone remodeling, loss or gain, including diseases or conditions as, by way of example, osteopenia, osteoporosis, Paget's disease, cancer, trauma, surgery, and other diseases comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII).

[0126] In another aspect are methods for preventing ocular inflammation and allergic conjunctivitis, vernal keratoconjunctivitis, and papillary conjunctivitis comprising administering to the mammal at least once an effective amount of at least one having the structure of any of Formula (T), Formula (TT), Formula (III), Formula (W), Formula (V), Formula (VI), Formula (VII) or Formula (VIII).

[0127] In another aspect are methods for treating CNS disorders comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (TT), Formula (TTT), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII). CNS disorders include, but are not limited to, multiple sclerosis, Parkinson's disease, Alzheimer's or other degenerative disease, stroke, cerebral ischemia, retinal ischemia, post-surgical cognitive dysfunction, migraine, peripheral neuropathy/neuropathic pain, spinal cord injury, cerebral edema and head injury.

[0128] A further aspect are methods for the treatment of cancer comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (IU), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VTTT). The type of cancer includes, but is not limited to, pancreatic cancer and other solid or hematological tumors.

[0129] In another aspect are methods for treating endotoxic shock and septic shock comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII).

[0130] In another aspect are methods for treating rheumatoid arthritis and osteoarthritis comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (TT), Formula (TTT), Formula (IV), Formula (V), Formula (VI), Formula (VTT) or Formula (VTTT).

[0131] In another aspect are methods for treating or preventing increased gastrointestinal diseases comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (IH), Formula (IV),
Formula (V), Formula (VI), Formula (VH) or Formula (VHI). Such diseases include, by way of example only, chronic gastritis, eosinophilic gastroenteritis, and gastric motor dysfunction.

[0132] A further aspect are methods for treating kidney diseases comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (T), Formula (II), Formula (HI), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII). Such diseases include, by way of example only, acute tubular necrosis, glomerulonephritis, cyclosporine nephrotoxicity, renal ischemia, and reperfusion injury.

[0133] In another aspect are methods for preventing or treating acute or chronic renal insufficiency comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (Vm).

[0134] In another aspect are methods for treating pain comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (ID), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VII).

[0135] In another aspect are methods to diminish the inflammatory aspects of acute infections within one or more solid organs or tissues such as the kidney with acute pyelonephritis.

[0136] In another aspect are methods for preventing or treating acute or chronic disorders involving recruitment or activation of eosinophils comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VID).

[0137] In another aspect are methods for preventing or treating acute or chronic erosive disease or motor dysfunction of the gastrointestinal tract caused by non-steroidal anti-inflammatory drugs (including selective or non-selective cyclooxygenase –1 or –2 inhibitors) comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (in), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VII).

[0138] A further aspect are methods for the prevention or treatment of rejection or dysfunction in a transplanted organ or tissue comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VH) or Formula (VIII).

[0139] In another aspect are methods for treating inflammatory responses of the skin comprising administering to the mammal at least once an effective amount of at least one compound having the structure of any of Formula (I), Formula (H), Formula (HI), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII). Such inflammatory responses of the skin include,
by way of example, dermatitis, contact dermatitis, eczema, urticaria, rosacea, and scarring. In
another aspect are methods for reducing psoriatic lesions in the skin, joints, or other tissues or
organs, comprising administering to the mammal an effective amount of a first compound having
the structure of any of Formula (I), Formula (II), Formula (IH), Formula (IV), Formula (V),
Formula (VI), Formula (VII) or Formula (VIII).

[0140] A further aspect are methods for the treatment of cystitis, including, by way of example
only, interstitial cystitis, comprising administering to the mammal at least once an effective
amount of at least one compound having the structure of any of Formula (I), Formula (II), Formula
(HI), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VDI).

[0141] A further aspect are methods for the treatment of Familial Mediterranean Fever
comprising administering to the mammal at least once an effective amount of at least one
compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (FV),
Formula (V), Formula (VI), Formula (VII) or Formula (VIII).

[0142] In a further aspect are methods to treat hepatorenal syndrome comprising administering to
the mammal at least once an effective amount of at least one compound having the structure of any
of Formula (I), Formula (II), Formula (HE), Formula (IV), Formula (V), Formula (VT), Formula
(VH) or Formula (VUI).

[0143] In a further aspect are methods to modulate the immune response to endogenous or
exogenous antigens.

[0144] In a further aspect are methods to treat acute or chronic allergic responses to exogenous
substances that have been ingested such as foods (e.g., peanuts) or drugs (e.g., penicillin, non-
steroidal anti-inflammatory drugs or the like).

[0145] In another aspect is the use of a compound of any of Formula (T), Formula (II), Formula
(IH), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) in the
manufacture of a medicament for treating an inflammatory disease or condition in an animal in
which the activity of at least one PGD₂-associated protein contributes to the pathology and/or
symptoms of the disease or condition. In one embodiment of this aspect, the PGD₂ pathway protein
is CRTH2. In another or further embodiment of this aspect, the inflammatory disease or conditions
are respiratory, cardiovascular, or proliferative diseases.

[0146] In any of the aforementioned aspects are further embodiments in which: (a) the effective
amount of the compound is systemically administered to the mammal; and/or (b) the effective
amount of the compound is administered orally to the mammal; and/or (c) the effective amount of
the compound is intravenously administered to the mammal; and/or (d) the effective amount of the
compound administered by inhalation; and/or (e) the effective amount of the compound is
administered by nasal administration; or and/or (f) the effective amount of the compound is
administered by injection to the mammal; and/or (g) the effective amount of the compound is
administered topically (dermal) to the mammal; and/or (h) the effective amount of the compound is administered by ophthalmic administration; and/or (i) the effective amount of the compound is administered rectally to the mammal.

[0147] In any of the aforementioned aspects are further embodiments in which the mammal is a human, including embodiments wherein the human has an asthmatic condition or one or more other conditions selected from the group consisting of allergic (extrinsic) asthma, non-allergic (intrinsic) asthma, acute severe asthma, chronic asthma, clinical asthma, nocturnal asthma, allergen-induced asthma, aspirin-sensitive asthma, exercise-induced asthma, neutrophilic asthma, isocapnic hyperventilation, child-onset asthma, adult-onset asthma, cough-variant asthma, occupational asthma, steroid-resistant asthma, or seasonal asthma, or chronic obstructive pulmonary disease, or pulmonary hypertension or interstitial lung fibrosis. In any of the aforementioned aspects are further embodiments in which the mammal is an animal model for pulmonary inflammation, examples of which are provided herein.

[0148] In any of the aforementioned aspects are further embodiments comprising single administrations of the effective amount of the compound, including further embodiments in which (i) the compound is administered once; (ii) the compound is administered to the mammal multiple times over the span of one day; (ii) continually; or (iv) continuously.

[0149] In any of the aforementioned aspects are further embodiments comprising multiple administrations of the effective amount of the compound, including further embodiments in which (i) the compound is administered continuously or intermittently as in a single dose; (ii) the time between multiple administrations is every 6 hours; (iii) the compound is administered to the mammal every 8 hours. In further or alternative embodiments, the method comprises a drug holiday, wherein the administration of the compound is temporarily suspended or the dose of the compound being administered is temporarily reduced; at the end of the drug holiday, dosing of the compound is resumed. In one embodiment, the length of the drug holiday varies from 2 days to 1 year.

[0150] In any of the aforementioned aspects involving the treatment of PGD2-dependent diseases or conditions are further embodiments comprising administering at least one additional agent in addition to the administration of a compound having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VIII). In various embodiments, each agent is administered in any order, including simultaneously, in certain embodiments, the at least one additional agent is, by way of example only, an anti-inflammatory agent, a different compound having the structure of any of Formula (I), Formula (U), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII), a DP1 receptor antagonist, a TP receptor antagonist, or a different DP2 receptor antagonist.
In other embodiments, a compound of any of Formula (I), Formula (H), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) is combined with an additional agent that is a respiratory agent, including, but not limited to antihistamines (e.g., Zyrtec®), bronchodilators, LABAs (e.g., salmeterol), theophylline, IgE modulators (e.g., Xolair® and omalizumab), steroids (e.g., fluticasone).

In further or alternative embodiments, the anti-inflammatory agent is, by way of example only, a leukotriene pathway modulator such as a CysLT1 receptor antagonists (e.g., montelukast), a CysLT2 receptor antagonist, a 5-lipoxygenase inhibitor (e.g., zileuton), a 5-lipoxygenase-activating protein inhibitor (e.g., MK-0591, MK-886, DG-031 (BAY X1005), 3-[3-tert-butylsulfanyl]-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, 3-[3-tert-butylsulfanyl]-1-[4-(6-ethoxy-pyridin-3-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, a LTA4 hydrolase inhibitor, a LTC4 synthase inhibitor, a BLT1 receptor antagonist or a BLT2 receptor antagonist.

In any of the aforementioned aspects involving the treatment of proliferative disorders, including cancer, are further embodiments comprising administering at least one additional agent, including by way of example only alemtuzumab, arsenic trioxide, asparaginase (pegylated or non-), bevacizumab, cetuximab, platinum-based compounds such as cisplatin, cladribine, daunorubicin/doxorubicin/idarubicin, irinotecan, fiudarabine, 5-fluorouracil, gemtuzumab, methotrexate, Paclitaxel™, taxol, temozolomide, thioguanine, or classes of drugs including hormones (an antiestrogen, an antiandrogen, or gonadotropin releasing hormone analogues), interferons such as alpha interferon, nitrogen mustards such as busulfan or melphalan or mechlorethamine, retinoids such as tretinoin, topoisomerase inhibitors such as irinotecan or topotecan, tyrosine kinase inhibitors such as gefinitinib or imatinib, or agents to treat signs or symptoms induced by such therapy including allopurinol, filgrastim, granisetron/ondansetron/palonosetron, dronabinol.

In any of the aforementioned aspects involving the therapy of an immunological disorder requiring immunosuppression or involving the therapy of transplanted organs or tissues or cells are further embodiments comprising administering at least one additional agent, including by way of example only azathioprine, a corticosteroid, cyclophosphamide, cyclosporin, dacluzimab, mycophenolate mofetil, OKT3, rapamycin, tacrolimus, or thymoglobulin.

In any of the aforementioned aspects involving the therapy of interstitial cystitis are further embodiments comprising administering at least one additional agent selected from, e.g., dimethylsulfoxide, omalizumab, and pentosan polysulfate.

In any of the aforementioned aspects involving the therapy of disorders of bone are further embodiments comprising administering at least one additional agent such as, by way of example
only, minerals, vitamins, bisphosphonates, anabolic steroids, parathyroid hormone or analogs, and cathepsin K inhibitors dronabinol.

In any of the aforementioned aspects involving the prevention or treatment of inflammation are further embodiments comprising: (a) monitoring inflammation in a mammal; (b) measuring bronchoconstriction in a mammal; (c) measuring eosinophil and/or basophil and/or dendritic cell and/or neutrophil and/or monocyte and/or lymphocyte recruitment in a mammal; (d) monitoring mucosal secretion in a mammal; (e) measuring mucosal edema in a mammal.

In any of the aforementioned aspects the PGD₂-dependent or PGD₂-mediated diseases or conditions include, but are not limited to, asthma, rhinitis, chronic obstructive pulmonary disease, pulmonary hypertension, interstitial lung fibrosis, arthritis, allergy, inflammatory bowel disease, adult respiratory distress syndrome, myocardial infarction, aneurysm, stroke, cancer, and endotoxic shock.

Other objects, features and advantages of the compounds, methods and compositions described herein will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments, are given by way of illustration only, since various changes and modifications within the spirit and scope of the instant disclosure will become apparent to those skilled in the art from this detailed description.

DETAILED DESCRIPTION OF THE INVENTION

Prostaglandin D₂ (PGD₂) is an acidic lipid derived from the metabolism of arachidonic acid by cyclooxygenases and PGD₂ synthases. PGD₂ is produced by mast cells, macrophages and T₁₂ lymphocytes in response to local tissue damage as well as in response allergic inflammation observed in diseases such as asthma, rhinitis, and atopic dermatitis. More specifically, exogenous PGD₂ applied to bronchial airways elicits many responses that are characteristic of acute asthma.

PGD₂ is a major mast cell product that acts via two receptors, the D-type prostanoid (DP, also known as DP₁) and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2, also known as DP₂) receptors. DP₁ mediates the chemotaxis of eosinophils, basophils, and Th2 lymphocytes, and DP₁ receptor plays an important role in eosinophil trafficking. DP₁ antagonists do not inhibit the release of eosinophils when induced by the DP₂ selective agonists. However, eosinophils in human bone marrow specimens express DP₁ and DP₂ receptors at similar levels and human peripheral blood expresses both DP₁ and DP₂, but the DP₁ receptor is expressed at lower levels. In agreement with this, the chemotaxis of human peripheral blood eosinophils is inhibited by both DP₁ and DP₂ antagonists. Accordingly, DP₁, DP₂ and dual DP₁/DP₂ antagonists are useful in the treatment of allergic inflammation.

Activation of DP₂ is associated with chemotaxis and activation of T₁₂ lymphocytes, eosinophils and basophils. In particular, PGD₂ binds to DP₂ and mediates many of its effects.
through a Gj-dependent elevation of intracellular calcium levels and reduction of cyclic AMP. In T\textsubscript{H}2 lymphocytes, IL4, IL5 and IL13 cytokine production are also stimulated by DP\textsubscript{2} activation. These cytokines have been implicated in numerous biological actions including, by way of example only, immunoglobulin E production, airway response, mucous secretion, and eosinophil recruitment.

The terms CRTH2 and DP\textsubscript{2} refer to the same receptor and are used interchangeably herein. Likewise, another common name for DP is DP\textsubscript{1}; and the two terms are used interchangeably herein.

Illustrative Biological Activity

Prostaglandins (PGs) are recognized physiological lipid acid mediators produced by the release of arachidonic acid from cell membrane phospholipids and converted to prostaglandins by the action of COX\textsubscript{i} and COX\textsubscript{2} cyclooxygenases and PG synthases. The cyclooxygenases sequentially convert arachidonic acid to cyclic endoperoxide prostaglandin G\textsubscript{2} (PGG\textsubscript{2}) and subsequently, prostaglandin H\textsubscript{2} (PGH\textsubscript{2}). Depending on the tissue, physiological signal, and/or synthase type, PGH\textsubscript{2} can be converted to numerous different prostaglandins, such as PGE\textsubscript{2}, PGD\textsubscript{2}, PGF\textsubscript{2α}, and PGI\textsubscript{2} as well as thromboxane A\textsubscript{2}, another eicosanoid signaling molecule. These mediators then elicit a wide variety of physiological responses including vasoconstriction or dilation, platelet aggregation, calcium transport, pain sensitization, hormone release, inflammatory and immune response, and cellular growth.

Prostaglandin D\textsubscript{2} is a major metabolite produced from the PGH\textsubscript{2} intermediate via hematopoietic PGD\textsubscript{2} synthase or lipocalin PGD\textsubscript{2} synthase, hi the brain and central nervous system, PGD\textsubscript{2} is produced and thought to Junction in pain perception and sleep regulation. In other tissues, PGD\textsubscript{2} is produced primarily in immunoglobulin E (IgE) activated mast cells and to a lesser extent, in macrophages, dendritic cells, T helper 2 (T\textsubscript{H}2) lymphocytes and other leukocytes. In the cell, PGD\textsubscript{2} is rapidly metabolized and converted to other downstream effectors including Δ12PGJ\textsubscript{2}, 9αLPGF\textsubscript{2}, 13,14-dihydro-15-keto-PGD\textsubscript{2}, and 15-deoxy-Δ12,14PGD\textsubscript{2}.

Mast-cell-derived PGD\textsubscript{2} is produced in high concentrations in response to an allergen challenge. Studies in preclinical species have observed the following features when PGD\textsubscript{2} is applied to in vivo preparations, or its overproduction is engineered by genetic manipulation:

- Vasodilatation leading to erythema (flare) and potentiation of oedema (wheal).
- Recruitment of eosinophils and TH2 lymphocytes.
- Modulation of TH2-cytokine production.
- Bronchoconstriction.

Injection of PGD\textsubscript{2} into human skin has been shown to produce a long lasting erythema, to potentiate the effects of other mediators on induration and leukocyte infiltration in human skin and to enhance oedema formation in rat skin. It is most likely that these effects of PGD\textsubscript{2}, like those of
other vasodilator prostaglandins, are due to an increased blood flow to the inflamed lesion and are, therefore, most likely to be mediated predominantly by the DPj receptor. Although these observations make it clear that DP1 mediates the vascular effects of PGD2, the capacity of PGD2 to promote the cellular changes associated with inflammation is not due to an action on DPi.

[0168] The main receptors that are activated by PGD2 or its metabolites and mediate its effects are DP1, CRTH2 (or DP2) and TP.

[0169] DPi (or DP) is a G-protein coupled seven-transmembrane receptor that, upon activation by PGD2 binding, leads to an increase in intracellular cAMP levels. DP1 is expressed in the brain, bronchial smooth muscle, vascular and airway smooth muscle, dendritic cells, and platelets and induces PGD2 dependent bronchodilation, vasodilation, platelet aggregation inhibition, and suppression of cytokine production. Genetic analysis of DPj function using knock-out mice has shown that mice lacking DP do not develop asthmatic responses in an ovalbumin-induced asthma model. Analysis of selective DP antagonists in guinea pig allergic rhinitis models demonstrated dramatic inhibition of early nasal responses, as assessed by sneezing, mucosal plasma exudation and eosinophil infiltration. DP antagonism alleviates allergen-induced plasma exudation in the conjunctiva in a guinea pig allergic conjunctivitis model and antigen-induced eosinophil infiltration into the lung in a guinea pig asthma model.

[0170] Much of the pro-inflammatory activity of PGD2 is through interaction with DP2 (or CRTH2). DP2 is a G-protein coupled receptor and is typically highly expressed in T_{H2} lymphocytes, eosinophils and basophils. DP2 activation functions to directly activate and recruit T_{H2} lymphocytes and eosinophils. Activated T_{H2} lymphocytes produce and secrete inflammatory cytokines including RA, IL5, and IL13. Despite binding PGD2 with a similar affinity as DPi, DP2 is not structurally related to DPi and signals through a different mechanism– the effects of DP2 are mediated through Gi-dependent elevation in intracellular calcium levels and reduction in intracellular levels of cyclic AMP. DP2 activation is important in eosinophil recruitment in response to allergen challenge in such tissues as nasal mucosa, bronchial airways, and skin. The application of either PGD2 or selective DP2 agonists both exacerbate and enhance allergic responses in lung and skin. DP2 activation appears to have a crucial role in mediating allergic responses, and thus the use of antagonists of PGD2 activation of the DP2 receptor are an attractive approach to treat the inflammatory component of allergic diseases such as asthma, rhinitis, and dermatitis.

[0171] TP receptors primarily function to antagonize DP1 receptor's effects such as promoting bronchoconstriction, vasoconstriction, and platelet aggregation. While TP receptor's main ligand is thromboxane A2, it also binds and is activated by the PGD2 derivative, 9α[1βPGF2]. TP is a Gq-coupled prostanoid receptor that binds thromboxane with high affinity, promoting platelet aggregation and constriction of both vascular and airway smooth muscle. PGD2 activates the TP
receptor in human bronchial muscle, probably through the formation of the 11-ketoreductase metabolite 9α,1βPGF2. The bronchoconstrictor effects of TP dominate over the bronchodilator effects of DPi in the airways.

[0172] DP1 and DP2 have crucial, and complementary, roles in the physiological response of animals to PGD2 and blockade of either one or both of these receptors may prove beneficial in alleviating allergic diseases or conditions triggered by PGD2, such as, but not limited to, allergic rhinitis, asthma, dermatitis, and allergic conjunctivitis.

Compounds

[0173] Compounds described herein, including pharmaceutically acceptable salts, pharmaceutically acceptable prodrugs, and pharmaceutically acceptable solvates thereof, antagonize or modulate DP2 and are used to treat patients suffering from PGD2-dependent or PGD2 mediated conditions or diseases, including, but not limited to, asthma, rhinitis, dermatitis, and inflammatory conditions.

[0174] In one aspect is a compound having the structure of Formula (I), pharmaceutically acceptable salts, pharmaceutically acceptable solvates, or pharmaceutically acceptable prodrugs thereof:

![Formula (I)](image)

wherein,

n is 1, 2, 3 or 4;

Q is -C(=O)-Q1, -SO2NHC(O)R12, -CH2OH, or tetrazolyl;

Q1 is -OH, -OR13, -NH2SO2R12, -N(R15)2, -NH-OH, or -NH-CN;

each R1 is independently selected from H, halogen, Ci-Calkyl, and Ci-Qhaloalkyl; or both R1 groups taken together with the carbon atom to which they are attached form a C3-Cgycloalkyl;

each of R2, R3, R4, R5, R6, and R7 is independently H, halogen, -CN, -NO2, -OH, -OR13, -SR12, -S(=O)R12, -S(=O)2R12, -NHS(O)R12, -C(=O)R12, -OC(=O)R12, -CO2R13, -OOC2R13, -CH(R15)2, -N(R15)2, -NHCH2CO2R13, -OCH2CO2R13, -SCH2CO2R13, -C(=O)N(R15)2, -OC(=O)N(R15)2, -NH(=O)NH(R15), -NH(=O)R12, -NH(=O)OR12, -C(OH)(R15)2, C1-Cgalkyl, d-Cefluoroalkyl, C1-Cfluoroalkoxy, C1-Calkoxy, C1-Cgheteroalkyl, an optionally substituted C5-C16cycloalkyl, an optionally substituted
heterocycloalkyl, optionally substituted phenyl, optionally substituted monocyclic heteroaryl, or an optionally substituted group selected from among -C\(_r\)alkyl-\(C\(_3\)\)-cycloalkyl, -\(C\(_1\)-\(C\(_n\)alkyl\)-heterocycloalkyl, -\(C\(_i\)-C\(_q\)alkyl-aryl, and -\(C\(_i\)-C\(_q\)alkyl-heteroaryl; or
each of \(R^2\), \(R^3\), \(R^4\), \(R^5\), \(R^6\), and \(R^7\) is independently -\(X'\)-I A \(Q^2\), where,
\(X^1\) is a bond, -O-, -S-, -\((\text{O})_2\)-, -\((\text{O})_2\)-, or -\(NR^{13}\);
\(L^1\) is a bond or a \(Ci\)-C\(_q\)alkylene;
\(Q^2\) is -\((\text{O})_2\)R\(^{13}\), -\((\text{N})\)R\(^{12}\), -\((\text{O})\)N\((\text{R})\)\(^{13}\), or -\((\text{O})\)\(\text{NHSO}_2\)R\(^{12}\), an optionally
substituted \(C\(_3\)\)-cycloalkyl, an optionally substituted heterocycloalkyl, an
optionally substituted aryl, or an optionally substituted heteroaryl;
each \(R^8\) is each independently selected from H, halogen, \(Ci\)-C\(_q\)alkyl, and \(Ci\)-C\(_r\)haloalkyl;
or
both \(R^8\) groups are taken together with the carbon atom to which they are attached to form
a \(Ci\)-C\(_q\)cycloalkyl;
\(R^{10}\) is -\((\text{O})\)R\(^{14}\), -\((\text{O})\)\(\text{OR}^{15}\), -\((\text{O})\)N\(\text{R}^{16}\)\(^2\), -\((\text{O})\)\(\text{N(S(O)}_2\)\(^_\)or -\((\text{O})\)\(_\)\(^{15}\);
\(R^{14}\) is \(Ci\)-C\(_q\)alkyl, \(Ci\)-C\(_q\)fluoroalkyl, \(Ci\)-C\(_q\)heteroalkyl, an optionally substituted \(C\(_3\)\)
Cicloalkyl, an optionally substituted heterocycloalkyl, an optionally
substituted aryl, an optionally substituted heteroaryl, an optionally substituted \(Ci\)-C\(_q\)alkyl-
cycloalkyl, an optionally substituted \(Ci\)-C\(_q\)alkyl-heterocycloalkyl, an optionally
substituted \(Ci\)-C\(_q\)alkyl-aryl or an optionally substituted \(Ci\)-C\(_q\)alkyl-heteroaryl; or
\(R^{11}\) is \(L^3\)-X\(^3\)-Q\(^3\);
\(L^3\) is a \(Ci\)-C\(_q\)alkylene;
\(X^3\) is a bond, -O-, -S-, -\((\text{S(O)}_2\)-, -\((\text{S(O)}_2\)-, or -\(NR^{13}\);
\(Q^3\) is an optionally substituted \(C\(_1\)-alkyl, \(Ci\)-\(C\(_q\)fluoroalkyl an optionally substituted
\(C\(_3\)\)-Cicloalkyl, an optionally substituted heterocycloalkyl, an optionally
substituted aryl, an optionally substituted heteroaryl, an optionally substituted \(Ci\)-C\(_q\)alkyl-
cycloalkyl, an optionally substituted \(Ci\)-C\(_q\)alkyl-heterocycloalkyl, an optionally substituted \(Ci\)-C\(_q\)alkyl-aryl, or an optionally
substituted \(Ci\)-C\(_q\)alkyl-heteroaryl;
\(R^{15}\) is \(Ci\)-C\(_q\)alkyl, \(Ci\)-C\(_q\)fluoroalkyl, \(Ci\)-C\(_r\)heteroalkyl, an optionally substituted \(C\(_3\)\)
Cicloalkyl, an optionally substituted heterocycloalkyl, an optionally
substituted aryl, an optionally substituted heteroaryl, an optionally substituted \(Ci\)-C\(_q\)alkyl-
cycloalkyl, an optionally substituted \(Ci\)-C\(_q\)alkyl-heterocycloalkyl, an optionally
substituted \(Ci\)-C\(_q\)alkyl-aryl or an optionally substituted \(Ci\)-C\(_q\)alkyl-heteroaryl;
each \(R^{16}\) is independently H, -CN, \(Ci\)-C\(_q\)alkyl, \(Ci\)-C\(_q\)fluoroalkyl, \(Ci\)-C\(_r\)heteroalkyl, an
optionally substituted \(C\(_3\)\)-Cicloalkyl, an optionally substituted heterocycloalkyl,
an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted \(\text{-Ci-C}_4\text{alkyl-cycloalkyl} \), an optionally substituted \(\text{-Ci-C}_4\text{alkyl-heterocycloalkyl} \), an optionally substituted \(\text{-Ci-C}_4\text{alkyl-aryl} \) or an optionally substituted \(\text{-Ci-C}_4\text{alkyl-heteroaryl} \); or

two \(R^{16} \) groups attached to the same N atom are taken together with the N atom to which they are attached to form an optionally substituted heterocycloalkyl;

\(R^{11} \) is \(\text{CrQalkyl, C}_1\text{-C}_4\text{heteroalkyl, Ci-Chaloalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl), an optionally substituted monocyclic or bicyclic heterocycloalkyl), an optionally substituted aryl, or an optionally substituted heteroaryl, C}_7\text{C}_6\text{alkylene-R}^{17}, \text{-Ci-Qalkylene-O-R}^{17}, \text{-Ci-Qalkylene-S-R}^{17}, \text{-Ci-Qalkylene-S(=O)R}^{17}, \text{-CVQalkylene-NR}^{17}R^{17}, \text{-Ci-Qalkylene-C(=O)O-R}^{17}, \text{-Ci-Qalkylene-OC(=O)R}^{17}, \text{-Ci-Qalkylene-NR}^{17}R^{17}, \text{-Ci-Qalkylene-C(=O)NR}^{17}R^{17}, \text{-Ci-Qalkylene-C(=O)NR}^{17}R^{17}, \text{-Ci-Qalkylene-C(=O)NR}^{17}R^{17}; \)

\(R^{17} \) is \(\text{H, C}_1\text{-C}_4\text{alkyl, Ci-C}_4\text{heteroalkyl, Ci-C}_4\text{haloalkyl, an optionally substituted cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl; R}_2^{12} \) is \(\text{C}_4\text{alkyl, C}_1\text{-C}_4\text{heteroalkyl, C}_7\text{-Ci-GaOTolCyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted benzyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted \text{-Ci-C}_4\text{alkyl-cycloalkyl}, a substituted or unsubstituted \text{-C}_1\text{-C}_4\text{alkyl-heterocycloalkyl}, a substituted or unsubstituted \text{-C}_1\text{-C}_4\text{alkyl-aryl, or a substituted or unsubstituted \text{-C}_1\text{-C}_4\text{alkyl-heteroaryl}; and each \(R^{13}_1 \) is independently selected from \(\text{H, C}_4\text{alkyl, C}_1\text{-C}_4\text{heteroalkyl, C}_4\text{-C}_4\text{fluoroalkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted benzyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted \text{-CrC}_4\text{alkyl-cycloalkyl, a substituted or unsubstituted \text{-Ci-C}_4\text{alkyl-heterocycloalkyl, a substituted or unsubstituted \text{-Ci-C}_4\text{alkyl-aryl, and a substituted or unsubstituted \text{-C}_1\text{-C}_4\text{alkyl-heteroaryl}; or two \(R^{15} \) groups attached to the same N atom are taken together with the N atom to which they are attached to form an optionally substituted heterocycloalkyl. [0175] For any and all of the embodiments, substituents can be selected from among from a subset of the listed alternatives. For example, in some embodiments, \(n \) is 1 or 2. In other embodiments, \(n \) is 2, 3, or 4. In yet other embodiments, \(n \) is 3 or 4. hi yet other embodiments, \(n \) is 1.
In some embodiments, when \(n \) is 1; \(R_{14} \), \(R_{15} \), or \(R_{16} \) is an acyclic moiety; and \(R_{n} \) is a \(\text{-C}_1\text{-C}_6 \text{alkylene-R}_{17} \) or \(\text{-Q}-\text{Cealkylene-CfO^R}_{17} \); then \(R_{17} \) is not a cyclic ring.

In some embodiments, when \(n \) is 1; and \(R_{14} \) is a cyclic ring; then \(R_{17} \) is not a cyclic ring.

In some embodiments, \(Q \) is \(O(=O)\text{-QR}_{12} \), or tetrazolyl. In other embodiments, \(Q \) is \(\text{-C}(=O)\text{-Q}_{1} \), or tetrazolyl. In other embodiments, \(Q \) is selected from \(\text{-CO}_2\text{H}, \text{-CO}_2\text{Me}, \text{-CO}_2\text{Et}, \text{-C}(=O)\text{NH}_2, \text{-C}(=O)\text{NHOH}, \text{-C}(=O)\text{CN}, \text{-C}(=O)\text{HSO}_2\text{R}_{12} \), or \(\text{-OH}, \text{-OCH}_3, \text{-OCH}_2\text{CH}_3, \text{-NHSO}_2\text{CH}_3 \). In other embodiments, \(Q \) is \(\text{-C}(=O)\text{-Q}_{1} \). In yet some other embodiments, \(Q \) is \(\text{-CO}_2\text{H} \).

In some embodiments, \(Q^1 \) is \(\text{-OH}, \text{-OR}_{13}, \text{-NHSO}_2\text{R}_{12}, \) or \(\text{-N(R_{13})}_2 \). In some other embodiments, \(Q^1 \) is \(\text{-OH}, \text{-OCH}_3, \text{-OCH}_2\text{CH}_3, \) or \(\text{-NHSO}_2\text{CH}_3 \). In some other embodiments, \(Q^1 \) is \(\text{-OH}, \text{-OCH}_3, \) or \(\text{-OCH}_2\text{CH}_3 \).

In alternative embodiments, each \(R_{1} \) is independently selected from \(\text{H}, \text{F}, \text{Ci-C}_4\text{alkyl}, \) and \(\text{Ci-Qhaloalkyl} \); or both \(R_{1} \) groups taken together with the carbon atom to which they are attached form a propyl; cyclobutyl or cyclohexyl.

In some embodiments, each \(R_{8} \) is each independently selected from \(\text{H}, \text{F}, \text{Ci-C}_4\text{alkyl}, \) and \(\text{Ci-C}_3\text{haloalkyl} \).

In one aspect, each \(R_{1} \) is independently selected from \(\text{H}, \text{F}, \) and \(\text{Ci-C}_4\text{alkyl} \); and each \(R_{8} \) is each independently selected from \(\text{H}, \text{F}, \) and \(\text{Ci-C}_4\text{alkyl} \). In some other embodiments, each \(R_{8} \) is each independently selected from \(\text{H}, \text{F}, \) and \(\text{-CH}_3 \). In one aspect, each \(R_{8} \) is \(\text{H} \).

In another aspect, \(Q \) is \(\text{-C}(=O)\text{-Q}_{1} \) and \(n \) is 1 and the compound of Formula (I) has the structure

![Formula (I)](image)

wherein,

\(Q^1 \) is \(\text{OH}, \text{OR}_{13}, \text{-NHSO}_2\text{R}_{12}, \text{-N(R_{13})}_2, \text{-NH-OH}, \) or \(\text{-NH-CN} \);

each \(R_{1} \) is independently selected from \(\text{H}, \text{halogen}, \text{Ci-C}_4\text{alkyl}, \) and \(\text{Ci-C}_3\text{haloalkyl} \); or both \(R_{1} \) groups taken together with the carbon atom to which they are attached form a \(\text{C}_{5}^{3}\text{-C}_6\text{cycloalkyl} \);
each of \(R^2, R^3, R^4, R^5 \), and \(R^7 \) is independently \(H \), halogen, -CN, -NO\(_2\), -OH, -OR\(_2\), -SR\(_2\), -S(=O)R\(_2\), -S(=O)(=O)R\(_2\), -NHS(=O)R\(_2\), -C(=O)OR\(_2\), -OCH\(_2\)CO\(_2\)R\(_3\), -OCO\(_2\)R\(_3\), -CH(R\(_3\))\(_2\), -N(R\(_3\))\(_2\), -NHCH\(_2\)CO\(_2\)R\(_3\), -OCO\(_2\)R\(_3\), -S(=O)R\(_3\), -S(=O)(=O)R\(_2\), -NHCC(=O)NH(R\(_3\)), -NH(=O)OR\(_2\), -NH(=O)OR\(_2\), -C(O)N(R\(_3\))\(_2\), -OC(O)=O(R\(_3\))\(_2\), -NHC(=O)NH(R\(_3\)), -NHC(=O)OR\(_2\), -NHC(=O)OR\(_2\), -C(OH)(R\(_3\))\(_2\), -C(=O)alkyl, -C=C\(_n\)fluoroalkyl, -C\(_n\)=fluoroalkyl, Qalkoxy, C\(_1\)-C\(_n\)heteroalkyl, an optionally substituted C\(_2\)-C\(_n\)cycloalkyl, an optionally substituted heterocycloalkyl, optionally substituted phenyl, optionally substituted monocyclic heteroaryl, or an optionally substituted group selected from among -C\(_1\)-C\(_2\)alkyl-C\(_3\)-Ciocycloalkyl, -C\(_1\)-C\(_2\)alkyl-heterocycloalkyl, -C\(_1\)-C\(_2\)alkyl-aryl, and -C\(_1\)-C\(_2\)alkyl-heteroaryl; or

each of \(R^2, R^3, R^4, R^5, R^6 \), and \(R^7 \) is independently \(-X^1-L^1-Q^2 \), where,

\(X^1 \) is a bond, -O-, -S-, -S(=O)-, -S(=O)\(_2\), or -NR\(_2\); \(L^1 \) is a bond or a C\(_1\)-C\(_2\)alkylene;

\(Q^2 \) is -CO\(_2\)R\(_3\), -C(=O)R\(_2\), -C(=O)N(R\(_3\))\(_2\), -C(=O)NHSO\(_2\)R\(_2\), an optionally substituted C\(_2\)-C\(_n\)cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, or an optionally substituted heteroaryl;

each \(R^8 \) is each independently selected from H, halogen, C\(_1\)-C\(_2\)alkyl, and C\(_1\)-C\(_2\)haloalkyl; or

both \(R^8 \) groups are taken together with the carbon atom to which they are attached to form a C\(_3\)-C\(_n\)cycloalkyl;

\(R^{10} \) is -C(=O)R\(_{14}\), -C(=O)OR\(_{15}\), -C(=O)N(R\(_{16}\))\(_2\), -S(O)\(_2\)N(R\(_{16}\))\(_2\)Or-S(O)\(_2\)R\(_{15}\);

\(R^{14} \) is Ci-C\(_n\)alkyl, Ci-C\(_n\)fluoroalkyl, Ci-C\(_n\)heteroalkyl, an optionally substituted C\(_3\)-Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -Ci-C\(_n\)alkyl-

Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, a- optionally substituted -Ci-C\(_n\)alkyl-

Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -Ci-C\(_n\)alkyl-

heterocycloalkyl, an optionally substituted -Ci-C\(_n\)alkyl-aryl, or an optionally substituted -Ci-C\(_n\)-alkyl-heteroaryl; or

\(R^{11} \) is L\(^3\)-X\(^3\)-Q\(^3\);

\(L^3 \) is a C\(_1\)-C\(_2\)alkylene;

\(X^3 \) is a bond, -O-, -S-, -S(O)-, -S(O)\(_2\), or -NR\(_2\); \(Q^3 \) is an optionally substituted Ci\(_n\)alkyl, C\(_1\)-C\(_n\)fluoroalkyl an optionally substituted C\(_1\)-Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -Ci-C\(_n\)alkyl-

Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -Ci-C\(_n\)alkyl-

heterocycloalkyl, an optionally substituted -Ci-C\(_n\)alkyl-aryl, or an optionally substituted -Ci-C\(_n\)-alkyl-heteroaryl;
\[\text{R}^{15} \text{ is } \text{Ci-C}_6\text{alkyl, Ci-C}_6\text{fluoroalkyl, Ci-C}_6\text{heteroalkyl, an optionally substituted } C_{3}\text{-Ci-cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -CrQalkyl-cycloalkyl, an optionally substituted -Q-alkyl-heterocycloalkyl, an optionally substituted -Ci-C}_3\text{alkyl-aryl or an optionally substituted -Ci-Qalkyl-heteroaryl;}
\]
each \(\text{R}^{16}\) is independently \(\text{H, -CN, C}_3\text{alkyl, Ci-C}_6\text{fluoroalkyl, Q-Ci(eteroalkyl, an}
\text{optionally substituted } C_{3}\text{-Ci-cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -C}_{3}\text{-alkyl-cycloalkyl, an optionally substituted -Ci-C}_3\text{alkyl-heterocycloalkyl, an optionally substituted -Ci-C}_3\text{alkyl-aryl or an optionally substituted -Ci-Qalkyl-heteroaryl;}
\]
or
\(\text{two } \text{R}^{16}\) groups attached to the same \(N\) atom are taken together with the \(N\) atom to which they are attached to form an optionally substituted heterocycloalkyl;

\(\text{R}^{11}\) is \(\text{Ci-C}_6\text{alkyl, Ci-C}_6\text{heteroalkyl, Ci-C}_6\text{haloalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl), (an optionally substituted monocyclic or bicyclic heterocycloalkyl), an optionally substituted aryl, or an optionally substituted heteroaryl, C}_{3}\text{alkylene-R}^{17}, -\text{CrQalkylene-O-R}^{17}, -\text{Ci-Cealkylene-S-R}^{17}, -\text{C}_{3}\text{alkylene-S(=O)-R}^{17}, -\text{C}_{3}\text{alkylene-S(=O)}_2\text{-R}^{17}, -\text{C}_{3}\text{alkylene-NR}^{3-R}^{17}, -\text{C}_{3}\text{alkylene-C(=O)-R}^{17}, -\text{C}_{3}\text{alkylene-C(=O)O-R}^{17}, -\text{C}_{3}\text{alkylene-OC(O)=O-R}^{17}, -\text{C}_{3}\text{alkylene-NR}^{3-C(=O)=O-R}^{17}
\]

\(\text{R}^{17}\) is \(\text{H, Ci-C}_6\text{Ucyl, Ci-C}_6\text{heteroalkyl, Ci-C}_6\text{haloalkyl, an optionally substituted cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl;}
\]
\(\text{R}^{12}\) is \(\text{CrQalkyl, d-C}_6\text{heteroalkyl, CrC}_6\text{fluoroalkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted aryl, a substituted or unsubstituted benzyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted -Ci-Qalkyl-cycloalkyl, a substituted or unsubstituted -Ci-C}_3\text{alkyl-heterocycloalkyl, a substituted or unsubstituted -Ci-C}_3\text{alkyl-aryl, or a substituted or unsubstituted -Ci-C}_3\text{alkyl-heteroaryl;}
\]
and
\(\text{each } \text{R}^{13}\) is independently selected from \(\text{H, C}_3\text{alkyl, Ci-C}_6\text{heteroalkyl, Ci-C}_6\text{fluoroalkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted benzyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted -Ci-C}_3\text{alkyl-cycloalkyl, a substituted or unsubstituted -Ci-C}_3\text{alkyl-heterocycloalkyl, a substituted or unsubstituted -Ci-C}_3\text{alkyl-aryl, and a substituted or unsubstituted -Ci-C}_3\text{alkyl-heteroaryl;}
\)
two R13 groups attached to the same N atom are taken together with the N atom to which
they are attached to form an optionally substituted heterocycloalkyl,

[0184] In one embodiment, the compound of Formula (I) has one of the following structures:

![Chemical structure](image1)

[0185] In one embodiment, the compound of Formula (I) has the structure of Formula (II):

![Chemical structure](image2)

Formula (II).

[0186] In other embodiments, each R1 is independently selected from H, F, and Ci-C\textsubscript{4}alkyl. In
some other embodiments, each R1 is independently selected from H, F, and -CH\textsubscript{3}. In some other
embodiments, each R1 is independently selected from H, and F. In yet some other embodiments,
each R1 is H.

[0187] In one aspect, each of R2, R3, R6, and R7 is independently
H, halogen, -CN, -OH, -OR13, -SR12, -S(O)R12, -S(O)\textsubscript{2}R12, -C(=O)R12, -OC(O)R12, -CO\textsubscript{2}R13, -OCO\textsubscript{2}R13, -N(R13)\textsubscript{2}, -C-C\textsubscript{alkyl},
Ci-C\textsubscript{6}fluoroalkyl, an optionally substituted C\textsubscript{5}-Ciocycloalkyl, an optionally substituted
heterocycloalkyl, C\textsubscript{1}-Ci\textsubscript{6}fluoroalkoxy, Ci-C\textsubscript{6}alkoxy, d-Csheteroalkyl, optionally substituted
phenyl, or an optionally substituted monocyclic heteroaryl.

[0188] In one aspect, R4 is H, halogen, -CN, -NO\textsubscript{2}, -OH, -OR13, -SR12, -S(O)R12, -S(=O)\textsubscript{2}R12, -C(=O)R12, -OC(O)R12, -CO\textsubscript{2}R13, -OCO\textsubscript{2}R13, -CH(R13)\textsubscript{2}, -N(R13)\textsubscript{2}, -NHCH\textsubscript{2}CO\textsubscript{2}R13, -OCH\textsubscript{2}CO\textsubscript{2}R13,
-SCH\textsubscript{2}CO\textsubscript{2}R13, -C(O)N(R13)\textsubscript{2}, C\textsubscript{1}-C\textsubscript{6}alkyl, C\textsubscript{5}-Ci\textsubscript{6}fluoroalkyl, an optionally substituted C\textsubscript{5}-Ciocycloalkyl, an optionally substituted heterocycloalkyl, C\textsubscript{1}-Ci\textsubscript{6}fluoroalkoxy, Q-Qalkoxy,
C\textsubscript{1}-C\textsubscript{gheteroalkyl}, optionally substituted phenyl, optionally substituted monocyclic heteroaryl; or R4 is
-X1L1Q2, where, X1 is a bond, or -O-; L1 is a bond or a Ci-Qalkylene; Q2 is -CO\textsubscript{2}R13, an
optionally substituted C\textsubscript{5}-Ci\textsubscript{6}cycloalkyl, an optionally substituted aryl, or an optionally substituted
heteroaryl.

[0189] In one aspect, R5 is H, halogen, -CN, -NO\textsubscript{2}, -OH, -OR13, -SR12, -S(O)R12, -S(=O)\textsubscript{2}R12, -NHS(O)\textsubscript{2}R12, -C(=O)R12, -OC(O)R12, -CO\textsubscript{2}R13, -OCO\textsubscript{2}R13, -CH(R13)\textsubscript{2}, -N(R13)\textsubscript{2}, -
NHCH₂CO₂R₁, -OCH₂CO₂R₁, -SCH₂CO₂R₁, -C(=O)N(R₁₃), -OC(=O)N(R₁₃), -NHCH₂C(O)₂R₁₃, -NHC(O)NH(R₁₃), an optionally substituted C₃-C₆alkyl, C₆-C₆fluoroalkyl, an optionally substituted C₃-C₆alkyl-C₆alkyl-heteroaryl, an optionally substituted heterocycloalkyl, Q-C₆fluoroalkoxy, C₆-C₆alkoxy, Q-C₆heteroalkyl, optionally substituted phenyl, optionally substituted monocyclic heteroaryl, or an optionally substituted group selected from among -C₁₋₃
C₃=C₆alkynyl, C₆-C₆alkynyl, Q-C₆heterocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted cycloalkyl-aryl, and -Q-C₆alkyl-heteroaryl; or R³ is independently -X₁₋₄, -Q-C₆alkyl-S(O)₆, -Q-C₆alkyl-S(O)₂, or -NR₁₋₃; L₁ is a bond or a Q-C₆alkylene; Q² is -CO₂R₁, -C(O)R₁₂, -C(O)N(R₁₃), -C(O)NHQ-C₆alkyl, -C(O)NHQ-C₆alkynyl, -C(O)NQ-C₆alkynyl, -C(O)NQ-C₆alkyl-heteroaryl, or an optionally substituted heteroaryl.

[0190] In some embodiments, R₁₀ is -C(O)R₁⁴, -C(O)OR₁⁵, -C(O)N(R₁₆), or -S(O)₂R¹⁵; R¹⁴ is Ci-C₆alkyl, Ci-C₆fluoroalkyl, Q-C₆heteroalkyl, an optionally substituted C₃-C₆cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -Q-C₆alkyl-cycloalkyl, an optionally substituted -Q-C₆alkyl-aryl, an optionally substituted -Q-C₆alkyl-heteroaryl or an optionally substituted -Ci-C₆alkyl-heteroaryl; R¹⁵ is Q-C₆alkyl, Q-C₆fluoroalkyl, Q-C₆heteroalkyl, an optionally substituted cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted cycloalkyl, an optionally substituted aryl, or an optionally substituted heteroaryl.

[0191] In other embodiments, R₁₀ is -C(O)R₁⁴, -C(O)OR₁⁵, -C(O)N(R₁₆), or -S(O)₂R¹⁵; R¹⁴ is Ci-C₆alkyl, Ci-C₆fluoroalkyl, Q-C₆heteroalkyl, an optionally substituted -Ci-C₆alkyl-aryl or an optionally substituted -Ci-C₆alkyl-heteroaryl; R¹⁵ is Ci-C₆alkyl-C₆alkynyl, -Ci-C₆alkynyl-Q-C₆heteroalkyl, -Ci-C₆alkynyl-Q-C₆heteroalkyl, an optionally substituted cycloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl.
"C₃ heteroalkyl, an optionally substituted C₇-Ciocycloalkyl, an optionally substituted
heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an
optionally substituted -Cᵦ-Cgalkyl-aryl or an optionally substituted -Cᵦ-Cgalkyl-heteroaryl; Rᵦ is Q-Cgalkyl,
Ci-Cg heteroalkyl, Q-Ccelioalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl),
(an optionally substituted monocyclic or bicyclic heterocycloalkyl), an optionally substituted aryl,
or an optionally substituted heteroaryl, -Ct-Qalkylene-O-R, -Ci-Cgalkylene-S-R, -Cᵦ-
Cgalkylene-S(O)=R, -Cᵦ-Cgalkylene-S(O)₂-R, -Cᵦ Cgalkylene-NR, -d-Qalkylene-
C(O)O-R, -Cᵦ-Cgalkylene-OC(=O)-R, -Cᵦ Cgalkylene-NR C(O)=R or -Cᵦ Cgalkylene-
C(O)NR C(O)=R; R₁₇ is H, C₁-Cgalkyl, Cᵦ Cg heteroalkyl, Cᵦ-Cg haloalkyl, an optionally substituted
cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally
substituted benzyl, or an optionally substituted heteroaryl.

[0192] In some other embodiments, R₁₀ is -C(=O)R, -C(=O)OR, -C(=O)N(R)₂, or -
S(=O)₂R; R₁₄ is Ci-Cg heteroalkyl, an optionally substituted -Cᵦ-Cgalkyl-aryl or an optionally
substituted -Cᵦ-Cg alkylene-heteroaryl; Rᵦ is Ci-Cg heteroalkyl, an optionally substituted C₅-
Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an
optionally substituted heteroaryl, an optionally substituted -d-Qalkyl-cycloalkyl, an optionally
substituted -Cᵦ-Cgalkyl-aryl or an optionally substituted -Cᵦ-Cgalkyl-heteroaryl; each R₁₆ is
independently an optionally substituted C₃-C₁₀ cycloalkyl, an optionally substituted
heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an
optionally substituted monocyclic or bicyclic cycloalkyl), an optionally substituted aryl,
or an optionally substituted heteroaryl, Cᵦ Cgalkylene-R, -Ci-Cgalkylene-O-R, -Ci-Cgalkylene-
S-R, -Cᵦ-Cgalkylene-S(O)=R, -Cᵦ-Cgalkylene-S(O)₂-R, -Cᵦ Cgalkylene-NR, -d-Qalkylene-
C(O)O-R, -Cᵦ-Cgalkylene-OC(=O)-R, -Cᵦ Cgalkylene-NR C(O)=R or -Cᵦ Cgalkylene-
C(O)NR C(O)=R; R₁₇ is H, d-Qalkyl, Cᵦ-
Cg heteroalkyl, d-Cg haloalkyl, an optionally substituted cycloalkyl, an optionally substituted
heterocycloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally
substituted heteroaryl.

[0193] In some embodiments, R₁₀ is -C(=O)R, where, R₁₄ is an optionally substituted C₃-
Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an
optionally substituted heteroaryl, an optionally substituted -Cᵦ-Cgalkyl-aryl or an optionally
substituted -Cᵦ Cgalkyl-heteroaryl; R₁₁ is Cᵦ, Cᵦ Cgalkyl, Q-Ccenoalkyl, Ci-Cshaloalkyl, Cᵦ-
Cgalkylene-R, -Cᵦ-Cgalkylene-O-R, -CrQalkylene-S-R, -Cᵦ-Cgalkylene-S(O)=R, -Cᵦ-
Cgalkylene-S(O)₂-R, -Cᵦ Cgalkylene-NR, -Cᵦ Cgalkylene-C(O)=R, -Q-Qalkylene-
C(O)O-R, or -Cᵦ Cgalkylene-C(O)NR; R₁₇ is H, Cᵦ Cgalkyl, Cᵦ Cg heteroalkyl, Cᵦ-

C₆haloalkyl, an optionally substituted cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl. [0194] In some embodiments, R¹⁰ is -C(=O)R¹⁴; R¹⁴ is C₇C₈alkyl, d-Cfifluoroalkyl, C₈C₉heteroalkyl, an optionally substituted -CᵦCᵦalkyl-aryl or an optionally substituted -CᵦCᵦalkyl-heteroaryl; R⁷ is C₈C₉heteroalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl), (an optionally substituted monocyclic or bicyclic heterocycloalkyl), an optionally substituted aryl, or an optionally substituted heteroaryl, -d-Cealkylene-O-R¹⁷, -d-Cealkylene-S(=O)R¹⁷, -CrC₈alkylene-S(=O)²R¹⁷, -CᵦCᵦalkylene-NR¹³-R¹⁷, -CᵦCᵦalkylene-C(=O)O-R¹⁷, or -CᵦCᵦalkylene-C(=O)NR¹³-R¹⁷; R¹⁷ is H, C₇C₈alkyl, d-C₈C₉heteroalkyl, C₈C₉haloalkyl, an optionally substituted cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl. [0195] In some embodiments, R¹⁴ is d-C₈alkyl, Ci-C₉fluoroalkyl, Ci-Qheteroalkyl, C₃Qcycloalkyl or -L³X³-Q³; L³ is a C₄C₅alkylene; X³ is a bond, -O-, -S-, -S(=O)-, -S(=O)², or -NR³⁻; Q³ is C₅C₆fluoroalkyl, C₅C₆alkyl-(an optionally substituted phenyl), -CᵦCᵦalkyl-(an optionally substituted phenyl). In some embodiments, R¹⁴ is Ci-C₉alkyl, Ci-C₉fluoroalkyl, C₃-C₄heteroalkyl, C₃C₄cycloalkyl or -L³X³-Q³. In some embodiments, R¹⁴ is Ci-C₉alkyl. In some embodiments, R¹⁴ is C₃-C₄cycloalkyl. In some embodiments, R¹⁴ is or -L³X³-Q³. [0196] In some embodiments, R¹⁰ is -C(=O)OR¹⁵, or -Cf(=O)N(R¹⁵)₂; R¹⁵ is C₇C₈alkyl, C₇C₈fluoroalkyl, Ci-C₉heteroalkyl, an optionally substituted C₄-C₆cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -CᵦCᵦalkyl-cycloalkyl, an optionally substituted -CᵦCᵦalkyl-aryl or an optionally substituted -d-Qalkyl-heteroaryl; each R¹⁶ is independently H, Ci-C₉alkyl, C₇C₉fluoroalkyl, d-Ceheteroalkyl, an optionally substituted C₇C₈cycloalkylL an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -CᵦCᵦalkyl-aryl or an optionally substituted -CᵦCᵦalkyl-heteroaryl; R¹¹ is Q-alkyl, Ci-C₉heteroalkyl, Ci-Qhaloalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl), (an optionally substituted monocyclic or bicyclic heterocycloalkyl), an optionally substituted aryl, or an optionally substituted heteroaryl, -CᵦC₈alkylene-O-R¹⁷, -CᵦC₈alkylene-S-R¹⁷, -CᵦC₈alkylene-NR¹³-R¹⁷, -CrC₈alkylene-C(=O)O-R¹⁷, or -CᵦC₈alkylene-C(=O)NR¹³-R¹⁷; R¹⁷ is H, C₅C₆alkyl, Ci-C₈heteroalkyl, C₈C₉haloalkyl, an optionally substituted cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl; [0197] In one aspect, R¹⁰ is -C(=O)OR¹⁵; R¹⁵ is C₇C₈alkyl, C₇C₈fluoroalkyl, C₇C₈heteroalkyl, an optionally substituted C₃-C₄cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -CᵦC₈.
Qalkyl-cycloalkyl, an optionally substituted -Ci-Gialkyl-heterocyloalkyl, an optionally substituted -Ci-C₄alkyl-aryl or an optionally substituted -Ci-C₆alkyl-heteroaryl; R¹¹ is Ci-C₆alkyl, Ci-Ceheteroalkyl, Ci-Cehaloalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl), (an optionally substituted monocyclic or bicyclic heterocyloalkyl), an optionally substituted aryl, or an optionally substituted heteroaryl, -Ci-C₆alkylene-O-R¹⁷, -Ci-Calkylene-S-R¹⁷, -Cr₁-C₆alkylene-S(=O)-R²⁻R¹⁷, -CrCgalkylene-NR²-R¹⁷, -Cr₁-C₆alkylene-C(=O)O-R¹⁷, or -Cr₁-C₆alkylene-C(=O)NR²-R¹⁷; R¹⁷ is H₁-d-C₆alkyl, Ci-Ceheteroalkyl, C₇-C₆haloalkyl, an optionally substituted cycloalkyl, an optionally substituted heterocyloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl.

[0198] In yet another aspect, R¹⁰ is -C(=O)OR¹⁵; R¹⁵ is Ci-C₆heteroalkyl, an optionally substituted C₃-Cicycloalkyl, an optionally substituted heterocyloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -CrQalkyl-cycloalkyl, an optionally substituted -Ci-C₆alkyl-aryl or an optionally substituted -Ci-Qalkyl-heteroaryl; R¹¹ is Ci-Cealkyl, Ci-C₆heteroalkyl, Q-C₆haloalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl), (an optionally substituted monocyclic or bicyclic heterocyloalkyl), an optionally substituted aryl, or an optionally substituted heteroaryl, Q-Cealkylene-R¹⁷, -Ci-Qalkylene-O-R¹⁷, -d-Calkylene-S-R’⁷⁻, -Cr₁-C₆alkylene-S(=O)-R¹⁷, -Cᵣ-C₆alkylene-S(=O)₂-R¹⁷, -CrQalkylene-NR²⁻R¹⁷, -Cᵣ-C₆alkylene-C(=O)O-R¹⁷, -Cᵣ-C₆alkylene-C(=O)NR²⁻R¹⁷, or -Cᵣ-C₆alkylene-C(=O)NR²⁻R¹⁷; R¹⁷ is H₁-C₆-C₆alkyl, CrCeheteroalkyl, Ci-Cghaloalkyl, an optionally substituted cycloalkyl, an optionally substituted heterocyloalkyl, an optionally substituted aryl, an optionally substituted benzyl, or an optionally substituted heteroaryl.

[0199] In one aspect, R¹⁵ is Cᵣ-C₆alkyl, C₃-C₆cycloalkyl, -CH₂-C₃-C₆cycloalkyl, -CH₂-(an optionally substituted phenyl), or -CH(CH₃)-(an optionally substituted phenyl).

[0200] In some embodiments, R¹⁰ is -C(=O)N(R₁⁶)₂⁻. In some embodiments, each R¹⁶ is independently H, Ci-C₆alkyl, Ci-C₆fluoroalkyl, Ci-C₆heteroalkyl, C₃-Ci₂cycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -Ci-C₆alkyl-(C₃-Cicycloalkyl), -Ci-C₆alkyl-(substituted or unsubstituted aryl), or -Ci-C₆alkyl-(substituted or unsubstituted heteroaryl). In other embodiments, each R¹⁶ is independently H, Ci-Cealkyl, Ci-C₆fluoroalkyl, Cᵣ-C₆heteroalkyl, C₃-C₆cycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted monocyclic heteroaryl, -CH₂-(C₃-Qcycloalkyl), -CH₂-(a substituted or unsubstituted phenyl), -CH(CH₃-H a substituted or unsubstituted phenyl), -CH₂-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH₃)-(a substituted or unsubstituted monocyclic heteroaryl). In other embodiments, each R¹⁶ is independently H, Ci-C₆alkyl, C₃-C₆cycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted monocyclic heteroaryl, -CH₂-(a substituted or unsubstituted phenyl), -CH₂-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH₃)-(a substituted or unsubstituted phenyl), -CH₂-(a substituted or unsubstituted phenyl), -CH₂-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH₃)-(a substituted or unsubstituted monocyclic heteroaryl).
heteroaryl). In other embodiments, one R¹⁶ is H and the other R¹⁶ is -CH₂-(a substituted or unsubstituted phenyl), -CH(CH₃)-(a substituted or unsubstituted phenyl), -CH₂-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH₃)-(a substituted or unsubstituted monocyclic heteroaryl). In yet other embodiments, one R¹⁶ is H and the other R¹⁶ is -CH₂-(a substituted or unsubstituted phenyl), or -CH(CH₃)-(a substituted or unsubstituted phenyl). In yet other embodiments, one R¹⁶ is H and the other R¹⁶ is -CH₂-(a substituted or unsubstituted phenyl).

[0201] In one aspect, R¹¹ is C₁-C₄alkyl, C₁-C₄haloalkyl, or C₃-C₆cycloalkyl.

[0202] In some embodiments, each of R², R³, R⁶ and R⁷ is independently H, halogen, -CN, -OH, -OR¹³, C₁-C₆alkyl, C₁-C₆alkoxy, d-Cefuroalkyl, C₁-C₆fluoralkoxy, or C₁-C₆heteroalkyl.

[0203] In some other embodiments, R⁵ is H, F, Cl, Br, I, -CN, -NO₂, -OH, -OR¹³, -SR, -S(O)R¹², -S(=O)₂R¹², -S(=O)R¹², -NHS(=O)R¹², -OC(=O)R¹², -CO₂R¹³, -OCO₂R¹³, -N(R¹³)₂, -NHCH₂CO₂R¹³, -OCH₂CO₂R¹³, -SCH₂CO₂R¹³, -C(=O)N(R¹¹)₂, -OC(=O)N(R¹¹)₂, -NHC(=O)R¹², -NHC(=O)N(R¹¹)₂, -C₁-C₄alkyl, -Cl-Cefuroalkyl, C₁-C₆alkoxy, C₁-C₆fluoralkoxy, C₁-C₆heteroalkyl, an optionally substituted C₃-C₁₀cycloalkyl, an optionally substituted heterocycloalkyl, optionally substituted phenyl, optionally substituted monocyclic heteroaryl, or an optionally substituted group selected from among -C₁-C₄alkyl-C₃-C₁₀cycloalkyl, -C₁-C₄alkyl-heterocycloalkyl, -C₁-C₄alkyl-aryl, and -Q₂alkyl-heteroaryl.

[0204] In some other embodiments, each of R², R³, R⁶ and R⁷ is independently H, halogen, -OH, Cl-C₆alkyl, C₁-C₆alkoxy, or C₁-C₆fluoralkyl.

[0205] In some aspects, R⁵ is H, F, Cl, Br, I, -CN, -NO₂, -OH -CH₃, -CH₂CH₃, i-propyl, -tBu, -CF₃, -CH₂CF₃, -OCH₃, -OCF₃, -S(=O)₂C₂H₅, -S(=O)C₂H₅(optionally substituted phenyl), -NHS(=O)C₁-C₄alkyl, -NHS(=O)C₁-C₆alkoxy, -NHS(=O)C₁-C₆fluoralkoxy (optionally substituted phenyl), -C(=O)-(optionally substituted phenyl), -C(=O)CH₃, -CO₂H, -CO₂CH₃, -CO₂CH₂CH₃, -NH₂, -C(=O)NH₂, -C(=O)NH(=CH₃), -C(=O)NH(=CH₂CH₃), -C(=O)NH(tBu), -C(=O)NH(iPr), -C(=O)NH(=CF₃), -C(=O)NH(=CH₂OCH₃), -C(=O)NH(optionally substituted phenyl), -C(=O)NH(optionally substituted monocyclic heteroaryl), -C(=O)NH(optionally substituted heterocycloalkyl), -NHC(=O)(optionally substituted heterocycloalkyl), -NHC(=O)(optionally substituted heterocycloalkyl), -NHHC(=O)(optionally substituted heterocycloalkyl), -NHHC(=O)(optionally substituted heterocycloalkyl), -NHHC(=O)(optionally substituted heterocycloalkyl), or an optionally substituted group selected from benzyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, thiomorpholinyl, phenyl, pyridinyl, pyrazinyl, imidazolyl, pyrazolyl, 1-methylpyrazol-4-yl, isoxazolyl, oxazolyl, thiazolyl, imidazolyl and isoxazolyl.

[0206] In some embodiments, R² is H, F, Cl, Br, -CH₃, -CF₃, -Q=O)NH(=CH₂CH₃), -NHC(=O)(=CH₂CH₃), -SO₂CH₃, phenyl, 4-fluorophenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 5-amino-pyrazin-2-yl, pyrazol-1-yl, H-
pyrazol-4-yl, 1-methyl-1H-pyrazol-4-yl, 3-methyl-3H-imidazol-4-yl, oxazolyl, or 2-methyl-3H-imidazol-4-yl.

[0207] In other embodiments, R₄ is H, F, Cl, Br, I, -CN, -OH, -OR³, -C₆₈alkyl, C₆Qfluoroalkyl, C₆Qfluoroalkoxy, C₆Qalkoxy, C₆Qalkyl, C₆Qheteroalkyl; or R₄ is -X’-l AQ², where, X² is -O-; L¹ is a C₆Qalkylene; Q² is -CO₂R¹³, -C(=O)R¹², -C(=O)N(R¹³)₂, optionally substituted C₃-C₆cycloalkyl, an optionally substituted aryl, or an optionally substituted heteroaryl.

[0208] In other aspects, R₄ is H, F, Cl, Br, -CN, -OH, -C₆Qalkyl, C₆Qfluoroalkyl, C₆Qfluoroalkoxy, C₆Qalkoxy, d-C₆Qheteroalkyl, -O-C₆Qalkylene-CO₂R¹³, -O-C₆Qalkylene-C(=O)N(R¹³)₂, -O-C₆Qalkylene-(optionally substituted C₆C₆cycloalkyl), -O-C₆Qalkylene-(an optionally substituted aryl), or -O-C₆Qalkylene-(an optionally substituted heteroaryl).

[0209] In other embodiments, R₄ is H, F, Cl, -CH₃, -CF₃, -OH, -OCH₃, -OCH₂-C₆Qcyclopropyl, -OCH₂CO₂H, or -OBn.

[0210] In one embodiment, the compound of Formula (I) has one of the following structures:

[0211] In some embodiments, the compounds of Formula (I) and Formula (II) have a structure of Formula (III), Formula (IV), Formula (V) or Formula (VI):

Formula (III),

Formula (IV),
In some embodiments, the compounds described have a structure of Formula (III):

- R_{14} is C_{1-6} alkyl, C_{1-6} fluoroalkyl, C_{1-6} heteroalkyl, an optionally substituted C_{1-6} alkyl-C_{3-10} cycloalkyl, an optionally substituted C_{1-6} alkyl-heterocycloalkyl, or an optionally substituted C_{1-6} alkyl-aryl.

In some embodiments, R_{14} is C_{1-6} alkyl, C_{1-6} fluoroalkyl, an optionally substituted C_{1-6} alkyl-heteroalkyl, an optionally substituted C_{1-6} alkyl-C_{3-10} cycloalkyl, an optionally substituted C_{1-6} alkyl-heterocycloalkyl, or an optionally substituted C_{1-6} alkyl-aryl.

In some embodiments, R_{14} is C_{1-6} alkyl-C_{3-10} cycloalkyl, an optionally substituted C_{3-10} cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted C_{1-6} alkyl-C_{3-10} cycloalkyl, an optionally substituted C_{1-6} alkyl-heterocycloalkyl, an optionally substituted C_{1-6} alkyl-C_{3-10} cycloalkyl, an optionally substituted C_{1-6} alkyl-heterocycloalkyl, or an optionally substituted C_{1-6} alkyl-aryl.
In other embodiments, R_{14} is $CrCalkyl$, $d-Qfluoroalkyl$, $Ci-C_{6}heteroalkyl$, an optionally substituted $C_{3}-C_{10}$cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -$Cralkyl$-aryl or an optionally substituted -$Ci-Qalkyl$-heteroaryl.

In yet other embodiments, R_{14} is $Ci-C_{6}alkyl$, $Ci-C_{6}$fluoroalkyl, $Ci-C_{6}heteroalkyl$, an optionally substituted $C_{3}-Ci$-cycloalkyl, an optionally substituted $Ci-C_{4}$alkyl-heteroaryl.

In yet other embodiments, R_{14} is $Ci-C_{6}alkyl$, $Ci-C_{6}fluoroalkyl$ or $Ci-C_{6}heteroalkyl$. In other embodiments, R_{14} is $Ci-C_{6}alkyl$.

In some embodiments, the compounds described have a structure of Formula (IV):

In some embodiments, R_{15} is $Ci-C_{6}alkyl$, $Ci-Qjfluoroalkyl$, $Ci-C_{6}$heteroalkyl, an optionally substituted $C_{3}-Ci$-cycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -$C_{1}-C_{4}alkyl$-cycloalkyl, an optionally substituted -$C_{1}-C_{4}alkyl$-heterocycloalkyl, an optionally substituted -$Ci-C_{4}$alkyl-aryl or an optionally substituted -$Ci-Gialkyl$-heteroaryl.

In other embodiments, R_{15} is $Ci-C_{6}$heteroalkyl, an optionally substituted $C_{3}-Ci$-cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -$Ci-C_{4}$alkyl-cycloalkyl, an optionally substituted -$Ci-C_{4}$alkyl-aryl or an optionally substituted -$Ci-C_{4}$alkyl-heteroaryl.

In some embodiments, R_{15} is $Ci-C_{6}alkyl$, $Ci-C_{6}$fluoroalkyl, $Ci-C_{6}$heteroalkyl, an optionally substituted $C_{3}-Ci$-cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -$C_{1}-C_{4}alkyl-cycloalkyl$, an optionally substituted -$C_{1}-C_{4}alkyl$-heteroaryl, an optionally substituted -$Ci-C_{4}$alkyl-aryl or an optionally substituted -$Ci-C_{4}$alkyl-heteroaryl.

In some embodiments, R_{15} is an optionally substituted -$C_{1}-C_{4}alkyl-cycloalkyl$, an optionally substituted -CrC_{4}alkyl-aryl, or an optionally substituted -$Ci-C_{4}$alkyl-heteroaryl. In some embodiments, R_{15} is an optionally substituted -$Ci-C_{4}$alkyl-phenyl.

In some embodiments, the compounds described have a structure of Formula (V):
In some embodiments, each R_{16} is independently H, C$_1$-C$_6$alkyl, C$_0$-fluoroalkyl, Q - heteroalkyl, an optionally substituted C$_3$-Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -C$_1$-C$_4$alkyl-cycloalkyl, an optionally substituted -C$_1$-C$_4$alkyl-heterocycloalkyl, an optionally substituted -C$_1$-C$_4$alkyl-aryl or an optionally substituted -C$_1$-C$_4$alkyl-lieeroaryl; or two R_{16} groups are taken together with the N atom to which they are attached to form an optionally substituted heterocycloalkyl. In some other embodiments, each R_{16} is independently H, C$_3$-C$_6$alkyl, C$_6$-C_{14}fluoroalkyl, C$_6$-C_{14}heteroalkyl, C$_6$-C_{14}heteroalkyl, an optionally substituted C$_3$-C$_5$cyeloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -C$_1$-C$_4$alkyl-cycloalkyl, an optionally substituted -C$_1$-C$_4$alkyl-heterocycloalkyl, an optionally substituted -C$_1$-C$_4$alkyl-aryl or an optionally substituted -C$_1$-C$_4$alkyl-heteroaryl. In some other embodiments, one R_{16} is H or C$_6$alkyl and the other R_{16} is an optionally substituted -C$_1$-C$_4$alkyl-phenyl.

In some embodiments, the compounds described have a structure of Formula (VI):

In some embodiments, R_{15} is C$_1$-C$_6$alkyl, C$_0$-fluoroalkyl, C$_6$-C_{14}heteroalkyl, an optionally substituted C$_3$-Ciocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, an optionally substituted -C$_1$-C$_4$alkyl-cycloalkyl, an optionally substituted -C$_1$-C$_4$alkyl-heterocycloalkyl, an optionally substituted -C$_1$-C$_4$alkyl-aryl or an optionally substituted -C$_1$-C$_4$alkyl-heteroaryl. In other embodiments, R_{15} is C$_2$-C$_3$alkyl, C$_1$-C$_6$fluoroalkyl, C$_6$-C_{14}heteroalkyl, an optionally substituted C$_3$-C$_5$cyeloalkyl, an optionally substituted aryl, or an optionally substituted heteroaryl.

[0230] In some embodiments, R is CpQalkyl, Ci-C heteroalkyl, Ci-C haloalkyl, (an optionally substituted monocyclic or bicyclic cycloalkyl), (an optionally substituted monocyclic or bicyclic heterocycloalkyl), an optionally substituted aryl, an optionally substituted heteroaryl, -alkylene-{optionally substituted aryl}, -alkylene-O-Ci-C alkyl, -alkylene-OH, -alkylene-NH, -alkylene-NH, -alkylene-NH, -alkylene-NH, -alkylene-NH, -alkylene-NH, -alkylene-C(=O)NH, or -alkylene-C(=O)NH.

[0231] In some embodiments, R is Calkyl, Ci-C heteroalkyl, Ci-C haloalkyl, -alkylene-{optionally substituted aryl}, -alkylene-O-CrCgalkyl, -alkylene-OH, -alkylene-NH, -alkylene-NH, -alkylene-NH, -alkylene-NH, or -alkylene-C(=O)NH.

[0232] In some embodiments, R is (an optionally substituted monocyclic or bicyclic cycloalkyl), (an optionally substituted monocyclic or bicyclic heterocycloalkyl), an optionally substituted aryl, or an optionally substituted heteroaryl.

[0233] In some embodiments, R is Calkyl, Ci-C heteroalkyl, Ci-C haloalkyl, -alkylene-C(O)OH, -alkylene-C(O)OH, -alkylene-C(O)-alkyl, or -alkylene-C(=O)NH.
In some other embodiments, R11 is C\textsubscript{i}-C\textsubscript{g}alkyl, C\textsubscript{j}-C\textsubscript{e}heteroalkyl, d-C\textsubscript{g}haloalkyl, -Q-C\textsubscript{g}alkylene-C(=O)OH, -C\textsubscript{r}C\textsubscript{g}alkylene-C(=O)-C\textsubscript{r}C\textsubscript{g}alkyl, or -C\textsubscript{r}C\textsubscript{g}alkylene-C(=O)NH\textsubscript{2}. In yet some other embodiments, R11 is C\textsubscript{i}-C\textsubscript{g}alkyl, C\textsubscript{i}-C\textsubscript{e}heteroalkyl, or C\textsubscript{r}C\textsubscript{g}haloalkyl. In yet some other embodiments, R11 is C\textsubscript{r}C\textsubscript{g}alkyl or C\textsubscript{i}-C\textsubscript{e}heteroalkyl. In Yet some other embodiments, R11 is C\textsubscript{i}-C\textsubscript{g}alkyl. In one aspect, R11 is C\textsubscript{i}-C\textsubscript{g}alkyl or C\textsubscript{r}C\textsubscript{g}cycloalkyl.

In yet other cases, R11 is C\textsubscript{r}C\textsubscript{g}cycloalkyl, substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}heterocycloalkyl, substituted or unsubstituted aryalkyl, substituted or unsubstituted haloaryl, -C\textsubscript{r}C\textsubscript{g}alkylene-R17, -C\textsubscript{r}C\textsubscript{g}alkylene-O-R17, -d-C\textsubscript{g}alkylene-S-R17, -C\textsubscript{r}C\textsubscript{g}alkylene-S(=O)\textsubscript{2}R17, -d-C\textsubscript{g}alkylene-NR\textsubscript{13}R17, -C\textsubscript{r}C\textsubscript{g}alkylene-NR\textsubscript{13}C(=O)R17, -C\textsubscript{r}C\textsubscript{g}alkylene-C(=O)OR17, -C\textsubscript{r}C\textsubscript{g}alkylene-OC(=O)R17, -C\textsubscript{r}C\textsubscript{g}alkylene-NR\textsubscript{13}C(=O)R17 or -d-C\textsubscript{g}alkylene-C(=O)NR\textsubscript{13}R17 or R17 is a substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}cycloalkyl, substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}heterocycloalkyl, substituted or unsubstituted aryalkyl, substituted or unsubstituted benzyl, or substituted or unsubstituted heteroaryl. In some other cases, R11 is C\textsubscript{r}C\textsubscript{g}cycloalkyl, substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}heterocycloalkyl, substituted or unsubstituted aryalkyl, substituted or unsubstituted heteroaryl, or -C\textsubscript{r}C\textsubscript{g}alkylene-R17; R17 is a substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}cycloalkyl, substituted or unsubstituted aryalkyl, substituted or unsubstituted benzyl, or substituted or unsubstituted heteroaryl.

In some other cases, R11 is C\textsubscript{r}C\textsubscript{g}cycloalkyl, substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}heterocycloalkyl, substituted or unsubstituted aryalkyl, substituted or unsubstituted heteroaryl, or -C\textsubscript{r}C\textsubscript{g}alkylene-R17; R17 is a substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}cycloalkyl, substituted or unsubstituted aryalkyl, substituted or unsubstituted benzyl, or substituted or unsubstituted heteroaryl.

In some embodiments, R12 is d-C\textsubscript{g}alkyl, d-C\textsubscript{g}fluoroalkyl, C\textsubscript{r}C\textsubscript{g}cycloalkyl, a substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}heterocycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted benzyl, a substituted or unsubstituted monocyclic heteroaryl. In other embodiment, R12 is C\textsubscript{r}C\textsubscript{g}alkyl, C\textsubscript{r}C\textsubscript{g}fluoroalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted benzyl, a substituted or unsubstituted monocyclic heteroaryl. In some embodiments, R12 is C\textsubscript{r}C\textsubscript{g}alkyl, C\textsubscript{r}C\textsubscript{g}fluoroalkyl, or a substituted or unsubstituted phenyl. In some embodiments, R12 is C\textsubscript{r}C\textsubscript{g}alkyl. In one aspect, R12 is C\textsubscript{r}C\textsubscript{g}alkyl or C\textsubscript{r}C\textsubscript{g}fluoroalkyl. In one aspect, R12 is C\textsubscript{r}C\textsubscript{g}alkyl.

In some embodiments, each R13 is independently selected from H, C\textsubscript{r}C\textsubscript{g}alkyl, C\textsubscript{r}C\textsubscript{g}fluoroalkyl, C\textsubscript{r}C\textsubscript{g}cycloalkyl, a substituted or unsubstituted C\textsubscript{r}C\textsubscript{g}heterocycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted benzyl, a substituted or unsubstituted monocyclic heteroaryl. In some embodiments, each R13 is independently selected from H, C\textsubscript{r}C\textsubscript{g}alkyl, C\textsubscript{r}C\textsubscript{g}fluoroalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted benzyl, a substituted or unsubstituted monocyclic heteroaryl. In some embodiments, each R13 is
independently selected from H, Ci-Qalkyl, Q-Cgfluoroalkyl, a substituted or unsubstituted phenyl. In some embodiments, each R is independently selected from H and Ci-C alkyl. In one aspect, each R is independently selected from H, Ci-C alkyl, and Ci-Qfluoroalkyl. In one aspect, each R is independently selected from H and Ci-C alkyl.

In one aspect, R is as defined in Table 1 and Table 2. In one aspect, R is as defined in Table 1 and Table 2. In one aspect, R is as defined in Table 1 and Table 2. In one aspect, R is as defined in Table 1 and Table 2. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1. In one aspect, R is as defined in Table 1.

Any combination of the groups described above for the various variables is contemplated herein. Throughout the specification, groups and substituents thereof are chosen by one skilled in the field to provide stable moieties and compounds.

In one aspect, compounds described herein include, but are not limited to, those described in Table 1 and Table 2:

Table 1:
<table>
<thead>
<tr>
<th></th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>R<sup>3</sup></th>
<th>R<sup>4</sup></th>
<th>R<sup>5</sup></th>
<th>R<sup>6</sup></th>
<th>R<sup>7</sup></th>
<th>R<sup>8</sup></th>
<th>R<sup>9</sup></th>
<th>R<sup>10</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-13</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(S)-Indan-1-yl-C(=O)-CH₃</td>
</tr>
<tr>
<td>1-14</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(R)-Indan-1-yl-C(=O)-CH₃</td>
</tr>
<tr>
<td>1-15</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(1R,2S)-2-Hydroxy-indan-1-yl-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-16</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(1R,2S)-2-Methoxy-indan-1-yl-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-17</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Indan-2-yl-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-18</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Ph-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-19</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂Ph-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-20</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₂Ph-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-21</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-22</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>-CH₂CH₃-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-23</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃-C(=O)-OCH₃</td>
<td></td>
</tr>
<tr>
<td>1-24</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂Ph-C(=O)-OCH₃</td>
<td></td>
</tr>
<tr>
<td>1-25</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₂Ph-C(=O)-OCH₃</td>
<td></td>
</tr>
<tr>
<td>1-26</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Indan-2-yl-C(=O)-OCH₃</td>
<td></td>
</tr>
<tr>
<td>1-27</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₃-C(=O)-OCH₂Ph</td>
<td></td>
</tr>
<tr>
<td>1-28</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃-C(=O)-OCH₂Ph</td>
<td></td>
</tr>
<tr>
<td>1-29</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₃-C(=O)-OCH₂Ph</td>
<td></td>
</tr>
<tr>
<td>1-30</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cyclo-butyl-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-31</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cyclo-pentyl-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-32</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃-C(=O)-CF₃</td>
<td></td>
</tr>
<tr>
<td>1-33</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃-C(=O)-cyclopropyl</td>
<td></td>
</tr>
<tr>
<td>1-34</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cyclo-butyl-C(=O)-OCH₂Ph</td>
<td></td>
</tr>
<tr>
<td>1-35</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cyclo-pentyl-C(=O)-OCH₂Ph</td>
<td></td>
</tr>
<tr>
<td>1-36</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cyclo-propyl-C(=O)-OCH₂Ph</td>
<td></td>
</tr>
<tr>
<td>1-37</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CO₂H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CF₃-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-38</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃-C(=O)-OCH₂(3,5-dichloro-</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>R³</td>
<td>R⁴</td>
<td>R⁵</td>
<td>R⁶</td>
<td>R⁷</td>
<td>R⁸</td>
<td>R⁹</td>
<td>R¹⁰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-39</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-40</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-41</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-42</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-43</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₂</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-44</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-45</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-46</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-47</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-48</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-49</td>
<td>H, H</td>
<td>H, H</td>
<td>F</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CF₃</td>
<td></td>
</tr>
<tr>
<td>1-50</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-51</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>NH-C(=O)-CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-52</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>Pyrazol-1-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-53</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-54</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-55</td>
<td>H, H</td>
<td>H, H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-56</td>
<td>H, H</td>
<td>H, H</td>
<td>CH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-57</td>
<td>H, H</td>
<td>OCH₃</td>
<td>H, H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-58</td>
<td>H, H</td>
<td>H, H</td>
<td>F</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-59</td>
<td>H, H</td>
<td>H, H</td>
<td>CH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-60</td>
<td>H, H</td>
<td>H, H</td>
<td>Cyclopropyl</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-61</td>
<td>H, H</td>
<td>H, H</td>
<td>CF₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td>1-62</td>
<td>H, H</td>
<td>CH₃</td>
<td>H, H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R¹</td>
<td>R¹¹</td>
<td>R²</td>
<td>R²¹</td>
<td>R³</td>
<td>R³¹</td>
<td>R⁴</td>
<td>R⁴¹</td>
<td>R⁵</td>
<td>R⁶</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1-63</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>1-64</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>NH-C(=O)-CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>1-65</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>NH-C(=O)-OCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-66</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>NH-SO₂CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-67</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>SO₂CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-68</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Pyrroloidin-1-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-69</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Pyrazol-1-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>1-70</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Cyclopropyl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-71</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Phenyl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-72</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Oxazol-2-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-73</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Pyrazol-4-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-74</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Pyridin-2-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-75</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-76</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-77</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-78</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-79</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-80</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-81</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-82</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-83</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-84</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-85</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>NH-C(=O)-CH₃</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-86</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>-NH-C(=O)-OCH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-87</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>-NH-SO₂CH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-88</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Pyrroloidin-1-yl</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>1-89</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Pyrazol-1-yl</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-C(=O)-CH₃</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>R³</td>
<td>R⁴</td>
<td>R⁵</td>
<td>R⁶</td>
<td>R⁷</td>
<td>R⁸</td>
<td>R⁹</td>
<td>R¹¹</td>
<td>R¹⁰</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>-SO₂⁻</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-(C=O)-CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-(C=O)-CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-(C=O)-CH₂O-(4-chlorophenyl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-(C=O)-N(CH₂CH₃)-CH(Ph)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-(C=O)-NHCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-(C=O)-(pyrrolidin-1-yl)</td>
</tr>
<tr>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-(C=O)-NH-CN</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-SO₂-(4-chlorophenyl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
<td>-SO₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-(1S,2R)-CH(CH₃)-CH(Ph)(OH)</td>
</tr>
<tr>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>R_{1}^{1} R_{1}^{2} R_{1}^{3} R_{1}^{4} R_{1}^{5} R_{1}^{6} R_{1}^{7} R_{1}^{8} R_{1}^{9} R_{1}^{10}</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>1-118 H H H H OCH$_3$ CF$_3$ H H H H -CH$_2$CH$_3$</td>
<td>-C(=O)-C(CH$_3$_2)$_2$O-(4-chlorophenyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-119 H H H H OCH$_3$ CF$_3$ H H H H -CH$_2$CH$_3$</td>
<td>-C(=O)-CH$_2$-SO$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-120 H H H H OCH$_3$ CF$_3$ H H H H -CH$_2$CH$_3$</td>
<td>-C(=O)-CH$_2$-SO$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-121 H H H H OCH$_3$ CF$_3$ H H H H -CH$_2$CH$_3$</td>
<td>-C(=O)-NH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-122 H H H H H H H H H OCH$_3$ OCH$_3$</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-123 H H H H H H H H H OCH$_3$ OCH$_3$</td>
<td>-C(=O)-OCH$_2$(3,5-difluorophenyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-124 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-125 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-126 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-127 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-128 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-129 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-130 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-131 H H H H H H H H H H</td>
<td>-C(=O)-(1-(2,4-dichlorophenyl)cyclopropyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-132 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-135 H H H H H H H H H H</td>
<td>-C(=O)-(cyclopropyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-136 H H H H H H H H H H</td>
<td>-C(=O)-(cyclopropyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-137 H H H H H H H H H H</td>
<td>-C(=O)-C$_2$H$_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-138 H H H H H H H H H H</td>
<td>-C(=O)-C$_2$H$_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-139 H H H H H H H H H H</td>
<td>-C(=O)-NHCH$_2$-(pyridin-2-yl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-140 H H H H H H H H H H</td>
<td>-C(=O)-NHCH$_2$(4-chlorophenyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-143 H H H H H H H H H H</td>
<td>-C(=O)-OCH$_2$Ph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-144 H H H H H H H H H H</td>
<td>-C(=O)-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>R³</td>
<td>R⁴</td>
<td>R⁵</td>
<td>R⁶</td>
<td>R⁷</td>
<td>R⁸</td>
<td>R⁹</td>
<td>R¹⁰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>C(=N-CN)-NHCH₂CH₂CΗ₃</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=N-CN)-NHCH₂-(cyclopropyl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=N-CN)-NHCH₂-(pyridin-2-yl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-CH₂-(pyrazol-1-yl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-CH₂-(2-methylimidazol-1-yl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-CH₂-[(1,2,4)triazol-1-yl]</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-CH₂-(pyrrolidin-1-yl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-NHCH₂-(3,4-dichlorophenyl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>NH-(C(=O)-CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-OCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>NH-(C(=O)-(4-chlorophenyl)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-OCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>NH-SO₂-CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-OCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>NH-SO₂-(4-chlorophenyl)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-OCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-NHCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-NHCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-NHCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-OCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-OCH₂Ph</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-NHCH₂-(3,5-dichlorophenyl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-OCH₂-(4-fluorophenyl)</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
<td>-C(=O)-</td>
</tr>
<tr>
<td>R¹</td>
<td>R²</td>
<td>R³</td>
<td>R⁴</td>
<td>R⁵</td>
<td>R⁶</td>
<td>R⁷</td>
<td>R⁸</td>
<td>R⁹</td>
<td>R¹¹</td>
<td>R¹⁰</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1-170</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-171</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-172</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₂</td>
</tr>
<tr>
<td>1-173</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-174</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-175</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-176</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-177</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-178</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-179</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-180</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-181</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-182</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-183</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-184</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-185</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-186</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-187</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-188</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-189</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td></td>
<td>R¹</td>
<td>R²</td>
<td>R³</td>
<td>R⁴</td>
<td>R⁵</td>
<td>R⁶</td>
<td>R⁷</td>
<td>R⁸</td>
<td>R⁹</td>
<td>R¹⁰</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>1-190</td>
<td>H, H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-191</td>
<td>H, H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-192</td>
<td>H, H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-193</td>
<td>H, H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-194</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-195</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-196</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-197</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-198</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-199</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-200</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-201</td>
<td>H, H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-202</td>
<td>H, H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-203</td>
<td>H, H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-204</td>
<td>H, H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-206</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-207</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-208</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-209</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-210</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-211</td>
<td>H, CH₃</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-212</td>
<td>H, CH₃</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>1-213</td>
<td>H, H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH₂CH₃</td>
</tr>
<tr>
<td>R_7^1</td>
<td>R_7^2</td>
<td>R_7^3</td>
<td>R_7^4</td>
<td>R_7^5</td>
<td>R_7^6</td>
<td>R_7^7</td>
<td>R_7^8</td>
<td>R_7^9</td>
<td>R_7^{11}</td>
<td>R_7^{10}</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>CH$_3$</td>
<td></td>
</tr>
<tr>
<td>1-214</td>
<td>H,</td>
<td>CH$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-215</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>SO$_2$-CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-216</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>C(CH$_3$)$_2$ (OH)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-217</td>
<td>H,</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-218</td>
<td>H,</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-219</td>
<td>H,</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-220</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-221</td>
<td>H,</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-222</td>
<td>H,</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-223</td>
<td>H,</td>
<td>CH$_3$</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-224</td>
<td>H,</td>
<td>(R)-</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1-225</td>
<td>H,</td>
<td>(S)-</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1-226</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>COOH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-227</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>6-Ethoxy- pyridin-3-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-228</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>6-Ethoxy- pyridin-3-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-229</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>6-Ethoxy- pyridin-3-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-230</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>Quinolin- 7-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-231</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>Quinolin- 7-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-232</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>Quinolin- 7-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-233</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>1-Methyl- 1H-pyrazol-4-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-234</td>
<td>H,</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>1-Methyl- 1H-pyrazol-4-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>1-236</td>
<td>CH$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>-CH$_2$CH$_3$</td>
</tr>
<tr>
<td>R₁^1 R₂^1</td>
<td>R²</td>
<td>R³</td>
<td>R⁴</td>
<td>R⁵</td>
<td>R⁶</td>
<td>R⁷</td>
<td>R⁸</td>
<td>R⁹</td>
<td>R¹¹</td>
<td>R¹⁰</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>CH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(cyclopropyl)</td>
<td></td>
</tr>
<tr>
<td>1-237</td>
<td>H, (R)-CH₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-238</td>
<td>H, (S)-CH₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-239</td>
<td>H, (R)-CH₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-240</td>
<td>H, (S)-CH₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-241</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>SCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-242</td>
<td>H, H</td>
<td>H</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>SCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1-243</td>
<td>H, CH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-244</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-245</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-246</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-247</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-249</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>5-Fluoropyridin-2-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-250</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>5-Methoxypyrimidin-2-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-252</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-253</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-254</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>6-Ethoxypyridin-3-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-255</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>6-Ethoxypyridin-3-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-256</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>6-Ethoxypyridin-3-yl</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
<tr>
<td>1-257</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>CF₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>CH₂CH₃</td>
</tr>
</tbody>
</table>
Compounds in Table 1 are named:

{2’-[(Acetyl-methyl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-1); {2’-[(Acetyl-ethyl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-2); {2’-[(Acetyl-(2,2-dimethyl-propyl)-amino] -methyl) -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-3); {2’-[(Acetyl-(2,2,2-trifluoro-ethyl)-amino]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-4); {2’-[(Acetyl-(2-hydroxy-ethyl)-amino] -methyl]-6 methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-5); {2’-[(Acetyl-(2-methoxy-ethyl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-6); {2’-[(Acetyl-(2,2,2-trifluoro-propyl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-7); {[(Acetyl-carboxymethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-8); {2’-[(Acetyl-carbamoylmethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-9); {2’-[(Acetyl-ethyl-amino)-methyl] -6-fluoro-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-10); {2’-[(Acetyl-(2,2,2-trifluoro-ethyl)-amino]-methyl] -6-fluoro-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-11); {2’-[(Acetyl-cyclopropyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-12); {2’-[(S)-Acetyl-indan-1-yl-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-13); {2’-[(R)-Acetyl-indan-1-yl-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-14); {2’-[(Acetyl-((IR,2S)-2-hydroxy-ethyl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-15); {2’-[Acetyl-((IR,2S)-2-methoxy-ethyl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-16); {2’-[(Acetyl-indan-2-yl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-17); {2’-[(Acetyl-phenyl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-18); {2’-[(Acetyl-benzyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-19); {2’-[(Acetyl-phenethyl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-20); {2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -propionic acid (Compound 1-21); {2’-[l-(Acetyl-ethyl-amino)-ethyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-22); {2’-[(Ethyl-methoxycarbonyl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-23); {2’-[(Benzyloxycarbonyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-24); {6-Methoxy-2’-[(methoxycarbonyl-phenethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-25); {2’-[(Indan-2-yl-methoxycarbonyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-26).
amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-28); {2'-[[(Benzyloxy carbonyl-methyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biplienyl-3-yl]-acetic acid (Compound 1-29); {2'-[[(Acetyl-cyclobutyl-amino)-niethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-30); {2'-[(Acetyl-cyclopentyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-31); {2'-[Ethyl-(2,2,2-trifluoro-acetyl)-amino] -methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-y1} -acetic acid (Compound 1-32); {2'-[Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-33); {2'-[(Benzyloxy carbonyl-cyclobutyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-34); {[^[(Benzyloxy carbonyl-cyclopentyl-amino)]-methyyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-35); {2'-[(Benzyloxy carbonyl-cyclopropyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-36); 2-[(Acetyl-(2,2,2-trifluoro-ethyl)-amino]-methyl]-5'-carboxymethyl-2'-methoxy-biphenyl-4-carboxylic acid (Compound 1-37); (2L-[(3,5-Dichloro-benzyloxycarbonyty-ethyl-amino] -methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-38); {2'-[(2-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-39); {2'-[(3,5-Difluoro-benzyloxycarbonyl)ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-40); {2'-[(Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-41); {2'-[(4-Chloro-benzyloxycarbonyl)ethyl-amino] -methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-42); {2'-[(3-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-43); [2'-(((1-(4-Chlorophenyl)-ethoxycarbonyl] -ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-44); {2'-[(Ethyl-(2-phenoxy-propionyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-45); {2'-[(Ethyl-(2-methoxy-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-46); {2'-[(3-(2-Bromo-phenyl)-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-47); {2'-[(Ethyl-(2-phenoxy-acetyl)-amino] -methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-48); {2'-[(Benzyloxy carbonyl-(2,2,2-trifluoro-ethyl)-amino]-methyl] -6-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-49); {2'-[(Acetyl-ethyl-amino]-methyl]-4'-bromo-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-50); {4'-Acetylamino-2'-[(acetyl-ethyl-amino)]-methyl]-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-51); {2'-[(Acetyl-ethyl-amino]-methyl]-6-methoxy-4'-pyrazolyl-yl-biphenyl-3-yl] -acetic acid (Compound 1-52); {2'-[(Acetyl-o-tolyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-53); {2'-[(Acetyl-thiazol-2-yl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-54); (2'-[(Acetyl-
(2-methyl-pyrimidin-4-yl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-55); [2'-[(Acetyl-ethyl-amino)-methyl]-6-methyl-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-56); [2'-(Acetyl-ethyl-amino)-methyl]-4-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-57); [2'-(Acetyl-methyl-amino)-methyl]-6-methyl-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-58); [2'-(Acetyl-methyl-amino)-methyl]-4-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-59); [2'[(Acetyl-ethyl-amino)-methyl]-6-cyclopropyl-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-60); [2'-(Acetyl-ethyl-amino)-methyl]-6,4'-bis-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-61); [2'-(Acetyl-ethyl-amino)-methyl]-4-methyl-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-62); [2'-(Acetyl-methyl-amino)-methyl]-4'-bromo-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-63); [4'-Acetylamino-2'-(acetyl-methyl-amino)-methyl]-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-64); [2'-(Acetyl-ethyl-amino)-methylJL-o-methoxy-6-methoxy-carbonylamino-biphenyl-3-ylJ-acetic acid (Compound 1-65); [2'[(Acetyl-ethyl-amino)-methyl]-4'-methanesulfonylamino-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-66); [2'-(Acetyl-ethyl-amino)-methyl]-4-methoxy-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-67); [2'-(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-pyrrolidin-1-yl-biphenyl-3-yl] -acetic acid (Compound 1-68); [2'-(Acetyl-methyl-amino)-methyl]-6-methoxy-4'-pyrazol-1-yl-biphenyl-3-yl] -acetic acid (Compound 1-69); [2'-(Acetyl-ethyl-amino)-methyl]-6-cyclopropyl-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-70); [2'[(Acetyl-ethyl-amino)-methyl]-6-methoxy-[1,1';4',r 'terphenyl-3-yl] -acetic acid (Compound 1-71); [2'-(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-oxazol-2-yl-biphenyl-3-yl] -acetic acid (Compound 1-72); [2'-(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-(1 H-pyrazol-4-yl)-biphenyl-3-yl] -acetic acid (Compound 1-73); [2'[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-pyridin-2-yl-biphenyl-3-yl] -acetic acid (Compound 1-74); [2'-(Cyclopropoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-75); [2'-(1-Ethyl-3-methyl-ureidomethyO-6-methoxy]-trifluorometriliy-biphenyl-S-yy-acetic acid (Compound 1-76); [2'[(Cyclopropanecarbonyl-ethyl-amino)-methylJU-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-77); [2'[(Cyclopentanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4 E trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-78); [2'-(Acetyl-ethyl-amino)-methyl]-e-chloro-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-79); [2'-(Benzoyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-80); (2'-(Ethyl-(pyridine-2-carbonyl)-amino)-methyl]-6-methoxy-4' trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-81); [2'-(Ethyl-(pyrazine-2-carbonyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-82); [2'-(Ethyl-(1-methyl-1H-pyrazole-3-carbonyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3 -yl]-acetic acid (Compound 1-83); [2'-(Acetyl-ethyl-amino)-methyl]-5'-bromo-6-methoxy-biphenyl-3-yl] -acetic acid
(Compound 1-84); {5'-Acetylamino-2'-(acetyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-85); [2'-(Acetyl-ethyl-amino)-methyl]-6-methoxy-5'-methoxycarbonylamino-biphenyl-3-yl} -acetic acid (Compound 1-86); [2'-(Acetyl-ethyl-amino)-methyl]-5'-methanesulfonylamino-6-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-87); [2'-(Acetyl-ethyl-amino)-methyl]-6-methoxy-5'-pyrrolidinyl-yl-biphenyl-3-yl} -acetic acid (Compound 1-88); [2'-(Acetyl-ethyl-amino)-methyl]-3'-memanesulfonyl-6-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-89); {2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-difluoro-acetic acid (Compound 1-91); {2'-(4-Chloro-phenoxy)-acetyl]-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-93); {2'-(3-Benzyl-1,3-diethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -propionic acid (Compound 1-98); [2'-(3-Cyano-l-ethylureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -propionic acid (Compound 1-99); [2'-(4-CUoro-benzenesulfonyl)-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-100); [2'-(Emyl-(pyrrolidine-1-carbonyl)-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-101); [2'-(2-Hydroxy-1-methyl-2-phenyl-ethyl)-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-104); [2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-4-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-107); [2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-109); [2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-6-chloro-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-110); [2'-(N'-Benzyl-N''-cyano-N-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-111); [2'-(N'-Cyano-N''-cyclohexylmethyl-N-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-112); [2'-(N'-Cyano-N''-(2,2-dimethyl-propyl)-N-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-113); [2'-(N'-Cyano-N-ethyl-4'-methoxy-benzyl)-guanidinomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-114); 2-[2'-(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -2-methyl-propionic acid (Compound 1-115); 2-[2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -2-methyl-propionic acid (Compound
1-116); (2'-(Ethyl-(2-phenylsulfanyl-acetyl)-amino)-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-117); [2'-(2-[4-Chloro-phenoxy]-2-methyl-propionyl-ethyl-ami no)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-118); (2'-(2-Benzencesulfinyl-ethyl-amine)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-119); (2'-(2-Benzencesulfonyl-ethyl-amine)-methyl]-6-methoxy-4'-trifluoromethyl-biplienyl-3-yl)-acetic acid (Compound 1-120); [2'-(l-Ethyl-S-phenyl-ureidomethyl^-6-methoxy^-trifluoromethyl-biphenyl-S-ylJ-acetic acid (Compound 1-121); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-6^-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-122); (2'-(3,5-Difluoro-benzyloxycarbonyl-ethyl-amine)-methyl) -6'-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-123); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-4,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-124); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-4-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-125); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyll]-5-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-126); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-4-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-127); [6-Benzyloxy-2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-128); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-6-ethoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-129); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-6-cyclopropylmethoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-130); [2'-(2,4-Dichloro-phenyl)-cyclopropanecarbonyl-ethyl-amine)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-131); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-difluoro-acetic acid (Compound 1-132); [S-Chloro^-fctcyclopropanecarbonyl-ethyl-amineJ-methyll^-trifluoromethyl-biphenyl-S-ylJ-acetic acid (Compound 1-135); [^-[(Cyclopropanecarbonyl-ethyl-amineJ-methylJ^-trifluoromethyl-biphenyl-3-yl]}-acetic acid (Compound 1-136); [2'-(Acetyl-ethyl-amine)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-137); [2'-(Acetyl-ethyl-amine)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-138); [2'-(l-Ethyl-3-pyridin-2-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluorometliyl-bi lienyl-3-yl]-acetic acid (Compound 1-139); [2'-(4-Chloro-benzyl)-l-ethyl-ureidomethylJ-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-140); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-141); [2'-'(Benzyloxycarbonyl-ethyl-amine)-methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-142); [2'-(Benzyloxycarbonyl-ethyl-amine)-methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-143); [2'-(Benzyloxycarbonyl-ethylamine)-methyl]-4''-trifluoromethyl-[1,3,2',1'Biphenyl-4''-yl]-acetic acid (Compound 1-144); [2'-(N'-Cyano-N-ethyl-N'-propyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-145); [2'-(N'-Cyano-N'-cyclopropylarcthyl-N-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-146); [2'-(N'-Cyano-N'-pyridin^-ylmethyl-guanidinomethylJ-
methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-147); (2'-(Ethyl-(2-pyrazol-1-yl-acetyl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-148); (2'-(Ethyl-(2-methyl-imidazol-1-yl-acetyl]-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-149); (2'-(Ethyl-(2-[1,2,4]triazol-1-yl-acetyl]-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-150); (2'-(Emyl-(2-pyrrolidin-1-yl-acetyl]-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-151); (2'-(3-(3,4-Dichloro-benzyl)-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-152); (4'-Acetylamino-3'-benzoxycarbonyl-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-153); (2'-(Benzoxycarbonyl-ethyl-amino)-methyl]-4'-(-chloro-benzyloxymethylamino)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-154); (2'-(Benzoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-155); (2'-(Benzoxycarbonyl-ethyl-amino)-methyl]-4'-(-chloro-benzenesulfonylamino)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-156); (2'-(3-Benzyl-l-ethyl-ureidomethyl)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-157); (2'-(3-Benzyl-l-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-158); (2'-(3-Benzyl-l-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-159); (2'-(Ethyl-methoxycarbonyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-160); (5-Chloro-2'-(ethyl-methoxycarbonyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-161); (2'-(3,5-Dichloro-benzyl]-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-162); (2'-[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-163); (2'-(4-Chloro-benzyloxycarbonyl]-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-164); (2'-(3,5-Dichloro-benzyl]-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-165); (2'-(4-Fluoro-benzyloxycarbonyl]-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-166); (2'-(4-Fluoro-benzyloxycarbonyl]-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-167); (2'-(Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-168); (2'-(Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-169); (2'-(Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-170); (2'-(Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-171); (2'-(3-Benzyl-l-ethyl-ureidomethyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-172); (2'-(3-Benzyl-l-ethyl-ureidomethyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-173); (2'-(4-Chloro-benzyloxycarbonyl]-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-174); (2'-(4-Chloro-benzyloxycarbonyl]-ethyl-amino]-methyl]-6-methoxy-5',-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-175); (2'-(4-Fluoro-benzyl]-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-176); (2'-(3-Chloro-benzyl]-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-177); (2'-(3,5-Difluoro-benzyl]-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-178); (2'-(3-[R]-l-(4-Chloro-phenyl]-ethyl)-l-ethyl-ureidomethyl]-6-
methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-179); (2'-3-[(S)-1-(4-Chloro-phenyl)-ethyl]-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-180); [2'-1,3-Diethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-181); [2'-(3-Cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-182); [2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-4'-fluro-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-183); [2'-(Acetyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-184); [2'-(4-Chloro-benzyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-185); [2'-(Cyclopropanecarbonyl-ethyl-amino)methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-186); [2'-(3-Benzyl-1-ethyl-ureidomethyl)-4'-fluoro-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-187); (5-Chloro-2'-(4-chloro-benzyloxy carbonyl)-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-188); (2'-(4-Chloro-benzyloxy carbonyl)-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-189); (5-Chloro-2'-(benzyloxy carbonyl)-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-190); (2'-(Ethyl-(4-fluoro-benzyloxy carbonyl)-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-191); (5-Chloro-2'-(3-(4-chloro-benzyl)-1-ethyl-ureidomethyl)-4'-fluoro-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-192); (5-Chloro-2'-(3-(4-Chloro-benzyl)-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-193); (2'-(Ethyl-(4-fluoro-benzyloxy carbonyl)-amino)-methyl]-6,5'-dimethoxy-biphenyl-3-yl]-acetic acid (Compound 1-194); (2'-(4-Chloro-benzyloxy carbonyl)-ethyl-amino)-methyl]-6,5'-dimethoxy-biphenyl-3-yl]-acetic acid (Compound 1-195); (2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6,5'-dimethoxy-biphenyl-3-yl]-acetic acid (Compound 1-196); (2'-(3-Benzyl-1-ethyl-ureidomethyl]-6,5'-dimethoxy-biphenyl-3-yl]-acetic acid (Compound 1-197); (2'-(1-Ethyl-3-pyridin-3-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-198); (2'-(1-Ethyl-3-pyridin-4-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-199); (2'-(3-(6-Chloro-pyridin-3-ylmethyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-200); (5-Chloro-2'-(1-ethyl-3-methyl-ureidomethyl)-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-201); (2'-(1-Ethyl-3-methyl-ureidomethyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-202); (2'-(Benzoyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-203); (2'-(Benzoyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-204); (2'-(Cyclobutanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-205); (2'-(Ethyl-phenylacetyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-206); (2'-(Ethyl-phenylacetyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-207); (2'-(Ethyl-(3-phenyl-propionyl)-amino)-methyl]-
6-methoxy-4'-trifluorometilyl-biphenyl-3-yl)-acetic acid (Compound 1-208); (2'-{[Ethyl-(1-hydroxy-cyclopropanecarbonyl]-amino-methylJ-β-metlioxy-4'-trifluorometilyl-biphenyl-S-yl}-acetic acid (Compound 1-209); {2'-{[(1-Ethyl-ureido)-methyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -acetic acid (Compound 1-210); 2-{2"-{(Acetyl-ethyl-amino)-methyl]-5-chloro-4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-211); 2-[5-Chloro-2'-{(cyclopropanecarbonyl-ethyl-amino)-methyl] -4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-212); 2-{2'-{(Acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-213); 2-{2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-214); 2-{2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-215); {2'-{(Benzyloxycarbonyl-ethyl-amino)-methyl]-5'-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-216); 2-{2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-217); 5-Chloro-2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5'-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-218); 2'-(3-Benzyl-1-ethyl-ureidomethylO-S-chloro-S'-methoxy-biphenyl)-3-yl} -acetic acid (Compound 1-219); [2'-(3-Benzyl-1-ethyJ-ureidomethyl]-6-hydroxy-4'-trifluorometilyl-biphenyl-3-yl} -acet J (Compound 1-220); [5-Chloro-2'-(6-(4-chloro-phenoxy)-acetyl]-ethyl-amino] -acetic acid (Compound 1-221); 2'-(3-Benzyl-1-ethyJ-ureidomethyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-222); 2'-(3-Benzyl-1-ethyl-ureidomethyl]-5-chloro-4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-223); (R)-2'-{(2-(4-chloro-phenoxy)-acetyl]-ethyl-amino} -methyl]-6-methoxy-4'-trifluorome iyl-biphenyl-3-yl} -propionic acid (Compound 1-224); (S)-2'-{(2-(4-chloro-phenoxy)-acetyl]-ethyl-amino} -methyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-225); 2-[{Benzyloxycarbonyl-ethyl-amino)-methyl]-5'-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-226); [(C^clopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -propionic acid (Compound 1-227); [(C^clopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -acetic acid (Compound 1-228); [2'-{(2-(4-Chloro-phenoxy)-acetyl]-ethyl-amino} -methyl]-6-methoxy-4'-trifluorometilyl-biphenyl-3-yl} -acetic acid (Compound 1-229); [2'-(3-Benzyl-1-ethyl-ureidomethyl]-6-methoxy-4'-quinolin-7-yl-biphenyl-3-yl} -acetic acid (Compound 1-230); [2'-(3-Benzyl-1-ethyl-ureidomethyl]-6-methoxy-4'-quinolin-7-yl-biphenyl-3-yl} -acetic acid (Compound 1-231); [2'-(6-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-232); {2'-{(2-(4-Chloro-phenoxy)-acetyl]-ethyl-amino} -methyl]-6-methoxy-4'-quinolin-7-yl-biphenyl-3-yl} -acetic acid (Compound 1-233); (2'-3-Benzyl-1-ethyl-ureidomethyl]-6-methoxy-4'-quinolin-7-yl-biphenyl-3-yl} -acetic acid (Compound 1-234); 2-(2'-...
{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-2-methyl-propionic acid (Compound 1-236); (R)-2-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-237); (S)-2-[(2'-{3-Benzyl-1-ethyl-ureidomethyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-propionic acid (Compound 1-238); (R)-2-[(3-Benzyl-1-ethyl-ureidomethyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-239); (S)-2-[(3-Benzyl-1-ethyl-ureidomethyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-240); (2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-methylsulfanyl-biphenyl-3-yl}-acetic acid (Compound 1-241); (S-Chloro-κ-Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-4'-methylsulfanyl-biphenyl-3-yl]-acetic acid (Compound 1-242); 2'-(3-Cyclopropyl-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-243); (2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-244); (T-[(2,2-Dimethyl-propionyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-245); (2'-(Ethyl-isobutyryl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-246); (4'-Bromo-2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-247); (2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-{5-fluoro-pyridin-2-yl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-249); (2'-{(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-{5-methoxy-pyrimidin-2-yl]-biphenyl-3-yl]-acetic acid (Compound 1-250); (2'-[1-Ethyl-3-(4-hydroxy-benzyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-252); (2'-[1-Ethyl-3-(2-hydroxy-benzyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-bi phenyl-3-yl]-acetic acid (Compound 1-253); P'-Benzoyl-ethyl-amino]-methyl]-4'-{6-ethoxy-pyridin-6-yl}-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-254); (4'-{(6-Ethoxy-pyridin-3-yl)-2'-(ethyl-phenylacetamido)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-255); (4'-{(6-Ethoxy-pyridin-3-yl)-2'-(ethyl-3-phenyl-propionyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-256); (2'-[1-Ethyl-3-(3-hydroxy-benzyl-ureidomethyl]-6-methoxy-κ-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-257).

Table 2:
<table>
<thead>
<tr>
<th>Cmpd #</th>
<th>R^1, R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>R^{11}</th>
<th>R^{10}</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-CH$_3$</td>
</tr>
<tr>
<td>2-2</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-CH$_3$</td>
</tr>
<tr>
<td>2-3</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-cyclopropyl</td>
</tr>
<tr>
<td>2-4</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-OCH$_2$Ph</td>
</tr>
<tr>
<td>2-5</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-OCH$_2$Ph</td>
</tr>
<tr>
<td>2-6</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-OCH$_2$Ph</td>
</tr>
<tr>
<td>2-7</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-cyclopropyl</td>
</tr>
<tr>
<td>2-8</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-cyclopropyl</td>
</tr>
<tr>
<td>2-9</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-NHCH$_2$Ph</td>
</tr>
<tr>
<td>2-10</td>
<td>H, (R)-CH$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-NHCH$_2$Ph</td>
</tr>
<tr>
<td>2-11</td>
<td>H, (S)-CH$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-NHCH$_2$Ph</td>
</tr>
<tr>
<td>2-12</td>
<td>H, (R)-CH$_3$</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>-CH$_2$CH$_3$</td>
<td>-C(=O)-cyclopropyl</td>
</tr>
<tr>
<td>2-13</td>
<td>H, (S)-CH$_3$</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>-C(=O)-cyclopropyl</td>
</tr>
<tr>
<td>2-14</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CO$_2$H</td>
<td>CH$_2$CH$_3$</td>
<td>-C(=O)-OCH$_2$Ph</td>
</tr>
<tr>
<td>2-15</td>
<td>H, (R)-CH$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>-C(=O)-cyclopropyl</td>
</tr>
<tr>
<td>2-16</td>
<td>H, (S)-CH$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>H</td>
<td>CF$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>-C(=O)-cyclopropyl</td>
</tr>
<tr>
<td>2-17</td>
<td>H,H</td>
<td>H</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CF$_3$</td>
<td>CH$_2$CH$_3$</td>
<td>-C(=O)-NHCH$_2$Ph</td>
</tr>
</tbody>
</table>

[0243] Compounds in Table 2 are named:

- N-Ethyl-N-[5'-((2-methylsulfonylamino-2-oxo-ethyl)-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-acetamide (Compound 2-1);
- N-Ethyl-N-[5'-((2-hydroxy-2-methyl-propyl)-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-acetamide (Compound 2-2);
- Cyclopropanecarboxylic acid (5'-cyanomethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide (Compound 2-3);
- (5'-Cyanomethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-carbamic acid benzyl ester (Compound 2-4);
- Ethyl-[2'-methoxy-5'-2 H-tetrazol-5-ylmethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl]-carbamic acid benzyl ester (Compound 2-5);
- (5'-Carbamoylmethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-carbamic acid benzyl ester (Compound 2-6);
- Cyclopropanecarboxylic acid ethyl-[2'-methoxy-5'-2 H-tetrazol-5-ylmethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl] -amide (Compound 2-7);
- Cyclopropanecarboxylic acid (5'-carbamoylmethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide (Compound 2-8);
- [2'-(3-Benzyl-1-ethyl-ureidomethyl)-6-hydroxy-4'-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-9);
- (R)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-10);
- (S)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-11);
- (R)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-12);
- (S)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-13);
- (R)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-14);
- (S)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-15);
- (R)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-16);
- (S)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide (Compound 2-17);
ureidomethyl-O-S^-bis-trifluoromethyl-biphenyl-S-ylJ-N-Ct^-l-methyl^-phenyl-ethyl)-
propionamide (Compound 2-11); Cyclopropanecarboxylic acid ethyl- \{2'-methoxy-5'-[(R)-l-
methyl-2-((4R,5S)-4-niethyl-2-oxo-5-phenyl-oxazolidin-3-y1)-2-oxo-ethyl]-4-trifluoromethyl-
biphenyl-2-ylmethyl\} -amide (Compound 2-12); Cyclopropanecarboxylic acid ethyl- \{2'-methoxy-
5'-[(S)-l-metliyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-y1)-2-oxo-ethyl]-4-
trifluoromethyl-biphenyl-2-ylmethyl\} -amide (Compound 2-13); 2-\{(Benzyloxy carbonyl-ethyl-
aminoJ-methylJ-S'-ethoxycarbonylmethyl^'-methoxy-biphenyl^-carboxyUc \} acid (Compound 2-
14); Cyclopropanecarboxylic acid ethyl-\{3'-[(R)-l-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-
oxazolidin-3-y1)-2-oxo-ethyl]-4,5'-bis-trifluoromethyl-biphenyl-2-ylmethyl\} -amide (Compound 2-
15); Cyclopropanecarboxylic acid ethyl-\{3'-[(S)-l-metliyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-
oxazolidin-3-y1)-2-oxo-ethyl]-4,5\-1-bis-trifluoromethyl-biphenyl-2-ylmethyl\} -amide (Compound 2-
16); and \{2'-\{(3-Benzyl-1 -ethyI-ureidomethylJ-6-methoxy^ \} 1-
trifluoromethyl-biphenyl-3-yl\}-acetoxy\} 1,3,4-5-trihydroxy-tetrahydro-pyran-2-carboxylic acid
(Compound 2-17).

Synthesis of Compounds

Compounds described in the prior section are synthesized using standard synthetic
techniques or using methods known in the art in combination with methods described herein. In
additions, solvents, temperatures and other reaction conditions presented herein may vary.

The starting material used for the synthesis of the compounds described in the prior
section are either synthesized or obtained from commercial sources, such as, but not limited to,
Sigma-Aldrich, Fluka, Acros Organics, Alfa Aesar, and the like. The compounds described
herein, and other related compounds having different substituents are synthesized using known
techniques and materials, including those found in March, ADVANCED ORGANIC CHEMISTRY 4th
(Plenum 2000, 2001), and Green and Wuts, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS 3rd Ed.,
(Wiley 1999). General methods for the preparation of compounds can be modified by the use of
appropriate reagents and conditions for the introduction of the various moieties found in the
formulae as provided herein.

In certain embodiments, compounds described herein are prepared according to Scheme 1.
Scheme 1:

In one aspect, esters of phenyl acetic acids of structure I that have a halide group are reacted with a borylating agent using transition metal mediated reaction conditions to form boronate compounds of structure II. Boronate compounds of structure II are reacted with 2-halobenzaldehydes of structure III under palladium mediated coupling conditions to form biaryl aldehydes of structure IV. Biaryl aldehydes of structure IV are reacted with amines of structure V under reductive amination conditions to form amines of structure VI. Amines of structure VI are then reacted with acid chlorides of structure VII to form amides of structure VIII. The ester group of amides of structure VIII is then hydrolyzed to form carboxylic acid compounds of structure IX.

In some embodiments, amines of structure VI are reacted with, but not limited to, a carboxylic acid and coupling reagent such as EDC, DCC, BOP, HATU or the like, or a carboxylic acid activated ester or an acid halide, alkylchloroformate, arylchloroformate, benzylchloroformate, alkylisocyanate, benzylisocyanate, arylisocyanate, alkylsulfonyl chloride, arylsulfonyl chloride,
heteroarylsulfonyl chloride, or the like in dichloromethane, dichloroethane, tetrahydrofuran, dimethoxyethane or the like in the presence of a hindered base such as triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine or the like, to afford compounds of Formula (I).

[0250] Carbamates of structure XI are prepared as outlined in Scheme 2:

Scheme 2:

[0251] Reaction of amines of structure VI with chloroformates of structure X provide carbamates, which after hydrolysis of the ester moiety, provide carbamates of structure XI. Methods for the preparation of carbamates include those found in, e.g., Greene, T.W. and Wuts, P.G.M "Protective Groups in Organic Synthesis", 3rd Edition, p.549, New York: Wiley, 1999. In one aspect, alkylamines (compounds of structure VI) are treated with phosgene or a phosgene equivalent, such as, for example, trichloromethyl chloroformate or carbonyldiimidazole, to yield an intermediate, which is then treated with a hydroxy containing compound R15-OH to provide carbamates of structure XI.

[0252] The synthesis of ureas of structure XIII is depicted in Scheme 3:

Scheme 3:

[0253] Reaction of benzylamines of structure XII with isocyanates or carbamoyl chlorides provides ureas of structure XII after hydrolysis of the ester group. Common methods for the synthesis of isocyanates include the Curtius rearrangement of acyl azides and the Lossen rearrangement of hydroxamic acids.

[0254] The synthesis of sulfonamides of structure XIII is depicted in Scheme 3:
Reaction of amines of structure VI with sulfonyl chlorides of structure XIV provides sulfonamides that are then treated with NaOH to provide sulfonamides of structure XIH.

In the reactions described, it is necessary in certain embodiments to protect reactive functional groups, for example hydroxy, amino, imino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Protecting groups are used to block some or all reactive moieties and prevent such groups from participating in chemical reactions until the protective group is removed. In one embodiment, each protective group is removable by a different means. A detailed description of protecting groups and techniques applicable to the creation of protecting groups and their removal are described in Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, NY, 1999, and Kocienski, Protective Groups, Thieme Verlag, New York, NY, 1994, which are incorporated herein by reference for such disclosure.

Further Forms of Compounds

In certain embodiments, compounds of any of Formula (I), Formula (II), Formula (III), Formula (PV), Formula (V) Formula (VI), Formula (VII), or Formula (VTS) are prepared as a pharmaceutically acceptable acid addition salt (which is a type of a pharmaceutically acceptable salt) by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid, including, but not limited to, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid metaphosphoric acid, and the like; and organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, maleic acid, fumaric acid, p-toluenesulfonic acid, tartaric acid, trifluoroacetic acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, arylsulfonic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 4-methylbicyclo[2.2.2]oct-2-ene-1-carboxylic acid, glucoheptonic acid, 4,4'-methylenebis-(3-hydroxy-2-ene-1 -carboxylic acid), 3-phenylpropionic acid, trimethylacetic acid, tertiary butylactic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, and muconic acid.

By "pharmaceutically acceptable," as used herein, refers to a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the compound, and is
relatively nontoxic, i.e., the material may be administered to an individual without causing undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.

[0259] The term "pharmaceutically acceptable salt" refers to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. In some embodiments, pharmaceutically acceptable salts are obtained by reacting a compound of any of Formula (I), Formula (II), Formula (HI), Formula (IV), Formula (V), Formula (VI), Formula (VS), or Formula (Vπi) with acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonyl acid, ethanesulfonyl acid, p-toluenesulfonyl acid, salicylic acid and the like. Pharmaceutically acceptable salts are also obtained by reacting a compound of any of Formula (I), Formula (D), Formula (HI), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, and salts with amino acids such as arginine, lysine, and the like.

[0260] In other embodiments, compounds of any of Formula (I), Formula (H), Formula (DI), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (Vm) are prepared as a pharmaceutically acceptable salts by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base, including, but not limited to organic bases such as ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine, and the like, or with an inorganic base such as aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium hydroxide, and the like.

[0261] It should be understood that a reference to a pharmaceutically acceptable salt includes the solvent addition forms or crystal forms thereof, particularly solvates or polymorphs. Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and are optionally formed during the process of crystallization with pharmaceutically acceptable solvents such as water, ethanol, and the like. Hydrates are formed when the solvent is water, or alcoholsates are formed when the solvent is alcohol. Solvates of compounds of any of Formula (I), Formula (H), Formula (JE), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) are conveniently prepared or formed during the processes described herein. By way of example only, hydrates of compounds of any of Formula (I), Formula (H), Formula (III), Formula (TV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) are conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents including, but not limited to, dioxane, tetrahydrofuran, ethanol, or methanol. In addition, the compounds provided herein can exist in unsolvated as well as solvated forms. In general, the solvated forms are considered
equivalent to the unsolvated forms for the purposes of the compounds and methods provided herein.

[02621] In yet other embodiments, the compounds of any of Formula (I), Formula (II), Formula (III), Formula (TV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) are prepared in various forms, including but not limited to, amorphous forms, milled forms and nano-particulate forms. In addition, compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) include crystalline forms, also known as polymorphs. Polymorphs include the different crystal packing arrangements of the same elemental composition of a compound. Polymorphs usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystal shape, optical and electrical properties, stability, and solubility. Various factors such as the recrystallization solvent, rate of crystallization, and storage temperature may cause a single crystal form to dominate.

[0263] In some embodiments, compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V) Formula (VI), Formula (VIT), or Formula (VIH) are prepared as prodrugs. A "prodrug" refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug. An example, without limitation, of a prodrug would be a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VET) which is administered as an ester (the "prodrug") to facilitate transmittal across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water-solubility is beneficial. A further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid group where the peptide is metabolized to reveal the active moiety.

[0264] Prodrugs are generally drug precursors that, following administration to a subject and subsequent absorption, are converted to an active, or a more active species via some process, such as conversion by a metabolic pathway. Some prodrugs have a chemical group present on the prodrug that renders it less active and/or confers solubility or some other property to the drug. Once the chemical group has been cleaved and/or modified from the prodrug the active drug is generated. Prodrugs are often useful because, in some situations, they are easier to administer than the parent drug. In certain embodiments, the prodrug of a compound described herein is bioavailable by oral administration whereas the parent is not. Furthermore, in some embodiments, the prodrug of a compound described herein has improved solubility in pharmaceutical compositions over the parent drug.

Additionally, prodrug derivatives of compounds of any of Formula (T), Formula (II), Formula (HI), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) are prepared, if desired (e.g., for further details see Saulnier et al., (1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985). By way of example only, in one aspect appropriate prodrugs are prepared by reacting a non-derivatized compound of any of Formula (I), Formula (II), Formula (IU), Formula (IV), Formula (V), Formula (VI), Formula (V5), or Formula (VIII) with a suitable carbamyting agent, such as, but not limited to, 1,1-acyloxyalkyccarbonochloridate, paranitrophenyl carbonate, or the like. Prodrug forms of the herein described compounds, wherein the prodrug is metabolized in vivo to produce a derivative as set forth herein are included within the scope of the claims. Indeed, some of the herein-described compounds are a prodrug for another derivative or active compound.

In some embodiments, sites on the aromatic ring portion of compounds of any of Formula (I), Formula (II), Formula (111), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) are susceptible to various metabolic reactions Therefore incorporation of appropriate substituents on the aromatic ring structures will reduce, minimize or eliminate this metabolic pathway. In specific embodiments, the appropriate substituent to decrease or eliminate the susceptibility of the aromatic ring to metabolic reactions is, by way of example only, a halogen, or an alkyl group.

In another embodiment, the compounds described herein are labeled isotopically (e.g. with a radioisotope) or by another other means, including, but not limited to, the use of chromophores or fluorescent moieties, bioluminescent labels, or chemiluminescent labels.

In yet another embodiment, the compounds of any of Formula (I), Formula (II), Formula (in), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) possess one or more stereocenters and each center exists independently in either the R or S configuration. The compounds presented herein include all diastereomeric, enantiomeric, and epimeric forms as well as the appropriate mixtures thereof. In certain embodiments, compounds of any of Formula (I),
Formula (II), Formula (HI), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula
(Vπi) are prepared as their individual stereoisomers by reacting a racemic mixture of the
compound with an optically active resolving agent to form a pair of diastereoisomeric compounds,
separating the diastereomers and recovering the optically pure enantiomers. In some embodiments,
resolution of enantiomers is carried out using covalent diastereomeric derivatives of the
compounds described herein. In other embodiments, dissociable complexes are utilized (e.g.,
crystalline diastereomeric salts). Diastereomers have distinct physical properties (e.g., melting
points, boiling points, solubilities, reactivity, etc.) and are, in specific embodiments, separated by
taking advantage of these dissimilarities. In these embodiments, the diastereomers are separated by
chiral chromatography or by separation/resolution techniques based upon differences in solubility.
The optically pure enantiomer is then recovered, along with the resolving agent, by any practical
means that does not result in racemization. Jean Jacques, Andre Collet, Samuel H. Wilen,

Additionally, in certain embodiments, the compounds provided herein exist as geometric
isomers. The compounds and methods provided herein include all cis, trans, syn, anti, entgegen
(E), and zusammen (Z) isomers as well as the appropriate mixtures thereof. In some embodiments,
the compounds described herein exist as tautomers. All tautomers are intended to be within the
scope of the molecular formulas described herein. In additional embodiments of the compounds
and methods provided herein, mixtures of enantiomers and/or diastereoisomers, resulting from a
single preparative step, combination, or interconversion are envisioned.

Certain Chemical Terminology

Unless otherwise stated, the following terms used in this application, including the
specification and claims, have the definitions given below. It must be noted that, as used in the
specification and the appended claims, the singular forms "a," "an" and "the" include plural
referents unless the context clearly dictates otherwise. Unless otherwise indicated, conventional
methods of mass spectroscopy, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA
techniques and pharmacology are employed. In this application, the use of "or" or "and" means
"and/or" unless stated otherwise. Furthermore, use of the term "including" as well as other forms,
such as "include", "includes," and "included," is not limiting.

An "alkoxy" group refers to a (alkyl)O- group, where alkyl is as defined herein.

An "alkyl" group refers to an aliphatic hydrocarbon group. The alkyl moiety may be a
saturated alkyl group, which means that it does not contain any units of unsaturation (e.g. carbon-
carbon double bonds or carbon-carbon triple bonds). The alkyl moiety may also be an unsaturated
alkyl moiety, which means that it contains at least one unit of unsaturation. The alkyl moiety,
whether saturated or unsaturated, may be branched, straight chain, or cyclic. The point of
attachment of an alkyl is at a sp3 carbon atom that is not part of a ring.
The "aUcyl" moiety may have 1 to 10 carbon atoms (whenever it appears herein, a numerical range such as "1 to 10" refers to each integer in the given range; e.g., "1 to 10 carbon atoms" means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the present definition also covers the occurrence of the term "alkyl" where no numerical range is designated). In one aspect, alkyl groups are selected from the group consisting of methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl. Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl, hexyl, allyl, but-2-enyl, but-3-enyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, and the like. In one aspect, an alkyl is a C\textsubscript{x} C\textsubscript{y} alkyl. hi other aspects, an alkyl is a C\textsubscript{x} C\textsubscript{y} alkyl.

The term "alkylamine" refers to the -N(alkyl)\textsubscript{x}H\textsubscript{y} group, where x and y are selected from the group x=1, y=1 and x=2, y=0. In some embodiments, when x=2 and y=0, the alkyl groups taken together with the nitrogen atom to which they are attached form a cyclic ring system.

An "amide" is a chemical moiety with formula -C(=O)NHR or -NHC(=O)R, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heterocyclic (bonded through a ring carbon). An amide may be an amino acid or a peptide molecule attached to a compound of Formula (I), Formula (H), Formula (III), Formula (IV), Formula (V), Formula (VT), Formula (VII), or Formula (VIII) thereby forming a prodrug. Any amine, or carboxyl side chain on the compounds described herein is optionally amidified, as desired. See, e.g., Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, NY, 1999, is incorporated herein by reference for such disclosure.

The term "aromatic" refers to a planar ring having a delocalized π-electron system containing 4n+2 π electrons, where n is an integer. Aromatic rings can be formed from five, six, seven, eight, nine, ten, or more than ten atoms. Aromatics are optionally substituted. The term "aromatic" includes both carbocyclic aryl ("aryl", e.g., phenyl) and heterocyclic aryl (or "heteroaryl" or "heteroaromatic") groups (e.g., pyridine). The term includes monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups.

The term "carbocyclic" refers to a ring or ring system where the atoms forming the backbone of the ring are all carbon atoms. The term thus distinguishes carbocyclic from heterocyclic rings in which the ring backbone contains at least one atom which is different from carbon.

As used herein, the term "aryl" refers to an aromatic ring wherein each of the atoms forming the ring is a carbon atom. Aryl rings are formed by five, six, seven, eight, nine, or more than nine carbon atoms. In one aspect, an aryl is a C\textsubscript{5}C\textsubscript{ioaryl}. Aryl groups are optionally substituted. Examples of aryl groups include, but are not limited to phenyl, and naphthalenyl. In
one aspect, an aryl is a phenyl or naphthyl. In another aspect, an aryl is a phenyl. Depending on the structure, an aryl group can be a monoradical or a diradical (i.e., an arylene group).

[0280] The term "cycloalkyl" refers to a monocyclic or polycyclic aliphatic, non-aromatic radical, wherein each of the atoms forming the ring (i.e. skeletal atoms) is a carbon atom. Cycloalkyls may be saturated, or partially unsaturated. Cycloalkyls may be fused with an aromatic ring, and the point of attachment is at a carbon that is not an aromatic ring carbon atom. Cycloalkyl groups include groups having from 3 to 10 ring carbon atoms. In other cases, cycloalkyl groups include groups having from 3 to 6 ring carbon atoms. Illustrative examples of cycloalkyl groups include, but are not limited to, the following moieties:

![Diagram of various cycloalkyl groups]

Cycloalkyl groups are selected from among cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. In other embodiments, cycloalkyl groups are selected from among cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. In some embodiments, bicyclic cycloalkyl groups are selected from among indanyl, indenyl, and 1,2,3,4-tetrahydronaphthalenyl. Cycloalkyl groups may be substituted or unsubstituted. Depending on the structure, a cycloalkyl group can be a monoradical or a diradical (i.e., an cycloalkylene group, such as, but not limited to, cyclopropan-1,1-diyl, cyclobutan-1,1-diyl, cyclopentan-1,1-diyl, cyclohexan-1,1-diyl, cycloheptan-1,1-diyl, and the like).

[0281] The term "ester" refers to a chemical moiety with formula -COOR, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). Any hydroxy, or carboxyl side chain on the compounds described herein is esterified, if desired. Examples of procedures and specific groups to make such esters are found in sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley & Sons, New York, NY, 1999.

[0282] The term "halo" or, alternatively, "halogen" or "halide" means fluoro, chloro, bromo or iodo.

[0283] The term "haloalkyl" refers to an alkyl group in which one or more hydrogen atoms are replaced by one or more halide atoms. In one aspect, a haloalkyl is a C₃-C₄ haloalkyl.
The term “fluoroalkyl” refers to an alkyl in which one or more hydrogen atoms are replaced by a fluorine atom. In one aspect, a fluoroalkyl is a Ci-C4 fluoroalkyl. Examples of fluoroalkyls include, -CF₃, -CHF₂, -CH₂F, -CH₂CF₃ and -CF₂CF₃.

The term “heteroalkyl” refers to an alkyl group in which one or more skeletal atoms of the alkyl are selected from an atom other than carbon, e.g., oxygen, nitrogen, sulfur, phosphorus or combinations thereof. In one aspect, heteroalkyl refers to an alkyl group in which one of the skeletal atoms of the alkyl is oxygen, nitrogen, or sulfur. In another aspect, heteroalkyl refers to an alkyl group in which one of the skeletal atoms of the alkyl is oxygen. In one aspect, a heteroalkyl is a C₉₋C₆ heteroalkyl.

The term “heterocycle” refers to heteroaromatic and heteroalicyclic groups containing one to four heteroatoms each selected from O, S and N, wherein each heterocyclic group has from 4 to 10 atoms in its ring system, and with the proviso that the ring of said group does not contain two adjacent O or S atoms. Non-aromatic heterocyclic groups include groups having only 3 atoms in their ring system, but aromatic heterocyclic groups must have at least 5 atoms in their ring system. The heterocyclic groups include benzo-fused ring systems. An example of a 3-membered heterocyclic group is aziridinyl. An example of a 4-membered heterocyclic group is azetidinyl. An example of a 5-membered heterocyclic group is thiazolyl. An example of a 6-membered heterocyclic group is pyridyl, and an example of a 10-membered heterocyclic group is quinoliny1. Examples of non-aromatic heterocyclic groups are pyrrolidinyl, tetrahydrofurananyl, dihydrofurananyl, tetrahydrothienyl, oxazolidinonyl, tetrahydropyranyl, dihydropyranyl, tetrahydrothiopyranyl, piperidino, morpholino, thiomorpholino, thioxanyl, piperazinyl, azidinyl, oxetany1, thietany1, homopiperidinyl, oxepanyl, thiepany1, oxazepinyl, diazepinyl, thiazepinyl, 1,2,3,6-tetrahydropyridinyl, 2-pyrroly1ny1, 3-pyrroly1ny1, indoly1, 2H-pyranyl, 4H-pyranyl, dioxany1, 1,3-dioxolany1, pyrazoliny1, dithiany1, dithiolany1, dihydropyranyl, dihydrothiény1, dihydrofurananyl, pyrazolidinyl, imidazolidinyl, imidazolidinyl, 3-azabicyclo[3.1.0]hexany1, 3-azabicyclo[4.1.0]heptyny1, 3H-indolyl and quinolizinyl. Examples of aromatic heterocyclic groups are pyridiny1, imidazolyl, pyrimidinyl, pyrazolyl, pyrazinyl, tetrazolyl, fury1, thiény1, isoxy1, thiazolyl, oxazolyl, isothiazolyl, pyrroly1, quinoliny1, isoquinoliny1, indolyl, benzimidazolyl, benzoxy1unany1, cinnoliny1, indazolyl, indoliziny1, phthalaziny1, pyridazinyl, triazinyl, isoindolyl, pteridinyl, purinyl, oxadiazolyl, thiadiazolyl, furazany1, benzofurazany1, benzoxy1phenyl, benzoxy1azolyl, benzoxazolyl, quinazoliny1, quinoxaliny1, naphthyridiny1, and ruropyridinyl. The foregoing groups, as derived from the groups listed above, may be C-attached or N-attached where such is possible. For instance, a group derived from pyrrole may be pyrrol-1-yl (N-attached) or pyrrol-3-yl (C-attached). Further, a group derived from imidazole may be imidazol-1-yl or imidazol-3-yl (both N-attached) or imidazol-2-yl, imidazol-4-yl or imidazol-5-yl.
The heterocyclic groups include benzo-fused ring systems. Non-aromatic heterocycles may be substituted with one or two oxo (=O) moieties, such as pyrrolidin-2-one.

The terms "heteroaryl" or, alternatively, "heteroaromatic" refers to an aryl group that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur. Illustrative examples of heteroaryl groups include the following moieties:

![Illustrative Examples of Heteroaryl Groups](image)

and the like. An N-containing "heteroaromatic" or "heteroaryl" moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom. In one aspect, the heteroaryl is a C1-C10 heteroaryl. In another aspect, the heteroaryl is a C2-C10 heteroaryl. In some cases, the heteroaryl includes at least one N atom in the ring. In one aspect, monocyclic heteroaryl is a C1-C10 heteroaryl. In one aspect, bicyclic heteroaryl is a C5-C10 heteroaryl.

A "heterocycloalkyl" or "heteroalicyclic" group refers to a cycloalkyl group that includes at least one heteroatom selected from nitrogen, oxygen and sulfur. The radicals may be fused with an aryl or heteroaryl. Illustrative examples of heterocycloalkyl groups, also referred to as non-aromatic heterocycles, include:

![Illustrative Examples of Heterocycloalkyl Groups](image)

and the like.
In some embodiments, the heterocycloalkyl is selected from oxazolidinonyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, tetrahydropranyl, tetrahydrothiopyranyl, piperidinyl, moΦ holiny, thiomorpioliny, piperaizinyl, and indoliny. The term heteroalicyclic also includes all ring forms of the carbohydrates, including but not limited to the monosaccharides, the disaccharides and the oligosaccharides. In one aspect, a heterocycloalkyl is a C₂-Cioheterocycloalkyl. In another aspect, a heterocycloalkyl is a C₄-Cioheterocycloalkyl.

The term "bond" or "single bond" refers to a chemical bond between two atoms, or two moieties when the atoms joined by the bond are considered to be part of larger substructure.

The term "membered ring" includes any cyclic structure. The term "membered" is meant to denote the number of skeletal atoms that constitute the ring. Thus, for example, cyclohexyl, pyridinyl, pyranyl and thiopyranyl are 6-membered rings and cyclopentyl, pyrrolyl, furanyl, and thiophenyl are 5-membered rings.

The term "moiety" refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule.

The term "acyclic" refers to a moiety wherein the point of attachment of the moiety to the rest of the molecule is at an atom that is not part of a ring. Non-limiting examples of acyclic groups include alkyl, haloalkyls, heteroalkyl, alkoxy, benzyl, and the like.

The term "cyclic" refers to a moiety wherein the point of attachment to the rest of the molecule is at an atom that is part of a ring. Non-limiting examples of cyclic groups include cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and the like.

The term "optionally substituted" or "substituted" means that the referenced group may be substituted with one or more additional group(s) individually and independently selected from alkyl, cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfoxide, arylsulfoxide, alkylsulfone, arylsulfone, cyano, halo, carbonyl, thiocarbonyl, nitro, haloalkyl, fluoroalkyl, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. By way of example an optional substituents may be halide, -CN, -NO₂, or LR₄, wherein each LR₄ is independently selected from a bond, -O-, -C(=O)-, -Q=O)-, -S-, -S(=O)-, -S(=O)₂-, -NH-, -NHC(=O)-, -C(=O)NH-, S(=O)₂NH-, -NHS(=O)₂-, -OCC=O)NH-, -NHC(=O)O-, -(C₁-C₆ alkyl), or -(C₂-C₆ alkenyl); and each R₄ is independently selected from H, alkyl, fluoroalkyl, heteroalkyl, cycloalkyl, aryl, heteroaryl, or heterocycloalkyl. In one aspect, substituted groups are substituted with one or more substituents selected from halogen, -OH, -OCrC₄ alkyl, C₁-C₄ alkyl, Cl-C-heteroalkyl, C₆-C₄fluoroalkyl and -OCi-C₄ fluoroalkyl. In yet another aspect, substituted groups are substituted with one or more substituents selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃. In yet other embodiments, substituted groups are substituted with one or more substituents selected from F, Cl, and Br. In one aspect, substituted groups are substituted with one of the preceding groups. The protecting groups that may form the
protective derivatives of the above substituents may be found in sources such as Greene and Wuts, above.

[0295] In certain embodiments, the compounds presented herein possess one or more stereocenters and each center independently exists in either the R or S configuration. The compounds presented herein include all diastereomeric, enantiomeric, and epimeric forms as well as the appropriate mixtures thereof. Stereoisomers are obtained, if desired, by methods such as, the separation of stereoisomers by chiral chromatographic columns.

[0296] The methods and formulations described herein include the use of N-oxides (if appropriate), crystalline forms (also known as polymorphs), or pharmaceutically acceptable salts of compounds having the structure of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VI) as well as active metabolites of these compounds having the same type of activity. In some situations, compounds may exist as tautomers. All tautomers are included within the scope of the compounds presented herein. In specific embodiments, the compounds described herein exist in solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. In other embodiments, the compounds described herein exist in unsolvated form.

Certain Pharmaceutical and Medical Terminology

[0297] The term "acceptable" with respect to a formulation, composition or ingredient, as used herein, means having no persistent detrimental effect on the general health of the subject being treated.

[0298] The term "modulate," as used herein, means to interact with a target either directly or indirectly so as to alter the activity of the target, including, by way of example only, to enhance the activity of the target, to inhibit the activity of the target, to limit the activity of the target, or to extend the activity of the target.

[0299] The term "modulator," as used herein, refers to a molecule that interacts with a target either directly or indirectly. The interactions include, but are not limited to, the interactions of an agonist, partial agonist, an inverse agonist and antagonist. In one embodiment, a modulator is an antagonist.

[0300] The term "agonist," as used herein, refers to a molecule such as a compound, a drug, an enzyme activator or a hormone modulator that binds to a specific receptor and triggers a response in the cell. An agonist mimics the action of an endogenous ligand (such as prosttaglandin, hormone or neurotransmitter) that binds to the same receptor.

[0301] The term "antagonist," as used herein, refers to a molecule such as a compound, which diminishes, inhibits, or prevents the action of another molecule or the activity of a receptor site. Antagonists include, but are not limited to, competitive antagonists, non-competitive antagonists, uncompetitive antagonists, partial agonists and inverse agonists.
[0302] Competitive antagonists reversibly bind to receptors at the same binding site (active site) as the endogenous ligand or agonist, but without activating the receptor.

[0303] Non-competitive antagonists (also known as allosteric antagonists) bind to a distinctly separate binding site from the agonist, exerting their action to that receptor via the other binding site. Non-competitive antagonists do not compete with agonists for binding. The bound antagonists may result in a decreased affinity of an agonist for that receptor, or alternatively may prevent conformational changes in the receptor required for receptor activation after the agonist binds.

[0304] Uncompetitive antagonists differ from non-competitive antagonists in that they require receptor activation by an agonist before they can bind to a separate allosteric binding site.

[0305] Partial agonists are defined as drugs which, at a given receptor, might differ in the amplitude of the functional response that they elicit after maximal receptor occupancy. Although they are agonists, partial agonists can act as a competitive antagonist if co-administered with a full agonist, as it competes with the full agonist for receptor occupancy and producing a net decrease in the receptor activation observed with the full agonist alone.

[0306] An inverse agonist can have effects similar to an antagonist, but causes a distinct set of downstream biological responses. Constitutively active receptors which exhibit intrinsic or basal activity can have inverse agonists, which not only block the effects of binding agonists like a classical antagonist, but inhibit the basal activity of the receptor.

[0307] The term "PGD$_2$-dependent", as used herein, refers to conditions or disorders that would not occur, or would not occur to the same extent, in the absence of PGD$_2$.

[0308] The term "PGD$_2$-mediated", as used herein, refers to conditions or disorders that might occur in the absence of PGD$_2$ but can occur in the presence of PGD$_2$.

[0309] The term "asthma" as used herein refers to any disorder of the lungs characterized by variations in pulmonary gas flow associated with airway constriction of whatever cause (intrinsic, extrinsic, or both; allergic or non-allergic). The term asthma may be used with one or more adjectives to indicate cause.

[0310] The term "rhinitis" as used herein refers to any disorder of the nose in which there is inflammation of the mucous lining of the nose by whatever cause (intrinsic, extrinsic or both; allergic or non-allergic).

[0311] The term "bone disease," as used herein, refers to a disease or condition of the bone, including, but not limited to, inappropriate bone remodeling, loss or gain, osteopenia, osteomalacia, osteofibrosis, and Paget’s disease.

[0312] The term "cardiovascular disease," as used herein refers to diseases affecting the heart or blood vessels or both, including but not limited to: arrhythmia (atrial or ventricular or both); atherosclerosis and its sequelae; angina; cardiac rhythm disturbances; myocardial ischemia; myocardial infarction; cardiac or vascular aneurysm; vasculitis, stroke; peripheral obstructive
arteriopathy of a limb, an organ, or a tissue; reperfusion injury following ischemia of the brain, heart or other organ or tissue; endotoxic, surgical, or traumatic shock; hypertension, valvular heart disease, heart failure, abnormal blood pressure; shock; vasoconstriction (including that associated with migraines); vascular abnormality, inflammation, insufficiency limited to a single organ or tissue..

[0313] The term "cancer," as used herein refers to an abnormal growth of cells which tend to proliferate in an uncontrolled way and, in some cases, to metastasize (spread). The types of cancer include, but is not limited to, solid tumors (such as those of the bladder, bowel, brain, breast, endometrium, heart, kidney, lung, lymphatic tissue (lymphoma), ovary, pancreas or other endocrine organ (thyroid), prostate, skin (melanoma) or hematological tumors (such as the leukemias).

[0314] The term "carrier," as used herein, refers to relatively nontoxic chemical compounds or agents that facilitate the incorporation of a compound into cells or tissues.

[0315] The terms "co-administration" or the like, as used herein, are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are administered by the same or different route of administration or at the same or different time.

[0316] The term "dermatological disorder," as used herein refers to a skin disorder. Such dermatological disorders include, but are not limited to, proliferative or inflammatory disorders of the skin such as, atopic dermatitis, bullous disorders, collagenoses, contact dermatitis eczema, Kawasaki Disease, rosacea, Sjogren-Larsso Syndrome, urticaria.

[0317] The term "diluent" refers to chemical compounds that are used to dilute the compound of interest prior to delivery. Diluents can also be used to stabilize compounds because they can provide a more stable environment. Salts dissolved in buffered solutions (which also can provide pH control or maintenance) are utilized as diluents in the art, including, but not limited to a phosphate buffered saline solution.

[0318] The terms "effective amount" or "therapeutically effective amount," as used herein, refer to a sufficient amount of an agent or a compound being administered which will relieve to some extent one or more of the symptoms of the disease or condition being treated. The result can be reduction and/or alleviation of the signs, symptoms, or causes of a disease, or any other desired alteration of a biological system. For example, an "effective amount" for therapeutic uses is the amount of the composition comprising a compound as disclosed herein required to provide a clinically significant decrease in disease symptoms. An appropriate "effective" amount in any individual case may be determined using techniques, such as a dose escalation study.

[0319] The terms "enhance" or "enhancing," as used herein, means to increase or prolong either in potency or duration a desired effect. Thus, in regard to enhancing the effect of therapeutic agents, the term "enhancing" refers to the ability to increase or prolong, either in potency or
duration, the effect of other therapeutic agents on a system. An “enhancing-effective amount,” as used herein, refers to an amount adequate to enhance the effect of another therapeutic agent in a desired system.

[0320] The terms “fibrosis” or “fibrosing disorder,” as used herein, refers to conditions that follow acute or chronic inflammation and are associated with the abnormal accumulation of cells and/or collagen and include but are not limited to fibrosis of individual organs or tissues such as the heart, kidney, joints, lung, or skin, and includes such disorders as idiopathic pulmonary fibrosis and cryptogenic fibrosing alveolitis.

[0321] The term “iatrogenic” means a PGD₂-dependent or PGD₂-mediated condition, disorder, or disease created or worsened by medical or surgical therapy.

[0322] The term “inflammatory disorders” refers to those diseases or conditions that are characterized by one or more of the signs of pain, heat, redness, swelling, and loss of function (temporary or permanent). Inflammation takes many forms and includes, but is not limited to, inflammation that is one or more of the following: acute, adhesive, atrophic, catarrhal, chronic, cirrhotic, diffuse, disseminated, exudative, fibrinous, fibrosing, focal, granulomatous, hyperplastic, hypertrophic, interstitial, metastatic, necrotic, obliterative, parenchymatous, plastic, productive, proliferous, pseudomembranous, purulent, sclerosing, seroplastic, serous, simple, specific, subacute, suppurative, toxic, traumatic, and/or ulcerative. Inflammatory disorders further include, without being limited to those affecting the blood vessels (polyarteritis, temporal arteritis); joints (arthritis: crystalline, osteo-, psoriatic, reactive, rheumatoid, Reiter's); gastrointestinal tract (colitis); skin (dermatitis); or multiple organs and tissues (systemic lupus erythematosus).

[0323] The term “immunological disorders” refers to those diseases or conditions that are characterized by inappropriate or deleterious response to an endogenous or exogenous antigen that may result in cellular dysfunction or destruction and consequently dysfunction or destruction of an organ or tissue and which may or may not be accompanied by signs or symptoms of inflammation.

[0324] The terms "tat" and "article of manufacture" are used as synonyms.

[0325] A "metabolite" of a compound disclosed herein is a derivative of that compound that is formed when the compound is metabolized. The term "active metabolite" refers to a biologically active derivative of a compound that is formed when the compound is metabolized. The term "metabolized," as used herein, refers to the sum of the processes (including, but not limited to, hydrolysis reactions and reactions catalyzed by enzymes) by which a particular substance is changed by an organism. Thus, enzymes may produce specific structural alterations to a compound. For example, cytochrome P450 catalyzes a variety of oxidative and reductive reactions while uridine diphosphate glucuronyltransferases catalyze the transfer of an activated glucuronic-acid molecule to aromatic alcohols, aliphatic alcohols, carboxylic acids, amines and free sulphhydryl groups. Metabolites of the compounds disclosed herein are optionally identified either
by administration of compounds to a host and analysis of tissue samples from the host, or by
incubation of compounds with hepatic cells in vitro and analysis of the resulting compounds.

[0326] The terms "neurogenerative disease" or "nervous system disorder," as used herein, refers
to conditions that alter the structure or function of the brain, spinal cord or peripheral nervous
system, including but not limited to Alzheimer's Disease, cerebral edema, cerebral ischemia,
multiple sclerosis, neuropathies, Parkinson's Disease, those found after blunt or surgical trauma
(including post-surgical cognitive dysfunction and spinal cord or brain stem injury), as well as the
neurological aspects of disorders such as degenerative disk disease and sciatica. The acronym
"CNS" refers to disorders of the central nervous system, i.e., brain and spinal cord.

[0327] The terms "ocular disease" or "ophthalmic disease," as used herein, refer to diseases which
affect the eye or eyes and potentially the surrounding tissues as well. Ocular or ophthalmic
diseases include, but are not limited to, conjunctivitis, retinitis, scleritis, uveitis, allergic
conjunctivitis, vernal conjunctivitis, papillary conjunctivitis.

[0328] The term "interstitial cystitis" refers to a disorder characterized by lower abdominal
discomfort, frequent and sometimes painful urination that is not caused by anatomical
abnormalities, infection, toxins, trauma or tumors.

[0329] The term "pharmaceutical combination" as used herein, means a product that results from
the mixing or combining of more than one active ingredient and includes both fixed and non-fixed
combinations of the active ingredients. The term "fixed combination" means that the active
ingredients, e.g. a compound of any of Formula (T), Formula (TT), Formula (DT), Formula (TV),
Formula (V), Formula (VI), Formula (VII), or Formula (VHI) and a co-agent, are both
administered to a patient simultaneously in the form of a single entity or dosage. The term "non-
fixed combination" means that the active ingredients, e.g. a compound of any of Formula (T),
Formula (TT), Formula (TTT), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula
(VIID and a co-agent, are administered to a patient as separate entities either simultaneously,
concurrently or sequentially with no specific intervening time limits, wherein such administration
provides effective levels of the two compounds in the body of the patient. The latter also applies to
cocktail therapy, e.g. the administration of three or more active ingredients.

[0330] The term "pharmaceutical composition" refers to a mixture of a compound of any of
Formula (T), Formula (TT), Formula (TTT), Formula (IV), Formula (V), Formula (VI), Formula (VII),
or Formula (VIII) with other chemical components, such as carriers, stabilizers, diluents,
dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical
composition facilitates administration of the compound to an organism. Multiple techniques of
administering a compound exist in the art including, but not limited to: intravenous, oral, aerosol,
parenteral, ophthalmic, pulmonary and topical administration.
The term "respiratory disease," as used herein, refers to diseases affecting the organs that are involved in breathing, such as the nose, throat, larynx, eustachian tubes, trachea, bronchi, lungs, related muscles (e.g., diaphragm and intercostals) and nerves. Respiratory diseases include, but are not limited to, asthma, adult respiratory distress syndrome and allergic (extrinsic) asthma, non-allergic (intrinsic) asthma, acute severe asthma, chronic asthma, clinical asthma, nocturnal asthma, allergen-induced asthma, aspirin-sensitive asthma, exercise-induced asthma, neutrophilic asthma, isocapnic hyperventilation, child-onset asthma, adult-onset asthma, cough-variant asthma, occupational asthma, steroid-resistant asthma, seasonal asthma, seasonal allergic rhinitis, perennial allergic rhinitis, chronic obstructive pulmonary disease, including chronic bronchitis or emphysema, pulmonary hypertension, interstitial lung fibrosis and/or airway inflammation and cystic fibrosis, and hypoxia.

The term "subject" or "patient" encompasses mammals and non-mammals. Examples of mammals include, but are not limited to, any member of the Mammalian class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like. Examples of non-mammals include, but are not limited to, birds, fish and the like, or one embodiment of the methods and compositions provided herein, the mammal is a human.

The terms "treat," "treating" or "treatment," as used herein, include alleviating, abating or ameliorating a disease or condition symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, inhibiting the disease or condition, e.g., arresting the development of the disease or condition, relieving the disease or condition, causing regression of the disease or condition, relieving a condition caused by the disease or condition, or stopping the symptoms of the disease or condition either prophylactically and/or therapeutically.

Routes of Administration

Suitable routes of administration include, but are not limited to, oral, intravenous, rectal, aerosol, parenteral, ophthalmic, pulmonary, transmucosal, transdermal, vaginal, otic, nasal, and topical administration. In addition, by way of example only, parenteral delivery includes intramuscular, subcutaneous, intravenous, intramedullary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intralymphatic, and intranasal injections.

Certain embodiments, a compound as described herein is administered in a local rather than systemic manner, for example, via injection of the compound directly into an organ, often in a depot preparation or sustained release formulation. In specific embodiments, long acting formulations are administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Furthermore, in other embodiments, the drug is delivered in a targeted drug delivery system, for example, in a liposome coated with organ-specific antibody, hi such
embodiments, the liposomes are targeted to and taken up selectively by the organ. In yet other embodiments, the compound as described herein is provided in the form of a rapid release formulation, in the form of an extended release formulation, or in the form of an intermediate release formulation. In yet other embodiments, the compound described herein is administered topically.

Pharmaceutical Composition/Formulation

[0336] In some embodiments, the compounds described herein are formulated into pharmaceutical compositions. In specific embodiments, pharmaceutical compositions are formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Any pharmaceutically acceptable techniques, carriers, and excipients are used as suitable to formulate the pharmaceutical compositions described herein: Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington’s Pharmaceutical Sciences, Mack Publishing Co., Easton, Pennsylvania 1975; Liberman, H.A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins999).

[0337] Provided herein are pharmaceutical compositions comprising a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) and a pharmaceutically acceptable diluent(s), excipient(s), or carrier(s). In certain embodiments, the compounds described are administered as pharmaceutical compositions in which compounds of any of Formula (I), Formula (H), Formula (YS), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) are mixed with other active ingredients, as in combination therapy. Encompassed herein are all combinations of actives set forth in the combination therapies section below and throughout this disclosure. In specific embodiments, the pharmaceutical compositions include one or more compounds of any of Formula (I), Formula (H), Formula (III), Formula (IV), Formula (V), Formula (VI) Formula (VII), or Formula (VTR).

[0338] A pharmaceutical composition, as used herein, refers to a mixture of a compound of any of Formula Formula (T), Formula (II), Formula (ELI), Formula (IV), Formula (V) Formula (VI), Formula (VIT), or Formula (VHI) with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. In certain embodiments, the pharmaceutical composition facilitates administration of the compound to an organism. In some embodiments, practicing the methods of treatment or use provided herein, therapeutically effective amounts of compounds of any of Formula (T), Formula (II), Formula (DI), Formula (TV), Formula (V) Formula (VI), Formula (VII), or Formula (VHI) provided herein are
administered in a pharmaceutical composition to a mammal having a disease or condition to be treated. In specific embodiments, the mammal is a human, hi certain embodiments, therapeutically effective amounts vary depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors. The compounds described herein are used singly or in combination with one or more therapeutic agents as components of mixtures. [0339] In one embodiment, one or more compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) is formulated in an aqueous solution. In specific embodiments, the aqueous solution is selected from, by way of example only, a physiologically compatible buffer, such as Hank’s solution, Ringer’s solution, or physiological saline buffer. In other embodiments, one or more compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) is formulated for transmucosal administration. In specific embodiments, transmucosal formulations include penetrants that are appropriate to the barrier to be permeated. In still other embodiments wherein the compounds described herein are formulated for other parenteral injections, appropriate formulations include aqueous or nonaqueous solutions. In specific embodiments, such solutions include physiologically compatible buffers and/or excipients. [0340] In another embodiment, compounds described herein are formulated for oral administration. Compounds described herein, including compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VIII) are formulated by combining the active compounds with, e.g., pharmaceutically acceptable carriers or excipients. In various embodiments, the compounds described herein are formulated in oral dosage forms that include, by way of example only, tablets, powders, pills, dragees, capsules, liquids, gels, syrups, elixirs, slurries, suspensions and the like. [0341] In certain embodiments, pharmaceutical preparations for oral use are obtained by mixing one or more solid excipient with one or more of the compounds described herein, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as: for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methylcellulose, microcrystalline cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose; or others such as: polyvinylpyrrolidone (PVP or povidone) or calcium phosphate. In specific embodiments, disintegrating agents are optionally added. Disintegrating agents include, by way of example only, cross-linked croscarmellose sodium, polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. [0342] In one embodiment, dosage forms, such as dragee cores and tablets, are provided with one or more suitable coating. In specific embodiments, concentrated sugar solutions are used for
coating the dosage form. The sugar solutions, optionally contain additional components, such as by way of example only, gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures, Dyestuffs and/or pigments are also optionally added to the coatings for identification purposes. Additionally, the dyestuffs and/or pigments are optionally utilized to characterize different combinations of active compound doses.

[0343] In certain embodiments, therapeutically effective amounts of at least one of the compounds described herein are formulated into other oral dosage forms. Oral dosage forms include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. In specific embodiments, push-fit capsules contain the active ingredients in admixture with one or more filler. Fillers include, by way of example only, lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In other embodiments, soft capsules, contain one or more active compound that is dissolved or suspended in a suitable liquid. Suitable liquids include, by way of example only, one or more fatty oil, liquid paraffin, or liquid polyethylene glycol. In addition, stabilizers are optionally added.

[0344] In other embodiments, therapeutically effective amounts of at least one of the compounds described herein are formulated for buccal or sublingual administration. Formulations suitable for buccal or sublingual administration include, by way of example only, tablets, lozenges, or gels, hi still other embodiments, the compounds described herein are formulated for parenteral injection, including formulations suitable for bolus injection or continuous infusion. In specific embodiments, formulations for injection are presented in unit dosage form (e.g., in ampoules) or in multi-dose containers. Preservatives are, optionally, added to the injection formulations, hi still other embodiments, the pharmaceutical composition of any of Formula (I), Formula (U), Formula (HI), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are formulated in a form suitable for parenteral injection as a sterile suspensions, solutions or emulsions in oily or aqueous vehicles. Parenteral injection formulations optionally contain formulatory agents such as suspending, stabilizing and/or dispersing agents. In specific embodiments, pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. In additional embodiments, suspensions of the active compounds are prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles for use in the pharmaceutical compositions described herein include, by way of example only, fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes, hi certain specific embodiments, aqueous injection suspensions contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension contains suitable stabilizers or agents which increase the solubility of
the compounds to allow for the preparation of highly concentrated solutions. Alternatively, in other embodiments, the active ingredient is in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

[0345] In still other embodiments, the compounds of any of Formula (I), Formula (H), Formula (III), Formula (TV), Formula (V), Formula (VI), Formula (VIT), or Formula (VIII) are administered topically. The compounds described herein are formulated into a variety of topically administrable compositions, such as solutions, suspensions, lotions, gels, pastes, medicated sticks, balms, creams or ointments. Such pharmaceutical compositions optionally contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.

[0346] Yet other embodiments, the compounds of any of Formula (I), Formula (IT), Formula (TTT), Formula (IV), Formula (V) Formula (VI), Formula (VII), or Formula (VTTI) are formulated for transdermal administration. In specific embodiments, transdermal formulations employ transdermal delivery devices and transdermal delivery patches and can be lipophilic emulsions or buffered, aqueous solutions, dissolved and/or dispersed in a polymer or an adhesive. In various embodiments, such patches are constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents. In additional embodiments, the transdermal delivery of the compounds of any of Formula (I), Formula (IT), Formula (ITI), Formula (JV), Formula (V) Formula (VT), Formula (VII), or Formula (VHT) is accomplished by means of iontophoretic patches and the like. In certain embodiments, transdermal patches provide controlled delivery of the compounds of any of Formula (T), Formula (II), Formula (ITI), Formula (TV), Formula (V), Formula (VT), Formula (VIT), or Formula (VTTT). In specific embodiments, the rate of absorption is slowed by using rate-controlling membranes or by trapping the compound within a polymer matrix or gel. In alternative embodiments, absorption enhancers are used to increase absorption. Absorption enhancers or carriers include absorbable pharmaceutically acceptable solvents that assist passage through the skin. For example, in one embodiment, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin.

[0347] In other embodiments, the compounds of any of Formula (T), Formula (TT), Formula (TTT), Formula (TV), Formula (V) Formula (VI), Formula (VIT), or Formula (VIII) are formulated for administration by inhalation. Various forms suitable for administration by inhalation include, but are not limited to, aerosols, mists or powders. Pharmaceutical compositions of any of Formula (T), Formula (TT), Formula (TTI), Formula (TV), Formula (V) Formula (VT), Formula (ITT), or Formula (VTTT) are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant (e.g., dichlorodifluoromethane,
trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas). In specific embodiments, the dosage unit of a pressurized aerosol is determined by providing a valve to deliver a metered amount. In certain embodiments, capsules and cartridges of, such as, by way of example only, gelatin for use in an inhaler or insufflator are formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

[0348] In still other embodiments, the compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIIH) are formulated in rectal compositions such as enemas, rectal gels, rectal foams, rectal aerosols, suppositories, jelly suppositories, or retention enemas, containing conventional suppository bases such as cocoa butter or other glycerides, as well as synthetic polymers such as polyvinylpyrrolidone, PEG, and the like. In suppository forms of the compositions, a low-melting wax such as, but not limited to, a mixture of fatty acid glycerides, optionally in combination with cocoa butter is first melted.

[0349] In certain embodiments, pharmaceutical compositions are formulated in any conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Any pharmaceutically acceptable techniques, carriers, and excipients is optionally used as suitable and as understood in the art. Pharmaceutical compositions comprising a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIIH) may be manufactured in a conventional manner, such as, by way of example only, by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.

[0350] Pharmaceutical compositions include at least one pharmaceutically acceptable carrier, diluent or excipient and at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) described herein as an active ingredient. The active ingredient is in free-acid or free-base form, or in a pharmaceutically acceptable salt form. In addition, the methods and pharmaceutical compositions described herein include the use of N-oxides, crystalline forms (also known as polymorphs), as well as active metabolites of these compounds having the same type of activity. All tautomers of the compounds described herein are included within the scope of the compounds presented herein. Additionally, the compounds described herein encompass unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. The solvated forms of the compounds presented herein are also considered to be disclosed herein. In addition, the pharmaceutical compositions optionally include other medicinal or pharmaceutical agents, carriers, adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure, buffers, and/or other therapeutically valuable substances.
Methods for the preparation of compositions comprising the compounds described herein include formulating the compounds with one or more inert, pharmaceutically acceptable excipients or carriers to form a solid, semi-solid or liquid. Solid compositions include, but are not limited to, powders, tablets, dispersible granules, capsules, cachets, and suppositories. Liquid compositions include solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein. Semi-solid compositions include, but are not limited to, gels, suspensions and creams. The form of the pharmaceutical compositions described herein include liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions. These compositions also optionally contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and so forth.

In some embodiments, pharmaceutical composition comprising at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII) or Formula (VJS) illustratively takes the form of a liquid where the agents are present in solution, in suspension or both. Typically when the composition is administered as a solution or suspension a first portion of the agent is present in solution and a second portion of the agent is present in particulate form, in suspension in a liquid matrix. In some embodiments, a liquid composition includes a gel formulation. In other embodiments, the liquid composition is aqueous.

In certain embodiments, useful aqueous suspension contain one or more polymers as suspending agents. Useful polymers include water-soluble polymers such as cellulosic polymers, e.g., hydroxypropyl methylcellulose, and water-insoluble polymers such as cross-linked carboxyl-containing polymers. Certain pharmaceutical compositions described herein comprise a mucoadhesive polymer, selected for example from carboxymethylcellulose, carbomer (acrylic acid polymer), polymethylmethacrylate), polyacrylamide, polycarbophil, acrylic acid/butyl acrylate copolymer, sodium alginate and dextran.

Useful pharmaceutical compositions also, optionally, include solubilizing agents to aid in the solubility of a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). The term "solubilizing agent" generally includes agents that result in formation of a micellar solution or a true solution of the agent. Certain acceptable nonionic surfactants, for example polysorbate 80, are useful as solubilizing agents, as can ophthalmically acceptable glycols, polyglycols, e.g., polyethylene glycol 400, and glycol ethers.

Furthermore, useful pharmaceutical compositions optionally include one or more pH adjusting agents or buffering agents, including acids such as acetic, boric, citric, lactic, phosphoric and hydrochloric acids; bases such as sodium hydroxide, sodium phosphate, sodium borate,
sodium citrate, sodium acetate, sodium lactate and tris-hydroxymethylaminomethane; and buffers such as citrate/dextrose, sodium bicarbonate and ammonium chloride. Such acids, bases and buffers are included in an amount required to maintain pH of the composition in an acceptable range.

[0356] Additionally, useful compositions also, optionally, include one or more salts in an amount required to bring osmolality of the composition into an acceptable range. Such salts include those having sodium, potassium or ammonium cations and chloride, citrate, ascorbate, borate, phosphate, bicarbonate, sulfate, thiosulfate or bisulfite anions; suitable salts include sodium chloride, potassium chloride, sodium thiosulfate, sodium bisulfite and ammonium sulfate.

[0357] Other useful pharmaceutical compositions optionally include one or more preservatives to inhibit microbial activity. Suitable preservatives include mercury-containing substances such as merfen and tniomersal; stabilized chlorine dioxide; and quaternary ammonium compounds such as benzalkonium chloride, cetyltrimethylammonium bromide and cetylpymridinium chloride.

[0358] Still other useful compositions include one or more surfactants to enhance physical stability or for other purposes. Suitable nonionic surfactants include polyoxyethylene fatty acid glycerides and vegetable oils, e.g., polyoxyethylene (60) hydrogenated castor oil; and polyoxyethylene alkylethers and alkylphenyl ethers, e.g., octoxynol 10, octoxynol 40.

[0359] Still other useful compositions may include one or more antioxidants to enhance chemical stability where required. Suitable antioxidants include, by way of example only, ascorbic acid and sodium metabisulfite.

[0360] In certain embodiments, aqueous suspension compositions are packaged in single-dose non-reclosable containers. Alternatively, multiple-dose reclosable containers are used, in which case it is typical to include a preservative in the composition.

[0361] In alternative embodiments, other delivery systems for hydrophobic pharmaceutical compounds are employed. Liposomes and emulsions are examples of delivery vehicles or carriers useful herein. In certain embodiments, organic solvents such as N-methylpyrrolidone are also employed. In additional embodiments, the compounds described herein are delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials are useful herein. In some embodiments, sustained-release capsules release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.

[0362] In certain embodiments, the formulations described herein comprise one or more antioxidants, metal chelating agents, thiol containing compounds and/or other general stabilizing agents. Examples of such stabilizing agents, include, but are not limited to: (a) about 0.5% to about 2% w/v glycerol, (b) about 0.1% to about 1% w/v methionine, (c) about 0.1% to about 2% w/v...
monothioglycerol, (d) about 1 mM to about 10 mM EDTA, (e) about 0.01% to about 2% w/v ascorbic acid, (f) 0.003% to about 0.02% w/v polysorbate 80, (g) 0.001% to about 0.05% w/v polysorbate 20, (h) arginine, (i) heparin, (j) dextran sulfate, (k) cyclodextrins, (l) pentosan polysulfate and other heparinoids, (m) divalent cations such as magnesium and zinc; or (n) combinations thereof.

Methods of Dosing and Treatment Regimens

[0363] In one embodiment, the compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are used in the preparation of medicaments for the treatment of PGD₂-dependent or PGD₂-mediated diseases or conditions. In addition, a method for treating any of the diseases or conditions described herein in a subject in need of such treatment, involves administration of pharmaceutical compositions containing at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or a pharmaceutically acceptable salt, pharmaceutically active metabolite, pharmaceutically acceptable prodrug, or pharmaceutically acceptable solvate thereof, in therapeutically effective amounts to said subject.

[0364] In certain embodiments, the compositions containing the compound(s) described herein are administered for prophylactic and/or therapeutic treatments. In certain therapeutic applications, the compositions are administered to a patient not already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest the symptoms of the disease or condition. Amounts effective for this use depend on the severity and course of the disease or condition, previous therapy, the patient's health status, weight, and response to the drugs, and the judgment of the treating physician. Therapeutically effective amounts are optionally determined by methods including, but not limited to, a dose escalation clinical trial.

[0365] In prophylactic applications, compositions containing the compounds described herein are administered to a patient susceptible to or otherwise at risk of a particular disease, disorder or condition. Such an amount is defined to be a "prophylactically effective amount or dose." In this use, the precise amounts also depend on the patient's state of health, weight, and the like. When used in a patient, effective amounts for this use will depend on the severity and course of the disease, disorder or condition, previous therapy, the patient's health status and response to the drugs, and the judgment of the treating physician.

[0366] In certain embodiments wherein the patient's condition does not improve, upon the doctor's discretion the administration of the compounds are administered chronically, that is, for an extended period of time, including throughout the duration of the patient's life in order to ameliorate or otherwise control or limit the symptoms of the patient's disease or condition.

[0367] In certain embodiments wherein a patient's status does improve, administration of the compounds is given continuously; or, alternatively, the dose of drug being administered may be
temporarily reduced or temporarily suspended for a certain length of time (i.e., a "drug holiday"). In specific embodiments, the length of the drug holiday is between 2 days and 1 year, including by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days, 280 days, 300 days, 320 days, 350 days, and 365 days. The dose reduction during a drug holiday is, by way of example only, by 10%-100%, including by way of example only 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, and 100%.

[0368] Once improvement of the patient's conditions has occurred, a maintenance dose is administered if necessary. Subsequently, in specific embodiments, the dosage or the frequency of administration, or both, is reduced, as a function of the symptoms, to a level at which the improved disease, disorder or condition is retained. In certain embodiments, however, the patient requires intermittent treatment on a long-term basis upon any recurrence of symptoms.

[0369] The amount of a given agent that corresponds to such an amount varies depending upon factors such as the particular compound, disease condition and its severity, the identity (e.g., weight) of the subject or host in need of treatment, but can nevertheless be determined according to the particular circumstances surrounding the case, including, e.g., the specific agent being administered, the route of administration, the condition being treated, and the subject or host being treated. In general, however, doses employed for adult human treatment are typically in the range of 0.02-5000 mg per day. In one aspect, the dose is in the range of 1-1500 mg per day, 1-500 mg per day, 1-250 mg per day, or 1-100 mg per day. In one embodiment, the desired dose is conveniently presented in a single dose or in divided doses administered simultaneously (or over a short period of time) or at appropriate intervals, for example as two, three, four or more sub-doses per day.

[0370] In certain embodiments, the pharmaceutical composition described herein is in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compound. In specific embodiments, the unit dosage is in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules. Aqueous suspension compositions are optionally packaged in single-dose non-re-closeable containers. Alternatively, multiple-dose re-closeable containers are used, in which case it is typical to include a preservative in the composition. By way of example only, formulations for parenteral injection are, in some embodiments, presented in unit dosage form, which include, but are not limited to ampoules, or in multi-dose containers, with an added preservative.

[0371] In one embodiment, the daily dosages appropriate for the compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula
(Vπi) described herein are from about 0.01 to about 10 mg/kg per body weight. In specific embodiments, an indicated daily dosage in a large mammal, including, but not limited to, humans, is in the range from about 0.5 mg to about 1000 mg, conveniently administered in divided doses, including, but not limited to, up to four times a day or in extended release form. In certain embodiments, suitable unit dosage forms for oral administration comprise from about 1 to 500 mg active ingredient, from about 1 to 250 mg active ingredient, or from about 1 to 100 mg active ingredient. In other embodiments, the daily dosage or the amount of active in the dosage form are lower or higher than the ranges indicated herein, based on a number of variables in regard to an individual treatment regime. In various embodiments, the daily and unit dosages are altered depending on a number of variables including, but not limited to, the activity of the compound used, the disease or condition to be treated, the mode of administration, the requirements of the individual subject, the severity of the disease or condition being treated, and the judgment of the practitioner.

[0372] Toxicity and therapeutic efficacy of such therapeutic regimens are determined by standard pharmaceutical procedures in cell cultures or experimental animals, including, but not limited to, the determination of the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between the toxic and therapeutic effects is the therapeutic index and it is expressed as the ratio between LD₅₀ and ED₅₀. In certain embodiments, the data obtained from cell culture assays and animal studies are used in formulating the therapeutically effective daily dosage range and/or the therapeutically effective unit dosage amount for use in mammals, including humans. In some embodiments, the daily dosage amount of the compounds described herein lies within a range of circulating concentrations that include the ED₅₀ with minimal toxicity. In certain embodiments, the daily dosage range and/or the unit dosage amount varies within this range depending upon the dosage form employed and the route of administration utilized.

Use OfDF₂ Antagonists to Prevent and/or Treat PGD₂-Dependent or PGD₂-Mediated Diseases or Conditions

[0373] The therapy of PGD₂-dependent or PGD₂-mediated diseases or conditions is designed to modulate the activity of DP₂, DP₁ and/or TP. Such modulation includes, in some embodiments, antagonizing DP₂ activity. In other embodiments, such modulation includes antagonizing DP₂ and DPI. For example, in one embodiment, a DP₂ antagonist is administered in order to decrease signal transduction initiated by PGD₂ within the individual.

[0374] In accordance with one aspect, compositions and methods described herein include compositions and methods for treating, preventing, reversing, halting or slowing the progression of PGD₂-dependent or PGD₂-mediated diseases or conditions once it becomes clinically evident, or treating the symptoms associated with or related to PGD₂-dependent or PGD₂-mediated diseases or
conditions, by administering to the subject a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). In certain embodiments, the subject already has a PGD₂-dependent or PGD₂ mediated disease or condition at the time of administration, or is at risk of developing a PGD₂-dependent or PGD₂ mediated disease or condition.

[0375] In certain aspects, the activity of DP₂ in a mammal is directly or indirectly modulated by the administration of (at least once) an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) to a mammal. Such modulation includes, but is not limited to, reducing and/or inhibiting the activity OfDP₂. In additional aspects, the activity OfPGD₂ in a mammal is directly or indirectly modulated, including reducing and/or inhibiting, by the administration of (at least once) an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) to a mammal. Such modulation includes, but is not limited to, reducing and/or inhibiting the activity of DP₂.

[0376] In one embodiment, prevention and/or treatment of PGD₂-dependent or PGD₂ mediated diseases or conditions comprises administering to a mammal at least once a therapeutically effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) to a mammal. In specific embodiments, the compound administered to the mammal is a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) to a mammal. In some embodiments, there is provided a method of treating PGD₂-dependent or PGD₂ mediated diseases or conditions that include, but are not limited to, bone diseases and disorders, cardiovascular diseases and disorders, inflammatory diseases and disorders, immunological diseases or disorders, dermatological diseases and disorders, ocular diseases and disorders, cancer and other proliferative diseases and disorders, respiratory diseases and disorder, and non-cancerous disorders.
By way of example only, included in the prevention/treatment methods described herein are methods for treating respiratory diseases comprising administering to the mammal at least once an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (TS), Formula (W), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). By way of example, in some embodiments, the respiratory disease is asthma. Other respiratory diseases include, but are not limited to, adult respiratory distress syndrome and allergic (extrinsic) asthma, non-allergic (intrinsic) asthma, acute severe asthma, chronic asthma, clinical asthma, nocturnal asthma, allergen-induced asthma, aspirin-sensitive asthma, exercise-induced asthma, neutrophilic asthma, isocapnic hyperventilation, child-onset asthma, adult-onset asthma, cough-variant asthma, occupational asthma, steroid-resistant asthma, seasonal asthma, allergic rhinitis, vascular responses, endotoxin shock, fibrogenesis, pulmonary fibrosis, allergic diseases, chronic inflammation, and adult respiratory distress syndrome.

By way of example only, included in such treatment methods are methods for preventing chronic obstructive pulmonary disease comprising administering to the mammal at least once an effective amount of at least one compound of any of Formula (I), Formula (H), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (Vm) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (JS), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). In addition, chronic obstructive pulmonary disease includes, but is not limited to, chronic bronchitis or emphysema, pulmonary hypertension, interstitial lung fibrosis and/or airway inflammation and cystic fibrosis.

By way of example only, included in such treatment methods are methods for preventing increased mucosal secretion and/or edema in a disease or condition comprising administering to the mammal at least once an effective amount of at least one compound of any of Formula (L), Formula (II), Formula (IH), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (T), Formula (II), Formula (III), Formula (W), Formula (V), Formula (VI), Formula (VII), or Formula (VTS).

By way of example only, included in the prevention/treatment methods described herein are methods for preventing or treating vasoconstriction, atherosclerosis and its sequelae myocardial ischemia, myocardial infarction, aortic aneurysm, vasculitis and stroke comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (TV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of
any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). [0381] By way of example only, included in the prevention/treatment methods described herein are methods for reducing cardiac reperfusion injury following myocardial ischemia and/or endotoxic shock comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0382] By way of example only, included in the prevention/treatment methods described herein are methods for reducing the constriction of blood vessels in a mammal comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) for pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0383] By way of example only, included in the prevention/treatment methods described herein are methods for lowering or preventing an increase in blood pressure of a mammal comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) for pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0384] By way of example only, included in the prevention/treatment methods described herein are methods for preventing or treating eosinophil and/or basophil and/or dendritic cell and/or neutrophil and/or monocyte and/or T-cell recruitment comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) for pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). [0385] By way of example only, included in the prevention/treatment methods described herein are methods for the prevention or treatment of abnormal bone remodeling, loss or gain, including diseases or conditions as, by way of example, osteopenia, osteoporosis, Paget's disease, cancer and other diseases comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V),
Formula (VI), Formula (VET), or Formula (VHI) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0386] By way of example only, included in the prevention/treatment methods described herein are methods for preventing ocular inflammation and allergic conjunctivitis, vernal keratoconjunctivitis, and papillary conjunctivitis comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0387] By way of example only, included in the prevention/treatment methods described herein are methods for preventing otitis, otitis media comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). CNS disorders include, but are not limited to, multiple sclerosis, Parkinson’s disease, Alzheimer's disease, stroke, cerebral ischemia, retinal ischemia, post-surgical cognitive dysfunction, migraine, peripheral neuropathy/neuropathic pain, spinal cord injury, cerebral edema and head injury.

[0388] By way of example only, included in the prevention/treatment methods described herein are methods for the treatment of cancer comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII), or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII), or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). The type of cancer may include, but is not limited to, pancreatic cancer and other solid or hematological tumors.
[0390] By way of example only, included in the prevention/treatment methods described herein are methods for preventing or reducing the chances of endotoxic shock and septic shock comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (EH), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0391] By way of example only, included in the prevention/treatment methods described herein are methods for preventing, treating or alleviating rheumatoid arthritis and osteoarthritis comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). Such gastrointestinal diseases include, by way of example only, inflammatory bowel disease (IBD), colitis and Crohn's disease.

[0392] By way of example only, included in the prevention/treatment methods described herein are methods for preventing increased, reducing the incidences of or treating gastrointestinal diseases comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII). Such gastrointestinal diseases include, by way of example only, inflammatory bowel disease (IBD), colitis and Crohn's disease.

[0393] By way of example only, included in the prevention/treatment methods described herein are methods for the reduction or treatment of inflammation and/or preventing, reducing the incidences of or treating acute or chronic transplant rejection (including any vascular abnormality associated with acute or chronic rejection) or preventing or treating tumors or accelerating the healing of wounds comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0394] By way of example only, included in the prevention/treatment methods described herein are methods for the prevention or treatment of rejection or dysfunction in a transplanted organ or tissue comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which
includes a compound of any of Formula (T), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII).

[0395] By way of example only, included in the prevention/treatment methods described herein are methods for treating pain comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (JT), Formula (ID), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (JT), Formula (III), Formula (TV), Formula (V), Formula (VI), Formula (VII), or Formula (Vm).

[0396] By way of example only, included in the prevention/treatment methods described herein are methods for treating inflammatory responses of the skin comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (HI), Formula (TV), Formula (V), Formula (VI), Formula (V.I), or Formula (VET). Such inflammatory responses of the skin include, by way of example, psoriasis, dermatitis, contact dermatitis, eczema, urticaria, rosacea, wound healing and scarring. In another aspect are methods for reducing psoriatic lesions in the skin, joints, or other tissues or organs, comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (ITI), Formula (IV), Formula (V), Formula (VI), Formula (VjI), or Formula (VIII).

[0397] By way of example only, included in the prevention/treatment methods described herein are methods for the treatment of cystitis, including, e.g., interstitial cystitis, comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (T), Formula (II), Formula (TTT), Formula (TV), Formula (V), Formula (VI), Formula (VIT), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (T), Formula (IT), Formula (III), Formula (TV), Formula (V), Formula (VI), Formula (VII), or Formula (VIT).

[0398] By way of example only, included in the prevention/treatment methods described herein are methods for the treatment of Familial Mediterranean Fever comprising administering at least once to the mammal an effective amount of at least one compound of any of Formula (T), Formula (JT), Formula (III), Formula (TV), Formula (V), Formula (VJ), Formula (VTJ), or Formula (VJT) or pharmaceutical composition or medicament which includes a compound of any of Formula (I), Formula (II), Formula (III), Formula (TV), Formula (V), Formula (VI), Formula (VIT) or Formula (VJTT).
In one aspect, compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are used in the treatment of PGD₂-dependent or PGD₂-mediated diseases, disorders or conditions as disclosed herein. In one aspect, compounds of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) are DP₂ antagonists. In one aspect, the compounds of Formula (I) exhibit negligible modulatory activity on CETP and/or PPAR receptors. CETP assays are known (Epps et al. Chem. Phys. Lipids. 77, 51-63, 1995). PPAR assays are known (Example 48 of US 2006/0058301).

Combination Treatments

In certain instances, it is appropriate to administer at least one DP₂ antagonist described herein, in combination with another therapeutic agent. By way of example only, if one of the side effects experienced by a patient upon receiving one of the compounds herein is inflammation, then it may be appropriate to administer an anti-inflammatory agent in combination with the initial therapeutic agent. Or, in one embodiment, the therapeutic effectiveness of one of the compounds described herein is enhanced by administration of an adjuvant (i.e., by itself the adjuvant may have minimal therapeutic benefit, but in combination with another therapeutic agent, the overall therapeutic benefit to the patient is enhanced). Or, in some embodiments, the benefit of experienced by a patient is increased by administering one of the compounds described herein with another therapeutic agent (which also includes a therapeutic regimen) that also has therapeutic benefit. In one specific embodiment, the therapeutic benefit of treating asthma by administering at least one of the compounds described herein is increased by also providing the patient with other therapeutic agents or therapies for asthma. In any case, regardless of the disease, disorder or condition being treated, the overall benefit experienced by the patient may simply be additive of the two therapeutic agents or the patient may experience a synergistic benefit.

In certain embodiments, different therapeutically-effective dosages of the compounds disclosed herein will be utilized in formulating pharmaceutical composition and/or in treatment regimens when the compounds disclosed herein are administered in combination with one or more additional agent, such as an additional therapeutically effective drug, an adjuvant or the like. Therapeutically-effective dosages of drugs and other agents for use in combination treatment regimens can be determined by means similar to those set forth hereinabove for the actives themselves. Furthermore, the methods of prevention/treatment described herein encompasses the use of metronomic dosing, i.e., providing more frequent, lower doses in order to minimize toxic side effects. In some embodiments, a combination treatment regimen encompasses treatment regimens in which administration of a DP₂ antagonist described herein is initiated prior to, during, or after treatment with a second agent described above, and continues until any time during treatment with the second agent or after termination of treatment with the second agent. It also
includes treatments in which a DP₂ antagonist described herein and the second agent being used in combination are administered simultaneously or at different times and/or at decreasing or increasing intervals during the treatment period. Combination treatment further includes periodic treatments that start and stop at various times to assist with the clinical management of the patient. For example, in one embodiment, a DP₂ antagonist described herein in the combination treatment is administered weekly at the onset of treatment, decreasing to biweekly, and decreasing further as appropriate.

[0402] Compositions and methods for combination therapy are provided herein. In accordance with one aspect, the pharmaceutical compositions disclosed herein are used to treat PGD₂dependent or PGD₂ mediated conditions. In accordance with another aspect, the pharmaceutical compositions disclosed herein are used to treat respiratory diseases (e.g., asthma), where treatment with a DP₂ antagonist is indicated and to induce bronchodilation in a subject. In one embodiment, the pharmaceutical compositions disclosed herein are used to treat airways or nasal inflammation diseases such as asthma and rhinitis.

[0403] In one embodiment, pharmaceutical compositions disclosed herein are used to treat a subject suffering from a vascular inflammation-driven disorder. In one embodiment, the pharmaceutical compositions disclosed herein are used to treat skin inflammation diseases such as atopic dermatitis.

[0404] In certain embodiments, combination therapies described herein are used as part of a specific treatment regimen intended to provide a beneficial effect from the co-action of a DP₂ described herein and a concurrent treatment. It is understood that the dosage regimen to treat, prevent, or ameliorate the condition⁴ for which relief is sought, is modified in accordance with a variety of factors. These factors include the type of respiratory disorder and the type of bronchoconstriction or inflammation from which the subject suffers, as well as the age, weight, sex, diet, and medical condition of the subject. Thus, in some instances, the dosage regimen actually employed varies and, in some embodiments, deviates from the dosage regimens set forth herein.

[0405] For combination therapies described herein, dosages of the co-administered compounds vary depending on the type of co-drug employed, on the specific drug employed, on the disease or condition being treated and so forth. In additional embodiments, when co-administered with one or more biologically active agents, the compound provided herein is administered either simultaneously with the biologically active agent(s), or sequentially. If administered sequentially, the attending physician decides on the appropriate sequence of administering protein in combination with the biologically active agent(s).

[0406] In combination therapies, the multiple therapeutic agents (one of which is one of the compounds described herein) are administered in any order or even simultaneously. If
administration is simultaneous, the multiple therapeutic agents are, by way of example only, provided in a single, unified form, or in multiple forms (e.g., as a single pill or as two separate pills). In one embodiment, one of the therapeutic agents is given in multiple doses, and in another, two (or more if present) are given as multiple doses. In some embodiments of non-simultaneous administration, the timing between the multiple doses vary from more than zero weeks to less than four weeks. In addition, the combination methods, compositions and formulations are not to be limited to the use of only two agents; the use of multiple therapeutic combinations is also envisioned.

In additional embodiments, the DP$_2$ antagonist described herein are used in combination with procedures that provide additional or synergistic benefit to the patient. By way of example only, patients are expected to find therapeutic and/or prophylactic benefit in the methods described herein, wherein DP$_2$ antagonists described herein, and/or combinations with other therapeutics are combined with genetic testing to determine whether that individual is a carrier of a mutant gene that is known to be correlated with certain diseases or conditions.

The DP$_2$ antagonist described herein, and combination therapies, are administered before, during or after the occurrence of a disease or condition, and the timing of administering the composition containing a compound varies. Thus, in one embodiment, the compounds described herein are used as a prophylactic and are administered continuously to subjects with a propensity to develop conditions or diseases in order to prevent the occurrence of the disease or condition. In another embodiment, the compounds and compositions are administered to a subject during or as soon as possible after the onset of the symptoms. The administration of the compounds are initiated within the first 48 hours of the onset of the symptoms, preferably within the first 48 hours of the onset of the symptoms, more preferably within the first 6 hours of the onset of the symptoms, and most preferably within 3 hours of the onset of the symptoms. The initial administration is accomplished via any practical route, such as, for example, by intravenous injection, a bolus injection, infusion over 5 minutes to about 5 hours, a pill, a capsule, transdermal patch, buccal delivery, and the like, or combination thereof. In specific embodiments, a compound described herein is administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. In some embodiments, the length required for effective treatment varies, and the treatment length is adjusted to suit the specific needs of each subject. For example, in specific embodiments, a compound described herein or a formulation containing the compound is administered for at least 2 weeks, about 1 month to about 5 years, or from about 1 month to about 3 years.

By way of example, therapies which combine DP$_2$ antagonists described herein with inhibitors of PGD$_2$ synthesis or PGD$_2$ receptor antagonists, either acting at the same or other points
in the PGD₂ synthesis pathway, are encompassed herein for treating PGD₂-dependent or PGD₂-mediated diseases or conditions. In addition, by way of example, encompassed herein are therapies that combine DP₂ antagonists described herein with inhibitors of inflammation for treating PGD₂-dependent or PGD₂-mediated diseases or conditions.

[0410] In another embodiment described herein, methods for treatment of PGD₂-dependent or PGD₂-mediated conditions or diseases include administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with an anti-inflammatory agent including, but not limited to, non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids (glucocorticoids). Anti-inflammatory agents include, but are not limited to: arthrotec, mesalamine, auralglan, sulfasalazine, daypro, etodolac, ponstan, and soludemrol; non-steroidal anti-inflammatory agents; corticosteroids; and leukotriene pathway modulators (e.g. montelukast, zilueon).

[0411] By way of example only, asthma is a chronic inflammatory disease characterized by pulmonary eosinophilia and airway hyperresponsiveness. In patients with asthma, PGD₂ is released from mast cells, eosinophils, and basophils. PGD₂ is involved in contraction of airway smooth muscle, an increase in vascular permeability and mucus secretions, and has been reported to attract and activate inflammatory cells in the airways of asthmatics. Thus, in another embodiment described herein, the methods for treatment of respiratory diseases include administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with an anti-inflammatory agent.

[0412] NSAIDs include, but are not limited to: aspirin, salicylic acid, gentisic acid, choline magnesium salicylate, choline salicylate, choline magnesium salicylate, choline salicylate, magnesium salicylate, sodium salicylate, diflunisal, carprofen, fenoprofen, fenoprofen calcium, flurobiprofen, ibuprofen, ketoprofen, nabutone, ketoralac, ketorolac tromethamine, naproxen, oxaprozin, diclofenac, etodolac, indomethacin, sulindac, tolmetin, meclofenamate, meclofenamate sodium, mefenamic acid, piroxicam, meloxicam, COX-2 specific inhibitors (such as, but not limited to, celecoxib, rofecoxib, valdecoxib, parecoxib, etoricoxib, lumiracoxib, CS-502, JTE-522, L-745,337 andNS398).

[0413] Corticosteroids, include, but are not limited to: betamethasone (Celestone), prednisone (Deltasone), alclometasone, aldosterone, amcinonide, beclometasone, betamethasone, budesonide, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, cortisone, cortivazol, deflazacort, deoxycorticosterone, desonide, desoximetasone, desoxycortone, dexamethasone, diflorsacron, diflucortolone, difluprednate, flucilorolone, fludrocortisone, fludroxy cortide, flumetasone, flunisolide, flucinolone acetonide, flucinonide, fluorocortin, fluocortolone, flurometholone, fluperonol, fluprednidene, fluticasone, formocortal, halcinonide, halometasone, hydrocortisone cortisol, hydrocortisone aceponate, hydrocortisone buteprate, hydrocortisone
butyrate, loteprednol, medrysone, meprednisone, methylprednisolone, methylprednisolone aceponate, mometasone furoate, paramethasone, prednicarbate, prednisone/prednisolone, rimexolone, tixocortol, triamcinolone, and ulobetasol.

[0414] In another embodiment described herein, methods for treatment of PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases include administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination in combination with NSAIDs and NO-donors or NSAIDs and proton-pump inhibitors.

[0415] In another embodiment described herein, methods for treatment of PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases includes administering to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with other PGD$_2$ receptor antagonists including, but are not limited to, DP$_1$ receptor antagonists and TP receptor antagonists. In another embodiment described herein, methods for treatment of PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases includes administered to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with a DP$_1$ receptor antagonist. DP$_i$ receptor antagonists include, but are not limited to, BWA868C (Sharif et al, Br. J. Pharmacol, 2000 Nov;131(6):1025-38), MK-0524 (Sturino et al, J. Med. Chem., 2007, 50, 794-806 and Cheng et al, PNAS, 2006 Apr 25;103(17):6682-7.) and S-5751 (Arimura et al, J. Pharmacol. Exp. Ther., 2001 Aug; 298(2):41 1-9). For some patients, the most appropriate formulation or method of use of such combination treatments depends on the type OfPGD$_2$- dependent or PGD$_2$ mediated disorder, the time period in which the DP$_2$ antagonist acts to treat the disorder and/or the time period in which the DP$_i$ receptor antagonist acts to prevent DP$_i$ receptor activity. By way of example only, some embodiments described herein provide for such combination treatments that are used for treating a patient suffering from respiratory disorders such as asthma and rhinitis.

[0416] In another embodiment described herein, methods for treatment of PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases includes administering to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with a TP receptor antagonist. TP receptor antagonists include, but are not limited to, Ramatroban ("BayerTM"), GR32191 (Beasley et al, J. Appl Physiol, 1989 Apr;66(4): 1685-93), ICI192605 (Boersma et al, Br. J. Pharmacol, 1999 Dec;128(7):1505-12) and derivatives or analogs thereof. Such combinations may be used to treat PGD$_2$-dependent or PGD$_2$ mediated disorders, including respiratory disorders.

[0417] In one embodiment, the co-administration of a DP$_2$ receptor antagonist with a DP$_i$ receptor antagonist or a TP receptor antagonist has therapeutic benefit over and above the benefit derived from the administration of a either a DP$_2$ antagonist, DP$_i$ antagonist or a TP antagonist alone. In the case that substantial inhibition OfPGD$_2$ activity has undesired effects, partial inhibition of this
pathway through the amelioration of the effects of the proinflammatory agonists combined with the block of the DPi receptor, TP receptor and/or DP₂ receptor may afford substantial therapeutic benefits, particularly for respiratory diseases.

[0418] In another embodiment described herein, methods for treatment of PGD₂-dependent or PGD₂-mediated conditions or diseases, such as proliferative disorders, including cancer, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected, by way of example only, alemtuzumab, arsenic trioxide, asparaginase (pegylated or non-), bevacizumab, cetuximab, platinum-based compounds such as cisplatin, cladribine, daunorubicin/doxorubicin/idarubicin, irinotecan, fludarabine, 5-fluorouracil, gemtuzumab, methotrexate, Paclitaxel™, taxol, temozolomide, thioguanine, or classes of drugs including hormones (an antiestrogen, an antiandrogen, or gonadotropin releasing hormone analogues, interferons such as alpha interferon, nitrogen mustards such as busulfan or melphalan or mechloethamine, retinoids such as tretinoin, topoisomerase inhibitors such as irinotecan or topotecan, tyrosine kinase inhibitors such as gefinitinib or imatinib, or agents to treat signs or symptoms induced by such therapy including allopurinol, filgrastim, granisetron/ondansetron/palonosetron, dronabinol.

[0419] In another embodiment described herein, methods for treatment of PGD₂-dependent or PGD₂-mediated conditions or diseases, such as the therapy of transplanted organs or tissues or cells, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected from, by way of example only, azathioprine, a corticosteroid, cyclophosphamide, cyclosporin, dacluzimab, mycophenolate mofetil, OKT3, rapamycin, tacrolimus, thymoglobulin.

[0420] In another embodiment described herein, methods for treatment of PGD₂-dependent or PGD₂-mediated conditions or diseases, such as atherosclerosis, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected, by way of example only, HMG-CoA reductase inhibitors (e.g., statins in their lactonized or dihydroxy open acid forms and pharmaceutically acceptable salts and esters thereof, including but not limited to lovastatin; simvastatin; dihydroxy open-acid simvastatin, particularly the ammonium or calcium salts thereof; pravastatin, particularly the sodium salt thereof; fluvastatin, particularly the sodium salt thereof; atorvastatin, particularly the calcium salt thereof; isivastatin, also referred to as NK-104; rosvastatin); agents that have both lipid-altering effects and other pharmaceutical activities; HMG-CoA synthase inhibitors; cholesterol absorption inhibitors such as ezetimibe; cholesterol ester transfer protein (CETP) inhibitors, for example JTT-705 and CP529, 414; squalene epoxidase inhibitors; squalene synthetase inhibitors (also known as squalene synthase inhibitors); acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibitors including selective inhibitors of
ACAT-I or ACAT-2 as well as dual inhibitors of ACAT-I and-2; microsomal triglyceride transfer protein (MTP) inhibitors; probucol; niacin; bile acid sequestrants; LDL (low density lipoprotein) receptor inducers; platelet aggregation inhibitors, for example glycoprotein IIb/IIIa fibrinogen receptor antagonists and aspirin; human peroxisome proliferator activated receptor gamma (PPARγ) agonists, including the compounds commonly referred to as glitazones, for example troglitazone, pioglitazone and rosiglitazone and including those compounds included within the structural class known as thiazolidinediones as well as those PPARγ agonists outside the thiazolidinedione structural class; PPARα agonists such as clofibrate, fenofibrate including micronized fenofibrate, and gemfibrozil; PPAR dual α/γ agonists such as 5-[(2, 4-dioxo-5-thiazolidinyl)methyl]-2-methoxy-N-[(4-(trifluoromethyl)phenyl)methyl]-benzamide, known as KRP-297; vitamin B6 (also known as pyridoxine) and the pharmaceutically acceptable salts thereof such as the HCl salt; vitamin B12 (also known as cyanocobalamin); folic acid or a pharmaceutically acceptable salt or ester thereof such as the sodium salt and the methylglucamine salt; antioxidant vitamins such as vitamin C and E and beta carotene; beta-blockers; angiotensin π antagonists such as losartan; angiotensin converting enzyme inhibitors such as enalapril and captopril; calcium channel blockers such as nifedipine and diltiazam; endothelium antagonists; agents that enhance ABCI gene expression; FXR and LXR ligands including both inhibitors and agonists; bisphosphonate compounds such as alendronate sodium; and cyclooxygenase-2 inhibitors such as rofecoxib and celecoxib.

[0421] In another embodiment described herein, methods for treatment of PGD2-dependent or PGD2 mediated conditions or diseases, such as the therapy of stroke, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected from, by way of example only, COX-2 inhibitors; nitric oxide synthase inhibitors, such as N-(3-(aminomethyl)benzyl) acetamidine; Rho kinase inhibitors, such as fasudil; angiotension π type-1 receptor antagonists, including candesartan, losartan, irbesartan, eprosartan, telmisartan and valsartan; glycopgen synthase kinase 3 inhibitors; sodium or calcium channel blockers, including crobenetine; p38 MAP kinase inhibitors, including SKB 239063; thromboxane AX- synthetase inhibitors, including isbogrel, ozagrel, ridogrel and dazoxiben; statins (HMG CoA reductase inhibitors), including lovastatin, simvastatin, dihydroxy open-acid simvastatin, pravastatin, fluvastatin, atorvastatin, niuvastatin, and rosuvastatin; neuroprotectants, including free radical scavengers, calcium channel blockers, excitatory amino acid antagonists, growth factors, antioxidants, such as edaravone, vitamin C, TROLOX™, citicoline and minicycline, and reactive astrocyte inhibitors, such as (2R)-2-propyloctanoic acid; beta andreactive blockers, such as propranolol, nadolol, timolol, pindolol, labetalol, metoprolol, atenolol, esmolol and acebutolol; NMDA receptor antagonists, including memantine; NR2B antagonists, such as traxoprodil; 5-HT1A agonists; receptor platelet fibrinogen
receptor antagonists, including tirofiban and lamifiban; thrombin inhibitors; antithrombotics, such as argatroban; antihypertensive agents, such as enalapril; vasodilators, such as cyclandelate; nociceptin antagonists; DPIV antagonists; CETP inhibitors; GABA 5 inverse agonists; and selective androgen receptor modulators.

[0422] In another embodiment described herein, methods for treatment of PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases, such as the therapy of pulmonary fibrosis, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected from, by way of example only, anti-inflammatory agents, such as corticosteroids, azathioprine or cyclophosphamide.

[0423] In another embodiment described herein, methods for treatment of PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases, such as the therapy of interstitial cystitis, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected from, by way of example only, dimethylsulfoxide, omalizumab, and pentosan polysulfate.

[0424] In another embodiment described herein, methods for treatment of PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases, such as the therapy of disorders of bone, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected from the, by way of example only, minerals, vitamins, bisphosphonates, anabolic steroids, parathyroid hormone or analogs, and cathepsin K inhibitors.

[0425] In yet another embodiment described herein, methods for treating PGD$_2$-dependent or PGD$_2$ mediated conditions or diseases, such as the therapy of respiratory disorders (e.g., asthma, COPD and rhinitis), comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one respiratory agent. Respiratory agents include, but are not limited to, bronchodilators (e.g., sympathomimetic agents and xanthine derivatives), leukotriene receptor antagonists, leukotriene formation inhibitors, leukotriene modulators, nasal decongestants, respiratory enzymes, lung surfactants, antihistamines (e.g., Mepyramine (pyrilamine), Antazoline, Diphenhydramine, Carbinoxamine, Doxylamine, Clemastine, Dimenhydrinate, Pheniramine, Chloφ hemine (chlorpheniramine), Dexchlorpheniramine, Brompheniramine, Triprolidrae, cetirizine, Cyclizine, Chlorcyclizine, Hydroxyzine, Meclizine, loratadine, desloratidine, Promethazine, Alimemazine (trimeprazine), Cyproheptadine, Azatadine, Ketotifen, Acrivastine, Astemizole, Cetirizine, Mizolastine, Terfenadine, Azelastine, Levocabastine, Olopatadine, Levocetirizine, Fexofenadine), mucolytics, corticosteroids, glucocorticoids, anticholinergics, antitussives, analgesics, expectorants, albuterol, ephedrine, epinephrine, fomoterol, metaproterenol, terbutaline, budesonide, ciclesonide, dexamethasone, flunisolide, fluticasone propionate, triamcinolone acetonide, ipratropium bromide,
pseudoephedrine, theophylline, montelukast, zafirlukast, pranlukast, tomelukast, ambrisentan, bosentan, enrasentan, sitaxsentan, tezosentan, iloprost, treprostinil, pirfenidone, FLAP inhibitors, FLAP modulators, 5-LO inhibitors, BLT1 receptor antagonists and BLT2 receptor antagonists.

[0426] In a specific embodiment described herein, methods for treating PGD2-dependent or PGD2 mediated conditions or diseases, such as the therapy of asthma and/or COPD, comprises administration to a patient anti-inflammatory agents. In certain embodiments, methods for treating PGD2-dependent or PGD2 mediated conditions or diseases, such as the therapy of asthma and/or COPD, comprise administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected from, but not limited to, epinephrine, isoproterenol, orciprenaline, bronchodilators, glucocorticoids, leukotriene modifiers, mast-cell stabilizers, xanthines, anticholinergics, β-2 agonists, FLAP inhibitors, FLAP modulators or 5-LO inhibitors, β-2 agonists include, but are not limited to, short-acting β-2 agonists (e.g., salbutamol (albuterol), levallbuterol, terbutaline, pirbuterol, procaterol, metaproterenol, fenoterol and bitolterol mesylate) and long-acting β-2 agonists (e.g., salmeterol, formoterol, bambuterol and clenbuterol). FLAP inhibitors and/or FLAP modulators include, but are not limited to, 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-pro pionic acid, 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxy-pyridin-3-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, MK-886, MK-0591, DG-031 (BAY-xl005) and compounds found in US 2007/0225285, US 2007/0219206, US 2007/0173508, US 2007/0123522 and US 2007/0105866 (each of which are hereby incorporated by reference). Glucocorticoids include, but are not limited to, beclomethasone, budesonide, ciclesonide, fluticasone and mometasone. Anticholinergics include, but are not limited to, ipratropium and tiotropium. Mast cell stabilizers include, but are not limited to, cromoglicate and nedocromil. Xanthines include, but are not limited to, aminophylline, theobromine and theophylline. Leukotriene antagonists include, but are not limited to, montelukast, tomelukast, pranlukast and zafirlukast. 5-LO inhibitors include, but are not limited to, zileuton, VIA-2291 (ABT761), MK-0633, CJ-13,610 (PF-4191834), AZ-4407 and ZD-2138 and compounds found in US 2007/0149579, WO2007/0 16784.

[0427] In another specific embodiment described herein, methods for treating PGD2-dependent or PGD2 mediated conditions or diseases, such as the therapy of rhinitis, comprises administration to a patient compounds, pharmaceutical compositions, or medicaments described herein in combination with at least one additional agent selected from, by way of example only, antihistamines, leukotriene antagonists, corticosteroids and decongestants. Leukotriene antagonists include, but are not limited to, montelukast, tomelukast, pranlukast and zafirlukast.

[0428] In another aspect, methods for treating PGD2-dependent or PGD2 mediated conditions or diseases, include administering a DP2 antagonist described herein in combination with other agents.
to treat respiratory diseases or conditions. Therapeutic agents used in the treatment of respiratory
conditions and disorders, such as, but not limited to asthma, include: glucocorticoids, such as,
ciclesonide, beclomethasone, budesonide, flunisolide, fluticasone, mometasone, and
triamcinolone; leukotriene modifiers, such as, montelukast, zafirlukast, pranlukast, and zileuton;
mast cell stabilizers, such as, cromoglicate (cromylan), and nedocromil;
antimuscarinics/anticholinergics, such as, ipratropium, oxisetropium, and tiotropium;
methylxanthines, such as, theophylline and aminophylline; antihistamine, such as, mepyramine
(pyrilamine), antazoline, diphenhydramine, carbinoxamine, doxylamine, clemastine,
dimenhydrinate, pheniramine, chlorphenamine (chlorpheniramine), dextchlorphenamine,
brompheniramine, tripolidine, cyclizine, chlorcyclizine, hydroxyzine, meclizine, promethazine,
alimemazine (trimeprazin), cyproheptadine, azatadine, ketotifen, acrivastine, astemizole,
cetirizine, loratadine, mizolastine, terfenadine, fexofenadine, levocetirizine, desloratadine,
leukotriene modifiers, such as, omalizumab, an IgE blocker; beta2-adrenergic receptor agonists, such as: short
acting beta2-adrenergic receptor agonists, such as, salbutamol (albuterol), levalbuterol, terbutaline,
pirbuterol, procaterol, metaproterenol, fenoterol, bitolterol mesylate; and long-acting beta2-
adrenergic receptor agonists, such as, salmeterol, formoterol, bambuterol.

[0429] In one aspect, DP2 antagonists described herein are administered in combination with one
or more agents used to treat used to treat asthma, including, but not limited to: combination
inhaled (fluticasone and salmeterol oral inhalation (e.g. Advair)); inhaled Beta-2 agonists
(albuterol inhaler; albuterol nebulizer solution; formoterol; isoproterenol oral inhalation;
levalbuterol; metaproterenol inhalation; pirbuterol acetate oral inhalation; salmeterol aerosol
inhalation; salmeterol powder inhalation; terbutaline inhaler); inhaled corticosteroids
(beclomethasone oral inhalation; budesonide inhalation solution; budesonide inhaler; flunisolide
oral inhalation; fluticasone inhalation aerosol; fluticasone powder for oral inhalation; mometasone
inhalation powder; triamcinolone oral inhalation); leukotriene modifiers (montelukast; zafirlukast;
pranlukast; tomoelukast; zileuton); mast cell stabilizers (cromolyn inhaler; nedocromil oral
inhalation); monoclonal antibodies (omalizumab); oral Beta-2 agonists (albuterol oral syrup;
albuterol oral tablets; metaproterenol; terbutaline); bronchodilator (aminophylline; oxtiphylline;
theophylline).

[0430] In one aspect, DP2 antagonists described herein are administered in combination with one
or more agents used to treat allergy, including, but not limited to: antihistamine and decongestant
combinations (cetirizine and pseudoephedrine; desloratadine and pseudoephedrine ER;
fexofenadine and pseudoephedrine; loratadine and pseudoephedrine); antihistamines (azelastine
nasal spray; brompheniramine; brompheniramine oral suspension; carboxamine; cetirizine;
cMoΦ heriiramine; clemastine; desloratadine; dexCOr pheniramine ER; dextchlorpheniramne oral
syrup; diphenhydramine oral; fexofenadine; loratadine; promethazine); decongestants
(pseudoephedrine); leukotriene modifiers (montelukast; montelukast granules); nasal anticholinergics (ipratropium); nasal corticosteroids (beclomethasone nasal inhalation; budesonide nasal inhaler; flunisolide nasal inhalation; fluticasone nasal inhalation; mometasone nasal spray; triamcinolone nasal inhalation; triamcinolone nasal spray); nasal decongestants (phenylephrine); nasal mast cell stabilizers (cromolyn nasal spray).

In one aspect, DP₂ anatogonists described herein are administered in combination with one or more agents used to treat chronic obstructive pulmonary disease (COPD), including, but not limited to: anticholinergics - ipratropium bromide oral inhalation; combination Inhalers (albuterol and ipratropium (e.g. Combivent, DuoNeb); fluticasone and salmeterol oral inhalation (e.g. Advair)); corticosteroids (dexamethasone tablets; fludrocortisone acetate; hydrocortisone tablets; methylprednisolone; prednisolone liquid; prednisone oral; triamcinolone oral); inhaled Beta-2 Agonists (albuterol inhaler; albuterol nebulizer solution; formoterol; isoproterenol oral inhalation; levoterol; metaproterenol inhalation; pirbuterol acetate oral inhalation; salmeterol aerosol inhalation; salmeterol powder inhalation; terbutaline inhaler); inhaled Corticosteroids (beclomethasone oral inhalation; budesonide inhalation solution; budesonide inhaler; flunisolide oral inhalation; fluticasone inhalation aerosol; fluticasone powder for oral inhalation; triamcinolone oral inhalation); mukolytics (guaifenesin); oral Beta-2 agonists (albuterol oral syrup; albuterol oral tablets; metaproterenol; terbutaline); bronchodilator (aminophylline; oxtriphylline; theophylline).

In one embodiment, DP₂ anatogonists described herein are administered to a patient in combination with inhaled corticosteroids.

In one embodiment, DP₂ anatogonists described herein are administered to a patient in combination with beta2-adrenergic receptor agonists. In one embodiment, DP₂ anatogonists described herein are administered to a patient in combination with short acting beta2-adrenergic receptor agonists. In one embodiment, DP₂ anatogonists described herein are administered to a patient in combination with long-acting beta2-adrenergic receptor agonists.

As discussed herein, the administration of compounds of any of Formula (I), Formula (II), Formula (HI), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) is designed to antagonize the activity of DP₂. For example, in specific embodiments, the administration of a DP₂ inhibitor decreases signal transduction initiated by PGD₂ within the individual

Thus, in accordance with one aspect, methods described herein include the diagnosis or determination of whether or not a patient is suffering from a PGD₂-dependent or PGD₂-mediated disease or condition by administering to the subject a compound of any of Formula (I), Formula (II), Formula (III), Formula (IV), Formula (V), Formula (VI), Formula (VII), or Formula (VIII) or pharmaceutical composition or medicament which includes a compound of any of Formula (I),
Formula (II), Formula (m), Formula (IV), Formula (V), Formula (VI), Formula (VH), or Formula (VtH) and determining whether or not the patient responds to the treatment.

Kits/Articles of Manufacture

[0436] For use in the therapeutic applications described herein, kits and articles of manufacture are also described herein. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in a method described herein. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers are formed from any acceptable material including, e.g., glass or plastic.

[0437] For example, the containers can comprise one or more compounds described herein, optionally in a composition or in combination with another agent as disclosed herein. The containers optionally have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). Such kits optionally comprising a compound with an identifying description or label or instructions relating to its use in the methods described herein.

[0438] A kit will typically comprise one or more additional containers, each with one or more of various materials (such as reagents, optionally in concentrated form, and/or devices) desirable from a commercial and user standpoint for use of a compound described herein. Non-limiting examples of such materials include, but not limited to, buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructions for use, and package inserts with instructions for use. A set of instructions will also typically be included.

[0439] A label can be on or associated with the container. A label can be on a container when letters, numbers or other characters forming the label are attached, molded or etched into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. A label can be used to indicate that the contents are to be used for a specific therapeutic application. The label can also indicate directions for use of the contents, such as in the methods described herein.

EXAMPLES

[0440] These examples are provided for illustrative purposes only and not to limit the scope of the claims provided herein. In the following examples, M+H (or M+23) refers to mass spectrometric data that was obtained, where M represents the molecular ion peak.

Example 1: Synthesis of [2'-{(Acetyl-methyl-amino)-methyl]-6-methoxy-4'- trifluoromethyl-biphenyl}-3-yl]-acetic acid (Compound 1-1)

Step 1: (3-bromo-4-methoxy-phenyl)-acetic acid methyl ester
To (3-bromo-4-methoxy-phenyl)-acetic acid (5.226g, 21.32mmol) in MeOH (52mL) was added thionyl chloride (3.1mL, 42.65mmol), and the reaction was stirred at room temperature for 2 hours. Once no starting material was seen by analytical LCMS, the mixture was concentrated and then diluted with CH₂Cl₂ and aqueous IN NaOH. The aqueous layer was separated and extracted with CH₂Cl₂, and the combined organic layers were washed with H₂O, dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 2: [4-Methoxy-3-(4,4,5,5-tetramethyl-fl,3,2]dioxaborolan-2-yl)-phenyll-acetic acid methyl ester

(3-Bromo-4-methoxy-phenyl)-acetic acid methyl ester (5.1g, 19.68mmol), bis(pinacolato)diboron (6.54g, 25.59mmol), and potassium acetate (5.8Og, 59.05mmol) were combined in DMF (100mL) under N₂. The solution was purged with N₂, and then (1,1’-bis(diphenylphosphino)ferrocene)-dichloropalladium(II) (0.805g, 0.98mmol) was added and the reaction was heated to 85°C overnight. Starting material was still observed after 16 hours, so additional (1,1’-bis(diphenylphosphino)ferrocene)-dichloropalladium(II) (0.808g, 0.98mmol) was added, and the reaction was stirred at 85°C overnight. Once no starting material was seen by analytical LCMS, the mixture was cooled to room temperature and concentrated. The residue was partitioned between EtOAc and H₂O and filtered through Celite. The aqueous layer was separated and extracted with EtOAc, and the combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 3: 2-Bromo-5-trifluoromethyl-benzaldehyde

To (2-bromo-5-trifluoromethyl-phenyl)-methanol (2.216g, 8.69mmol) and N-methylmorpholine N-oxide (2.051g, 17.38mmol) in CH₂Cl₂ (44mL) and MeCN (2.2mL) was added tetrapropylammonium perruthenate (0.31 Ig, 0.87mmol), and the reaction was stirred at room temperature for 20 minutes. Once no starting material was seen by analytical tic, the mixture was concentrated and purified by silica gel chromatography to give the title compound.
Step 4: (2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

2-Bromo-5-trifluoromethyl-benzaldehyde (4.152g, 16.41mmol), [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-plienyl3-acetic acid methyl ester (4.988g, 16.41mmol), and potassium carbonate (5.67g, 16.10mmol) were combined in DME (40mL) and H₂O (20mL) under N₂. The mixture was purged with N₂, and then tetrakis(triphenylphosphine)palladium(0) (1.9g, 1.64mmol) was added, and the reaction was heated to 90°C for 10 hours. Once no starting material was seen by analytical LCMS, the mixture was cooled to room temperature and diluted with CH₂Cl₂ and H₂O. The aqueous layer was separated and extracted with CH₂Cl₂, and the combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 5: (6-Methoxy-2'-methylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.228g, 0.65mmol) and methylamine (2M in THF; 0.5mL, 0.84mmol) in CH₂Cl₂ (3.4mL) was added sodium cyanoborohydride (0.061g, 0.97mmol), followed by acetic acid (1 drop). The reaction was stirred at room temperature overnight, until no starting material was seen by analytical LCMS. The solution was neutralized with saturated aqueous NaHCO₃ and extracted with CH₂Cl₂, and the combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 6: [2'-[(Acetyl-methyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester
To (6-methoxy^-methylaminomethyl-biphenyl-3-yl)-acetic acid methyl ester (0.114g, 0.31mmol) and triethylamine (0.05mL, 0.34mmol) in CH₂Cl₂ (1.2mL) was added acetyl chloride (0.02mL, 0.34mmol), and the reaction was stirred at room temperature for 1 hour. Once no starting material was seen by analytical LCMS, the mixture was diluted with CH₂Cl₂ and H₂O, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 7: [2'-(Acetyl-methyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

[0447] 2'-(Acetyl-methyl-amino)-methyl3-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester (0.038g, 0.09mmol) was dissolved in THF (0.38mL), MeOH (0.3mL), and aqueous IN NaOH (0.2mL), and the mixture was stirred at room temperature for 1 hour. Once no starting material was seen by analytical LCMS, the mixture was diluted with CH₂Cl₂ and H₂O, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated, and the residue was purified by preparative HPLC. The desired fractions were combined, concentrated, and the isolated material was diluted with CH₂Cl₂ and neutralized with saturated aqueous NaHCO₃. The organic layer was separated, dried over MgSO₄, filtered, and concentrated to give the title compound. The aqueous layer was acidified and extracted with EtOAc, and the organic layer was concentrated to give additional product. M+H is 396.

Example 2: Synthesis of [2'-(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-2)

Step 1: (2'-Ethylaminomethyl-6-methoxy-4'-trifluoroethyl-biphenyl-3-yl)-acetic acid methyl ester
Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (I'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-S-yl)acetic acid methyl ester and ethylamine (2M in THF).

Step 2: (I'-Acetyl-ethyl-amino-methyl-6-methoxy-4'-trifluoromethyl-biphenyl-S-yl)acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and acetyl chloride.

Step 3: (2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 1, Step 7, using the following starting material: (T-[(acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 410.

Example 3: Synthesis of (2'-[(Acetyl-(2,2-dimethyl-propyl)-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-3)

Step 1: (2'-[(2,2-Dimethyl-propylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester
[0451] Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'- trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and neopentylamine.

Step 2: (Z'-lIAcetyl^l^-dimethyl-propy^-aminol-methy^-o-methoxy-^'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[0452] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-[(2,2-dimethyl-propylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and acetyl chloride.

Step 3: (2'-([Acetyl-(2,2-dimethyl-propyl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[0453] (2'-[(Acetyl-(2,2-dimethyl-propyl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.152g, 0.33mmol) was dissolved in THF (1.5mL), MeOH (1.2mL), and aqueous 1N NaOH (0.72mL), and the mixture was stirred at room temperature for 4 hours. Once no starting material was seen by analytical LCMS, the mixture was diluted with CH₂Cl₂ and aqueous 1N HCl, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound. M+H is 452.

Example 4: Synthesis of (2'-[(Acetyl-(2,2,2-trifluoro-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-4)
Step 1: \(6\text{-Methoxy-2'}\-[\text{(2,2,2-trifluoro-ethylamino)-methyl}]-4'trifluoromethyl-biphenyl-3-yl\)-acetic acid methyl ester

2,2,2-Trifluoroethylamine hydrochloride (0.10g, 0.71mmol) was treated with sodium acetate (0.061g, 0.71mmol) in MeOH (1mL) with heating and sonication. (2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.207g, 0.59mmol) in MeOH (2mL) was added, followed by sodium cyanoborohydride (0.069g, 1.06mmol), and the reaction was stirred at room temperature for 1 hour. Once no starting material was seen by analytical LCMS, the mixture was quenched with H₂O and extracted twice with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 2: \(2'\-\{\text{Acetyl-(2,2,2-trifluoro-ethyl)-amino\}-methyl\}-6\text{-methoxy-4'}\-trifluoromethyl-biphenyl-3-yl\)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \(6\text{-methoxy-2'}\-\{\text{(2,2,2-trifluoro-ethylamino)-methyl}\}-4'trifluoromethyl-biphenyl-3-yl\)-acetic acid methyl ester and acetyl chloride.

Step 3: \(2'\-\{\text{Acetyl-(2,2,2-trifluoro-ethyl)-amino\}-methyl\}-6\text{-methoxy-4'}\-trifluoromethyl-biphenyl-3-yl\)-acetic acid

Prepared according to the procedure described in Example 1, Step 7, using the following starting material: \(2'\-\{\text{acetyl-(2,2,2-trifluoro-ethyl)-amino\}-methyl\}-6\text{-methoxy-4'}\)-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 464.
Example 5: Synthesis of (2'{-[Acetyl-(2-hydroxy-ethyl)-amino]-methyl}-6-methoxy-4'-
trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-5)

Step 1: (2'{-[(2-Hydroxy-ethylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yO-acetic acid methyl ester and ethanolamine.

Step 2: (2'{-[(2-Acetoxy-ethyl)-acetyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-
biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-[(2-hydroxy-ethylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and acetyl chloride.

Step 3: (2'{-[Acetyl-(2-hydroxy-ethyl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-
biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting materials: (2'-[[2-acetoxy-ethyl]-acetyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 426.

Example 6: Synthesis of (2'{-[(Acetyl-(2-methoxy-ethyl)-amino]-methyl}-6-methoxy-4'-
trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-6)
Step 1: {6-Methoxy-2’-{(2-methoxy-ethylamino)-methyl}-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2’-formyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 2-methoxyethylamine.

Step 2: (2’-[[Acetyl-(2-methoxy-ethyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: {6-methoxy-2’-{[(2-methoxy-ethylamino)-methyl]-4’-trifluoromethyl-biphenyl-3-yl]}-acetic acid methyl ester and acetyl chloride.

Step 3: (2’-[[Acetyl-(2-methoxy-ethyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: (2’-[[acetyl-(2-methoxy-ethyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 440.

Example 7: Synthesis of (2’-[[Acetyl-(2-dimethylamino-ethyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-7)
Step 1: [2'-[(2-Dimethylamino-ethylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and N,N-dimethylethylenediamine.

Step 2: (2'-[[Acetyl-(2-dimethylamino-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: {2'-[(2-dimethylamino-ethylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and acetyl chloride.

Step 3: (2'-[[Acetyl-(2-dimethylamino-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: (2'- (2'-[[acetyl-(2-dimethylamino-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 453.

Example 8: Synthesis of [2'-[(Acetyl-carboxymethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)]-acetic acid (Compound 1-8)
Step 1: (2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

To (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.301g, 0.85mmol) in MeOH (2.4mL) and THF (3mL) was added aqueous INNaOH (1.9mL), and the solution was stirred overnight at room temperature. Once no starting material was seen by analytical LCMS, the reaction was neutralized with aqueous IN HCl and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated, and the residue was purified by silica gel chromatography (50-100% EtOAc in hexanes, followed by 5% MeOH in CH₂Cl₂) to give the title compound.

Step 2: {6-Methoxy-2'-[(methoxycarbonylmethyl- amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid

Glycine methyl ester hydrochloride (0.057g, 0.44mmol) and sodium acetate (0.038g, 0.44mmol) were combined in a flask. (2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (0.099g, 0.29mmol) in MeOH (3mL) was added, followed by sodium cyanoborohydride (0.029g, 0.44mmol), and the reaction was stirred at room temperature for 3.5 hours. Once no starting material was seen by analytical LCMS, the mixture was diluted with CH₂Cl₂ and H₂O. The organic layer was separated, dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 3: {2'-[(Acetyl-carboxymethyl- amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid
(6-Methoxy-2'-[(methoxycarbonylmethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (0.094g, 0.23mmol), acetyl chloride (0.03mL, 0.46mmol), and triethylamine (0.08mL, 0.57mmol) were combined in CH₂Cl₂ (1mL) and stirred at room temperature for 1 hour. Once no starting material was seen by analytical LCMS, aqueous IN NaOH was added. After stirring at room temperature for 45 minutes, analytical LCMS indicated that both acids had been hydrolyzed to the free acid, and so the mixture was neutralized with aqueous IN HCl and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound. M+H is 440.

Example 9: Synthesis of [2'-[(Acetyl-carbamoylmethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-9)

![Chemical structure](image)

Step 1: [2'-[(Carbamoylmethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 4, Step 1, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and glycineamide hydrochloride.

![Chemical structure](image)

Step 2: [2'-[(Acetyl-carbamoylmethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [2'-[(carbamoylmethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and acetyl chloride.
Step 3: \(2'\)-[(Acetyl-carbamoylmethyl-amino)-methyl]-6-methoxy-3'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester. M+H is 439.

Example 10: Synthesis of \(2'\)-[(Acetyl-ethyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl]-3-yl}-acetic acid (Compound 1-10)

Step 1: (3-Bromo-4-fluoro-phenyl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 1, using the following starting material: (3-bromo-4-fluoro-phenyl)-acetic acid.

Step 2: [4-Fluoro-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenylj-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 2, using the following starting materials: (3-bromo-4-fluoro-phenyl)-acetic acid methyl ester and bis(pinacolato)diboron.

Step 3: (6-Fluoro-2'-formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-bromo-5-trifluoromethyl-benzaldehyde and [4-fluoro-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid methyl ester; the isolated product was further purified by preparative HPLC.
Step 4: (2'-Ethylaminomethyl-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (6-fluoro-2'-formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and ethylamine (2M in THF).

Step 5: [1'-IfAcetyl-ethyl-amino^-methyl^- 6-fluoro^-trifluoromethyl-biphenyl^-S-yll-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and acetyl chloride.

Step 6: [2'-(Acetyl-ethyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yI)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: [2'(acetyl-ethyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 398.

Example 11: Synthesis of (2'-[Acetyl-(2,2,2-trifluoro-ethyl)-amino]-methyl]-6-fluoro-4'-trifl (oxomethyl-biphenyl-3-yl)-acetic acid (Compound 1-11)
Step 1: {6-Fluoro^-KZ^w-trifluoro-ethylaminoJ-methyl^-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

Prepared according to the procedure described in Example 4, Step 1, using the following starting materials: (6-fluoro-l'-formyl-CZ^w^-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 2,2,2-trifluoroethylamine hydrochloride.

Step 2: (l^-Acetyl-CZ^w^-trifluoro-ethyl)-amino^-methyl^-6-fluoro^-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: {6-fluoro-2^-[(2,2,2-trifluoro-ethylamino)-methyl]-4^-trifluoromethyl-biphenyl-3-yl}^-acetic acid methyl ester and acetyl chloride.

Step 3: (2^-[(Acetyl-(2,2,2-trifluoro-ethyl)-amino)-methyl]-6-methoxy-4^-trifluoromethyl-biphenyl-3-yl}-acetic acid

Prepared according to the procedure described in Example 1, Step 1, using the following starting materials: (2^-[(acetyl-(2,2,2-trifluoro-ethyl)-amino)-methyl]-6-fluoro-4^-trifluoromethyl-biphenyl-3-yl)^-acetic acid methyl ester. M+H is 452.

Example 12: Synthesis of {2^-[(Acetyl-cyclopropyl-amino)-methyl]-6-methoxy-4^-trifluoromethyl-bipheiiyl-3-yl}-acetic acid (Compound 1-12)
Step 1: (2'-Cyclopropylaminomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[0481] Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and cyclopropylamine.

Step 2: [2'-{(Acetyl-cyclopropyl-amino)-inethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

[0482] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-cyclopropylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and acetyl chloride.

Step 3: [2'-{(Acetyl-cyclopropyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid

[0483] Prepared according to the procedure described in Example 3, Step 3, using the following starting material: {2-Methyl-[(acetyl-cyclopropyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester. M+H is 422.

Example 13: Synthesis of {2'-{[(R)-Acetyl-indan-1-yl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-13)
Step 1: \([1'-H\text{ndan-1-ylaminomethyl}] - 6\text{-methoxy}^\wedge\text{-trifluoromethyl-biphenyl-5-yl}] - \text{acetic acid methyl ester}

Prepared according to the procedure described in Example 4, Step 1, using the following starting materials: \((Z')\text{-formyl-6-methoxy}^\wedge\text{-trifluoromethyl-biphenyl-5-yl}] - \text{acetic acid methyl ester}\) and \((R)-(\text{-})\text{-l-aminoindan}.

Step 2: \([1'-[\text{Acetyl-indan-1-yl-amino}] - \text{methyl}] - 6\text{-methoxy}^\wedge\text{-trifluoromethyl-biphenyl-5-yl}] - \text{acetic acid methyl ester}

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \([2'-\text{(R)-indan-1-ylaminomethyl}] - 6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}] - \text{acetic acid methyl ester}\) and acetyl chloride.

Step 3: \([2'-[\text{(R)-Acetyl-indan-1-yl-amino}] - \text{methyl}] - 6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}] - \text{acetic acid}

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \([2'-\text{([R]-acetyl-indan-1-yl-amino}) - \text{methyl}] - 6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}] - \text{acetic acid methyl ester}\). \(\text{M+H} = 498\).

Example 14: Synthesis of \([2'-\text{([S]-Acetyl-indan-1-yl-amino}) - \text{methyl}] - 6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}] - \text{acetic acid (Compound 1-14)}\)
Step 1: $\text{^'-((S^Indan-l-ylaniinoinethy^- ό-methoxy^-trifluoromethyl-biphenyl-S-yll-acetic acid methyl ester}$

Prepared according to the procedure described in Example 4, Step 1, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and (S)-(+-)l-aminooindan.

Step 2: $\{2'-\[((S)-Acetyl-indan-l-yl-amino)-methyl\]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester$

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [2'-((S)-Indan-l-ylaminomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and acetyl chloride.

Example IS: Synthesis of (2'-[(Acetyl -(IR,2S)-2-hydroxy-indan-l-yl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-15)
Step 1: \(2'\text{-K}(lR,2S)-2\text{-Hydroxy-indan-1-ylamino)-methyl\}-6\text{-methoxy-4'-trifluoromethyl-}
\text{biphenyl-3-yl\}-acetic\) acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: \(2'\text{-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic\) acid methyl ester and \((lS,2R)-(\text{--})\text{-cis-1-amino-2-indanol}\).

Step 2: \(\text{l-AcetylHClR}^{lR}\text{S-hydroxy-indan-1-ylaminoJ-methyl\}-6-methoxy\text{-}
\text{trifluoromethyl-biphenyl-3-yl\}-acetic\) acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \(2'\text{-[((IR,2S)-2-hydroxy-indan-1-ylamino)-methyl\}-6-methoxy-4'
\text{trifluoromethyl-biphenyl-3-yl\}-acetic\) acid methyl ester and acetyl chloride.

Step 3: \(2'\text{-[Acetyl-((IR,2S)-2-methoxy-indan-1-yl)-amino\]-methyl\}-6-methoxy-4\text{'-}
\text{trifluoromethyl-biphenyl-3-yl\}-acetic\) acid

Prepared according to the procedure described in Example 1, Step 7, using the following starting material: \(2'\text{-[acetyl-((IR,2S)-2-hydroxy-indan-1-yl)-amino\]-methyl\}-6-methoxy-4\text{'}
\text{trifluoromethyl-biphenyl-3-yl\}-acetic\) acid methyl ester. M+H is 514.

**Example 16: Synthesis of \(2\text{'}\text{-[Acetyl-((IR,2S)-2-methoxy-indan-1-yl)-amino\]-methyl\}-6-
\text{methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic\) acid (Compound 1-16)**
Step 1: (2'-{[Acetyl-((lR^2S)-2-methoxy-indan-1-yl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (2'-{[acetyl-((lR,2S)-2-hydroxy-indan-1-yl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.163g, 0.31mmol) and iodomethane (0.02mL, 0.34mmol) in DMF (1.6mL) was added sodium hydride (60% in mineral oil; 0.015g, 0.37mmol), and the mixture was stirred at room temperature for 1 hour. Once minimal starting material was seen by analytical LCMS, the solution was diluted with aqueous IN HCl and CH$_2$Cl$_2$. The organic layer was separated, dried over MgSO$_4$, filtered, and concentrated to give the title compound.

Step 2: (2'-{[Acetyl-((lR,2S)-2-methoxy-indan-1-yl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 1, Step 7, using the following starting material: (2'-{[acetyl-((lR,2S)-2-methoxy-indan-1-yl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 528.

Example 17: Synthesis of (2'-{[Acetyl-indan-2-yl]-amino}-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-17)
Step 1: [2'-((Indan-2-ylaminonethyl)-6-methoxy-4'-trifluoromethyl-bipheiiyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 4, Step 1, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 2-aminoindan hydrochloride.

Step 2: [2'-(Acetyl-indan-2-yl-aniino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [2'-((indan-2-ylaminomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3 -yl)]-acetic acid methyl ester and acetyl chloride.

Step 3: [2'-(Acetyl-indan-2-yl-aniino)-inethyl]-6-niethoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 3, Step 3, using the following starting materials: [2'-(acetyl-indan-2-yl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 498.

Example 18: Synthesis of [2'-(Acetyl-phenyl-amino)-methyl]-6-methoxy-4'-trifluoroinethyl-biphenyl-3-yl)-acetic acid (Compound 1-18)

Step 1: (2'-Hydroxymethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (2-bromo-5-trifluoromethyl-phenyl)-niethanol and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid methyl ester.

Step 2: (2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 3, using the following starting material: (2'-hydroxymethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester.

Step 3: (6-Methoxy-2'-phenylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and aniline.

Step 4: {2'-[(Acetyl-phenyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (6-methoxy-2'-phenylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and acetyl chloride.
Step 5: \{I’-KAcetyl-phenyl-aminoJ-methyll-6-methoxy^-trifluoromethyl-biphenyl-S-yl\}-acetic acid

[0502] Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \{2’-[(acetyl-phenyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester. M+H is 458.

Example 19: Synthesis of \{2’-[(Acetyl-benzyl-amino)-methyl]-6-metho3^-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-19)

Step 1: \{2’-(Benz\lamino-methyl)-6-nicthox>’-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester

[0503] Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: \{(2’-formyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\)-acetic acid methyl ester and benzylamine.

Step 2: \{2’-[(Acetyl-benzyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester

[0504] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \{(2’-(benzylamino-methyl)-6-methoxy-4’-trifluorornethyl-biphenyl-3-yl\)-acetic acid methyl ester and acetyl chloride.
Step 3: \(2'\)-[Acetyl-benzyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \(2'\)-[Acetyl-benzyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 472.

Example 20: Synthesis of \(2'\)-[Acetyl-phenethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-20)

Step 1: [6-Methoxy-2'-phenethylamino-methyl)-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and 2-phenylethylamine.

Step 2: \(2'\)-[(Acetyl-phenethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester
Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [6-methoxy-2’-(phenethylamino-methyl)-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and acetyl chloride.

Step 3: \{2’-[(Acetyl-phenethyl-aniino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \{2’-[(Acetyl-phenethyl-amrno)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester. M+H is 486.

Example 21: Synthesis of 2-\{2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\}-propionic acid (Compound 1-21)

Step 1: \{2L-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester

To \{2L-[(acetyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl\} -acetic acid methyl ester (0.292g, 0.69mmol) in MeOH (2.3mL) and THF (2.9mL) was added aqueous IN NaOH (1.7mL), and the solution was stirred at room temperature for 2 hours. The mixture was neutralized with aqueous IN HCl, and the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was dissolved in EtOH, and thionyl chloride (0.1mL, 1.5Immol) was added. The reaction was stirred for 30 minutes, until no starting material was seen by analytical LCMS. The solution was neutralized with saturated aqueous NaHCO₃, and the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were washed with H₂O, dried over MgSO₄, filtered, and concentrated to give the title compound.
Step 2: 2-{2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid ethyl ester

0510 [2'-[(Acetyl-ethyl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester (0.143g, 0.33mmol) and iodomethane (0.02mL, 0.36mmol) were combined in THF (1.5mL) and cooled to -78°C. Sodium hexamethyldisilazide (IM in THF; 0.36mL, 0.36mmol) was added, and the mixture was stirred for 1 hour at -78°C. Once no starting material was seen by analytical LCMS, the mixture was quenched with aqueous IN HCl and diluted with CH2Cl2. The aqueous layer was separated and extracted with CH2Cl2, and the combined organic layers were washed with H2O, dried over MgSO4, filtered, and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 3: 2-{2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid

0511 Prepared according to the procedure described in Example 3, Step 3, using the following starting material: 2-{2'-[(acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid ethyl ester. M+H is 424.

Example 22: Synthesis of {2'-[l-(Acetyl-ethyl-amino)-ethyl]-6-methoxy-4'-trifluoromethylbiphenyl-3-yl}-acetic acid (Compound 1-22)

Step 1: l-(2-Bromo-5-trifluoromethyl-phenyl)-ethanol

0512 To 2-bromo-5-trifluoromethyl-benzoaldehyde (1.0g, 3.95mmol) in THF (10mL) at 0°C under N2 was added methylmagnesium iodide (3M in diethyl ether; 2.6mL, 7.91mmol). The reaction was stirred for 2 hours, and then quenched with saturated aqueous NH4Cl and diluted with
CH₂Cl₂. The aqueous layer was separated and extracted with CH₂Cl₂, and the combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 2: l-(2-Bromo-5-trifluoromethyl-phenyl)-ethanone

[0513] 1-(2-Bromo-5-trifluoromethyl-phenyl)-ethanol (0.914g, 3.40mmol), N-methylmorpholine N-oxide (0.73 lg, 6.24mmol), and tetrapropylammonium perruthenate (0.109g, 0.31mmol) were combined in CH₂Cl₂ (18mL) and MeCN (0.9mL) and stirred at room temperature for 30 minutes. Once no starting material was seen by analytical LCMS, the mixture was filtered through Celite and purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 3: (2'-Acetyl-6-roethosy-4 -trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[0514] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: l-(2-bromo-5-trifluoromethyl-phenyl)-ethanone and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid methyl ester.

Step 4: [2'-((l-Ethylaniino-ethyl)-6-methoxy-4'-trifluoromethyl-biphcnyl-3-yl)] -acetic acid methyl ester

[0515] (2'-Acetyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.222g, 0.61mmol), ethylamine (2M in THF; 0.46mL, 0.91mmol), sodium cyanoborohydride (0.058g, 0.91mmol), and acetic acid (0.05mL, 0.91mmol) were combined in MeOH (2.2mL) and heated to 60°C overnight. Analytical LCMS showed starting material remained, so the reaction was stirred at 60°C over the weekend. Once minimal starting material was seen by analytical LCMS, the mixture was cooled to room temperature and neutralized with saturated aqueous NaHCO₃. The solution was extracted with CH₂Cl₂, and the combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound.
Step 5: \(\text{[2'-[l-(Acetyl-ethyl-amino)-ethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester} \)

[0516] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \(\text{[2'-[l-ethylamino-ethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-S-yl]-acetic acid methyl ester and acetyl chloride.} \)

Step 6: \(\text{[Z'-l^Acetyl-ethyl-aminoJ-ethylJ-6-methoxy-4'-trifluoromethyl-biphenyl-S-ylj-acetic acid} \)

[0517] Prepared according to the procedure described in Example 1, Step 7, using the following starting material: \(\text{[2'-[l-(acetyl-ethyl-amino)-ethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]} \) - acetic acid methyl ester. M+H is 424.

Example 23: Synthesis of \(\text{[2'-[Ethyl-methoxycarbonyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-ylJ-acetic acid (Compound 1-23)} \)

Step 1: \(\text{[2'-[(Ethyl-methoxycarbonyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester} \)

[0518] To (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester \((0.091g, 0.24mmol)\) and triethylamine \((0.05mL, 0.36mmol)\) in \(\text{CH}_2\text{Cl}_2 \) \((1mL)\) was added methyl chloroformate \((0.03mL, 0.36mmol)\), and the mixture was stirred at room temperature for 20 minutes. Once no starting material was seen by analytical LCMS, the reaction was quenched with \(\text{H}_2\text{O} \) and diluted with \(\text{CH}_2\text{Cl}_2 \) and saturated aqueous \(\text{NaHCO}_3 \). The aqueous layer was separated and extracted with \(\text{CH}_2\text{Cl}_2 \), and the combined organic layers were dried over \(\text{MgSO}_4 \).
filtered, and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: \(\{1'\text{-KEthyl-methoxycarbonyl-aminoJ-methylj-6-methoxy\textsuperscript{\text{A}}'-trifluoromethyl-biphenyl-3-yl}\}-\text{acetic acid} \)

[0519] Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \(\{2''\text{-[ethyl-methoxycarbonyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}\} \)-acetic acid methyl ester. M+H is 426.

Example 24: Synthesis of \(\{2^1\text{-[(Benzyl-methoxycarbonyl-amino)-inethyl]-6-inethoxy-4'-trifluoro \pi\text{ethyl-biphenyl-3-yl]}\}-\text{acetic acid} \) (Compound 1-24)

Step 1: \(\{2^1\text{-[(Benzyl-methoxycarbonyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]}\}-\text{acetic acid methyl ester} \)

[0520] Prepared according to the procedure described in Example 23, Step 1, using the following starting materials: \(\{2''\text{-[benzylamino-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}\} \)-acetic acid methyl ester and methyl chloroformate.

Step 2: \(\{2^1\text{-[(Benzyl-methoxycarbonyl-amino)-methyl]-6-inethoxy-4'-trifluoromethyl-biphenyl-3-yl]}\}-\text{acetic acid} \)
Prepared according to the procedure described in Example 3, Step 3, using the following starting material: 2'-{[benzyl-memoxycarbonyl-amino)-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid methyl ester. M+H is 488.

Example 25: Synthesis of 6-Methoxy-2'-(methoxycarbonyl-phenethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-25)

Step 1: (6-Methoxy-2'-[(methoxycarbonyl-phenethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 23, Step 1, using the following starting materials: [6-methoxy-2'-(phenethyliino-methyl)-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and methyl chloroformate.

Step 2: (6-Methoxy-2'-[(methoxycarbonyl-phenetliyl-amino)-methyl]-j-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material:

{6-methoxy-2'-(methoxycarbonyl-phenethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 502.

Example 26: Synthesis of 2'-[(Indan-2-yl-methoxycarbonyl-amino)-methyl]-6-meth θ3sy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-26)
Step 1: \([\text{I'-KIndan-l-yl-methoxycarbonyl-amino}^\text{methyll-o-methoxy}^\text{trifluoromethyl-biphenyl-3-yl}}\)-acetic acid methyl ester

Prepared according to the procedure described in Example 23, Step 1, using the following starting materials: \([^\text{-(Indan}^\text{-ylaminomethyO}^\text{-methoxy}^\text{trifluoromethyl-biphenyl-S-yl}]}\)-acetic acid methyl ester and methyl chloroformate.

Step 2: \(\{2'-(\text{Indaii-2-yl-methoxycarboiiyl-amino})\text{-methyl}\}-6\text{-methoxy}^\text{trifluoromethyl-biphenyl-3-yl}\}-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material:

\(\{2'-(\text{Indan-2-yl-methoxycarbonyl-amino})\text{-methyl}\}-6\text{-methoxy}^\text{trifluoromethyl-biphenyl-3-yl}\}-acetic acid methyl ester. M+H is 514.

Example 27: Synthesis of \(\{2'-(\text{Benzyloxycarbonyl-methyl-a \\piiino})\text{-methyl}\}-6\text{-methoxy}^\text{trifluoromethyl-biphenyl-3-yl}\}-acetic acid (Compound 1-27)

Step 1: \(\{2'-(\text{Benzyloxycarbonyl-methyl-amino})\text{-methyl}\}-6\text{-methoxy}^\text{trifluoromethyl-biphenyl-3-yl}\}-acetic acid methyl ester
Prepared according to the procedure described in Example 23, Step 1, using the following starting materials: (6-methoxy-2-methylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.

Step 2: [21-[(Benzyloxycarbonyl-methyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: [2'-[(benzyloxycarbonyl-methyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 488.

Example 28: Synthesis of [2M(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-28)

Step 1: [2'-[(Benzyloxy carbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl]-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 23, Step 1, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.
Step 2: \(2'\)-[(Benzyloxycarbonyl-ethyl-amino)-ethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \(2'\)-[(benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 502.

Example 29: Synthesis of \(2'\)-[(Benzyloxycarbonyl-methyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-29)

Step 1: (6-Fluoro-2'-methylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (6-fluoro-2'-formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and methylamine (2M in THF).

Step 2: \(2'\)-[(Benzyloxycarbonyl-methyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester
Prepared according to the procedure described in Example 23, Step 1, using the following starting materials: (6-fluoro-2'-methylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.

Step 3: \(2\text{-'}[(\text{Benzyloxycarbonyl-methyl-amino)-methyl]}-6\text{-fluoro-4'}\text{-trifluoromethyl-biphenyl-3-y}]}\)-acetic acid

Prepared according to the procedure described in Example 1 Step 7, using the following starting material: \(2\text{-'}[(\text{Benzyloxycarbonyl-methyl-amino)-methyl]}-6\text{-fluoro-4'}\text{-trifluoromethyl-biphenyl-3-y}]}\)-acetic acid methyl ester. M+H is 476.

Example 30: Synthesis of \(2\text{'}(\text{Cyclopropanecarbonyl-ethyl-amino)-methyl]}-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-y}]}\)-acetic acid (Compound 1-33)

Step 1: \(2\text{'}-f(\text{Cyclopropanecarbonyl-ethyl-amino)-methyl]}-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-y}]}\)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and cyclopropanecarbonyl chloride.
Step 2: \(2^{1}\)-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

[0536] Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \(2^{1}\)-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 436.

Example 31: Synthesis of \(2^{1}\)-[[Ethyl-(2-methoxy-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-46)

\[
\text{Step 1}: \quad \text{[(Ethyl-(2-methoxy-acetyl)-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester}
\]

[0537] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \((Z\text{-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl})\text{-acetic acid methyl ester and methoxyacetyl chloride.}

\[
\text{Step 2}: \quad \text{[(Ethyl-(2-methoxy-acetyl)-amino)-methyl]-6-methoxy-4'-trifluoroniethyl-biphenyl-3-yl]-acetic acid}
\]

[0538] \(2^{1}\)-[[Ethyl-(2-methoxy-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester (0.135g, 0.31mmol) in THF (2mL) was treated with IN aqueous LiOH (2mL) for 2 hours at room temperature. The mixture was acidified with IN aqueous HCl and extracted three times with EtOAc. The combined organic layers were dried and concentrated, and the residue was purified by preparative HPLC to give the title compound. M+H is 440.

Example 32: Synthesis of \(2^{1}\)-[3-Benzyl-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphcnyl-3-yl]-acetic acid (Compound 1-96)
Step 1: [2'-((3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.207g, 0.54mmol) in CH₂Cl₂ (2mL) at 0°C was added diisopropylethylamine (0.21mL, 1.19mmol), followed by phosgene (20% in toluene; 0.34mL, 0.65mmol), and the reaction was stirred for 2 hours at 0°C. Benzylamine (0.09mL, 0.81mmol) was then added, and the reaction was stirred for 15 minutes. Triethylamine (0.1mL, 0.72mmol) was added, and the reaction was stirred for 3 hours, until no starting material was seen by analytical LCMS. The mixture was partitioned between H₂O and CH₂Cl₂, and the aqueous layer was separated and extracted twice with CH₂Cl₂. The combined organic layers were dried and concentrated, and the residue was purified by silica gel chromatography (20-40% EtOAc in hexanes) to give the title compound.

Step 2: [2'-((3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-((3-benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 501.

Alternative synthesis: To (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (prepared as described in Example 1, Step 1 but using EtOH in place
of MeOH: 44.9 g, 0.114mol) in CH₂Cl₂ (450mL) at room temperature was added triethylamine (24mL, 0.17mol), followed by benzylisocyanate (16.7mL, 0.136mol), and the reaction was stirred for 2 hours until no starting material was seen by analytical LCMS. The mixture was partitioned between H₂O and CH₂Cl₂, and the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried (MgSO₄ and concentrated, and the residue was purified by silica gel chromatography (0-60% EtOAc in hexanes) to give the [2'-(3-benzyl-1-ethylureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. Hydrolysis of the ethyl ester according to the procedure described in Example 1, Step 7 provided [2'-(3-benzyl-1-ethylureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid.

Example 33: Synthesis of [2'-(IV'-cyano-IV-ethyl-guaiidinoinethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-111)

Step 1: (3-Bromo-4-methoxy-phenyl)-acetic acid ethyl ester
[0542] Prepared according to the procedure described in Example 1, Step 1, using the following starting materials: 3-bromo-4-methoxyphenylacetic acid and ethanol.

Step 2: [4-Methoxy-3-(4,4,5,5-tetraethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester
[0543] (3-Bromo-4-methoxy-phenyl)-acetic acid ethyl ester (27.4g, 100.3mmol), bis(pinacolato)diboron (25.47g, 100.3mmol), and potassium acetate (24.6g, 250.8mmol) were combined in 1,4-dioxane (250mL) under N₂. The solution was purged with N₂, and then (1,1'-bis(diphenyl phosphino)ferrocene)-dichloropalladium(II) (4.10g, 5.02mmol) was added and the reaction was heated to 110°C overnight. The mixture was filtered through Celite and partitioned between EtOAc and brine. The aqueous layer was separated and extracted twice with EtOAc, and the combined organic layers were dried and concentrated. The residue was purified by silica gel chromatography (20-60% EtOAc in hexanes) to give the title compound.

Step 3: (2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-bromo-5-(trifluoromethyl)benzaldehyde and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester.

Step 4: (2'-Ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yO-acetic acid ethyl ester

To (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.50g, 2.73mmol) in MeOH (8mL) was added ethylamine (2M in THF; 5mL, 10mmol), followed by acetic acid (0.23mL, 4.09mmol). Sodium cyanoborohydride (0.26g, 4.14mmol) was then added, and the reaction was stirred at room temperature and monitored by analytical LCMS. The reaction never reached completion, so the mixture was concentrated and partitioned between EtOAc and saturated aqueous NaHCO₃. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (0-6% MeOH in CH₂Cl₂) to give the title compound.

Step 5: (2'-[(3-Cyano-1-ethyj-2-phenyl-isoureidomethyl)-6-nietfaoxy-4'-trifluororactyl-biphenyl-3-yl]-acetic acid ethyl ester

(2'-Ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.50g, 1.26mmol) and diphenyl cyanocarbonimidate (0.60g, 2.51mmol) were combined in MeCN (5mL) and stirred at 40°C until no starting material was seen by analytical LCMS. The mixture was concentrated and purified by silica gel chromatography (10-40% EtOAc in hexanes) to give the title compound.
Step 6: \(^{-}(\text{IV-Benzyl-IV'-cyano-JV-ethyl-guanidino-methyl-6-methoxy-^4'-trifluoromethyl-biphenyl-3-yl}\)-acetic acid ethyl ester

\[0547\] [2'-\(3\)-Cyano-1-ethyl-2-phenyl-isoureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester (0.10g, 0.17mmol) and benzylamine (0.04mL, 0.34mmol) were combined in EtOH (1mL) and heated to 60°C. The reaction was monitored by analytical LCMS, and additional benzylamine (0.04mL, 0.34mmol) was added to push the reaction to completion. Further benzylamine (0.10mL, 0.92mmol) was added, and the reaction was heated for a total of 48 hours. The mixture was partitioned between EtOAc and H\textsubscript{2}O, and the aqueous layer was extracted with EtOAc. The combined organic layers were concentrated and purified by silica gel chromatography (0-50% EtOAc in hexanes) to give the title compound.

Step 7: [2'-\(\text{W-Benzyl-IV'-cyano-N-ethyl-guanidinomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}\]-acetic acid

\[0548\] [2'-\(\text{N'-Benzylo-\text{N'}-cyano-\text{N'-ethyl-guanidinomethyO-o-methoxy-}^4\text{'-trifluoromethyl-biphenyl-3-yl}\)-acetic acid ethyl ester (0.055g, 0.1mmol) in THF (2mL) and H\textsubscript{2}O (0.5mL) was treated with lithium hydroxide (0.02g, 0.5mmol), and the reaction was monitored by analytical LCMS. Once no starting material was seen, the mixture was diluted with EtOAc and H\textsubscript{2}O. Citric acid was added to neutralize the solution to pH 3, and the mixture was extracted with EtOAc. The combined organic layers were washed with H\textsubscript{2}O, dried over MgSO\textsubscript{4}, filtered, and concentrated twice from CH\textsubscript{2}Cl\textsubscript{2} to give the title compound. M+H is 525.
Example 34: Synthesis of (2'-[Ethyl-(2-phenylsulfanyl-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-117)

Step 1: (2'-{[Ethyl-(2-phenylsulfanyl-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and (phenylthio)acetyl chloride.

Step 2: (2'-{[Ethyl-(2-phenylsulfanyl-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

(2'-{[Ethyl-(2-phenylsulfanyl-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.291g, 0.53mmol) in THF (3mL) was treated with 1N aqueous LiOH (3mL) at room temperature overnight. The mixture was acidified with 1N aqueous HCl and extracted three times with EtOAc. The combined organic layers were dried and concentrated, and the residue was purified by silica gel chromatography (30-70% EtOAc in hexanes) to give the title compound. M+H is 518.

Example 35: Synthesis of (2'-{[(2-Benzene sulfonfyl-acetyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-120)
Step 1: (2'-[[2-Benzene sulfonyl-acetyl]-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

[0551] To (T-[[ethyl-(2-phenylsulfanyl-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (0.096g, 0.19mmol) was added 3-chloroperoxybenzoic acid (0.083g, 0.37mmol), and the reaction was stirred at room temperature for 1 hour. The mixture was concentrated and purified by preparative HPLC to give the title compound. M+H is 550.

Example 36: Synthesis of 2''-[(Benzyloxy carbonyl-ethyl-amino)-methyl]-4''-trifluoromethy]-[1,r;21,l']terphenyl-4'-yl)-acetic acid (Compound 1-144)

Step 1: (3-Bromo-4-hydroxy-phenyl)-acetic acid

[0552] 3-Bromo-4-methoxyphenylacetic acid (1.3g, 5.6mmol) was heated in a solution of hydrogen bromide (3mL) and acetic acid (3mL) at 100°C overnight. The mixture was then partitioned between EtOAc and H₂O, and the aqueous layer was separated and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 2: (3-Bromo-4-hydroxy-phenyl)-acetic acid ethyl ester

[0553] (3-Bromo-4-hydroxy-phenyl)-acetic acid (5.6mmol) in EtOH (20mL) was treated with sulfuric acid (1mL) and stirred at room temperature over the weekend. The mixture was concentrated to give the title compound.

Step 3: (2-Bromo-5-trifluoromethyl-benzyl)-ethyl-amine
Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: 2-bromo-5-(trifluoromethyl)benzaldehyde and ethylamine (2M in THF).

Step 4: (2-Bromo-5-trifluoromethyl-benzyl)-ethyl-carbamic acid benzyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine and benzyl chloroformate.

Step 5: Ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester

Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-carbamic acid benzyl ester and bis(pinacolato)diboron.

Step 6: {2’-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-hydroxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (3-bromo-4-hydroxy-phenyl)-acetic acid ethyl ester and ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester.

Step 7: \(\text{[2'-((Benzyloxycarbonyl-ethyl-amino)-methyl]-6-trifluoromethanesulfonyloxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester} \)

To a slurry of \(\text{[2'-((benzyloxycarbonyl-ethyl-amino)-methyl]-6-hydroxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester} \) (0.120 g, 0.23 mmol) and cesium carbonate (0.090 g, 0.28 mmol) in \(\text{CH}_2\text{Cl}_2 \) was added \(N\text{-phenyl-bis(trifluoroniethanesulfonimide)} \) (0.092 g, 0.26 mmol), and the reaction was stirred at room temperature overnight. The mixture was partitioned between \(\text{CH}_2\text{Cl}_2 \) and \(\text{H}_2\text{O} \), and the aqueous layer was separated and extracted with \(\text{CH}_2\text{Cl}_2 \). The combined organic layers were dried over \(\text{MgSO}_4 \), filtered, and concentrated, and the residue was purified by silica gel chromatography to give the title compound.

Step 8: \(\text{[2'-((Benzyloxycarbonyl-ethyl-amino)-methyl]-4''-trifluoromethyl-[1,1';2,2']terphenyl-4'-yl]-acetic acid} \)

A solution of \(\text{[2'-((benzyloxycarbonyl-ethyl-amino)-methyl]-6-trifluoromethanesulfonyloxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester} \) (0.11 g, 0.17 mmol), phenylboronic acid (0.023 g, 0.19 mmol), and potassium carbonate (0.070 g, 0.51 mmol) in 2:1 DME:H\(_2\)O (5 mL) was purged with \(\text{N}_2 \) for 15 minutes.
Tetrakis(triphenylphosphine)palladium(0) (0.020g, 0.02mmol) was added, and the reaction was purged with \(\text{N}_2 \) for another 10 minutes, and then stirred at \(90^\circ \text{C} \) overnight. The mixture was partitioned between \(\text{EtOAc} \) and \(\text{Et}_2\text{O} \), and the aqueous layer was separated and extracted with \(\text{EtOAc} \). The combined organic layers were dried over \(\text{MgSO}_4 \), filtered, and concentrated, and the residue was purified by preparative HPLC to give the title compound. \(M+H \) is 548.

Example 37: Synthesis of [Z'-dEthyl-tl-Cl-methyl-imidazol-1-ylJ-acet'1-amino-methyl-\(\text{6-methoxy}-4'\)-trifluoromethyl-biphenyl-3-yi]-acetic acid (Compound 1-149)

Step 1: (J'-jItl-Chloro-acetyl^-ethyl-aminol-methyl-o-methoxy^'-trifluoromethyl-biphenyl-3-yi-acetic acid ethyl ester

[0560] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yi) -acetic acid ethyl ester and chloroacetly chloride.

Step 2: [2'-({Ethyl-[2-(2-methyHmidazol-1-yl)-acetyl]-amino}-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yi]-acetic acid ethyl ester

[0561] To 2-methylimidazole (0.047g, 0.57mmol) in DMF (2mL) at \(\text{O}^\circ \text{C} \) was added sodium hydride (60% in mineral oil; 0.03 Ig, 0.78mmol), and the reaction was stirred for 15 minutes. \((2'\) [(2-Chloro-acetyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yi)-acetic acid ethyl ester (0.52mmol) was added in DMF, and the reaction was stirred at room temperature for 1.5 hours. Analytical LCMS showed that a lot of starting material remained, so tetrabutylammonium iodide (0.005g, 0.01mmol) was added, and the reaction was stirred for 3 hours. Analytical LCMS showed that no change had occurred, so additional sodium hydride (60% in mineral oil; 0.03 Ig, 0.78mmol) was added, and the reaction was stirred overnight at room temperature. The mixture was partitioned between \(\text{EtOAc} \) and \(\text{H}_2\text{O} \), and the aqueous layer was
separated and extracted twice with EtOAc. The combined organic layers were washed three times with H₂O, and then dried and concentrated to give the title compound.

Step 3: [2'-{(Ethyl-[2-(2-methyl-imidazol-1-yl)-acetyl]-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-{(ethyl-[2-(2-methyl-imidazol-1-yl)-acetyl]-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 490.

Example 38: Synthesis of [2'S{(Benz)>oxycarbonyl-ethyl-amino)-methyl]-4 l-(4-ch!oro-benzoylamino)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-154)

Step 1: (2-Bromo-5-nitro-phenyl)-methanol

To 2-bromo-5-nitrobenzoic acid (5g, 20mmol) at 0°C was added borane tetrahydrofuran complex (IM in THF; 20OmL, 200mmol), and the reaction was stirred at room temperature overnight. The mixture was quenched with 1N aqueous HCl to give the title compound.

Step 2: 2-Bromo-5-nitro-benzaldehyde

Prepared according to the procedure described in Example 1, Step 3, using the following starting material: (2-bromo-5-nitro-phenyl)-methanol.

Step 3: (2'-Formyl-6-methoxy-4 1-nitro-biphenyl 1-3-yl)-acetic acid ethyl ester
[0565] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-bromo-5-nitro-benzaldehyde and [4-tnethoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester.

![Chemical structure](image1)

Step 4: (1'-Ethylaminomethyl- 6-methoxy-4'-nitro-biphenyl-3-yl)-acetic acid ethyl ester

[0566] Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6-methoxy-4'-nitro-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

![Chemical structure](image2)

Step 5: [2'-{(Benzyloxycarbonyl-ethyl-amino)-methyl}-6-methoxy-4'-nitro-biphenyl-3-yl]-acetic acid ethyl ester

[0567] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-nitro-biphenyl-3-yl)-acetic acid ethyl ester and benzyl chloroformate.

![Chemical structure](image3)

Step 6: [4'-Amino-2-{(benzyloxycarbonyl-ethyl-amino)-methyl}-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester
To a solution of 2’-[(benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4’-nitro-biphenyl-3-yl] -acetic acid ethyl ester (0.70g, 1.75mmol) in EtOH (70mL) was added tin (H) chloride (1.97g, 8.75mmol). The reaction was heated to reflux for 5h, and then the mixture was acidified to pH 1 with concentrated HCl and diluted with EtOAc. The resulting biphasic mixture was filtered through Celite, and the organic layer was separated. The aqueous layer was neutralized to pH 7 with solid NaOH and extracted with EtOAc. The combined organic extracts were dried and filtered, and the residue was purified by silica gel chromatography to give the title compound.

Step 7: 2’-[(Benzylxycarbonyl-ethyl-amino)-methyl]-4’-(4-chloro-beii2oylamino)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

[4’-Amino-2’-[(benzyloxycarbonyl-ethyl-amino)-methyl]-6-nitro-biphenyl-3-yl] -acetic acid ethyl ester (0.08g, 0.2mmol), 4-chlorobenzoyl chloride (0.04mL, 0.3mmol), and triethylamine were reacted in CH₂Cl₂ to give the title compound.

Step 8: 1-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4’-(4-chloro-benzoylamino)-6-methoxy-biphenyl-3-yl]-acetic acid

[2’-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4’-(4-chloro-benzoylamino)-6-methoxy-biphenyl-3-yl] -acetic acid ethyl ester (0.2mmol) was hydrolyzed with lithium hydroxide to give the title compound.

Example 39: Synthesis of 2’-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4’-methanesulfonylamino-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-155)
Step 1: \(\{2'-[(\text{Benzoxycarbonyl-ethyl-amino})-methyl]-4'-\text{methanesulfonylamo} \text{i} \text{n}o-6\text{-methoxy-biphenyl-3-yl}\} \text{-acetic acid} \text{ ethyl ester} \)

\[0571\] \{4'-\text{Amino-2'}-[(\text{benzyloxycarbonyl-ethyl-amino})-methyl]-6-\text{methoxy-biphenyl-3-yl}] \text{-acetic acid ethyl ester (0.080g, 0.2mmol), methanesulfonyl chloride (0.04mL, 0.3mmol), and triethylamine were reacted in CH}_2\text{Cl}_2 \text{ to give the title compound.}

Step 2: \(\{2'-[(\text{Benzoxycarbonyl-ethyl-amino})-methyl]-4'-\text{methanesulfonylamo} \text{i} \text{n}o-6\text{-methoxy-biphenyl-3-yl}\} \text{-acetic acid} \)

\[0572\] \{2'-[(\text{Benzoxycarbonyl-ethyl-amino})-methyl]-4'-\text{methanesulfonylamo} \text{i} \text{n}o-6\text{-methoxy-biphenyl-3-yl}] \text{-acetic acid ethyl ester (0.2mmol) was hydrolyzed with lithium hydroxide to give the title compound.}

Example 40: Synthesis of \(\{2'-[\text{(Cyclopropanecarbonyl-ethyl-amino})-methyl]-6,5'-\text{dimethoxy-biphenyl-3-yl}\} \text{-acetic acid} \text{ (Compound 1-196)} \)

Step 1: \(\{2'-[\text{Formyl-6''-dimethoxy-biphenyl-3-yl}] \text{-acetic acid} \text{ methyl ester} \)

\[0573\] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (3-bromo-4-methoxy-phenyl)-acetic acid methyl ester and 2-formyl-5-methoxyphenylboronic acid.
Step 2: (2'-Ethylaminomethyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester and ethylamine (2M in THF).

Step 3: (2'-KCyclopropanecarbonyl-ethyl-amino^methyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester and cyclopropanecarbonyl chloride.

Step 4: (Z'-I^cyclopropanecarbonyl-ethyl-aminoJ-methyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester.

Example 41: Synthesis of [2'-(l-Ethyl-3-methyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-202)
Step 1: (S-Benzyl oxy-S-trifluoromethyl-pheny O-acetic acid)

To 3-fluoro-5-(trifluoromethyl)phenylacetic acid (2.0g, 9.0mmol) and benzyl alcohol (1.9mL, 18.0mmol) in NMP (10mL) was added sodium hydride (60% in mineral oil; 0.8g, 19.8mmol), and the reaction was stirred at 120°C for 3 hours. The mixture was acidified and extracted with EtOAc, and the crude material was purified by silica gel chromatography to give the title compound.

Step 2: (3-Benzyl oxy-5-trifluoromethyl-phenyl)-acetic add methyl ester

To a solution of (S-benzyl oxy-S-trifluoromethyl-pheny O-acetic acid (1.5g, 4.8mmol) in MeOH (10mL) was added 4N HCl in 1,4-dioxane (2mL), and the reaction was stirred at 80°C for 1 hour. The mixture was concentrated and purified by silica gel chromatography to give the title compound.

Step 3: (3-Hydroxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester

(3-Benzyl oxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester (4.8mmol) in EtOH was treated with 10% palladium on carbon (10% by weight), and stirred under a balloon of H₂ at 60°C overnight. The mixture was filtered to remove the palladium, and then concentrated to give the title compound.

Step 4: (3-Trifluoromethanesulfonyloxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester

To a solution of (3-hydroxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester (0.5g, 2.1mmol) in DMF (10mL) was added cesium carbonate (1.4g, 4.3mmol), followed by N-phenyl-bis(trifluoromethanesulfonimide) (0.83g, 2.3mmol), and the reaction was stirred at room
temperature for 1 hour. Once no starting material was seen by analytical LCMS, the mixture was worked up with EtOAc and H₂O, and the residue was purified by silica gel chromatography to give the title compound.

Step 5: 1-(2-Bromo-5-trifluoromethyl-benzyl)-1-ethyl-3-methyl-urea

To (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine (0.5g, 1.8mmol) in CH₂Cl₂ (5mL) was added triethylamine (0.5mL, 3.5mmol), followed by methyl isocyanate (0.121g, 2.2mmol), and the reaction was stirred at room temperature under N₂ for 30 minutes. The mixture was worked-up with CH₂Cl₂ and H₂O, and the residue was purified by silica gel chromatography to give the title compound.

Step 6: 1-Ethyl-3-methyl-1-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea

Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: 1-(2-bromo-5-trifluoromethyl-benzyl)-1-ethyl-3-methyl-urea and bis(pinacolato)diboron.

Step 7: [2^1-(1-Ethyl-3-methyl-ureidomethyl)-5,4'-bis-trifluoronicthyl-biphenyl-3-yl]-acetic acid methyl ester

(S-Trifluoromethanesulfonyloxy-S-trifluoromethyl-phenylJ-acetic acid methyl ester (0.063g, 0.18mmol), 1-ethyl-3-methyl-l-[2-(4,4,5,5-tetramethyl-[l,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea (0.07Og, 0.18mmol, potassium carbonate (0.062g, 0.45mmol), and
tetrakis(triphenylphosphine)palladium(0) (0.021 g, 0.02 mmol) were combined in 2:1 DME:H₂O (3 mL) and degassed with N₂ for 10 minutes. The reaction was then stirred at 90°C for 2 hours, until no starting material was seen by analytical LCMS. The mixture was cooled to room temperature and used directly in the hydrolysis step.

Step 8: [2'-[(1-Ethyl-3-methyl-ureidomethyl)-5,4'-bis-trifluoromethyl-1-biphenyl-3-yl]-acetic acid

[0584] To 2'-[(1-ethyl-S-methyl-ureidomethyl)-S'bis-trifluoromethyl-biphenyl-S-y'-acetic acid methyl ester (0.18 mmol) was added 1:1 IN aqueous LiOH: 1,4-dioxane (2 mL), and the reaction was stirred at room temperature for 30 minutes. 10% Aqueous HCl was added to acidify the solution to pH 3, and the mixture was extracted with EtOAc. The crude material was purified by silica gel chromatography to give the title compound. M+H is 463.

Example 42: Synthesis of (Rl-p'-CS-Benzyl-1-ethyl-ureidomethyl-jS'-bis-trifluoromethyl-biphenyl-3-yl] -propionic acid (Compound 2-10)

Step 1: (S-Benzoyloxy-S-trifluoromethyl-pheny^-acetic acid ethyl ester

[0585] Prepared according to the procedure described in Example 41, Step 2, using the following starting materials: (3-benzyloxy-5-trifluoromethyl-phenyl)-acetic acid and ethanol.

Step 2: 2-(3-Benzyl-5-trifluoromethyl-phenyl)-propionic acid ethyl ester

[0586] To a solution of (3-benzyloxy-5-trifluoromethyl-phenyl)-acetic acid ethyl ester (5.0 g, 14.8 mmol) in DMF (50 mL) at 0°C under N₂ was added sodium hydride (60% in mineral oil; 0.65 g, 16.3 mmol), and the mixture was stirred at room temperature for 15 minutes. Iodomethane (1 mL, 16.3 mmol) was added, and the reaction was monitored by analytical LCMS and tic. After work-up
with EtOAc and H₂O, the crude material was purified by silica gel chromatography to give the title compound.

Step 3: 2-(3-Benzylxy-5-trifluoromethyl-phenyl)-propionic acid

2-(3-Benzylxy-5-trifluoromethyl-phenyl)-propionic acid ethyl ester (1Ag, 4.0mmol) in 2:2:1 MeOH:THF:H₂O was treated with 1N aqueous LiOH (3mL) at room temperature overnight. The mixture was acidified with 10% aqueous HCl and extracted three times with EtOAc. The combined organic layers were concentrated and purified by silica gel chromatography to give the title compound.

Step 4: 2-(3-Benzylxy-5-trifluoromethyl-phenyl)-propionyl chloride

To a solution of 2-(3-benzyloxy-5-trifluoromethyl-phenyl)-propionic acid (1.4g, 4.0mmol) in CH₂Cl₂ was added oxalyl chloride (0.76mL, 8.0mmol), followed by 3 drops of DMF. After stirring for 15 minutes at room temperature, the mixture was concentrated to give the title compound.

Step 5: (4R,5S)-3-l(R)-2-(3-Benzylxy-5-trifluoromethyl-phenyl)-propionyl]-4-methyl-5-phenyl-oxazolidin-2-one and (4R,SS)-3-(S)-2-(3-Beiizyloxy-5-trifluoromethyl-phenyl)-propionyl]-4-methyl-5-phenyl-oxazolidin-2-one

To a solution of (4R,5S)-4-methyl-5-phenyl-2-oxazolidinone (0.644g, 3.6mmol) in THF (20mL) at -78°C was slowly added n-butyllithium (2.5M in THF; 1.8mL, 4.0mmol). After stirring for 1 hour at -78°C, 2-(3-benzyloxy-5-trifluoromethyl-phenyl)-propionyl chloride (4.0mmol) in THF (10mL) was slowly added, and the reaction was stirred for 1.5 hours. The mixture was worked up with EtOAc and H₂O, and the residue was purified by silica gel chromatography to give the title compounds as separated products.
Step 6: (R^-Ca-Hydroxy-S-trifluoromethyl-phenyl)-N^-l-methyl-l-phenyl-ethyl)-propionamide

Prepared according to the procedure described in Example 41, Step 3, using the following starting material: (4R,5S)-3-[(R)-2-(3-benzyloxy-5-trifluoromethyl-phenyl)-propionyl]-4-methyl-5-phenyl-oxazolidin-2-one.

Step 7: Trifluoro-methanesulfonic acid 3-[(R)-l-((R)-l-methyl-2-phenyl-ethylcarbamoyl)-ethyl]-5-trifluoromethyl-phenyl ester

Prepared according to the procedure described in Example 41, Step 4, using the following starting materials: (R)-2-(3-Hydroxy-5-trifluoromethyl-phenyl)-N^-((R)-l-methyl-2-phenyl-ethyl)-propionamide and N^-phenyl-bis(trifluoromethanesulfonimide).

Step 8: 3-Beii2yl-l-(2-bromo-5-trifluoromethyl-benzyI)-l-ethyl-urea

To a solution of (2-bromo-5-trifluoromethyl-benzyI)-ethyl-amine (1.5g, 5.3mmol) in CH₂Cl₂ (20mL) at 0°C was added diisopropylethylamine (1.7mL, 13.3mmol). Phosgene (1.9M in toluene; 4.2mL, 8.0mmol) was then added dropwise, and the reaction was stirred for 2 hours. Triethylamine (1.48mL, 10.6mmol) was added, followed by benzylamine (0.87mL, 8.0mmol), and the reaction was stirred at room temperature for 2.5 hours. After work-up with CH₂Cl₂ and H₂O, the crude material was purified by silica gel chromatography to give the title compound.
Step 9: 3-Benzyl-l-ethyl-l-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea

[0593] 3-Benzyl-1 -(2-bromo-5-trifluoromethyl-benzyl)-l-ethyl-urea (2.0g, 4.8mmol), bis(pinacolato)diboron (1.7g, 7.2mmol), (1,r-bis(diphenylphosphino)ferrocene)-dichloropalladium(π) (0.4Og, 0.48mmol), and potassium acetate (1.4g, 14.4mmol) were combined in 1,4-dioxane (20mL) under N₂. The solution was purged with N₂ for 10 minutes, and the reaction was heated to 80°C for 3 hours. Once no starting material was seen by analytical LCMS, the mixture was worked up with EtOAc and brine, and the crude material was purified by silica gel chromatography to give the title compound.

Step 10:\^l-Il'-fS-Beiiizyl-l-ethyl-ureidomethyl^S^\'\'-bis-trifluoromethyl-biphenyl-S-yl]-^-((R>l-methyl-2-phenyl-ethyl)-propionamide

[0594] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: trifluoro-methanesulfonic acid 3-[(R)-I-((R)-l-methyl-2-phenyl-ethylcarbamoyl)-ethyl]-5-trifluoromethyl-phenyl ester and 3-benzyl-l-ethyl-l-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea. M+H is 670.

Example 43: Synthesis of (R)-2-[(3-Benzyl-l-ethyl-ureidomethyl)-S,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-239)
Step 1: \((\text{R})-2-(2'-\text{Ethylaminomethyl}-5,4'-\text{bis-trifluoromethyl-biphenyl-3-yl})-\text{propionic acid}\)

\[0595\] \((\text{R})-2-[2'-(\text{3-Benzyl-1-ethyl-ureidomethyl})-5,4'-\text{bis-trifluoromethyl-biphenyl-3-yl})-\text{N-((R)-1-methyl-2-phenyl-ethyl)-propionamide}\) (0.08g, 0.12mmol) was treated with 5N aqueous \(\text{H}_2\text{SO}_4\) in 1,4-dioxane at 100°C for 24 hours. The mixture was purified by preparative HPLC to give the title compound.

Step 2: \((\text{R})-2-(2'-\text{Ethylaminomethyl}-5,4'-\text{bis-trifluoromethyl-biphenyl-3-yl})-\text{propionic acid methyl ester}\)

\[0596\] \((\text{R})-2-(2'-\text{Ethylaminomethyl}-5,4'-\text{bis-trifluoromethyl-biphenyl-3-yl})-\text{propionic acid}\) (0.04g, 0.10mmol) in MeOH (2mL) was treated with 2 drops of sulfuric acid at room temperature overnight. The mixture was concentrated, and the crude material was used directly in the next step.

Step 3: \(\text{CR}^\text{P'-Ca-Benzyl-1-ethyl-ureidomethyO-S}^\text{S'-bis-trifluoromethyl-biphenyl-S-yl}]-\text{propionic acid methyl ester}\)

\[0597\] \((\text{R})-2-(2'-\text{Ethylaminomethyl}-5,4'-\text{bis-trifluoromethyl-biphenyl-3-yl})-\text{propionic acid methyl ester}\) (0.10mmol) in \(\text{CH}_2\text{Cl}_2\) was treated with triethylamine (0.03mL, 0.20mmol) and benzyl
isocyanate (0.02mL, 0.20mmol) at room temperature for 2 hours. The mixture was worked up with CH₂Cl₂ and H₂O to give the title compound.

![Chemical Structure]

Step 4: (R)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid

To a solution of (R)-2-[2'- (3-benzyl-1-ethyl-ureidomethyl)-5,4' -bis-trifluoromethyl-biphenyl-3-yl]-propionic acid methyl ester (0.036g, 0.06mmol) in 1:1 THF:H₂O was added lithium hydroxide (0.005g, 0.12mmol) and hydrogen peroxide (29% in water; 0.01mL, 0.12mmol). The reaction was stirred at room temperature overnight, and then the mixture was acidified to pH 5 with 10% aqueous HCl. The solution was extracted with EtOAc, and the crude material was purified by preparative HPLC to give the title compound. M+H is 553.

**Example 44: Synthesis of (S)-2-[2'- (3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-V-((R)-l-methyl-2-phenyl-ethyl)-propionamide (Compound 2-11)

![Chemical Structure]

Step 1: (S^*-CS-Hydro-ty-S-trifluoromethyl-phenyl-lV-CCRJ-l-methyl-l-phenyl-ethyl)-propionamide

Prepared according to the procedure described in Example 41, Step 3, using the following starting material: (4R,5S)-3-[(S)-2-(3-benzoxyl-5-trifluoromethyl-phenyl)-propionyl]-4-methyl-5-phenyl-oxazolidin-2-one.

![Chemical Structure]

Step 2: Trifluoro-methanesulfonic acid 3-[(S)-l-((R)-l-methyl-2-phenyl-ethylcarbamoyl)-ethyl]-5-trifluoromethyl-phenyl ester
Prepared according to the procedure described in Example 41, Step 4, using the following starting materials: (S)-2-(3-Hydroxy-5-trifluoromethyl-phenyl)-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide and N-phenyl-bis(trifluoromethanesulfonimide).

Step S^S^P^-CS-Benzyl-l-ethyl-ureidomethylO-S^-bi^-trifluoromethyl-biphenyl-S-yll-JV-((R)-1-methyl-2-phenyl-ethyl]-propionamide

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: trifluoro-methanesulfonic acid 3-[(S)-1-((R)-1-methyl-2-phenyl-ethylcarbamoyl)-ethyl]-5-trifluoromethyl-phenyl ester and 3-benzyl-l-ethyl-l-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl]-5-trifluoromethyl-benzyl]-urea. M+H is 670.

Example 45: Synthesis of (SJ-I-"HS-Benzyl-l-ethyl-ureidomethylbiphenyl-3-yl)-propionic acid (Compound 1-240)

Step 1: (S)-2-(2'-Ethylaminomethyl-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-propionic acid

Prepared according to the procedure described in Example 43, Step 1, using the following starting material: (S)-2-[2'-(3-benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-((R)-1-methyl-2-phenyl-ethyl)-propionamide.
Step 2: (S)-2-(2'-Ethylaminomethyl-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-propionic acid methyl ester

[0603] Prepared according to the procedure described in Example 43, Step 2, using the following starting material: (S)-fr-ethylaminomethyl-S'-bis-trifluoromethyl-biphenyl-S-ylJ-propionic acid.

Step 3: (S)-2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid methyl ester

Prepared according to the procedure described in Example 43, Step 3, using the following starting materials:

(S)-2-(2'-ethylaminomethyl-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-propionic acid methyl ester and benzyl isocyanate.

Step 4: (S)-2-(2'(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid

[0605] Prepared according to the procedure described in Example 43, Step 4, using the following starting material: (S)-2-[2'-((3-benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid methyl ester. M+H is 553.

Example 46: Synthesis of (4'-(6-Ethoxy-pyridin-3-yl)-2'-[[ethyl-(3-phenyl-propioiyl)-amino]-methyl]-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-256)
Step 1: 5-Bromo-2-iodo-benzaldehyde

To 5-bromo-2-iodobenzonitrile (7.4g, 24.2mmol) in THF (40mL) at -78°C was added diisobutylaluminium hydride (IM in hexanes; 24.2mL, 24.2mmol) over 5 minutes, and the reaction was allowed to warm to room temperature and monitored by analytical HPLC. After stirring overnight at room temperature, starting material was still present, so the mixture was cooled to 0°C and additional diisobutylaluminium hydride (IM in hexanes; 10.0mL, 10.0mmol) was added. After stirring for 2 hours at room temperature, no starting material was seen by analytical HPLC, so the mixture was carefully quenched with freshly saturated aqueous Na₂SO₄ and diluted with EtOAc. The mixture was stirred vigorously for 1 hour and then filtered through Celite. The filtrate was concentrated, and the resulting oil solidified on standing. The solid was stirred vigorously in CH₂Cl₂ and IN aqueous HCl, and the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 2: (5-Bromo-2-iodo-benzyl)-ethyl-amine

To 5-bromo-2-iodobenzaldehyde (5.0g, 16.1mmol) in MeOH (20mL) was added ethylamine (2M in MeOH; 16mL, 24.0mmol), followed by acetic acid (10mL, 17.8mmol), and the mixture was stirred at room temperature for 30 minutes. Sodium cyanoborohydride (2.0g, 31.8mmol) was then added over 5 minutes, and the reaction was stirred at room temperature over the weekend. The mixture was concentrated and partitioned between EtOAc and saturated aqueous NaHCO₃. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (0-5% MeOH in CH₂Cl₂) to give the title compound.

Step 3: (5-Bromo-2-iodo-benzyl)-ethyl-carbamic acid tert-butyl ester
(5-Bromo-2-iodo-benzyl)-ethyl-amine (4.05g, 11.9mmol) in CH₂Cl₂ (30mL) was treated with di-tert-butyl dicarbonate (3.12g, 14.3mmol) at room temperature overnight. The mixture was diluted with CH₂Cl₂ and washed with H₂O, dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 4: [4'-Bromo-2'-[(tert-butoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (5-bromo-2-iodo-benzyl)-ethyl-carbamic acid tert-buty] ester and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester.

Step 5: [2'-(tert-Butoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: [4'-bromo-2'-[(fert-butoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester and bis(pinacolato) diboron.

Step 6: [2'-(tert-Butoxycarbonyl-ethyl-amino)-methyl]-4'-6-ethoxy-pyridin-3-yl]-6-methoxy-biphenyl-3-yl] -acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2′-((tert-butoxycarbonyl-ethyl-amino)-methyl)-6-methoxy-4′-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-biphenyl-3-yl]-acetic acid ethyl ester and 5-bromo-2-ethoxy-pyridine.

Step 7: [4′-(6-Ethoxy-pyridin-3-yl)-1′-ethylaminomethyl-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester, hydrochloride

[0612] 2′-([(tert-Butoxycarbonyl-ethyl-amino)-methyl]-4′-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester (1.09g, 2.0mmol) in CH₂Cl₂ (10mL) was treated with 4N HCl in 1,4-dioxane (6mL, 24.0mmol) at room temperature, until complete conversion was seen by analytical LCMS. The mixture was concentrated to give the title compound.

Step 8: (4′-(6-Ethoxy-pyridin-3-yl)-2′-[(ethyl-(3-phenyl-propionyl)-araino]-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

[0613] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [4′-(6-ethoxy-pyridin-3-yl)-2′-ethylaminomethyl-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester, hydrochloride and hydrocinnamoyl chloride.
Step 9: (4’-(6-Ethoxy-pyridin-3-yl)-2’-[[ethyl-(3-phenyl-propionyl)-amino]-methyl}-6-methoxy-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (4’-(6-ethoxy-pyridin-3-yl)-2’-[[ethyl-(3-phenyl-propionyl)-amino]-methyl}-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 553.

Example 47: Synthesis of (2’-[[4-Chloro-benzenesulfonyl]-ethyl-amino]-methyl}-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-100)

Step 1: (2’-(((4-Chloro-benzenesulfonyl)-ethyl-amino]-methyl}-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (2’-ethylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.096g, 0.25mmol) and 4-chlorobenzenesulfonyl chloride (0.070g, 0.33mmol) in CH₂Cl₂ (1mL) was added triethylamine (0.06mL, 0.45mmol), and the mixture was stirred for 15 minutes at room temperature. Once no starting material was seen by analytical LCMS, the solution was concentrated and purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: (2’-[[4-Chloro-benzenesulfonyl]-ethyl-amino]-methyl}-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: (2’- [[4-chloro-benzenesulfonyl]-ethyl-amino] -methyl]-6-methoxy-4’- trifluoromethyl-biphenyl-3-yO-acetic acid methyl ester. M+H is 542.

Example 48: Synthesis of (2’-[[Methanesulfonyl-phenethyl-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-101)
Step 1: \{2'-[(Methanesulfonyl-phenethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester

To \{6-methoxy-2'-(phenethylamino-methyl)-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester (0.068g, 0.15mmol) and triethylamine (0.02mL, 0.1mmol) in \(\text{CH}_2\text{Cl}_2\) (1mL) was added methanesulfonyl chloride (0.0ImL, 0.1mMmol), and the mixture was stirred for 1 hour. Starting material was still present by analytical LCMS, so additional methanesulfonyl chloride was added, and the reaction was stirred overnight at room temperature. Additional methanesulfonyl chloride and triethylamine was added after 20 hours to push the reaction to completion. The solution was then diluted with \(\text{CH}_2\text{Cl}_2\) and \(\text{H}_2\text{O}\), and the aqueous layer was separated and extracted with \(\text{CH}_2\text{Cl}_2\). The combined organic layers were dried over \(\text{MgSO}_4\), filtered, and concentrated, and the residue was purified by silica gel chromatography to give the title compound.

Step 2: \{2'-[(Methanesulfonyl-phenethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \{2'-[(methanesulfonyl-phenethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\} -acetic acid methyl ester. M+23 is 544.

Example 49: Synthesis of \{2'-[(Acetyl-cyclobutyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-30)
Step 1: (2’-Cyclobutylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2’-formyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and cyclobutylamine.

Step 2: {2’-[Acetyl-cyclobutyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2’-cyclobutylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and acetyl chloride.

Step 3: {2’-[Acetyl-cyclobutyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: {2’-[Acetyl-cyclobutyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester. M+H is 436.

Example 50: Synthesis of {2M(Acetyl-cyclopentyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-31)
Step 1: (2'-Cyclopentylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and cyclopentylamine.

Step 2: [2'-KAcetyl-cyclopentyl-amino-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: ([Z'-cyclopentylaminomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and acetyl chloride.

Step 3: [2'-(Acetyl-cyclopentyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: ([2'-(acetyl-cyclopentyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 450.

Example 51: Synthesis of (2'-[[Ethyl-(2,2^3-trifluoro-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-32)
Step 1: (2’-[[Ethyl-(2,2,2-trifluoro-acetyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

A solution of (2’-ethylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.106g, 0.28mmol) and triethylamine (0.06mL, 0.42mmol) in CH$_2$Cl$_2$ (1mL) was cooled to -78°C. Trifluoroacetic anhydride (0.06mL, 0.42mmol) was added, and the reaction was stirred at room temperature for 1 hour. Analytical LCMS indicated that starting material was still present, so additional triethylamine and trifluoroacetic anhydride were added. After 2 hours, the mixture was diluted with CH$_2$Cl$_2$ and H$_2$O, and the aqueous layer was extracted with CH$_2$Cl$_2$. The combined organic layers were dried over Na$_2$SO$_4$, filtered, and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: (2’-[[Ethyl-(2,2,2-trifluoro-acetyl)-amino]-inethyl]-6-nitroxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: (2’-[[ethyl-(2,2,2-trifluoro-acetyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 464.

Example 52: Synthesis of [2’-[(Benzyloxycarbonyl-cyclobutyl-amino)-methyl]-6-methoxy-4’-trifluoronicthyl-biphenyl-3-yl)-acetic acid (Compound 1-34))
Step 1: \{I'-\text{benzyloxycarbonyl-cyclobutyl-}\text{amino-}^\text{methyl-}\text{-methoxy}^\text{'-trifluoromethyl-}\text{biphenyl-3-yl}\}-\text{acetic acid methyl ester}

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-cyclobutylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.

Step 2: \{Z'-K\text{Benzyloxycarbonyl-cyclobutyl-}\text{amino-}^\text{raethyl-}\text{-methoxy}^\text{'-trifluoromethyl-}\text{biphenyl-3-yl}\}-\text{acetic acid}

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \{2^1-[\text{benzyloxycarbonyl-cyclobutyl-}\text{amino-}^\text{methyl-}]\text{6-methoxy-}^\text{4}\}^\text{-trifluoromethyl-biphenyl-3-yl}\}-\text{acetic acid methyl ester}. M+H is 528.

**Example 53: Synthesis of \{2^1-[\text{Benzyloxycarbonyl-cyclopentyl-}\text{amino-}^\text{inethyl-}]\text{6-inethoxy-}^\text{4}^\text{-trifluoromethyl-biphenyl-3-yl}\}-\text{acetic acid (Compound 1-35)}

Step 1: \{2^1-[\text{Benzyloxycarbonyl-cyclopentyl-}\text{amino-}^\text{methyl-}]\text{-6-methoxy-}^\text{4}^\text{-trifluoromethyl-}\text{biphenyl-3-yl}\}-\text{acetic acid methyl ester}

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-cyclopentylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.
Step 2: \(2'-[(\text{benzyloxycarbonyl-}\text{cyclopentyl-}\text{amino-}\text{methyl})-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \(2'-[(\text{benzyloxycarbonyl-}\text{cyclopentyl-}\text{amino-}\text{methyl})-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\)-acetic acid methyl ester, M+H is 542.

Example 54: Synthesis of \(1'-K\text{benzyloxycarbonyl-cyclopropyl-aminomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\)-acetic acid (Compound 1-36)

Step 1: \((T\text{-cyclopropyl amino methyl})-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \((2'\text{-cyclopropylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\)-acetic acid methyl ester and benzyl chloroformate.
Step 2: \{2'-(\text{Benzyloxycarbonyl-cyclopropyl-amine})-methyl\}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: \{2'-(\text{benzyloxycarbonyl-cyclopropyl-amine})-methyl\}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester. M+H is 514.

Example 55: Synthesis of \{2'-(\text{Acetyl-(2,2,2-trifluoro-ethyl)-amine})-methyl\}-5'-carboxymethyl-2'-methoxy-biphenyl-4-carboxylic acid (Compound 1-37)

\begin{align*}
\text{HO} & \quad \text{O} \\
\text{N} & \quad \text{CF}_3 \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{CF}_3
\end{align*}

\[\text{M+H is 440.} \]

Example 56: Synthesis of \{2'-(\text{(3,5-Dichloro-benzyloxycarbonyl)-ethyl-amine})-methyl\}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-38)

\begin{align*}
\text{O} & \quad \text{O} \\
\text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl}
\end{align*}

Step 1: 3,5-Dichloro benzyl Chloroformate

To 3,5-dichlorobenzyl alcohol (0.201 g, 1.06mmol) in \text{CH}_2\text{Cl}_2 (0.5mL) was added phosgene (20% in toluene; 0.42mL, 0.6mmol), and the mixture was stirred at room temperature for 30 minutes to give the title compound, which was used directly in the next step.
Step 2: (2'-(3,5-Dichloro-benzyloxycarbonyl)-ethyl-aminol-methyl]-6-methoxy-4' -trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (Z'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.101g, 0.26mmol) and diisopropylethylamine (0.23mL, 1.32mmol) in CH₂Cl₂ (1mL) was added 3,5-dichlorobenzyl chloroformate (1.06mmol) in CH₂Cl₂, and the reaction was stirred at room temperature for 5 minutes. The mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, decanted, and concentrated, and the residue was purified by silica gel chromatography to give the title compound.

Step 3: (2'-(3,5-Dichloro-benzyloxycarbonyl)-ethyl-aminol-methyl]-6-methoxy-4' -trifluoromethyl-biphenyl-3-yl)-acetic acid

(2'-(3,5-Dichloro-benzyloxycarbonyl)-ethyl-aminol-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.08g, 0.15mmol) in THF (1mL) and MeOH (0.8mL) was hydrolyzed with 1N aqueous NaOH (0.5mL) for 2.5 hours. The mixture was acidified with 1N aqueous HCl and extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, decanted, and concentrated, and the residue was purified by preparative HPLC to give the title compound. M+H is 571.

Example 57: Synthesis of (2'-(2-Chloro-benzyloxycarbonyl)-ethyl-aminol-methyl]-6-raethoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-39)
Step 1: (2'-[(2-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (^-ethylaminomethyl-6-methoxy^-trifluoromethyl-biphenyl-S-ylJ-acetic acid methyl ester (0.103g, 0.27mmol) and triethylamine (0.06mL, 0.40mmol) in CH$_2$Cl$_2$ (1mL) was added 2-chlorobenzyl chlorofoimate (0.06mL, 0.40mmol), and the reaction was stirred at room temperature for 1 hour. The mixture was diluted with CH$_2$Cl$_2$ and H$_2$O, and the aqueous layer was extracted with CH$_2$Cl$_2$. The combined organic layers were dried over Na$_2$SO$_4$, decanted, and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: (2'-[(2-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

(2'-[(2-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.27mmol) in THF (1mL) and MeOH (0.8mL) was hydrolyzed with IN aqueous NaOH (0.7mL) for 1 hour. The mixture was acidified with IN aqueous HCl and extracted with CH$_2$Cl$_2$. The combined organic layers were dried over MgSO$_4$, filtered, and concentrated to give the title compound. M+H is 536.

Example 58: Synthesis of (2'-[(3,5-Difluoro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-40)
Step 1: 3,5-Difluorobenzyl Chloroformate

Prepared according to the procedure described in Example 56, Step 1, using the following starting materials: 3,5-difluorobenzyl alcohol and phosgene (20% in toluene).

Step 2: (2′-[(3,5-Difluoro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 56, Step 2, using the following starting materials: (2′-ethylaminomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 3,5-difluorobenzyl chloroformate.

Step 3: (2′-[(3,5-Difluoro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 56, Step 3, using the following starting material: (2′-[(3,5-difluoro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 538.

Example 59: Synthesis of (2′-[(Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-41)
Step 1: 4-Fluorobenzyl Chloroformate

Prepared according to the procedure described in Example 56, Step 1, using the following starting materials: 4-fluorobenzyl alcohol and phosgene (20% in toluene).

Step 2: (2'-[[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 56, Step 2, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 4-fluorobenzyl chloroformate.

Step 3: (1'-Ethyl-C^fluoro-benzyloxy carbonyl^-aminoJ-methylJ-6-inethoxy^-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 56, Step 3, using the following starting material: (2'-[[ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 520.
Example 60: Synthesis of (2^[4-Chloro-beiizyloxy carbonyl]-ethyl-amino]-iiethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-42)

Step 1: 4-ChlorobenzyI Chloroformiate

[0645] Prepared according to the procedure described in Example 56, Step 1, using the following starting materials: 4-chlorobenzyl alcohol and phosgene (20% in toluene).

Step 2: (2'-{[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[0646] Prepared according to the procedure described in Example 56, Step 2, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 4-chlorobenzyl chloroformate.

Step 3: (2'-{[(4-Chloro-benz>loxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4 trifluoromethyl-biphenyl-3-yl)-acetic acid
Prepared according to the procedure described in Example 56, Step 3, using the following starting material: (2-([(4-chloro-benzylloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 536.

Example 61: Synthesis of (2'-{((3-Chloro-benzylloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-43)

Step 1: 3-Chlorobenzyl Chloroformiate

Prepared according to the procedure described in Example 56, Step 1, using the following starting materials: 3-chlorobenzyl alcohol and phosgene (20% in toluene).

Step 2: (2'-{((3-Chloro-benzylloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 56, Step 2, using the following starting materials: (2'-ethylaminomethyl-δ-methoxy-4'-trifluoromethyl-biphenyl-8-yl)-acetic acid methyl ester and 3-chlorobenzyl chloroformate.

Step 3: (2'-{[(3-Chloro-benzyl)[y]carbonyl]-ethyl-ai tiino]-methyl}-6-i tiethoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid
[0650] Prepared according to the procedure described in Example 56, Step 3, using the following starting material: (2'-{(3-chloro-benzyloxy carbonyl)-ethyl- amino}-methyl) -6-methoxy-4 T trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 536.

Example 62: Synthesis of 2'-(1-(4-Chloro-phenyl)-ethoxy carbonyl-ethyl-amino)-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-44)

![Chemical structure](attachment:image.png)

Step 1: 1-(4-Chlorophenyl)ethyl Chloroforaiate

[0651] Prepared according to the procedure described in Example 56, Step 1, using the following starting materials: 1-(4-chlorophenyl)ethanol and phosgene (20% in toluene).

![Chemical structure](attachment:image.png)

Step 2: 2'-(1-(4-Chloro-phenyl)-ethoxy carbonyl-ethyl- amino)-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

[0652] Prepared according to the procedure described in Example 56, Step 2, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 1-(4-chlorophenyl)ethyl chloroforaiate.
Step 3: $\left(2^{-([1-(4-Chloro-phenyl)-ethoxycarbonyl]-ethyl-amino)-methyl}\right)-6$-methoxy-4'$-$trifluoromethyl-biphenyl-3-yl$]$-acetic acid

Prepared according to the procedure described in Example 56, Step 3, using the following starting material: $\left(2^{-([1-(4-Chloro-phenyl)-ethoxycarbonyl]-ethyl-amino)-methyl}\right)-6$-methoxy-4'$-$trifluoromethyl-biphenyl-3-yl$]$-acetic acid methyl ester. $\text{M}+\text{H}$ is 550.

**Example 63: Synthesis of $\left(2^{-([Benzyl]oxycarbonyl-(2,2,2-trifluoro-ethyl)-amino]-methyl}\right)-6$-fluoro-4'$-$trifluoromethyl-biphenyl-3-yl$]$-acetic acid (Compound 1-49)

Step 1: $\left(2^{-([Benzyl]oxycarbonyl-(2,2,2-trifluoro-ethyl)-amino]-methyl}\right)-6$-fluoro-4'$-$trifluoromethyl-biphenyl-3-yl$]$-acetic acid methyl ester

$\{6$-Fluoro-$2^{-([2,2,2-trifluoro-ethylamino]-methyl3-4'$-$trifluoromethyl-biphenyl-3-yl]}$-acetic acid methyl ester (0.26g, 0.62mmol), benzy1 chloroformate (0.13mL, 0.93mmol), and triethylamine (0.13mL, 0.93mmol) were combined in CH_2Cl_2 (2.1mL), and the reaction was stirred at room temperature for 2 hours. Analytical LCMS indicated that starting material was still present, so additional benzy1 chloroformate (0.13mL, 0.93mmol), and triethylamine (0.13mL, 0.93mmol) were added, and the reaction was stirred for 1 hour. Starting material was still present, so an aqueous work-up was performed, and the residue was dissolved in DMF and cooled to 0°C. Sodium hydride (60% in mineral oil; 0.03Og, 0.75mmol) was added, followed by benzy1 chloroformate (0.13mL, 0.93mmol), and the reaction was stirred for 20 minutes. The mixture was worked up with CH_2Cl_2 and H_2O, and the organic layer was dried over MgSO_4, filtered, and concentrated. The residue was purified by silica gel chromatography to give the title compound.
Step 2: \(2'\)-[[Benzoxycarbonyl-(2,2,2-trifluoroethyl)-amino]-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

[0655] Prepared according to the procedure described in Example 56, Step 3, using the following starting material: \(2'\)-[[benzyloxycarbonyl-(2,2,2-trifluoroethyl)-amino]-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 544.

Example 64: Synthesis of \(2'\)-[[Benzyloxycarbonyl-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-98)

Step 1: (3-Bromo-4-methoxy-phenyl)-acetic acid ethyl ester

[0656] A solution of 3-bromo-4-methoxyphenylacetic acid (3.0g, 12.2mmol) in EtOH and sulfuric acid was stirred at 100°C for 2 hours. The mixture was concentrated and partitioned between EtOAc and H₂O, and the organic layer was separated to give the title compound.

Step 2: 2-(3-Bromo-4-methoxy-phenyl)-propionic acid ethyl ester

[0657] To (3-bromo-4-methoxy-phenyl)-acetic acid ethyl ester (12.2mmol) in THF was added iodomethane (0.75mL, 12.2mmol), and the mixture was cooled to -78°C. Sodium bis(trimethylsilyl)amide (IM in THF; 12.2mL, 12.2mmol) was added, and subsequent work-up gave the title compound.

Step 3: 2-[4-Methoxy-3-(4,4,5,S-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl]-propionic acid ethyl ester

[0658] Prepared according to the procedure described in Example 1, Step 2, using the following starting materials: 2-(3-Bromo-4-methoxy-phenyl)-propionic acid ethyl ester and bis(pinacolato) diborom.

Step 4: 2-(2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-propionic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-[4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-propionic acid ethyl ester and 2-bromo-5-(trifluoromethyl)benzaldehyde.

Step 5: 2-(2'-Ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-propionic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: 2-(2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-propionic acid ethyl ester and ethylamine (2M in THF).

Step 6: 2-{2'-[(Benzyloxycarbonyl-ethyl-aminio)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: 2-(2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-propionic acid ethyl ester and benzyl chloroformate.

Step 7: 2-{2'-(Benzyloxycarbonyl-ethyl-aminio)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid
Prepared according to the procedure described in Example 1, Step 7, using the following starting material: 2-{[benzyloxy carbonyl-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid ethyl ester.

Example 65: Synthesis of 2'-[{([lS,2R]-2-Hydroxy-l-methyl-2-phenyl-ethylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-102)

Step 1: 2'-[{([lS,2R]-2-Hydroxy-l-methyl-2-phenyl-ethylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

(2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.094g, 0.27mmol), (IR,2S)-(−)-norephedrine (0.054g, 0.35mmol), and sodium triacetoxyborohydride (0.113g, 0.53mmol) were combined in dichloroethane (1mL). Acetic acid (1 drop) was added, and the reaction was stirred at room temperature for 40 minutes. Analytical LCMS showed that only starting material was present, so the reaction was heated to 50°C and stirred overnight. Analytical LCMS showed that some starting material was still present, so additional (IR,2S)-(−)-norephedrine (0.057g, 0.38mmol), and sodium triacetoxyborohydride (0.115g, 0.53mmol) were added, and the reaction was stirred for 3.5 hours at 50°C. After cooling to room temperature, the mixture was diluted with CH₂Cl₂ and saturated aqueous NaHCO₃, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: 2'-[{([lS^2R]-2-Hydroxy-l-methyl-2-phenyl-ethylamino)-methyl]}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid

(2'-{(lS^2R)-2-Hydroxy-l-methyl-2-phenyl-ethylamino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid methyl ester (0.021g, 0.04mmol) in MeOH (0.33mL)
and THF (0.4mL) was treated with IN aqueous NaOH (0.1mL) and stirred at room temperature for 4 hours. Analytical LCMS showed that some starting material was still present, so additional IN aqueous NaOH (0.05mL) was added, and the reaction was stirred at room temperature overnight. Analytical LCMS showed that starting material still remained, so additional IN aqueous NaOH (0.1mL) was added, and the reaction was stirred for 4 hours. After work-up with CH₂Cl₂ and IN aqueous HCl, the combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound.

Example 66: Synthesis of [6-Methoxy-2’-(phenethylamino-methyl)-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-103)

Step 1: [6-Methoxy-2’-(phenethylamino-methyl)-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

To a solution of (2’-formyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.277g, 0.79mmol) and 2-phenylethylamine (0.15mL, 1.18mmol) in CH₂Cl₂ (4mL) was added sodium triacetoxyborohydride (0.251g, 1.18mmol), and the reaction was stirred at room temperature for 2 hours. Analytical LCMS indicated that some starting material was still present, so additional 2-phenylethylamine (0.15mL, 1.18mmol) was added, along with acetic acid (1 drop), and the reaction was stirred overnight at room temperature. Analytical LCMS showed that starting material still remained, so additional sodium triacetoxyborohydride (0.260g, 1.23mmol) was added, and the reaction was stirred for 2.5 hours. Additional sodium triacetoxyborohydride (0.500g, 2.36mmol) was added, and the reaction was stirred for 1.5 hours, until no starting material was seen by analytical LCMS. The mixture was worked-up, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: [6-Methoxy-2’-(phenethylamino-methyl)-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid
Prepared according to the procedure described in Example 65, Step 2, using the following starting material: [6-methoxy^-tphenethlamino-methyl^-trifluoromethyl-biphenyl-S^-yl]-acetic acid methyl ester.

Example 67: Synthesis of (2^-Acety^((lS,2R)-2-hydroxy-l-meth^-2-phenyl-ethyl)-amino^-methyl^-6-methoxy^-4^-trifluoromethyl^-biphenyl-3-yl)-acetic acid (Compound 1-104)

Step 1: (Z^-IIAcetyl^-lS^-R^-l-hydroxy-l-methyl-l-phenyl-ethyl^-amino^-methyll^-6-methoxy^-4^-trifluoromethyl^-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: {2^-[(lS,2R)-2-hydroxy-l-methyl-2-phenyl-ethylamino]-methyl^-6-methoxy^-4^-trifluoromethyl^-biphenyl-3-yl] -acetic acid methyl ester and acetyl chloride.

Step 2: Cl^-I^-Acetyl- (lS^-R^-l-hydroxy-l-methyl-l-phenyl^-i^-ethyl^-amino^-methyl^-6-methoxy^-4^-trifluoromethyl^-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: (2^-{[acetyl-((lS,2R)-2-hydroxy-l-methyl-2-phenyl-ethyl)-amino]-methyl}^-6-methoxy^-4^-trifluoromethyl^-biphenyl-3-yl)-acetic acid methyl ester. M+H is 516.

Example 68: Synthesis of (2^-Ethylaminomethyl^-6-methoxy^-4^-trifluoromethyl^-biphenyl-3-yl)-acetic acid (Compound 1-105)

Step 1: (2^-Ethylaminomethyl^-6-methoxy^-4^-trifluoromethyl^-biphenyl-3-yl)-acetic acid
Prepared according to the procedure described in Example 1, Step 7, using the following starting material: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester.

Example 69: Synthesis of 2-[2'-[(AcetyI-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-2-methyl-propionic acid (Compound 1-115)

Step 1: 2-(3-Bromo-4-methoxy-phenyl)-2-methyl-propionitrile

To 3-bromo-4-methoxyphenylacetonitrile (1.01 g, 4.48mmol) and iodomethane (0.62mL, 9.85mmol) in THF (10mL) at -78°C was added sodium bis(trimethylsilyl)amide (IM in THF; 9.9mL, 9.9mmol), and the reaction was stirred at -78°C for 20 minutes. The mixture was partitioned between EtOAc and IN aqueous HCl, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated to give the title compound.

Step 2: 2-(3-Bromo-4-methoxy-phenyl)-2-methyl-propionic acid ethyl ester

2-(3-Bromo-4-methoxy-phenyl)-2-methyl-propionitrile (1.166g, 4.48mmol) was treated with potassium hydroxide (2.1g, 35.8mmol) in t-BuOH (10mL), and the reaction was stirred at 85°C overnight. Analytical LCMS indicated that no starting material remained, so the mixture was worked-up with EtOAc and IN aqueous HCl, dried over MgSO₄, filtered, and concentrated. The residue was dissolved in EtOH with heating, and then thionyl chloride (0.65mL, 8.96mmol) was added, and the reaction was stirred for 1 hour. Analytical LCMS indicated that no reaction has occurred, so additional thionyl chloride was added, and the reaction was stirred for another 4 hours. Sulfuric acid (5 drops) was added, and the reaction was stirred at reflux, but analytical LCMS indicated that no reaction had occurred. The mixture was neutralized with IN aqueous NaOH and extracted with CH₂Cl₂, and the organic layers were combined and concentrated. The residue was dissolved in ethylene glycol (10mL) and treated with potassium hydroxide (2.26g, 40.2mmol) and H₂O (1mL) to ensure complete hydrolysis to the acid. The reaction was stirred overnight at 150°C, and then cooled to room temperature and worked up with EtOAc and IN aqueous HCl. The organic layer was dried over Na₂SO₄, decanted, and concentrated, and the residue was dissolved in EtOH (10mL) and treated with thionyl chloride (0.65mL, 8.96mmol). Analytical LCMS indicated that no reaction had occurred after 20 minutes, so sulfuric acid was added, and the reaction was stirred at 80°C for 4 days. The mixture was partitioned between
CH₂Cl₂ and saturated aqueous NaHCO₃, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, decanted, and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 3: 2-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzaldehyde

Prepared according to the procedure described in Example 1, Step 2, using the following starting materials: 2-bromo-5-trifluoromethyl-benzaldehyde and bis(pinacolato)diboron.

Step 4: 2-(2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-2-methyl-propionic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-(3-bromo-4-methoxy-phenyl)-2-methyl-propionic acid ethyl ester and 2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzaldehyde.

Step 5: 2-(2'-Ethylanmonomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-2-methyl-propionic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: 2-(2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-2-methyl-propionic acid ethyl ester and ethylamine (2M in THF).
Step 6: 2-{2′-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-y]l}-2-methyl-propionic acid ethyl ester

[0675] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: 2-(2′-ethylaminoethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-2-methyl-propionic acid ethyl ester and acetyl chloride.

Step 7: 2-{2′-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-y]l}-2-methyl-propionic acid

[0676] To 2-{2′-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-2-methyl-propionic acid ethyl ester (0.290g, 0.63mmol) in THF (2.6mL) and EtOH (2mL) was added 1N aqueous NaOH (1.9mL), and the reaction was stirred at 50°C overnight. Analytical LCMS indicated that starting material was still present, so additional 1N aqueous NaOH (1mL) was added, and the reaction was stirred at 70°C for 2 hours. Additional 1N aqueous NaOH (1mL) was added, and the reaction was stirred for another 6 hours. The mixture was worked-up with CH₂Cl₂ and 1N aqueous HCl, and the organic layer was dried over Na₂SO₄, decanted, and concentrated. The residue was purified by preparative HPLC to give the title compound. M+H is 438.

Example 70: Synthesis of 2-{2′-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-2-methyl-propionic acid (Compound 1-116)

Step 1: 2-{2′-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-2-niethyl-propionk acid ethyl ester

[0677] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: 2-(2′-ethylaminomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-2-methyl-propionic acid ethyl ester and benzyl chloroformate.
Step 2: 2-[2'-(Beizyloxy carbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-2-methyl-propionic acid

Prepared according to the procedure described in Example 69, Step 7, using the following starting material: 2-[2'-(benzoyloxy carbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-2-methyl-propionic acid ethyl ester. M+H is 530.

Example 71: Synthesis of (6-Methoxy-2'-(2,2,2-trifluoro-ethylamino)-methyl)-4'-trifluoromethyl-biphenyl-3-yl-acetic acid (Compound 1-133)

Step 1: (6-Methoxy-2'-(2,2,2-trifluoro-ethylamino)-methyl)-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 4, Step 1, using the following starting materials: (I'-formyl-6-methoxy-4'- trifluoromethyl-biphenyl-S-ylO-acetic acid ethyl ester and 2,2,2-trifluoroethylamine hydrochloride.

Step 2: (6-Methoxy-2'-(2,2,2-trifluoro-ethylamino)-iiethyl]-4' -trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: (6-methoxy-2'-(2,2,2-trifluoro-ethylamino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester.

Example 72: Synthesis of (2'-Cyclopropylaminomethyl-6-methoxy-4' -trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-134)
Example 73: Synthesis of (2'-Aminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-141)

Step 1: (2'-Bromomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (2'-hydroxymethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (1.855g, 5.23mmol) in DME (19mL) was added phosphorus tribromide (0.74mL, 7.85mmol), and the reaction was stirred at room temperature for 1.5 hours. The mixture was cooled to 0°C, and saturated aqueous NaHCO₃ and EtOAc were added. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: (2'-Azidomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

To (2'-bromomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.867g, 2.08mmol) in DMSO (9mL) was added sodium azide (0.175g, 2.49mmol), and the reaction was stirred at 60°C for 4 hours. The mixture was cooled to room temperature and diluted with EtOAc and H₂O. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with H₂O, then brine, and dried over MgSO₄, filtered, and concentrated to give the title compound.
Step 3: (2′-Aminomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

(2′-Azidomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.784g, 2.07mmol) and 10% palladium on carbon (440g) were combined in MeOH (8mL) and stirred under a balloon of H₂ at room temperature for 1 hour. The mixture was filtered and concentrated, and the residue was purified by preparative HPLC. The desired fractions were combined, concentrated, and the isolated material was diluted with EtOAc and neutralized with saturated aqueous NaHCO₃. The organic layer was washed with brine, dried over Na₂SO₄, decanted, and concentrated to give the title compound.

Step 4: (2′-Aminomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid

(2′-Aminomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.058g, 0.17mmol) in THF (0.59mL) and MeOH (0.47mL) was treated with 1N aqueous NaOH (0.17mL, 0.17mmol) and stirred overnight at room temperature. Analytical LCMS indicated that starting material was still present, so the reaction was stirred at 50°C for 4.5 hours. Analytical LCMS showed that no change had occurred, so additional 1N aqueous NaOH (0.20mL, 0.20mmol) was added, and the reaction was stirred at 50°C overnight. The mixture was cooled to room temperature and acidified with 1N aqueous HCl. The aqueous layer was extracted with CH₂Cl₂, and then diluted with brine and extracted twice with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound.

Example 74: Synthesis of [2′-(Benzyloxycarbonylamino-methyl)-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-142)
Step 1: [2’-(Benzzyloxycarbonyl amino-methyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2’-aminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.

Step 2: [2’-(Benzzyloxycarbonylamino-methyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: [2’-(benzzyloxycarbonylamino-methyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester.

Example 75: Synthesis of [2’-[(Benzzyloxycarbonyl-ethyl-aniino)-methyl]-4Mriflioroiiehyl-biphenyl-3-yl]-acetic acid (Compound 1-143)

Step 1: (3-Bromo-phenyl)-acetic acid methyl ester

To 3-bromophenylacetic acid (5.03g, 23.4mmol) in MeOH (50mL) was added thionyl chloride (3.4mL, 46.8mmol), and the reaction was stirred at 65°C for 5 hours. The mixture was concentrated, and the residue was partitioned between CH₂Cl₂ and saturated aqueous NaHCO₃. The mixture was basified with IN aqueous NaOH, and the aqueous layer was extracted with
CH₂Cl₂. The combined organic layers were washed with H₂O, dried over MgSO₄, filtered, and concentrated to give the title compound.

Step 2: t3-(4,4,5,5-Tetramethyl-[l,2]dioxaborolan-2-yl)-phenyl-acetic acid methyl ester

[0689] Prepared according to the procedure described in Example 1, Step 2, using the following starting materials: (3-bromo-phenyl)-acetic acid methyl ester and bis(pinacolato)diboron.

Step 3: (2'-Formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[0690] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: [3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid methyl ester and 2-bromo-5-(trifluoromethyl)benzaldehyde.

Step 4: (2'-Ethylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[0691] Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and ethylamine (2M in THF).

Step 5: {2'-[(Benz>loxycarbonyl)-ethyl-amino]-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester
Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethyaminomethyl-4 1-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.

Step 6: {2'-(Benzyloxycarbonyl-ethyl-amino)-3-ethyl]-4 1-trifluoromethyl-biphenyl-3-yl}-acetic acid

Prepared according to the procedure described in Example 3, Step 3, using the following starting material: {2'1-(benzyloxycarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester. M+H is 472.

Example 76: Synthesis of {2'-'l-Ethyl-3-(4-hydroxy-benzyl)-ureidomethyl]-6-methoxy-4 1-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-252)

Step 1: {2'-'I-Ethyl-3-(4-hydroxy benzyl)-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

To (2'-ethyaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.59g, 1.49mmol) and diisopropylethylamine (0.65mL, 3.73mmol) in CH₂Cl₂ (6mL) at 0°C was added phosgene (20% in toluene; 1.2mL, 2.24mmol), and the reaction was stirred for 1 hour. 4-Hydroxybenzylamine (0.278g, 2.24mmol) and triethylamine (1mL, 7.47mmol) were then added, and the reaction was stirred for 2 hours. Analytical LCMS indicated the starting material was still present, so additional 4-hydroxybenzylamine (0.184g, 1.49mmol) was added, and the reaction was stirred for another 30 minutes. The mixture was partitioned between CH₂Cl₂ and H₂O, and the
organic layer was dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 2: {2’-[1-Ethyl-3-(4-hydroxy-benzyl)-ureidomethyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid

Prepared according to the procedure described in Example 76, Step 1, using the following starting materials: (2’-ethylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and 2-hydroxybenzylamine.

Example 77: Synthesis of {2’-[1-Ethyl-3-(2-hydroxy-benzyl)-ureidomethyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-253)
Step 2: \(\{2\text{-}[l\text{-Ethyl-3-(2-hydroxy-benzyl)-ureidomethyl}-6\text{-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}}\text{-acetic acid} \)

[0697] Prepared according to the procedure described in Example 76, Step 2, using the following starting material: \(\{2\text{-}[l\text{-ethyl-3-(2-hydroxy-benzyl)-ureidomethyl}-6\text{-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}}\text{-acetic acid ethyl ester. M+H is 517.} \)

Example 78: Synthesis of \(\{2\text{-}[l\text{-Ethyl-3-(3-hydroxy-benzyl)-ureidomethyl}-6\text{-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}}\text{-acetic acid (Compound 1-257)} \)

Step 1: \(\{2\text{-}[l\text{-Ethyl-3-(3-hydroxy-benzyl)-ureidomethyl}-6\text{-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}}\text{-acetic acid ethyl ester} \)

[0698] Prepared according to the procedure described in Example 76, Step 1, using the following starting materials: \((2\text{-ethylaminomethyl-6-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}}\text{-acetic acid ethyl ester and 3-(aminomethyl)phenol.} \)
Step 2: \{1'-[Ethyl-S-CS-hydroxy-benzyl]-ureidomethyl\}-6-methoxy^\'-trifluoromethyl-biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 76, Step 2, using the following starting material: \{2'-[1-ethyl-S-TS-hydroxy-benzyl]-ureidomethy^\'-\(\cdot\)-methoxy^\'-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester. M+H is 517.

Example 79: Synthesis of \{2'-[(Ethyl-(2-phenoxy-propionyl)-amino]-methyl\}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-45)

Step 1: \{2'-[(Ethyl-(2-phenoxy-propionyl)-amino]-methyl\}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethyaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 2-phenoxypropionyl chloride.

Step 2: \{2'-[(Ethyl-(2-phenoxy-propionyl)-amino]-methyl\}-6-methoxy-4'-trifluoroniethyl-biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \{2'-[(ethyl-(2-phenoxy-propionyl)-amino]-methyl\}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester. M+H is 516.

Example 80: Synthesis of \{2'-[3-(2-Bromo-phenyl)-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-47)
Step 1: \(2'\)-[3-(2-Bromo-phenyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

Prepared according to the procedure described in Example 41, Step 5, using the following starting materials: (2'-ethyaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and 2-bromophenyl isocyanate.

Step 2: \(2'\)-[3-(2-Bromo-phenyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \(2'\)-[3-(2-bromo-phenyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 566.

Example 81: Synthesis of \(2'\)-[Ethyl-(2-phenoxy-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (Compound 1-48)

Step 1: \(2'\)-([Ethyl-(2-phenoxy-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester
[0704] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester and phenoxyacetyl chloride.

![Chemical structure](image1)

Step 2: (2'-[Ethyl-(2-phenoxy-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

[0705] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (T- [ethyl-(2-phenoxy-acetyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 502.

Example 82: Synthesis of [2'-[(Benzoyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-80)

![Chemical structure](image2)

Step 1: (2'-[(Benzoyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

[0706] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and benzoyl chloride.
Step 2: [2’-[(Benzoyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2’-[(benzoyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester.

Example 83: Synthesis of [2’-[(2-Benzoyloxy-acetyl)-ethyl-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-92)

Step 1: (2’-[(2-Benzoyloxy-acetyl)-ethyl-amino]-methyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (r-ethylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yi]-acetic acid methyl ester and benzoyloxyacetyl chloride.

Step 2: (2’-[(2-Benzoyloxy-acetyl)-ethyl-amino]-methyl]-&-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2’-[(2-benzoyloxy-acetyl)-ethyl-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester.

Example 84: Synthesis of [2’-[(2-(4-Chloro-phenoxy)-acetyl]-ethyl-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-93)
Step 1: \([2'-([2-(4-Chloro\text{-}\text{phenoxy})-acetyl]-\text{ethyl}-\text{amino}\}]-\text{methyl}\}-6\text{-methoxy}-4'\text{-trifluoromethyl}-\text{biphenyl}-3\text{-yl}]\text{-acetic acid methyl ester}\)

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \((2'\text{-ethylaminomethyl}-6\text{-methoxy}-4'\text{-trifluoromethyl}-\text{biphenyl}-3\text{-yl})\text{-acetic acid methyl ester}\) and 4-chlorophenoxyacetyl chloride.

Step 2: \([2'-([2-(4-Chloro\text{-}\text{phenoxy})-acetyl]-\text{ethyl}-\text{amino}\}]-\text{methyl}\}-6\text{-methoxy}-4'\text{-trifluoromethyl}-\text{biphenyl}-3\text{-yl}]\text{-acetic acid}\)

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \([2'-([2-(4-chloro\text{-}\text{phenoxy})-acetyl]-\text{ethyl}-\text{amino}\}]-\text{methyl}\}-6\text{-methoxy}-4'\text{-trifluoromethyl}-\text{biphenyl}-3\text{-yl}]\text{-acetic acid methyl ester}\).

Example 85: Synthesis of \((2'-([\text{Ethyl\text{-}(\text{pyrrolidine\text{-}l\text{-}carbonyl})\text{-amino}\}]-\text{methyl}\}]-6\text{-methoxy}-4'\text{-trifluoromethyl}-\text{biphenyl}-3\text{-yl})\text{-acetic acid (Compound 1-97)}\)
Step 1: (I'-dEthyl-fpyrrolidine-l-carbo π yO-aminol-methyl -methoxy^'-trifluoromethyl-biphenyl-3-yl)-acetic add methyl ester

To a solution of [2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester (0.207g, 0.54mmol) and diisopropylethylamine (0.38mL, 2.16mmol) in CH₂Cl₂ (2mL) at 0°C was added phosgene (20% in toluene; 0.43mL, 0.81mmol), and the reaction was stirred for 2 hours. Pyrrolidine (0.13mL, 1.62mmol) was added, and the reaction was stirred at 0°C for 30 minutes. The mixture was concentrated, and the residue was purified by silica gel chromatography (20-40% EtOAc in hexanes) to give the title compound.

Step 2: (2'-([Ethyl-(pyrrolidine-l-carbonyl)-amino]methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-([ethyl-(pyrrolidine-1-carbonyl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester.

Example 86: Synthesis of (2'-(([2-(4-Chloro-phenoxy)-2-methyl-propionyl]-ethyl-aniino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-118)

Step 1: 2-(4-Chloro-phenoxy)-2-methyl-propionic acid

A solution of 2-(4-chlorophenoxy)isobutyric acid ethyl ester (1.0g, 4.12mmol) in THF (10mL) was treated with IN aqueous LiOH (10mL) and stirred overnight at room temperature. The mixture was acidified with IN aqueous HCl to pH 3-4 and extracted three times with EtOAc. The combined organic layers were dried and concentrated to give the title compound.
Step 2: 2-(4-Chloro-phenoxy)-2-methyl-propionyl chloride

2-(4-Chloro-phenoxy)-2-methyl-propionic acid (0.124g, 0.58mmol) and triethylamine (0.09mL, 0.62mmol) were combined in CH₂Cl₂ (2mL) and cooled to 0°C. Oxalyl chloride (0.05mL, 0.62mmol) was added, followed by DMF (3 drops), and the mixture was slowly warmed to room temperature and stirred for 2 hours to give the title compound, which was used directly in the next step.

Step 3: [2'-(2-(4-Chloro-phenoxy)-2-methyl-propionyl)-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

To a solution of 2-(4-chloro-phenoxy)-2-methyl-propionyl chloride (0.58mmol) in CH₂Cl₂ was added (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.20Og, 0.52mmol) in triethylamine (0.17mL, 1.23mmol), and the reaction was stirred at room temperature for 30 minutes. The mixture was concentrated and purified by silica gel chromatography (10-30% EtOAc in hexanes) to give the title compound.
Step 4:

\[
2\cdot\left(\left(2\cdot\left(4\cdot\text{Chloro-phenoxy}\right)\cdot2\cdot\text{methyl-propionyl}\right)\cdot\text{ethyl-amino}\right)\cdot\text{methyl}\cdot6\cdot\text{methoxy} \cdot 4\cdot\text{-trifluoromethyl-biphenyl-3-yl}\right)\] - acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material:

\[
2\cdot\left(\left(2\cdot\left(4\cdot\text{Chloro-phenoxy}\right)\cdot2\cdot\text{methyl-propionyl}\right)\cdot\text{ethyl-amino}\right)\cdot\text{methyl}\cdot6\cdot\text{methoxy} \cdot 4\cdot\text{-trifluoromethyl-biphenyl-3-yl}\right)\] - acetic acid methyl ester. M+H is 565.

Example 87: Synthesis of (2'-(2-Benzenesulfinyl-acetyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-119)

![Chemical structure of Compound 1-119](image)

Step 1:

\[
2\cdot\left(\left(2\cdot\text{Benzenesulfinyl-acetyl}\right)\cdot\text{ethyl-amino}\right)\cdot\text{methyl}\cdot6\cdot\text{methoxy} \cdot 4\cdot\text{-trifluoromethyl-biphenyl-3-yl}\right)\] - acetic acid

Prepared according to the procedure described in Example 35, Step 1, using the following starting material:

\[
\left(\text{T-}\left(\text{ethyl-(2-phenylsulfanyl-acetyl)-amino}\right)\cdot\text{methyl}\right)\cdot6\cdot\text{methoxy} \cdot 4\cdot\text{-trifluoromethyl-biphenyl-3-yl}\right)\] - acetic acid. M+H is 534.

Example 88: Synthesis of (2'-[(l-Ethyl-3-phenyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-121)

![Chemical structure of Compound 1-121](image)

[0719] To a solution of \[
2\cdot\left(\left(2\cdot(2\cdot\text{bromo-phenyl)}\cdot\text{l-ethyl-ureidomethyl}\right)\cdot6\cdot\text{methoxy} \cdot 4\cdot\text{-trifluoromethyl-biphenyl-3-yl}\right)\] - acetic acid \(0.072g, 0.13\text{mmol}\) in EtOH was added 10% palladium on carbon \(0.02Og\), and the reaction was stirred under \(H_2\) using a Parr apparatus overnight. The mixture was filtered through a pad of Celite and concentrated, and the residue was acidified with IN aqueous HCl and extracted with \(\text{CH}_2\text{Cl}_2\). The combined organic layers were dried and concentrated, and the crude material was purified by silica gel chromatography \(20\text{-60% EtOAc in hexanes}\) to give the title compound. M+H is 487.
Example 89: Synthesis of [2'-([l-(2,4-Dichloro-phenyl)-cyclopropanecarbonyl]-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-bipheayl-3-ylJ-acetic acid (Compound 1-131)

Step 1: 1-(2,4-Dichloro-phenyl)-cyclopropanecarbonyl chloride

1-(2,4-Dichlorophenyl)-cyclopropanecarboxylic acid (0.086g, 0.37mmol) and triethylamine (0.08mL, 0.56mmol) were combined in CH₂Cl₂ (2mL) and cooled to O°C. Oxalyl chloride (0.05mL, 0.56mmol) was added, followed by DMF (3 drops), and the reaction was stirred for 20 minutes at O°C and then warmed to room temperature to give the title compound, which was used directly in the next step.

Step 2: [2'-([I-(2,4-Dichloro-phenyl)-cyclopropanecarbonyl]-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-bipheayl-3-ylJ-acetic acid ethyl ester

To a solution of 1-(2,4-dichloro-phenyl)-cyclopropanecarbonyl chloride (0.37mmol) in CH₂Cl₂ was added triethylamine (0.16mL, 1.12mmol), and the mixture was stirred for 10 minutes. (2'-Ethylaminomethyl-6-methoxy-4'-trifluoromethyl-bipheayl-3-ylJ-acetic acid ethyl ester (0.146g, 0.37mmol) in CH₂Cl₂ was then added, and the reaction was stirred for 30 minutes at room temperature. Additional triethylamine (0.1mL, 0.72mmol) was added, and the reaction was stirred for another 30 minutes. Analytical LCMS indicated that starting material was still present, so another portion of triethylamine (0.1mL, 0.72mmol) was added, and the reaction was stirred for 1 hour and then worked-up with CH₂Cl₂ and H₂O. The combined organic layers were dried and concentrated, and the residue was purified by silica gel chromatography (10-40% EtOAc in hexanes) to give the title compound.
Step 3: [2'-([1-(2,4-Dichloro-phenyl)-cyclopropanecarbonyl]-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-([1-(2,4-dichloro-phenyl)-cyclopropanecarbonyl]-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 580.

Example 90: Synthesis of [2'-(1-Ethyl-3-pyridin-2-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-139)

Step 1: [2'-(1-Ethyl-3-pyridin-2-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

(0.203g, 0.81mmol) and diisopropylethylamine (0.22mL, 1.25mmol) were combined in CH₂Cl₂ (2mL) and cooled to 0°C. Phosgene (20% in toluene; 0.41mL, 0.77mmol) was added, and the reaction was stirred for 2.5 hours. After warming to room temperature, 2-(aminomethyl)pyridine (0.08mL, 0.77mol) was added, followed by triethylamine (0.14mL, 1.02mmol), and the reaction was stirred for 30 minutes. Analytical LCMS indicated that some starting material was still present, so additional triethylamine (0.07mL, 0.51mmol) was added, and the reaction was stirred for 45 minutes. The mixture was diluted with CH₂Cl₂ and H₂O, and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were dried and concentrated, and the residue was purified by silica gel chromatography (40-100% EtOAc in hexanes) to give the title compound.
Step 2: [2'-(1-Ethyl-3-pyridin-2-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid

[0724] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-(1-ethyl-3-pyridin-2-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid ethyl ester. M+H is 524.

Example 91: Synthesis of [2'-[3-(4-Chloro-benzyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-140)

Step 1: [2'-[3-(4-Chloro-benzyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

[0725] To (2'-ethylaminononyethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.196g, 0.50mmol) in CH$_2$Cl$_2$ (2mL) at 0°C was added diisopropylethylamine (0.21mL, 1.24mmol), followed by phosgene (20% in toluene, 0.39mL, 0.75mmol), and the mixture was stirred for 3 hours. 4-Chlorobenzylamine (0.09mL, 0.75mmol) was added, followed by triethylamine (0.14mL, 1.0mmol), and the reaction was stirred at room temperature for 20 minutes. Additional triethylamine (0.07mL, 0.5mmol) was added, and the reaction was stirred for 1 hour and then worked-up with CH$_2$Cl$_2$ and H$_2$O. The organic layer was dried and concentrated, and the residue was purified by silica gel chromatography (0-50% EtOAc in hexanes) to give the title compound.
Step 2: \{2\'-[3-(4-Chloro-benzyl)-1-ethyl-ureido \text{methyl}]\}-6-methoxy-4-trifluoromethyl-biphenyl-3-yl\}-acetic acid

[0726] To \{2\'-[3-(4-chloro-benzyl)-1-ethyl-ureido \text{methyl}]\}-6-methoxy-4-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester (0.196g, 0.35mmol) in THF (2mL) and MeOH (2mL) was added IN aqueous LiOH (2mL), and the reaction was stirred at room temperature for 2 hours. The mixture was acidified with IN aqueous HCl and extracted three times with EtOAc, and the combined organic layers were dried and concentrated. The residue was purified by preparative HPLC to give the title compound. M+H is 535.

Example 92: Synthesis of (2\'-\{[Ethyl-(2-pyrazol-1-yl-acetyl)-amino]-methyl\}\}-6-methoxy-4\'-trifluoromethyl]-biphenyl-3-yl\}-acetic acid (Compound 1-148)

Step 1: (2\'-\{[Ethyl-(2-pyrazol-1-yl-acetyl)-amino]-methyl\}\}-6-methoxy-4\'-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester

[0727] Prepared according to the procedure described in Example 37, Step 2, using the following starting materials: (2\'-\{[(2-chloro-acetyl)-ethyl-amino]-methyl\}\} -6-methoxy-4\'-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester and pyrazole.
Step 2: (2'-%[Ethyl-(2-pyrazol-l-yl-acetyl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 1, using the following starting material: (T-%[ethyl-(2-pyrazol-l-yl-acetyl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 476.

Example 93: Synthesis of (2'-(%[Ethyl-(2-[1,2,4]triazol-l-yl-acetyl]-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-150)

Step 1: (2'-(%[Ethyl-(2-[1,2,4]triazol-l-yl-acetyl]-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

To a solution of 1,2,4-triazole (0.042g, 0.61mmol) in DMF at 0°C was added sodium hydride (60% in mineral oil; 0.044g, 1.1mmol), and the mixture was stirred for 30 minutes. (2'-%[(2-Chloro-acetyl)-ethyl-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.55mmol) in DMF was added, followed by tetrabutylammonium iodide (0.1022g, 0.06mmol), and the reaction was warmed to room temperature and stirred for 1.5 hours. The mixture was diluted with EtOAc and H₂O, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were washed three times with H₂O, and then dried and concentrated, and the residue was purified by silica gel chromatography (40-90% EtOAc in hexanes) to give the title compound.
Step 2: (2'-(Ethyl-(2-[1,2,4]triazol-1-yl-acetyl)-amino)-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-(ethyl-(2-[1,2,4]triazol-1-yl-acetyl)-amino)-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 477.

Example 94: Synthesis of (2'-(Ethyl-(2-pyrrolidin-1-yl-acetyl)-amino)-methyl}-6-iiethoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-151)

Step 1: (2'-(Ethyl-(2-pyrrolid-1-yl-acetyl)-amino)-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

(2'-(2-Chloro-acetyl)-ethyl-amino)-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.55mmol), pyrrolidine (0.05mL, 0.6mmol), potassium carbonate (0.152g, 1.1mmol), and sodium iodide (0.082g, 0.55mmol) were combined in MeCN (3mL), and the reaction was stirred for 3 hours at room temperature. Analytical LCMS indicated that some starting material was still present, so additional potassium carbonate (0.053g, 0.39mmol) was added, and the reaction was stirred for 45 minutes. The mixture was diluted with EtOAc and H₂O, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried and concentrated to give the title compound.
Step 2: (Z'-iEthyl-CZ-pyrrolidin-l-yl-acetO-aminol-methyl - -methoxy^'-trifluoromethyl- biphenvl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-{[ethyl-(2-pyrrolidin-1 -yl-acetyl)-amino]-methyl} -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 479.

Example 95: Synthesis of [2'-{3-(3,4-Dichloro-benzyl)-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-152)

Step 1: [2'-{3-(3,4-Dichloro-benzyl)-l-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

(1'-Ethylaminomethyl-6-methoxy^'-trifluoromethyl-biphenyl-S-ylJ-acetic acid ethyl ester (0.17Og, 0.42mmol) and triethylamine (0.12mL, 0.86mmol) were combined in CH2Cl2 (2mL). 3,4-Dichlorobenzyl isocyanate (0.08mL, 0.52mmol) was added, and the reaction was stirred at room temperature for 15 minutes. After concentrating, the crude material was purified by silica gel chromatography (20-50% EtOAc in hexanes) to give the title compound.
Step 2: {2’-[3-(3,4-Dichloro-benzyl)-l-ethyl-ureidomethyl]-6-methoxy-4 l-trifluoromethyl-
biphenyl-3-yl}-acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: {2’-[3-(3,4-dichloro-benzyl]-l-emyl-ureidomethyj- 6-methoxy^l L
trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 569.

Example 96: Synthesis of [2’-[3-(3,5-Dichloro-beiizyl)-l-ethyl-ureidometfayl]-6-methoxy-4’-
trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-165)

Step 1: {2’-[3,S-Dichloro-benzyO-l-ethyl-ureidomethyl]- 6-methoxy^l,-trifluoromethyl-
biphenyl-3-yl}-acetic acid ethyl ester

To a solution of (2’-ethylarainomethyl-6-methoxy-4 l-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.17Og, 0.43mmol) in CH₂Cl₂ (2mL) at O°C was added diisopropylethylamine (0.19mL, 1.08mmol), followed by phosgene (20% in toluene; 0.34mL, 0.64mmol), and the mixture was stirred for 1.5 hours. 3,5-Dichlorobenzylamine (0.091g, 0.52mmol) was added, followed by triethylamine (0.12mL, 0.86mmol) and the reaction was warmed to room temperature and stirred for 45 minutes. Analytical LCMS indicated that some starting material was still present, so additional triethylamine (0, 12mL, 0.86mmol) was added, and the reaction was stirred for 1.5 hours. Analytical LCMS showed that starting material still remained, so another portion of triethylamine (0,25InL, 17.9mmol) was added, and the reaction was stirred overnight at room temperature. The mixture was worked up with CH₂Cl₂ and H₂O, and the aqueous layer was
extracted twice with CH_2Cl_2. The combined organic layers were dried and concentrated, and the residue was purified by silica gel chromatography (0-50% EtOAc in hexanes) to give the title compound.

Step 2: $\{2'-[3-(3,5-Dichloro-benzyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}$-acetic acid

[0736] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: $\{2'-[3-(3,5-dichloro-benzyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}$-acetic acid ethyl ester. M+H is 570.

Example 97: Synthesis of $\{2'-[1-Ethyl-3-(4-fluoro-benzyl)-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}$-acetic acid (Compound 1-176)

Step 1: $\{2'-[1-Ethyl-3-(4-fluoro-benzyl)-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}$-acetic acid ethyl ester

[0737] Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and 4-fluorobenzylamine.
Step 2: \(2'\{1\text{-Ethyl-3-(4-fluoro-benzyl)-ureidomethyl}\}-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\}\text{-acetic acid}

[0738] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \(2'\{1\text{-ethyl-3-(4-fluoro-benzyl)-ureidomethyl}\}-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\}\text{-acetic acid ethyl ester. M+H is 519.}

Example 98: Synthesis of \(2'\{3\text{-Chloro-benzyl}\}-1\text{-ethyl-ureidomethyl}\}-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\}\text{-acetic acid (Compound 1-177)}

Step 1: \(2'\{3\text{-Chloro-benzyl}\}-1\text{-ethyl-ureidomethyl}\}-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\}\text{-acetic acid ethyl ester}

[0739] Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and 3-chlorobenzylamine.
Step 2: \(2'-\left[3-(3\text{-Chloro-benzyl})-1\text{-ethyl-ureidomethyl}\right]-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\) acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \(2'-\left[3-(3\text{-chloro-benzyl})-1\text{-ethyl-ureidomethyl}\right]-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\) acetic acid ethyl ester. M+H is 535.

Example 99: Synthesis of \(2'-\left[3-(3,5\text{-Difluoro-benzyl})-1\text{-ethyl-ureidomethyl}\right]-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\) acetic acid (Compound 1-178)

Step 1: \(2'-\left[3-(3,5\text{-Difluoro-benzyl})-1\text{-ethyl-ureidomethyl}\right]-6\text{-methoxy-4'}\text{-trifluoromethyl-biphenyl-3-yl}\) acetic acid ethyl ester

Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: \(Z'\text{-ethylaminomethyl-6-methoxy-3'-trifluoromethyl-biphenyl-3-yO-acetic acid ethyl ester}\) and 3,5-difluorobenzylamine.
Step 2: \(2'-(3-(3,5\text{-difluoro-}b\text{enzyl})-l-\text{ethyl-ureidoinethyl}
\text{]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl})\)-acetic acid

[0742] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \(2'-(3-(3,5\text{-difluoro-}b\text{enzyl})-l-\text{ethyl-ureidomethyl}
\text{]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl})\) -acetic acid ethyl ester. \(M+H\) is 537.

Example 100: Synthesis of \(2'-(3-[(R)-l-(4\text{-Chloro-phenyl})-ethyl]-l-\text{ethyl-ureidomethyl}
\text{]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl})\)-acetic acid (Compound 1-179)

\[
\begin{align*}
\text{Step 1: } (2'-(3-[(R)-l-(4\text{-Chloro-phenyl})-ethyl]-l-\text{ethyl-ureidomethyl}
\text{]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl})\)-acetic acid ethyl ester
\end{align*}
\]

[0743] Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and (R)-(+)l-(4-chlorophenyl)ethylamine.

\[
\begin{align*}
\text{Step 2: } (2'-(3-[(R)-l-(4\text{-Chloro-phenyl})-ethyl]-l-\text{ethyl-ureidomethyl}
\text{]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl})\)-acetic acid
\end{align*}
\]

[0744] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \(2'-(3-[(R)-l-(4\text{-chloro-}b\text{phenyl})-ethyl]-l-\text{ethyl-ureidomethyl}\text{]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl})\)-acetic acid ethyl ester. \(M+H\) is 549.
Example 101: Synthesis of (2'-{3-[(S)-1-(4-Chloro-phenyl)-ethyl]-1-ethyl-ureidomethyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-180)

Step 1: (2'-{3-[(S)-1-(4-Chloro-phenyl)-ethyl]-1-ethyl-ureidomethyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester [0745] Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (2'-ethylniminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and (S)-4-chloro-alpha-methylbenzylamine.

Step 2: (2'-{3-[(S)-1-(4-Chloro-phenyl)-ethyl]-1-ethyl-ureidomethyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid [0746] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: (2'-{3-[((S)-1-(4-chloro-phenyl)-ethyl]-1-ethyl-ureidomethyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 549.

Example 102: Synthesis of [2'-(1,3-Diethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-181)
Step 1: \(\text{[I'-Cl^-Diethyl-ureidomethyl^- methoxy^-trifluoromethyl-biphenyl-S-yll-acetic acid ethyl ester} \)

Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

Step 2: \([2'-(1,3-Diethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid \)

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \([2'-(1,3-diethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 439. \)

**Example 103: Synthesis of [2'-(3-Cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-182) **

Step 1: \([2'-(3-Cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester \)

Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropylamine.
Step 2: [1'-CS-Cyclopropyl-l-ethyl-ureidomethyl^- - 6-methoxy^-'-trifluoromethyl-biphenyl-S-yl]-acetic acid

[0750] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: ^'-{(S-cyclopropyl-l-ethyl-ureidomethyl^- - 6-methoxy^-'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 451.

Example 104: Synthesis of [2'-{(l-Ethyl-3-pyridin-3-ylmethyl-ureidomethyl)-6-methoxy-4'- trifluoromethyl-biphenyl-3-ylJ-acetic acid (Compound 1-198)

Step 1: [2'-{(l-Ethyl-3-pyridin-3-ylmethyl-ureidomethyl)-6- piethoxy-4'-trifluoromethyl- biphenyl-3-yl]-acetic acid ethyl ester

[0751] Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (1'-ethylaminomethyl-6-methoxy^-'-trifluoromethyl-biphenyl-S-y^-acetic acid ethyl ester and 3-(aminomethyl)pyridine.

Step 2: P'-tl-Ethyl-S-pyridin-a-ylmethyl-ureidomethyO-o-methoxy^-'-trifluoromethyl- biphenyl-3-yl] -acetic acid
Prepared according to the procedure described in Example 91, Step 2, using the following starting material: [2'-(1-ethyl-3-pyridin-3-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 502.

Example 105: Synthesis of [2'-(1-Ethyl-3-pyridin-4-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-199)

![Chemical Structure](image1)

Step 1: [2'-(1-Ethyl-3-pyridin-4-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and 4-(aminomethyl)pyridine.

![Chemical Structure](image2)

Step 2: [2'-(1-Ethyl-3-pyridin-4-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: [2'-(1-ethyl-3-pyridin-4-ylmethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 502.

Example 106: Synthesis of [2'-(3-(6-Chloro-pyridin-3-ylmethyl)-1-ethyl-ureidonethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-200)
Step 1: \(2'\{3-(6\text{-Chloro-pyridin-3-ylmethyl})-1\text{-ethyl-ureidomethyl}\}-6\text{-methoxy-4\text{-trifluoromethyl-biphenyl-3-yl}}\)-acetic acid ethyl ester

Prepared according to the procedure described in Example 96, Step 1, using the following starting materials: \(2'\text{-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}}\)-acetic acid ethyl ester and S-aininomethyl\(^\oplus\)-chloropyridine.

Step 2: \(2'\{3-(6\text{-Chloro-pyridin-S-ylmethyl})-1\text{-ethyl-ureidomethyl}\}-6\text{-methoxy-4\text{-trifluoromethyl-biphenyl-3-yl}}\)-acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \(2'\{3-(6\text{-chloro-pyridin-3-ylmethyl})-1\text{-ethyl-ureidomethyl}\}-6\text{-methoxy-4}'\text{-trifluoromethyl-biphenyl-3-yl}\) -acetic acid ethyl ester. M+H is 536.

Example 107: Synthesis of \(2'\{\text{Cyclobutanecarbonyl-ethyl-amino)-methyl}\}-6\text{-methoxy-4\text{-trifluoromethyl-biphenyl-3-yl}}\)-acetic acid (Compound 1-206)
Step 1: {2'-[(Cyclobutanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and cyclobutanecarbonyl chloride.

Step 2: {2'-[(Cyclobutanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: {^-[(cyclobutanecarbonyl-ethyl-amino)methyl]-6-methoxy^-'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 450.

Example 108: Synthesis of {2'(Ethy phenylacetyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-207)

Step 1: {2'-[(Ethyl-phenylacetyl-aniino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and phenylacetyl chloride.
Step 2: \(2^\prime\)-[(Ethyl-phenylacetyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \(2^\prime\)-[(ethyl-phenylacetyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 486.

Example 109: Synthesis of \((2^\prime\)-[(Ethyl-(3-phenyl-propionyl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-208)

Step 1: \((2^\prime\)-[(Ethyl-(3-phenyl-propionyl)-amino]-methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \((2^\prime\)-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and hydrocinnamoyl chloride.
Step 2: (2’-((Ethyl)-(3-phenyl-propionyl)-aniino)-inethyl}-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: (2’-[[ethyl-(3-phenyl-propionyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 500.

Example 110: Synthesis of 2’-((Ethyl-l-hydroxy-cyclopropanecarbonyl)-amino]methyl]-6-methoxy-4’-trifluoromethyl]biphenyl-3-yl)-acetic acid (Compound 1-209)

Step 1: (2’-((Ethyl-(l-hydroxy-cyclopropanecarbonyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

(2’-Ethylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.240g, 0.61mmol), l-hydroxy-l-cyclopropanecarboxylic acid(0.074g, 0.73mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.175g, 0.92mmol), 1-hydroxybenzotriazole (0.124g, 0.92mmol), and triethylamine (0.2ImL, 1.53mmol) were combined in CH₂Cl₂ (2mL) and stirred at room temperature for 2 hours. The mixture was concentrated, and the residue was purified by silica gel chromatography (20-90% EtOAc in hexanes) to give the title compound.

Step 2: (2’-((Ethyl-(l-hydroxy-cyclopropanecarbonyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: (2’-[[ethyl-(l-hydroxy-cyclopropanecarbonyl]-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 452.

Example 111: Synthesis of (2’-(l-Ethyl-ureido)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-210)
Step 1: 2′-[(1-Ethyl-ureido)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

[0765] (2′-Ethylaminomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.202g, 0.51mmol) and sodium cyanate (0.052g, 0.77mmol) were combined in H₂O (2mL). Acetic acid (0.04mL, 0.77mmol) was added, and the reaction was stirred for 1 hour. DMF (1mL) was added to facilitate stirring, and the reaction was stirred for 1.5 hours. The solution was extracted with EtOAc, and the combined organic layers were dried and concentrated to give the title compound.

Step 2: 2′-[(1-Ethyl-ureido)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid

[0766] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: 2′-[(1-ethyl-ureido)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 411.

Example 112: Synthesis of 2′-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-217)

Step 1: 2′-[Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

[0767] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2′-ethylaminomethyl-6-methoxy-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropanecarbonyl chloride.
Step 2: l-IZ'-ftCyclopropanecarbonyl-ethyl-amino^methyll- 6-methoxy^'-trifluoiOmethyl-
biphenyl-3-yl}-propionic acid ethyl ester

[0768] 2'-[(Cyclopropanecarbonyl-ethyl-ainino)-inethyl]-6-methoxy-4'-trifluoromethyl-
biphenyl-3-yl} -acetic acid ethyl ester (0.408g, 0.88mmol) was dissolved in THF (4mL) and cooled to -78°C. Sodium bis(trimethylsilyl)amide (1M in THF; 1.06mL, 1.06mmol) was added, followed by iodomethane (0.06mL, 0.97mmol), and the reaction was stirred at -78°C for 30 minutes. The mixture was quenched with saturated aqueous NH₄Cl and warmed to room temperature. The mixture was extracted three times with EtOAc, and the combined organic layers were dried, concentrated, and purified by silica gel chromatography (10-40% EtOAc in hexanes) to give the title compound.

Step 3: 2-{2'-[(Cyclopropanecarbonyl-ethyl-amino)-methyI]-6-methoxy-4'-trifluoromethyl-
biphenyl-3-yl]-propionic acid

[0769] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: 2-{2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -propionic acid ethyl ester. M+H is 450.

Example 113: Synthesis of 2-[2'-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4'-
trifluoromethyl-biphenyl-3-yl]-propioiiic acid (Compound 1-222)
Step 1: 2-{2'-[(Benzyloxycarbonyl-ethyl-amino)-inethyl]-6-inethoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid ethyl ester

[0770] 2'-{2'-(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (0.058g, 0.1 lmmol) in EtOH (3mL) was treated with sulfuric acid (2 drops) at 70°C for 1.5 hours to give the title compound.

Step 2: 2-(2'-Ethylaminoinethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-propionic acid ethyl ester

[0771] To a solution of 2'-(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid ethyl ester (0.1 lmmol) in EtOH (12mL) was added 10% palladium on carbon (0.05Og), and the reaction was stirred under a balloon of H₂ at room temperature for 1 hour. The mixture was filtered through a pad of Celite and rinsed with EtOH. The filtrate was concentrated to give the title compound.

Step 3: 2-[2'-(3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid ethyl ester
Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: 2-(2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-propionic acid ethyl ester and benzyl isocyanate.

Step 4: 2-[2'-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: 2-[2'-(3-benzyl-l-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid ethyl ester. M+H is 515.

Example 114: Synthesis of Cydopropanecarboxylic acid ethyl- {2'-methoxy-5'-(R)-l-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl}-4-trifluoromethyl-biphenyl-2-ylmethyl] -amide (Compound 2-12) and Cydopropanecarboxylic acid ethyl-{2'-methoxy-5'-(S)-l-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl}-amide (Compound 2-13)

Step 1: 2-[2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionyl chloride

To 2-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (0.096g, 0.21mmol) and triethylamine (0.04mL, 0.26mmol) in CH₂Cl₂ (2mL) at 0°C was added oxalyl chloride (0.02mL, 0.26mmol), followed by DMF (2 drops), and the reaction was stirred at 0°C for 1.5 hours. The mixture was concentrated to give the title compound.
Step 2: Cyclopropanecarboxylic acid ethyl-{2'-methoxy-5'-[(S)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl}-amide and Cyclopropanecarboxylic acid ethyl-{2'-methoxy-{[(R)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl}-amide

[0775] To (4R,5S)-4-methyl-5-phenyl-2-oxazolidinone (0.037g, 0.21mmol) in THF (2mL) at -78°C was added n-butyllithium (1.6M in hexanes; 0.20mL, 0.32mmol), and the mixture was stirred for 1 hour. A solution of 2-{2'-(cyclopropanecarbonyl-ethyl-amino)-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionyl chloride (0.21mmol) in THF (2mL) was added dropwise, and the reaction was stirred for 1 hour at -78°C. The mixture was worked-up with EtOAc and H₂O, and the organic layer was dried and concentrated. The residue was purified by preparative HPLC to give the title compounds as separate products. M+H is 609 (Compound 2-12); M+H is 609 (Compound 2-13).

Example 115: Synthesis of (R)-2-{2'-(cyclopropanecarbonyl-ethyl-amino)methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid (Compound 1-224)

[0776] Cyclopropanecarboxylic acid ethyl-{2'-methoxy-5'-[(R)-4-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl}-amide (0.01 Ig, 0.02mmol) in THF (1mL) and H₂O (1mL) was treated with hydrogen peroxide (30%; 0.004H₂O, 0.04mmol) and lithium hydroxide (0.002g, 0.04mmol), and the reaction was stirred overnight at room temperature. The mixture was acidified to pH 3-4 with IN aqueous HCl and extracted three times with EtOAc. The combined organic layers were dried and concentrated to give the title compound. M+H is 450.

Example 116: Synthesis of (S)-2-{2M(Cyclopropanecarbonyl-ethyl-ainino>methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid (Compound 1-225)
Prepared according to the procedure described in Example 115, Step 1, using the following starting material: Cyclopropanecarboxylic acid ethyl-[2’-methoxy-5’-[(S)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4-trifluoromethyl-biphenyl-2-yilmethyl] -amide. M+H is 450.

Example 117: Synthesis of 2-[2’-(3-Cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-243)

Step 1: 2-[2’-(3-Cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-propionic acid ethyl ester

Prepared according to the procedure described in Example 96, Step 1, using the following starting material: 2-(2’-ethylaminomethyl-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-propionic acid ethyl ester and cyclopropylamine.

Step 2: 2-[2’-(3-Cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-propionic acid

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: 2-[2’-(3-cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-propionic acid ethyl ester. M+H is 465.

Example 118: Synthesis of 2’-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-244)
Step 1: (l'-Ethylaminomethyl-trifluoromethyl-biphenyl-3-yO-acetic acid

[0780] {2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid (0.16g, 0.34mmol) in EtOH (7mL) was treated with 10% palladium on carbon (0.072g), and the reaction was stirred under a balloon of H₂ for 3 hours to give the title compound.

Step 2: (2'-Ethylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

[0781] To a solution of (2-l-ethylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (0.34mmol) in EtOH (7mL) was added sulfuric acid (3-4 drops), and the reaction was stirred at 50°C overnight. Once no starting material was seen by analytical LCMS, the mixture was filtered over a pad of Celite and rinsed with EtOH. The filtrate was concentrated to give the title compound.

Step 3: {2'-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid ethyl ester

[0782] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethyaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropanecarbonyl chloride.
Step 4: \{1'-I^yclopropanecarbonyl-ethyl-amino^methyy^'-trifluoromethyl-biphenyl-S-yl\}-acetic acid

[0783] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \{2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester. M+H is 406.

Example 119: Synthesis of \(\text{2'-(f(2,2-Dimethyl-propionyl)-ethyl-amino)-niethyl}-6'\)-raethoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-245)

Step 1: \(\text{2'-([(2,2-Dimethyl-propionyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester}

[0784] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \(\text{([ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and trimethylacetyl chloride.}}

Step 2: \(\text{2'-[(2,2-Dimethyl-propionyl)-ethyl-amino]-methyl]-6-methoxy-4'_trifluoromethyl-biphenyl-3-yl)-acetic acid}

[0785] Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \(\text{2'-([(2,2-dimethyl-propionyl)-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 452.}

Example 120: Synthesis of \(\text{2'-(Ethyl-isobutyryl-amino)-methyl]-6-methoxy-4'_trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-246)
Step 1: \(\{2'\- [(\text{Ethyl-isobutyryl-amino})-\text{methyl}] -6\text{-methoxy} -4'\text{-trifluoromethyl-biphenyl-3-yl}\} -\text{acetic acid ethyl ester} \)

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \((2'\-\text{ethylaminomethyl-6-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}})\text{-acetic acid ethyl ester and isobutyryl chloride.} \)

Step 2: \(\{2'\- [(\text{Ethyl-isobutyryl-amino})-\text{methyl}] -6\text{-methoxy}-4'\text{-trifluoromethyl-biphenyl-3-yl}\} -\text{acetic acid} \)

Prepared according to the procedure described in Example 91, Step 2, using the following starting material: \((2'\- [(\text{Ethyl-isobutyryl-amino})-\text{methyl}] -6\text{-methoxy}-4'\text{-trifluoromethyl-biphenyl-3-yl}) -\text{acetic acid ethyl ester. M+H is 438.} \)

Example 121: Synthesis of \(\{4'\text{-Bromo-2'\-[} (\text{cyclopropanecarbonyl-ethyl-amino})\text{-methyl}] -6\text{-methoxy-biphenyl-3-yl}\} -\text{acetic acid (Compound 1-247)} \)

Step 1: Cyclopropanecarboxylic acid (5-bromo-2-iodo-benzyl)-ethyl-amide

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (5-bromo-2-iodo-benzyl)-ethyl-amine and cyclopropanecarbonyl chloride.
Step 2: \{4'-Bromo-2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl\}-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: cyclopropanecarboxylic acid (5-bromo-2-iodo-benzyl)-ethyl-amide and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester.

Step 3: \{4'-Bromo-2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \{4'-bromo-2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl\}-acetic acid ethyl ester. M+H is 446.

Example 122: Synthesis of [2'-{(3-Benzyi-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}] -acetic acid (Compound 1-251)

Step 1: (2'-Cyano-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

2-Bromo-5-(trifluoromethyl)benzonitrile (5.5g, 22mmol), [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester (7.04g, 22mmol), potassium carbonate (7.6g, 55mmol), and tetrakis(triphenylphospnine)palladium(0) (0.30Og, 0.25mmol) were combined in DME (40mL) and H₂O (20mL). The mixture was purged with N₂, and then stirred at 85°C for 36 hours. After standard work-up, the residue was purified by silica gel chromatography to give the title compound.
Step 2: (2'-Aminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

[0792] To a solution of (2'-cyano-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester (0.545g, 1.5mmol) and cobalt(II) chloride hexahydrate (0.71g, 3.0mmol) in MeOH (60mL) and THF (24mL) was added sodium borohydride (0.58g, 15.3mmol), and the reaction was stirred at room temperature for 2 hours. 2N Aqueous HCl (67mL) was added, and the mixture was concentrated. 2N Aqueous NH₄OH was added until the solution was basic, and the mixture was extracted twice with CH₂Cl₂. The combined organic layers were washed three times with H₂O, dried over Na₂SO₄, filtered, and concentrated to give the title compound.

Step 3: [2'-(3-Benzyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

[0793] Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: (2'-aminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and benzyl isocyanate.

Step 4: [2'-(3-Benzyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid
Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2’-(3-benzyl-ureidomethyl)-6-methoxy-4’-trifluorometliyl-biphenyl-3’-yl]-acetic acid ethyl ester.

Example 123: Synthesis of [6-Benzylxoy-2’-{(benzylxocarbonyl-ethyl-amino)-methyl}-4’-trifluorometliyl-biphenyl-3-yl]-acetic acid (Compound 1-128)

Step 1: (4-Benzylxoy-3-bromo-phenyl)-acetic acid ethyl ester

To a suspension of (3-bromo-4-hydroxy-phenyl)-acetic acid ethyl ester (0.100g, 0.39mmol) and cesium carbonate (0.376g, 1.1 mmol) in MeCN was added benzyl bromide (0.06mL, 0.46mmol), and the reaction was stirred at room temperature until no starting material was seen by analytical tic. The mixture was partitioned between EtOAc and H2O, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over MgSO4, filtered, and concentrated to give the title compound.

Step 2: [6-Benzylxoy^-{Obenzyloxycarbonyl-ethyl-aminol-methyl}^-trifluorometliyl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluorometliyl-benzyl]-carbamic acid benzyl ester and (4-benzyloxyl-3-bromo-phenyl) -acetic acid ethyl ester.
Step 3: \{6-Benzyloxy-2’-[(benzyloxycarbonyl-ethyl-amino)-methyl]-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid

To a solution of \{6-benzyloxy-2’-[(benzyloxycarbonyl-ethyl-amino)-methyl]-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester (0.050g, 0.08mmol) in MeOH (3mL) was added IN aqueous LiOH (1mL), and the reaction was stirred at 65°C overnight. The mixture was acidified with IN aqueous HCl and extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated, and the residue was purified by preparative HPLC to give the title compound. M+H is 578.

Example 124: Synthesis of \{2’-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-ethoxy-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-129)

Step 1: (3-Bromo-4-ethoxy-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 123, Step 1, using the following starting materials: (3-bromo-4-hydroxy-phenyl)-acetic acid ethyl ester and iodoethane.

Step 2: \{2’-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-ethoxy-4’-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester and (3-bromo-4-ethoxy-phenyl)-acetic acid ethyl ester.

Step 3: \(2'\)-[\(\text{Benzyloxy carbonyl-ethyl amino}\)-methyl]-6-ethoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester and (3-bromo-4-ethoxy-phenyl)-acetic acid ethyl ester.

Example 125: Synthesis of \(2'\)-[\(\text{Benzyloxy carbonyl-ethyl amino}\)-methyl]-6-cyclopropylmethoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-130)

Step 1: (3-Bromo-4-cyclopropylmethoxy-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 123, Step 1, using the following starting materials: (3-bromo-4-hydroxy-phenyl)-acetic acid ethyl ester and (bromomethyl)cyclopropane.

Step 2: \(2'\)-[\(\text{Benzyloxy carbonyl-ethyl amino}\)-methyl]-6-cyclopropylmethoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid bemyl ester and {3-bromo-4-cyclopropylmethoxy-phenyl}-acetic acid ethyl ester.

\[\begin{align*}
\text{Step 3:} & \quad (2'-[(\text{Benz>lox>xarbonyl-ethyl-amino})-methyl]-6-cyclopropylmethoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid
\end{align*} \]

Prepared according to the procedure described in Example 123, Step 3, using the following starting material: \(2'-(\text{benzyloxy carbonyl-ethyl-amino)-methyl}\)-6-cyclopropylmethoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 542.

Example 126: Synthesis of P’-CS-Benzyl-l-ethyl-ureidomethyl^\wedge 6-hydroxy^-\wedge 1-trifluoroinethyl-biphenyl-3-yl] -acetic acid ethyl ester (Compound 2-9)

\[\begin{align*}
\text{Step 1:} & \quad [4-\text{Benzyloxy}-3-(4,4,5,5-tet \text{amethyl}-[1,3\wedge]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester
\end{align*} \]

Prepared according to the procedure described in Example 1, Step 2, using the following starting materials: (4-benzyloxy-3-bromo-phenyl)-acetic acid ethyl ester and bis(pinacolato)diboron.

\[\begin{align*}
\text{Step 2:} & \quad (6-\text{Benzyloxy}-2'-formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester
\end{align*} \]
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: [4-benzyloxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester and 2-bromo-5-(trifluoromethyl)benzaldehyde.

Step 3: (6-Benzyl-2'-ethylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (6-benzyloxy-2'-formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

Step 4: (2'-{(3-Benzyl-1-ethyl-ureidomethyl)-6-benzyloxy-4'-trifluoroinethyl-biphenyl-3-yl}-acetic acid ethyl ester

Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: (6-benzyloxy-2'-ethylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and benzyl isocyanate.
Step 5: [2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-hydroxy-4’-trifluoromethyl-biphenyl-3-yl]-
acetic acid ethyl ester

Prepared according to the procedure described in Example 36, Step 7, using the following
starting materials: [2’-(3-benzyl-1-ethyl-ureidomethyl)-6-hydroxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester and N-phenyl-bis(trifluoromethanesulfonimide).

Example 127: Synthesis of (2’-(3-Benzyl-1-ethyl-ureidomethyl)-6-hydroxy-4’-trifluoromethyl-
biphenyl-3-yl) -acetic acid (Compound 1-220)

Step 1: [2’-(3-Benzyl-1-ethyl-ureidomethyl)-6-trifluoromethanesulfonyloxy-]
-4’-trifluoromethyl-biphenyl-3-yl] -acetic acid ethyl ester

Step 2: 12’-(3-Benzyl-l-ethyl-ureidomethyl)-6-hydroxy-4’-trifluoromethyl-biphenyl-3-yl]-
acetic acid
Prepared according to the procedure described in Example 123, Step 3, using the following starting material: [2’-(3-benzyl-1-ethyl-ureidomethyl)-6-trifluorometlanesulfonyloxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 487.

Example 128: Synthesis of 2-[[Benzyloxycarbonyl-ethyl-amino)-methyl]-5-T-ethoxycarbonylmethyl-2’-methoxy-biphenyl-4-carboxylic acid (Compound 2-14)

Step 1: 4-Bromo-3-methyl-benzoic acid ethyl ester

To 4-bromo-3-methylbenzoic acid (16.27g, 75.7mmol) in EtOH (500mL) was added concentrated sulfuric acid (0.5mL), and the reaction was stirred at 95°C overnight. Additional sulfuric acid (2mL) was added to push the reaction to completion, and then the mixture was quenched with the slow addition of sodium carbonate. The mixture was filtered and concentrated, and the residue was diluted and washed with H2O twice, saturated aqueous NaHCO3, brine, and H2O to give the title compound.

Step 2: 4-Bromo-3-bromomethyl-benzoic acid ethyl ester

4-Bromo-3-methyl-benzoic acid ethyl ester (18.24g, 75.4mmol), N-bromosuccinimide (14.1g, 79.2mmol), and benzoyl peroxide (0.9g, 3.77mmol) were combined in CCl4, and the reaction was heated to 80°C and stirred with a halogen desk lamp shining on it for 6 hours. The mixture was concentrated and partitioned between CH2Cl2 and H2O. The organic layer was separated and washed with H2O and brine, and then dried and concentrated. The residue was triturated with hexane (3x50mL) and dried to give the title compound.

Step 3: Ethyl-carbamic acid benzyl ester

Ethylamine (1.3mL, 20.0mmol) and diisopropylethylamine (7mL, 40.0mmol) were combined in CH2Cl2 (200mL) and cooled to 0°C. Benzyl chloroformate (2.86mL, 20.0mmol) was added dropwise, and the reaction was stirred at 0°C for 30 minutes. Once no starting material was seen by analytical tic, the mixture was warmed to room temperature and washed with H2O, 0.1N aqueous HCl, and H2O, and then dried and concentrated to give the title compound.
Step 4: 3-[[Benzyloxycarbonyl-ethyl-amino]-methyl]-4-bromo-benzoic acid ethyl ester

[0814] 4-Bromo-3-bromomethyl-benzoic acid ethyl ester (2.95g, 9.2mmol) and ethyl-carbamic acid benzyl ester (3.30g, 18.4mmol) were combined in DMF (100mL) and cooled to 0°C. Sodium hydride (60% in mineral oil; 0.772g, 19.3mmol) was added slowly, and the reaction was stirred at room temperature for 10 minutes. The mixture was quenched with H₂O and 1N aqueous HCl (20mL), and then extracted with 1:1 EtOAc : hexanes three times. The organic layer was washed with brine, and then dried and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound, as well as the hydrolyzed product, which was combined with the product from the next step.

Step 5: 3-[[Benzyloxycarbonyl-ethyl-amino]-methyl]-4-bromo-benzoic acid

[0815] 3-[[Benzyloxycarbonyl-ethyl-amino]-methyl]-4-bromo-benzoic acid ethyl ester (3.62g, 7.2mmol) was dissolved in MeOH (40mL) and cooled to 0°C. 1N Aqueous LiOH (22mL, 22mmol) was added, and the reaction was stirred at room temperature for 3 hours. The mixture was quenched with 1N aqueous HCl (22mL) and extracted three times with EtOAc. The combined organic layers were washed with brine, dried, and concentrated to give the title compound, which was combined with the hydrolyzed product isolated in step 5.
Step 6: l-ICBenzyloxycarbonyl-ethyl-amino-J-methy-3'-ethoxycarbonyl-ethyl-I'-methoxy-biphenyl-4-carboxylic acid

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: S-tCbenzyloxycarbonyl-ethyl-arainoi-methyl]-bromo-benzoic acid and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3]-dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester. M+H is 506.

Example 129: Synthesis of 2-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-5'-carboxymethyl-2'-methoxy-biphenyl-4-carboxylic acid (Compound 1-226)

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: 2-[(benzyloxycarbonyl-ethyl-amino)-methyl]-5-ethoxycarbonylmethyl-2'-methoxy-biphenyl-4-carboxylic acid. M+H is 478.

Example 130: Synthesis of [5-Chloro-2'-(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-itethyIsulfanyl-biphenyl-3-yl]-acetic acid (Compound 1-242)

Step 1: 2-(3-Bromo-5-chloro-phenyl)-malonic acid dimethyl ester
1,3-Dibromo-5-chlorobenzene (25g, 93mmol), dimethyl malonate (23.4mL, 204mmol), and copper(I) bromide (29.2g, 204mmol) were combined in 1,4-dioxane (300mL) and cooled to 0°C. Sodium hydride (60% in mineral oil; 8.2g, 204mmol) was added slowly, and the reaction was stirred at room temperature for 20 minutes, and then stirred at 105°C for 4 hours. After cooling to room temperature, the mixture was worked-up with CH₂Cl₂ and aqueous NH₄OH. The organic layer was concentrated, and the residue was purified by silica gel chromatography (0-20% EtOAc in hexanes) to give the title compound.

Step 2: (3-Bromo-5-chloro-phenyl)-acetic acid

2-(3-Bromo-5-chloro-phenyl)-malonic acid dimethyl ester (19g, 59mmol) in MeOH (500mL) was treated with IN aqueous NaOH (237mL, 237mmol) at 50°C for 1.5 hours. The mixture was concentrated, and the residue was acidified and extracted twice with EtOAc. The combined organic layers were dried, filtered, and concentrated to give the title compound.

Step 3: (3-Bromo-5-chloro-phenyl)-acetic acid ethyl ester

(3-Bromo-5-chloro-phenyl)-acetic acid (14g, 56mmol) in EtOH (150mL) was treated with sulfuric acid (2mL) at 50°C for 2 hours. The mixture was worked-up with CH₂Cl₂ and H₂O, and the organic layer was concentrated to give the title compound.

Step 4: 5-Fluoro-2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)benzaldehyde

Prepared according to the procedure described in Example 1, Step 2, using the following starting materials: 2-bromo-5-fluorobenzaldehyde and bis(pinacolato)diboron.

Step 5: (5-Chloro-4'-fluoro-2'-formyl-biphenyl-3-yl)-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (3-bromo-5-chloro-phenyl)-acetic acid ethyl ester and 5-fluoro-2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzaldehyde.

Step 6: (5-Chloro-2'-ethyminomethyl-4'-fluoro-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (5-chloro-4'-fluoro-2'-formyl-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

Step 7: {5-Chloro-2'-(cyclopropanecarbonyl-ethyl-amino)-methyl}-4'-fluoro-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (5-chloro-2'-ethyminomethyl-4'-fluoro-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropanecarbonyl chloride.

Step 8: {5-Chloro-2'-(cyclopropanecarbonyl-ethyl-amino)-niethyl}-4'-methylsulfanyl-biphenyl-3-yl]-acetic acid

{5-CUoro-2'-(cyclopropanecarbonyl-ethyl-amino)-methyl}-4'-fluoro-biphenyl-3-yl]-acetic acid ethyl ester (0.18g, 0.28mmol) and sodium thiomethoxide (0.043g, 0.62mmol) were combined in DMF (2mL) and stirred at 100°C overnight. Analytical LCMS indicated that the
fluoride hadn’t been displaced, but the ethyl ester had hydrolyzed. Additional sodium thiomethoxide (0.040g, 0.57mmol) was added, and the reaction was stirred overnight at 100°C. Analytical LCMS indicated that the reaction was complete, so the mixture was acidified with IN aqueous HCl (4mL) and worked-up with EtOAc and H2O. The combined organic layers were dried, filtered, and concentrated, and the residue was purified by preparative HPLC to give the title compound. M+H is 418.

Example 131: Synthesis of [2'-(3-Benzi2y1-l^-diethyl-ureidomethyI)-6-methoxy-4'-tii fluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-94)

Step 1: N-Ethyl-N-benzylcarbamoyl Chloride

N-Ethylbenzylamine (0.56mL, 3.8mmol) and diisopropylethylamine (1mL, 5.7mmol) were combined in CH2Cl2 (12mL) and cooled to 0°C. Phosgene (20% in toluene; 2.4mL, 4.6mmol) was added, and the reaction was stirred overnight at room temperature. The mixture was concentrated, and the residue was dissolved in Et2O and washed twice with H2O. The organic layer was dried, filtered, and concentrated to give the title compound.

Step 1: 1'^S-Benzyl-l^-diethyl-ureidomethyO-6-methoxy^-trifluoromethyl-biphenyl-S-yl]-acetic acid methyl ester

(2'-Ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)acetic acid methyl ester (0.130g, 0.34mmol), N-ethyl-N-benzylcarbamoyl chloride (0.081g, 0.41mmol), 4- dimethylaminopyridine (0.010g, 0.08mmol), and triethylamine (0.12mL, 0.85mmol) were combined in CH2Cl2 (5mL) and stirred at reflux overnight. The mixture was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.
Step 2: [2'-((3-Benzyl-1'-diethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-(3-benzyl-1,3-diethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester.

Example 132: Synthesis of [2'-(3-Benzyl-3-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-106)

Step 1: [2'-(3-Benzyl-3-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 131, Step 2, using the following starting materials: (2'-aminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester, N-ethyl-N-benzylcarbamoyl chloride.
Step 2: [2'-[(3-Benzyl-3-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid]

[0830] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-[(3-benzyl-3-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester.

Example 133: Synthesis of 2'-[(Benzyloxy carbonyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-183)

Step 1: (4'-Fluoro-2'-formyl-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester

[0831] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-bromo-5-fluorobenzaldehyde and [4-methoxy-3-(4,4,5,5-tetramethyl-1,3,2)dioxaborolan-2-yl]-phenyl]-acetic acid ethyl ester.

Step 2: (2'-Ethylaminomethyl-4'-fluoro-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester

[0832] Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (4'-Fluoro-2'-formyl-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

Step 3: [2'-[(Benzyloxy carbonyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-biphenyl]-3-yl]-acetic acid ethyl ester

[0833] (2'-Ethylaminomethyl-4'-fluoro-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester (0.172g, 0.8mmol) and diisopropylethylamine (0.18mL, 1.0mmol) were combined in CH₂Cl₂ (2.5mL) and
cooled to 0°C. Benzyl chloroformate (0.1mL, 0.7mmol) was added, and the reaction was stirred for 1 hour. The mixture was purified by silica gel chromatography, and then further purified by preparative HPLC to give the title compound.

Step 4: \(2'\left(\text{Benzyloxycarbonyl-ethy-lamino}-\text{methyl}\right)-4'\text{-fluoro-6-methoxy-biphenyl-3-yl} \) \text{-acetic acid}

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \(2'\left[\text{benzyloxycarbonyl-ethyl-arnino}-\text{methyl}\right]-4'\text{-fluoro-6-methoxy-biphenyl-3-yl} \) -acetic acid ethyl ester. M+H is 452.

Example 134: Synthesis of \(2\text{l-}\left[\text{Acetyl-ethyl-arnino}-\text{methyl}\right]-4'\text{-fluoro-6-methoxy-biphenyl-3-yl}-\text{acetic acid (Compound 1-184)} \)

Step 1: \(\text{T'-KAcetyl-ethyl-arninoJ-methyl}^{4'-\text{fluoro-6-methoxy-biphenyl-S-ylJ-acetic acid ethyl ester}} \)

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-4'-fluoro-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester and acetyl chloride.

Step 2: \(2\text{^8J[Acetyl-ethyl-arninoJ-4'\text{-fluoro-6-methoxy-biphenyl-3-yl}}-\text{acetic acid} \)
Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \(2'\text{-}[(\text{acetyl-ethyl-amino})\text{-methyl}]\text{-}4\text{-fluoro-6-methoxy-biphenyl-3-yl}\) \text{-}acetic acid ethyl ester, M+H is 360.

Example 135: Synthesis of \(2'\text{-}[3\text{-}(4\text{-chloro-benzyl})\text{-}l\text{-ethyl-ureidomethyl}]\text{-}4\text{-fluoro-6-methoxy-biphenyl-3-yl}\) \text{-}acetic acid (Compound 1-185)

Step 1: \(2'\text{-}[3\text{-}(4\text{-chloro-benzyl})\text{-}l\text{-ethyl-ureidomethyl}]\text{-}4\text{-fluoro-6-methoxy-biphenyl-3-yl}\) \text{-}acetic acid ethyl ester

(2'-Ethylaminomethyl-4'-fluoro-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester (0.172g, 0.5mmol) and diisopropylethylamine (0.43mL, 2.5mmol) were combined in \(\text{CH}_2\text{Cl}_2\) (2.5mL) and cooled to 0°C. Phosgene (20% in toluene; 0.4OmL, 0.75mmol) was added, and the mixture was stirred for 1 hour. 4-Chlorobenzylamine (0.012mL, 1.0mmol) was added, and the reaction was stirred for 1 hour. The mixture was diluted with \(\text{CH}_2\text{Cl}_2\) and washed with \(\text{H}_2\text{O}\). The organic layer was dried, filtered, and concentrated, and the residue was purified by preparative HPLC to give the title compound.

Step 2: \(2'\text{-}[3\text{-}(4\text{-chloro-benzyl})\text{-}l\text{-ethyl-ureidoniethyl}]\text{-}4\text{-fluoro-6-methoxy-biphenyl-3-yl}\) \text{-}acetic acid
[0838] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: {2'-[3-(4-chloro-benzyl)-1-ethyl-ureidomethyl]-4'-fluoro-6-methoxy-biphenyl-3-yl}-acetic acid ethyl ester. M+H is 486.

Example 136: Synthesis of {2'-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl}-acetic acid (Compound 1-186)

Step 1: {2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl}-acetic acid ethyl ester

[0839] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-4'-fluoro-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropanecarbonyl chloride.

Step 2: {2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-bipheiiyl-3-yl}-acetic acid

[0840] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: {2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl}-acetic acid ethyl ester. M+H is 386.

Example 137: Synthesis of {2'-(3-Benzyl-l-ethyl-nreidomethyl)-4'-fluoro-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-187)
Step 1:

[2'-(3-Benzyl-1-ethyl-ureidomethyl)-4'-fluoro-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: (2'-ethylaminomethyl-4'-fluoro-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester and benzyl isocyanate.

Step 2:

[2'-(3-Benzyl-1-ethyl-ureidomethyl)-4'-fluoro-6-methoxy-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-(3-Benzyl-1-ethyl-ureidomethylJ^-fluoro-6-methoxy-biphenyl-S-ylJ-acetic acid ethyl ester. M+H is 451.

Example 138: Synthesis of [2'-[(Benzzyloxy carbonyl-ethyl-aiiiino)-inethyI]-4 methanesulfonyl-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-215)

Step 1: 2-Hydroxy-5-methanesulfonyl-benzaldehyde

Prepared by the following method: 5-Bromosalicylaldehyde (0.402g, 2.0mmol), sodium methanesulfinate (0.918g, 9.0mmol), and copper(I) iodide (L71g, 9.0mmol) were combined in NMP (16mL) and stirred under N₂ at 140°C overnight. The mixture was diluted with 1:1 EtOAc:hexanes (150mL) and filtered through a pad of Celite. The filtrate was washed three times with H₂O, and then dried, filtered, and
concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc hi hexanes) to give the title compound.

Step 2: 2-Ethylaminomethyl-4-methanesulfonyl-phenol

[0844] 2-Hydroxy-5-methanesulfonyl-benzaldehyde (0.200g, 1.0mmol), ethylamine (2M hi THF; 0.75mL, 1.5mmol), and sodium cyanoborohydride (0.095g, 1.5mmol) were combined in MeOH (10mL). 4A Molecular sieves were added, followed by acetic acid (0.09mL, 1.5mmol), and the reaction was stirred for 1 hour. The mixture was filtered, and H₂O (0.5mL) was added and the solution was concentrated. The residue was partitioned between EtOAc (100mL) and brine (20mL), and the mixture was neutralized with 1N aqueous HCl (1mL) and extracted six times with EtOAc, until minimal product was seen in the aqueous layer by analytical tic. The combined organic layers were dried, filtered, and concentrated to give the title compound.

Step 3: Ethyl-(2-hydroxy-5-methanesulfonyl-benzyl)-carbainic acid benzyl ester

[0845] To 2-ethylaminomethyl-4-methanesulfonyl-phenol (0.229g, 1.0mmol) and diisopropylamine (0.94mL, 2.5mmol) in CH₂Cl₂ (10mL) was added benzyl chloroformate (0.16mL, 1.1mmol). Some over-acylation product was observed, so additional benzyl chloroformate (0.21mL) was added to convert all of the product to the diacylated product. After aqueous work-up, the organic layer was concentrated, and the residue was dissolved hi MeOH (10mL) and treated with 1N aqueous LiOH (4mL). Once the hydrolysis was complete, the mixture was worked-up, and the residue was purified to give the title compound.
Step 4: Trifluoro-methanesulfonic acid 2-[(benzyloxycarbonyl-ethyl-amino)-methyl]-4-methanesulfonyl-phenyl ester

[0846] Ethyl-(2-hydroxy-5-methanesulfonyl-benzyl)-carboxylic acid benzyl ester (0.200g, 0.55mmol) and diisopropylethylamine (0.24mL, 1.38mmol) were combined in CH₂Cl₂ (10mL). Trifluoromethanesulfonic anhydride (0.1mL, 0.65mmol) was added, and the reaction was stirred for 5 minutes at room temperature. The mixture was quenched with H₂O and diluted with CH₂Cl₂. The organic layer was dried, filtered, and concentrated, and the residue was purified by silica gel chromatography (0-50% EtOAc in hexanes) to give the title compound.

Step 5: {2-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4'-methanesulfoiyl-6-methoxy-biphenyl-3-yl}-acetic acid ethyl ester

[0847] Trifluoro-methanesulfonic acid 2-[(benzyloxycarbonyl-ethyl-amino)-methyl]-4-methanesulfonyl-phenyl ester (1.3g, 2.62mmol), [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester (1.26g, 3.93mmol), and cesium carbonate (2.55g, 7.85mmol) were combined in DMF. (l,l'-Bis(diphenylphosphino)ferrocene)-dichloropalladium(II) (0.213g, 0.26mmol) was added, and the reaction was immediately immersed in an oil bath pre-heated to 45°C. The reaction was stirred at 65°C for 20 minutes, and then worked-up and purified to give the title compound, contaminated with a phenol by-product. The mixture was dissolved in CH₂Cl₂ (100mL) and washed with 0.5N aqueous NaOH, and then concentrated to give the title compound.
Step 6: \{2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4'-trimethanesulfonyl-6-methoxy-
biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \{2-[benzyloxycarbonyl-ethyl-amino]-methyl3-4 1-methanesulfonyl-6-methoxy-
biphenyl-3-yl\}-acetic acid ethyl ester. M+H is 512.

Example 139: Synthesis of P'-fCBenzyloxycarbonyl-ethyl-aminoJ-inethylJ^-Cl-hydroxy-l-
methyl-ethyl)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-216)

Step 1: 4-Bromo-3-methyl-benzoic acid ethyl ester

To 4-bromo-3-methylbenzoic acid (3g, 14mmol) in EtOH (200mL) was added thionyl chloride (2mL, 28mmol), and the reaction was stirred for 10 minutes. Additional thionyl chloride (3mL, 35mmol) was added, and the reaction was stirred overnight at 50°C. After cooling to room temperature, the mixture was quenched with the slow addition of powdered Na₂CO₃, and then filtered and concentrated. The residue was partitioned between EtOAc and H₂O, and the organic layer was dried, filtered, and concentrated to give the title compound.

Step 2: 2-(4-Bromo-3-methyl-phenyl)-propan-2-ol

To 4-bromo-3-methyl-benzoic acid ethyl ester (0.968g, 4.0mmol) in THF (50mL) at 0°C was added methylmagnesium bromide (3M in Et₂O; 4mL, 12mmol), and the reaction was stirred at 1 hour at 0°C and then warmed to room temperature. Only starting material was present, so additional methylmagnesium bromide (3M in Et₂O; 4mL, 12mmol) was added, and the reaction was stirred for 30 minutes. The mixture was quenched with saturated aqueous NH₄Cl and partitioned between EtOAc and H₂O. The organic layer was dried, filtered, and concentrated to give the title compound.
Step 3: 2-(4-Bromo-3-bromomethyl-phenyl)-propan-2-ol

2-(4-Bromo-3-methyl-phenyl)-propan-2-ol (0.916g, 4.0mmol) in CCl₄ (30mL) was treated with N-bromosuccinimide (0.750g, 4.2mmol) and benzoyl peroxide (0.050g, 0.2mmol), and the reaction was refluxed under a halogen lamp for 2 hours. After cooling to room temperature, the mixture was partitioned between CH₂Cl₂ and H₂O, and the organic layer was dried, filtered, and concentrated. The residue was purified by silica gel chromatography to give the title compound.

Step 4: [2-Bromo-5-(1-hydroxy-1-methyl-ethyl)-benzyl]-ethyl-carbamic acid benzyl ester

To 2-(4-bromo-3-bromomethyl-phenyl)-propan-2-ol (0.255g, 0.83mmol) and ethyl-carbamic acid benzyl ester (0.446g, 2.49mmol) in DMF (15mL) was added sodium hydride (60% in mineral oil; 0.103g, 2.57mmol), and the reaction was stirred for 30 minutes. The mixture was quenched with H₂O and worked-up. The residue was purified by silica gel chromatography (0-40% EtOAc in hexanes) to give the title compound.

Step 5: ^1-[(Benzyloxy carbonyl-ethyl-aniino-methyl]-^-tl-hydroxy-1-iiiethyl-ethylO-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: [2-bromo-5-(1-hydroxy-1-methyl-ethyl)-benzyl]-ethyl-carbamic acid benzyl ester and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester.
Step 6: \(^\text{N}\text{-[\text{benzyloxycarbonyl-ethyl-amino}-\text{methyl]-6-methoxy-biphenyl-3-yl]-acetic acid}\)

[0854] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \([2'-\text{[\text{benzyloxycarbonyl-ethyl-amino}-\text{methyl]-4'-\text{[\text{1-hydroxy-1-methyl-ethyl]-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 492.}}\)]

Example 140: Synthesis of \([2'-\text{[\text{cyclopropanecarbonyl-ethyl-amino}-\text{methyl]-6-methoxy-4'-methylsulfanyl-biphenyl-3-yl]-acetic acid (Compound 1-241)}\)*

Step 1: \([2'-\text{[\text{cyclopropanecarbonyl-ethyl-amiino}-\text{\text{ethyl}]-4'-\text{fluoro-6-methoxy-5-biphenyl-3-yl]-acetic acid ethyl ester}}\)

[0855] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \((2'-\text{ethylaminomethyl-4'-fluoro-6-methoxy-biphenyl-3-yl}-\text{acetic acid ethyl ester and cyclopropanecarbonyl chloride.}}\)

Step 2: \([2'-\text{[\text{cyclopropanecarbonyl-ethyl-amino}-\text{methyl]-6-methoxy-4'-methylsulfanyl-biphenyl-3-yl]-acetic acid}}\)

[0856] To \([2'-\text{[\text{cyclopropanecarbonyl-ethyl-amino}-\text{methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl}] - acetic acid ethyl ester 0.186g, 0.45mmol) in DMF (0.5mL) was added sodium thiomethoxide
(0.035g, 0.50mmol), and the reaction was stirred at 85°C for 2 hours. Analytical LCMS indicated that starting material was still present, so additional sodium thiomethoxide (0.070g, 1.0mmol) was added, and the reaction was stirred at 85°C for another 2 hours. Analytical LCMS showed that no starting material remained, and that the ethyl ester had been hydrolyzed, so an aqueous work-up was performed, and the residue was purified by preparative HPLC to give the title compound. M+H is 414.

Example 141: Synthesis of \([2'-(\text{Acetyl-ethyl-amino})-\text{methyl}]\)-6-methoxy-4\(^{\text{[1]}}\)-trifluoromethyl-biphenyl-3-yl]-difluoro-acetic acid (Compound 1-91)

Step 1: (3-Bromo-4-methoxy-phenyl)-difluoro-acetic acid ethyl ester

(3-Bromo-4-methoxy-phenyl)-acetic acid ethyl ester (1.2g, 4mmol) was dissolved in THF and cooled to -78°C. Sodium hexamethyldisilazide (1M in THF; 10mL, 10mmol) was added, and the mixture was stirred for 20 minutes. N-Fluorobenzenesulfonimide (3.15g, 10mmol) in THF was added, and the reaction was stirred at -78°C overnight. The reaction was warmed to 0°C and stirred for 15 minutes, and then quenched with 1N aqueous HCl. The mixture was worked-up and purified by silica gel chromatography to give the title compound.

Step 2: Difluoro-[4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 2, using the following starting materials: (3-bromo-4-methoxy-phenyl)-difluoro-acetic acid ethyl ester and bis(pinacolato)diboron.

Step 3: Difluoro-(2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: difluoro-[4-methoxy-3-(4,4,5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester and 2-bromo-5-(trifluoromethyl)benzaldehyde; the ester was hydrolyzed under the reaction conditions.
Step 4: (2'-Ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-difluoro-acetic acid

Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: difluoro-(2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid and ethylamine (2M in THF).

Step 5: (2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)}-difluoro-acetic acid

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-difluoro-acetic acid and acetyl chloride.

Example 142: Synthesis of {2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-difuoro-acetic acid (Compound 1-132)

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-difluoro-acetic acid and benzyl chloroformate.

Example 143: Synthesis of {4'-Acetylamino-2 7[(benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl}-acetic acid (Compound 1-153)
Step 1: \{4'\text{-}Acetylamino-2'\text{-}[(benzyloxycarbonyl-ethyl-aniino)-methyl]-6-methoxy-biphenyl-3-yl\}\text{\textendash}acetic acid ethyl ester

[0863] Prepared according to the procedure described in Example 39, Step 1, using the following starting materials: \{4'\text{-}aniino-2'\text{-}[(benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl\} \text{\textendash}acetic acid ethyl ester and acetyl chloride.

Step 2: \{4'\text{-}Acetylamino-2'\text{-}[(benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl\}\text{\textendash}acetic acid

[0864] Prepared according to the procedure described in Example 39, Step 2, using the following starting material: \{4'\text{-}acetylamino-2'\text{-}[(l)enzyloxycarbonyl-ethyl-ainino)-methyl]-6-methoxy-biphenyl-3-yl\} \text{\textendash}acetic acid ethyl ester.

Example 144: Synthesis of \{2'\text{-}[(Benzyloxycarboiiyl-ethyl-ainino)-methyl]-4'\text{-}(4-chloro-benzenesulfonlamino)-6-methoxy-biphenyl-3-yl\}\text{\textendash}acetic acid (Compound 1-156)
Step 1: [2'-{Benzyloxycarbonyl-ethyl-amino)-ethyl]-4'-{4-chloro-benzensulfonylamino)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 39, Step 1, using the following starting materials: {4'-amino-2'-(benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester and 4-chlorobenzenesulfonyl chloride.

Step 2: [2'-{(Benzyloxycarbonyl-ethyl-amino)-methyl]-4'-{(4-chloro-benzenesulfonylami 0)-6-methoxy-biphenyl-3-ylJ-acetic acid

Prepared according to the procedure described in Example 39, Step 2, using the following starting material: [2'-{(benzyloxycarbonyl-ethyl-amino)-methyl]-4'-{(4-chlorobenzenesulfonylamino)-6-methoxy-biphenyl-3-yl}] -acetic acid ethyl ester.

Example 145: Synthesis of [2'-(3-Cyano-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-ylJ-acetic acid (Compound 1-99)

Example 146: Synthesis of P'-JV'-Cyano-iV'-cyclohexylmethyl-IV-ethyl-guamindomethyO-6-methoxy-4'-trifluoromethyl-biphenyl-3-ylJ-acetic acid (Compound 1-112)
Step 1: \[2'-(N^\text{V}-\text{Cyano}-\text{N}^\text{V}-\text{cyclohexylmethyl}-\text{N}^\text{V}-\text{ethyl-guanidinomethyl})-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\text{-acetic acid ethyl ester}

[0868] Prepared according to the procedure described in Example 33, Step 6, using the following starting materials: \[2'-(3\text{-cyano-1-ethyl-2-phenyl-isoureidomethyl})-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\text{-acetic acid ethyl ester and cyclohexanemethylamine.}

Step 2: \[P^\text{N}^\text{V}-\text{Cyano-}\Lambda^\text{N}^\text{V}-\text{cyclohexylmethyl-}\Lambda^\text{N}^\text{V}-\text{ethyl-guaidinomethylO-6-methioy-y^\text{N}^\text{V}-trifluoromethyl-bipheny 1-3-yl}]-\text{acetic acid}

[0869] Prepared according to the procedure described in Example 33, Step 7, using the following starting material: \[2'-(N^\text{V}-\text{cyano-}N^\text{V}-\text{cyclohexylmethyl-}N^\text{V}-\text{ethyl-guanidinomethyl})-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]-\text{acetic acid ethyl ester. M+H is 531.}

Example 147: Synthesis of \[2'-(N^\text{V}-\text{Cyano-}N^\text{V}^\text{V}-\text{(2,2-dimethyl-propyl)}\text{-ethyl-}\text{guadinomethyl}-6\text{-methoxy-4'-trifluoromethyl-biphenyl-3-yl}]\text{-acetic acid (Compound 1-113)}

- 274 -
Step 1: \(2'-[\Lambda^\prime'-\text{Cyano-JV-}(2,2\text{-dimethyl-propyl})-\Lambda^\prime\text{-ethyl-guanidinomethyl}]^{-6}\text{-methoxy-4'}-\text{trifluoromethyl-biphenyl-3-yl}]^{-\text{acetic acid ethyl ester}}\)

[0870] Prepared according to the procedure described in Example 33, Step 6, using the following starting materials: \(2'-(3\text{-cyano-1-ethyl-2-phenyl-isoureidomethyl})^{-6}\text{-methoxy-4'}-\text{trifluoromethyl-biphenyl-3-yl}]^{-\text{acetic acid ethyl ester}}\) and neopentylamine.

\begin{center}
\includegraphics[width=0.5\textwidth]{step1.png}
\end{center}

Step 2: \(2'-[\Lambda^\prime''-\text{Cyano-\Lambda^\prime'}-(2,2\text{-dimethyl-propyl})-\Lambda^\prime\text{-ethyl-guanidinomethyl}]^{-6}\text{-methoxy-4'}-\text{trifluoromethyl-biphenyl-3-yl}]^{-\text{acetic acid}}\)

[0871] Prepared according to the procedure described in Example 33, Step 7, using the following starting material: \(2'-[\Lambda^\prime''-\text{cyano-\Lambda^\prime'}-(2,2\text{-dimethyl-propyl})-\Lambda^\prime\text{-ethyl-guanidinomethyl}]^{-6}\text{-methoxy-4'}-\text{trifluoromethyl-biphenyl-3-yl}]^{-\text{acetic acid ethyl ester}}\). M+H is 505.

Example 148: Synthesis of \(2'\Lambda^\prime'-\text{Cyano- \Lambda^\prime'-ethyl-iV^-methoxy-beiizyO-guanidinomethyl}^{-6}\text{-methoxy-4'}-\text{trifluoromethyl-biphenyl-3-yl}]^{-\text{acetic acid (Compound 1-114)}}\)

\begin{center}
\includegraphics[width=0.5\textwidth]{step2.png}
\end{center}

Step 1: \(2'[-\text{JV''-Cyano-JV-ethyl-iV-(4\text{-methoxy-benzyl})-guanidinomethyl}]^{-6}\text{-methoxy-4'}-\text{trifluoromethyl-biphenyl-3-yl}]^{-\text{acetic acid ethyl ester}}\)

[0872] Prepared according to the procedure described in Example 33, Step 6, using the following starting materials: \(2'-(3\text{-cyano-1-ethyl-2-phenyl-isoureidomethyl})^{-6}\text{-methoxy-4'}-\text{trifluoromethyl-biphenyl-3-yl}]^{-\text{acetic acid ethyl ester}}\) and 4-methoxybenzylamine.
Step 2: \(\{\text{I'-\text{IV'-Cyano-IV-ethyl-IV-C}} \) -methoxy-benzy-\(\text{IV-guaiiidiimethylJ-6-methoxy-IV-trifluoromethyl-biphenyl]-3-yl\} -acetic \) acid

Prepared according to the procedure described in Example 33, Step 7, using the following starting material: \(\{2'\text{[-N'-cyano-N-ethyl-N'-(4-methoxy-benzyl)-guanidinomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}\} -acetic acid ethyl ester. M+H is 555.

Example 149: Synthesis of \([2'-(\text{V-Cyano-IV-ethyl-IV''-propyl-guanidinomethyl})-6-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}] -acetic \) acid (Compound 1-145)

Step 1: \([2'-(\text{IV-Cyano-\(\Lambda^\prime \)-ethyl-\(\Lambda^\beta \)-propyl-g tianadinomethyl})-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic \) acid ethyl ester

Prepared according to the procedure described in Example 33, Step 6, using the following starting materials: \([2'-(3\text{-cyano-1-ethyl-2-phenyl-isoureidomethyl})-6-methoxy-4'\text{-trifluoromethyl-biphenyl-3-yl}] -acetic acid ethyl ester and propylamine.
Step 2: [2'-(N'-Cyano-N'-ethyl-N'-propyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 33, Step 7, using the following starting material: [2'-(N'-cyano-N'-ethyl-N'-propyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 477.

Example 150: Synthesis of [1'-N'-Cyano-N'-cyclopropylmethyl-N'-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-146)

Step 1: [2'-(N'-Cyano-N'-cyclopropylmethyl-N'-ethyl-guanidinomethyl)]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 33, Step 6, using the following starting materials: [2'-(3-cyano-1-ethyl-2-phenyl-isourea)methyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester and (aminomethyl)cyclopropane.

Step 2: [2'-(N'-Cyano-N'-cyclopropylmethyl-N'-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 33, Step 7, using the following starting material: [2'-(N'-cyano-N'-cyclopropylmethyl-N'-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 489.

Example 151: Synthesis of P'-N'-Cyano-A'-ethyl-A'-pyridin^-ylmethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-147)
Step 1: (2'-(Λ'-Cyano-Λ-ethyl-Λ"-pyridiii-2-y met iyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid ethyl ester

Prepared according to the procedure described in Example 33, Step 6, using the following starting materials: [2'-(3-cyano-1-ethyl-2-phenyl-isoureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester and 2-(aminomethyl)pyridine.

Step 2: [2'-((V'-Cyano-IV'-ethyl-IV"'-pyridin-2-y methyl-guaniidinomethyl)-fr-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 33, Step 7, using the following starting material: [2'-((N'-cyano-N-ethyl-N"-pyridin-y)ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 526.

**Example 152: Synthesis of [2'-(Cyclopropanecarbonyl-ethyl-amino)-methy]-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-227)

Step 1: [2'-(Cyclopropanecarbonyl-ethyl-amino)-methy]-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [4’-(6-ethoxy-pyridin-3-yl)-2’-ethylaminomethyl-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester, hydrochloride and cyclopropanecarbonyl chloride.

Step 2: [2’-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4’-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2’-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4’-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 489.

Example 153: Synthesis of (2’-[(Ethyl-(5-methyl-benzooxazol-2-yl)-amino]-methyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-248)

Step 1: 5-Methyl-benzooxazole-2-thiol

To a solution of 3,4-diaminotoluene (20.0g, 162.6mmol) and potassium hydroxide (11.36g, 203.0mmol) in H₂O (40mL) and MeOH (150mL) was added carbon disulfide (13.3mL, 220.8mmol) slowly via syringe, and the reaction was heated to 78°C for 2.5 hours. The mixture was poured over a mixture of ice (200mL) and acetic acid (30mL), and thick yellow precipitate formed. The mixture was stirred at 45°C for 30 minutes, and then filtered to collect the solid precipitate, which was washed twice with H₂O (40mL total). The filter cake was triturated in a minimum of EtOAc, and then filtered and dried to give the title compound.

Step 2: 2-Chloro-5-niethyl-benzooxazole

5-Methyl-benzooxazole-2-thiol (5.0g, 30.2mmol), phosphorus oxychloride (25.0mL, 269.4mmol), and phosphorus pentachloride (7.56g, 36.3mmol) were combined in CH₂Cl₂ (30mL), and the reaction was stirred at room temperature overnight. The mixture was concentrated several times from fresh CH₂Cl₂ to remove traces of phosphorus oxychloride, and the residue was treated with saturated aqueous Na₂CO₃ to adjust to pH 8. The aqueous layer was extracted twice with CH₂Cl₂, and the combined organic layers were washed with H₂O and brine, and then dried over
Na₂SO₄, decanted, and concentrated. The crude material was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound.

Step 3: (V-[[Ethyl-(5-methyl-benzoxazol-2-yl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (T-[[ethyl-(5-methyl-benzoxazol-2-yl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 499.

Example 154: Synthesis of [2'-{(Cyclopropanecarbonyl-ethyl-amino)-niethyl]-4'-(5-fluoro-pyridin-2-yl)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-249)

Step 1: [2'-{(fert-Butoxycarbonyl-ethyl-amiiio)-niethyl]-4'- (5-fluoro-pyridin-2-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester
[0886] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: [2'-((tert-butoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-(-4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-biphenyl-3-yl]-acetic acid ethyl ester and 2-bromo-5-fluoropyridine.

Step 2: [2'-Ethylaminomethyl-4'-(5-fluoro-pyridin-2-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester, hydrochloride

[0887] Prepared according to the procedure described in Example 46, Step 7, using the following starting material: ^-[(tert-butoxycarbonyl-ethyl-amino)-methyl]-fS-fluoro-pyridin^-yJ^-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester.

Step 3: [(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-(5-fluoro-pyridin-2-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

[0888] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [2'-ethylaminomethyl-4'-(5-fluoro-pyridin-2-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester, hydrochloride and cyclopropanecarbonyl chloride.

Step 4: P'-KCyclopropanecarbonyl-ethyl-aminoJ-methyl|^S-fluoro-pyridin-a-yO^-6-methoxy-biphenyl-3-yl] -acetic acid

[0889] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2^1-((cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-(5-fluoro-pyridin-2-yl)-6-methoxy-biphenyl-3-yl] -acetic acid ethyl ester. M+H is 463.
Example 155: Synthesis of \(2'\)\{[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-(5-methoxy-pyrimidin-2-yl)-biphenyl-3-yl\}-acetic acid (Compound 1-250)

Step 1: \(2'\)\{[(tert-Butoxycarbonyl-ethyl-amino)-methyl]-4,6-methoxy-biphenyl-3-yl\}-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: \(2'\)\{[(tert-butoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-biphenyl-3-yl\}-acetic acid ethyl ester and 2-chloro-5-fluoropyrimidine.

Step 2: \(2'(ethylaminomethyl)-4'-(5-fluoro-pyrimidin-2-yl)-6-methoxy-biphenyl-3-yl\}-acetic acid ethyl ester

Prepared according to the procedure described in Example 46, Step 7, using the following starting material: \(2'\)\{[(tert-butoxycarbonyl-ethyl-amino)-methyl]-4'-(5-fluoro-pyrimidin-2-yl)-6-methoxy-biphenyl-3-yl\}-acetic acid ethyl ester.

Step 3: \(2'\)\{[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-(5-fluoro-pyrimidin-2-yl)-6-methoxy-biphenyl-3-yl\}-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \(P\)-ethyldiisopropylchlorophosphoric acid, 6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester and cyclopropanecarbonyl chloride.
Step 4: \([2' - [(\text{Cyclopropanecarbonyl-ethyl-amino})\text{-methyl}] - 6\text{-methoxy-}4'\text{-}(5\text{-methoxy-pyrimidin-2-yl})\text{-biphenyl-3-yl}]\text{-acetic acid}

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \([2' - [(\text{cyclopropanecarbonyl-ethyl-amino})\text{-methyl}] - 4'\text{-}(5\text{-fluoro-pyrimidin-2-yl})\text{-6-methoxy-biphenyl-3-yl}]\text{-acetic acid ethyl ester. M+H is 476.}

**Example 156: Synthesis of \([2' - [(\text{Benzoyl-ethyl-amino})\text{-methyl}] - 4'\text{-}(6\text{-ethoxy-pyridin-3-yl})\text{-6-methoxy-biphenyl-3-yl}]\text{-acetic acid (Compound 1-254)}\)

Step 1: \([2' - [(\text{Benzoyl-ethyl-amino})\text{-methyl}] - 4'\text{-}(6\text{-ethoxy-pyridin-3-yl})\text{-6-methoxy-biphenyl-3-yl}]\text{-acetic acid ethyl ester}

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \([4'\text{-}(6\text{-ethoxy-pyridin-3-yl})\text{-2'-ethylaminomethyl-6-methoxy-biphenyl-3-yl}]\text{-acetic acid ethyl ester, hydrochloride and benzoyl chloride.}

Step 2: \([2' - [(\text{Benzoyl-ethyl-amino})\text{-methyl}] - 4'\text{-}(6\text{-ethoxy-pyridin-3-yl})\text{-6-methoxy-biphenyl-3-yl}]\text{-acetic acid}

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \([2' - [(\text{benzoyl-emyl-amino})\text{-methyl}] - 4'\text{-}(6\text{-ethoxy-pyridin-3-yl})\text{-6-methoxy-biphenyl-3-yl}]\text{-acetic acid ethyl ester. M+H is 525.}

- 283 -
Example 157: Synthesis of [4’-(6-Ethoxy-pyridin-3-yl)-2’-[(ethyl-phenylacetyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-255)

Step 1: [4’-(6-Ethoxy-pyridin-3-yl)-2’-[(ethyl-phenylacetyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [4’-(6-ethoxy-pyridin-3-yl)-2’-ethylaminomethyl-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester, hydrochloride and phenylacetyl chloride.

Step 2: [4’-(6-Ethoxy-pyridin-3-yl)-2’-I(ethyl-phenylacetyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [4’-(6-ethoxy-pyridin-3-yl)-2’-[(ethyl-phenylacetyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 539.

Example 158: Synthesis of [2’-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6’-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-122)

Step 1: 2-Bromo-3-methoxy-benzoaldehyde

To a solution of 2-bromo-3-hydroxybenzaldehyde (0.5g, 2.4mmol) was added potassium carbonate (0.77g, 5.6mmol), and the mixture was stirred for 5 minutes. Iodomethane (0.17mL, 2.7mmol) was added, and the reaction was stirred at room temperature for 2 hours. The mixture
was diluted with H₂O (30mL) and EtOAc (30mL), and the organic layer was washed with 1N aqueous NaOH, then brine, dried over Na₂SO₄, decanted, and concentrated. The residue was purified by silica gel chromatography (0-60% EtOAc in hexanes) to give the title compound.

Step 2: (2'-Formyl-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester

[0899] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-bromo-3-methoxy-benzaldehyde and [3-(4,4,5,5-tetramethyl-1,3,2)dioxaborolan-2-yl]-phenyl]-acetic acid methyl ester.

Step 3: (2'-Ethylaminomethyl-6'-methoxy-bipheii[l-3-yl]-acetic acid methyl ester

[0900] Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester and ethylamine (2M in THF).

Step 4: {2'-(Benzyloxycarbonyl-ethyl-amino)-methyl]-6'-methoxy-biphenyl-3-yl}-acetic acid methyl ester

[0901] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester and benzyl chloroformate.
Step 5: \{2'-\[(Benzyloxycarbonyl-ethyl-amino)-methyl\]-6'-methoxy-biphenyl-3-yl\}-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \{2'\[(benzyloxycarbonyl-ethyl-amino)-methyl\]-6'-methoxy-biphenyl-3-yl\} -acetic acid methyl ester. M+H is 434.

Example 159: Synthesis of \{2'-\[(3,5-Difluoro-benzyloxycarbonyl)-ethyl-amino\]-inethyl\}-6 \^_ methoxy-biphenyl-3-yl\}-acetic acid (Compound 1-123)

Step 1: \{2'\[(3,5-Difluoro-benzyloxycarbonyl)-ethyl-amino\]-methyl\}-6'-methoxy-biphenyl-3-yl\}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: \{2'-ethylaminomethyl-6'-methoxy-biphenyl-3-yl\}-acetic acid methyl ester and 3,5-difluorobenzyl chloroformate.
Step 2: (2'-'[(3,5-Difluoro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6'-methoxy-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-'[(3,5-difluoro-benzyloxycarbonyl)-ethyl-amino]-methyl)-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester. M+H is 470.

Example 160: Synthesis of (2'-'[(Ethyl-(2-morpholin-4-yl-ethyl)-amino]-methyl)-6'-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-166)

Step 1: {6'-Methoxy-2'-'[(2-morpholiii-4-yl-etliylaminii)-methyl]-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester and 4-(2-aminoethyl)morpholine.

Step 2: (2'-'[(Ethyl-(2-morpholin-4-yl-ethyl)-amino]-methyl)-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: {6'-methoxy-2'-'[(2-morpholin4-yl-ethylamino)-methyl]-biphenyl-3-yl} -acetic acid methyl ester and acetaldehyde.

Step 3: (2'-'[(Ethyl-(2-morpholin-4-yl-ethyl)-amino]-methyl)-6'-methoxy-biphenyl-3-yl)-acetic acid
Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-[ethyl-(2-morpholin-4-yl-ethyl)-amino]-methyl)-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester. M+H is 414.

Example 161: Synthesis of [2'-(Ethyl-[3-(2-oxo-pyrrolidin-1-yl)-propyl]-amino)-methyl]-6'-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-167)

Step 1: (6'-Methoxy-2'-[3-(2-oxo-pyrrolidin-1-yl)-propylamino]-methyl)-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6'-methoxy-biphenyl-3-yl)-acetic acid methyl ester and L-(3-aminopropyl)-2-pyrrolidinone.

Step 2: [2'-(Ethyl-[3-(2-oxo-pyrrolidin-1-yl)-propyl]-amino)-methyl]-6'-methoxy-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (6'-methoxy-2'[3-(2-oxo-pyrrolidin-1-yl)-propylamino]-methyl]-biphenyl-3-yl]-acetic acid methyl ester and acetaldehyde.

Step 3: [2'-(Ethyl-[3-(2-oxo-pyrrolidin-1-yl)-propyl]-amino)-methyl]-6'-methoxy-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-(Ethyl-[3-(2-oxo-pyrrolidin-1-yl)-propyl]-amino)-methyl]-6'-methoxy-biphenyl-3-yl]-acetic acid methyl ester. M+H is 426.
Example 162: Synthesis of (2'-[Ethyl-(4-fluorobenzoyloxycarbonyl)-amino]-methyl)-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-168)

Step 1: 2-Bromo-4-trifluoromethyl-benzaldehyde

2-Bromo-4-(trifluoromethyl)benzyl alcohol (4.0g, 15.88mmol) and Dess-Martin periodinane (7.14g, 16.67mmol) were combined in CH₂Cl₂ and stirred for 1.5 hours at room temperature. Saturated aqueous Na₂CO₃ was added, and a white precipitate was formed. The mixture was diluted with CH₂Cl₂ and saturated aqueous Na₂CO₃ and stirred for 1 hour. IN Aqueous NaOH was added, and the organic layer was separated and concentrated. The residue was purified by silica gel chromatography (0-80% EtOAc in hexanes) to give the title compound.

Step 2: (2'-Formyl-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-bromo-4-trifluoromethyl-benzaldehyde and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl] -acetic acid ethyl ester.

Step 3: (2'-Ethylaminomethyl-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).
Step 4: (2'-[[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (1'-ethyaminomethyl-6-methoxy-S'-trifluoromethyl-biphenyl-S-yl)-acetic acid ethyl ester and 4-fluorobenzyl chloroformate.

Step 5: (2'-[[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'[[ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-niethoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 519.

Example 163: Synthesis of (2'-[[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid (Compound 1-169)

Step 1: (2'-Formyl-6-methoxy-5'-inethyl-biphenyl-3-yl)-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester and 2-bromo-4-methylbenzaldehyde.

Step 2: (2'-Ethylaminomethyl-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

Step 3: (2'-[[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid ethyl ester and 4-fluorobenzyl chloroformate.

Step 4: (2'-[[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid
Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2’-[ethyl-(4-fluoro-benzyloxycarbonyl)-arnino]-methyl]-6-methoxy-5’-methyl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 466.

Example 164: Synthesis of \(2’-[\text{(Cyclopropanecarbonyl-ethyl-amino)-methyl}]-6\text{-methoxy-5’-trifluoromethyl-biphenyl-3-yl}]-\text{acetic acid (Compound 1-170)}

![Chemical structure]

Step 1: \(2’-[\text{(Cyclopropanecarbonyl-ethyl-amino)-inethyl}]-6\text{-i}\text{tethoxy-5’-trifluor oinethyl-biphenyl-3-yl}]-\text{acetic acid ethyl ester}

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2’-ethylaminomethyl-6-methoxy-5’-trifluoromethyl-biphenyl-3-yl)acetic acid ethyl ester and cyclopropanecarbonyl chloride.

Step 2: \(2’-[\text{(Cyclopropanecarbonyl-ethyl-amino)-methyl}]-6\text{-methoxy-5’-trifluoromethyl-biphenyl-3-yl}]-\text{acetic acid}

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \(2’-[\text{(cyclopropanecarbonyl-ethyl-amino)-methyl}]-6\text{-methoxy-5’-trifluoromethyl-biphenyl-3-yl}]-\text{acetic acid ethyl ester. M+H is 436.}

Example 165: Synthesis of \(2’-[\text{(Cyclopropanecarbonyl-ethyl-amino)-methyl}]-6\text{-methoxy-5’-methyl-biphenyl-3-yl}]-\text{acetic acid (Compound 1-171)}

![Chemical structure]
Step 1: \{1'-KCyclopropanecarbonyl-ethyl-aminoJ-methylJ-\-methoxy-S'-methyl-biphenyl-S-y1\}-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-πethoxy-5'-methyl-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropanecarbonyl chloride.

\[
\begin{align*}
\text{Step 2: } & \{1'\-^\text{Cyclopropanecarbonyl-ethyl-amino^methyll-} \-\text{methoxy-S'-methyl-biphenyl-S-y1\}-acetic acid} \\
& \text{Prepared according to the procedure described in Example 31, Step 2, using the following starting material: } \{2'-(\text{cyclopropanecarbonyl-ethyl-amino}-\text{methyl})-6-\text{methoxy-5'}-\text{methyl-biphenyl-3-yl}\}-\text{acetic acid ethyl ester}. \text{ M+H is 382.}
\end{align*}
\]

Example 166: Synthesis of \{2'-(3-Benzyl-ethyl-ureidomethyl)-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-172)

\[
\begin{align*}
\text{Step 1: } & \{2'-(3-\text{Bzyl-ethyl-ureidomethyl})-6-\text{methoxy-5'}-\text{trifluoromethyl-biphenyl-3-yl}\}-\text{acetic acid ethyl ester} \\
& \text{Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: } (2'-\text{ethylaminomethyl}-6-\text{methoxy-5'-trifluoromethyl-biphenyl-3-yl})-\text{acetic acid ethyl ester and benzyl isocyanate.}
\end{align*}
\]
Step 2: [2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-5’-trifluoromethyl-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2’-(3-benzyl-l-ethyl-ureidomethyl)-6-methoxy-5’-trifluorometiyli-biphenyl-S-yl]-acetic acid ethyl ester. M+H is 501.

Example 167: Synthesis of [2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-5’-methyl-biphenyl-3-yl]-acetic acid (Compound 1-173)

Step 1: [2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-5’-methyl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2’-ethylaminomethyl-6-methoxy-5’-niethyl-biphenyl-3-yl)-acetic acid ethyl ester and benzyl isocyanate.
Step 2: [2'-(3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-5'-methyl-biphenyl-3-yl]-acetic acid
[0927] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-(3-benzyl-1-ethyl-ureidomethyl]-6-methoxy-S'-methyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 447.

Example 168: Synthesis of (2^[4-Chloro-benzyl-oxycarbonyl]-ethyl-amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-174)

![Chemical Structure](image)

Step 1: (2'-(4-Chloro-benzyl-oxycarbonyl)-ethyl-amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester
[0928] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and 4-chlorobenzyl chloroformate.

![Chemical Structure](image)

Step 2: (2'-(4-Chloro-benzyl-oxycarbonyl)-ethyl-amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl]-acetic acid
[0929] Prepared according to the procedure described in Example 31, Step 1, using the following starting material: (2'-(4-Chloro-benzyl-oxycarbonyl)-ethyl-amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 559.

Example 169: Synthesis of (I'-1^-Chloro-benzyl-oxycarbonylVethyl-aminol-methylj-o-methoxy-5'-methyl-biphenyl-3-yl]-acetic acid (Compound 1-175)
Step 1: (2'-%[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-5'-methyl-biphenyl-3-yl)-acetic acid ethyl ester and 4-chlorobenzyl chloroformate.

Step 2: (2'-%[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-5'-methyI-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-%[(4-chloro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-5'-methyI-biphenyl-3-yl}-acetic acid ethyl ester. M+H is 482.

Example 170: Synthesis of \(^{\wedge}\)-\(~\)-fluoro-benzyloxycarbonylO-aminol-methylI-6,5'-dimethoxy-biphenyl-3-yl\>acetic acid (Compound 1-194)
Step 1: \((\text{2'-Ethyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester})\)

[0932] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester and 4-fluorobenzyl chloroformate.

Step 2: \((\text{2'-[[4-fluoro-benzyloxycarbonyl]-amino]-methyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid})\)

[0933] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-[[ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester. M+H is 482.

Example 171: Synthesis of \((\text{2'-[[4-Chloro-benzyloxycarbonyl]-ethyl-aminol-methyl]-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid})\) (Compound 1-195)
Step 1: (2'-{[(Chloro-benzyloxycarbonyl-ethyl-amino)-methyl]-6,5'-dimethoxy-biphenyl-3-y1}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester and 4-chlorobenzyl chloroformate.

Step 2: (I'-IC^Chloro-benzyloxycarbonyl^-ethyl-aminol-methyl^-6'-dimethoxy-biphenyl-a-y1)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2- {[(4-chloro-benzyloxycarbonyl)-ethyl-amino] -methyl}-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid methyl ester. M+H is 498.

Example 172: Synthesis of [2'-{(3-Benzyl-l-ethyl-ureidomethyl)-6,5'-dimethyl3sy-biphenyl-3-yl]-acetic acid (Compound 1-197)
Step 1: \([I^-\text{Benzyl-l-ethyl-ureidomethyl}^- 6,6'y\text{-dimethoxy-biphenyl-3-yl}]\text{-acetic acid methyl ester}\)

Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: \((2'^{-}\text{-ethylaminomethyl}-6,6'y\text{-dimethoxy-biphenyl-3-yl})\text{-acetic acid methyl ester}\) and benzyl isocyanate.

Step 2: \([2'-(3\text{-Benzyl-l-ethyl-ureidomethyl})-6,6'y\text{-dimethoxy-biphenyl-3-yl}]\text{-acetic acid}\)

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \(^{L^-}\text{(S-benzyl-l-ethyl-ureidomethylO} 6,6'y\text{-dimethoxy-biphenyl-3-yl})\text{-acetic acid methyl ester. M+H is 463.}\)

**Example 173: Synthesis of \([5\text{-Chloro-2'}-(\text{cyclopropanecarbonyl-ethyl-amino})\text{-methyl}]\text{-5'}\text{-methoxy-biphenyl-3-yl}]\text{-acetic acid (Compound 1-218)}\)

Step 1: (3-Bromo-5-chloro-phenyl)-acetic acid methyl ester

To a solution of (3-bromo-5-chloro-phenyl)-acetic acid (0.400g, 1.60mmol) in MeOH (15mL) was added 4N aqueous HCl (2mL), and the reaction was stirred at 90°C for 2 hours. The mixture was concentrated and purified by silica gel chromatography (0-5% EtOAc in hexanes) to give the title compound.
Step 2: (5-CMoro-2'-formyl-5'-methoxy-bipheiiyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (3-bromo-5-chloro-phenyl)-acetic acid methyl ester and 2-formyl-5-methoxyphenylboronic acid.

Step 3: (S-Coro-2'-ethylammomethyl-S'-methoxy-biphenyl-S-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (5-chloro-2'-formyl-5'-methoxy-biphenyl-3-yl)-acetic acid methyl ester and ethylamine (2M in THF).

Step 4: (5-Chloro-2'-l(cyclopropanecarbonyl-ethyl-amino)-methyIJ-5'-methoxy-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (S-chloro^-ethylaminomethyl-S'-methoxy-biphenyl-S-yO-acetic acid methyl ester and cyclopropanecarbonyl chloride.
Step 5: \(5\)-Chloro-2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5'-methoxy-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (S-chloro\(^\prime\)-ttcyclopropanecarbonyl-ethyl-aminoJ-methyy-S'-methoxy-biphenyl-3-yl]-acetic acid methyl ester. M+H is 402.

Example 174: Synthesis of [2'-((3-Benzyl-l-ethyl-ureidomethyl)-5-chloro-5'-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-219)

Step 1: \(^\prime\)-(S-Benzyl-l-ethyl-ureidomethylIVS-chloro-S'-methoxy-biphenyl-a-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: (5-chloro-2'ethaminomethyl-5'-methoxy-biphenyl-3-yl)-acetic acid methyl ester and benzyl isocyanate.
Step 2: [2'-(3-Benzyl-l-ethyl-ureidomethyl)-5-chloro-5'-methoxy-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: \(^\wedge\)-\((S\text{-benzyl}\text{-l-ethyl-ureidoniethy}^-S\text{-chloro-S'-methoxy-biphenyl-S-y}^-\text{-acetic acid methyl ester. M+H is 468.}

Example 175: Synthesis of [5-Chloro-2'-({[2-(4-chloro-phenoxy)-acetyl]-ethyl-amino]-methyl}-5'-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-221)

\[
\text{Step 1: } [S\text{-Cloro-2'}(\{2-(4\text{-chloro-phenoxy})\text{-acetyl}\text{-ethyl-amino}\}\text{-methyl})-5\text{'-methoxy-biphenyl-3-yl}] \text{-acetic acid methyl ester}
\]

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (S-chloro\(^\wedge\)-ethylaminomethyl\text{-f'-methoxy-biphenyl-S-yJ-acetic acid methyl ester and 4-chlorophenoxyacetyl chloride.

Step 2: [5-Chloro-2 ' ({ [2-(4-chloro-phenoxy)-acetyl]-ethyl-amino} -methyl)-5'-methoxy-biphenyl-3-yl] -acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [5-chloro-2'-({[2-(4-chloro-phenoxy)-acetyl]-ethyl-amino}-methyl)-5'-methoxy-biphenyl-3-yl]-acetic acid methyl ester. M+H is 503.
Example 176: Synthesis of [2'-((3-Benzyl-1-ethyl-ureidomethyl)-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-228)

Step 1: (4'-Bromo-2'-formyl-6-niethoxy-biphenyl-3-yl)-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 5-bromo-2-iodo-benzaldehyde and [4-methoxy-3-(4,4,5,5-tetramethyl-1,3,2)dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester.

Step 2: [6'-Ethoxy-pyridin-S-yl^-forinyl-6-methoxy-biphenyl-S-yl]-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (4'-bromo-2'-formyl-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester and 2-ethoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine.

Step 3: [6'-Ethoxy-pyridin-3-yl]-2'-ethylaminomethyl-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester
Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: [6'-ethoxy-pyridin^-y^-formyl-6-methoxy-biphenyl-S-ylJ-acetic acid ethyl ester and ethylamine (2M in THF).
Step 4: [2'-(3-Benzyl-1-ethyl-ureidomethyl)-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester

[0950] Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: [4'-(6-ethoxy-pyridin-3-yl)-2'-ethylaminomethyl-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester and benzyl isocyanate.

Step 5: [2'-(3-Benzyl-1-ethyl-ureidomethyl)-4H-ethoxy-pyridin-3-yl]-6-methoxy-biphenyl-3-yl]-acetic acid

[0951] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-(3-benzyl-1-ethyl-ureidomethyl)-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 555.

Example 177: Synthesis of [2'-(2-(4-Chloro-phenoxy)-acetyl]-ethyl-amino}-methyl)-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-229)
Step 1: I2'-([2-(4-Chloro-phenoxy)-acetyl]-ethyl-amino}-methyl)-4'-((6-ethoxy-pyridiii-3-yl)-6-methoxy-biphenyl-3-ylJ-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [4'-(6-ethoxy-pyridin-3-yl)-2'-ethyaminomethyl-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester and 4-chlorophenoxyacetyl chloride.

Step 2: [2'-([2-(4-Chloro-phenoxy)-acetyl]-ethyl-ainino}-methyl)-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-([2-(4-chloro-phenoxy)-acetyl]-ethyl-amino} -methyl)-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 590.

Example 178: Synthesis of [2'-(Cyclopropanecarbonyl-ethyl-amino)-inethyl]-6-methoxy-4 1-quinolin-6-yl-biphenyl-3-yl]-acetic acid (Compound 1-230)

Step 1: (2'-Formyl-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl)-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (4'-bromo-2'-formyl-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester and 6-quinolineboronic acid pinacol ester.

Step 2: (2'-Ethylaminomethyl-6-methoxy-4'-quinoliii-6-yl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (2'-formyl-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

Step 3: (2'-((Cyclopropanecarbonyl-ethyl-amino)-methyl)-6-methoxy-4'-quinoliit-6-yl-biphenyl-3-yl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropanecarbonyl chloride.

Step 4: (2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl-6-methoxy-4'-quinoliit-6-yl-biphenyl-3-yl)-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: (2'-(cyclopropanecarbonyl-ethyl-amino)-methyl)-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl)-acetic acid ethyl ester. M+H is 496.
Example 179: Synthesis of \([2'(3\text{-benzyl}-1\text{-ethyl-ureidomethyl})-6\text{-methoxy-4'}\text{-quinoliii-6-yl-biphe αyl-3-yl}]\) -acetic acid (Compound 1-231)

\[
\text{\includegraphics{compound_1-231.png}}
\]

Step 1: [\(2'(3\text{-benzyl}-1\text{-ethyl-ureidomethyl})-6\text{-methoxy-4'}\text{-quinolin-6-yl-biphenyl-3-yl}]\)-acetic acid ethyl ester

[0958] Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: (2'-ethyaminomethyl-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl)-acetic acid ethyl ester and benzyl isocyanate.

\[
\text{\includegraphics{compound_1-231_step_1.png}}
\]

Step 2: [\(2'(3\text{-benzyl}-1\text{-ethyl-ureidomethyl})-6\text{-methoxy-4'}\text{-quinolin-6-yl-biphenyl-3-yl}]\)-acetic acid

[0959] Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [\(2'(3\text{-benzyl}-1\text{-ethyl-ureidomethyl})-6\text{-methoxy-4'}\text{-quinolin-6-yl-biphenyl-3-yl}]\)-acetic acid ethyl ester. M+H is 561.

Example 180: Synthesis of [\(2'-(2\text{-[(4-Chloro-phenoxy)-acetyl]-ethyl-amino}]\)-methyl]-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl]-acetic acid (Compound 1-232)
Step 1: [I'fP^-Chloro-phenoxyJ-acetyll-ethyl-aminol-methy^-methoxy^'-quinoliili-6yl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethaminomethyl-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl)-acetic acid ethyl ester and 4-chlorophenoxyacetyl chloride.

Step 2: [2'-([2-(4-Chloro-phenoxy)-acetyl]-ethyl-amino}-methyl)-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl] -acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2'-([2-(4-chloro-phenoxy)-acetyl]-ethyl-amino}-methyl)-6-methoxy-4'-quinolin-6-yl-biphenyl-3-yl]-acetic acid ethyl ester. M+H is 596.

Example 181: Synthesis of [I'-ftCydopanecarbonyl-ethyl-aminoJ-methyl]-6-methoxy^- (l-methyl-Lff-pyrazol-4-yl)-bipheiiyl-3-yl]-acetic acid (Compound 1-233)
Step 1: [2'-Formyl-6-methoxy-4'(1-methyl-1H-pyrazol-4-yl)-biphenyl-3-yl] -acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: (4'bromo-2'-formyl-6-methoxy-biphenyl-3-yl)-acetic acid ethyl ester and 1-methylpyrazole-4-boronic acid pinacol ester.

Step 2: [2'-Ethylaminomethyl-6-methoxy-4'(1-methyl-1H-pyrazol-4-yl)-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: [2'-formyl-6-methoxy-4'(1-methyl-1H-pyrazol-4-yl)-biphenyl-3-yl]-acetic acid ethyl ester and ethylamine (2M in THF).

Step 3: [1'-KCyclopropanecarbonyl-ethyl-amino-methyln1-methoxy-6-methoxy-1'-inethyl-1H-pyrazol-4-yl)-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: [2'-ethylaminomethyl-6-methoxy-4'(1-methyl-1H-pyrazol-4-yl)-biphenyl-3-yl]-acetic acid ethyl ester and cyclopropanecarbonyl chloride.

Step 4: [2'-(Cyclopropanecarbonyl-ethyl-amino)-inethyl]-6-methoxy-4'(1-methyl-1H-pyrazol-4-yl)-biphenyl-3-yl]-acetic acid
Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2’-
[(cyclopropemecarbonyl-ethyl-arnino)-methyl]-6-methoxy-4’-(l-methyl-l\(H\)-pyrazol-4-yl)-biphenyl-3-yI]-acetic acid ethyl ester. M+H is 449.

Example 182: Synthesis of [2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4’-(l-inethyl-l/r-
pyrazol-4-yI)-biphenyl-3-yI]-acetic acid (Compound 1-234)

![Chemical Structure 1](image1)

Step 1: (2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4’-(l-methyl-l \(H\)-pyrazol-4-yI)-
biphenyl-3-yI]-acetic acid ethyl ester

Prepared according to the procedure described in Example 95, Step 2, using the following starting materials: [2’-ethylaminomethyl-6-methoxy-4’-(l -methyl-l \(H\)-pyrazol-4-yI)-biphenyl-3-yI]-acetic acid ethyl ester and benzyl isocyanate.

![Chemical Structure 2](image2)

Step 2: [2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4’-(l-methyl-l \(H\)-pyrazol-4-yI)-
biphenyl-3-yI]-acetic acid

Prepared according to the procedure described in Example 31, Step 2, using the following starting material: [2’-(3-benzyl-l-ethyl-ureidomethyl)-6-methoxy-4’-(l-methyl-l \(H\)-pyrazol-4-yI)-
biphenyl-3-yI]-acetic acid ethyl ester. M+H is 514.

Example 183: Synthesis of {6-Methoxy-2’-[(5-methyl-ben2Oxazol-2-ylamino)-methyl]-4 l-
trifluoromethyl-biphenyl-3-yI]-acetic acid (Compound 1-235)
Step 1: \{6\text{-Methoxy-2'}-[(5\text{-methyl-benzooxazol-2-ylamino})\text{-imethyl}-4'-trifluoromethyl-biphenyl-3-yl}\}\text{-acetic acid ethyl ester}

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-aminoethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and 2-chloro-5-methyl-benzooxazole.

Step 2: \{6\text{-Methoxy-2'}-[(5\text{-methyl-benzooxazol-2-ylamino})\text{-niethyl}-4'-trifluoromethyl-biphenyl-3-yl]\}\text{-acetic acid}

Prepared according to the procedure described in Example 3, Step 2, using the following starting material: \{6-mdhoxy-2'}-(5\text{-methyl-benzooxazol-2-ylamino})\text{-methyl3-4'}-trifluoromethyl-biphenyl-3-yl\}\text{-acetic acid ethyl ester.}

Example 184: Synthesis of \{2'}-[\text{(Benzylxycarbonyl-ethyl-amino)-methyl}]\text{-4-inethoxy-4'}-trifluoromethyl-biphenyl-3-yl\}\text{-acetic acid (Compound 1-107)}

Step 1: (5-Bromo-2-methoxy-phenyl)-acetic acid methyl ester

5-Bromo-2-methoxyphenylacetic acid (0.900g, 3.67mmol) in MeOH (20mL) was treated with 4N HCl in 1,4-dioxane (4mL) and stirred at 80°C for 6 hours. The mixture was concentrated to give the title compound.
Step 2: [2-Methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolaii-2-yl)-phenyl]-acetic acid methyl ester

Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: (5-bromo-2-methoxy-phenyl)-acetic acid methyl ester and bis(pinacolato) diborone.

Step 3: {2'-[(Benzyloxy carbonyl-ethyl-amino)-methyl]-4-methoxy-4'-trifluoromethyl]-biphenyl-3-y1}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: [2-methoxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid methyl ester and (2-bromo-5-trifluoromethyl-benzyl)-ethyl-carbamic acid benzyl ester.

Step 4: [2'-f(Benzyloxy carbonyl-ethyl-amino)-methyl]-4-methoxy-4'-trifluoromethyl-biphenyl-3-y1]-acetJe acid

Prepared according to the procedure described in Example 41, Step 8, using the following starting material: {2'-[(benzyloxy carbonyl-ethyl-amino)-methyl]-4-methoxy-4 trifluoromethyl-biphenyl-3-y1}-acetic acid methyl ester. M+H is 502.

Example 185: Synthesis of [2'-1-(Benzyloxy carbonyl-ethyl-amino)-methyl]-4-chloro-41-trifluoromethyl-biphenyl-3-y1]-acetic acid (Compound 1-125)
Step 1: (S-Benzyloxy-1-chloro-phenyl)-acetic acid

To benzyl alcohol (1.1g, 10mmol) in NMP (20mL) was added sodium hydride (60% in mineral oil; 0.44g, 11mmol), and the mixture was stirred for 30 minutes at room temperature. The mixture was then added to a vial containing 2-chloro-5-fluorophenylacetic acid (1g, 4.5mmol), and the reaction was stirred at 120°C for 3 hours. Acidic work-up gave the title compound.

Step 2: (5-Benzylloxy-2-chloro-phenyl)-acetic acid ethyl ester

To (5-benzyloxy-2-chloro-phenyl)-acetic acid (1.5g, 5.4mmol) in EtOH (30mL) was added sulfuric acid (1mL), and the mixture was stirred overnight at room temperature. Once no starting material was seen by analytical LCMS, the reaction was worked up to give the title compound.

Step 3: (2-Chloro-5-hydroxy-phenyl)-acetic acid ethyl ester

(5-Benzyl-2-chloro-phenyl)-acetic acid ethyl ester (1.7g, 5.6mmol) was dissolved in EtOH (30mL) and degassed with N₂. 5% Palladium on carbon (1g) was added, and the reaction was purged with H₂ and then stirred under an H₂ balloon at 50°C overnight. The mixture was filtered and concentrated to give the title compound.

Step 4: (2-Chloro-5-trifluoromethanesulfonyloxy-phenyl)-acetic acid ethyl ester

To a solution of (2-chloro-5-hydroxy-phenyl)-acetic acid ethyl ester (0.177g, 0.87mmol) in DMF (5mL) was added cesium carbonate (0.567g, 1.74mmol) and N-phenyl-bis(trifluoromethanesulfinimide) (0.621g, 1.74mmol), and the reaction was stirred for 1 hour. After aqueous work-up, the residue was purified by silica gel chromatography to give the title compound.
Step 5: \(\text{2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4-chloro-4'-trifluoromethyl-biphenyl-3-yl]} \)-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-\(\text{[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl]-5-Mfluoromethyl-benzyl]-carbamate} \) acid benzyl ester and (2-chloro-5-trifluoromethanesulfonyl-phenyl)-acetic acid ethyl ester.

Step 6: \(\text{2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4-chloro-4'-trifluoromethyl-biphenyl-3-yl]} \)-acetic acid

To a solution of \(\text{2'-[(benzyloxycarbonyl-ethyl-amino)-methyl]-4-chloro-4'-trifluoromethyl-biphenyl-3-yl]} \)-acetic acid ethyl ester (0.17mmol) in 1,4-dioxane (2mL) and \(\text{H2O} \) (1mL) was added \(\text{1N aqueous LiOH} \) (1.7mL, 1.7mmol), and the reaction was stirred overnight at room temperature. The mixture was adjusted to pH 6 with \(\text{IN aqueous HCl} \), and then extracted with \(\text{EtOAc} \). The combined organic layers were dried, filtered, and concentrated, and the residue was purified by silica gel chromatography to give the title compound. \(\text{M+H} \) is 506.

Example 186: Synthesis of \(\text{2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]} \)-acetic acid (Compound 1-108)
Step 1: (3-Benzylloxy-5-chloro-phenyl)-acetic acid

Prepared according to the procedure described in Example 185, Step 1, using the following starting materials: 3-chloro-5-fluorophenylacetic acid and benzyl alcohol.

Step 2: (3-Benzylloxy-5-chloro-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 2, using the following starting material: (3-benzylloxy-5-chloro-phenyl)-acetic acid.

Step 3: (S-Chloro-S-hydroxy-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 3, using the following starting material: (3-benzylloxy-5-chloro-phenyl)-acetic acid ethyl ester.

Step 4: (S-Chloro-S-trifluoromethanesulfonyloxy-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 4, using the following starting materials: (3-chloro-5-hydroxy-phenyl)-acetic acid ethyl ester and N-phenyl-bis(trifluoromethanesulphonimide).

Step 5: [2'-(benzyloxy carbonyl-ethyl-amino)-methyl]-5-chloro-1-trifluoromethyl-biphenyl-3-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3]dioxaborolan-2-yl)-5-trifluoroniethyl-benzyl]-carbamic acid benzyl ester and ^-chboro-S-trifluoromethanesulfonyloxy-phenyVJ-acetic acid ethyl ester.

Step 6: [2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl]-biphenyl-3-yl]-acetic acid

Prepared according to the procedure described in Example 185, Step 6, using the following starting material: [2'-(benzyloxycarbonyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid ethyl ester. M+H is 506.

Example 187: Synthesis of [2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-109)

Step 1: (3-Benzylaoxy-5-trifluoromethyl-phenyl)-acetic acid

Prepared according to the procedure described in Example 185, Step 1, using the following starting materials: 3-fluoro-5-(trifluoromethyl)phenylacetic acid and benzyl alcohol.

Step 2: (S-Benzylaoxy-S-trifl oxomethyl-phenyV^-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 2, using the following starting material: (3-benzyloxy-5-trifluoromethyl-phenyl)-acetic acid.
Step 3: (3-Hydroxy-5-trifluoromethyl-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 3, using the following starting material: (3-benzyloxy-5-trifluoromethyl-phenyl)-acetic acid ethyl ester.

Step 4: (S-Trifluoromethanesulfoxyloxy-S-trifluoromethyl-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 4, using the following starting materials: (3-hydroxy-5-trifluoromethyl-phenyl)-acetic acid ethyl ester and N-phenyl-bis(trifluoromethanesulfonimide).

Step 5: {Z'-KBenzjloxycarbonyl-ethyl-aniinoJ-niethyll-S^'-bis-trifluoromethyl-biphenyl-S-yl}-acetic acid ethyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzylj-carbamic acid benzyl ester and (3-trifluoromethanesulfonyloxy-5-trifluoromethyl-phenyl)-acetic acid ethyl ester.
Step 6: $\{2^{'-}(\text{Benzyloxy carbonyl-ethyl-amino})\text{-methyl}\}-5,4^{'-}\text{bis-trifluoromethyl-biphenyl-3-yl}\}$-acetic acid

[0991] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: $\{2^{'-}[\text{(benzyloxy carbonyl-ethyl-amino)}\text{-methyl}]\}-5,4^{'-}\text{bis-trifluoromethyl-biphenyl-3-yl}\}$-acetic acid ethyl ester. M+H is 540.

Example 188: Synthesis of $\{\text{I'-ICBe}z\text{nyloxy carbonyl-ethyl-amino}\text{-methyl-6-chloro}\text{-trifluoromethyl-biphenyl-3-yl}\}$-acetic acid (Compound 1-110)

Step 1: (S-Benzoyloxy^-chloro-phenylJ-acetic acid

[0992] Prepared according to the procedure described in Example 185, Step 1, using the following starting materials: 4-chloro-3-fluorophenylacetic acid and benzyl alcohol.

Step 2: (3 Benzoyloxy-4-chloro-phenyl)-acetic acid ethyl ester

[0993] Prepared according to the procedure described in Example 185, Step 2, using the following starting material: (3-benzoyloxy-4-chloro-phenyl)-acetic acid.

Step 3: (4-Chloro-3-hydroxy-phenyl)-acetic acid ethyl ester

[0994] Prepared according to the procedure described in Example 185, Step 3, using the following starting material: (3-benzoyloxy-4-chloro-phenyl)-acetic acid ethyl ester.
Step 4: (4-Chloro-3-trifluoromethanesulfonyloxy-phenyl)-acetic acid ethyl ester

[0995] Prepared according to the procedure described in Example 185, Step 4, using the following starting materials: (4-chloro-3-hydroxy-phenyl)-acetic acid ethyl ester and N-phenyl-bis(trifluoromethanesulfonimide).

Step 5: \([Z'-\text{enzyloxycarbonyl-ethyl-amino}^\text{methyl}]^-\)-chloro^-\text{trifluoromethyl-biphenyl-3-yl}^-\)-acetic acid ethyl ester

[0996] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzylj-carbamic acid benzyl ester and (4-chloro-3-trifluoromethanesulfonyloxy-phenyl)-acetic acid ethyl ester.

Step 6: \([2'-[\text{Benzylxycarbonyl-ethyl-amino}]^\text{inethyl}^-]^-\)-6-chloro^-\text{trifluoromethyl-biphenyl-3-yl}^-\)-acetic acid

[0997] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \([2'-[(benzylxycarbonyl-ethyl-amino)-methyl]-6-chloro^-\text{trifluoromethyl-biphenyl-3-yl}^-]^-\)-acetic acid ethyl ester. M+H is 506.

Example 189: Synthesis of \([2'-[\text{Benzylxycarbonyl-ethyl-amino}]^\text{inethyl}^-]^-\)-4,4'-bis-trifluoromethyl-biphenyl-3-yl^-\)-acetic acid (Compound 1-124)
Step 1: (S-Beizyloxy-Z-trifluoromethyl-phenyl)-acetic acid
[0998] Prepared according to the procedure described in Example 185, Step 1, using the following starting materials: 5-fluoro-2-(trifluoromethyl)phenylacetic acid and benzyl alcohol.

Step 2: (5-Benzyloxy-2-trifluoromethyl-phenyl)-acetic acid ethyl ester
[0999] Prepared according to the procedure described in Example 185, Step 2, using the following starting material: (5-benzyloxy-2-trifluoromethyl-phenyl)-acetic acid.

Step 3: (5-Hydroxy-2-trifluoromethyl-phenyl)-acetic acid ethyl ester
[01000] Prepared according to the procedure described in Example 185, Step 3, using the following starting material: (5-benzyloxy-2-trifluoromethyl-phenyl)-acetic acid ethyl ester.

Step 4: (5-Trifluoromethanesulfonyloxy-2-trifluoromethyl-phenyl)-acetic acid ethyl ester
[01001] Prepared according to the procedure described in Example 185, Step 4, using the following starting materials: (5-hydroxy-2-trifluoromethyl-phenyl)-acetic acid ethyl ester and N-phenyl-bis(trifluoromethanesulfonimide).
Step 5: \(\text{2-l-[(Benzyloxy carbonyl-ethyl-amino)-methyl]-4,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester}\)

[01002] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester and (5-trifluoromethanesulfonyloxy-2-trifluoromethyl-phenyl)-acetic acid ethyl ester.

![Chemical structure of Step 5](image)

Step 6: \(\text{2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-4,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid}\)

[01003] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \(\text{2'-(benzyloxy carbonyl-ethyl-amino)-methyl]-4,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester}\). M+H is 540.

Example 190: Synthesis of (3-Benzzyloxy-5-fluoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-126)

![Chemical structure of Example 190](image)

Step 1: (3-Benzzyloxy-5-fluoro-phenyl)-acetic acid

[01004] To benzyl alcohol (1.4g, 12.8mmol) in NMP (30mL) was added sodium hydride (60% in mineral oil; 0.5g, 12.8mmol), and the mixture was stirred for 20 minutes. 3,5-Difluorophenylacetic acid (1.0g, 5.8mmol) was added, and the reaction was stirred at 100°C for 2 hours, and then 60°C overnight. The mixture was worked-up to give the title compound, plus ~30% of benzyl alcohol impurity.
Step 2: (3-Benzyloxy-5-fluoro-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 2, using the following starting material: (3-benzyloxy-5-fluoro-phenyl)-acetic acid.

Step 3: (3-Fluoro-5-hydroxy-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 3, using the following starting material: (3-benzyloxy-5-fluoro-phenyl)-acetic acid ethyl ester.

Step 4: (S-Fluoro-S-trifluoromethanesulfonyloxy-phenyl)-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 4, using the following starting materials: (3-fluoro-5-hydroxy-phenyl)-acetic acid ethyl ester and N-phenyl-bis(trifluoromethanesulfonimide).

Step 5: [2'-((Benzylxycarbonyl-ethyl-amino)-methyl]-5-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester and (3-fluoro-5-trifluoromethanesulfonyloxy-phenyl)-acetic acid ethyl ester.
Step 6: \{2\'-(Benzyloxycarbonyl-ethyl-amino)-methyl\}-5-fluoro-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid

[01009] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \{2\'-(benzyloxycarbonyl-ethyl-aniino)-methyl\}-5-fluoro-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid ethyl ester. M+H is 490.

Example 191: Synthesis of \{2\'-(Benzyloxycarbonyl-ethyl-amino)-methyl\}-4-fluoro-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-127)

Step 1: (5-Bromo-2-fluoro-phenyl)-methanol

[01010] To a solution of 5-bromo-2-fluorobenzaldehyde (1.3g, 6.4mmol) in MeOH (10mL) was added sodium borohydride (0.29g, 7.7mmol), and the reaction was stirred at room temperature for 5 minutes. After aqueous work-up, the residue was purified by silica gel chromatography to give the title compound.

Step 2: 4-Bromo-2-bromomethyl-1-fluoro-benzene

[01011] To (5-bromo-2-fluoro-phenyl)-methanol (1.2g, 5.9mmol) in DME (20mL) was added phosphorus tribromide (0.83mL, 8.8mmol), and the reaction was stirred at room temperature for 6 hours. The mixture was cooled to 0°C and adjusted to pH 6 with saturated aqueous NaHCO₃. The solution was extracted with EtOAc, and the combined organic layers were dried, concentrated, and purified by silica gel chromatography to give the title compound.

Step 3: (5-Bromo-2-fluoro-phenyl)-acetonitrile
4-Bromo-2-bromomethyl-1-fluoro-benzene (1.2g, 3.7mmol) and sodium cyanide (2.0g, 4.1mmol) were combined in DMSO (15mL) and stirred at 90°C for 2 hours. Once no starting material was seen by analytical tic, the mixture was worked-up with EtOAc and H₂O to give the title compound.

Step 4: (5-Bromo-2-fluoro-phenyl)-acetic acid

(5-Bromo-2-fluoro-phenyl)-acetonitrile (0.5g, 2.3mmol) was treated with acetic acid (2mL) and sulfuric acid (2mL) in H₂O (2mL) at 95°C for 5 hours. Aqueous worked-up afforded the title compound.

Step 5: (5-Bromo-2-fluoro-phenyl)-acetic acid methyl ester

To a solution of (5-bromo-2-fluoro-phenyl)-acetic acid (2.3mmol) in MeOH (15mL) was added 4N HCl in 1,4-dioxane (2mL), and the reaction was stirred at 90°C for 2 hours. The mixture was concentrated, and the residue was purified by silica gel chromatography to give the title compound.

Step 6: [2′-(Benzyloxycarbonyl-ethyl-amino)-inethyl]-4-fluoro-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester and (5-bromo-2-fluoro-phenyl)-acetic acid methyl ester.
Step 7: \(2\text{-\{(Benzyloxycarbonyl-ethyl-aminato-methyl\}-4-fluoro-4\text{-trifluoromethyl-biphenyl-3-yl\}-acetic acid}

[01016] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \(2\text{-\{(benzyloxycarbonyl-ethyl-aminato-methyl\}-4-fluoro-4\text{-\ trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester. M+H is 490.}

Example 192: Synthesis of \(5\text{-Chloro-2\text{-\{(cyclopropanecarbonyl-ethyl-aminato-methyl\}-4\text{-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-135)\)}

Step 1: Cyclopropanecarboxylic acid (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amide

[01017] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine and cyclopropanecarbonyl chloride.

Step 2: Cyclopropanecarboxylic acid ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-amide

[01018] Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: cyclopropanecarboxylic acid (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amide and bis(pinacolato)diboron.
Step 3: {5-Chloro-2'-[(cyclopropanecarbonyl-ethyl-amino)HmethylJ-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: cyclopropanecarboxylic acid ethyl-[2-{4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl}-5-trifluoromethyl-benzyl]-amide and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.

Step 4: {5-Chloro-2'-(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid

Prepared according to the procedure described in Example 185, Step 6, using the following starting material: {5-chloro-2'-(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid methyl ester. M+H is 440.

Example 193: Synthesis of {2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-ylj-acetic acid (Compound 1-136)

Step 1: {2'-(Cyclopropanecarbonyl-ethyl-amino)-methylj-5,4'-bis-trifluoromethyl-biphenyl-3-ylj-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: cyclopropanecarboxylic acid ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-
2-yl)-5-trifluoromethyl-benzyl]-amide acid (3-trifluoromethanesulfonyloxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester.

Step 2: [2'-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid

[01022] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: [2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 474.

Example 194: Synthesis of [2'-[(Acetyl-ethyl-amino)-inethyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-137)

Step 1: \(^2 \)-Bromo-5-trifluoromethyl-benzyl)-\(\Lambda \)-ethyl-acetamide

[01023] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine and acetyl chloride.

Step 2: \(^2 \)-Ethyl-\(\Lambda \)-[2-(4,4,S,S-tetramethyl-[1,\(\gamma \),2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-acctamide

[01024] Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: \(N \)-(2-Bromo-5-trifluoromethyl-benzyl)-\(N \)-ethyl-acetamide and bis(pinacolato)diboron.
Step 3: \(\{I^\prime-K\text{Acetyl-ethyl-aminoJ-methylJ-S-chloro}^{\prime}\text{-trifluoroniethyl-biphenyl-S-yll-acetic acid methyl ester} \)

[01025] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: \(N\)-ethyl-\(N\)-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-acetamide and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.

Step 4: \(\{2^\prime-[(\text{Acetyl-ethyl-ainino})-methyl]-5\text{-chloro-4}^{\prime}\text{-trifluoromethyl-biphenyl-3-yl}\}-\text{acetic acid} \)

[01026] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \(2^\prime-[(\text{acetyl-ethyl-amino})-methyl]-5\text{-chloro-4}^{\prime}\text{-trifluoromethyl-biphenyl-3-yl}\}-\text{acetic acid methyl ester. M+H is 414.}

Example 195: Synthesis of \(\{I^\prime\text{-KAcetyl-ethyl-aminoVmethylJ-S}^{\prime}\text{-bis-trifluoromethyl-biphenyl-3-yl}\}-\text{acetic acid }\) (Compound 1-138)

Step 1: \(\{I^\prime-K\text{Acetyl-ethyl-aminoJ-methylJ-S}^{\prime}\text{-bis-trifluoromethyl-biphenyl-S-yll-acetic acid methyl ester} \)

[01027] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: \(N\)-ethyl-\(N\)-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-acetamide and (S-trifluoromethanesulfonyloxy-S-trifluoromethyl-phenylJ-acetic acid methyl ester.
Step 2: \(\text{[1'-Acetyl-ethyl-amino-methyl-S'-bis-trifluoromethyl-biphenyl-S-yl]} \) -acetic acid

[01028] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \(\text{[Z'-Acetyl-ethyl-amino-J-methyl-S'-bis-trifluoromethyl-biphenyl-S-yl]} \) -acetic acid methyl ester. M+H is 448.

Example 196: Synthesis of \(\text{[2'-(3-Benzyl-l-ethyl-ureidomethyI>5-chloro-4'-trifluoromethyl-biphenyl-3-yl]} \) -acetic acid (Compound 1-157)

Step 1: \(\text{[2'-(3-Benzyl-l-ethyl-ureidoniethyl)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]} \) -acetic acid methyl ester

[01029] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 3-benzyl-l-ethyl-1-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.

Step 2: \(\text{[2'-(3-Benzyl-l-ethyi-nreidomethyl)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]} \) -acetic acid
Prepared according to the procedure described in Example 185, Step 6, using the following starting material: [2'-[(3-benzyl-l-ethyl-ureidomethyl)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 505.

Example 197: Synthesis of [2'-3-Benzyl-l-ethyl-ureidomethyl^-S^'-bis-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-158)

Step 1: [l''S-Benzyl-l-ethyl-ureidomethyl^-S^'-bis-trifluoromethyl-biphenylO-yll-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 3-benzyl-l-ethyl-l-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl] -urea and (3-trifluoromethanesulfonyloxy-5 -ttrifluoromethyl-phenyl)-acetic acid methyl ester.

Step 2: [Z'-CS-Benzyl-l-ethyl-ureidomethyO-S^'-bis-trifluoromethyl-biphenyl-S-yll-acetic acid

Prepared according to the procedure described in Example 185, Step 6, using the following starting material: [2'-[(3-benzyl-l-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 539.

Example 198: Synthesis of (2'-Ethylaminomethyl-5-fl uoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-162)
A solution of {2′-[(benzyloxyca:bonyl-ethyl-amino)-methyl]-5-fluoro-4′-trifluoromethyl-biphenyl-3-yl} -acetic acid (0.025g, 0.05mmol) and 10% palladium on carbon (catalytic) in MeOH was hydrogenated under a balloon of H₂ at room temperature for 2 hours. The mixture was filtered through a pad of Celite, and the filtrate was concentrated to give the title compound. M+H is 382.

Example 199: Synthesis of [2′-3-Benzyl-l-ethyl-ureidomethyl]-5-fluoro-4′-trifluoromethyl-biphenyl-3-y l-acetic acid (Compound 1-159)

Step 1: (2′-Ethylaminomethyl-5-fluoro-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 184, Step 1, using the following starting material: (2′-ethylaminomethyl-5-fluoro-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid.

Step 2: [2′-(3-Ben2yl-l-ethyl-ureidomethyl)-5-fluoro-4′-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: (2′-ethylaminomethyl-5-fluoro-4′-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester and benzyl isocyanate.
Step 3: 12-[(3-Benzyl-1-ethyl-ureidomethyl)-5-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid

[01036] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: [2'-(3-benzyl-1-ethyl-ureidomethyl)-5-fluoro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester. M+H is 489.

Example 200: Synthesis of (5-Chloro-2'-ethylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-160)

Step 1: [2-L-(Benzyloxycarbonyl-ethyl-amino)-methylL-5-chloro-4-L-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

[01037] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.
Step 2: (5-Chloro-2'-ethylamino)methyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 198, Step 1, using the following starting material: (2'-[(benzyloxycarbonyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester.

Step 3: (5-Chloro-2'-ethylaminomethyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-1,3,2)dioxaborolan-2-yl]-5-trifluoromethyl-benzyl]-carbamic acid benzyl ester and (3-trifluoromethanesulfonyloxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester.

Example 201: Synthesis of (2'-Ethylaminomethyl-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-161)
Step 2: (2’-Ethylaminomethyl-5,4’-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

Prepared according to the procedure described in Example 198, Step 1, using the following starting material: [2’-((benzyloxy carbonyl-ethyl-amino)-methyl)-5,4’-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester.

Step 3: (2’-Ethylanrinomethyl-5,4’-bis-trifluoromethyl4)iphenylO-yl)-acetic acid

Prepared according to the procedure described in Example 201, Step 3, using the following starting material: (2’-ethylaminomethyl-5,4’-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester.

Example 202: Synthesis of [2’-((Ethyl-methoxycarbonyl-amino)-methyl]-5,4’-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-163)

To a solution of (2’-ethylaminomethyl-5,4’-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester (0.110 g, 0.26 mmol) in CH$_2$Cl$_2$ at 0°C was added diisopropylethylamine (0.1 mL, 0.66 mmol), followed by phosgene (1.9 M in toluene; 0.20 mL, 0.39 mmol), and the mixture was stirred for 2 hours. Triethylamine (0.06 mL, 0.52 mmol) was added, followed by methylamine (2 M in THF; 0.20 mL, 0.39 mmol), and the reaction was stirred at room temperature for 2 hours. Urea formation did not occur, so the mixture was worked-up with CH$_2$Cl$_2$ and H$_2$O, and the residue was purified by silica gel chromatography to give the carbamoyl chloride intermediate, which was treated with 1 N aqueous LiOH in MeOH and THF to give the title compound. M+H is 464.
Example 203: Synthesis of [5-Chloro-2’-[(ethyl-methoxycarbonyl-ainino)-methyl]-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-164)

[01044] Prepared according to the procedure described in Example 202, Step 1, using the following starting material: (5-chloro-2’-ethylaminomethyl-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 430.

Example 204: Synthesis of (5-Chloro-2’-[(4-chloro-benzyloxycarbonyl)-ethyl-amino]-methyl]-4’-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-188)

Step 1: (2-Bromo-5-trifluoromethyl-benzyl)-ethyl-carbamic acid 4-chloro-benzyl ester

[01045] Prepared according to the procedure described in Example 56, Step 2, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine and 4-chlorobenzyl chloroformate.

Step 2: Ethyl-[2-(4,4,5,5-tetramethyl-1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid 4-chloro-benzyl ester
[01046] Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: (2-Bromo-5-trifluoromethyl-benzyl)-ethyl-carbamic acid 4-chloro-benzyl ester and bis(pinacolato)diboron.

![Chemical Structure]

Step 3: (5-Chloro-2'-{(4-chloro-benzyloxycarbonyl)-ethyl-amino}-methyl)-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[01047] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-trifluoromethyl-benzylj-carbamic acid 4-chloro-benzyl ester and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.

![Chemical Structure]

Step 4: (5-Chloro-2'-{(4-chloro-benzyloxycarbonyl)-ethyl-amino}-methyl)-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

[01048] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: (5-chloro-2'-{(4-chloro-benzyloxycarbonyl)-ethyl-amino}-methyl)-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 540.

**Example 205: Synthesis of (2'-(4-Chloro-benzyloxcarbonyl)-ethyl-amino}-methyl)-5,4'-bis-trifluoromethyl-biphe 3-yl-3-yl)-acetic acid (Compound 1-189)
Step 1: (I'-IC^Chloro-benzyloxy carbonyl^-ethyl-aminol-methylJ-S^'-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[01049] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl- benzyl]-carbamic acid 4-chloro-benzyl ester and (3-trifluoromethanesulfonyloxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester.

Step 2: (I'-tgt^Chloro-benzyloxy carbonylJ-ethyl-aminol-methylJ-S^'-bis-trifluoromethyl-biphenyl-3-yl)-acetk acid

[01050] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: (2'-'[(4-chloro-benzyloxy carbonyl)-ethyl-aminol-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 574.

Example 206: Synthesis of (5-Chloro-2'-'[(ethyl-(4-fluoro-benzyl)oxy carbonyl]-amino]-methyl]-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-190)
Step 1: 2-Bromo-S-trifluoromethyl-benzylO-ethyl-carbamic acid 4-fluoro-benzyl ester

Prepared according to the procedure described in Example 56, Step 2, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine and 4-fluorobenzyl chloroformate.

Step 2: Ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-carbamic acid 4-fluoro-benzyl ester

Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-carbamic acid 4-fluoro-benzyl ester and bis(pinacolato)diboron.
Step 3: (5-CbJoro-2'-{[ethyl-(4-fluoro-benzyl)oxycarbonyl]-amino}-methyl)-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[01053] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]carbamic acid 4-fluoro-benzyl ester and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.

![Chemical Structure Image]

Step 4: (5-Chloro-2'-{[ethyl-(4-fluoro-benzyl)oxycarbonyl]-amino3-methyl}-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid

[01054] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: (5-chloro-2'-{[ethyl-(4-fluoro-benzyl)oxycarbonyl]-amino3-methyl}-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester. M+H is 524.

Example 207: Synthesis of (2'-{[Ethyl4-fluoro-benzyl]oxycarbonyl]-amino]-methyl}-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-191)

![Chemical Structure Image]

Step 1: (2'-{[Ethyl-(4-fluoro-benzyl)oxycarbonyl]-amino]-methyl}-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid methyl ester

[01055] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: ethyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-
Step 2: (I'-HEthyl^a-fluoro-benzyleoxycarbonylJ-aminol-methylJ-S^\prime^-bis-trifuoromethyl-
 biphe (øyl-3-j l)-acetic acid

[01056] Prepared according to the procedure described in Example 185, Step 6, using the
 following starting material: (2''-[(ethyl-(4-fluoro-benzyleoxycarbonyl)-amino]-methyl]-5,4''-bis-
 trifluoromethyl-biphenyl-3-y1)-acetic acid methyl ester. M+H is 558.

Example 208: Synthesis of [5-Chloro-21-[3-(4-chloro-beizyl)-l-ethyl- øreidoinethyl]-4''-
 trifluoromethyl-biphenyl-3-y1]-acetic acid (Compound 1-192)

Step 1: l-(2-Bromo-S-trifluoromethyl-benzyl])-3-(4-chloro-benzyl)-l-ethyl-urea

[01057] Prepared according to the procedure described in Example 95, Step 1, using the following
 starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine and 4-chlorobenzyl isocyanate.
Step 2: 3-(4-CMoro-benzyI)-l-ethyl-l-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea

[01058] Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: l-(2-bromo-5-trifluoromethyl-benzyl)-3-(4-chloro-benzyl)-l-ethyl-urea and bis(pinacolato)diboron.

Step 3: [5-Chloro-2 l-[3-(4-chloro-benzyl)-l-ethyl-ureidomethyl]-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid methyl ester

[01059] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 3-(4-chloro-benzyl)-l-ethyl-l-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.
Step 4: {5-Chloro-2’-[3-(4-chloro-benzyl)-1-ethyl-ureidomethyl]-4’-trifluoromethyl-biphenyl-3-yl}-acetic acid

[01060] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: {5-chloro-2’-[3-(4-chloro-benzyl)-1-ethyl-ureidomethyl]-4’-trifluoromethyl-biphenyl-3-yl} -acetic acid methyl ester. M+H is 539.

Example 209: Synthesis of {1’-^-^-Chloro-benzyl^-^-ethyl-ureidomethyy-S^-^-bis-trifluoromethyl-biphenyl-3-y1} -acetic acid (Compound 1-193)

Step 1: [2’-[3-(4-Chloro-ben2yl)-l-ethyl-ureidomethyl]-5,4^-^-bis-trifluoromethyl-biphenyl-3-y1]-acetic acid methyl ester

[01061] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 3-(4-chloro-benzyl)-l-ethyl-l-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea and (3-trifluoromethanesulfonyloxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester.
Step 2: \([Z'^{-}\text{P}^{-}\text{Chloro-benzy}^{-}\text{l-ethyl-ureidomethyl-S}^{'}\text{bis-trifluoromethyl-biphenyl-S-yl}]\text{-acetic acid} \)

[01062] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \([2'^{-}[3^{-}-(4\text{-chloro-benzyl})\text{-l-ethyl-ureidomethyl}]-5,4'^{-}\text{bis-trifluoromethyl-biphenyl-3-yl}] \text{-acetic acid methyl ester. M+H is 573.} \)

Example 210: Synthesis of \([S\text{-Chloro-Z'}\text{-Cl-ethyl-S-methyl-ureidomethyl}^{'}\text{-trifluoromethyl-biphenyl-3-yl}]\text{-acetic acid} \) (Compound 1-201)

Step 1: \(1^{-}(2\text{-Bromo-5-trifluoromethyl-benzyl})\text{-l-ethyl-3-methyl-urea} \)

[01063] Prepared according to the procedure described in Example 95, Step 1, using the following starting materials: \((2\text{-bromo-5-trifluoromethyl-benzyl})\text{-ethyl-amine} \) and methyl isocyanate.

Step 2: \(1^{-}\text{-Ethyl-3-methyl-l-[2-(4,4,5,5-tetraaniethyl-}[l'^{-}]\text{dioxaborolran-2-yl}]\text{-5-trifluoromethyl-benzyll-urea} \)

[01064] Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: \(1^{-}(2\text{-Bromo-5-trifluoromethyl-benzyl})\text{-l-ethyl-3-methyl-urea} \) and \(\text{bis(pinacolato)diboron.} \)
Step 3: [S-Chloro-l'-Cl-ethyl-S-methyl-ureidomethyl]-trifluoromethyl-biphenyl-S-yll-
acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 1-ethyl-3-methyl-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.

Step 4: [5-Chloro-2-l-ethyl-3-methyl-ureidomethyl]-4'-trifluoromethyl-biphenyl-3-yll-
acetic acid

Prepared according to the procedure described in Example 185, Step 6, using the following starting material: [5-chloro-2-l-ethyl-3-methyl-ureidomethyl]-4'-trifluoromethyl-biphenyl-3-yll]-acetic acid methyl ester. M+H is 429.

Example 211: Synthesis of [2'-f(Benzoyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-
biphenyl-3-yll]-acetic acid (Compound 1-203)

Step 1: iV-(2-Bromo-5-trifluoromethyl-benzyl)-iV-ethyl-benzamide

Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2-bromo-5-trifluoromethyl-benzyl)-ethyl-amine and benzoyl chloride.
Step 2: \(N\)-Ethyl-\(N\)-\(2\)-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-S-trifluoromethyl-benzyl]-benzamide

Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: \(N\)-(2-bromo-5-trifluoromethyl-benzyl)-\(N\)-ethyl-benzamide and bis(pinacolato)diboron.

Step 3: \{2'-\[(Benzoyl-ethyl-amino)-methyl\]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: \(N\)-ethyl-\(N\)-\(2\)-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-benzamide and (3-bromo-5-chloro-phenyl)-acetic acid methyl ester.

Step 4: \{2'-\[(Benzoyl-ethyl-amino)-methyl\]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid
Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \(2'(\text{benzoyl-ethyl-amino})-\text{methyl}\)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid methyl ester. M+H is 476.

Example 212: Synthesis of \(2^{5}\)-(\text{Benzoyl-ethyl-an \'uno\)-methyl\]-5,4' \,\, bis-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-204)

Step 1: \(2^{5}[(\text{Benzoyl-ethyl-amino})-\text{methyl}\]-5,4'-bis-trifluoromethyl-biphenyl-3-yl\]-acetic acid methyl ester

Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: N-ethyl-N-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-benzamide and (3-trifluoromethanesulfonyloxy-5-trifluoromethyl-phenyl)-acetic acid methyl ester.

Step 2: \(^{\text{\textbullet}}\)-[\(\text{Benzoyl-ethyl-amino}\)-\text{methyl}\]-5,4'-bis-trifluoromethyl-biphenyl-3-yl\]-acetic acid

Prepared according to the procedure described in Example 185, Step 6, using the following starting material: \(2'(\text{benzoyl-ethyl-amino})-\text{methyl}\)-5,4'-bis-trifluoromethyl-biphenyl-3-yl\]-acetic acid methyl ester. M+H is 510.

Example 213: Synthesis of \(2^{2}\)-(\text{Acetyl-ethyl-amino})-\text{methyl}\]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl\)-propionic acid (Compound 1-211)
Step 1: [3-Chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester

[01073] Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: (3-bromo-5-chloro-phenyl)-acetic acid ethyl ester and bis(pinacolato)diboron.

Step 2: (S-Chloro-1'-formylW-trifluoromethyl-biphenyl-S-ylJ-acetic acid ethyl ester

[01074] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: [3-chloro-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetic acid ethyl ester and 2-bromo-5-(trifluoromethyl)benzaldehyde.

Step 3: (5-Cfl6O-2'-ethylaminomethyl-4 1'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester

[01075] Prepared according to the procedure described in Example 33, Step 4, using the following starting materials: (5-chloro-2'-formyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and ethylamine (2M in THF).

Step 4: {2'-[(Acetyl-ethyl-amino)-methyl]-5-chIoro-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid ethyl ester
Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (S-chloro^'-ethylaminomethyl)^'-trifluoromethyl-biphenyl-S-y^-acetic acid ethyl ester and acetyl chloride.

Step 5: 1'-Il'-KAcetyl-ethyl-amino^methylJ-S-chloro^'-trifluoromethyl-biphenyl-S-yl}-propionic acid ethyl ester

To a solution of 2'-{(acetyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester (0.070g, 0.17mmol) in THF at -78°C under N₂ was added sodium hexamethyldisilazide (IM in THF; 0.20mL, 0.20mmol), and the mixture was stirred for 5 minutes. Iodomethane (0.01mL, 0.20mmol) was then added, and the reaction was stirred at -78°C for 30 minutes. Once no starting material was seen by analytical LCMS, the mixture was worked-up with EtOAc and H₂O, and the crude material was purified by silica gel chromatography to give the title compound.

Example 214: Synthesis of 2-{5-Chloro-2'{-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-212)
Step 1: {5-Chloro-2-f-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-acetic acid ethyl ester

[01079] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (5-chloro-2'-ethylaminometliyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid ethyl ester and cyclopropanecarbonyl chloride.

Step 2: 2-{5-Chloro-2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl}-propionic acid ethyl ester

[01080] Prepared according to the procedure described in Example 213, Step 5, using the following starting materials: {5-chloro-2'-'[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid ethyl ester and iodomethane.

Step 3: 2-{5-Chloro-2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4-1-trifluoromethyl-biphenyl-3-yl}-propionic acid

[01081] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: 2-{5-chloro-2'-'[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl} -propionic acid ethyl ester. M+H is 454.
Example 215: Synthesis of 2-{2'-[(Acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-propionic acid (Compound 1-213)

Step 1: 2-{2'-[(Acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-acetic acid ethyl ester

[01082] Prepared according to the procedure described in Example 184, Step 1, using the following starting material: 2-{2'[(acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid.

Step 2: 2-{V'-(Acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-propionic acid ethyl ester

[01083] Prepared according to the procedure described in Example 213, Step 5, using the following starting materials: 2'-(acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester and iodomethane.

Step 3: 2-{2'-[(Acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-propionic acid

[01084] Prepared according to the procedure described in Example 185, Step 6, using the following starting material: 2-{2'[acetyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid ethyl ester. M+H is 462.
Example 216: Synthesis of 2-\{2'-\[(Cyclopropanecarbonyl-ethyl-amino)-methyl\]-5,4'-bis-trifluoromethyl-biphenyl-3-yl\}-propionic acid (Compound 1-214)

Step 1: 2'-\[(Cyclopropanecarbonyl-ethyl-amino)-inethyl\]-5,4'-bis-trifluoromethyl-biphenyl-3-yl\]-acetic acid ethyl ester

[01085] Prepared according to the procedure described in Example 184, Step 1, using the following starting material: 2'\{[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl\} -acetic acid.

Step 2: 2-\{2'-\[(Cyclopropaacearbonyl-ethyl-amino)-niethyl\]-5,4'-bis-trifluoroniethyl-biphenyl-3-yl\}-propionic acid ethyl ester and 2-\{2'-\[(Cyclopropanecarbonyl-ethyl-amino)-methyl\]-5,4'-bis-trifluoromethyl-biphenyl-3-yl\}-2-methyl-propionic acid ethyl ester

[01086] Prepared according to the procedure described in Example 213, Step 5, using the following starting materials: 2'\{[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl\} -acetic acid ethyl ester and iodomethane; both the mono-alkylated and di-alkylated products were produced, and were separated via silica gel chromatography to give the title compounds.
Step 3: 2-{2'-(Cyclopropanecarbonyl-ethyl-antao)-methyl-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-propionic acid

Prepared according to the procedure described in Example 185, Step 6, using the following starting material: 2-{2'-(cyclopropanecarbonyl-ethyl-amino)-methyl-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-propionic acid ethyl ester. M+H is 488.

Example 217: Synthesis of 2-{2M(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-2-methyl-propionic acid (Compound 1-236)

Step 1: 2-(3-Bromo-5-chloro-phenyl)-propionic acid ethyl ester

Prepared according to the procedure described in Example 185, Step 6, using the following starting material: 2-{2'-(cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl}-2-methyl-propionic acid ethyl ester. M+H is 502.

Example 218: Synthesis of 2-(3-Benzyl-1-ethyl-ureidomethyl)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl] -propionic acid (Compound 1-223)

Step 2: 2-(3-Bromo-5-chloro-phenyl)-propionic acid

To a solution of (3-bromo-5-chloro-phenyl)-acetic acid ethyl ester (5.0g, 18.0mmol) in DMF (50mL) at 0°C under N2 was added sodium hydride (60% in mineral oil; 0.8g, 19.8mmol), and the mixture was warmed to room temperature over 15 minutes. Iodomethane (1.3mL, 19.8mmol) was added, and the reaction was monitored by analytical LCMS. Once the reaction was complete, the mixture was worked-up with EtOAc and H2O, and the crude material was purified by silica gel chromatography to give the title compound.

Step 2: 2-(3-Bromo-5-chloro-phenyl)-propionic acid

2-(3-Bromo-5-chloro-phenyl)-propionic acid ethyl ester (2.0g, 6.9mmol) in 2:2:1 MeOH:THF:H2O was treated with 1N aqueous LiOH (3mL) and stirred at room temperature
overnight. The mixture was acidified with 10% aqueous HCl (1OmL) and extracted three times with EtOAc. The combined organic layers were concentrated, and the residue was purified by silica gel chromatography to give the title compound.

\[
\text{Step 3: 2-(3-Bromo-5-chloro-phenyl)-propionyl chloride}
\]

[01091] To a solution of 2-(3-bromo-5-chloro-phenyl)-propionic acid (0.87g, 3.3mmol) in CH2Cl2 (1OmL) was added oxalyl chloride (0.63mL, 6.6mmol) and DMF (2 drops), and the reaction was stirred for 15 minutes and then concentrated to give the title compound.

\[
\text{Step 4: (4R,5S)-3- [(S)-2-(3-Bromo-5-chloro-phenyl)-propionyl]-4-methyl-5-phenyl-oxazolidin-2-one and (4R,5S)-3- l(R)-2-(3-Bromo-5-chloro-phenyl)-propionyl]-4-methyl-5-phenyl-oxazolidin-2-one}
\]

[01092] To a solution of (4R,5S)-(-)-4-methyl-5-phenyl-2-oxazolidinone (0.645g, 3.6mmol) in THF (1OmL) at -78°C was added n-butyllithium (2.5M in THF; 1.5mL, 3.0mmol), and the mixture was stirred for 1 hour at -78°C. 2-(3-Bromo-5-chloro-phenyl)-propionyl chloride (3.3mmol) in THF was added, and the reaction was warmed to room temperature. Aqueous work-up gave the title compounds, which were separated by silica gel chromatography.

\[
\text{Step 5: 2-[2'-(3-Benzyl-l-ethyl-ureidomethyl)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid}
\]
Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 3-benzyl-1-ethyl-1-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-benzyl]-urea and (4R,5S)-3-[(S)-2-(3-bromo-5-chloro-phenyl)-propionyl]-4-methyl-5-phenyl-oxazolidin-2-one; under the coupling conditions, the oxazolidinone was hydrolyzed to the acid and the stereocenter racemized. M+H is 519.

Example 219: Synthesis of Cyclopropanecarboxylic acid ethyl-3’-[(R)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4,5’-bis-trifluoromethyl-biphenyl-2-ylmethyl]-amide (Compound 2-15) and Cyclopropanecarboxylic acid ethyl-3’-[(S)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4,5’-bis-trifluoromethyl-biphenyl-2-ylmethyl]-amide (Compound 2-16)

Step 1: 2-{2’-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4’-bis-trifluoromethyl-biphenyl-3-yl}-propionyl chloride

Prepared according to the procedure described in Example 218, Step 3, using the following starting materials: 2-{2’-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4’-bis-trifluoromethyl-biphenyl-3-yl}-propionic acid and oxalyl chloride.

Step 2: Cyclopropanecarboxylic acid ethyl-3’-[(S)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4,5’-bis-trifluoromethyl-biphenyl-2-ylmethyl]-amide and Cyclopropanecarboxylic acid ethyl-3’-[(R)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4,5’-bis-trifluoromethyl-biphenyl-2-ylmethyl]-amide

Prepared according to the procedure described in Example 218, Step 4, using the following starting materials: 2-{2’-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4’-bis-trifluoromethyl-biphenyl-3-yl}-propionyl chloride and (4R,5S)-4-methyl-5-phenyl-2-oxazolidinone; the title compounds were separated by silica gel chromatography. M+H is 647.
Example 220: Synthesis of (R)-2-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4′-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-237)

[01096] To a solution of cyclopropanecarboxylic acid ethyl-3′-[(R)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4,5′-bis-trifluoromethyl-biphenyl-2-ylmethyl]-amide (0.036g, 0.05mmol) in THF (1mL) and H2O (1mL) was added lithium hydroxide (0.005g, 0.1mmol) and hydrogen peroxide (29%; 0.1mL, 0.1mmol), and the reaction was stirred at room temperature overnight. The mixture was acidified to pH 5 with 10% aqueous HCl and extracted with EtOAc. The crude material was purified by preparative HPLC to give the title compound. M+H is 488.

Example 221: Synthesis of (S)-2-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-5,4′-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-238)

[01097] Prepared according to the procedure described in Example 220, Step 1, using the following starting material: cyclopropanecarboxylic acid ethyl-3′-[(S)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4,5′-bis-trifluoromethyl-biphenyl-2-ylmethyl]-amide. M+H is 488.

Example 222: Synthesis of (+)-Ethyl-2′V-[5′-(2-hydroxy-2-methyl-propyl)-2′-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl]-acetamide (Compound 2-2)
To {2'-[(acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid ethyl ester (0.143g, 0.33mmol) in THF (1.5mL) at 0°C was added methylmagnesium iodide (3M in diethyl ether; 0.65mL, 1.96mmol), and the reaction was stirred for 1 hour. The mixture was diluted with CH₂Cl₂ and saturated aqueous NH₄Cl, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes). The isolated material was repurified by preparative HPLC to give the title compound. M+H is 424.

Example 223: Synthesis of Ethyl-[2'-methoxy-5'-(2'H-tetrazol-5-ylmethyl)-4-trifluoromethyl-biphenyl-2-ylmethyl]-carbamic acid benzyl ester (Compound 2-5)

Step 1: [4-Methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetonitrile

[01099] Prepared according to the procedure described in Example 33, Step 2, using the following starting materials: 3-bromo-4-methoxyphenylacetonitrile and bis(pinacolato)diboron.

Step 2: (2'-Formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetonitrile

[01100] Prepared according to the procedure described in Example 1, Step 4, using the following starting materials: 2-bromo-5-(trifluoromethyl)benzaldehyde and [4-methoxy-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-acetonitrile.

Step 3: (2'-Ethylamino)methyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetonitrile

[01101] Prepared according to the procedure described in Example 1, Step 5, using the following starting materials: (2'-formyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetonitrile and ethylamine (2M in MeOH).
Step 4: (S’-Cyanomethyl-l’-methoxy^-trifluoromethyl-biphenyl-l-ylmethy^-ethyl-carbbaiiiic acid benzyl ester

[01102] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetonitrile and benzyl chloroformate.

Step 5: Ethyl-{2'-methoxy-5'-(2ff-tetra2ol-5-ylmethyl)-4-trifluoromethyl-biphenyl-2-ylmethylj-carbamic acid benzyl ester

[01103] (5'-Cyanomethyl-2'-methoxy-4-trifluorometliyl-biphenyl-2-ylmethyl)-ethyl-carbaraic acid benzyl ester (0.209g, 0.43mmol), azidotrimethylsilane (0.07mL, 0.52mmol), and dibutyltin oxide (0.015g, 0.04mmol) were combined in toluene (2.1mL) and stirred at 110°C overnight. Analytical LCMS indicated that the reaction wasn’t proceeding, so additional azidotrimethylsilane (0.04mL, 0.26mmol), and dibutyltin oxide (catalytic) was added, and the reaction was stirred at 100°C overnight. The mixture was cooled to room temperature and concentrated, and the residue was purified by silica gel chromatography (0-100% EtOAc in hexanes) to give the title compound. M+H is 526.

Example 224: Synthesis of Cyclopropanecarboxylic acid (5'-cyanoniethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide (Compound 2-3)
Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2-ethylamomethyl-6-memoxy-4'-trifluoromethyl-4Hphenyl-3-yl)-acetonitrile and cyclopropanecarbonyl chloride. M+H is 417.

Example 225: Synthesis of Cyclopropanecarboxylic acid ethyl-[2'-methoxy-5'-(2//-tetrazol-5-ylmethyl)-4-trifluoromethyl-biphenyl-2-ylmethyl]-amide (Compound 2-7)

Prepared according to the procedure described in Example 223, Step 5, using the following starting material: cyclopropanecarboxylic acid (5'-cyanomethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide. M+H is 460.

Example 226: Synthesis of Cyclopropanecarboxylic acid (5'-carbamoylmethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide (Compound 2-8)

To a solution of cyclopropanecarboxylic acid(5'-cyanomethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide (0.064g, 0.15mmol) and potassium carbonate (0.064g, 0.46mmol) in DMSO (1mL) at 0°C was added hydrogen peroxide (30%; 0.44mL), and the reaction was warmed to room temperature and stirred for 3 hours. The mixture was partitioned between EtOAc and aqueous Na₂S₂O₄, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated to give the title compound. M+H is 435.
Example 227: Synthesis of (5'-Cyanomethyl-2'-methoxy-4'-trifluoromethyl]-biphenyl-2-ylmethyl)-ethyl-carbamic acid benzyl ester (Compound 2-4)

[01107] Prepared according to the procedure described in Example 1, Step 6, using the following starting materials: (2'-ethylaminomethyl-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetonitrile and benzyl chloroformate. M+H is 483.

Example 228: Synthesis of (5'-Carbamoylmethyl-2'-methoxy-4'-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-carbamic acid benzyl ester (Compound 2-6)

[01108] Prepared according to the procedure described in Example 226, Step 1, using the following starting material: (5'-cyanomethyl-2'-methoxy-4'-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-carbamic acid benzyl ester. M+H is 501.

Example 229: Synthesis of (2S,3S,4S,5R,6S)-6-[2-(3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetoxy]-3,4,5-trihydroxy-tetrahydro-pyran-2-carboxylic acid (Compound 2-17)
Step 1: (2S,3S,4S,5R,6R)-3,4,5,6-Tetrahydroxy-tetrahydro-pyran-2-carboxylic acid benzyl ester

Prepared according to the procedure described in Tetrahedron, 2007, p7596, using the following starting material: D-glucuronic acid.

Step 2: (2S,3S,4S,5R,6S)-6-{2-I2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl}-acetoxy]-3,4,5-trihydroxy-tetrahydro-pyran-2-carboxylic acid benzyl ester

[OHIO] [2’-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (0.110 g, 0.2 mmol), (2S,3S,4S,5R,6R)-3,4,5,6-tetrahydroxy-tetrahydro-pyran-2-carboxylic acid benzyl ester (0.060 g, 0.2 mmol), HATU (0.026 g, 0.2 mmol), and N-methylmorpholine-N-oxide (0.05 mL, 0.4 mmol) were combined in MeCN (2 mL) and stirred for 2 days at room temperature. The mixture was concentrated, and the residue was purified by preparative HPLC to give the title compound.

Step 3: (2S^S,4S,5R,6S)-6-{2-l-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetoxy]-3,4,5-trihydroxy-tetrahydro-pyran-2-carboxylic acid

Prepared according to the procedure described in Tetrahedron, 2007, p7596, using the following starting material: D-glucuronic acid.
[01111] (2S,3S,4S,5R,6S)-6-{2-[2’-(3-Benzyl-1-ethyl-ureidomethyl)-3,4,5-trihydroxy-tetrahydro-pyran-2-carboxylic acid benzyl ester (0.2mmol) in EtOAc was treated with 10% palladium on carbon (catalytic) and hydrogenated under a balloon of H2. The solution was filtered over a pad of Celite, and the filtrate was concentrated and purified by preparative HPLC to give the title compound.

Example 230: CRTH2 Assays

Example 230a: DP2/CRTH2 binding assay

[01112] The ability of a compound to bind to the human DP2 receptor is assessed via a radioligand binding assay using [3H]PGD2. HEK293 cells stably expressing recombinant human DP2 are resuspended in 10 mM Hepes, 7.4 containing 1 mM DTT, lysed and centrifuged at 75,000 xg to pellet the membranes. The membranes are resuspended in 10 mM Hepes, 7.4 containing 1 mM DTT and 10% glycerol to approximately 5 mg protein/ml. Membranes (2-10 µg protein/well) are incubated in 96-well plates with 1 nM [3H]PGD2 and test compound in Assay Buffer (50 mM Hepes, 10 mM MnCl2, 1 mM EDTA, plus or minus 0.2% human serum albumin, pH 7.4) for 60 minutes at room temperature. The reactions are terminated by rapid filtration through Whatman GF/C glass fibre filter plates. The filter plates were pre-soaked in 0.33% polythlenitnine for 30 minutes at room temperature then washed in Wash Buffer (50 mM Hepes, 0.5 M NaCl pH 7.4) prior to harvesting. After harvesting, the filter plates are washed 3 times with 1 ml cold Wash Buffer then dried. Scintillant is then added to the plates and the radioactivity retained on the filters is determined on a Packard TopCount (Perkin Elmer). Specific binding is determined as total radioactive binding minus non-specific binding in the presence of 10 µM PGD2. IC50S were determined using GraphPad prism analysis of drug titration curves. Compounds in Table 1 and Table 2 that were tested had an IC50 of less than 30 micromolar in this assay, unless otherwise noted.

Example 230b: GTPyS Binding Assay

[01113] The ability of a compound to inhibit binding of GTP to DP2 is assessed via a membrane GTPyS assay. CHO cells stably expressing the recombinant human CRTH2 receptor are resuspended in 10 mM Hepes, 7.4 containing 1 mM DTT, lysed and centrifuged at 75,000 xg to pellet the membranes. The membranes are resuspended in 10 mM Hepes, 7.4 containing 1 mM DTT and 10% glycerol. Membranes (~12.5 µg per well) are incubated in 96-well plates with 0.05 nM [35S]-GTPyS, 80 nM PGD2, 5 µM GDP, and test compound in Assay Buffer (50 mM Hepes, pH 7.4, 100 mM NaCl, 5 mM MgCl2 and 0.2% human serum albumin) for 60 minutes at 30°C. The reactions are terminated by rapid filtration through Whatman GF/B glass fibre filter plates. The filter plates are washed 3 times with 1 ml cold Assay Buffer and dried. Scintillant is then added to the plates and the radioactivity retained on the filters is determined on a Packard TopCount (Perkin Elmer). Specific binding is determined as total radioactive binding minus non-
specific binding in the absence of the ligand (80 nM PGD₂). IC₅₀S were determined using Graphpad prism analysis of drug titration curves.

Example 230c: Whole Blood Eosinophil Shape Change Assay

[01114] Blood is drawn from consenting human volunteers in EDTA vacutainer tubes and used within 1 hr of draw. A 98 µl aliquot of blood is mixed with 2 µl of test compound (in 50% DMSO) in 1.2 ml polypropylene tubes. The blood is vortexed and incubated at 37°C for 15 minutes. 5 µl of 1 µM PGD₂ in PBS is added for a final concentration of 50 nM and the tubes briefly vortexed. The reactions are incubated for exactly 5 minutes at 37°C and then terminated by placing the tubes on ice and immediately adding 250 µl of ice-cold 1:4 diluted Cytofix (BD Biosciences). The reactions are transferred to 12 x 75 mM polystyrene round bottom tubes and the red blood cells lysed by the addition of 3 ml ammonium chloride lysing solution (150 mM NH₄Cl, 10 mM KHCO₃, 0.1 mM EDTA disodium salt) and incubation at room temperature for 15 minutes. The cells are pelleted by spinning at 1300 rpm for 5 minutes at 4°C and washed once with 3 ml ice-cold PBS. The cells are resuspended in 0.2 ml of ice-cold 1:4 diluted Cytofix (BD Biosciences) and analyzed on a FACSCalibur (BD Biosciences) within 2 hours. Eosinophils were gated on the basis of autofluorescence in the FL2 channel and shape change on 500 eosinophils was assayed by forward scatter and side scatter analysis. The specific change in shape induced by PGD₂ was calculated as the difference between the percentage of high forward scatter eosinophils in the presence and absence of PGD₂. IC₅₀S were determined using Graphpad Prism® analysis of drug titration curves.

Example 230d: DPI binding assay

[01115] The ability of a compound to bind to the human DPI receptor was evaluated via a radioligand membrane binding assay using the DPI selective synthetic ligand [³H]BWA868C. Packed human platelets (Biological Specialty Corporation), were resuspended in 6 volumes of Hepes/HBSS buffer (10 mM Hepes, 1 mM DTT in Hanks Balanced Salt Solution (HBSS)), lysed and centrifuged at 75,000 xg to pellet the membranes. Membranes were resuspended in Hepes/HBSS buffer to approximately 12 mg protein/ml. Membranes (20 µg protein/well) are incubated in 96-well plates with 2 nM [³H]BWA868C and test compound in Assay Buffer (50 mM Hepes, 10 mM MnCl₂, 1 mM EDTA, plus or minus 0.2% human serum albumin, pH 7.4) for 60 minutes at room temperature. The reactions are terminated by rapid filtration through Whatman GF/C glass fibre filter plates. The filter plates were pre-soaked in 0.33% polemylenimine for 30 minutes at room temperature then washed in Wash Buffer (50 mM Hepes, 0.5 M NaCl pH 7.4) prior to harvesting. After harvesting, the filter plates are washed 3 times with 1 ml cold Wash Buffer then dried. Scintillant is then added to the plates and the radioactivity retained on the filters is determined on a Packard TopCount (Perkin Elmer). Specific binding is determined as total radioactive binding minus non-specific binding in the presence of 10 µM BW A868C. IC₅₀S were determined using GraphPad prism analysis of drug titration curves.
Example 231: *In vivo* assays

Mouse Allergic Rhinitis Model

[01116] The compounds ability to inhibit allergen-induced sneezing and nasal rubbing is assessed using a mouse model of allergic rhinitis. Methods were adapted from those detailed in Nakaya, M., *et al.*, 2006. Noninvasive system for evaluating allergen-induced nasal hypersensitivity in murine allergic rhinitis. *Laboratory Investigation*, 86:917-926. Female BALB/c mice (20-25g) are immunized by an intraperitoneal injection (i.p.) of 2 µg ovalumin (OVA) complexed with alum in a volume 0.2 ml on days 0 and 14. Seven days later (day 21) mice are challenged intranasally with 20 µl of a 10mg/ml solution of OVA. The challenge period occurs daily from days 21 to day 25. Mice (5-7/group) are randomly assigned to receive either compound or vehicle and are treated by oral gavage 1-2 hour prior to each OVA challenge. The number of sneezes and nasal rubs are counted by an independent blind observer during a period of 8 minutes immediately following OVA challenge on days 21, 23 and 25. A significant increase in allergen-induced sneezing and nasal rubbing occurs over the 5-day challenge period. Inhibition of this effect by select compounds is determined statistically using Graphpad prism.

Example 232: Guinea Pig IV-DKPGD2-induced peripheral blood leukocyte influx

[01117] The compounds ability to inhibit leukocyte migration in vivo was assessed using intravenous injection of 13,14-dihydro-15-keto-prostaglandin D2 (DK-PGD2). Methods were adapted from those detailed Shichijo *et al.*, 2003, Chemoattractant receptor-homologous molecule expressed on Th2 cells activation *in vivo* increases blood leukocyte counts and its blockade abrogates 13, 14-dihydro-15-keto-prostaglandin D2-induced eosinophilia in rats. *Journal of Pharmacology and Experimental Therapeutics*, 307:518-525. Male Hartley guinea pigs were immunized with ovalumin (OVA) on day 0 by intraperitoneal (TP) injection of 1 ml of a 100 µg/ml solution in Imject Alum. They were then used in the DK-PGD2 procedure between days 14 and 21. Subjects were randomly assigned to receive either vehicle (0.5% methyl cellulose, 4 ml/kg, oral (PO)) or one of three to four doses of test compound. Two hours or eighteen hours after dosing, animals were anesthetized with ketamine and challenged with DK-PGD2 (1 mg/kg, IV). Thirty minutes after IV administration, blood was collected via the marginal ear vein into EDTA tubes for cell analysis. 10 µl blood was lysed in 190 µl water followed by a further 20-fold dilution in PBS. A 10 µl fraction was mixed with equal parts trypan blue and loaded on a hemocytometer. Cells were visualized at a magnification of 4OX using a LabPro light microscope and totals counted and recorded. Cells are expressed as total cells x 10⁸ per ml of blood. Inhibition of this effect by select compounds is determined statistically using Graphpad prism.

[01118] The compounds that were tested in Table 1 and Table 2 had IC₅₀ below 30 µM in the CRTH2 binding assay, unless otherwise noted.

Table 4. Representative Biological Data
<table>
<thead>
<tr>
<th>Compound #</th>
<th>hDP2 μM</th>
<th>hDP1 μM</th>
<th>hDP2 GTPγS μM (+ HSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound 1-1</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-2</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-3</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-4</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-5</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-6</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-7</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-8</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Compound 1-9</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-10</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-11</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-12</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-13</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-14</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-15</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-16</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-17</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-18</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-19</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-20</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-21</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-22</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-23</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-24</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-25</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-26</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-27</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-28</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-29</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-30</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-31</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-32</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-33</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-34</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-35</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-36</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-37</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-38</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-39</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-40</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-41</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-42</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-43</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-44</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-45</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-46</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-47</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-48</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-49</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-80</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound #</td>
<td>hDP2 µM</td>
<td>hDP1 µM</td>
<td>hDP2 GTPγS µM (+ HSA)</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Compound 1-91</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-92</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-93</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-94</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-96</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-97</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-98</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-99</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-100</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Compound 1-101</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-104</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-107</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-108</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-109</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-110</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-111</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-112</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-113</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-114</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-115</td>
<td>D</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-116</td>
<td>B</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-117</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-118</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-119</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-120</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-121</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-122</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Compound 1-123</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-124</td>
<td>B</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-125</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Compound 1-126</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-127</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-128</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-129</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-130</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-131</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-132</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-135</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-136</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-137</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-138</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-139</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-140</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-143</td>
<td>A</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-144</td>
<td>A</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-145</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-146</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-147</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-148</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-149</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound #</td>
<td>hDP2 µM</td>
<td>hDP1 µM</td>
<td>hDP2 GTPγS µM (+ HSA)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Compound 1-150</td>
<td>B</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-151</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-152</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-153</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-154</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-155</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-156</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-157</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-158</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-159</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-163</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-164</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-165</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-168</td>
<td>A</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-169</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-170</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-171</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-172</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-173</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-174</td>
<td>A</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-175</td>
<td>A</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-176</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-177</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-178</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-179</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-180</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-181</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-182</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-183</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-184</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-185</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-186</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-187</td>
<td>A</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-188</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-189</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-190</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-191</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-192</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-193</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-194</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-195</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-196</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-197</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-198</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-199</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-200</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-201</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-202</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-203</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-204</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound #</td>
<td>hDP2 µM</td>
<td>hDP1 µM</td>
<td>hDP2 GTPγS µM (+ HSA)</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Compound 1-206</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-207</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-208</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-209</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-210</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-211</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-212</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-213</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-214</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-215</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-216</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-217</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-218</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-219</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-220</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-221</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-222</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-223</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-224</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-225</td>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-226</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-227</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-228</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-229</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-230</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-231</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-232</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-233</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-234</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-236</td>
<td>B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-237</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-238</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-239</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-240</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-241</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-242</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-243</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-244</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-245</td>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-246</td>
<td>A</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Compound 1-247</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-249</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-250</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-252</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-253</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-254</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-255</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-256</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 1-257</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-2</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
</tbody>
</table>
A = less than 0.3 µM
B = greater than 0.3 µM and less than 1 µM
C = greater than 1 µM and less than 30 µM
D = greater than 30 µM

<table>
<thead>
<tr>
<th>Compound #</th>
<th>hDP2 µM</th>
<th>hDP1 µM</th>
<th>hDP2 GTPγS µM (+ HSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound 2-3</td>
<td>D</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-4</td>
<td>D</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-5</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-6</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-7</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-8</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-10</td>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-11</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-12</td>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-13</td>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-14</td>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-15</td>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-16</td>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compound 2-17</td>
<td>B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ramiroban</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

Example 233: Clinical Trials in Humans

Study 1: Clinical Trial Evaluating Effect of Compound of Formula (I) on ex vivo PGD2-induced blood eosinophil shape change

[01119] In this double-blind, randomized, placebo-controlled, single ascending dose study of Compound of Formula (I) in healthy volunteers the inhibition of ex vivo PGD2-induced blood eosinophil shape change is determined to show proof of biochemical mechanism of DP2 receptor antagonism. Eight subjects (6 active, 2 placebo) per dose level are used. Pre-dose blood is drawn and challenged with PGD2 to determine baseline shape change as described above in Example 230. At varying times after dosing blood is drawn for both pharmacokinetic analyses of drug concentration in blood, and also for PGD2 challenge and eosinophil shape change determination. The extent of receptor blockage is determined from the relationship between drug blood concentration and percentage inhibition of eosinophil shape change.

Study 2: Clinical Trial Evaluating Effect of Compound of Formula (T) on Allergen-induced Nasal symptoms and inflammatory and allergic biomarkers

[01120] In this double-blind, randomized, placebo-controlled study of Compound of Formula (I) in individuals with allergic rhinitis the inhibition of nasal symptoms and allergic biomarkers is determined following nasal challenge with appropriate allergen. Fifteen subjects (10 active, 5 placebo) are used. Subjects are dosed for 7 days with either placebo or an amount of compound of formula (T) that results in complete DP2 receptor block in an ex vivo PGD2-induced blood eosinophil shape change pharmacodynamic study as described above. On day 7 subjects undergo nasal allergen challenge (2 hours post-dose) and early allergic response (0.25-1.0hr) and late
allergic response (4-24hr) are evaluated as an increase from baseline for treated vs placebo. In addition changes in inflammatory cell differentials, TH2 cytokines and other inflammatory markers are determined as increase from baseline for treated vs placebo.

Compound of Formula (I) assay

[01121] The plasma concentrations of compound of Formula (I) are determined by gas chromatography, giving a detection limit of 1 ng·ml⁻¹ (Ritter W. Determination of BAY u 3405, a novel thromboxane antagonist, in plasma and urine by HPLC and GC. 1Q: Reid E, Wilson Ed. eds. Bioanalytical Approaches for Drugs, Including Anti-asthmatics and Metabolites. Methodological Surveys in Biochemistry and Analysis, 1992; 22: 211-216).

Example 234a: Parenteral Composition

[01122] To prepare a parenteral pharmaceutical composition suitable for administration by injection, 100 mg of a water-soluble salt of a compound of Formula (I) is dissolved in DMSO and then mixed with 10 mL of 0.9% sterile saline. The mixture is incorporated into a dosage unit form suitable for administration by injection.

Example 234b: Oral Composition

[01123] To prepare a pharmaceutical composition for oral delivery, 100 mg of a compound of Formula (I) is mixed with 750 mg of starch. The mixture is incorporated into an oral dosage unit form, such as a hard gelatin capsule, which is suitable for oral administration.

Example 234c: Sublingual (Hard Lozenge) Composition

[01124] To prepare a pharmaceutical composition for buccal delivery, such as a hard lozenge, mix 100 mg of a compound of Formula (I) with 420 mg of powdered sugar mixed, with 1.6 mL of light corn syrup, 2.4 mL distilled water, and 0.42 mL mint extract. The mixture is gently blended and poured into a mold to form a lozenge suitable for buccal administration.

Example 234d: Fast-Disintegrating Sublingual Tablet

[01125] A fast-disintegrating sublingual tablet is prepared by mixing 48.5% by weigh of a compound of Formula (I), 44.5% by weight of microcrystalline cellulose (KG-802), 5% by weight of low-substituted hydroxypropyl cellulose (50 μm), and 2% by weight of magnesium stearate. Tablets are prepared by direct compression (AAPS PharmSciTech, 2006;7(2):E41). The total weight of the compressed tablets is maintained at 150 mg. The formulation is prepared by mixing the amount of compound of Formula (I) with the total quantity of microcrystalline cellulose (MCC) and two-thirds of the quantity of low-substituted hydroxypropyl cellulose (L-HPC) by using a three dimensional manual mixer (Inversina Φ, Bioengineering AG, Switzerland) for 4.5 minutes. All of the magnesium stearate (MS) and the remaining one-third of the quantity of L-HPC are added 30 seconds before the end of mixing.

Example 234e: Inhalation Composition
[01126] To prepare a pharmaceutical composition for inhalation delivery, 20 mg of a compound of Formula (I) is mixed with 50 mg of anhydrous citric acid and 100 mL of 0.9% sodium chloride solution. The mixture is incorporated into an inhalation delivery unit, such as a nebulizer, which is suitable for inhalation administration.

Example 234f: Rectal Gel Composition

[01127] To prepare a pharmaceutical composition for rectal delivery, 100 mg of a compound of Formula (I) is mixed with 2.5 g of methylcellulose (1500 mPa), 100 mg of methylparaben, 5 g of glycerin and 100 mL of purified water. The resulting gel mixture is then incorporated into rectal delivery units, such as syringes, which are suitable for rectal administration.

Example 234g: Topical Gel Composition

[01128] To prepare a pharmaceutical topical gel composition, 100 mg of a compound of Formula (I) is mixed with 1.75 g of hydroxypropyl cellulose, 10 mL of propylene glycol, 10 mL of isopropyl myristate and 100 mL of purified alcohol USP. The resulting gel mixture is then incorporated into containers, such as tubes, which are suitable for topical administration.

Example 234h: Ophthalmic Solution Composition

[01129] To prepare a pharmaceutical ophthalmic solution composition, 100 mg of a compound of Formula (I) is mixed with 0.9 g of NaCl in 100 mL of purified water and filtered using a 0.2 micron filter. The resulting isotonic solution is then incorporated into ophthalmic delivery units, such as eye drop containers, which are suitable for ophthalmic administration.

Example 234i: Nasal spray solution

[01130] To prepare a pharmaceutical nasal spray solution, 10 g of a compound of Formula (I) is mixed with 30 mL of a 0.05M phosphate buffer solution (pH 4.4). The solution is placed in a nasal administrator designed to deliver 100 µl of spray for each application.

[01131] The examples and embodiments described herein are for illustrative purposes only and various modifications or changes suggested to persons skilled in the art are to be included within the spirit and purview of this application and scope of the appended claims.
WHAT IS CLAIMED IS:

1. A compound having the structure of Formula (I), pharmaceutically acceptable salts, pharmaceutically acceptable solvates, or pharmaceutically acceptable prodrugs thereof:

![Formula (I)](image)

wherein,

Q is tetrazolyl or -C(=O)-Q³;

Q¹ is -OH, -O(Ci-C₄alkyl), -NHSO₂R₁², -N(R¹³)₂, -NH-OH, or -NH-CN;
each R¹ is independently selected from H, F, and -CH₃;
each of R², R³, R⁴, R⁵, R⁶, R⁷ and R⁹ is independently H, halogen, -CN, -NO₂, -OH, -OR¹³,
-SR¹², -(=S(O)R¹²)₂, -(=S(O)₂)₂R¹², -(=S(O)₂)₂R¹², -(C(=O)OR¹²)₂, -(C(=O)OR¹²)₂,
-OCO₂R¹³, -CH₃₃₂R¹³, -N(R¹³)₂, -NHCH₂CO₂R¹³, -OCH₂CO₂R¹³, -SCH₂CO₂R¹³, -
C(=O)N(R¹³)₂, -OC(=O)N(R¹³)₂, -NH(C(=O)NH(R¹³)), -NH(C(=O)OR¹²), -NH(C(=O)OR¹²),
-C(OH)(R¹³)₂, CrQalkyl, C₁₋₅fluoroalkyl, C₁₋₅fluoroalkoxy, C₁₋₅alkoxy, C₁₋₅heteroalkyl, C₅₋₁₀cycloalkyl, a substituted or unsubstituted C₂₋₅heterocycloalkyl,
a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a
substituted or unsubstituted monocyclic heteroaryl, or a substituted or unsubstituted
bicyclic heteroaryl, -OCH₂-(C₅₋₁₀cycloalkyl), -OCH₂-(substituted or unsubstituted
phenyl), or -OCH₂-(substituted or unsubstituted monocyclic heteroaryl);
each R⁸ is H;
R₁⁰ is -C(=O)R¹⁴, -C(O)OR¹⁵, -(=S(O)₂)₂N(R¹⁶)₂, -(=S(O)₂)₂N(R¹⁶)₂, -S(O)₂N(R¹⁶)₂ or -
S(O)₂R¹⁵;
R¹⁴ is C₁₋₅alkyl, C₁₋₅fluoroalkyl, C₁₋₅heteroalkyl, C₅₋₁₀cycloalkyl, a substituted
or unsubstituted C₂₋₅heterocycloalkyl, a substituted or unsubstituted aryl, a
substituted or unsubstituted heteroaryl, -Ci-C₅alkyl-(C₃₋₁₀cycloalkyl), -Cr
C₅₋₁₀alkyl-(a substituted or unsubstituted C₂₋₅heterocycloalkyl), -Ci-C₅alkyl-(a
substituted or unsubstituted aryl), or -Ci-C₅alkyl-(a substituted or unsubstituted
heteroaryl); or
R¹⁴ is L³Ｘ³⁻Q³;
L^3 is a C_ralkylene;
X^3 is a bond, -O-, -S-, -S(=O)-, -S<=O)-, or -NR^1^3-;
Q^3 is C_i-C^galkyl, d-Qfluoroalkyl, C_j-C^i-cycloalkyl, a substituted or unsubstituted C_2-C^ioheterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -CrC^jalkyl-C^i-C^mcy^locyclealkyl, -C^i-C^jalkyl-(a substituted or unsubstituted C_2-C^ioheterocycloalkyl), -C^i-C^jalkyl-(a substituted or unsubstituted aryl), or -Ci-C^galkyl-(a substituted or unsubstituted heteroaryl);
R^1^5 is C_i-C^galkyl, C^j-C^gfluoroalkyl, C_j-C^i-heteroalkyl, C^j-C^io-cycloalkyl, a substituted or unsubstituted C_2-C^ioheterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -Ci-C^jalkyl-C^i-C^mcy^locyclealkyl, -d-C^jalkyl-(substituted or unsubstituted C_2-C^ioheterocycloalkyl), -Ci-C^jalkyl-(substituted or unsubstituted heteroaryl), or -Ci-C^jalkyl-(substituted or unsubstituted heteroaryl);
each R^1^6 is independently H, -CN, C^j-C^galkyl, C^j-C^gX=OatlCyI, d-C^j-heteroalkyl, C^j-C^io-cycloalkyl, substituted or unsubstituted C_2-C^ioheterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -C^i-C^jalkyl-C^i-C^mcy^locyclealkyl, -Ci-C^jalkyl-(substituted or unsubstituted C_2-C^ioheterocycloalkyl), -Ci-C^jalkyl-(substituted or unsubstituted aryl), or -Ci-C^jalkyl-(substituted or unsubstituted heteroaryl); or
two R^1^6 groups attached to the same N atom are taken together with the N atom to which they are attached to form a substituted or unsubstituted heterocycloalkyl;
R^1^9 is selected from among H, -S(=O)-^2R^1^2, -S(=O)-^2NH^2, -C(=O)-R^1^2, -CN, and -NO^2^;
R^1^1^1 is C_i-C^galkyl, d-Ceheteroalkyl, C-Cehaloalkyl, C_i-C^io-cycloalkyl, -Q=CaIkenyl-OH, -d-Csalkylene-O-C^galkylO-C=C=C^galkylene-S-C^i-C^ioalkyl), -C^i-C^jalkylene-S(=O)-(d-C^galkyl), -C^j-C^galkylene-S(=O)-^2-(C^i-C^jalkyl), -Ci-C^jalkylene-NH^2, -C^j-C^galkylene-N(=CH^2), -C^j-C^galkylene-C(=O)-(C^j-C^galkyl), -Ci-C^jalkylene-C(=O)OH, -C^j-C^galkylene-C(=O)(C^i-C^galkyl), or -C^j-C^galkylene-C(=O)NH^2;
R^1^2 is CrC^galkyl, Ci-C^g-heteroalkyl, Ci-C^gfluoroalkyl, a substituted or unsubstituted C^j-C^m-cycloalkyl, a substituted or unsubstituted C_2-C^ioheterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted benzyl, a substituted or unsubstituted heteroaryl, -d-C^galkyl-(substituted or unsubstituted C^j-C^io-cycl@-ukyl), -d-C^galkyl-(substituted or unsubstituted C_2-C^ioheterocycloalkyl), -C^j-C^galkyl-(substituted or unsubstituted aryl), or -Ci-C^galkyl-(substituted or unsubstituted heteroaryl);
each R^1^3 is independently selected from H, Ci-C^galkyl, d-C-gheteroalkyl, d-C-gfluoroalkyl, a substituted or unsubstituted C^j-C^io-cycloalkyl, a substituted or unsubstituted C^j-C^ioheterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, or -Ci-C^galkyl-(substituted or unsubstituted heteroaryl);
benzyl, a substituted or unsubstituted heteroaryl, -Ci-C₄alkyl-(substituted or unsubstituted C₅-C₆cycloalkyl), -Ci-C₄alkyl-(substituted or unsubstituted C₂-C₅), C₆heterocycloalkyl, -Ci-C₄alkyl-(substituted or unsubstituted aryl), and -Ci-C₄alkyl-(substituted or unsubstituted heteroaryl); or two R¹³ groups attached to the same N atom are taken together with the N atom to which they are attached to form an optionally substituted C₂-C₅heterocycloalkyl.

2. The compound of claim 1, wherein:
 Q is -C(^O)-Q¹;
 Q¹ is -OH, or -O(C₃-C₄alkyl).

3. The compound of claim 2, wherein:
 R¹¹ is C₆alkyl, C₆heteroalkyl, C₆-C₉alcaloalkyl, C₃-C₆cycloalkyl, -C₆allcylene-C(=O)OH, -C₆alkylene-CCKyJOC₆alkyl, or -C₆alkylene-C(O)NH₂.

4. The compound of any of claims 1-3, wherein:
 at least one of R² and R³ is H;
 at least two of R⁶, R⁷ and R⁹ is H;
 Q¹ is -OH, -OCH₃, or -OCH₂CH₃.

5. The compound of any of claims 1-4, wherein:
 Q¹ is -OH.

6. The compound of any one of claims 1-5, wherein the compound of Formula (I) has the structure of Formula (II):

 ![Formula (II)](image)

7. The compound of claim 6, wherein:
 each R¹ is H.

8. The compound of any of claims 1-7, wherein:
 each of R², R³, R⁶, R⁷ and R⁹ is independently selected from H, halogen, -CN, -OH, -OR¹³, -SR¹², -S(O)R¹², -S(O)₂R¹², -C(O)R¹², -d-C₄alkyl, C₆-C₉fluoroalkyl, C₆-C₉heteroalkyl.

9. The compound of any of claims 1-8, wherein:
R^4 is H, halogen, -CN, -NO_2, -OH, -OR_1^2, -S(O)R_1^2, -S(O)_{2}^12, -C(O)R_1^2, -OC(=O)R_1^2, -CO_2R_1^2, -CH(R_1^2)_2, -N(R_1^3)_2, -NHC(=O)R_1^2, -C(O)NH(R_1^3)_2, -C(O)NR(R_1^3)_2, -C(O)NR_1^2, -C(O)N(R_1^3)_2, -NHC(NR(R_1^3)_2, -NHC(NH(R_1^3)_2, -NHCH_2CO_2R_1^3, -OCH_2CO_2R_1^3, -SCH_2CO_2R_1^3, -C(=O)N(R_1^3)_2, d-C_4 alkyl, d-C_{6}alkoxy, d-C_{6}fluoroalkoxy, C_5 C_{6}cycloalkyl; substituted or unsubstituted C_2 C_{6}heterocycloalkyl, C_{3} C_{6}heteroaryl, substituted or unsubstituted monocyclic heteroaryl, -OCH_2-(C_{3} C_{6}cycloalkyl), -OCH_3-(substituted or unsubstituted phenyl), or -OCH_3-(substituted or unsubstituted monocyclic heteroaryl).

10. The compound of any of claims 1-9, wherein:
R^5 is H, halogen, -CN, -NO_2, -OH, -OR_1^2, -S(O)R_1^2, -S(O)_{2}^12, -C(O)R_1^2, -OC(=O)R_1^2, -CO_2R_1^2, -CH(R_1^2)_2, -N(R_1^3)_2, -NHC(=O)R_1^2, -C(O)NH(R_1^3)_2, -C(O)NR(R_1^3)_2, -C(O)N(R_1^3)_2, -NHC(NR(R_1^3)_2, -NHC(NH(R_1^3)_2, -NHCH_2CO_2R_1^3, -OCH_2CO_2R_1^3, -SCH_2CO_2R_1^3, -C(=O)N(R_1^3)_2, d-C_4 alkyl, d-C_{6}fluoroalkoxy, C_5 C_{6}cycloalkyl, substituted or unsubstituted C_2 C_{6}heterocycloalkyl, C_{3} C_{6}fluoroalkoxy, d-C_{6}alkoxy, C_7 C_{6}heteroalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted monocyclic heteroaryl, substituted or unsubstituted napthyl, substituted or unsubstituted monocyclic heteroaryl, substituted or unsubstituted bicyclic heteroaryl.

11. The compound of any of claims 1-10, wherein:
each of R^2, R^3, R^6, R^7 and R^9 is independently selected from H, halogen, -OH, d-C_4 alkyl, C_1 C_{6}alkoxy, and Ci-C_{4}fluoroalkyl.

12. The compound of any of claims 1-11, wherein:
R^4 is H, F, Cl, Br, I, -CN, -OH, -C_{6}alkyl, C_5 C_{6}fluoroalkoxy, C_{7} C_{6}cycloalkyl, Q-C_{6}heteroalkyl, -OCH_2CO_2R_1^3, -OCH_2-C(O)R_1^2, -OCH_2-C(O)N(R_1^3)_2, -OCH_2-C_{3} C_{6}cycloalkyl, or -OCH_2-(substituted or unsubstituted phenyl).

13. The compound of any of claims 1-12, wherein:
R^10 is -C(O)R_1^2, -C(O)OR_1^2, or -C(O)N(R_1^3)_2;
R^11 is C_{6}alkyl, C_{1} C_{6}fluoroalkyl, Q-C_{6}heteroalkyl, or C_{3} C_{6}cycloalkyl; or
R^11 is L_3 X_3 Q;
L_3 is a C_{1} C_{6}alkylene;
X_3 is a bond, -O-, -S-, -S(O)_2-, or -NR_1^3;
Q_3 is C_{6}alkyl, C_{7} C_{6}fluoroalkyl, C_{5} C_{6}cycloalkyl, a substituted or unsubstituted C_{2} C_{6}heterocycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -Ci-C_{6}alkyl-C_{5} C_{6}cycloalkyl, -Ci-C_{6}alkyl-(a substituted or unsubstituted C_{2} C_{6}heterocycloalkyl), -Ci-C_{4}alkyl-(a substituted or unsubstituted aryl), or -Ci-C_{4}alkyl-(a substituted or unsubstituted heteroaryl);
R15 is C\texttext{-}i-C\text{-}6 alkyl, C\texttext{-}i-C\text{-}6 fluoroalkyl, C\texttext{-}i-C\text{-}6 heteroalkyl, C\text{-}i-C\texttext{-}10 cycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -C\text{-}i-C\text{-}3 alkyl-C\text{-}3 cycloalkyl, -C\text{-}i-C\text{-}3 heteroalkyl, C-3-C10 cycloalkyl, -C\text{-}i-C\text{-}3 heteroalkyl (substituted or unsubstituted aryl), or -C\text{-}i-C\text{-}3 heteroalkyl (substituted or unsubstituted heteroaryl);

each R16 is independently H, C\textsubscript{1} alkyl, C\textsubscript{i}-C\textsubscript{6} fluoroalkyl, C\textsubscript{i}-C\textsubscript{6} heteroalkyl, C-3-C10 cycloalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, -C-3-C10 cycloalkyl, -C-3-C10 heteroalkyl (substituted or unsubstituted aryl), or -C-3-C10 heteroalkyl (substituted or unsubstituted heteroaryl).

14. The compound of any of claims 1-13, wherein:
each of R2, R3, R6, R7 and R9 is independently selected from H, halogen, -OH, -CH\textsubscript{3}, -OCH\textsubscript{3}, and =CF\textsubscript{3}.

15. The compound of any of claims 1-14, wherein:
R10 is -C(O)R 14, -C(=O)OR 13, or -C(=O)N(R 16)\textsubscript{2};

R14 is C1 C\textsubscript{6} alkyl, d-C \textsubscript{6} fluoroalkyl, C\textsubscript{1}-Q heteroalkyl, or C-3-C10 cycloalkyl; or
R16 is L3X3Q3;
L3 is -CH\textsubscript{2}\textsubscript{-}, -CH(CH\textsubscript{3})\textsubscript{-}, or -C(CH\textsubscript{3})\textsubscript{2};
X3 is a -0-, -S-, -S(O)-, -S(O)\textsubscript{2}-, or -NR 13-.;
Q3 is Ci C\textsubscript{6} alkyl, Ci-C6 fluoroalkyl, C3-C6 cycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted monocyclic heteroaryl, -CH\textsubscript{2}\textsubscript{(a substituted or unsubstituted phenyl)}, or =CH\textsubscript{2}\textsubscript{(a substituted or unsubstituted monocyclic heteroaryl)};

R15 is C1 C\textsubscript{6} alkyl, Ci-C6 fluoroalkyl, Ci-C6 heteroalkyl, C3-C6 cycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted monocyclic heteroaryl, -CH\textsubscript{3}-C3-C6 cycloalkyl, -CH\textsubscript{2}-(substituted or unsubstituted phenyl), -CH(CH\textsubscript{3})- (substituted or unsubstituted phenyl), -CH\textsubscript{2}-(substituted or unsubstituted monocyclic heteroaryl) or -CH(CH\textsubscript{3})-(substituted or unsubstituted monocyclic heteroaryl);
each R16 is independently H, C\textsubscript{1} alkyl, C\textsubscript{i}-C\textsubscript{6} fluoroalkyl, C\textsubscript{i}-C\textsubscript{6} heteroalkyl, C\textsubscript{3}-C\textsubscript{6} cycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted monocyclic heteroaryl, -CH\textsubscript{3}-(C3-C6 cycloalkyl), -CH\textsubscript{2}-(a substituted or unsubstituted phenyl), -CH(CH\textsubscript{3})-(a substituted or unsubstituted phenyl), -CH\textsubscript{2}-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH\textsubscript{3})-(a substituted or unsubstituted monocyclic heteroaryl).

16. The compound of any of claims 1-15, wherein:
R10 is -C(O)R 14.

17. The compound of claim 16, wherein the compound has the structure of Formula (III):
18. The compound of any of claims 1-17, wherein:
 \(R^{14} \) is \(\text{C}_i\text{C}_6 \text{alkyl}, \text{C}_r\text{C}_6 \text{fluoroalkyl}, \) or \(\text{C}_3\text{C}_6 \text{cycloalkyl} \);
 \(R^{14} \) is \(\text{L}^3\text{X}^3\text{Q}^3 \);
 \(\text{L}^3 \) is \(\text{-CH}_2\text{-}, \text{-CH(CH}_3\text{-)}, \) or \(\text{-C(CH}_j\text{)}_2\text{-}; \)
 \(\text{X}^3 \) is \(\text{-O-}, \text{-S-}, \text{-S(=O)-}, \) or \(\text{-S(O)}_2\text{-}; \)
 \(\text{Q}^3 \) is \(\text{C}_r\text{C}_6 \text{alkyl}, \text{C}_r\text{C}_6 \text{fluoroalkyl}, \) \(\text{C}_3\text{C}_6 \text{cycloalkyl}, \) a substituted or unsubstituted phenyl, or \(\text{-CH}_2\text{-} \) (a substituted or unsubstituted phenyl).

19. The compound of any of claims 1-17, wherein:
 \(R^{14} \) is \(\text{C}_i\text{C}_6 \text{alkyl}, \text{C}_r\text{C}_6 \text{fluoroalkyl}, \) \(\text{O}r\text{C}_3\text{C}_6 \text{C}(=\text{O})\text{alkyl}. \)

20. The compound of any of claims 1-17, wherein:
 \(R^{14} \) is \(\text{L}^3\text{X}^3\text{Q}^3 \);
 \(\text{L}^3 \) is \(\text{-CH}_2\text{-}, \text{-CH(CH}_3\text{-)}, \) or \(\text{-C(CH}_j\text{)}_2\text{-}; \)
 \(\text{X}^3 \) is \(\text{-O-}, \text{-S-}, \text{-S(=O)-}, \) or \(\text{-S(O)}_2\text{-}; \)
 \(\text{Q}^3 \) is a substituted or unsubstituted phenyl, or \(\text{-CH}_2\text{-} \) (a substituted or unsubstituted phenyl).

21. The compound of any of claims 1-15, wherein:
 \(R^{10} \) is \(\text{-C(=O)OR}^{15} \).

22. The compound of claim 21, wherein the compound has the structure of Formula (IV):

- 376 -
23. The compound of claim 22, wherein:
R15 is C$_{1-6}$alkyl, -CH$_2$-(substituted or unsubstituted phenyl), -CH(CH$_3$)$_2$-(substituted or unsubstituted phenyl), -CH$_2$-(substituted or unsubstituted monocyclic heteroaryl) or -CH(CH$_3$)$_2$-(substituted or unsubstituted monocyclic heteroaryl).

24. The compound of claim 23, wherein:
R15 is -CH$_2$-(substituted or unsubstituted phenyl), or -CH(CH$_3$)$_2$-(substituted or unsubstituted phenyl).

25. The compound of any of claims 1-15, wherein:
R10 is -C(=O)N(R16)$_2$.

26. The compound of claim 25, wherein the compound has the structure of Formula (V):

![Formula (V)](image)

27. The compound of claim 26, wherein:
each R16 is independently H, CVQalkyl, C$_3$-C$_6$cycloalkyl, a substituted or unsubstituted phenyl, a substituted or unsubstituted monocyclic heteroaryl, -CH$_2$-(a substituted or unsubstituted phenyl), -CH(CH$_3$)$_2$-(a substituted or unsubstituted phenyl), -CH(CH$_3$)$_2$-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH$_3$)$_2$-(a substituted or unsubstituted monocyclic heteroaryl).

28. The compound of claim 27, wherein:
one R16 is H and the other R16 is -CH$_2$-(a substituted or unsubstituted phenyl), -CH(CH$_3$)$_2$-(a substituted or unsubstituted phenyl), -CH$_2$-(a substituted or unsubstituted monocyclic heteroaryl), or -CH(CH$_3$)$_2$-(a substituted or unsubstituted monocyclic heteroaryl).

29. The compound of claim 28, wherein:
one R16 is H and the other R16 is -CH$_2$-(a substituted or unsubstituted phenyl), or -CH(CH$_3$)$_2$-(a substituted or unsubstituted phenyl).

30. The compound of any of claims 1-15, wherein:
R10 is -S(=O)$_2$R15;
R15 is Ci-C\textsubscript{6}alkyl, Ci-C\textsubscript{6}fluoroalkyl, CrC \textsubscript{2}heteroalkyl, C\textsubscript{3}-C\textsubscript{6}cycloalkyl, an optionally substituted phenyl, an optionally substituted naphthyl, or an optionally substituted heteroaryl.

31. The compound of any of claims 1-15, wherein:
R10 is -C(=NR19)N(R16)\textsubscript{2};
each R16 is independently H, -CN, Ci-C\textsubscript{6}alkyl, C\textsubscript{2}C\textsubscript{5}fluoroalkyl, Ci-CeJheteroalkyl, an optionally substituted C\textsubscript{3}-Ci-C\textsubscript{6}cycloalkyl, an optionally substituted C\textsubscript{2}heteroaryl, Cioheterocycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, -Ci-C\textsubscript{4}alkyl-(optionally substituted C\textsubscript{3}-C\textsubscript{6}cycloalkyl), -Ci-C\textsubscript{6}alkyl-(optionally substituted C\textsubscript{2}heteroaryl), -Ci-C\textsubscript{4}alkyl-(optionally substituted aryl), and -Ci-C\textsubscript{6}alkyl-(optionally substituted heteroaryl); or
two R16 groups attached to the same N atom are taken together with the N atom to which they are attached to form an optionally substituted C\textsubscript{2}heterocycloalkyl

32. The compound of claim 31, wherein:
R10 is -C(=NR19)NH(R16);
R16 is C\textsubscript{2}C\textsubscript{5}alkyl, Ci-C\textsubscript{6}fluoroalkyl, Ci-Cgheteroalkyl, C\textsubscript{3}-C\textsubscript{6}cycloalkyl, an optionally substituted phenyl, an optionally substituted heteroaryl, -CH\textsubscript{2}-(C\textsubscript{3}-C\textsubscript{6}cycloalkyl), -CH\textsubscript{2}- (optionally substituted phenyl), or -CH\textsubscript{2}-(optionally substituted heteroaryl);
R19 is -CN.

33. The compound of any of claims 1-32, wherein:
R2 and R3 are H;
R4 is H, F, Cl, Br, I, -CN, -OH, -Ci-C\textsubscript{6}alkyl, Ci-C\textsubscript{6}fluoroalkyl, CrCsfluoroalkoxy, Ci-C\textsubscript{6}alkoxy, or Ci-C\textsubscript{6}heteroalkyl.

34. The compound of any of claims 1-33, wherein:
R5 is F, Cl, Br, I, -CN, -NO\textsubscript{2}, -OH\textsubscript{3}-CH\textsubscript{3}, -CH\textsubscript{2}CH\textsubscript{3}, i-propyl, tBu, -CF\textsubscript{3}, -CH\textsubscript{2}CF\textsubscript{3}, -OCH\textsubscript{3}, -OCF\textsubscript{3}, -C(CH\textsubscript{2})\textsubscript{2}OH, -C(CH\textsubscript{2}CH\textsubscript{2})\textsubscript{2}OH, -S(=O)\textsubscript{2}(C\textsubscript{1}-C\textsubscript{6}alkyl), -S(=O)\textsubscript{2}(substituted or unsubstituted phenyl), -NHS(=O)\textsubscript{2}(Ci-C\textsubscript{6}alkyl), -NHS(O)\textsubscript{2}(substituted or unsubstituted phenyl), -NHS(=O)\textsubscript{2}(substituted or unsubstituted heteroaryl), -C(=O)- (substituted or unsubstituted phenyl), -CF(=O)CH\textsubscript{3}, -CO\textsubscript{2}H, -CO\textsubscript{2}CH\textsubscript{3}, -CO\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}, -NH\textsubscript{2}, -C(O)NH\textsubscript{2}, -C(=O)NH(CH\textsubscript{2}CH\textsubscript{3}), -C(=O)NH(CH\textsubscript{2}CH\textsubscript{3}), -C(=O)NH(tBu), - C(=O)NH(iPr), -C(=O)NH(CH\textsubscript{2}CF\textsubscript{3}), -C(=O)NH(CH\textsubscript{2}CH\textsubscript{2}OCH\textsubscript{3}), - C(=O)NH(substituted or unsubstituted phenyl), -C(=O)NH(substituted or unsubstituted monocyclic heteroaryl), -NHC(=O)(C\textsubscript{1}-C\textsubscript{6}alkyl), -NHC(=O)(substituted or unsubstituted phenyl), -NHC(=O)(substituted or unsubstituted monocyclic heteroaryl), -NHC(=O)NH\textsubscript{2}, or -NHC(=O)NH(substituted or unsubstituted phenyl).

35. The compound of claim 34, wherein:

- 378 -
R^5 is F, Cl, Br, I, -CN, -NO_2, -OH, -CH_3, -CH_2CH_3, i-propyl, -tBu, -CF_3, -CH_2CF_3, -OCH_3, -OCF_3, -C(CH_3)_2OH, -C(CH_2CH_3)_2OH, -SC=O(C_1-C_6 alkyl), -NHS(O) _2(C_1-C_6 alkyl), -C(O)CH_3, -CO_2H, -CO_2CH_3, -CO_2CH_2CH_3, -C(O)NH(CH_3)_2, -C(O)NH(CH_2CH_3), -C(O)NH(CH_2CH_2OCH_3)_3, -C(O)NH(CH_2CH_2OCH_3)_3, or -NHC(O)(C_1-C_6 alkyl).

36. The compound of claim 34, wherein:
R^5 is F, Cl, Br, -OH, -CH_3, -CH_2CH_3, -CF_3, -CH_2CF_3, -OCH_3, -OCF_3, -C(CH_3)_2OH, -S(O) _2(C_1-C_6 alkyl), -NHS(O) _2(C_1-C_6 alkyl), -CO_2H, -CO_2CH_3, -CO_2CH_2CH_3, or -NHC(O)(C_1-C_6 alkyl).

37. The compound of claim 36, wherein:
R^5 is F, Cl, Br, -OH, -CH_3, -CF_3, -OCH_3, or -OCF_3.

38. The compound of claim 37, wherein:
R^5 is -CF_3.

39. The compound of any of claims 1-33, wherein:
R^5 is C_1-C_10 cycloalkyl, substituted or unsubstituted CrCioheterocycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted napthyl, substituted or unsubstituted monocyclic heteroaryl, or substituted or unsubstituted bicyclic heteroaryl.

40. The compound of claim 39, wherein:
R^5 is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, thiomorpholinyl, or a substituted or unsubstituted group selected from phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, oxazolyl, thiazolyl, pyrazolyl, imidazolyl, pyrazolyl, isoxazolyl, thiadiazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, benzofuranyl, benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl.

41. The compound of claim 39, wherein:
R^5 is a substituted or unsubstituted group selected from phenyl, naphthyl, furanyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, thiadiazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, benzofuranyl, benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl.

42. The compound of claim 39, wherein:
R^5 is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, thiadiazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, indazolyl,
benzimidazolyl, benzothiazolyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl,
quinoxalinyl, and quinazolinyl.

43. The compound of claim 39, wherein
R⁵ is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl,
imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyridazinyl, pyrazinyl,
pyrimidinyl, quinolinyl, and isoquinolinyl.

44. The compound of any one of claims 1-43, wherein:
R⁴ is H, F, Cl, Br, -OH, -CH₃, -OCH₃, -CF₃ or -OCF₃.

45. The compound of any one of claims 1-44, wherein
R⁴ is -OCH₃.

46. The compound of any one of claims 1-45, wherein:
R¹¹ is C₁, C₂alkyl, C₃-C₆haloalkyl, or C₃-C₆cycloalkyl.

47. The compound of any one of claims 1-46, wherein:
R¹¹ is -CH₃, -CH₂CH₃, -CF₃, -CH₂CF₃, cyclopropyl, cyclobutyl, or cyclopentyl.

48. The compound of claim 47, wherein:
R¹¹ is -CH₃, -CH₂CH₃, or -CH₂CF₃.

49. A compound having the structure of Formula (VII), pharmaceutically acceptable salts,
pharmaceutically acceptable solvates, or pharmaceutically acceptable prodrugs thereof:

![Formula (VII)](image)

wherein,
R⁴ is H, halogen, -CN, -OH, C₁-C₄alkyl, C₁-C₆alkOxy, C₁-C₄fluoroalkyl, C₁-
Qfluoroalkoxy, or C₁-Qheteroalkyl;
R⁵ is H, halogen, -CN, -NO₂, -OH, -OR¹², -SR¹², -S(=O)R¹², -S(=O)₂R¹², -
S(=O)₃R¹², -OC(=O)R¹², -CO₂R¹³, -CO₂CH(R¹³)₂, -N(R¹³)₂, -C(=O)N(R¹³)₂, -
OC(=O)N(R¹³)₂, -NHC(=O)NH(R¹³), -NHC(=O)OR¹², -NHC(=O)OR¹³, -C(=O)H(R¹³)₂,
-C(=O)H₂, C₁-C₆alkyl, d-C₆fluoroalkyl, C₁-C₄fluoroalkoxy, C₃-falkoxy, or Cr₃heteroalkyl;
R²⁰ is C₁-C₄alkyl, C₃-C₆cycloalkyl, -CH₂O-C₁-C₄alkyl, -CH(CH₃)₂O-C₁-C₄alkyl, -
C(CH₃)₂O-C₁-C₄alkyl, -CH₂O-(substituted or unsubstituted phenyl), -CH(CH₃)₂O-(substituted or unsubstituted phenyl), -C(CH₃)₂O-(substituted or unsubstituted phenyl), -C(CH₃)₂O-(substituted or unsubstituted phenyl).
phenyl), -CH₂OCH₂-(substituted or unsubstituted phenyl), -OC\]-C₄ alkyl, -O-CH₂-
(substituted or unsubstituted phenyl), -O-CH(CH₃)(substituted or unsubstituted phenyl),
-NR₁₆-C₄ alkyl, -NR₁₆,C₃-C₆cycloalkyl, -NR₆₁₆-CH₂-(substituted or unsubstituted phenyl),
or -NR₁₆-CH(CH₃)-(substituted or unsubstituted phenyl),
wherein if the phenyl of R²₀ is substituted, then the phenyl is substituted with 0, 1, or 2
R²¹ groups;
each R²¹ is independently selected from halogen, -OH, -OC₄ alkyl, <-,OC₄ alkyl, and -
CF₃;
R₁₆ is H orC₄ alkyl;
R¹¹ is C₄C₄ alkyl, C₄C₄ fluoroalkyl, or C₃C₆cycloalkyl;
R¹² is C₄C₄ alkyl, C₄heteroalkyl, or C₄C₄ fluoroalkyl;
each R¹³ is independently selected from H, C₄C₄ alkyl, C₄C₄ heteroalkyl, and C₄C₄ fluoroalkyl.

50. The compound of claim 49, wherein the compound has the structure of Formula (VIII):

![Formula (VIII).](image)

51. The compound of claim 49 or claim 50, wherein:
R¹¹ is -CH₃, -CH₂CH₃, -CF₃, -CH₂CF₃, cyclopropyl, cyclobutyl, or cyclopentyl.

52. The compound of any one of claims 49-51, wherein:
R⁵ is H, halogen, -CN, -NO₂, -OH, -OR¹¹, -SR¹¹, -S(=O)R¹², -S(=O)₂R¹₂, -NHSF₆=O),-C(=O)R¹²,
-OC(=O)R¹², -CO₂R¹², -OCO₂R¹³, -N(R¹³)₂, -C(=O)N(R¹³)₂,
-OC(=O)N(R¹³)₂, -NHC(=O)NH(R¹¹), -NHC(=O)R¹², -NHC(=O)R¹₂, -C(=O)H(R¹³)₂,
-Ci-C₄ alkyl, C₄C₄ fluoroalkyl, C₄C₄ fluoroalkoxy, C₄C₄alkoxy, or C₄C₄heteroalkyl;
R¹² is C₄C₄ alkyl;
each R¹³ is independently selected from H, and C₄C₄alucyl.

53. The compound of any one of claims 49-51, wherein:
R²₀ is Ci-C₄ alkyl, C₃C₆cycloalkyl, -CH₂O-C₄ C₄alkyl, -CH₂O-(substituted or
unsubstituted phenyl), -CH(CH₂)-O-(substituted or unsubstituted phenyl), -C(CH₃)₂-
O-(substituted or unsubstituted phenyl), -CH₂OCH₂-(substituted or unsubstituted phenyl),
-OC-C₄ alkyl, -O-CH₂-(substituted or unsubstituted phenyl), -O-CH(CH₃)
(substituted or unsubstituted phenyl), -NR\textsubscript{16}C\textsubscript{6}alkyl, -NR\textsubscript{16}CH\textsubscript{2}-(substituted or unsubstituted phenyl), or -NR\textsubscript{16}CH(CH\textsubscript{3})-(substituted or unsubstituted phenyl), wherein if the phenyl of R\textsubscript{20} is substituted, then the phenyl is substituted with 0, 1, or 2 R\textsubscript{21} groups.

54. The compound of any one of claims 49-53, wherein

R4 is H, F, Cl, Br, -OH, -CH\textsubscript{3}, -OCH\textsubscript{3}, -CF\textsubscript{3}, or -OCF\textsubscript{3};

R5 is H, halogen, -CN, -NO\textsubscript{2}, -OH, -S(=O)\textsubscript{2}CH\textsubscript{3}, -NHS(=O)\textsubscript{2}CH\textsubscript{3}, -C(=0)CH\textsubscript{3}, -OC(=0)CH\textsubscript{3}, -CO\textsubscript{2}H, -CO\textsubscript{2}CH\textsubscript{3}, -CO\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}, -NH\textsubscript{2}, -C(O)NH\textsubscript{2}, -NHC(=O)CH\textsubscript{3}, -CH\textsubscript{3}, -CF\textsubscript{3}, -OCF\textsubscript{3}, -OCH\textsubscript{3}, -CH\textsubscript{2}OH, or -C(CH\textsubscript{3})\textsubscript{2}OH.

55. The compound of any one of claims 49-54, wherein:

R20 is -CH\textsubscript{3}, -CH\textsubscript{2}CH\textsubscript{3}, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, -CH\textsubscript{2}OCH\textsubscript{3}, -CH\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH(CH\textsubscript{3})O-(substituted or unsubstituted phenyl), -(CH\textsubscript{2})\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH\textsubscript{2}OCH\textsubscript{2}-(substituted or unsubstituted phenyl), wherein if the phenyl of R\textsubscript{20} is substituted, then the phenyl is substituted with 0, 1, or 2 R\textsubscript{21} groups;

each R21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}.

56. The compound of claim 55, wherein:

R4 is H, F, Cl, Br, -CH\textsubscript{3}, -OCH\textsubscript{3}, -CF\textsubscript{3}, or -OCF\textsubscript{3};

R5 is halogen, -CH\textsubscript{3}, -CF\textsubscript{3}, -OCF\textsubscript{3}, or -OCH\textsubscript{3};

R20 is -CH\textsubscript{3}, cyclopropyl, -CH\textsubscript{2}OCH\textsubscript{3}, -CH\textsubscript{2}O-(substituted or unsubstituted phenyl), -CH\textsubscript{2}OCH\textsubscript{2}-(substituted or unsubstituted phenyl), wherein if the phenyl of R\textsubscript{20} is substituted, then the phenyl is substituted with 0, 1, or 2 R\textsubscript{21} groups;

each R21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}.

57. The compound of any one of claims 49-54, wherein:

R20 is -OC\textsubscript{16}Qalkyl, -O-CH\textsubscript{2}-(substituted or unsubstituted phenyl), or -O-CH(CH\textsubscript{3})-(substituted or unsubstituted phenyl); wherein if the phenyl of R\textsubscript{20} is substituted, then the phenyl is substituted with 0, 1, or 2 R\textsubscript{21} groups;

each R21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}.

58. The compound of claim 57, wherein:

R20 is -O-CH\textsubscript{2}-(substituted or unsubstituted phenyl), wherein if the phenyl of R\textsubscript{20} is substituted, then the phenyl is substituted with 0, 1, or 2 R\textsubscript{21} groups;

each R21 is independently selected from F, Cl, and Br.

59. The compound of claim 58, wherein the compound has the following structure:
wherein, m is 0, 1, or 2;
R⁴ is F, Cl, Br, -CH₃, -OCH₃, -CF₃, or -OCF₃;
R⁵ is F, Cl, Br, -CH₃, -CF₃, -OCH₃, or -OCH₂CH₃;
R¹¹ is –CH₃, -CH₂CH₃, Or-CH₂CF₃.

60. The compound of any one of claims 49-54, wherein:
R²⁰ is -NR₁⁶C₁-C₄alkyl, -NR₁⁶-CH₂-(substituted or unsubstituted phenyl), or-NR₁⁶-C₆H₄(CHₓ)-(substituted or unsubstituted phenyl), wherein if the phenyl of R²⁰ is substituted, then the phenyl is substituted with 0, 1, or 2 R²¹ groups;
each R²¹ is independently selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃;
R¹⁶ is H, -CH₃, Or-CH₂CH₃.

61. The compound of claim 60, wherein:
R²⁰ is-NH-CH₂-(substituted or unsubstituted phenyl), wherein if the phenyl of R²⁰ is substituted, then the phenyl is substituted with 0, 1, or 2 R²¹ groups;
each R²¹ is independently selected from F, Cl, Br, -OH, -OCH₃, -CH₃, and -CF₃.

62. The compound of claim 61, wherein the compound has the following structure:
wherein, \(m \) is 0, 1, or 2;

\(R^4 \) is F, Cl, Br, -CH\(_3\), -OCH\(_3\), -CF\(_3\), or -OCF\(_3\);

\(R^5 \) is F, Cl, Br, -CH\(_3\), -CF\(_3\), -OCH\(_3\), or -OCF\(_3\);

\(R^{11} \) is -CH\(_3\), -CH\(_2\)CH\(_3\), or -CH\(_2\)CF\(_3\);

each \(R^{21} \) is independently selected from F, Cl, Br, -OH, -OCH\(_3\), -CH\(_3\), and -CF\(_3\).

63. The compound of claim 62, wherein:

wherein, \(m \) is 0, 1, or 2;

\(R^4 \) is -OCH\(_3\);

\(R^5 \) is -CF\(_3\);

\(R^u \) is -CH\(_3\), or -CH\(_2\)CH\(_3\);

each \(R^{21} \) is independently selected from F, Cl, and Br.

64. The compound of claim 62, wherein:

\(m \) is 0;

\(R^4 \) is -OCH\(_3\);

\(R^5 \) is -CF\(_3\);

\(R^{11} \) is -CH\(_2\)CH\(_3\).

65. A compound having the structure of Formula (VII'), pharmaceutically acceptable salts, pharmaceutically acceptable solvates, or pharmaceutically acceptable prodrugs thereof:
wherein,
R^4 is H, halogen, -CN, -OH, Cl-C_i alkyl, C_i C_4 alkoxy, C_i C_4 fluoroalkyl, C_i-
C_4 fluoroalkoxy, or Cl-C_i heteroalkyl;
R^5 is C_i-C_4 cycloalkyl, a substituted or unsubstituted C_2-Cioheterocycloalkyl, a substituted
or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or
unsubstituted monocyclic heteroaryl, or a substituted or unsubstituted bicyclic
heteroaryl, wherein if R^5 is substituted, then R^5 is substituted with 1, or 2 R^{2+} groups
R^{20} is C_i C_4 alkyl, C_i-C_4 cycloalkyl, -CH_2O-C_i-C_4 alkyl, -CH_2O-(substituted or
unsubstituted phenyl), -CH(CH_3)-O-(substituted or unsubstituted phenyl), -C(CH_3)_2-
O-(substituted or unsubstituted phenyl), -CH_2OCH_2-(substituted or unsubstituted
phenyl), -O[C_i]C_4 alkyl, -O-CH_2-(substituted or unsubstituted phenyl), -0-CH(CH_3)_2-(substituted or unsubstituted
phenyl), -NR^A^B alkyl, -NR^A^BCH_2-(substituted or unsubstituted phenyl), or -NR^A^BCH(CH_3)_2-(substituted or unsubstituted
phenyl), wherein if the phenyl of R^{20} is substituted, then the phenyl is substituted with 1, or 2
R^{21} groups;
each R^{21} is independently selected from halogen, -OH, -OC_i-C_4 alkyl, C_i-C_4 alkyl, and -
CF_3;
R^{16} is H or C_i C_4 alkyl;
R^n is Cl-Q alkyl, Cl-C_4 fluoroalkyl, or C_i-C_4 cycloalkyl;
R^{12} is C_i C_4 alkyl, C_i-C_4 heteroalkyl, or C_i-C_4 fluoroalkyl;
each R^{13} is independently selected from H, Cl-C_4 alkyl, C_i-C_4 heteroalkyl, and C_i-
C_4 fluoroalkyl.

66. The compound of claim 65, wherein:
R^4 is H, F, Cl, Br, -OH, -CH_3, -OCH_3, -CF_3, or -OCF_3;
R^{11} is -CH_3, -CH_2CH_3, -CF_3, -CH_2CF_3, cyclopropyl, cyclobutyl, or cyclopentyl.

67. The compound of claim 66, wherein
R^5 is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyrroldinyl, piperidinyl,
morpholinyl, piperazinyl, thiomorpholinyl, or a substituted or unsubstituted group
selected from phenyl, naphthyl, furanyl, thiienyl, pyrrolyl, oxazolyl, thiazolyl,
imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, tetrazolyl,
pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, indolyl, benzofuranyl,
benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolinyl, isoquinolinyl,
cinnolinyl, phthalazinyl, quinazolinyl, and quinoxalinyl, where if R^5 is substituted,
then R^5 is substituted with 1, or 2 R^{21} groups.

68. The compound of claim 67, wherein
R^5 is a substituted or unsubstituted group selected from phenyl, naphthyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridiniy, pyridaziny, pyraziny, pyrimidiny, triaziny, indolyl, benzo-furanyl, benzo-thienyl, indazoyl, benzimidazoyl, benzthiazoyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalaziny, quinazolinyl, and quinoxalinyl, where if R^5 is substituted, then R^5 is substituted with 1, or 2 R^{21} groups.

69. The compound of claim 68, wherein

R^5 is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridiniy, pyridaziny, pyraziny, pyrimidiny, triaziny, indolyl, benzofuranyl, benzo-thienyl, indazoyl, benzimidazoyl, benzthiazoyl, quinolinyl, isoquinolinyl, where if R^5 is substituted, then R^5 is substituted with 1, or 2 R^{21} groups;

each R^{21} is independently selected from F, Cl, Br, -OH, -OCH_3, -CH_3, and -CF_3.

70. The compound of any one of claims 65-69, wherein:

R^{20} is -CH_3, -CH_2CH_3, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, -CH_2OCH_3, -CH_2O-(substituted or unsubstituted phenyl), -CH(CH_3)-O-(substituted or unsubstituted phenyl), -C(CH_3)_2-O-(substituted or unsubstituted phenyl), -CH_2OCH_2-(substituted or unsubstituted phenyl), wherein if the phenyl of R^{20} is substituted, then the phenyl is substituted with 0, 1, or 2 R^{21} groups;

each R^{21} is independently selected from F, Cl, Br, -OH, -OCH_3, -CH_3, and -CF_3.

71. The compound of any one of claims 65-70, wherein:

R^{20} is -CH_3, cyclopropyl, -CH_2OCH_3, -CH_2O-(substituted or unsubstituted phenyl), -CH_2OCH_2-(substituted or unsubstituted phenyl), wherein if the phenyl of R^{20} is substituted, then the phenyl is substituted with 1, or 2 R^{21} groups;

each R^{21} is independently selected from F, Cl, Br, -OH, -OCH_3, -CH_3, and -CF_3.

72. The compound of any one of claims 65-70, wherein:

R^{20} is -O-C_6H_4alkyl, -O-CH_2-(substituted or unsubstituted phenyl), or -O-CH(CH_3)-(substituted or unsubstituted phenyl); wherein if the phenyl of R^{20} is substituted, then the phenyl is substituted with 1, or 2 R^{21} groups;

each R^{21} is independently selected from F, Cl, Br, -OH, -OCH_3, -CH_3, and -CF_3.

73. The compound of claim 72, wherein:

R^{20} is -O-CH_2-(substituted or unsubstituted phenyl), wherein if the phenyl of R^{20} is substituted, then the phenyl is substituted with 1, or 2 R^{21} groups;

each R^{21} is independently selected from F, Cl, and Br.

74. The compound of any one of claims 65-70, wherein:
R20 is -NR\textsubscript{16}C\textsubscript{4}alkyl, -NR\textsubscript{16}-CH\textsubscript{2}-(substituted or unsubstituted phenyl), or -NR\textsubscript{16}-CH(CH\textsubscript{3})-(substituted or unsubstituted phenyl), wherein if the phenyl of \textit{R}20 is substituted, then the phenyl is substituted with 1, or 2 \textit{R}21 groups; each \textit{R}21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}; \textit{R}16 is H, -CH\textsubscript{3}, or -CH\textsubscript{2}CH\textsubscript{3}.

75. The compound of claim 74, wherein:

\textit{R}20 is-NH-CH\textsubscript{2}-(substituted or unsubstituted phenyl), wherein if the phenyl of \textit{R}20 is substituted, then the phenyl is substituted with 1, or 2 \textit{R}21 groups; each \textit{R}21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}.

76. The compound of any one of claims 65-75, wherein:

\textit{R}4 is F, Cl, Br, -CH\textsubscript{3}, -OCH\textsubscript{3}, -CF\textsubscript{3}, or -OCF\textsubscript{3}; \textit{R}11 is -CH\textsubscript{3}, -CH\textsubscript{2}CH\textsubscript{3}, or CH\textsubscript{2}CF\textsubscript{3};

77. The compound of claim 76, wherein:

\textit{R}4 is -OCH\textsubscript{3};
\textit{R}11 is -CH\textsubscript{3}, or -CH\textsubscript{2}CH\textsubscript{3}.

78. The compound of claim 77, wherein

\textit{R}5 is a substituted or unsubstituted group selected from pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, quinolinyd, and isoquinolinyd, wherein if \textit{R}5 is substituted, then \textit{R}5 is substituted with 1, or 2 \textit{R}21 groups; each \textit{R}21 is independently selected from F, Cl, Br, -OH, -OCH\textsubscript{3}, -CH\textsubscript{3}, and -CF\textsubscript{3}.

79. A compound selected from:

\{21-t[(Acetyl-methyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-1); \{t[(Acetyl-ethyl-amino)-methyl]-6-methoxy2*-trifluoromethyl-biphenyl-3-yl\}-acetic acid (Compound 1-2); (21-t[(Acetyl-(2,2-dimethyl-propyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-3); (22-t[(Acetyl-(2,2,2-trifluoro-ethyl)-amino]-niethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-4); (22-t[(Acetyl-(2-hydroxy-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-5); (22-t[(Acetyl-(2-methoxy-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-6); (22-t[(Acetyl-(2-dimethylamino-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-7); (22-t[(Acetyl-carboxymethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-8); (22-t[(Acetyl-carbamoymethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-9); (22-t[(Acetyl-ethyl-amino]-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl\)-acetic acid (Compound 1-10); (22-t[(Acetyl-(2,2,2-trifluoro-ethyl)-amino]-methyl]-6-fluoro2*-trifluoromethyl-biphenylO-yl\)-acetic acid (Compound 1-11); /T-
[(Acetyl-cyclopropyl-aminoJ-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-12); [2'[(S)-Acetyl-indan-1-yl-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-13); [2'[(R)-Acetyl-indan-1-yl-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-14); [2'[(Acetyl-((lR,2S)-2-hydroxy-indan-1-yl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-15); [2'[(Acetyl-((lR,2S)-2-methoxy-indan-1-yl)-amino]-methyl] -6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-16); [2'[(Acetyl-indan-2-yl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-17); [2'[(Acetyl-phenyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-18); [2'[(Acetyl-benzyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-19); [2'[(Acetyl-phenethyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-20); [2'[(Acetyl-ethyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -propanoic acid (Compound 1-21); [2'[(Acetyl-ethyl-amino)]-ethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-22); [2'[(Ethylmethoxycarbonylamino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-23); [2'[(Benzylmethoxycarbonylamino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-24); [6-Methoxy-2'[(methoxycarbonyl-phenethyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-25); [2'[(Indan-2-ylmethoxycarbonylamino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-26); [2'[(Benzylmethoxycarbonylamino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-27); [2'[(Benzylmethoxycarbonylamino)]-ethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-28); [2'[(Benzylmethoxycarbonylamino)]-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-29); [2'[(Acetyl-cyclobutyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-30); [2'[(Acetyl-cyclopentyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-31); [2'[(Ethyl-2,2,2-trifluoro-ethyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-32); [2'[(Cyclopropanecarbonyl-ethyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-33); [2'[(Benzylmethoxycarbonylcyclobutyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-34); [2'[(Benzylmethoxycarbonylcyclopentyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-35); [2'[(Benzylmethoxycarbonylcyclopropyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-36); [2'[(Acetyl-(2,2,2-trifluoro-ethyl-amino)]-methyl]-5'-carboxymethyl-2'-methoxy-biphenyl-4-carboxylic acid (Compound 1-37); [2'[(3,5-Dichloro-benzylmethoxycarbonyl)]-ethyl-amino)]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-38); [2'[(2-Chloro-benzylmethoxycarbonyl)]-}
ethyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-39); (2'-[(3,5-Difluoro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-40); (2'-[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-41); (2'-[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-42); (2'-[Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-43); (2'-[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-44); (2'-[(Ethyl-(2-phenoxy-propionyl)-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-45); (2'-[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-46); (2'-[Ethyl-(2,2,2-trifluoro-ethyl)-amino]-methyl}-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-47); (2'-[(Acetyl-ethyl-amino)-methyl]-4'-bromo-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-48); (2'-[(Ethyl-benzyloxycarbonyl)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-49); (2'-[(Acetyl-ethyl-amino)-methyl]-4'-bromo-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-50); (2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-51); (2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-52); (2'-[(Acetyl-o-tolyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-53); (2'-[(Acetyl-thiazol-2-yl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-54); (2'-[(Acetyl-ethyl-amino)-methyl]-4'-methanesulfonylamino-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-55); (2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-56); (2'-[(Acetyl-ethyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-57); (2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-58); (2'-[(Acetyl-ethyl-amino)-methyl]-6-fluoro-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-59); (2'-[(Acetyl-ethyl-amino)-methyl]-6-cyclopropyl-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-60); (2'-[(Acetyl-ethyl-amino)-methyl]-6,4'-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-61); (2'-[(Acetyl-ethyl-amino)-methyl]-4-methoxy-4'-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-62); (2'-[(Acetyl-ethyl-amino)-methyl]-4'-bromo-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-63); (4'-Acetylamino-2'-[(acetyl-methyl- amino)-methyl]-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-64); (2'-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4'-methoxycarbonylamino-biphenyl-3-yl)-acetic acid (Compound 1-65); (2'-[(Acetyl-ethyl-amino)-methyl]-4'-methanesulfonylamino-6-methoxy-biphenyl-3-yl)-acetic acid (Compound 1-66); (2'-[(Acetyl-ethyl-amino)-methyl]-4'-methanesulfonyl-6-methoxy-
biphenyl-3-yl)-acetic acid (Compound 1-67); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4’-pyrrolidin-1-yl-biphenyl-3-yl] -acetic acid (Compound 1-68); [2”-[(Acetyl-methyl-amino)-methyl]-6-methoxy-4’-pyrazol-1-yl-biphenyl-3-yl] -acetic acid (Compound 1-69); [2’-[(Acetyl-ethyl-amino)-methyl]-4’-cyclopropyl-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-70); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-[1,1’;4’,r]terphenyl-3-yl]-acetic acid (Compound 1-71); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4’-oxazol-2-yl-biphenyl-3-yl]-acetic acid (Compound 1-72); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4’-(1 H-pyrazol-4-yl)-biphenyl-3-yl]-acetic acid (Compound 1-73); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4’-pyridin-2-yl-biphenyl-3-yl] -acetic acid (Compound 1-74); [2’-[(Cyclopropoxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-75); [2’-(I-Ethyl-3-methyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-76); [2’-[(Cyclopropancarbonyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-77); [2’-[(Cyclopentancarbonyl-ethyl-amino)-methyl]-6-chloro-4’-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-78); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-5’-methoxycarbonylamino-biphenyl-3-yl] -acetic acid (Compound 1-80); [2’-[(Acetyl-ethyl-amino)-methyl]-5’-methanesulfonylamino-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-81); [2’-[(Acetyl-ethyl-amino)-methyl]-5’-bromo-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-84); [5’-Acetylamino-2’-[(acetyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-85); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-5’-methoxyacarbonylamino-biphenyl-3-yl] -acetic acid (Compound 1-86); [2’-[(Acetyl-ethyl-amino)-methyl]-5’-methanesulfonylamino-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-87); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-5’-pyrrolidin-1-yl-biphenyl-3-yl] -acetic acid (Compound 1-88); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-5’-pyrazol-1-yl-biphenyl-3-yl] -acetic acid (Compound 1-89); [2’-[(Acetyl-ethyl-amino)-methyl]-3’-methanesulfonyl-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-90); [2’-[(Acetyl-ethyl-amino)-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-difluoro-acetic acid (Compound 1-91); [2’-[[2-Benzyl-oxacyetyl]-ethyl-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-92); [2’-[[2-(4-Chloro-phenoxo)-acetyl]-ethyl-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-93); [2’-[(3-Benzyl-1,3-diethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-94); [2’-[(3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-96); [2’-[(Ethyl-(pyrrolidine-1-carbonyl)-amino]-methyl]-6-methoxy-4’-trifluoromethyl-biphenyl-3-yl]-
acetic acid (Compound 1-97); 2-[(Benzyloxy carbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-98); 2'-(3-Cyano-1-ethylureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-99); (2'l-[(4-CMoro-benzenesulfonyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-100); 2'-(Methanesulfonyl-phenethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-101); 2'-([Acetyl-((1S,2R)-2-hydroxy-1-methyl-2-phenyl-ethyl)-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-104); 2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-4-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-105); 2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-108); 2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-109); 2'-(Benzyloxy carbonyl-ethyl-amino)-methyl]-6-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-110); 2'-(N'-Benzyl-N'-cyano-N'-ethyl-guanidinomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-111); 2'-(N'-Cyano-N'-ethyl-N'-((4-methoxy-benzyl)-guanidinomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-112); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-113); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-114); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-115); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-116); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-117); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-118); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-119); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-120); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-121); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-122); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-123); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-124); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-125); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-126); 2'-(N'-Cyano-N'-ethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-127); 6-Benzoyl-2'-
[(benzyloxycarbonyl-ethyl-amino)-inethyl]-4-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-128); [2'-[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-ethoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-129); [2'-'[(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-cyclopropylmethoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-130); [2'-'{(1-(2,4-Dichloro-phenyl)-cyclopropanecarbonyl)-ethyl-amino}-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-131); [2'-'{(Benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl}-difluoro-acetic acid (Compound 1-132); {S-Chloro^-f-cyclopropanecarbonyl-ethyl-aminoJ^-methy^-trifluoromethyl-biphenyl-S-yl]-acetic acid (Compound 1-135); {2'-[(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-140); [2'-{(3-(3,4-Dichloro-phenyl)-1-ethyl-ureidomethyl)]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-149); [2'-(3-{(3,4-Dichloro-phenyl)-1-ethyl-ureidomethyl)}-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-152); [4'-Acetylamino-2'-(benzyloxycarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-153); [2'-'{[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4-(4-chloro-benzyloamino)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-154); [2'-'{[(Benzyloxycarbonyl-ethyl-amino)-methyl]-4^-methanesulfonylamino-6-methoxy-biphenyl-3-ylJ-acetic acid (Compound 1-155); [2'-'{(Benzyloxycarbonyl-ethyl-amino)-methyl]-4-(4-chloro-benzzenesulfonylamino)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-156); [2'-(3-Benzyl-1-ethyl-ureidomethyl)-5-chloro-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-157); [2'-(3-Benzyl-1-ethyl-
ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-158); [2'-(3-
Benzyl-1-ethyl-ureidomethyl-S-fluoro,,-trifluoromethyl-biphenyl-S-yl] -acetic acid (Compound 1-159); [2'-(Ethyl-methoxy carbonyl- amino)-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-163); [5-Chloro-2'-(ethyl-methoxy carbonyl- amino)-methyl]-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-164); [2'-[3-(3,5-Dichloro-benzyl)-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-165); [2'-(Ethyl-(4-fluoro-benzoylcarbonyl)-amino)-methyl]-6-methoxy-5'-methyl-biphenyl-3-yl] -acetic acid (Compound 1-166); [2'-(Ethyl-(4-fluoro-benzoylcarbonyl)-amino)-methyl]-6-methoxy-5'-methyl-biphenyl-3-yl] -acetic acid (Compound 1-167); [2'-(Cyclopropylcarbonyl-ethyl-amino)-methyl]-6-methoxy-5'- trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-168); [2'-(Cyclopropylcarbonyl-ethyl-amino)-methyl]-6-methoxy-5'-methyl-biphenyl-3-yl] -acetic acid (Compound 1-171); [2'-(3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-5'-trifluoromethyl-
biphenyl-3-yl] -acetic acid (Compound 1-172); [2'-(3-Benzyl-1-ethyl-ureidomethyl)-6-methoxy-5'-methyl-biphenyl-3-yl] -acetic acid (Compound 1-173); [2'-([(4-Chloro-benzoylcarbonyl)-ethyl-
amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-174); [2'-
([(4-Chloro-benzoylcarbonyl)-ethyl-amino]-methyl]-6-methoxy-5'-methyl-biphenyl-3-yl] -acetic acid (Compound 1-175); [2'-(ethyl-3-(4-fluoro-benzyl)-ureidomethyl]-6-methoxy-4'-
trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-176); [2'-[(3-Chloro-benzyl)-1-ethyl-
ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-177); [2'-
[S-fluoro,Sdifluoro-benzyl]-1-ethyl-ureidomethyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-178); [2'-[(4-Chloro-benzoylcarbonyl)-ethyl-amino]-methyl]-6-methoxy-5'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-179); [2'-(3-[(S)-1-(4-Chloro-phenyl)-ethyl]-1-ethyl-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-180); [2'-(1,3-Diethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-181); [2'-(3-Cyclopropyl-1-ethyl-ureidomethyl)-6-methoxy-4'-
trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-182); [2'-(Benzyloxycarbonyl-ethyl-
amino)-methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-183); [2'-(Acetyl-
ethyl-amino)-methyl]-4'-fluoro-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-184); [2'-
[(4-Chloro-benzyl)-1-ethyl-ureidomethyl]-4'-fluoro-6-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-185); [2'-(Cyclopropylcarbonyl-ethyl-amino)-methyl]-4'-fluoro-6-methoxy-
biphenyl-3-yl] -acetic acid (Compound 1-186); [2'-(3-Benzyl-1-ethyl-ureidomethyl)-4'-fluoro-6-
methoxy-biphenyl-3-yl] -acetic acid (Compound 1-187); (5-Chloro-2'-([(4-chloro-
benzoylcarbonyl)-ethyl-amino]-methyl]-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-188); [2'-([(4-Chloro-benzoylcarbonyl)-ethyl-amino]-methyl]-5,4'-bis-
trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-189); (5-Chloro-2'-(ethyl-(4-fluoro-
benzoylcarbonyl)-amino]-methyl]-4'-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-
190); (2'·[(Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl)-acetic acid (Compound 1-191); [5-Chloro-2'·(3-(4-chloro-benzyl)-1-ethyl-ureidomethyl]-4'-trifluoromethyl-biphenyl-3-yl) -acetic acid (Compound 1-192); [2'·(3-(4-Chloro-benzyl)-1-ethyl-ureidomethyl]-^5'-bis-Mfluoromethyl-biphenyl-S-y^-acetic acid (Compound 1-193); (2'·{(Ethyl-(4-fluoro-benzyloxycarbonyl)-amino]-methyl)-6,5'-dimethoxy-biphenyl-3-yl)-acetic acid (Compound 1-194); (T·[(4-Chloro-benzyloxycarbonyl)-ethyl-amino]-methyl] -6,5'-dimethoxy-biphenyl-3-yl)-acetic acid (Compound 1-195); {^5'-[(Cyclopropanecarbonyl-ethyl-amino]-methyl]-6,5'-dimethoxy-biphenyl-3-yl} -acetic acid (Compound 1-196); [2'-(3-Benzyl-1-ethyl-ureidomethyl)-6,5'-dimethoxy-biphenyl-3-yl]-acetic acid (Compound 1-197); [2'·(1-Ethyl-3-pyridin-S-ylmethyl-ureidomethyl]-6-methoxy-^-trifluoromethyl-biphenyl-8-y1-acetic acid (Compound 1-198); P·tl-Ethyl-S-pyridin^-ylmethyl-ureidomethylO - ^5^-methoxy^-L-trifluoromethyl-biphenyl-8-y1-acetic acid (Compound 1-199); [2'·(3-(6-Chloro-pyridin-3-ylmethyl)-1-ethyl-ylureidomethyl]-6-methoxy-^-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-200); [5-Chloro-2'·(1 -ethyl-3-methyl-ureidomethyl)-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-201); [2'·(1-Ethyl-3-methyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-202); [2'·{(Benzoyl-ethyl-amino)-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-203); [2'·{(Benzoyl-ethyl-amino]-methyl)-S^-6-bis-trifluoromethyl-biphenyl-8-y1-acetic acid (Compound 1-204); [2'·{(Cyclobutanecarbonyl-ethyl-aminoJ-methyl^- 6-methoxy^-L-trifluoromethyl-biphenyl^-yl]-acetic acid (Compound 1-206); [2'·{(Ethyl-phenylacetyl-amino]-methyl]-6-methoxy-4 ^5^-trifluoromethyl-biphenyl-3-yl] -acetic acid (Compound 1-207); (2'·{[Ethyl-(3-phenyl-propionyl)-amino]-methyl] -6-methoxy-^-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-208); (2'·{(Ethyl-(1-hydroxy-cyclopropanecarbonyO-aminoJ-methyl} ^6^-methoxy^-L-trifluoromethyl-biphenyl-8-y1)-acetic acid (Compound 1-209); [2'·{[(1-Ethyl-ureido)-methyl]-6-methoxy-^-trifluoromethyl-biphenyl-3-yl} -acetic acid (Compound 1-210); 2·{[(Acetyl-ethyl-amino]-methyl]-5-chloro-4'-trifluoromethyl-biphenyl-3-yl} -propionic acid (Compound 1-211); 2·{[5-Chloro-2'·[(cyclopropanecarbonyl-ethyl-amino]-methyl]-4'-trifluoromethyl-biphenyl-3-yl] -propionic acid (Compound 1-212); 2·{[(Acetyl-ethyl-amino]-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl} -propionic acid (Compound 1-213); 2·{[(Cyclopropanecarbonyl-ethyl-amino]-methyl]-5,4'-bis-trifluoromethyl-biphenyl-3-yl} -propionic acid (Compound 1-214); [2'·{(Benzyloxycarbonyl-ethyl-amino]-methyl]-4'-methanesulfonyl-6-methoxy-biphenyl-3-yl} -acetic acid (Compound 1-215); [2'·{(Benzyloxycarbonyl-ethyl-amino]-methyl] ^5^-1-hydroxy-1-methyl-ethyl)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-216); 2·{[(Cyclopropanecarbonyl-ethyl-amino]-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl} -propionic acid (Compound 1-217); [5-Chloro-2'·[(cyclopropanecarbonyl-ethyl-araino]-methyl]-5'-methoxy-biphenyl-3-yl] -acetic acid (Compound 1-218); [2'·(3-Benzyl-1-ethyl-ureidomethyl]-5-chloro-5'-methoxy-biphenyl-3-yl]-acetic acid
(Compound 1-219); [2'-3-(Benzyl-1-ethyl-ureidomethyl)-6-hydroxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-220); [5-Chloro-2'-{[2-(4-chloro-phenoxy)-acetyl]-ethyl-ainino-methyl}-5'-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-221); 2-[2'-3-(Benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-222); 2-[Z'-tS-Benzyl-1-ethyl-ureidomethy^S-chloro^'-trifluoromethyl-biphenyl-S-y^-propionic acid (Compound 1-223); (R)-2-[2'-(Cyclopropanecarbonyl-ethyl-aminio)-methyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-224); (S)-2-[2'-[(Cyclopropanecarbonyl-ethyl-aminio)methyl^A^-methoxy^-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-225); 2-[2'-[2-(3-Benzyl-l-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-226); [2'-[(Cyclopropanecarbonyl-ethyl-aminio)-methyl]-4'-6-ethoxy-pyridin-3-yl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-227); [2'-((2-(4-Chloro-phenoxy)-acetyl)-ethyl-ainino-methyl)-5',4'-bis-trifluoromethyl-biphenyl-S-yl]-propionic acid (Compound 1-232); [2'-[(Cyclopropanecarbonyl-ethyl-aminio)-methyl]-5',4'-bis-trifluoromethyl-biphenyl-3-yl]-propionic acid (Compound 1-233); [(2-(2,2-Dimethyl-propionyl)-ethyl-aminio)-methyl]-6-bromomethyl-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-246); {4'-Bromo-
2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-247); 2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-(5-fluoro-pyridin-2-yl)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-249); 2'-(Cyclopropanecarbonyl-ethyl-amino)-methyl]-6-methoxy-4'-(5-methoxy-pyrimidin-2-yl)-biphenyl-3-yl]-acetic acid (Compound 1-250); 2'-(1-Ethyl-3-(4-hydroxy-benzyl)-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-252); 2'-(1-Ethyl-3-(2-hydroxy-benzyl)-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-253); 2'-(Benzoyl-ethyl-amino)-methyl]-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-254); 4'-(6-Ethoxy-pyridin-3-yl)-2'-(ethyl-phenylacetyl-amino)-methyl]-6-methoxy-biphenyl-3-yl]-acetic acid (Compound 1-255); 4'-(6-Ethoxy-pyridin-3-yl)-2'-(ethyl-(3-phenyl-propionyl)-amino)-methyl]-6-methoxy-ureidomethyl]-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (Compound 1-256); N-Ethyl-N-[5'-(2-hydroxy-2-methyl-propyl)-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl]-acetamide (Compound 2-1); N-Ethyl-N-[5'-(2-hydroxy-2-methyl-propyl)-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl]-acetamide (Compound 2-2); Cyclopropanecarboxylic acid (5'-cyanomethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide (Compound 2-3); (5'-Cyanomethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-carbamic acid benzyl ester (Compound 2-4); Ethyl-[2'-methoxy-5'-(2H-tetrazol-5-ylmethyl)-4-trifluoromethyl-biphenyl-2-ylmethyl]-carbamic acid benzyl ester (Compound 2-5); (5'-Carbamoylmethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-carbamic acid benzyl ester (Compound 2-6); Cyclopropanecarboxylic acid ethyl-[2'-methoxy-5'-(2H-tetrazol-5-ylmethyl)-4-trifluoromethyl-biphenyl-2-ylmethyl]-amide (Compound 2-7); Cyclopropanecarboxylic acid (5'-carbamoylmethyl-2'-methoxy-4-trifluoromethyl-biphenyl-2-ylmethyl)-ethyl-amide (Compound 2-8); ε-2'-(3-Benzyl-1-ethyl-ureidomethyl)-6-hydroxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid ethyl ester (Compound 2-9); (R)-2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-iv-(R)-1-methyl-2-phenyl-ethyl-propionamide (Compound 2-10); (S)-2'-(3-Benzyl-1-ethyl-ureidomethyl)-5,4'-bis-trifluoromethyl-biphenyl-3-yl]-N-(R)-1-methyl-2-phenyl-ethyl-propionamide (Compound 2-11); Cyclopropanecarboxylic acid ethyl-[2'-methoxy-5'-(R)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl]-amide (Compound 2-12); Cyclopropanecarboxylic acid ethyl-[2'-methoxy-5'-(S)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4-trifluoromethyl-biphenyl-2-ylmethyl]-amide (Compound 2-13); 2'-(Benzyloxycarbonyl-ethyl-amino)-methyl]-5'-ethoxycarbonylmethyl-2'-methoxy-biphenyl-4-carboxylic acid (Compound 2-14); Cyclopropanecarboxylic acid ethyl-[3'-(R)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-phenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4,5'-bis-trifluoromethyl-biphenyl-2-ylmethyl]-amide (Compound 2-15); Cyclopropanecarboxylic acid...
ethyl-{3’-[(S)-1-methyl-2-((4R,5S)-4-methyl-2-oxo-5-pilenyl-oxazolidin-3-yl)-2-oxo-ethyl]-4 \,^{5l}L bis-trifluoromethyl-biphenyl-2-ylmethyl}-amide (Compound 2-16); and (2S,3S,4S,5R,6S)-6-{2-\,^{P’}tS-Benzyl-1-ethyl-ureidomethyli- \,^\alpha\,-methoxy^-\,trifluoromethyl-biphenyl-5-yy-acetoxyl-S\,^{44}-\,trihydroxy-tetrahydro-pyran^-\,carboxylic acid (Compound 2-17).

80. The compound of any one of claims 1-79 for use in treating a disease or condition mediated by prostaglandin D₂.

81. The compound of claim 80, wherein the disease or condition is a respiratory disease or condition, an allergic disease or condition, or an inflammatory disease or condition.

82. The compound of claim 80, wherein the disease or condition is asthma.

83. The compound of claim 80, wherein the disease or condition is COPD.

84. The compound of claim 80, wherein the disease or condition is allergic rhinitis.

85. A pharmaceutical composition comprising a therapeutically effective amount of a compound of any of claims 1-79, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable inactive ingredient selected from pharmaceutically acceptable diluents, pharmaceutically acceptable excipients, and pharmaceutically acceptable carriers.

86. The pharmaceutical composition of claim 85, wherein the pharmaceutical composition is formulated for intravenous injection, oral administration, inhalation, nasal administration, topical administration, ophthalmic administration or otic administration.

87. The pharmaceutical composition of claim 85, wherein the pharmaceutical composition is a tablet, a pill, a capsule, a liquid, an inhalant, a nasal spray solution, a suppository, a suspension, a gel, a colloid, a dispersion, a suspension, a solution, an emulsion, an ointment, a lotion, an eye drop or an ear drop.

88. The pharmaceutical composition of any of claims 31-33 further comprising one or more additional therapeutically active agents selected from 5-lipoxygenase activating protein inhibitors, 5-lipoxygenase inhibitors, CYSLTR1 antagonists, thromboxane antagonists, DPI receptor antagonists, DP₁ receptor agonists, IP receptor agonists, chemokine receptor antagonists, IL5 antibody, bronchodilators, leukotriene receptor antagonists, leukotriene formation inhibitors, decongestants, antihistamines, mucolytics, corticosteroids, glucocorticoids, anticholinergics, antitussives, analgesics, expectorants, and β₂ agonists.

89. A medicament for treating a PGD₂-dependent or a PGD₂-mediated disease or condition in a mammal comprising a therapeutically effective amount of a compound of any of claims 1-79.

90. Use of a compound of any one of claims 1-79 in the manufacture of a medicament for the treatment of a PGD₂-dependent or a PGD₂-mediated disease or condition in a mammal.
91. The use of claim 90, wherein the PGD₂-dependent or PGD₂-mediated disease or condition is a respiratory disease or condition, an allergic disease or condition, or an inflammatory disease or condition.

92. The compound of claim 80, wherein the PGD₂-dependent or PGD₂-mediated disease or condition is asthma.

93. The compound of claim 80, wherein the PGD₂-dependent or PGD₂-mediated disease or condition is COPD.

94. The compound of claim 80, wherein the PGD₂-dependent or PGD₂-mediated disease or condition is allergic rhinitis.

95. A method for treating a PGD₂-dependent or a PGD₂-mediated disease or condition in a mammal comprising administering to the mammal a therapeutically effective amount of a compound of any of claims 1-79.

96. The method of claim 91, wherein the PGD₂-dependent or a PGD₂-mediated disease or condition is selected from asthma, rhinitis, allergic conjunctivitis, atopic dermatitis, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, interstitial lung fibrosis, cystic fibrosis, arthritis, allergy, psoriasis, inflammatory bowel disease, adult respiratory distress syndrome, myocardial infarction, aneurysm, stroke, cancer, wound healing, endotoxic shock, pain, inflammatory conditions, eosinophilic esophagitis, eosinophil-associated gastrointestinal disorders (EGID), idiopathic hypereosinophilic syndrome, otitis, airway constriction, mucus secretion, nasal congestion, increased microvascular permeability and recruitment of eosinophils, urticaria, sinusitis, angioedema, anaphylaxia, chronic cough and Churg Strauss syndrome.

97. The method of claim 91, wherein the PGD₂-dependent disease or condition is a respiratory disorder.

98. The method of claim 93, wherein the respiratory disorder is asthma, rhinitis or chronic obstructive pulmonary disease (COPD).

99. The method of any of claims 91-94, wherein the method further comprises administering to the mammal a second therapeutic agent selected from 5-lipoxygenase-activating protein inhibitors, 5-lipoxygenase inhibitors, CYSLTR1 antagonists, CYSLTR2 antagonists, BLT1 antagonists, BLT2 antagonists, thromboxane antagonists, DPI receptor antagonists, DPI receptor agonists, IP receptor agonists, anti-IgE, chemokine receptor antagonists, IL5 antibody, bronchodilators, theophylline, leukotriene receptor antagonists, leukotriene formation inhibitors, decongestants, antihistamines, mucolytics, corticosteroids, glucocorticoids, anticholinergics, antitussives, analgesics, expectorants, and β-2 agonists.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C07C 235/34(2006.01)i, C07C 237/10(2006.01)i, C07C 313/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- IPC 8 C07C, A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- e-KIPASS, GOOGLE SCHOLAR

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2005-100298 Al(MERCK & CO, INC) 27 October 2005 See abstract, formula II, tables 1-5, examples, claims 1-16</td>
<td>1-4, 49-51, 65-70, 79</td>
</tr>
<tr>
<td>A</td>
<td>US 5239084 A(GUERRY, P ET AL) 24 August 1993 See abstract, general formula I, examples, claims 1-3</td>
<td>1-4, 49-51, 65-70, 79</td>
</tr>
<tr>
<td>A</td>
<td>WO 2006-014357 Al(MERCK & CO, INC) 09 February 2006 See abstract, formula II, Ig, and flh, examples</td>
<td>1-4, 49-51, 65-70, 79</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C
☒ See patent family annex

* Special categories of cited documents

 "A" - document defining the general state of the art which is not considered to be of particular relevance

 "E" - earlier application or patent but published on or after the international filing date

 "L" - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)

 "O" - document referring to an oral disclosure, use, exhibition or other means

 "P" - document published prior to the international filing date but later than the priority date claimed

 "T" - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "X" - document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 "Y" - document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 "&" - document member of the same patent family

Date of the actual completion of the international search
26 JUNE 2009 (26 06 2009)

Date of mailing of the international search report
29 JUNE 2009 (29.06.2009)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seogu, Daejeon 302-701, Republic of Korea
Facsimile No 82-42-472-7140

Authorized officer
KANG Young Jin
Telephone No 82-42-481-8391

Form PCT/ISA/210 (second sheet) (July 2008)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2562082 A1</td>
<td>27.10.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1942428 A</td>
<td>04.04.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 17378 11 A1</td>
<td>03.01.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007-53265 1</td>
<td>15.11.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-64374 A1</td>
<td>05.03.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2000-64374 B2</td>
<td>05.03.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 778596 B2</td>
<td>09.12.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 00 133 16 A</td>
<td>16.07.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2380857 A1</td>
<td>15.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1245376 C</td>
<td>15.03.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1379755 A</td>
<td>13.11.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1800 145 A</td>
<td>12.07.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20020492 A3</td>
<td>15.05.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19937537 A1</td>
<td>08.03.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1202953 T3</td>
<td>27.12.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1202953 A2</td>
<td>08.05.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1202953 B1</td>
<td>30.08.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2270861 T3</td>
<td>16.04.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 11046400 A1</td>
<td>04.04.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0202075 A2</td>
<td>28.12.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0202075 A3</td>
<td>28.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 148058 DO</td>
<td>12.09.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003-506426 T</td>
<td>18.02.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2002-0022100</td>
<td>23.03.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA 0200 1372 A</td>
<td>30.07.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20020610 A</td>
<td>02.04.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 517364 A</td>
<td>24.09.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 353876 A1</td>
<td>01.12.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2259349 C2</td>
<td>27.08.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 1202953 T1</td>
<td>28.02.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 2032002 A3</td>
<td>04.06.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6710080 B2</td>
<td>23.03.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 01/10816 A2</td>
<td>15.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 20020 19 17 A</td>
<td>17.02.2004</td>
</tr>
<tr>
<td>US 5239084 A</td>
<td>24.08.1993</td>
<td>AT 116964 T</td>
<td>15.01.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 649684 B2</td>
<td>02.06.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7927591 A</td>
<td>02.01.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59104205 D1</td>
<td>23.02.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 464465 T3</td>
<td>22.05.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0464465 A1</td>
<td>08.01.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0464465 B1</td>
<td>11.01.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0464465 A1</td>
<td>08.01.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0464465 B1</td>
<td>11.01.1995</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>IE 66457 B1</td>
<td>27. 12. 1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE 9 12283 A1</td>
<td>01.01.1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 04-230348</td>
<td>19.08.1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 4230348 A1</td>
<td>19.08.1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 7068 190 B</td>
<td>26.07.1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ 238672 A1</td>
<td>23. 12. 1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5 177067</td>
<td>05.01.1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5 177067 A1</td>
<td>05.01.1993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZA 9 104809 A1</td>
<td>25.03.1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2006-056854 A1</td>
<td>01.06.2006</td>
<td>AP 200703980 DO</td>
<td>30.06.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 053784 A1</td>
<td>23.05.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005-308584 A1</td>
<td>01.06.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2589322 A1</td>
<td>01.06.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 10 1065366</td>
<td>31.10.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 18 17297 A1</td>
<td>15.08.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008-520645</td>
<td>19.06.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 200700692 13 A</td>
<td>02.07.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 1030486 A1</td>
<td>24.05.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 1030486 C2</td>
<td>24.10.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20073025 A</td>
<td>20.08.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 29222 A1</td>
<td>30.06.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006-014357 A1</td>
<td>09.02.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 049956 A1</td>
<td>20.09.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005-270058 A1</td>
<td>09.02.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005-270058 B2</td>
<td>09.02.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005-270058 A1</td>
<td>09.02.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 25707 17 A1</td>
<td>09.02.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1980904 A</td>
<td>13.06.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1765793 A1</td>
<td>28.03.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070039523 A</td>
<td>12.04.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20070607 A</td>
<td>02.04.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I2 9999 1 A</td>
<td>21.08.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008-01 19476 A1</td>
<td>22.05.2008</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2008)