

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2005319354 B2

(54) Title
Transgenic plants with enhanced agronomic traits

(51) International Patent Classification(s)
A01H 5/10 (2006.01) **C12N 15/00** (2006.01)
A01H 5/02 (2006.01) **C12N 15/82** (2006.01)
C07H 21/04 (2006.01)

(21) Application No: **2005319354** (22) Date of Filing: **2005.12.19**

(87) WIPO No: **WO06/069017**

(30) Priority Data

(31) Number (32) Date (33) Country
60/638,099 **2004.12.21** **US**

(43) Publication Date: **2006.06.29**
(44) Accepted Journal Date: **2012.08.30**

(71) Applicant(s)
Monsanto Technology, LLC

(72) Inventor(s)
Lund, Adrian

(74) Agent / Attorney
EF WELLINGTON & CO, 312 St. Kilda Road Southbank, Melbourne, VIC, 3006

(56) Related Art
WO 2006/130156
WO 2002/015675
US 20040019925
WO 2003/013228

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

PCT

(43) International Publication Date
29 June 2006 (29.06.2006)

(10) International Publication Number
WO 2006/069017 A2

(51) International Patent Classification:
A01H 1/00 (2006.01) *A01H 5/00* (2006.01)
C12N 15/82 (2006.01) *C12N 5/04* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2005/046013

(22) International Filing Date:
19 December 2005 (19.12.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/638,099 21 December 2004 (21.12.2004) US

(71) Applicant (for all designated States except US): MONSANTO TECHNOLOGY, LLC [—US]; 800 North Lindbergh Boulevard, St. Louis, Missouri 63167 (US).

(72) Inventor: LUND, Adrian; 800 N. Lindbergh Blvd, St. Louis, MO 63167 (US).

(74) Agent: WUELLNER, Gail; Mail zone E2NA, Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/069017 A2

(54) Title: TRANSGENIC PLANTS WITH ENHANCED AGRONOMIC TRAITS

(57) **Abstract:** This disclosure describes screening a population of transgenic plants derived from plant cells transformed with recombinant DNA for expression of proteins with homeobox domains to identify plant cells of specific transgenic events that are useful for imparting enhanced traits to transgenic crop plants. Traits include enhanced nitrogen use efficiency, increased yield, enhanced water use efficiency, enhanced tolerance to cold stress and/or improved seed compositions. Also disclosed are transgenic seeds for growing a transgenic plant having the recombinant DNA in its genome and exhibiting the screened enhance trait. Also disclosed are methods for generating seed and plants based on the transgenic events.

Transgenic Plants With Enhanced Agronomic Traits

Cross Reference To Related Applications

This application claims benefit under 35USC § 119(e) of United States provisional application Serial No. 60/638,099, filed 12/21/2004, incorporated herein by reference.

5 Incorporation of Sequence Listing

A sequence listing and a computer readable form (CRF) of the sequence listing, on CD-ROM, each containing the text file named “G1543C.ST25.txt”, which is 63 KB (measured in MS-WINDOWS) and was created on December 18, 2005, are herein incorporated by reference.

10

Incorporation of Computer Listing

Appended hereto is a Computer Listing on duplicate CD-ROMs containing a folder labeled “hmmer-2.3.2” and two _.HMM files, incorporated herein by reference. Folder hmmer-2.3.2 contains the source code and other associated files for implementing the 15 HMMer software for Pfam analysis. The _.HMM files contains Pfam Hidden Markov Models. The Computer Listings were created on December 18, 2005.

Field Of The Invention

Disclosed herein are inventions in the field of plant genetics and developmental biology. More specifically, the inventions provide plant cells with recombinant DNA for providing an enhanced trait in a transgenic plant, plants comprising such cells, seed and 20 pollen derived from such plants, methods of making and using such cells, plants, seeds and pollen. In particular, the recombinant DNA of the inventions express transcription factors with homeobox domains.

Background Of The Invention

25 Transgenic plants with improved agronomic traits such as yield, environmental stress tolerance, pest resistance, herbicide tolerance, improved seed compositions, and the like are desired by both farmers and consumers. Although considerable efforts in plant breeding have provided significant gains in desired traits, the ability to introduce specific DNA into plant genomes provides further opportunities for generation of plants with improved and/or unique 30 traits. Merely introducing recombinant DNA into a plant genome doesn’t always produce a transgenic plant with an enhanced agronomic trait. Methods to select individual transgenic

2005319354 14 Aug 2012

events from a population are required to identify those transgenic events that are characterized by the enhanced agronomic trait.

Summary of the Invention

In a first aspect, the present invention provides a crop plant cell with stably integrated, recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein a plant comprising said plant cell exhibits increased yield, in particular, increased grain yield or increased yield of at least 0.51 bushels per acre, as compared to a control plant that does not have said recombinant DNA. Preferably the plant cell of the first aspect further comprises DNA expressing a protein that provides tolerance from exposure to an herbicide applied at levels that are lethal to a wild type of said plant cell, more preferably, said herbicide is a glyphosate, dicamba, or glufosinate compound.

In a second aspect, the present invention provides a method of conferring increased yield, in particular, increased grain yield or increased yield of at least 0.51 bushels per acre, on a crop plant comprising, expressing in a cell of said crop plant, a recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein a plant comprising said cell exhibits increased yield, in particular, increased grain yield or increased yield of at least 0.51 bushels per acre, as compared to a control plant that does not have said recombinant DNA.

In a third aspect, the present invention provides a method for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with an enhanced trait resulting from expression of stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein said enhanced trait is increased yield as compared to a control plant that does not have said recombinant DNA, said method for manufacturing said seed comprising:

- (a) screening a population of plants for said enhanced trait and said recombinant DNA, wherein individual plants in said population can exhibit said trait at a level less than, essentially the same as or greater than the level that said trait is exhibited in control plants which do not express the recombinant DNA,
- (b) selecting from said population one or more plants that exhibit the trait at a level greater than the level that said trait is exhibited in control plants,
- (c) verifying that said recombinant DNA is stably integrated in said selected plants,

BA.8733B

- (d) analyzing tissue of a selected plant to determine the production of a protein having the function of a protein encoded by nucleotides in a sequence of SEQ ID NO: 1; and
- (e) collecting seed from a selected plant.

In preferred embodiments of the third aspect, the method is characterized in that:

- (a) selecting is effected by identifying plants with said enhanced trait;
- (b) said seed is corn, soybean, cotton, canola, alfalfa, wheat or rice seed;
- (c) plants in said population further comprise DNA expressing a protein that provides tolerance to exposure to an herbicide applied at levels that are lethal to wild type plant cells, and wherein said selecting is effected by treating said population with said herbicide, preferably said herbicide is a glyphosate, dicamba, or glufosinate compound.

In preferred embodiments of the first, second and third aspects, the crop is a corn or canola plant.

In a fourth aspect, the present invention provides a method of producing hybrid corn seed comprising:

- (a) acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO: 5, wherein said hybrid corn seed provides a corn plant within increased yield as compared with a control plant that does not have said recombinant DNA;
- (b) producing corn plants from said hybrid corn seed, wherein a fraction of the plants produced from said hybrid corn seed is homozygous for said recombinant DNA, a fraction of the plants produced from said hybrid corn seed is hemizygous for said recombinant DNA, and a fraction of the plants produced from said hybrid corn seed has none of said recombinant DNA;
- (c) selecting corn plants which are homozygous and hemizygous for said recombinant DNA by treating with an herbicide;
- (d) collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce further progeny corn plants;
- (e) repeating steps (c) and (d) at least once to produce an inbred corn line;
- (f) crossing said inbred corn line with a second corn line to produce hybrid seed.

In preferred embodiments of the first, second, third and fourth aspects, said protein has an amino acid sequence of SEQ ID NO:5.

In a fifth aspect, the present invention provides a transgenic crop plant comprising a plurality of the plant cell of the first aspect of the invention, preferably the transgenic plant is homozygous for said recombinant DNA.

In a sixth aspect, the present invention provides a transgenic crop seed comprising a plurality of the plant cell of the first aspect of the invention, preferably the transgenic seed is from a corn, soybean, cotton, canola, alfalfa, wheat or rice plant, more preferably, non-natural, transgenic corn seed wherein said seed can produce corn plants that are resistant to disease from the *Mal de Rio Cuarto* virus or the *Puccina sorghi* fungus or both.

The present invention also provides a transgenic pollen grain comprising a haploid derivative of a plant cell of the first aspect of the invention, as well as the method of selecting a crop plant comprising cells of the first aspect of the invention wherein an immunoreactive antibody is used to detect the presence of said protein in seed or plant tissue. The present invention further provides anti-counterfeit milled crop seed having, as an indication of origin, a plant cell of the first aspect of the invention.

Thus, this invention employs recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic traits to the transgenic plants. Recombinant DNA in this invention is provided in a construct comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having domains of amino acids in a sequence that exceed the Pfam gathering cutoff for amino acid sequence alignment with a Pfam Homeobox protein domain family and a Pfam HALZ protein domain family. The Pfam gathering cutoff for the Homeobox protein domain family is -4 and the Pfam gathering cutoff for the HALZ protein domain family is 17. Other aspects of the invention are specifically directed to transgenic plant cells comprising the recombinant DNA of the invention, transgenic plants comprising a plurality of such plant cells, progeny transgenic seed and transgenic pollen from such plants. Such plant cells are selected from a population of transgenic plants regenerated from plant cells transformed with recombinant DNA and that express the protein by screening transgenic plants in the population for an enhanced trait as compared to control plants that do not have said recombinant DNA, where the enhanced trait is selected from group of enhanced traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil.

In yet another aspect of the invention the plant cells, plants, seeds and pollen further comprise DNA expressing a protein that provides tolerance from exposure to an herbicide applied at levels that are lethal to a wild type of said plant cell. Such tolerance is especially useful not only as an advantageous trait in such plants but is also useful in a selection step in the methods of the invention. In aspects of the invention the agent of such herbicide is a glyphosate, dicamba, or glufosinate compound.

Yet other aspects of the invention provide transgenic plants which are homozygous for the recombinant DNA and transgenic seed of the invention from corn, soybean, cotton, canola, alfalfa, wheat or rice plants. In other important embodiments for practice of various aspects of the invention in Argentina the recombinant DNA is provided in plant cells derived from corn lines that are and maintain resistance to the Mal de Rio Cuarto virus or the *Puccina sorghi* fungus or both.

next page is number 3

This invention also provides methods for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with an enhanced trait resulting from expression of stably-integrated, recombinant DNA for expressing a protein selected from the group consisting of SEQ ID NO: 5-8. More specifically the method comprises (a) screening 5 a population of plants for an enhanced trait and a recombinant DNA, where individual plants in the population can exhibit the trait at a level less than, essentially the same as or greater than the level that the trait is exhibited in control plants which do not express the recombinant DNA, (b) selecting from the population one or more plants that exhibit the trait at a level greater than the level that said trait is exhibited in control plants, (c) verifying that the 10 recombinant DNA is stably integrated in said selected plants, (d) analyzing tissue of a selected plant to determine the production of a protein having the function of a protein encoded by nucleotides in a sequence of one of SEQ ID NO:1-4; and (e) collecting seed from a selected plant. In one aspect of the invention the plants in the population further comprise DNA expressing a protein that provides tolerance to exposure to an herbicide applied at 15 levels that are lethal to wild type plant cells and the selecting is effected by treating the population with the herbicide, e.g. a glyphosate, dicamba, or glufosinate compound. In another aspect of the invention the plants are selected by identifying plants with the enhanced trait. The methods are especially useful for manufacturing corn, soybean, cotton, alfalfa, wheat or rice seed. In another aspect, the plants further comprise a DNA expressing a 20 second protein that provides plant cells with one or more enhanced agronomic traits.

Another aspect of the invention provides a method of producing hybrid corn seed comprising acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein selected from the group 25 consisting of SEQ ID NO: 5-8; wherein a progeny transgenic plant regenerated from a copy of said cell exhibits an enhanced trait as compared to a control plant without said DNA construct; and wherein said cell is selected from a population of cells transformed with said DNA construct by screening progeny plants of cells in said population for an enhanced trait as compared to said control plant, and wherein said enhanced trait is selected from the group 30 consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil resulting from expression of said protein. The methods further comprise producing corn plants from said hybrid corn seed, wherein a fraction of the plants produced from said hybrid corn seed is homozygous for said recombinant DNA, a fraction of the plants produced from said hybrid

corn seed is hemizygous for said recombinant DNA, and a fraction of the plants produced from said hybrid corn seed has none of said recombinant DNA; selecting corn plants which are homozygous and hemizygous for said recombinant DNA by treating with an herbicide; collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce 5 further progeny corn plants; repeating the selecting and collecting steps at least once to produce an inbred corn line; and crossing the inbred corn line with a second corn line to produce hybrid seed.

Another aspect of the invention provides a method of selecting a plant comprising plant cells of the invention by using an immunoreactive antibody to detect the presence of 10 protein expressed by recombinant DNA in seed or plant tissue. Yet another aspect of the invention provides anti-counterfeit milled seed having, as an indication of origin, a plant cell of this invention.

Still other aspects of this invention relate to transgenic plants with enhanced water use efficiency or enhanced nitrogen use efficiency. For instance, this invention provides methods 15 of growing a corn, cotton or soybean crop without irrigation water comprising planting seed having plant cells of the invention which are selected for enhanced water use efficiency. Alternatively methods comprise applying reduced irrigation water, e.g. providing up to 300 millimeters of ground water during the production of a corn crop. This invention also provides methods of growing a corn, cotton or soybean crop without added nitrogen fertilizer 20 comprising planting seed having plant cells of the invention which are selected for enhanced nitrogen use efficiency.

Detailed Description of The Invention

As used herein a “plant cell” means a plant cell that is transformed with stably-integrated, non-natural, recombinant DNA, e.g. by *Agrobacterium*-mediated transformation or by bombardment using microparticles coated with recombinant DNA or other means. A plant cell of this invention can be an originally-transformed plant cell that exists as a microorganism or as a progeny plant cell that is regenerated into differentiated tissue, e.g. into a transgenic plant with stably-integrated, non-natural recombinant DNA, or seed or pollen derived from a progeny transgenic plant.

As used herein a “transgenic plant” means a plant whose genome has been altered by the stable integration of recombinant DNA. A transgenic plant includes a plant regenerated 25 from an originally-transformed plant cell and progeny transgenic plants from later generations or crosses of a transformed plant.

As used herein “recombinant DNA” means DNA which has been a genetically engineered and constructed outside of a cell including DNA containing naturally occurring DNA or cDNA or synthetic DNA.

As used herein “consensus sequence” means an artificial sequence of amino acids in a 5 conserved region of an alignment of amino acid sequences of homologous proteins, e.g. as determined by a CLUSTALW alignment of amino acid sequence of homolog proteins.

As used herein “homolog” means a protein in a group of proteins that perform the same biological function, e.g. proteins that belong to the same Pfam protein family and that provide a common enhanced trait in transgenic plants of this invention. Homologs are 10 expressed by homologous genes. Homologous genes include naturally occurring alleles and artificially-created variants. Degeneracy of the genetic code provides the possibility to substitute at least one base of the protein encoding sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. Hence, a polynucleotide useful in the present invention may have any base 15 sequence that has been changed from SEQ ID NO:1 through SEQ ID NO:4 by substitution in accordance with degeneracy of the genetic code. Homologs are proteins that, when optimally aligned, have at least 60% identity, more preferably about 70% or higher, more preferably at least 80% and even more preferably at least 90% identity over the full length of a protein identified as being associated with imparting an enhanced trait when expressed in plant cells. 20 Homologs include proteins with an amino acid sequence that has at least 90% identity to a consensus amino acid sequence of proteins and homologs disclosed herein.

Homologs are identified by comparison of amino acid sequence, e.g. manually or by use of a computer-based tool using known homology-based search algorithms such as those commonly known and referred to as BLAST, FASTA, and Smith-Waterman. A local 25 sequence alignment program, e.g. BLAST, can be used to search a database of sequences to find similar sequences, and the summary Expectation value (E-value) used to measure the sequence base similarity. As a protein hit with the best E-value for a particular organism may not necessarily be an ortholog or the only ortholog, a reciprocal query is used in the present invention to filter hit sequences with significant E-values for ortholog identification. The 30 reciprocal query entails search of the significant hits against a database of amino acid sequences from the base organism that are similar to the sequence of the query protein. A hit is a likely ortholog, when the reciprocal query’s best hit is the query protein itself or a protein encoded by a duplicated gene after speciation. A further aspect of the invention comprises functional homolog proteins that differ in one or more amino acids from those of disclosed

protein as the result of conservative amino acid substitutions, for example substitutions are among: acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; basic (positively charged) amino acids such as arginine, histidine, and lysine; neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; neutral 5 nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; amino acids having aliphatic side chains such as glycine, alanine, valine, leucine, and isoleucine; amino acids having aliphatic-hydroxyl side chains such as serine and threonine; amino acids having amide-containing side chains such as asparagine and glutamine; amino acids having aromatic side chains such as phenylalanine, 10 tyrosine, and tryptophan; amino acids having basic side chains such as lysine, arginine, and histidine; amino acids having sulfur-containing side chains such as cysteine and methionine; naturally conservative amino acids such as valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the homologs encoded by DNA useful in the transgenic plants 15 of the invention are those proteins that differ from a disclosed protein as the result of deletion or insertion of one or more amino acids in a native sequence.

As used herein, "percent identity" means the extent to which two optimally aligned DNA or protein segments are invariant throughout a window of alignment of components, for example nucleotide sequence or amino acid sequence. An "identity fraction" for aligned 20 segments of a test sequence and a reference sequence is the number of identical components that are shared by sequences of the two aligned segments divided by the total number of sequence components in the reference segment over a window of alignment which is the smaller of the full test sequence or the full reference sequence. "Percent identity" ("%" identity") is the identity fraction times 100.

25 As used herein "Pfam" refers to a large collection of multiple sequence alignments and hidden Markov models covering many common protein families, e.g. Pfam version 18.0 (August 2005) contains alignments and models for 7973 protein families and is based on the Swissprot 47.0 and SP-TrEMBL 30.0 protein sequence databases. See S.R. Eddy, "Profile Hidden Markov Models", *Bioinformatics* 14:755-763, 1998. Pfam is currently maintained 30 and updated by a Pfam Consortium. The alignments represent some evolutionary conserved structure that has implications for the protein's function. Profile hidden Markov models (profile HMMs) built from the Pfam alignments are useful for automatically recognizing that a new protein belongs to an existing protein family even if the homology by alignment appears to be low. Once one DNA is identified as encoding a protein which imparts an

enhanced trait when expressed in transgenic plants, other DNA encoding proteins in the same protein family are identified by querying the amino acid sequence of protein encoded by candidate DNA against the Hidden Markov Model which characterizes the Pfam domain using HMMER software, a current version of which is provided in the appended computer listing. Candidate proteins meeting the gathering cutoff for the alignment of a particular Pfam are in the protein family and have cognate DNA that is useful in constructing recombinant DNA for the use in the plant cells of this invention. Hidden Markov Model databases for use with HMMER software in identifying DNA expressing protein in a common Pfam for recombinant DNA in the plant cells of this invention are also included in the appended computer listing. The HMMER software and Pfam databases are version 18.0 and were used to determine that the amino acid sequence of SEQ ID NO:5 is characterized by two Pfam domains, i.e. Homeobox domain and HALZ domain. The Homeobox domain was identified as comprising amino acid residues between positions 130 and 193 with a score of 70.1 exceeding the gathering cutoff of -4. The HALZ domain was identified as comprising amino acid residues between positions 194 and 238 with a score of 71.9 exceeding the gathering cutoff of 17.

The HMMER software and databases for identifying the Homeobox and HALZ domains are accessed at any Pfam website and can be provided by the applicant, e.g. in an appended computer listing.

As used herein "promoter" means regulatory DNA for initializing transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells whether or not its origin is a plant cell, e.g. it is well known that *Agrobacterium* promoters are functional in plant cells. Thus, plant promoters include promoter DNA obtained from plants, plant viruses and bacteria such as *Agrobacterium* and *Bradyrhizobium* bacteria. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, or seeds. Such promoters are referred to as "tissue preferred". Promoters that initiate transcription only in certain tissues are referred to as "tissue specific". A "cell type" specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An "inducible" or "repressible" promoter is a promoter which is under environmental control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions, or certain chemicals, or the presence of light. Tissue specific, tissue preferred, cell type specific, and inducible promoters constitute the class of "non-constitutive" promoters. A "constitutive" promoter is a promoter which is active under most conditions.

As used herein "operably linked" means the association of two or more DNA fragments in a DNA construct so that the function of one, e.g. protein-encoding DNA, is controlled by the other, e.g. a promoter.

As used herein "expressed" means produced, e.g. a protein is expressed in a plant cell 5 when its cognate DNA is transcribed to mRNA that is translated to the protein.

As used herein a "control plant" means a plant that does not contain the recombinant DNA that expressed a protein that impart an enhanced trait. A control plant is to identify and select a transgenic plant that has an enhance trait. A suitable control plant can be a non-transgenic plant of the parental line used to generate a transgenic plant, i.e. devoid of 10 recombinant DNA. A suitable control plant may in some cases be a progeny of a hemizygous transgenic plant line that is does not contain the recombinant DNA, known as a negative segregant.

As used herein an "enhanced trait" means a characteristic of a transgenic plant that includes, but is not limited to, an enhance agronomic trait characterized by enhanced plant 15 morphology, physiology, growth and development, yield, nutritional enhancement, disease or pest resistance, or environmental or chemical tolerance. In more specific aspects of this invention enhanced trait is selected from group of enhanced traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. In an important aspect of the 20 invention the enhanced trait is enhanced yield including increased yield under non-stress conditions and increased yield under environmental stress conditions. Stress conditions may include, for example, drought, shade, fungal disease, viral disease, bacterial disease, insect infestation, nematode infestation, cold temperature exposure, heat exposure, osmotic stress, reduced nitrogen nutrient availability, reduced phosphorus nutrient availability and high plant 25 density. "Yield" can be affected by many properties including without limitation, plant height, pod number, pod position on the plant, number of internodes, incidence of pod shatter, grain size, efficiency of nodulation and nitrogen fixation, efficiency of nutrient assimilation, resistance to biotic and abiotic stress, carbon assimilation, plant architecture, resistance to lodging, percent seed germination, seedling vigor, and juvenile traits. Yield can 30 also affected by efficiency of germination (including germination in stressed conditions), growth rate (including growth rate in stressed conditions), ear number, seed number per ear, seed size, composition of seed (starch, oil, protein) and characteristics of seed fill.

Increased yield of a transgenic plant of the present invention can be measured in a number of ways, including test weight, seed number per plant, seed weight, seed number per

unit area (i.e. seeds, or weight of seeds, per acre), bushels per acre (bu/a), tonnes per acre, tons per acre, kilo per hectare. For example, maize yield may be measured as production of shelled corn kernels per unit of production area, for example in bushels per acre or metric tons per hectare, often reported on a moisture adjusted basis, for example at 15.5 percent
5 moisture. Increased yield may result from improved utilization of key biochemical compounds, such as nitrogen, phosphorous and carbohydrate, or from improved responses to environmental stresses, such as cold, heat, drought, salt, and attack by pests or pathogens. Recombinant DNA used in this invention can also be used to provide plants having improved growth and development, and ultimately increased yield, as the result of modified expression
10 of plant growth regulators or modification of cell cycle or photosynthesis pathways. Also of interest is the generation of transgenic plants that demonstrate enhanced yield with respect to a seed component that may or may not correspond to an increase in overall plant yield. Such properties include enhancements in seed oil, seed molecules such as tocopherol, protein and starch, or oil particular oil components as may be manifest by an alteration in the ratios of
15 seed components.

A subset of the nucleic molecules of this invention includes fragments of the disclosed recombinant DNA consisting of oligonucleotides of at least 15, preferably at least 16 or 17, more preferably at least 18 or 19, and even more preferably at least 20 or more, consecutive nucleotides. Such oligonucleotides are fragments of the larger molecules having
20 a sequence selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:4, and find use, for example as probes and primers for detection of the polynucleotides of the present invention.

DNA constructs are assembled using methods well known to persons of ordinary skill in the art and typically comprise a promoter operably linked to DNA, the expression of which
25 provides the enhanced agronomic trait. Other construct components may include additional regulatory elements, such as 5' leaders and introns for enhancing transcription, 3' untranslated regions (such as polyadenylation signals and sites), DNA for transit or signal peptides.

Numerous promoters that are active in plant cells have been described in the
30 literature. These include promoters present in plant genomes as well as promoters from other sources, including nopaline synthase (NOS) promoter and octopine synthase (OCS) promoters carried on tumor-inducing plasmids of *Agrobacterium tumefaciens*, caulimovirus promoters such as the cauliflower mosaic virus. For instance, see U.S. Patents No. 5,858,742 and 5,322,938, which disclose versions of the constitutive promoter derived from cauliflower

mosaic virus (CaMV35S), U.S. Patent 5,641,876, which discloses a rice actin promoter, U.S. Patent Application Publication 2002/0192813A1, which discloses 5', 3' and intron elements useful in the design of effective plant expression vectors, U.S. patent application Serial No. 09/757,089, which discloses a maize chloroplast aldolase promoter, U.S. patent application Serial No. 08/706,946, which discloses a rice glutelin promoter, U.S. patent application Serial No.09/757,089, which discloses a maize aldolase (FDA) promoter, and U.S. patent application Serial No.60/310, 370, which discloses a maize nicotianamine synthase promoter, all of which are incorporated herein by reference. These and numerous other promoters that function in plant cells are known to those skilled in the art and available for use in recombinant polynucleotides of the present invention to provide for expression of desired genes in transgenic plant cells.

In other aspects of the invention, preferential expression in plant green tissues is desired. Promoters of interest for such uses include those from genes such as *Arabidopsis thaliana* ribulose-1,5-bisphosphate carboxylase (Rubisco) small subunit (Fischhoff *et al.* (1992) *Plant Mol Biol.* 20:81-93), aldolase and pyruvate orthophosphate dikinase (PPDK) (Taniguchi *et al.* (2000) *Plant Cell Physiol.* 41(1):42-48).

Furthermore, the promoters may be altered to contain multiple "enhancer sequences" to assist in elevating gene expression. Such enhancers are known in the art. By including an enhancer sequence with such constructs, the expression of the selected protein may be enhanced. These enhancers often are found 5' to the start of transcription in a promoter that functions in eukaryotic cells, but can often be inserted upstream (5') or downstream (3') to the coding sequence. In some instances, these 5' enhancing elements are introns. Particularly useful as enhancers are the 5' introns of the rice actin 1 (see US Patent 5,641,876) and rice actin 2 genes, the maize alcohol dehydrogenase gene intron, the maize heat shock protein 70 gene intron (U.S. Patent 5,593,874) and the maize shrunken 1 gene.

In other aspects of the invention, sufficient expression in plant seed tissues is desired to effect improvements in seed composition. Exemplary promoters for use for seed composition modification include promoters from seed genes such as napin (U.S. 5,420,034), maize L3 oleosin (U.S. 6,433,252), zein Z27 (Russell *et al.* (1997) *Transgenic Res.* 6(2):157-166), globulin 1 (Belanger *et al* (1991) *Genetics* 129:863-872), glutelin 1 (Russell (1997) *supra*), and peroxiredoxin antioxidant (Per1) (Stacy *et al.* (1996) *Plant Mol Biol.* 31(6):1205-1216).

Recombinant DNA constructs prepared in accordance with the invention will also generally include a 3' element that typically contains a polyadenylation signal and site. Well-

known 3' elements include those from *Agrobacterium tumefaciens* genes such as *nos* 3', *tml* 3', *tmr* 3', *tms* 3', *ocs* 3', *tr7* 3', for example disclosed in U.S. 6,090,627, incorporated herein by reference; 3' elements from plant genes such as wheat (*Triticum aestivum*) heat shock protein 17 (*Hsp17* 3'), a wheat ubiquitin gene, a wheat fructose-1,6-biphosphatase gene, a 5 rice glutelin gene a rice lactate dehydrogenase gene and a rice beta-tubulin gene, all of which are disclosed in U.S. published patent application 2002/0192813 A1, incorporated herein by reference; and the pea (*Pisum sativum*) ribulose biphosphate carboxylase gene (*rbs* 3'), and 3' elements from the genes within the host plant.

Constructs and vectors may also include a transit peptide for targeting of a gene target 10 to a plant organelle, particularly to a chloroplast, leucoplast or other plastid organelle. For descriptions of the use of chloroplast transit peptides see U.S. Patent 5, 188,642 and U.S. Patent No. 5,728,925, incorporated herein by reference. For description of the transit peptide region of an Arabidopsis EPSPS gene useful in the present invention, see Klee, H.J. *et al* (MGG (1987) 210:437-442).

15 Transgenic plants comprising or derived from plant cells of this invention transformed with recombinant DNA can be further enhanced with stacked traits, e.g. a crop plant having an enhanced trait resulting from expression of DNA disclosed herein in combination with herbicide and/or pest resistance traits. For example, genes of the current invention can be stacked with other traits of agronomic interest, such as a trait providing herbicide resistance, 20 or insect resistance, such as using a gene from *Bacillus thuringensis* to provide resistance against lepidopteran, coliopteron, homopteran, hemipteran, and other insects. Herbicides for which transgenic plant tolerance has been demonstrated and the method of the present invention can be applied include, but are not limited to, glyphosate, dicamba, glufosinate, sulfonylurea, bromoxynil and norflurazon herbicides. Polynucleotide molecules encoding 25 proteins involved in herbicide tolerance are well-known in the art and include, but are not limited to, a polynucleotide molecule encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) disclosed in U.S. Patent 5,094,945; 5,627,061; 5,633,435 and 6,040,497 for imparting glyphosate tolerance; polynucleotide molecules encoding a glyphosate oxidoreductase (GOX) disclosed in U.S. Patent 5,463,175 and a glyphosate-N-acetyl 30 transferase (GAT) disclosed in U.S. Patent Application publication 2003/0083480 A1 also for imparting glyphosate tolerance; dicamba monooxygenase disclosed in U.S. Patent Application publication 2003/0135879 A1 for imparting dicamba tolerance; a polynucleotide molecule encoding bromoxynil nitrilase (*Bxn*) disclosed in U.S. Patent 4,810,648 for imparting bromoxynil tolerance; a polynucleotide molecule encoding phytoene desaturase

(*crtI*) described in Misawa et al, (1993) *Plant J.* 4:833-840 and Misawa et al, (1994) *Plant J.* 6:481-489 for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, aka ALS) described in Sathasiivan *et al.* (1990) *Nucl. Acids Res.* 18:2188-2193 for imparting tolerance to sulfonylurea herbicides; polynucleotide molecules known as 5 *bar* genes disclosed in DeBlock, *et al.* (1987) *EMBO J.* 6:2513-2519 for imparting glufosinate and bialaphos tolerance; polynucleotide molecules disclosed in U.S. Patent Application Publication 2003/010609 A1 for imparting N-amino methyl phosphonic acid tolerance; polynucleotide molecules disclosed in U.S. Patent 6,107,549 for imparting pyridine herbicide resistance; molecules and methods for imparting tolerance to multiple 10 herbicides such as glyphosate, atrazine, ALS inhibitors, isoxoflutole and glufosinate herbicides are disclosed in U.S. Patent 6,376,754 and U.S. Patent Application Publication 2002/0112260, all of said U.S. Patents and Patent Application Publications are incorporated herein by reference. Molecules and methods for imparting insect/nematode/virus resistance are disclosed in U.S. Patents 5,250,515; 5,880,275; 6,506,599; 5,986,175 and U.S. Patent 15 Application Publication 2003/0150017 A1, all of which are incorporated herein by reference.

In particular embodiments, the inventors contemplate the use of antibodies, either monoclonal or polyclonal which bind to the proteins disclosed herein. Means for preparing and characterizing antibodies are well known in the art (See, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference). The 20 methods for generating monoclonal antibodies (mAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogenic composition in accordance with the present invention and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically the animal used for production 25 of anti-antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a 30 peptide or polypeptide immunogen to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include using glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and

bis-biazotized benzidine.

As is also well known in the art, the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed *Mycobacterium tuberculosis*), incomplete Freund's adjuvants and aluminum hydroxide adjuvant.

The amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, 10 intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster, injection may also be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and 15 stored, and/or the animal can be used to generate mAbs.

mAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified antifungal protein, polypeptide or peptide. The 20 immunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep, or frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable 25 fusions.

Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the mAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former 30 because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5×10^7 to 2×10^8

lymphocytes.

The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures 5 preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).

Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, 1986, pp. 65-66; Campbell, 1984, pp. 75-83). For example, where the 10 immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.

One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-15 NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.

Methods for generating hybrids of antibody-producing spleen or lymph node cells and 20 myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 ratio, though the ratio may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described (Kohler and Milstein, 1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, (Gefter et al., 1977). The use of 25 electrically induced fusion methods is also appropriate (Goding, 1986, pp. 71-74).

Fusion procedures usually produce viable hybrids at low frequencies, about 1×10^{-6} to 30 1×10^{-8} . However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium. The selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a

source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B-cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B-cells.

This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.

The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide mAbs. The cell lines may be exploited for mAb production in two basic ways. A sample of the hybridoma can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion.

The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide mAbs in high concentration. The individual cell lines could also be cultured in vitro, where the mAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations. mAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.

Plant Cell Transformation Methods

Numerous methods for transforming plant cells with recombinant DNA are known in the art and may be used in the present invention. Two commonly used methods for plant transformation are *Agrobacterium*-mediated transformation and microprojectile bombardment. Microprojectile bombardment methods are illustrated in U.S. Patents 5,015,580 (soybean); 5,550,318 (corn); 5,538,880 (corn); 5,914,451 (soybean); 6,160,208 (corn); 6,399,861 (corn) and 6,153,812 (wheat) and *Agrobacterium*-mediated transformation is described in U.S. Patents 5,159,135 (cotton); 5,824,877 (soybean); 5,591,616 (corn); and

6,384,301 (soybean), all of which are incorporated herein by reference. For *Agrobacterium tumefaciens* based plant transformation system, additional elements present on transformation constructs will include T-DNA left and right border sequences to facilitate incorporation of the recombinant polynucleotide into the plant genome.

5 In general it is useful to introduce recombinant DNA randomly, i.e. at a non-specific location, in the genome of a target plant line. In special cases it may be useful to target recombinant DNA insertion in order to achieve site-specific integration, for example to replace an existing gene in the genome, to use an existing promoter in the plant genome, or to insert a recombinant polynucleotide at a predetermined site known to be active for gene 10 expression. Several site specific recombination systems exist which are known to function implants include cre-lox as disclosed in U.S. Patent 4,959,317 and FLP-FRT as disclosed in U.S. Patent 5,527,695, both incorporated herein by reference.

Transformation methods of this invention are preferably practiced in tissue culture on media and in a controlled environment. "Media" refers to the numerous nutrient mixtures 15 that are used to grow cells *in vitro*, that is, outside of the intact living organism. Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical 20 meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants of this invention, for example various media and recipient target cells, transformation of immature embryo cells and subsequent regeneration of fertile transgenic plants are disclosed in U.S. Patents 6,194,636 and 6,232,526, which are incorporated herein 25 by reference.

The seeds of transgenic plants can be harvested from fertile transgenic plants and be used to grow progeny generations of transformed plants of this invention including hybrid plants line for selection of plants having an enhanced trait. In addition to direct transformation of a plant with a recombinant DNA, transgenic plants can be prepared by 30 crossing a first plant having a recombinant DNA with a second plant lacking the DNA. For example, recombinant DNA can be introduced into first plant line that is amenable to transformation to produce a transgenic plant which can be crossed with a second plant line to introgress the recombinant DNA into the second plant line. A transgenic plant with recombinant DNA providing an enhanced trait, e.g. enhanced yield, can be crossed with

transgenic plant line having other recombinant DNA that confers another trait, for example herbicide resistance or pest resistance, to produce progeny plants having recombinant DNA that confers both traits. Typically, in such breeding for combining traits the transgenic plant donating the additional trait is a male line and the transgenic plant carrying the base traits is

5 the female line. The progeny of this cross will segregate such that some of the plants will carry the DNA for both parental traits and some will carry DNA for one parental trait; such plants can be identified by markers associated with parental recombinant DNA, e.g. marker identification by analysis for recombinant DNA or, in the case where a selectable marker is linked to the recombinant, by application of the selecting agent such as a herbicide for use

10 with a herbicide tolerance marker, or by selection for the enhanced trait. Progeny plants carrying DNA for both parental traits can be crossed back into the female parent line multiple times, for example usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as one original transgenic parental line but for the recombinant DNA of the other transgenic parental line

15 In the practice of transformation DNA is typically introduced into only a small percentage of target plant cells in any one transformation experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a transgenic DNA construct into their genomes. Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or herbicide. Any of the herbicides to which plants of this invention may be resistant are useful agents for selective markers. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene is integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA.

20 Commonly used selective marker genes include those conferring resistance to antibiotics such as kanamycin and paromomycin (*nptII*), hygromycin B (*aph IV*) and gentamycin (*aac3* and *aacC4*) or resistance to herbicides such as glufosinate (*bar* or *pat*) and glyphosate (*aroA* or EPSPS). Examples of such selectable are illustrated in U.S. Patents 5,550,318; 5,633,435; 5,780,708 and 6,118,047, all of which are incorporated herein by reference. Selectable

25 markers which provide an ability to visually identify transformants can also be employed, for example, a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a *beta*-glucuronidase or *uidA* gene (GUS) for which various chromogenic substrates are known.

Plant cells that survive exposure to the selective agent, or plant cells that have been scored positive in a screening assay, may be cultured in regeneration media and allowed to mature into plants. Developing plantlets regenerated from transformed plant cells can be transferred to plant growth mix, and hardened off, for example, in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO₂, and 25-250 microeinsteins m⁻² s⁻¹ of light, prior to transfer to a greenhouse or growth chamber for maturation. Plants are regenerated from about 6 weeks to 10 months after a transformant is identified, depending on the initial tissue. Plants may be pollinated using conventional plant breeding methods known to those of skill in the art and seed produced, for example self-pollination is commonly used with transgenic corn. The regenerated transformed plant or its progeny seed or plants can be tested for expression of the recombinant DNA and selected for the presence of enhanced agronomic trait.

Transgenic Plants and Seeds

Transgenic plants derived from the plant cells of this invention are grown to generate transgenic plants having an enhanced trait as compared to a control plant and produce transgenic seed and haploid pollen of this invention. Such plants with enhanced traits are identified by selection of transformed plants or progeny seed for the enhanced trait. For efficiency a selection method is designed to evaluate multiple transgenic plants (events) comprising the recombinant DNA, for example multiple plants from 2 to 20 or more transgenic events. Transgenic plants grown from transgenic seed provided herein demonstrate improved agronomic traits that contribute to increased yield or other trait that provides increased plant value, including, for example, improved seed quality. Of particular interest are plants having enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil.

Table 1 provides a list of protein encoding DNA (“genes”) that are useful as recombinant DNA for production of transgenic plants with enhanced agronomic trait, the elements of Table 1 are described by reference to:

“PEP SEQ” which identifies an amino acid sequence from SEQ ID NO:5-8.

“NUC SEQ” which identifies a DNA sequence from SEQ ID NO:1- 4.

“Base Vector” which identifies a base plasmid used for transformation of the recombinant DNA.

“PROTEIN NAME” which is a common name for protein encoded by the recombinant DNA.

“Plasmid ID” which identifies an arbitrary name for the plant transformation plasmid comprising recombinant DNA for expressing the recombinant DNA in plant cells.

Table 1

PEP SEQ ID NO	NUC SEQ ID NO	Base Vector	PROTEIN NAME	Plasmid ID
5	1	pMON65154	Arabidopsis G1543	pMON68392
5	1		Arabidopsis G1543	pMON74775
5	1	pMON74537	Arabidopsis G1543	pMON83062
6	2	pMON81244	Corn G1543-like 1	pMON82686
6	2	pMON74537	Corn G1543-like 1	pMON83049
7	3	pMON81244	Soy G1543-like 1	pMON82688
7	3	pMON81244	Soy G1543-like 1	pMON84131
7	3	pMON74537	Soy G1543-like 1	pMON83311
8	4	pMON74537	rice Hox3 - AAD37696	pMON73829

Screening methods for transgenic plants with enhanced agronomic trait

Many transgenic events which survive to fertile transgenic plants that produce seeds and

5 progeny plants will not exhibit an enhanced agronomic trait. Screening is necessary to identify the transgenic plant of this invention. Transgenic plants having enhanced agronomic traits are identified from populations of plants transformed as described herein by evaluating the trait in a variety of assays to detect an enhanced agronomic trait. These assays also may take many forms, including but not limited to, analyses to detect changes in the chemical
10 composition, biomass, physiological properties, morphology of the plant. Changes in chemical compositions such as nutritional composition of grain can be detected by analysis of the seed composition and content of protein, free amino acids, oil, free fatty acids, starch or tocopherols. Changes in biomass characteristics can be made on greenhouse or field grown plants and can include plant height, stem diameter, root and shoot dry weights; and, for corn
15 plants, ear length and diameter. Changes in physiological properties can be identified by evaluating responses to stress conditions, *e.g.*, assays using imposed stress conditions such as water deficit, nitrogen deficiency, cold growing conditions, pathogen or insect attack or light deficiency, or increased plant density. Changes in morphology can be measured by visual observation of tendency of a transformed plant with an enhanced agronomic trait to also
20 appear to be a normal plant as compared to changes toward bushy, taller, thicker, narrower leaves, striped leaves, knotted trait, chlorosis, albino, anthocyanin production, or altered

tassels, ears or roots. Other screening properties include days to pollen shed, days to silking, leaf extension rate, chlorophyll content, leaf temperature, stand, seedling vigor, internode length, plant height, leaf number, leaf area, tillering, brace roots, stay green, stalk lodging, root lodging, plant health, barreness/prolificacy, green snap, and pest resistance. In addition, 5 phenotypic characteristics of harvested grain may be evaluated, including number of kernels per row on the ear, number of rows of kernels on the ear, kernel abortion, kernel weight, kernel size, kernel density and physical grain quality.

Although preferred seeds for transgenic plants with enhanced agronomic traits of this invention are corn and soybean plants, other seeds are for cotton, canola, wheat, sunflower, 10 sorghum, alfalfa, barley, millet, rice, tobacco, fruit and vegetable crops, and turfgrass.

Screening for Enhanced Nitrogen Use Efficiency

One preferred enhanced agronomic trait in transgenic plants of this invention is enhanced nitrogen use efficiency as compared to control plants. Higher nitrogen soil applications increase seed protein and starch accumulation, and lead to larger seed weight and larger kernel number per ear. Recent improvements in elite high yielding corn hybrid genotypes 15 include the ability to utilize nitrogen efficiently. Genes causing the enhanced nitrogen use efficiency in crop plants are especially useful, *e.g.*, for improving yield. Enhanced nitrogen use efficiency can be assessed by measuring changes in plant growth such as leaf area production, shoot biomass, chlorophyll content in plants grown in nitrogen limiting conditions and/or nitrogen sufficient conditions. It is useful to conduct a first screen in 20 nitrogen limiting conditions and confirm replicate transgenic events in both nitrogen limiting and nitrogen sufficient conditions. Table 2 shows the amount of nutrients in the nutrient solution for nitrogen limiting conditions (low nitrogen growth condition) and nitrogen sufficient conditions (high nitrogen growth condition) useful for nitrogen use efficiency screening. For example in a greenhouse screen pots of transgenic plants and control plants are 25 treated with 100 ml of nutrient solution three times a week on alternate days starting at 8 and 10 days after planting for high nitrogen and low nitrogen screening, respectively.

Table 2

Nutrient Stock	2mM NH ₄ NO ₃ (low Nitrogen growth condition)	20mM NH ₄ NO ₃ (high Nitrogen growth condition)
	mL/L	mL/L
1 M NH ₄ NO ₃	2	20
1 M KH ₂ PO ₄	0.5	0.5
1 M MgSO ₄ .7H ₂ O	2	2
1 M CaCl ₂	2.5	2.5
1 M K ₂ SO ₄	1	1

Note: Adjust pH to 5.6 with HCl or KOH

After 28 days of plant growth for low nitrogen screening and 23 days for high nitrogen
5 screening, measurements are taken for: total shoot fresh mass, leaf chlorophyll, leaf area, leaf
fresh mass and leaf dry mass.

Screening for Increased Yield

Many transgenic plants of this invention exhibit enhanced yield as compared to a control
plant. Enhanced yield can result from enhanced seed sink potential, i.e. the number and size
10 of endosperm cells or kernels and/or enhanced sink strength, i.e. the rate of starch
biosynthesis. Sink potential can be established very early during kernel development, as
endosperm cell number and cell size are determined within the first few days after
pollination.

Much of the increase in corn yield of the past several decades has resulted from an
15 increase in planting density. During that period, corn yield has been increasing at a rate of
2.1 bushels/acre/year, but the planting density has increased at a rate of 250 plants/acre/year.
A characteristic of modern hybrid corn is the ability of these varieties to be planted at high
density. Many studies have shown that a higher than current planting density should result in
more biomass production, but current germplasm does not perform well at these higher
20 densities. One approach to increasing yield is to increase harvest index (HI), the proportion
of biomass that is allocated to the kernel compared to total biomass, in high density plantings.

Effective yield screening of transgenic corn uses hybrid progeny of the transgenic
event over multiple locations with plants grown under optimal production management
practices, and maximum pest control. A useful target for enhanced yield is a 5% to 10%

increase in yield as compared to yield produced by plants grown from seed for a control plant. Useful screening in multiple and diverse geographic locations, *e.g.*, up to 16 or more locations, over one or more plating seasons, *e.g.*, at least two planting seasons to statistically distinguish yield improvement from natural environmental effects. It is to plant multiple

5 transgenic plants, positive and negative control plants, and pollinator plants in standard plots, *e.g.*, 2 row plots, 20 feet long by 5 feet wide with 30 inches distance between rows and a 3 foot alley between ranges. Transgenic events can be grouped by recombinant DNA constructs with groups randomly placed in the field. A pollinator plot of a high quality corn line is planted for every two plots to allow open pollination when using male sterile transgenic

10 events. A useful planting density is about 30,000 plants/acre.

Surrogate indicators for screening for yield improvement include source capacity (biomass), source output (sucrose and photosynthesis), sink components (kernel size, ear size, starch in the seed), development (light response, height, density tolerance), maturity, early flowering trait and physiological responses to high density planting, *e.g.*, at 45,000 plants per

15 acre, *e.g.*, as illustrated in Table 3 and 4. When screening for yield improvement a useful statistical measurement approach comprises three components, *i.e.* modeling spatial autocorrelation of the test field separately for each location, adjusting traits of recombinant DNA events for spatial dependence for each location, and conducting an across location analysis. The first step in modeling spatial autocorrelation is estimating the covariance

20 parameters of the semivariogram. A spherical covariance model is assumed to model the spatial autocorrelation. Because of the size and nature of the trial, it is likely that the spatial autocorrelation may change. Therefore, anisotropy is also assumed along with spherical covariance structure.

Table 3

Timing	Evaluation	Description	Comments
V2-3	Early stand	Can be taken any time after germination and prior to removal of any plants.	
Pollen shed	GDU to 50% shed	GDU to 50% plants shedding 50% tassel.	
Silking	GDU to 50% silk	GDU to 50% plants showing silks.	
Maturity	Plant height	Height from soil surface to flag leaf attachment (inches).	10 plants per plot - Yield team assistance
Maturity	Ear height	Height from soil surface to primary ear attachment node.	10 plants per plot - Yield team assistance
Maturity	Leaves above ear	visual scores: erect, size, rolling	
Maturity	Tassel size	Visual scores +/- vs. WT	
Pre-Harvest	Final Stand	Final stand count prior to harvest, exclude tillers	
Pre-Harvest	Stalk lodging	No. of stalks broken below the primary ear attachment. Exclude leaning tillers	
Pre-Harvest	Root lodging	No. of stalks leaning $>45^\circ$ angle from perpendicular.	
Pre-Harvest	Stay green	After physiological maturity and when differences among genotypes are evident: Scale 1 (90-100% tissue green) - 9 (0-19% tissue green).	
Harvest	Grain Yield	Grain yield/plot (Shell weight)	

The following set of equations describes the statistical form of the anisotropic spherical covariance model.

$$C(h; \theta) = \nu I(h = 0) + \sigma^2 \left(1 - \frac{3}{2}h + \frac{1}{2}h^3 \right) I(h < 1)$$

5

where $I(\bullet)$ is the indicator function $h = \sqrt{\dot{x}^2 + \dot{y}^2}$

and

$$\begin{aligned}\dot{x} &= [\cos(\rho\pi/180)(x_1 - x_2) - \sin(\rho\pi/180)(y_1 - y_2)]/\omega_x \\ \dot{y} &= [\sin(\rho\pi/180)(x_1 - x_2) + \cos(\rho\pi/180)(y_1 - y_2)]/\omega_y\end{aligned}$$

10 where $\mathbf{s}_1 = (x_1, y_1)$ are the spatial coordinates of one location and $\mathbf{s}_2 = (x_2, y_2)$ are the spatial coordinates of the second location. There are 5 covariance parameters,

$$\theta = (\nu, \sigma^2, \rho, \omega_n, \omega_j)$$

where ν is the nugget effect, σ^2 is the partial sill, ρ is a rotation in degrees clockwise from north, ω_n is a scaling parameter for the minor axis and ω_j is a scaling parameter for the major axis of an anisotropic ellipse of equal covariance. The five covariance parameters that define the spatial trend will then be estimated by using data from heavily replicated pollinator plots via restricted maximum likelihood approach. In a multi-location field trial, spatial trend are modeled separately for each location.

20 After obtaining the variance parameters of the model, a variance-covariance structure is generated for the data set to be analyzed. This variance-covariance structure contains spatial information required to adjust yield data for spatial dependence. In this case, a nested model that best represents the treatment and experimental design of the study is used along with the variance-covariance structure to adjust the yield data. During this process the nursery or the seed batch effects can also be modeled and estimated to adjust the yields for 25 any yield parity caused by seed batch differences.

After spatially adjusted data from different locations are generated, all adjusted data is combined and analyzed assuming locations as replications. In this analysis, intra and inter-location variances are combined to estimate the standard error of yield from transgenic plants and control plants. Relative mean comparisons are used to indicate statistically significant 30 yield improvements.

Screening for Water Use Efficiency

An aspect of this invention provides transgenic plants with enhanced yield resulting from enhanced water use efficiency and/or drought tolerance. Described in this example is a high-throughput method for greenhouse selection of transgenic corn plants to wild type corn

5 plants (tested as inbreds or hybrids) for water use efficiency. This selection process imposes 3 drought/re-water cycles on plants over a total period of 15 days after an initial stress free growth period of 11 days. Each cycle consists of 5 days, with no water being applied for the first four days and a water quenching on the 5th day of the cycle. The primary phenotypes analyzed by the selection method are the changes in plant growth rate as determined by

10 height and biomass during a vegetative drought treatment. The hydration status of the shoot tissues following the drought is also measured. The plant heights are measured at three time points. The first is taken just prior to the onset drought when the plant is 11 days old, which is the shoot initial height (SIH). The plant height is also measured halfway throughout the drought/re-water regimen, on day 18 after planting, to give rise to the shoot mid-drought

15 height (SMH). Upon the completion of the final drought cycle on day 26 after planting, the shoot portion of the plant is harvested and measured for a final height, which is the shoot wilt height (SWH) and also measured for shoot wilted biomass (SWM). The shoot is placed in water at 40 degree Celsius in the dark. Three days later, the shoot is weighted to give rise to the shoot turgid weight (STM). After drying in an oven for four days, the shoots are weighted

20 for shoot dry biomass (SDM). The shoot average height (SAH) is the mean plant height across the 3 height measurements. The procedure described above may be adjusted for +/- ~ one day for each step given the situation.

To correct for slight differences between plants, a size corrected growth value is derived from SIH and SWH. This is the Relative Growth Rate (RGR). Relative Growth Rate

25 (RGR) is calculated for each shoot using the formula $[RGR\% = (SWH - SIH) / ((SWH + SIH) / 2) * 100]$. Relative water content (RWC) is a measurement of how much (%) of the plant was water at harvest. Water Content (RWC) is calculated for each shoot using the formula $[RWC\% = (SWM - SDM) / (STM - SDM) * 100]$. Fully watered corn plants of this age run around 98% RWC.

Screening for Growth Under Cold Stress

An aspect of this invention provides transgenic plants with enhanced growth under cold stress, *e.g.*, in an early seedling growth assay. In an early seedling growth assay 3 sets of seeds are assayed. The first set is a group of transgenic seeds from transgenic plants; the second set is negative segregants of the transgenic seed; and the third seed set is seed from

two cold tolerant and two cold sensitive wild-type controls. All seeds are treated with a fungicide as indicated above. Seeds are grown in germination paper (12 inch x 18 inch pieces of Anchor Paper #SD7606), wetted in a solution of 0.5% KNO₃ and 0.1% Thiram. For each paper fifteen seeds are placed on the line evenly spaced such that the radical s will grow 5 toward the same edge. The wet paper is rolled up evenly and tight enough to hold the seeds in place. The roll is secured into place with two large paper clips, one at the top and one at the bottom. The rolls are incubated in a growth chamber at 23 degree C for three days in a randomized complete block design within an appropriate container. The chamber is set for 65% humidity with no light cycle. For the cold stress treatment the rolls are then incubated in 10 a growth chamber at 12 degree C for fourteen days. The chamber is set for 65% humidity with no light cycle. For the warm treatment the rolls are incubated at 23 degree C for an additional two days. After the treatment the germination papers are unrolled and the seeds 15 that did not germinate are discarded. The lengths of the radicle and coleoptile for each seed are measured. A coleoptile sample is collected from six individual kernels of each entry for confirming the expression of recombinant DNA. Statistical differences in the length of radical and shoot during pre-shock and cold shock are used for an estimation of the effect of the cold treatment on corn plants. The analysis is conducted independently for the warm and cold treatments.

Screen for enhanced oil, starch, or protein levels in plant seeds

20 Oil levels of plant seeds are determined by low-resolution .sup.1H nuclear magnetic resonance (NMR) (Tiwari *et al.*, JAOCS, 51:104-109 (1974); or Rubel, JAOCS, 71:1057-1062 (1994)). Alternatively, oil, starch and protein levels in seeds are determined by near infrared spectroscopy (NIR).

25 The following examples illustrate aspects of the invention.

Example 1

This example illustrates the construction of plasmids for transferring recombinant DNA into plant cells which can be regenerated into transgenic plants of this invention. Primers for PCR amplification of protein coding nucleotides of recombinant DNA were 30 designed at or near the start and stop codons of the coding sequence, in order to eliminate most of the 5' and 3' untranslated regions. Each recombinant DNA coding for a protein identified in Table 1 was amplified by PCR prior to insertion into the insertion site of one of the base vectors as referenced in Table 1.

A base plant transformation vector pMON65154 was fabricated for use in preparing recombinant DNA for transformation into corn tissue using GATEWAY™ Destination plant expression vector systems (available from Invitrogen Life Technologies, Carlsbad, CA).

With reference to the elements described in Table 5 below and SEQ ID NO:9, pMON65154

5 comprises a selectable marker expression cassette and a template recombinant DNA expression cassette. The marker expression cassette comprises a CaMV 35S promoter operably linked to a gene encoding neomycin phosphotransferase II (*nptII*) followed by a 3' region of an *Agrobacterium tumefaciens* nopaline synthase gene (*nos*). The template recombinant DNA expression cassette is positioned tail to tail with the marker expression cassette. The template recombinant DNA expression cassette comprises 5' regulatory DNA including a rice actin 1 promoter, exon and intron, followed by a GATEWAY™ insertion site for recombinant DNA, followed by a 3' region of a potato proteinase inhibitor II (*pinII*) gene. Once recombinant DNA has been inserted into the insertion site, the plasmid is useful for 10 plant transformation, for example by microprojectile bombardment.

15

Table 5

FUNCTION	ELEMENT	REFERENCE
Plant gene of interest expression cassette	Rice actin 1 promoter	U.S. Patent 5,641,876
	Rice actin 1 exon 1, intron 1 enhancer	U.S. Patent 5,641,876
Gene of interest insertion site	<i>AttR1</i>	GATEWAY™ Cloning Technology Instruction Manual
	<i>CmR</i> gene	GATEWAY™ Cloning Technology Instruction Manual
	<i>ccdB</i> , <i>ccdB</i> genes	GATEWAY™ Cloning Technology Instruction Manual
	<i>attR2</i>	GATEWAY™ Cloning Technology Instruction Manual
Plant gene of interest expression cassette	Potato <i>pinII</i> 3' region	An <i>et al.</i> (1989) Plant Cell 1:115-122
Plant selectable marker expression cassette	CaMV 35S promoter	U.S. Patent 5,858,742
	<i>nptII</i> selectable marker	U.S. Patent 5,858,742
	<i>nos</i> 3' region	U.S. Patent 5,858,742
Maintenance in <i>E. coli</i>	<i>ColE1</i> origin of replication	
	<i>F1</i> origin of replication	
	<i>Bla</i> ampicillin resistance	

similar base vector plasmid pMON72472 (SEQ ID NO: 10) was constructed for use in *Agrobacterium*-mediated methods of plant transformation similar to pMON65154 except (a) 5 the 5' regulatory DNA in the template recombinant DNA expression cassette was a rice actin promoter and a rice actin intron, (b) left and right T-DNA border sequences from *Agrobacterium* are added with the right border sequence is located 5' to the rice actin 1 promoter and the left border sequence is located 3' to the 35S promoter and (c) DNA is added to facilitate replication of the plasmid in both *E. coli* and *Agrobacterium tumefaciens*. The 10 DNA added to the plasmid outside of the T-DNA border sequences includes an *oriV* wide host range origin of DNA replication functional in *Agrobacterium*, a pBR322 origin of replication functional in *E. coli*, and a spectinomycin/streptomycin resistance gene for selection in both *E. coli* and *Agrobacterium*. pMON74775 is constructed in a base vector essentially the same as pMON72472.

15 Other base vectors similar to those described above were also constructed including pMON81244 containing a pyruvate orthophosphate dikinase (PPDK) promoter (SEQ ID NO: 11) and a maize DnaK intron (SEQ ID NO: 12) as an enhancer.

Plant expression vector for soybean transformation

20 Plasmids for use in transformation of soybean were also prepared. Elements of an exemplary common expression vector plasmid pMON74532 (SEQ ID NO:13) are shown in Table 7 below.

Table 7

Function	Element	Reference
Agro transformation	B-ARGtu.right border	Depicker, A. et al (1982) Mol Appl Genet 1:561-573
Antibiotic resistance	CR-Ec.aadA-SPC/STR	
Repressor of primers from the ColE1 plasmid	CR-Ec.rop	
Origin of replication	OR-Ec.oriV-RK2	
Agro transformation	B-ARGtu.left border	Barker, R.F. et al (1983) Plant Mol Biol 2:335-350
Plant selectable marker expression cassette	Promoter with intron and 5'UTR of Arabidopsis act 7 gene (AtAct7)	McDowell et al. (1996) Plant Physiol. 111:699-711.

	5' UTR of <i>Arabidopsis</i> act 7 gene	
	Intron in 5'UTR of AtAct7	
	Transit peptide region of <i>Arabidopsis</i> EPSPS	Klee, H.J. <i>et al</i> (1987) MGG 210:437-442
	Synthetic CP4 coding region with dicot preferred codon usage	
	A 3' UTR of the nopaline synthase gene of <i>Agrobacterium tumefaciens</i> Ti plasmid	U.S. Patent 5,858,742
Plant gene of interest expression cassette	Promoter for 35S RNA from CaMV containing a duplication of the -90 to -350 region	U.S. Patent 5,322,938
	Gene of interest insertion site	
	Cotton E6 3' end	GenBank accession U30508

A plasmid vector similar to that described above for soy transformation was constructed for use in *Agrobacterium*-mediated soybean transformation, pMON74537, which 5 contains the *Arabidopsis thaliana* ribulose-1,5-bisphosphate carboxylase (Rubisco) small subunit promoter (SEQ ID NO: 14)

Protein coding segments of recombinant DNA are amplified by PCR prior to insertion into vectors at the insertion site. Primers for PCR amplification are designed at or near the start and stop codons of the coding sequence, in order to eliminate most of the 5' and 3' 10 untranslated regions.

Example 2

This example illustrates plant transformation useful in producing the transgenic corn plants of this invention. Corn plants of a readily transformable line are grown in the 15 greenhouse and ears harvested when the embryos are 1.5 to 2.0 mm in length. Ears are surface sterilized by spraying or soaking the ears in 80% ethanol, followed by air drying. Immature embryos are isolated from individual kernels on surface sterilized ears. Prior to inoculation of maize cells, *Agrobacterium* cells are grown overnight at room temperature. Immature maize embryos are inoculated with *Agrobacterium* shortly after excision, and

incubated at room temperature with *Agrobacterium* for 5-20 minutes. Immature embryos are then co-cultured with *Agrobacterium* for 1 to 3 days at 23°C in the dark. Co-cultured embryos are transferred to selection media and cultured for approximately two weeks to allow embryogenic callus to develop. Embryogenic callus is transferred to culture medium 5 containing 100 mg/L paromomycin and subcultured at about two week intervals.

Transformants are recovered 6 to 8 weeks after initiation of selection.

Plasmid vectors are prepared cloning DNA identified in Table 1 in the identified base for use in corn transformation to produce transgenic corn plants and seed.

For *Agrobacterium*-mediated transformation of maize callus, immature embryos are 10 cultured for approximately 8-21 days after excision to allow callus to develop. Callus is then incubated for about 30 minutes at room temperature with the *Agrobacterium* suspension, followed by removal of the liquid by aspiration. The callus and *Agrobacterium* are co-cultured without selection for 3-6 days followed by selection on paromomycin for approximately 6 weeks, with biweekly transfers to fresh media, and paromomycin resistant 15 callus identified as containing the recombinant DNA in an expression cassette.

For transformation by microprojectile bombardment, immature maize embryos are isolated and cultured 3-4 days prior to bombardment. Prior to microprojectile bombardment, a suspension of gold particles is prepared onto which the desired recombinant DNA expression cassettes are precipitated. DNA is introduced into maize cells as described in U.S. 20 Patents 5,550,318 and 6,399,861 using the electric discharge particle acceleration gene delivery device. Following microprojectile bombardment, tissue is cultured in the dark at 27 degrees C.

To regenerate transgenic corn plants transgenic callus resulting from transformation is placed on media to initiate shoot development in plantlets which are transferred to potting 25 soil for initial growth in a growth chamber at 26 degrees C followed by a mist bench before transplanting to 5 inch pots where plants are grown to maturity. The plants are self fertilized and seed is harvested for screening as seed, seedlings or progeny R2 plants or hybrids, e.g., for yield trials in the screens indicated above.

Example 3

This example further illustrates the production and identification of transgenic seed for transgenic corn having an enhanced agronomic trait, i.e. enhanced nitrogen use efficiency, increased yield, enhanced water use efficiency, enhanced tolerance to cold and/or improved 5 seed compositions as compared to control plants. Transgenic corn seed and plants comprising recombinant DNA from each of the genes cloned in one of base vectors as identified in Table 1 are prepared by transformation. Many transgenic events which survive to fertile transgenic plants that produce seeds and progeny plants will not exhibit an enhanced agronomic trait. The transgenic plants and seeds having enhanced agronomic traits of this invention are 10 identified by screening for nitrogen use efficiency, yield, water use efficiency, and cold tolerance. Transgenic plants providing seeds with improved seed compositions are identified by analyzing for seed compositions including protein, oil and starch levels.

A. Enhanced Nitrogen Use Efficiency

The transgenic plants with enhanced nitrogen use efficiency provided by this invention were 15 selected through the selection process according to the standard procedure described above and the performance of these transgenic plants are shown in Table 8 below.

Table 8

Event ID	Leaf chlorophyll area				Leaf chlorophyll				Shoot fresh mass			
	Percent change	Mean	Mean of controls	P-value	Percent change	Mean	Mean of controls	P-value	Percent change	Mean	Mean of controls	P-value
ZM_M24857	-1	5366.5	5430	0.75	2	27.8	27.3	0.48	-3	51.6	53.4	0.31
ZM_M24857	-24	4150.6	5430	0.00	-8	25.1	27.3	0.01	-33	36	53.4	0.00
ZM_M24861	12	3811.5	3397.7	0.00	7	25.2	23.5	0.02	8	31.2	28.8	0.02
ZM_M24861	0	5430.4	5430	1.00	6	28.9	27.3	0.04	1	54.2	53.4	0.66
ZM_M24870	-2	5347.4	5430	0.68	-1	27	27.3	0.72	-9	48.9	53.4	0.01
ZM_M24870	-3	5268.1	5430	0.41	5	28.6	27.3	0.10	-5	50.8	53.4	0.14
ZM_M24873	-7	5023.8	5430	0.04	-9	24.8	27.3	0.00	-18	43.7	53.4	0.00
ZM_M24873	-5	5159.9	5430	0.17	4	28.4	27.3	0.15	-11	47.7	53.4	0.00
ZM_M24874	-3	5289.5	5430	0.48	2	27.8	27.3	0.50	-3	51.9	53.4	0.40
ZM_M24874	-2	5319.7	5430	0.58	1	27.5	27.3	0.77	-2	52.4	53.4	0.58
ZM_M26391	-9	4914.4	5430	0.01	0	27.2	27.3	0.91	-2	52.5	53.4	0.60
ZM_M26391	-3	5273.7	5430	0.43	3	28	27.3	0.35	-2	52.2	53.4	0.48

Yield

The transgenic plants with enhanced yield provided by this invention were selected through the selection process according to the standard procedure described above and

5 the performance of these transgenic plants are shown in Tables 9 and 10 below indicating the change in corn yield measured in bushels per acre..

Table 9

	Broad Acre Yield		High density Yield
Event	Year 1	Year 2	
24861	3.9	-2.22	-5.3
24862	0.51	-1.86	2.8
24870	2.33	5.41	7.81
24874	5.21	2.61	8.21
26391	1.13	-3.59	5.1

Table 10

Event	Delta	Percent change	P-value
ZM_M81660	-6.20	-3.47	0.05
ZM_M81671	-21.99	-12.32	0.00
ZM_M81675	-23.94	-13.41	0.00
ZM_M81677	-3.71	-2.08	0.23
ZM_M81682	-5.58	-3.12	0.11
ZM_M81684	-14.72	-8.25	0.00
ZM_M81687	4.83	2.71	0.13
ZM_M81688	-14.64	-8.20	0.00

10

Water Use Efficiency

The transgenic plants with enhanced water use efficiency provided by this invention were selected through the selection process according to the standard procedure described above and the performance of these transgenic plants are shown in Table 11 below.

15

Table 11

Event	% SAH	Pvalue SAH	% RGR	Pvalue RGR	% SDM	Pvalue SDM	% RWC	Pvalue RWC
ZM_M24857	1.02	0.02	1.63	0.05	3.29	0.02	1.52	0.16
ZM_M24857	- 4.22	0.00	10.66	0.00	-4.33	0.00	4.59	0.00
ZM_M24861	- 1.53	0.00	2.09	0.01	2.88	0.03	2.65	0.02
ZM_M24861	- 2.75	0.00	5.85	0.00	0.33	0.81	4.86	0.00
ZM_M24862	- 0.56	0.20	-5.05	0.00	3.33	0.01	-3.04	0.01
ZM_M24870	- 3.17	0.00	8.47	0.00	-4.36	0.00	-1.29	0.23
ZM_M24870	0.29	0.50	1.24	0.12	-0.36	0.79	-2.05	0.06
ZM_M24873	- 3.54	0.00	6.88	0.00	-4.88	0.00	1.30	0.25
ZM_M24873	- 4.61	0.00	10.51	0.00	-3.08	0.02	-1.92	0.08
ZM_M24874	0.00	1.00	-3.57	0.00	2.96	0.03	-2.45	0.03
ZM_M24874	- 1.96	0.00	2.17	0.01	-0.60	0.66	1.16	0.31
ZM_M26391	- 2.18	0.00	4.02	0.00	-1.01	0.45	-0.11	0.92
ZM_M26391	0.76	0.08	-4.44	0.00	2.77	0.04	2.67	0.01

Cold Tolerance

The transgenic plants with enhanced cold tolerance provided by this invention were selected through the selection process according to the standard procedure described above and the performance of the early seedling growth of these transgenic plants are shown in Table 12 below.

Table 12

Event ID	Root length				Shoot length				Seedling length			
	Percent change	Mean	Mean of controls	P-value	Percent change	Mean	Mean of controls	P-value	Percent change	Mean	Mean of controls	P-value
ZM_M24857	23	14.81	12.07	0.01	15	10.07	8.77	0.02	19	24.89	20.84	0.1
ZM_M24857	18	14.1	11.97	0.01	6	10.35	9.72	0.13	13	24.45	21.69	0.1
ZM_M24857	9	13.69	12.56	0.03	12	9.13	8.17	0.01	10	22.81	20.74	0.1
ZM_M24857	14	13.68	11.97	0.04	10	10.66	9.72	0.02	12	24.33	21.69	0.03
ZM_M24857	-11	10.12	11.39	0.10	-3	8.24	8.48	0.64	-8	18.36	19.87	0.21
ZM_M24861	5	13.43	12.79	0.32	-10	7.71	8.58	0.07	-1	21.13	21.37	0.82
ZM_M24861	4	12.4	11.97	0.61	-3	9.43	9.72	0.48	1	21.83	21.69	0.91
ZM_M24861	-10	10.15	11.32	0.11	-12	8.96	10.22	0.01	-11	19.11	21.54	0.04
ZM_M24862	-9	10.32	11.32	0.17	-7	9.47	10.22	0.14	-8	19.79	21.54	0.13
ZM_M24870	14	13.65	11.97	0.05	7	10.43	9.72	0.09	11	24.09	21.69	0.04
ZM_M24870	-2	12.28	12.56	0.59	1	8.29	8.17	0.75	-1	20.58	20.74	0.83
ZM_M24870	11	13.31	11.97	0.11	4	10.11	9.72	0.34	8	23.42	21.69	0.14
ZM_M24870	0	10.46	10.45	0.98	2	8.08	7.96	0.82	1	18.55	18.41	0.89
ZM_M24873	10	13.2	11.97	0.14	5	10.2	9.72	0.25	8	23.39	21.69	0.15
ZM_M24873	-8	11.83	12.79	0.13	-10	7.75	8.58	0.08	-8	19.58	21.37	0.08

ZM_M24873	17	14.06	11.97	0.01	16	11.3	9.72	0.00	17	25.36	21.69	0.C
ZM_M24873	-7	11.74	12.56	0.11	0	8.16	8.17	0.98	-4	19.91	20.74	0.2
ZM_M24874	-13	11.15	12.79	0.01	-19	6.92	8.58	0.00	-15	18.07	21.37	0.C
ZM_M24874	13	13.52	11.97	0.07	8	10.54	9.72	0.05	11	24.06	21.69	0.C
ZM_M24874	-10	11.33	12.56	0.02	-4	7.87	8.17	0.43	-7	19.21	20.74	0.C
ZM_M24874	2	12.25	11.97	0.74	7	10.39	9.72	0.11	4	22.64	21.69	0.C
ZM_M26391	23	14.72	11.97	0.00	17	11.37	9.72	0.00	20	26.08	21.69	0.C
ZM_M26391	-6	11.82	12.56	0.15	7	8.72	8.17	0.16	-1	20.54	20.74	0.C
ZM_M26391	-23	8.09	10.45	0.00	-14	6.88	7.96	0.04	-19	14.97	18.41	0.00
ZM_M26391	9	13.01	11.97	0.21	10	10.72	9.72	0.02	9	23.72	21.69	0.09

Table 13 Oil

Event	Construct	Y2 Hybrid Data				Y1 Hybrid Data			
		Mean	Control mean	Percent change	Delta	P-value	Delta	P-value	
ZM_M24870	PMON68392	4.48	4.29	4.28	0.18	0.04	0.14	0.15	
ZM_S68719	PMON74775	4.43	4.12	7.38	0.30	0.00	#N/A	#N/A	
ZM_S69656	PMON74775	4.36	4.12	5.59	0.23	0.03	0.33	0.02	

Improved Seed Composition

The transgenic plants with improved seed composition provided by this invention were selected through the selection process according to the standard procedure described above and the performance of these transgenic plants are shown in Tables 13-5.

5

Table 14 Oil

Event	Construct	Mean	Mean control	Delta	P-value
ZM_M92534	PMON84131	4.94	4.51	0.42	0.00
ZM_M91731	PMON84131	4.90	4.51	0.38	0.01
ZM_M92532	PMON84131	4.87	4.51	0.35	0.02

Table 15 Protein

Event	Construct	Protein delta	Protein p-value
ZM_M24870	PMON68392	0.44	0.02
ZM_S68719	PMON74775	0.35	0.12
ZM_S69656	PMON74775	0.21	0.35

10 **Example 4**

This example illustrate transgenic plants with enhanced traits through combinations. As illustrated in the Example 3, transgenic plants with enhanced agronomic traits are generated employing the recombinant DNA from each of the genes identified in Table 1. To produce further enhancement of agronomic traits in transgenic plants, the genes of

15 Table 1 are combined with one or more additional genes that enhance agronomic traits to generate a transgenic plant with greater enhancement in one or more agronomic traits than either gene alone. This combination is achieved through either through transformation or breeding. The following example illustrates this principle. A transgenic maize plant stably transformed with a construct, pMON74923, containing 20 the *Zea mays* phytochrome B (phyB) gene (SEQ ID NO: 15) under the control of a maize aldolase (FDA) promoter (U.S. patent application Serial No.09/757,089) was crossed with a transgenic maize plant stably transformed with pMON68392. The cross

demonstrated an increased yield (bu./a) of 7.2% compared to the maize plant containing the phyB gene alone (2.4%).

Example 5. Soybean Plant Transformation

5 This example illustrates plant transformation useful in producing the transgenic soybean plants of this invention and the production and identification of transgenic seed for transgenic soybean having an enhanced agronomic trait, i.e. enhanced nitrogen use efficiency, enhanced yield, enhanced water use efficiency, enhanced growth under cold stress, and/or enhanced seed oil, protein and/or starch levels as compared to control

10 plants. For Agrobacterium mediated transformation, soybean seeds are germinated overnight and the meristem explants excised. The meristems and the explants are placed in a wounding vessel. Soybean explants and induced Agrobacterium cells from a strain containing plasmid DNA with the gene of interest cassette and a plant selectable marker cassette are mixed no later than 14 hours from the time of initiation of seed germination

15 and wounded using sonication. Following wounding, explants are placed in co-culture for 2-5 days at which point they are transferred to selection media for 6-8 weeks to allow selection and growth of transgenic shoots. Trait positive shoots are harvested approximately 6-8 weeks post bombardment and placed into selective rooting media for 2-3 weeks. Shoots producing roots are transferred to the greenhouse and potted in soil.

20 Shoots that remain healthy on selection, but do not produce roots are transferred to non-selective rooting media for an additional two weeks. Roots from any shoots that produce roots off selection are tested for expression of the plant selectable marker before they are transferred to the greenhouse and potted in soil.

25 Example 6

This example further illustrates the production and identification of transgenic seed for transgenic soybean having an enhanced agronomic trait, i.e. enhanced nitrogen

use efficiency, increased yield, enhanced water use efficiency, enhanced growth under cold stress, and/or improved seed compositions as compared to control plants. Transgenic soybean seed and plants comprising recombinant DNA from each of the genes cloned in one of base vectors as identified in Table 1 are prepared by transformation. Many 5 transgenic events which survive to fertile transgenic plants that produce seeds and progeny plants will not exhibit an enhanced agronomic trait. The transgenic plants and seeds having enhanced agronomic traits of this invention are identified by screening for nitrogen use efficiency, yield, water use efficiency, and cold tolerance. Transgenic plants providing seeds with improved seed compositions are identified by analyzing for seed 10 compositions including protein, oil and starch levels.

2005319354 14 Aug 2012

The claims defining the invention are as follows:

1. A crop plant cell with stably integrated, recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein a plant comprising said plant cell exhibits increased grain yield as compared to a control plant that does not have said recombinant DNA.
2. A crop plant cell with stably integrated, recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein a plant comprising said plant cell exhibits increased yield of at least 0.51 bushels per acre as compared to a control plant that does not have said recombinant DNA.
3. The plant cell of claim 1 or 2 further comprising DNA expressing a protein that provides tolerance from exposure to an herbicide applied at levels that are lethal to a wild type of said plant cell.
4. A method of conferring increased grain yield on a crop plant comprising, expressing in a cell of said crop plant, a recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein a plant comprising said cell exhibits increased grain yield as compared to a control plant that does not have said recombinant DNA.
5. A method of conferring increased yield on a crop plant comprising, expressing in a cell of said crop plant, a recombinant DNA comprising a promoter that is functional in plant cells and that is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein a plant comprising said cell exhibits increased yield of at least 0.51 bushels per acre as compared to a control plant that does not have said recombinant DNA.

14 Aug 2012

2005319354

6. A method for manufacturing non-natural, transgenic seed that can be used to produce a crop of transgenic plants with an enhanced trait resulting from expression of stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO:5, wherein said enhanced trait is increased yield as compared to a control plant that does not have said recombinant DNA, said method for manufacturing said seed comprising:
 - (a) screening a population of plants for said enhanced trait and said recombinant DNA, wherein individual plants in said population can exhibit said trait at a level less than, essentially the same as or greater than the level that said trait is exhibited in control plants which do not express the recombinant DNA,
 - (b) selecting from said population one or more plants that exhibit the trait at a level greater than the level that said trait is exhibited in control plants,
 - (c) verifying that said recombinant DNA is stably integrated in said selected plants,
 - (d) analyzing tissue of a selected plant to determine the production of a protein having the function of a protein encoded by nucleotides in a sequence of SEQ ID NO: 1; and
 - (e) collecting seed from a selected plant.
7. The method of claim 6 wherein said selecting is effected by identifying plants with said enhanced trait.
8. The method of claim 6 or 7 wherein said seed is corn, soybean, cotton, canola, alfalfa, wheat or rice seed.
9. The method of claim 6 or 8 wherein plants in said population further comprise DNA expressing a protein that provides tolerance to exposure to an herbicide applied at levels that are lethal to wild type plant cells, and wherein said selecting is effected by treating said population with said herbicide.
10. The plant cell of claim 3, or the method of claim 9, wherein said herbicide is a glyphosate, dicamba, or glufosinate compound.

2005319354 14 Aug 2012

11. The plant cell or method of any one of the preceding claims wherein the crop is a corn or canola plant.
12. A method of producing hybrid corn seed comprising:
 - (a) acquiring hybrid corn seed from a herbicide tolerant corn plant which also has stably-integrated, recombinant DNA comprising a promoter that is (a) functional in plant cells and (b) is operably linked to DNA that encodes a protein having at least 90% identity to SEQ ID NO: 5, wherein said hybrid corn seed provides a corn plant within increased yield as compared with a control plant that does not have said recombinant DNA;
 - (b) producing corn plants from said hybrid corn seed, wherein a fraction of the plants produced from said hybrid corn seed is homozygous for said recombinant DNA, a fraction of the plants produced from said hybrid corn seed is hemizygous for said recombinant DNA, and a fraction of the plants produced from said hybrid corn seed has none of said recombinant DNA;
 - (c) selecting corn plants which are homozygous and hemizygous for said recombinant DNA by treating with an herbicide;
 - (d) collecting seed from herbicide-treated-surviving corn plants and planting said seed to produce further progeny corn plants;
 - (e) repeating steps (c) and (d) at least once to produce an inbred corn line;
 - (f) crossing said inbred corn line with a second corn line to produce hybrid seed.
13. The plant or method of any one of the preceding claims wherein said protein has an amino acid sequence of SEQ ID NO:5.
14. A transgenic crop plant comprising a plurality of the plant cell of any one of claims 1 to 3, 10, 11 or 13.
15. The transgenic plant of claim 14 which is homozygous for said recombinant DNA.
16. A transgenic crop seed comprising a plurality of the plant cell of any one of claims 1 to 3, 10, 11 or 13.

2005319354 14 Aug 2012

17. The transgenic seed of claim 16 from a corn, soybean, cotton, canola, alfalfa, wheat or rice plant
18. Non-natural, transgenic corn seed of claim 17 wherein said seed can produce corn plants that are resistant to disease from the *Mal de Rio Cuarto* virus or the *Puccina sorghi* fungue or both.
19. A transgenic pollen grain comprising a haploid derivative of a plant cell of any one of claims 1 to 3, 10, 11 or 13.
20. The method of selecting a crop plant comprising cells of any one of claims 1 to 3, 10, 11 or 13 wherein an immunoreactive antibody is used to detect the presence of said protein in seed or plant tissue.
21. Anti-counterfeit milled crop seed having, as an indication of origin, a plant cell of any one of claims 1 to 3, 10, 11 or 13.

BA.8733D

SEQUENCE LISTING

<110> Monsanto Technology LLC
Lund, Adrian
Deikman, Jill
Anstrom, Donald
Chomet, Paul
Heard, Jacqueline

<120> Transgenic Plants with Enhanced Agronomic Traits

<130> 38-21(53720)C

<150> 60/638,099
<151> 2004-12-21

<150> 60/660,320
<151> 2005-03-10

<160> 15

<170> PatentIn version 3.3

<210> 1
<211> 828
<212> DNA
<213> *Arabidopsis thaliana*

<400> 1
atgataaaac tactatttac gtacatatgc acatacacat ataaaactata tgctctatat 60
catatggatt acgcgcgt gtgtatgtat aaatataaaag gcgcgtcac gcttcaagtt 120
tgtctctttt atattaaact gagagtttc ctctcaaact ttacctttc ttcttcgatc 180
ctagctctta agaaccctaa taattcattt atcaaaataa tggcgatttt gccggaaaac 240
tcttcaaact tggatcttac tatctccgtt ccaggcttct cttcatcccc tctctccgat 300
gaaggaagtgcgcggagaaag agaccagcta aggctagaca tgaatcggtt accgtcgct 360
gaagacggag acgatgaaga attcagtcac gatgatggct ctgctccccc gcgaaagaaa 420
ctccgtctaa ccagagaaca gtcacgtctt cttgaagata gtttcagaca gaatcataacc 480
cttaatcccc aacaaaagga agtacttgcc aagcatttga tgctacggcc aagacaattt 540
gaagtttggtttcaaaaaccg tagagcaagg agcaaatttga agcaaaaccgaa gatggatgc 600
gagttatctca aaagggtggttt tggttcattt acggaaagaaa accacaggctt ccatagagaa 660
gttagaagagc tttagagccat aaagggtggc ccaacaacgg tgaactctgc ctcgagcctt 720
actatgtgtc ctcgctgcga gcgagttacc cctgcccgcga gcccttcgag ggcgggtgg 780
ccgggttccgg ctaagaaaac gttccgcgcga caagagcgtt atcgttga 828

<210> 2
<211> 678
<212> DNA

<213> Zea mays

<400> 2
atggggtcca cttctccttc aggccctggag ctcaccatgg ctgtcccgaa cctcagctcc 60
tcctctggct cagaggggtt tggatgcaac aacaacaacg ggagcgggaa cggaaacaac 120
atgagggacc tggacatgaa ccagccggcg agcggcggcg aggaggagga gttccaaatg 180
gggagcgtgg aggaggagga ggacgagcgc ggccggcgccg gcggggccgca ccgcgccaag 240
aagctccggc tgtccaagga gcagtcccgc ctccctggagg agagcttccg cctcaaccac 300
accctcacac cgaagcaaaa ggaggccttgc gctgtcaagc tcaagctgcg gcccaggcag 360
gtggaggtct gttccagaa ccgcaggcttgc aggacgaagc ttaagcagac ggagctggag 420
tgcgagttacc tgaagcgctg ctccggctcg ctgaccgagg agaaccggcg gctgcagcgg 480
gaggtggagg agctgcgcgc gatgcgggtg gccccggcca ccgtgctctc cccgcacacc 540
ccgcagccgc tcccgccgtc cgcgctcacc atgtccccgc gctgcgagcg catcaccgccc 600
gcaacggcccg cgccgacccccc acgccccggccg cccgcccgcga gccccttcca cccgcgcccgc 660
ccgtccgcgg cgtttttag 678

<210> 3
<211> 642
<212> DNA
<213> Glycine max

<400> 3
atggcggttt taccaagtag ctccctcaagc ttggaaatttgc ccatatctgt acctggtttt 60
gcttcttcac caacccttct tccctcatca tctgtgaaag aattggacat aaatcaagta 120
cctcttgaag aagattggat ggcataaac atggaagatg aagaagaaag cagcaatgg 180
gaaccttcctc gaaagaaact ccgtctcaca aaggaacaat ctcttctcct tgaagaaagc 240
tttagacaaa accacacgtt gaacccaaag cagaaagagt ctttggcaat gcaactgaag 300
ctgcgaccaa ggcaagtggaa ggtgtggttt cagaaccgtt gggccaggag caagctgaag 360
cagacagaga tggagtgcga gtacctcaag aggtggttcg gttccctcac agagcagaac 420
cgaggaggctcc agagggaaat ggaggagctg cgagccatta aggtggggccc acccaccgtt 480
atctcccttc actcctgcga accgctcccg gcctccacac tttccatgtt tcccgctgc 540
gagcgtgtca cctccaccgc cgacaaaccg ccctccggccg cggccacttt gtccgctaaa 600
gtgccgccaa ctcaatcccg ccaaccctcc gcggcctgtt ag 642

<210> 4
<211> 690
<212> DNA
<213> Oryza sativa

<400>	4					
atgatgggg ccacttctcc	gtcaggcctg	gagtcacca	tggctgtccc	cggcctcagc	60	
tcctctggtt	cagaaggggc	cggttgcaac	aacaacaacg	ccgggtggcgg	ctgcaacatg	120
agggacctgg	acatcaacca	gccggcgagc	ggcggcgagg	aggaggagtt	cccgatggc	180
agcgtggagg	aggacgagga	ggagaggggc	gtcgggtggc	cccaccgccc	caagaagctc	240
cgcctctcca	aggagcagtc	ccgcctcctc	gaggagagct	tccgcctcaa	ccataccctc	300
acgccgaagc	aaaaggaggc	cttggcgatc	aaactgaagc	tgcgccgag	gcaggtggag	360
gtctggtttc	agaaccgtag	ggcaaggacg	aagctgaagc	agacggagat	ggagtgcgag	420
tacctgaagc	gctgcttcgg	gtcgctgacg	gaggagaacc	gccggctgca	gcgggaggtg	480
gaggagctgc	gggcgatgcg	ggtggccccc	cccacggtgc	tctcgccgca	caccaggcag	540
ccgctcccg	cgtccgcgct	caccatgtgc	ccccgctgca	agcgcatcac	cgccgccacc	600
ggcccgctg	ccgtgcgc	gccgcccgtcg	tcagccgccc	ccgcccgc	ctcgcccttc	660
caccctcgcc	gcccctctgc	ggccttctag				690

<210> 5

<211> 275

<212> PRT

<213> *Arabidopsis thaliana*

<400> 5

Met	Ile	Lys	Leu	Leu	Phe	Thr	Tyr	Ile	Cys	Thr	Thr	Tyr	Tyr	Lys	Leu
1								10					15		

Tyr	Ala	Leu	Tyr	His	Met	Asp	Tyr	Ala	Cys	Val	Cys	Met	Tyr	Lys	Tyr
								20				25		30	

Lys	Gly	Ile	Val	Thr	Leu	Gln	Val	Cys	Leu	Phe	Tyr	Ile	Lys	Leu	Arg
								35				40		45	

Val	Phe	Leu	Ser	Asn	Phe	Thr	Phe	Ser	Ser	Ser	Ile	Leu	Ala	Leu	Lys
								50			55		60		

Asn	Pro	Asn	Asn	Ser	Leu	Ile	Lys	Ile	Met	Ala	Ile	Leu	Pro	Glu	Asn
								65			70		75		80

Ser	Ser	Asn	Leu	Asp	Leu	Thr	Ile	Ser	Val	Pro	Gly	Phe	Ser	Ser	Ser
								85			90		95		

Pro	Leu	Ser	Asp	Glu	Gly	Ser	Gly	Gly	Arg	Asp	Gln	Leu	Arg	Leu	
								100			105		110		

Asp Met Asn Arg Leu Pro Ser Ser Glu Asp Gly Asp Asp Glu Glu Phe
 115 120 125

Ser His Asp Asp Gly Ser Ala Pro Pro Arg Lys Lys Leu Arg Leu Thr
 130 135 140

Arg Glu Gln Ser Arg Leu Leu Glu Asp Ser Phe Arg Gln Asn His Thr
 145 150 155 160

Leu Asn Pro Lys Gln Lys Glu Val Leu Ala Lys His Leu Met Leu Arg
 165 170 175

Pro Arg Gln Ile Glu Val Trp Phe Gln Asn Arg Arg Ala Arg Ser Lys
 180 185 190

Leu Lys Gln Thr Glu Met Glu Cys Glu Tyr Leu Lys Arg Trp Phe Gly
 195 200 205

Ser Leu Thr Glu Glu Asn His Arg Leu His Arg Glu Val Glu Glu Leu
 210 215 220

Arg Ala Ile Lys Val Gly Pro Thr Thr Val Asn Ser Ala Ser Ser Leu
 225 230 235 240

Thr Met Cys Pro Arg Cys Glu Arg Val Thr Pro Ala Ala Ser Pro Ser
 245 250 255

Arg Ala Val Val Pro Val Pro Ala Lys Lys Thr Phe Pro Pro Gln Glu
 260 265 270

Arg Asp Arg
 275

<210> 6
 <211> 225
 <212> PRT
 <213> Zea mays

<400> 6

Met Gly Ser Thr Ser Pro Ser Gly Leu Glu Leu Thr Met Ala Val Pro
 1 5 10 15

Gly Leu Ser Ser Ser Ser Gly Ser Glu Gly Phe Gly Cys Asn Asn Asn
 20 25 30

Asn Gly Ser Gly Asn Gly Asn Asn Met Arg Asp Leu Asp Met Asn Gln

35

40

45

Pro Ala Ser Gly Gly Glu Glu Glu Glu Phe Pro Met Gly Ser Val Glu
 50 55 60

Glu Glu Glu Asp Glu Arg Gly Gly Ala Gly Pro His Arg Ala Lys
 65 70 75 80

Lys Leu Arg Leu Ser Lys Glu Gln Ser Arg Leu Leu Glu Glu Ser Phe
 85 90 95

Arg Leu Asn His Thr Leu Thr Pro Lys Gln Lys Glu Ala Leu Ala Val
 100 105 110

Lys Leu Lys Leu Arg Pro Arg Gln Val Glu Val Trp Phe Gln Asn Arg
 115 120 125

Arg Ala Arg Thr Lys Leu Lys Gln Thr Glu Leu Glu Cys Glu Tyr Leu
 130 135 140

Lys Arg Cys Phe Gly Ser Leu Thr Glu Glu Asn Arg Arg Leu Gln Arg
 145 150 155 160

Glu Val Glu Glu Leu Arg Ala Met Arg Val Ala Pro Pro Thr Val Leu
 165 170 175

Ser Pro His Thr Arg Gln Pro Leu Pro Ala Ser Ala Leu Thr Met Cys
 180 185 190

Pro Arg Cys Glu Arg Ile Thr Ala Ala Thr Ala Ala Arg Thr Pro Arg
 195 200 205

Pro Pro Pro Ala Ala Ser Pro Phe His Pro Arg Arg Pro Ser Ala Ala
 210 215 220

Phe
 225

<210> 7
 <211> 213
 <212> PRT
 <213> Glycine max

<400> 7

Met Ala Val Leu Pro Ser Ser Ser Ser Leu Glu Leu Thr Ile Ser
 1 5 10 15

Val Pro Gly Phe Ala Ser Ser Pro Thr Leu Leu Pro Ser Ser Ser Val
20 25 30

Lys Glu Leu Asp Ile Asn Gln Val Pro Leu Glu Glu Asp Trp Met Ala
35 40 45

Ser Asn Met Glu Asp Glu Glu Ser Ser Asn Gly Glu Pro Pro Arg
50 55 60

Lys Lys Leu Arg Leu Thr Lys Glu Gln Ser Leu Leu Leu Glu Glu Ser
65 70 75 80

Phe Arg Gln Asn His Thr Leu Asn Pro Lys Gln Lys Glu Ser Leu Ala
85 90 95

Met Gln Leu Lys Leu Arg Pro Arg Gln Val Glu Val Trp Phe Gln Asn
100 105 110

Arg Arg Ala Arg Ser Lys Leu Lys Gln Thr Glu Met Glu Cys Glu Tyr
115 120 125

Leu Lys Arg Trp Phe Gly Ser Leu Thr Glu Gln Asn Arg Arg Leu Gln
130 135 140

Arg Glu Val Glu Glu Leu Arg Ala Ile Lys Val Gly Pro Pro Thr Val
145 150 155 160

Ile Ser Pro His Ser Cys Glu Pro Leu Pro Ala Ser Thr Leu Ser Met
165 170 175

Cys Pro Arg Cys Glu Arg Val Thr Ser Thr Ala Asp Lys Pro Pro Ser
180 185 190

Ala Ala Ala Thr Leu Ser Ala Lys Val Pro Pro Thr Gln Ser Arg Gln
195 200 205

Pro Ser Ala Ala Cys
210

<210> 8
<211> 229
<212> PRT
<213> Oryza sativa

<400> 8

Met Met Gly Ala Thr Ser Pro Ser Gly Leu Glu Leu Thr Met Ala Val

1

5

10

15

Pro Gly Leu Ser Ser Ser Gly Ser Glu Gly Ala Gly Cys Asn Asn Asn
20 25 30

Asn Ala Gly Gly Cys Asn Met Arg Asp Leu Asp Ile Asn Gln Pro
35 40 45

Ala Ser Gly Gly Glu Glu Glu Phe Pro Met Gly Ser Val Glu Glu
50 55 60

Asp Glu Glu Glu Arg Gly Val Gly Gly Pro His Arg Pro Lys Lys Leu
65 70 75 80

Arg Leu Ser Lys Glu Gln Ser Arg Leu Leu Glu Glu Ser Phe Arg Leu
85 90 95

Asn His Thr Leu Thr Pro Lys Gln Lys Glu Ala Leu Ala Ile Lys Leu
100 105 110

Lys Leu Arg Pro Arg Gln Val Glu Val Trp Phe Gln Asn Arg Arg Ala
115 120 125

Arg Thr Lys Leu Lys Gln Thr Glu Met Glu Cys Glu Tyr Leu Lys Arg
130 135 140

Cys Phe Gly Ser Leu Thr Glu Glu Asn Arg Arg Leu Gln Arg Glu Val
145 150 155 160

Glu Glu Leu Arg Ala Met Arg Val Ala Pro Pro Thr Val Leu Ser Pro
165 170 175

His Thr Arg Gln Pro Leu Pro Ala Ser Ala Leu Thr Met Cys Pro Arg
180 185 190

Cys Glu Arg Ile Thr Ala Ala Thr Gly Pro Pro Ala Val Arg Pro Pro
195 200 205

Pro Ser Ser Ala Ala Ala Ala Pro Ser Pro Phe His Pro Arg Arg
210 215 220

Pro Ser Ala Ala Phe
225

<210> 9
<211> 9215

<212> DNA
 <213> Artificial

 <220>
 <223> vector

 <400> 9
 actcaccagt cacagaaaag catcttacgg atggcatgac agtaagagaa ttatgcagtg 60
 ctgccataac catgagtgtat aacactgcgg ccaacttact tctgacaacg atcggaggac 120
 cgaaggagct aaccgcgttt ttgcacaaca tggggatca tgtaactcgc cttgatcg 180
 gggAACCGGA gctgaatgaa gccataccaa acgacgagcg tgacaccacg atgcctgt 240
 caatggcaac aacgttgcgc aaactattaa ctggcgaact acttactcta gcttccggc 300
 aacaattaat agactggatg gaggcggata aagttgcagg accacttctg cgctcggccc 360
 ttccggctgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg tctcgcgta 420
 tcattgcagc actggggcca gatggtaagc cctccgtat cgtagttatc tacacgacgg 480
 ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt gcctcactga 540
 ttaagcattg gtaactgtca gaccaagttt actcatatat acttttagatt gatttaaaac 600
 ttcatttta atttaaaagg atctaggtga agatccttt tgataatctc atgaccaaaa 660
 tcccttaacg tgagtttgc ttccactgag cgtcagaccc cgtagaaaag atcaaaggat 720
 cttcttgaga tcctttttt ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc 780
 taccagcggg ggtttgtttg ccggatcaag agctaccaac tcttttccg aaggttaactg 840
 gcttcagcag agcgcagata ccaaatactg tccttctagt gtagccgtag ttaggccacc 900
 acttcaagaa ctctgttagca ccgcctacat acctcgctct gctaattctg ttaccagtgg 960
 ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga tagttaccgg 1020
 ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc ttggagcgaa 1080
 cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc acgcttcccg 1140
 aaggagaaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga gagccacg 1200
 gggagcttcc agggggaaac gcctggatc tttatagtcc tgcgggttt cgccacctct 1260
 gacttgagcg tcgatttttgc tgatgctcg tggggggcg gaggctatgg aaaaacgcca 1320
 gcaacgcggc cttttacgg ttccctggcct tttgctggcc ttttgctcac atgttcttc 1380
 ctgcgttatac ccctgattct gtggataacc gtattaccgc ctttgagtgta gctgataaccg 1440
 ctgcgcgcag ccgaacgacc gagcgcagcg agtcaagttag gaggaaagcg gaagagcgcc 1500
 caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc tggcacgaca 1560
 ggtttcccgaa ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt tagctcactc 1620

attaggcacc ccaggctta cacttatgc ttccggctcg tatgttgtgt ggaattgtga 1680
 gcggataaca atttcacaca ggaaacagct atgaccatga ttacgccaag ctcgaaatta 1740
 accctcacta aagggAACaa aagctggagc tgagtactgg cgccgcctgctg 1800
 ggtcattcat atgcttgaga agagagtctgg gatagtccaa aataaaacaa aggttaagatt 1860
 acctggtcaa aagtggaaac atcagttaaa aggtggata aagttaaaata tcggtaataa 1920
 aagggtggccc aaagtggaaat ttactctttt ctactattat aaaaatttag gatgtttttg 1980
 tcggtacttt gatacgtcat ttttgatga attggttttt aagtttattc gctttggaa 2040
 atgcataatct gtatttgagt cgggtttaa gttcggttgc ttttgtaat acagaggat 2100
 ttgtataaga aatatcttta aaaaaaccca tatgctaatt tgacataatt tttgagaaaa 2160
 atatataattc aggccaattc tcacaatgaa caataataag attaaaatag ctttcccccg 2220
 ttgcagcgca tgggtatttt ttcttagtaaa aataaaagat aaacttagac tcaaaacatt 2280
 tacaAAAACA acccctaaag ttcctaaagc ccaaagtgc atccacgatc cattagcaag 2340
 gcccagccca acccaaccca acccaaccca ccccagtcca gccaactgga caatagtctc 2400
 caccggc actatcaccg tgagttgtcc gcaccaccgc acgtctcgca gccaaaaaaaa 2460
 aaaaaagaaaaa gaaaaaaaaaag aaaaagaaaaa acagcaggtg ggtccgggtc gtggggccg 2520
 gaaaagcgag gaggatcgcg agcagcgacg aggcccggcc ctccctccgc ttccaaagaa 2580
 acgcccccca tcgcccactat atacataccc cccctctcc tcccatcccc ccaaccctac 2640
 caccaccacc accaccaccc cctccccct cgctgcccga cgacgagctc ctccccctc 2700
 cccctccgccc gcccgggtta accacccgc ccctctccctc tttctttctc cgttttttt 2760
 ttctcgatctt tggccttggt agttgggtg ggcgagagcg gcttcgtcg 2820
 ccagatcggt ggcggggagg ggcgggatct cgccgctggc gtctccgggc gtgagtcggc 2880
 ccggatccctc gccccggatg gggctctcgatct atgtagatct gatccggcgt tggtgggg 2940
 gatgtgggg ggtttaaat ttccgcccattt ctaaacaaga tcaggaagag gggaaaaggg 3000
 cactatggtt tatattttta tatatttctg ctgcttcgtc aggcttagat gtgcttagatc 3060
 tttctttctt cttttgggtt gtagaatttg aatccctcag cattgttcat cggtatgttt 3120
 tcttttcatg atttgtgaca aatgcagcct cgtgcggagc tttttgttag gtagaccg 3180
 ggatatcaca agtttgtaca aaaaagctga acgagaaacg taaaatgata taaatatcaa 3240
 tatattaaat tagattttgc ataaaaaaca gactacataa tactgtaaaa cacaacatata 3300
 ccagtcacta tggccggccgc attaggcacc ccaggctta cacttatgc ttccggctcg 3360
 tataatgtgt ggatttgag ttaggatccg tcgagatttt caggagctaa ggaagctaaa 3420
 atggagaaaaaa aatcactgg atataccacc gttgatataat cccaatggca tcgtaaagaa 3480

cattttgagg catttcagtc agttgctcaa tgtacctata accagaccgt tcagctggat	3540
attacggcct ttttaaagac cgtaaagaaa aataagcaca agttttatcc ggcctttatt	3600
cacattcttg cccgcctgat gaatgctcat ccggaattcc gtatggcaat gaaagacggt	3660
gagctggtga tatggatag tggcacccct ttttccatga gcaaactgaa	3720
acgttttcat cgctctggag tgaataccac gacgattcc ggcagttct acacatata	3780
tcgcaagatg tggcgtgtta cggtgaaaac ctggcctatt tccctaaagg gtttattgag	3840
aatatgttt tcgtctcagc caatccctgg gtgagttca ccagtttga tttaaacgtg	3900
gccaatatgg acaacttctt cgccccgtt ttcaccatgg gcaaataatata taccaaggc	3960
gacaagggtgc ttagccgct ggcgattcag gttcatcatg ccgtctgtga tggcttccat	4020
gtcggcagaa tgcttaatga attacaacag tactgcgtatc agtggcaggg cggggcgtaa	4080
acgcgtggat ccggcttact aaaagccaga taacagtatg cgtatttgcg cgctgatttt	4140
tgcggtataa gaatatac tgatatgtat acccgaagta tgtcaaaaag aggtgtgcta	4200
tgaagcagcg tattacagtg acagttgaca gcgacagcta tcagttgctc aaggcatata	4260
tgatgtcaat atctccggtc tggtaagcac aaccatgcag aatgaagccc gtcgtctgcg	4320
tgccgaacgc tggaaagcgg aaaatcagga agggatggct gaggtcgccc gtttattga	4380
aatgaacggc tctttgctg acgagaacag gggctggta aatgcagttt aagtttaca	4440
cctataaaaag agagagccgt tattttgtatc ttgtggatgt acagagtat attattgaca	4500
cgccccggcg acggatggtg atccccctgg ccagtgcacg tctgctgtca gataaagtct	4560
cccgtaact ttacccggtg gtgcataatcg gggatgaaag ctggcgcatg atgaccaccg	4620
atatggccag tggccggc tccgttatcg gggaaagaatg ggctgatctc agccaccgcg	4680
aaaatgacat caaaaacgcc attaacctga ttttctgggg aatataaaatg tcaggtccc	4740
ttatacacag ccagtctgca ggtcgaccat agtactggta tatgttgtgt tttacagtat	4800
tatgttagtct gttttttatg caaaaatctaa tttaatataat tgatattt atcattttac	4860
gtttctcggtt cagcttctt gtacaaagtg gtgtatgggg tcccccaccc tgcaatgtga	4920
ccctagactt gtcacatcttc ggtggccaa cttaatataat gtataaataa aaggatgcac	4980
acatagtgc acatgtcaatca ctataatgtg ggcacaaatgg ttgtgtgtt tgtgtat	5040
ctaattatct gaataagaga aagagatcat ccataatttct tataatgttataat gaatgtcacg	5100
tgtctttata attcttgat gaaccagatg cattttataat accaattcca tatacatata	5160
aatattaatc atatataattt aatataattt ggttagcaa aacaaatcta gtcttaggtgt	5220
gttttgctaa ttattgggg atagtgcataa aagaaatcta cgttctcaat aattcagata	5280

gaaaacttaa taaagtgaga taatttacat agattgcttt tatccttga tatatgtaa	5340
accatgcatg atataaggaa aatagataga gaaataattt tttacatcgt tgaatatgta	5400
aacaatttaa ttcaagaagc taggaatata aatattgagg agtttatgat tattattatt	5460
atttgatgt tcaatgaagt ttttttaat ttcatatgaa gtatacaaaa attcttcata	5520
gattttgtt tctatgccgt agttatctt aatatattt ggttgaaga aatttattgc	5580
tagaaacgaa tggattgtca atttttttt aaagcaaata tataatgaaat tataactgtat	5640
attattttag tcatgattaa aatgtggcct taattgaatc atcttctca ttcattttt	5700
caaaagcata tcaggatgat tgatattt ctatttaaa aattaattt aagggtcaaa	5760
ttaaatttaa cttaaaagtg tcctaaccgt agttaaaggt ttactttaaa aaaatactat	5820
aaaaaatcta atcttctatg aatcgacctg caggattaa atccatcggtt ctggggccta	5880
acggggccaag ctttccgatc ctacctgtca cttcatcaaa aggacagtagt aaaaaggaagg	5940
tggcacctac aaatgccatc attgcataa agggaaaggct atcattcaag atgcctctgc	6000
cgacagtggt cccaaagatg gaccccccacc cacgaggagc atcgtggaaa aagaagacgt	6060
tccaaccacg tcttcaaagc aagtggattt atgtgataact tccactgacg taagggatga	6120
cgcacaatcc cactatcctt cgcaagaccc ttccctctata taaggaagtt catttcattt	6180
ggagaggaca cgctgaaatc accagtctct ctctacaaga tcggggatct ctagctagac	6240
gatcgtttcg catgattgaa caagatggat tgcacgcagg ttctccggcc gcttgggtgg	6300
agaggctatt cggctatgac tgggcacaac agacaatcgg ctgctctgat gcccgggtgt	6360
tccggctgtc agcgcagggg cgcccggttc ttttgcataa gaccgacctg tccggtgccc	6420
tgaatgaact gcaggacgag gcagcgcggc tatacggtt ggccacgacg ggcgttcctt	6480
gcgcagctgt gctcgacgtt gtcactgaag cgggaaggga ctggctgcta ttgggcgaag	6540
tgccggggca ggtatctcctg tcatctcacc ttgcctctgc cgagaaagta tccatcatgg	6600
ctgatgcaat gcggcggctg catacgctt atccggctac ctgcccattc gaccaccaag	6660
cggaaacatcg catcgagcga gcacgtactc ggtatgaaagc cggcttgcgt gatcaggatg	6720
atctggacga agagcatcag gggctcgccgc cagccgaact gttcgccagg ctcaaggcgc	6780
gcatgcccga cggcgaggat ctcgtcgta cccatggcga tgcctgctt ccgaatatca	6840
tggtgaaaaa tggccgcttt tctggattca tgcactgtgg cggctgggt gtggcggacc	6900
gctatcagga catagcggtt gctacccgtt atattgctga agagcttggc ggcgaatggg	6960
ctgaccgctt cctcgatgtt tacggatcg ccgcgtccga ttgcagcgc atcgcccttct	7020
atcgcccttct tgacgagttc ttctgagcgg gactctgggg ttcaagaat tcccgatcgt	7080
tcaaacattt ggcaataaaag tttcttaaga ttgaatcctg ttgcgggtct tgcgatgatt	7140

atcataataat ttctgttgaa ttacgttaag catgtaataa ttaacatgta atgcatgacg 7200
ttatttatga gatgggttt tatgattaga gtcccgcaat tatacattta atacgcgata 7260
gaaaacaaaa tatagcgcgc aaactaggat aaattatcgc gcgcgggtgc atctatgtta 7320
ctagatcggg gatatcgcgt gtcttataa ttcttgatg aaccagatgc attttattaa 7380
ccaattccat atacatataa atattaatca tatataatta atatcaattg gtttagcaaa 7440
acaatctag tctaggtgtg ttttgctaat tattggggga tagtgcaaaa agaaatctac 7500
gttctcaata attcagatag aaaacttaat aaagtgagat aatttacata gattgctttt 7560
atccttgat atatgtgaaa ccatgcatga tataaggaaa atagatagag aaataatttt 7620
ttacatcggtt gaatatgtaa acaatttaat tcaagaagct aggaatataa atattgagga 7680
gtttatgatt attatttata ttgtatgtt caatgaagtt ttttttaatt tcatatgaag 7740
tatacaaaaa ttcttcatalog atttttgttt ctatgccgt a gttatctta atatattgt 7800
gggtgaagaa atttattgtc agaaacgaat ggattgtcaa tttttttta aagcaaataat 7860
atatgaaatt atactgtata ttatTTtagt catgattaaa atgtggcctt aattgaatca 7920
tctttctcat tcatttttc aaaagcatat caggatgatt gatatttatac tattttaaaa 7980
attaatttaa gggtaaaat taaatttaac taaaagtgt cctaaccgt a gttaaaggaa 8040
tactttaaaa aaatactatg aaaaatctaa tcttctatga atcgaccgt gatcgatcgc 8100
ggccgctggc gcgcctgact tagctgtac ccaattcgcc ctatagttag tcgtattaca 8160
attcactggc cgtcgTTta caacgtcggt actggggaaa ccctggcgTT acccaactta 8220
atcgccctgc agcacatccc ctttcgcca gctggcgtaa tagcgaagag gcccgcaccc 8280
atcgcccttc ccaacagttg cgcaagctga atggcgaatg gaaattgtaa gcgttaatata 8340
tttggtaaaa ttgcgttaa atttttgtta aatcagctca ttttttaacc aataggccga 8400
aatcgccaaa atcccttata aatcaaaga atagaccgag atagggtga gtgtgttcc 8460
agtttggaaac aagagtccac tattaaagaa cgtggactcc aacgtcaaag ggcggaaaac 8520
cgtctatcag ggcgtatggcc cactacgtga accatcaccc taatcaagtt ttttgggtc 8580
gaggtgcccgt aaagcactaa atcggaaccc taaaggagc ccccgattta gagcttgacg 8640
gggaaagccg gcaacgtgg cgagaaagga agggaaagaaa gcaaaaggag cggcgcttag 8700
ggcgctggca agttagcgg tcacgctcg cgttaaccacc acacccgccc cgcttaatgc 8760
ggcgctacag ggcgtcgatgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg 8820
tttatttttc taaatacatt caaatatgt a tccgctcatg agacaataac cctgataaaat 8880
gcttcataaa tattgaaaaa ggaagagtat gqgtattcaa catttcgtg tcggcccttat 8940

tccctttttt	gcggcatttt	gccttcctgt	tttgctcac	ccagaaacgc	tggtaaaagt	9000
aaaagatgt	gaagatcagt	tgggtgcacg	agtgggtac	atcgaactgg	atctcaacag	9060
cggtaagatc	cttgagagtt	ttcgccccga	agaacgtttt	ccaatgatga	gcactttaa	9120
agttctgcta	tgtggcgccg	tattatcccg	tattgacgcc	gggcaagagc	aactcggtcg	9180
ccgcatacac	tattctcaga	atgacttggt	tgagt			9215

<210> 10
 <211> 9747
 <212> DNA
 <213> Artificial

 <220>
 <223> vector

<400> 10	ccgatcctac	ctgtcacttc	atcaaaagga	cagtagaaaa	ggaaggtggc	acctacaaat	60
	gccatcatg	cgataaagga	aaggctatca	ttcaagatgc	ctctgccac	agtggtccc	120
	aagatggacc	cccacccacg	aggagcatcg	tggaaaaaga	agacgttcca	accacgtctt	180
	caaagcaagt	ggattgatgt	gatacttcca	ctgacgtaag	ggatgacgca	caatcccact	240
	atccttcgca	agacccttcc	tctatataag	gaagttcatt	tcatttggag	aggacacgct	300
	gaaatcacca	gtctctctct	acaagatcgg	ggatctctag	ctagacgatc	gtttcgcatg	360
	attgaacaag	atggattgca	cgcaggttct	ccggccgctt	gggtggagag	gctattcggc	420
	tatgactggg	cacaacagac	aatcgctgc	tctgatgccg	ccgtgttccg	gctgtcagcg	480
	caggggcgcc	cggttttttt	tgtcaagacc	gacctgtccg	gtgccctgaa	tgaactgcag	540
	gacgaggcag	cgcggctatc	gtggctggcc	acgacgggcg	ttccttgccgc	agctgtgctc	600
	gacgttgc	ctgaagcggg	aaggactgg	ctgctattgg	gcgaagtgcc	ggggcaggat	660
	ctcctgtcat	ctcaccttgc	tcctgccag	aaagtatcca	tcatggctga	tgcaatgcgg	720
	cggctgcata	cgcttgatcc	ggctacctgc	ccattcgacc	accaagcgaa	acatcgcatc	780
	gagcgagcac	gtactcggat	ggaagccggt	cttgcgatc	aggatgatct	ggacgaagag	840
	catcaggggc	tcgcgccagc	cgaactgttc	gccaggctca	aggcgcgcat	gcccacggc	900
	gaggatctcg	tcgtgaccca	tggcgatgcc	tgcttgccga	atatcatggt	ggaaaatggc	960
	cgctttctg	gattcatcga	ctgtggccgg	ctgggtgtgg	cggaccgcta	tcaggacata	1020
	gcgttggcta	cccgat	tgctgaagag	cttggcggcg	aatggctga	ccgcttcctc	1080
	gtgctttacg	gtatcgccgc	tcccgattcg	cagcgatcg	ccttctatcg	ctttcttgac	1140
	gagttcttct	gagcgggact	ctggggttcg	aagaattccc	gatcgtaaa	acatttggca	1200
	ataaaagttc	ttaagattga	atcctgttgc	cggcttgccg	atgattatca	tataatttct	1260

gttgaattac	gttaagcatg	taataattaa	catgtaatgc	atgacgttat	ttatgagatg	1320
ggttttatg	attagagtcc	cgcaattata	cattaatac	gcgatagaaa	acaaaatata	1380
gcgcgcaaac	taggataaat	tatcgcgcgc	ggtgtcatct	atgttactag	atcgggata	1440
tcgcgtgtct	ttataattct	ttgatgaacc	agatgcattt	tattaaccaa	ttccatatac	1500
atataaatat	taatcatata	taattaatat	caattgggtt	agcaaaacaa	atctagtcta	1560
ggtgtgtttt	gctaattattt	ggggatagt	gcaaaaagaa	atctacgttc	tcaataattc	1620
agatagaaaaa	cttaataaag	tgagataatt	tacatagatt	gcttttatcc	tttgatatat	1680
gtgaaaccat	gcatgatata	aggaaaatag	atagagaaat	aatttttac	atcgttgaat	1740
atgtaaacaa	tttaattcaa	gaagctagga	atataaatat	tgaggagttt	atgattatta	1800
ttattatttt	gatgttaat	gaagttttt	ttaatttcat	atgaagtata	caaaaattct	1860
tcatagattt	ttgtttctat	gccgtagtt	tcttaatat	atttgtggtt	gaagaaattt	1920
attgctagaa	acgaatggat	tgtcaatttt	ttttaaagc	aaatataatat	gaaattatac	1980
tgtatattat	tttagtcatg	attaaaatgt	ggcctaatt	gaatcatctt	tctcattcat	2040
tttttcaaaa	gcatatcagg	atgattgata	tttatctatt	ttaaaaattha	atthaagggt	2100
tcaaattaaa	tttaacttaa	aagtgtccta	accgttagtt	aaggtttact	ttaaaaaaat	2160
actatgaaaaa	atctaatactt	ctatgaatcg	accgctgatc	gatcgccgccc	gctggcgcbc	2220
cctcgagagg	cctcatctaa	gccccattt	ggacgtgaat	gtagacacgt	cgaataaaag	2280
atttccgaat	tagaataatt	tgtttattgc	tttcgcctat	aaatacgacg	gatcgtaatt	2340
tgtcgttta	tcaaaatgta	cttcatttt	ataataacgc	tgcggacatc	tacattttg	2400
aattgaaaaa	aaattggtaa	ttactcttc	ttttctcca	tattgaccat	catactcatt	2460
gctgatccat	gtagatttcc	cggacatgaa	gccatttaca	attgaatata	tcctgccc	2520
gctgccgctt	tgcacccgggt	ggagcttgca	tgttggttcc	tacgcagaac	tgagccgggt	2580
aggcagataa	tttccattga	gaactgagcc	atgtgcacct	tcccccaac	acggtgagcg	2640
acggggcaac	ggagtgatcc	acatggact	tttcctagct	tggctgccat	ttttgggtg	2700
aggccgttcg	cggccgaggg	gcfgcagcccc	tgggggatg	ggaggccgc	gttagcgggc	2760
cgggagggtt	cgagaagggg	gggcacccccc	cttcggcgtg	cgcggtcacg	cgcacaggc	2820
gcagccctgg	ttaaaaacaa	ggttataaaa	tattggttt	aaagcaggtt	aaaagacagg	2880
ttagcggtgg	ccgaaaaacg	ggcggaaacc	cttgc当地atg	ctggattttc	tgc当地gtgga	2940
cagcccctca	aatgtcaata	ggtgc当地cccc	tcatctgtca	gcactctgcc	cctcaagtgt	3000
caaggatcgc	gcccctcatc	tgtcagtagt	cgc当地ccccctc	aagtgtcaat	accgcaggc	3060

acttatcccc aggcttgc acatcatctg tggaaactc gcgtaaaatc aggcgtttc 3120
 gccgatttgc gaggttggcc agctccacgt cgccggccga aatcgagcct gcccctcatc 3180
 tgtcaacgcc ggcgggggtg agtcggcccc tcaagtgtca acgtccgccc ctcatctgtc 3240
 agtggggcc aagtttccg cgaggtatcc acaacgcccgg cggccggccg cggtgtctcg 3300
 cacacggctt cgacggcggtt tctggcggtt ttgcagggcc atagacggcc gccagcccag 3360
 cggcgagggc aaccagcccg gtgagcgtcg gaaagggtcg atcgaccat gcccattgaga 3420
 gccttcaacc cagtcagctc cttccgggtgg ggcggggca tgactacggt atcagctcac 3480
 tcaaaggccg taatacggtt atccacagaa tcagggata acgcaggaaa gaacatgtga 3540
 gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg ctttgctggc gttttccat 3600
 aggctccgccc cccctgacga gcatcacaaa aatcgacgct caagtcaagag gtggcgaaac 3660
 ccgacaggac tataaagata ccaggcggtt cccctggaa gctccctcggt ggcgtctccct 3720
 gttccgaccc tgccgcttac cggatacctg tccgccttcc tcccttcggg aagcgtggcg 3780
 ctttctcata gtcacgctg taggtatctc agttcggtgt aggtcggtcg ctccaagctg 3840
 ggctgtgtgc acgaaccccc cgttcagccg gaccgctgctg cttatccgg taactatcg 3900
 cttgagttca acccggttaag acacgactta tcgcccactgg cagcagccac tggtaacagg 3960
 attagcagag cgaggtatgt aggcgggtgt acagagttct tgaagtgggt gcctaactac 4020
 ggctacacta gaagaacagt atttggtatac tgcgctctgc tgaagccagt tacccctgg 4080
 aaaagagttg gtagcttttgc atccggcaaa caaaccaccg ctggtagccgg tggttttttt 4140
 gtttgcagaac agcagattac ggcgcagaaaa aaaggatctc aagaagatcc tttgatcttt 4200
 tctacggggct ctgacgctca gtggaaacgaa aactcacgtt aagggatttt ggtcatgagg 4260
 gaagcggtga tcgcccgaatg atcgactcaa ctatcagagg tagttggcgt catcgagcgc 4320
 catctcgaaac cgacgttgct ggccgtacat ttgtacggct ccgcagtggta tggccggctg 4380
 aagccacaca gtgatattga tttgctgggtt acggtgaccg taaggcttga taaaacaacg 4440
 cggcgagctt tgatcaacga cttttggaa acttcggctt cccctggaga gagcggagatt 4500
 ctccgcgtg tagaagtcac cattgttgcg cacgacgaca tcattccgtg gcgttatcca 4560
 gctaagcgcg aactgcaatt tggagaatgg cagcgcaatg acattcttcg aggtatcttc 4620
 gagccagccca cgatcgacat tgatctggct atcttgcgtca caaaagcaag agaacatagc 4680
 gttgccttgg taggtccagc ggcggaggaa ctctttgatc cggttccctga acaggatcta 4740
 tttgaggcgc taaatgaaac cttaacgcta tggaaactcgc cgcccgactg ggctggcgat 4800
 gagcgaaatg tagtgcttac gttgtcccgat atttggtaca ggcgcgttaac cggcaaaatc 4860
 gcgcgcgaagg atgtcgctgc cgactggccatggagcgcc tggccggccca gtatcagccc 4920

gtcataactg aagctaggca ggcttatctt ggacaagaag atcgcttggc ctcgcgcga	4980
gatcagttgg aagaatttgt tcactacgtg aaaggcgaga tcaccaaggt agtcggcaaa	5040
taatgtctaa caattcggttc aagccgacgc cgcttcgcgg cgccggctaa ctcaagcggt	5100
agatgctgca ggcacatcggtt tgtcacgctc gtcgtttggatggcttcat tcagctccgg	5160
ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc	5220
cttcggtcct ccgatcgagg attttcggc gctgcgtac gtccgcgacc gcgttgaggg	5280
atcaagccac agcagccac tcgaccttct agccgaccca gacgagccaa gggatcttt	5340
tggaatgctg ctccgtcgtc aggctttccg acgtttgggt ggttgaacag aagtcttatt	5400
cgcacggaat gccaagcact cccgagggga accctgtggatggcatgcac atacaatgg	5460
acgaacggat aaaccttttc acgccccttt aaatatccga ttattctaat aaacgtctt	5520
ttctctttagg tttacccgcc aatatatctt gtcaaacact gatagttaa acatgactct	5580
cttaaggtag ccaaagcccc ggaattcggc ggcgcgtcgg ccgcctcgag gtcattcata	5640
tgcttgagaa gagagtcggg atagtccaaa ataaaacaaa ggtaagatata cctgtcaaa	5700
agtgaaaaca tcagttaaaa ggtggtataa agtaaaatat cggtaataaa aggtggccca	5760
aagtgaaatt tactcttttc tactattata aaaattggagg atgttttgcgtacttttgc	5820
atacgtcatt ttgttatgaa ttggttttta agtttattcg ctggggaaa tgcataatctg	5880
tatttgagtc gggttttaag ttctgtttgc ttgttaataa cagaggatttgtataagaa	5940
atatctttaa aaaaacccat atgctaattt gacataattt ttgagaaaaa tatatattca	6000
ggcgaattct cacaatgaac aataataaga ttaaaatagc ttcccccgatgcgcata	6060
gggtattttt tctagttaaa ataaaagata aacttagact caaaacattt acaaaaacaa	6120
cccttaaagt tcctaaagcc caaagtgcata tccacgtatcc atagcaagcc cagcccaacc	6180
caacccaaacc caacccaccc cagtcagcc aactggacaa tagtctccac acccccccac	6240
tatcaccgtg agttgtccgc acgcacccgc cgtctcgac ccaaaaaaaaaaaaaaaaag	6300
aaaaaaaaaga aaaagaaaaa acagcaggtg ggtccgggtc gtggggcccg gaaacgcgag	6360
gaggatcgcg agccagcgac gaggccggcc ctccctccgc ttccaaagaa acgccccca	6420
tgcgcactat atacataccccc cccctctcc tcccatcccc ccaaccctac caccaccacc	6480
accaccaccc ctacactcctc cccctcgct gccgcacgcac gagctccatccccc	6540
tccggccggcc cgccgcccgg aaccaccccg cccctctcccttccatcccttccatccccc	6600
tttccgtctc ggtctcgatc ttggccttg gtagttggg tggcgagag gcggttcgt	6660
gcgcgcccag atcgggtgcgc gggagggccgg gatctcgac gctggggctc tcgcggcgt	6720

ggatccggcc cgatctcgcc gggaaatggg gctctcgat gtagatctgc gatccggcg 6780
 tggggggaa gatgatgggg ggtttaaaat ttccgcctatg ctaaacaaga tcaggaagag 6840
 gggaaaaggc cactatggtt tatattttta tatatttctg ctgcttcgtc aggcttagat 6900
 gtgctagatc tttcttctt cttttggg gtagaatttgc aatccctcag cattgttcat 6960
 cggtagttt tctttcatg atttgcgaca aatgcagcct cgtgcggagc tttttgttag 7020
 gtagaccgcg gtagatcaca agtttgcgaca aaaaagctga acgagaaacg taaaatgata 7080
 taaatatcaa tatattaaat tagatttgc ataaaaaaca gactacataa tactgtaaaa 7140
 cacaacatatac cagtcacta tggcggccgc attaggcacc ccaggctta cacttatgc 7200
 ttccggctcg tataatgtgt ggattttgag ttaggatccg tcgagattt caggagctaa 7260
 ggaagctaaa atggagaaaaaa aatcactgg atataccacc gttgatataat cccaatggca 7320
 tcgtaaagaa cattttgagg catttcagtc agttgctaa tgtacctata accagaccgt 7380
 tcagctggat attacggcct tttaaagac cgtaaagaaaaa aataaggcaca agttttatcc 7440
 ggcctttatt cacattcttg cccgcctgat gaatgctcat ccggaaattcc gtatggcaat 7500
 gaaagacggt gagctggta tatggatag tggttacccct tggttacccg tttccatga 7560
 gcaaactgaa acgttttcat cgctctggag tgaataccac gacgatttcc ggcagttct 7620
 acacatatac tcgcaagatg tggcgtgttca cggtgaaaac ctggcctatt tccctaaagg 7680
 gtttatttgcgaa aatatgtttt tcgtctcagc caatccctgg gtgagttca ccagtttgcg 7740
 tttaaacgtg gccaatatgg acaacttctt cgccccgtt ttcaccatgg gcaaataat 7800
 tacgcaaggc gacaagggtgc tgatgccgct ggcgattcag gttcatcatg ccgtttgtga 7860
 tggcttccat gtcggcagaa tgcttaatga attacaacag tactgcgtatg agtggcaggg 7920
 cggggcgtaa acgcgtggat ccggcttact aaaagccaga taacagtatg cgtatggcg 7980
 cgctgatttt tgccgtataa gaatataac tgatatgtat acccgaagta tgtcaaaaag 8040
 aggtatgcta tgaagcagcg tattacagtgc acagttgaca ggcacagctc tcagttgctc 8100
 aaggcatata tgatgtcaat atctccggc tggtaagcac aaccatgcag aatgaagccc 8160
 gtcgtctcg tggcaacgc tggaaagccg aaaatcagga agggatggct gaggtcgccc 8220
 ggttatttgcgaa aatgaacggc tcttttgcg acgagaacag gggctggta aatgcagttt 8280
 aagggttaca cctataaaag agagagccgt tatcgatgtt ttgtggatgt acagagtat 8340
 attattgaca cggccggcg acggatggtg atccccctgg ccagtgcacg tctgtgtca 8400
 gataaaagtct cccgtgaact ttacccggcgt gtgcataatgc gggatgaaag ctggcgatg 8460
 atgaccacccg atatggccag tggccggc tccgttatgc gggagaagt ggctgatctc 8520
 agccaccgcg aaaatgacat caaaaacgcc attaacctga tggctgggg aatataatg 8580

tcaggctccc ttatacacag ccagtctgca ggtcgaccat agtgactgga tatgttgtgt	8640
tttacagtat tatgttagtct gtttttatg caaaatctaa tttaatataat tgatatttat	8700
atcattttac gtttctcggt cagctttctt gtacaaagtg gtgatgggga tcccccaccc	8760
tgcaatgtga ccctagactt gtccatcttc tggattggcc aacttaattt atgtatgaaa	8820
taaaaggatg cacacatagt gacatgctaa tcactataat gtgggcatca aagttgtgt	8880
ttatgtgtaa ttactaatta tctgaataag agaaagagat catccatatt tcttaccta	8940
aatgaatgtc acgtgtctt ataattctt gatgaaccag atgcattta ttaaccaatt	9000
ccatatacat ataaatatta atcatatata attaatatca attgggttag caaaacaaat	9060
ctagtctagg tgtgtttgc taattattgg gggatagtgc aaaaagaaat ctacgttctc	9120
aataattcag atagaaaact taataaagtg agataattt catagattgc ttttacctt	9180
tgatatatgt gaaaccatgc atgatataag gaaaatagat agagaaataa tttttacat	9240
cgttgaatat gtaaacaatt taattcaaga agcttaggaat ataaatattt aggagttat	9300
gattattatt attattttga tttcaatga agttttttt aatttcatat gaagtataca	9360
aaaattcttc atagattttt gtttctatgc cgttagttatc tttaatataat ttgtgggtga	9420
agaaattttat tgctagaaac gaatggattt tcaattttt tttaaagcaa atatataatga	9480
aattataactg tatatttattt tagtcatgat taaaatgtgg ccttaattga atcatcttc	9540
tcattcattt tttcaaaagc atatcaggat gattgatatt tatctatttt aaaaatttaat	9600
ttaagggttc aaattnaatt taacttaaaa gtgtcctaac cgttagttaa ggtttacttt	9660
aaaaaaaaatac tatgaaaaat ctaatcttct atgaatcgac ctgcaggatt taaatccatc	9720
gttctggggc ctaacgggcc aagcttt	9747

<210> 11
 <211> 1023
 <212> PRT
 <213> Artificial

<220>
 <223> promoter

<400> 11

Ala Gly Cys Thr Thr Ala Thr Cys Gly Gly Cys Cys Gly Ala Gly Gly
 1 5 10 15

Thr Gly Ala Gly Ala Ala Gly Gly Thr Thr Cys Thr Ala Ala Ala
 20 25 30

Gly Ala Cys Ala Thr Gly Ala Gly Gly Thr Gly Gly Ala Ala Gly

35

40

45

Gly Cys Cys Thr Gly Ala Cys Gly Thr Ala Gly Ala Thr Ala Gly Ala
50 55 60

Gly Ala Ala Gly Ala Thr Gly Cys Thr Cys Thr Ala Gly Cys Thr
65 70 75 80

Thr Thr Cys Ala Thr Thr Gly Thr Cys Thr Thr Thr Cys Thr Thr Thr
85 90 95

Thr Gly Thr Ala Gly Thr Cys Ala Thr Cys Thr Gly Ala Thr Thr Thr
100 105 110

Ala Cys Cys Thr Cys Thr Cys Thr Cys Gly Thr Thr Thr Ala Thr Ala
115 120 125

Cys Ala Ala Cys Thr Gly Gly Thr Thr Thr Thr Thr Ala Ala Ala
130 135 140

Cys Ala Cys Thr Cys Cys Thr Thr Ala Ala Cys Thr Thr Thr Thr Cys
145 150 155 160

Ala Ala Ala Thr Thr Gly Thr Cys Thr Cys Thr Thr Thr Cys Thr Thr
165 170 175

Thr Ala Cys Cys Cys Thr Ala Gly Ala Cys Thr Ala Gly Ala Thr Ala
180 185 190

Ala Thr Thr Thr Ala Ala Thr Gly Gly Thr Gly Ala Thr Thr Thr
195 200 205

Thr Gly Cys Thr Ala Ala Thr Gly Thr Gly Gly Cys Gly Cys Cys Ala
210 215 220

Thr Gly Thr Thr Ala Gly Ala Thr Ala Gly Ala Gly Gly Thr Ala Ala
225 230 235 240

Ala Ala Thr Gly Ala Ala Cys Thr Ala Gly Thr Thr Ala Ala Ala Ala
245 250 255

Gly Cys Thr Cys Ala Gly Ala Gly Thr Gly Ala Thr Ala Ala Ala Thr
260 265 270

Cys Ala Gly Gly Cys Thr Cys Thr Cys Ala Ala Ala Ala Ala Thr Thr
275 280 285

Cys Ala Thr Ala Ala Ala Cys Thr Gly Thr Thr Thr Thr Thr Ala
290 295 300

Ala Ala Thr Ala Thr Cys Cys Ala Ala Ala Thr Ala Thr Thr Thr Thr
305 310 315 320

Thr Ala Cys Ala Thr Gly Gly Ala Ala Ala Ala Thr Ala Ala Thr Ala
325 330 335

Ala Ala Ala Thr Thr Ala Gly Thr Thr Thr Ala Gly Thr Ala Thr
340 345 350

Thr Ala Ala Ala Ala Ala Ala Thr Thr Cys Ala Gly Thr Thr Gly Ala
355 360 365

Ala Thr Ala Thr Ala Gly Thr Thr Thr Gly Thr Cys Thr Thr Cys
370 375 380

Ala Ala Ala Ala Ala Ala Thr Thr Ala Thr Gly Ala Ala Ala Cys Thr Gly
385 390 395 400

Ala Thr Cys Thr Thr Ala Ala Thr Thr Ala Thr Thr Thr Thr Cys
405 410 415

Cys Thr Thr Ala Ala Ala Cys Cys Gly Thr Gly Cys Thr Cys Thr
420 425 430

Ala Thr Cys Thr Thr Gly Ala Thr Gly Thr Cys Thr Ala Gly Thr
435 440 445

Thr Thr Gly Ala Gly Ala Cys Gly Ala Thr Thr Ala Thr Ala Thr Ala
450 455 460

Ala Thr Thr Thr Thr Thr Thr Thr Gly Thr Gly Cys Thr Thr Ala
465 470 475 480

Ala Cys Thr Ala Cys Gly Ala Cys Gly Ala Gly Cys Thr Gly Ala Ala
485 490 495

Gly Thr Ala Cys Gly Thr Ala Gly Ala Ala Ala Thr Ala Cys Thr Ala
500 505 510

Gly Thr Gly Gly Ala Gly Thr Cys Gly Thr Gly Cys Cys Gly Cys Gly
515 520 525

Thr Gly Thr Gly Cys Cys Thr Gly Thr Ala Gly Cys Cys Ala Cys Thr
530 535 540

Cys Gly Thr Ala Cys Gly Cys Thr Ala Cys Ala Gly Cys Cys Cys Ala
545 550 555 560

Ala Gly Cys Gly Cys Thr Ala Gly Ala Gly Cys Cys Ala Ala Gly
565 570 575

Ala Gly Gly Cys Cys Gly Gly Ala Gly Gly Thr Gly Gly Ala Ala Gly
580 585 590

Gly Cys Gly Thr Cys Gly Cys Gly Cys Ala Cys Thr Ala Thr Ala
595 600 605

Gly Cys Cys Ala Cys Thr Cys Gly Cys Cys Gly Cys Ala Ala Gly Ala
610 615 620

Gly Cys Cys Cys Ala Ala Gly Ala Gly Cys Cys Gly Gly Ala Gly
625 630 635 640

Cys Thr Gly Gly Ala Ala Gly Gly Ala Thr Gly Ala Gly Gly Thr
645 650 655

Cys Thr Gly Gly Thr Gly Thr Cys Ala Cys Gly Ala Ala Thr
660 665 670

Thr Gly Cys Cys Thr Gly Gly Ala Gly Gly Cys Ala Gly Gly Ala Gly
675 680 685

Gly Cys Thr Cys Gly Thr Cys Gly Thr Cys Cys Gly Gly Ala Gly Cys
690 695 700

Cys Ala Cys Ala Gly Gly Cys Gly Thr Gly Gly Ala Gly Ala Cys Gly
705 710 715 720

Thr Cys Cys Gly Gly Ala Thr Ala Ala Gly Gly Thr Gly Ala Gly
725 730 735

Cys Ala Gly Cys Cys Gly Cys Thr Gly Cys Gly Ala Thr Ala Gly Gly
740 745 750

Gly Gly Cys Gly Cys Gly Thr Gly Thr Gly Ala Ala Cys Cys Cys Cys
755 760 765

Gly Thr Cys Gly Cys Gly Cys Cys Cys Cys Ala Cys Gly Gly Ala Thr
770 775 780

Gly Gly Thr Ala Thr Ala Ala Gly Ala Ala Thr Ala Ala Ala Gly Gly
785 790 795 800

Cys Ala Thr Thr Cys Cys Gly Cys Gly Thr Gly Cys Ala Gly Gly Ala
805 810 815

Thr Thr Cys Ala Cys Cys Gly Thr Thr Cys Gly Cys Cys Thr Cys
820 825 830

Thr Cys Ala Cys Cys Thr Thr Thr Cys Gly Cys Thr Gly Thr Ala
835 840 845

Cys Thr Cys Ala Cys Thr Cys Gly Cys Cys Ala Cys Ala Cys Ala Cys
850 855 860

Ala Cys Cys Cys Cys Cys Thr Cys Thr Cys Cys Ala Gly Cys Thr Cys
865 870 875 880

Cys Gly Thr Thr Gly Gly Ala Gly Cys Thr Cys Cys Gly Gly Ala Cys
885 890 895

Ala Gly Cys Ala Gly Cys Ala Gly Gly Cys Gly Cys Gly Gly Gly
900 905 910

Cys Gly Gly Thr Cys Ala Cys Gly Thr Ala Gly Thr Ala Ala Gly Cys
915 920 925

Ala Gly Cys Thr Cys Thr Cys Gly Gly Cys Thr Cys Cys Cys Thr Cys
930 935 940

Thr Cys Cys Cys Cys Thr Thr Gly Cys Thr Cys Cys Ala Thr Ala Thr
945 950 955 960

Gly Ala Thr Cys Gly Thr Cys Gly Ala Ala Cys Cys Cys Ala Thr Cys
965 970 975

Gly Ala Gly Cys Thr Ala Cys Ala Ala Cys Gly Gly Thr Thr Cys Thr
980 985 990

Cys Ala Cys Cys Gly Cys Gly Gly Cys Gly Cys Gly Ala Thr Thr
995 1000 1005

Thr Cys Cys Ala Gly Cys Ala Gly Cys Cys Cys Gly Gly Gly Gly

1010

1015

1020

<210> 12			
<211> 804			
<212> DNA			
<213> Artificial			
<220>			
<223> element			
<400> 12			
accgtcttcg gtacgcgctc actccgcct ctgccttgc tactgccacg tttctctgaa	60		
tgctctcttg tgtggtgatt gctgagagt gtttagctgg atctagaatt acactctgaa	120		
atcgtgttct gcctgtgctg attacttgcc gtcctttgta gcagcaaaat atagggacat	180		
ggtagtacga aacgaagata gaacctacac agcaatacga gaaatgtgta atttggtgct	240		
tagcggattt tatttaagca catgttggtg ttataggca cttggattca gaagtttgct	300		
gttaatttag gcacaggctt catactacat gggtaatag tataggattt catattatag	360		
gcgatactat aataatttgc tcgtctgcag agcttattat ttgcaaaat tagatattcc	420		
tattctgttt ttgtttgtgt gctgttaat tgttaacgcc tgaaggaata aatataatg	480		
acgaaatttt gatgtttatc tctgctcctt tattgtgacc ataagtcaag atcagatgca	540		
cttggttttaa atattgtgt ctgaagaaat aagtactgac agtattttga tgcattgatc	600		
tgcttggttg ttgtaacaaa atttaaaaat aaagagtttc cttttggc ctctccttac	660		
ctcctgatgg tatctagat ctaccaactg acactatatt gcttctctt acatacgtat	720		
cttgctcgat gccttctccc tagtggcgtac cagtgttact cacatagtct ttgctcattt	780		
cattgtaatg cagataccaa gcgg	804		

<210> 13			
<211> 9754			
<212> DNA			
<213> Artificial			

<220>			
<223> vector			

<400> 13			
gatggggatc agattgtcgt ttccgcctt cagttaaac tatcagtgtt tgacaggata	60		
tattggcggg taaacctaag agaaaagagc gtttattaga ataatcgat attaaaagg	120		
gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat gccaaccaca gggttccct	180		
cgggagtgtc tggcattccg.tgcgataatg acttctgttc aaccacccaa acgtcgaaa	240		
gcctgacgac ggagcagcat tccaaaaaga tccctggct cgtctggc ggctagaagg	300		
tcgagtggc tgctgtggct tgatccctca acgcggcgc ggacgtagcg cagcgccaa	360		

aaatcctcga	tcggaggacc	gaaggagcta	accgctttt	tgcacaacat	ggggatcat	420	
gtaactcgcc	ttgatcggt	ggaaccggag	ctgaatgaag	ccataccaaa	cgacgagcgt	480	
gacaccacga	tgcctgcagc	atctaacgct	tgagttaa	gcgcgcgcga	agcggcgtcg	540	
gcttgaacga	attgttagac	attatttgcc	gactacctt	gtgatctcgc	cttcacgt	600	
gtgaacaaat	tcttccaact	gatctgcgcg	cgaggccaag	cgatcttctt	gtccaagata	660	
agcctgccta	gcttcaagta	tgacgggct	atactggcc	ggcaggcgct	ccattgccc	720	
gtcggcagcg	acatcctcg	gcfgcattt	gccggtact	gcgcgttacc	aaatgcggg	780	
caacgtaa	actacattt	gctcatcgcc	agcccagtcg	ggcggcgagt	tccatagcgt	840	
taaggttca	tttagcgcct	caaata	gatc	ctgttca	accggatcaa	agagttcctc	900
cggcgctgga	cctaccaagg	caacgctat	ttctctt	gttgc	agatagccag	960	
atcaatgtcg	atcg	tggt	gctcg	acat	gttgc	1020	
tccaaattgc	agttcgcg	ctgttgc	acg	ccac	gtcg	1080	
aatggtgact	tctacagcgc	ggagaat	ctc	gttgc	acat	gttgc	1140
aagg	tcgttgc	atcaaag	gtc	cggttgc	ttcat	caac	1200
caaatcaata	tcactgtgt	gttca	ggcc	atccact	ttacgg	ccgt	1260
ggccagcaac	gtcggttcga	gatggcg	cttgc	actac	cttgc	atagtt	1320
cgatacttcg	gcfg	atcc	cttgc	tttta	tc	agccgc	1380
cgaagcgg	tcgg	tttgc	gatgg	tttgc	tttgc	tttgc	1440
atggcaacaa	cg	tttgc	tttgc	tttgc	tttgc	tttgc	1500
caattaatag	actggat	tttgc	tttgc	tttgc	tttgc	tttgc	1560
ccggctgg	gtt	tttgc	tttgc	tttgc	tttgc	tttgc	1620
attgcagcac	tgg	tttgc	tttgc	tttgc	tttgc	tttgc	1680
agtca	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1740
aagcatttgt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1800
catttttaat	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1860
ccttaacgt	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1920
tctttagatc	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1980
ccagcgg	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2040
ttcagcag	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2100
ttcaagaact	tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	2160

gctgccagt gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat 2220
 aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg 2280
 acctacacccg aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccgaa 2340
 gggagaaagg cgacagggta tccggttaagc ggcagggtcg gaacaggaga ggcacgagg 2400
 gagcttccag gggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccacctctga 2460
 cttgagcgtc gattttgtg atgctcgta gggggcgga gcctatggaa aaacgccagc 2520
 aacgcggcct tttacggtt cctggcctt tgctggcctt ttgctcacat gttcttcct 2580
 gcgttatccc ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct 2640
 cgccgcagcc gaacgaccga ggcagcgtc tcagtgagcg aggaagcgga agagcgcctg 2700
 atgcggtatt ttctccttac gcatctgtgc ggtatttcac accgcatatg gtgcactctc 2760
 agtacaatct gctctgatgc cgcatagtttta agccagtata cactccgcta tcgctacgtg 2820
 actgggtcat ggctgcgccc cgacacccgc caacacccgc tgacgcgccc tgacggcctt 2880
 gtctgctccc ggcattccgct tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc 2940
 agaggtttc accgtcatca ccgaaacgcg cgaggcagct gcggtaaagc tcatcagcgt 3000
 ggtcgtgaag cgattcacag atgtctgcct gttcatccgc gtccagctcg ttgagttct 3060
 ccagaagcgt taatgtctgg cttctgataa agcgggcccgtttaaggcg gtttttcct 3120
 gtttggtcac tgcgtcccttcc gtttaagggg gatttctgtt catggggta atgataccga 3180
 tggaaacgaga gaggatgctc acgatacggg ttactgtga tgaacatgcc cggttactgg 3240
 aacgttgtga gggtaaacaatccggat ggtgcggcg ggaccagaga aaaatcactc 3300
 agggtaatcg ccagcgcttc gttaatacag atgttaggtgt tccacagggt agccagcagc 3360
 atcctgcgtat gcagatccgg aacataatgg tgcaggcgcc tgacttccgc gtttccagac 3420
 tttacgaaac acggaaaccg aagaccattc atgttgcgtc tcaggtcgca gacgtttgc 3480
 agcagcagtc gttcacgtt cgctcgctt tcgggtatttcttgcattaa ccagtaaggc 3540
 aaccccgcca gcctagccgg gtcctcaacg acaggagcac gatcatgcgc acccgccggc 3600
 aggacccaaac gctgcccggat gtcggcgcc tgccgtgttgc ggagatggcg gacgcgtgg 3660
 atatgttctg ccaagggttg gtttgcgtat tcacagttct ccgcaagaat tgatggctc 3720
 caattcttgg agtggtaat ccgttagcga ggtggccgg gcttccattc aggtcgaggt 3780
 ggcccggttc catgcaccgc gacgcaacgc ggggaggcag acaaggtata gggccggc 3840
 tacaatccat gccaacccgt tccatgtgtc cgccgaggcg gcataaatcg ccgtgacgt 3900
 cagcggtcca atgatcgaag ttaggctggat aagagccgcg agcgatcctt gaagctgtcc 3960
 ctgatggtcg tcatctacccgcctggacag catggcctgc aacgcgggca tcccgatgcc 4020

gccggaagcg	agaagaatca	taatgggaa	ggccatccag	cctcgctcg	cgaacgccag	4080
caagacgtag	cccagcgcgt	cggccgcat	gccggcgata	atggcctgct	tctcgccgaa	4140
acgtttggtg	gccccgaccag	tgacgaaggc	ttgagcgagg	gcgtgcaaga	ttccgaatac	4200
cgcaagcgac	aggccgatca	tcgtcgct	ccagcgaaag	cggtcctcgc	cggaaatgac	4260
ccagagcgct	gccggcacct	gtcctacgag	ttgcatgata	aagaagacag	tcataagtgc	4320
ggcgacgata	gtcatgcccc	gccccacccg	gaaggagctg	actgggttga	aggctctcaa	4380
gggcatcggt	cgatcgaccc	tttccgacgc	tcaccggct	ggttgccctc	gccgctggc	4440
tggcggccgt	ctatggccct	gcaaacgcgc	cagaaacgccc	gtcgaagccg	tgtgcgagac	4500
accgcggccg	gccgcccggcg	tttgtggatac	ctcgcgaaa	acttggccct	cactgacaga	4560
tgagggccgg	acgttgacac	ttgaggggcc	gactcacccg	gcgccgcgtt	gacagatgag	4620
gggcaggctc	gatttcggcc	ggcgacgtgg	agctggccag	cctcgcaaat	cggcgaaaac	4680
gcctgatttt	acgcgagttt	cccacagatg	atgtggacaa	gcctggggat	aagtgcctg	4740
cggtatttgc	acttgggggg	cgcgactact	gacagatgag	gggcgcgatc	cttgcacactt	4800
gaggggcaga	gtgctgacag	atgagggcg	cacctattga	catttgaggg	gctgtccaca	4860
ggcagaaaaat	ccagcatttgc	caagggtttc	cgcgcgtttt	tcggccaccc	ctaacctgtc	4920
ttttaacctg	cttttaaacc	aatatttata	aaccttgttt	ttaaccaggc	ctgcgcctg	4980
tgcgcgtgac	cgcgcacgccc	gaaggggggt	gccccccctt	ctcgaaccct	cccggccgc	5040
taacgcgggc	ctcccatccc	cccagggct	gcccgcctcg	gccgcgaacg	gcctcacccc	5100
aaaaatggca	gccaagctag	gaaaagtccc	atgtggatca	ctccgttgcc	ccgtcgctca	5160
ccgtgttggg	gggaaggtgc	acatggctca	gttctcaatg	gaaattatct	gcctaaccgg	5220
ctcagttctg	cgtagaaacc	aacatgcaag	ctccaccggg	tgcaaagcgg	cagccggccgc	5280
aggatataatt	caattgtaaa	tggcttcatg	tccggaaat	ctacatggat	cagcaatgag	5340
tatgtatggtc	aatatggaga	aaaagaaaaga	gtattacca	attttttttc	aattcaaaaa	5400
tgttagatgtc	cgcagcgtta	ttataaaatg	aaagtacatt	ttgataaaac	gacaaattac	5460
gatccgtcgt	atttataggc	gaaagcaata	aacaaattat	tctaattcgg	aaatctttat	5520
ttcgacgtgt	ctacattcac	gtccaaatgg	gggcttagat	gagaaacttc	acgatcgatg	5580
cggccaccac	tcgagaagct	tactagtcaa	caattggcca	atcttgcgtc	taaattgcta	5640
ataaaacgacc	atttccgtca	atttccttg	gttgcacacag	tctaccgcgc	aaatgtttac	5700
taatttataa	gtgtgaagtt	tgaattatga	aagacgaaat	cgtattaaaa	attcacaaga	5760
ataaaacaact	ccatagattt	tcaaaaaaac	agtcacgaga	aaaaaaccac	agtccgttg	5820

tctgctcttc tagttttat tattttcta ttaatagttt tttgttattt cgagaataaa	5880
atttgaacga tgtccgaacc acaaaagccg agccgataaa tcctaagccg agcctaactt	5940
tagccgtaac catcagtcac ggctcccgaa ctaattcatt tgaaccgaat cataatcaac	6000
ggtttagatc aaactcaaaa caatctaacg gcaacataga cgcgtcggtg agctaaaaag	6060
agtgtgaaag ccaggtcacc atagcattgt ctctcccaga ttttttattt gggaaataat	6120
agaagaaata gaaaaaaaata aaagagttag aaaaatcgta gagctatata ttgcacatg	6180
tactcgtttc gcttcctta gtgttagctg ctgccgctgt tgtttctcct ccatttctct	6240
atctttctct ctcgctgctt ctcaatctt ctgtatcatc ttcttctct tcaaggttag	6300
tctctagatc cgttcgctt atttgctgc tcgttagtcg ttattgttga ttctctatgc	6360
cgatttcgct agatctgtt agcatgcgtt gtggtttat gagaaaaatct ttgtttggg	6420
ggttgcttgt tatgtgattc gatccgtgct tggtggatcg atctgagcta attcttaagg	6480
tttatgtgtt agatctatgg agtttgagga ttcttcgc ttctgtcgat ctctcgctgt	6540
tatttttgtt ttttcagtg aagtgaagtt gttagttcg aaatgacttc gtgtatgctc	6600
gattgatctg gtttaatct tcgatctgtt aggtgttgat gtttacaagt gaattctagt	6660
gttttctcgt tgagatctgt gaagtttcaa cctagtttc tcaataatca acatatgaag	6720
cgatgtttga gtttcaataa acgctgctaa tcttcgaaac taagttgtga tctgattcgt	6780
gtttacttca tgagcttatac caattcattt cggtttcatt ttacttttt ttttagtgaac	6840
catggcgcaa gtttagcagaa tctgcaatgg tgtgcagaac ccatctctta tctccaatct	6900
ctcgaaatcc agtcaacgca aatctccctt atcggtttct ctgaagacgc agcagcatcc	6960
acgagcttat ccgatttcgt cgtcggtttttt attgaagaag agtggatga cgttaattgg	7020
ctctgagott cgtcctctta aggtcatgtc ttctgtttcc acggcgtgca tgcttcattgg	7080
agcttcatct aggcagacta ctgccaggaa gtctagccggg ctcagttggca ccgtgcgcatt	7140
ccctggcgat aaaagtattt cacacaggag cttcatgttc ggaggacttg ctatggaga	7200
gacgagaatc actgggttgc ttgagggcga agatgttac aacaccggta aggcgatgca	7260
agcaatgggt gccagaatcc gaaaagaggg cgatacgtgg atcatcgacg gtgttgtaa	7320
cgaggaggattt ctcgctcccg aagcgccact tgactttggg aacgcagcta cggggcgcc	7380
tcttactatg ggactggtag gcgtgtatga ctgtactt accttcattcg gtgacgcgag	7440
cctcaactaag agaccaatgg gacgagtgtc gaatcccgtt agggagatgg gtgtccaggt	7500
gaaatctgag gatgggtatc gtcttccggc tactctgcga ggccccaaaga ccccccacgccc	7560
aatcacgtac aggggtccga tggcgtcagc acaggtcaag tcagcggtac tcctggcggtt	7620
cctcaacaca cctggaatca caaccgtgat tgaaccatc atgactagag accacacggaa	7680

gaagatgttgcagggtttcg	7740
gacaaatccgc	7800
ttggagggca	
gaggtaaact	
gactggccaa	
gtcatcgatg	
tgcctggaga	
tccctcggtcc	7860
acagcgtttc	
ccctcgtagc	
tgcgttgctc	
gtccctggat	
ctgatgtgac	
gatcctgaat	7920
gtcctcatga	
atccaactag	
aaccggcctc	
atcctcacat	
tgcaggagat	
gggtgctgac	7980
atcgaggtt	
tcaatcctag	
gttggcaggt	
ggagaggatg	
tggccgatct	
gcgctgcgt	8040
tctagtagtacac	
tcaaaggcgt	
gaccgtccct	
gaggatcgcg	
ctccatccat	
gatcgacgag	8100
taccccattc	
tcgcccgttgc	
tgctgcgttt	
gccgagggcg	
caactgtaat	
gaacggcctt	8160
gaggagttga	
gggttaagga	
gagtgacagg	
ctgtccgcgg	
tggcgaatgg	
cctgaagcta	8220
aacggcgtgg	
actgcgacga	
aggtgaaacg	
tcccttgttag	
tccgtggtcg	
cccagacggg	8280
aagggggttgg	
ggaatgcttc	
gggagctgct	
gtggcgacgc	
accttgcata	
cgatgctacc	8340
atgatcgcca	
cctcctttcc	
tgagttcatg	
gacctcatgg	
caggcttggg	
ggccaagatc	8400
gagctgtctg	
atactaaggc	
cgcttgaatt	
cccgatcggt	
caaacatttg	
gcaataaaagt	8460
ttcttaagat	
tgaatcctgt	
tgccggctt	
gcgatgatta	
tcatataatt	
tctgttgaat	8520
tacgttaagc	
atgtataat	
taacatgtaa	
tgcgtacgt	
tatttatgag	
atgggttttt	8580
atgatttagag	
tcccgcatt	
atacatttaa	
tacgcgatag	
aaaacaaaat	
atagcgcgca	8640
aactaggata	
aattatcgcg	
cgcgggtgtca	
tctatgttac	
tagatcgggg	
atcccacgtg	8700
cggaccgcct	
gcaggccgcg	
ttatcaagct	
aactgcaggt	
ccgatgtgag	
actttcaac	8760
aaagggttaat	
atccggaaac	
ctcctcggt	
tccattgccc	
agctatctgt	
cactttattt	8820
tgaagatagt	
ggaaaaggaa	
ggtggcttct	
acaaatgcca	
tcattgcgt	
aaaggaaagg	8880
ccatcggtga	
agatgcctc	
gccgacagt	
gtcccaaaga	
tggaccccca	
cccacgagga	8940
gcatcggtga	
aaaagaagac	
gttccaacca	
cgtcttcaaa	
gcaagtggat	
tgtatgtatg	9000
gtccgatttgc	
gactttcaa	
caaagggtaa	
tatccggaaa	
cctcctcggt	
ttccatttgc	9060
cagctatctg	
tcactttattt	
gtgaagatag	
tggaaaaggaa	
aggtggctcc	
tacaaatgcc	9120
atcattgcga	
taaaggaaag	
gccatcggt	
aagatgcctc	
tgccgacagt	
gttcccaaag	9180
atggacccccc	
acccacgagg	
agcatcggt	
aaaaagaaga	
cgttccaacc	
acgtcttcaa	9240
agcaagtgg	
ttgatgtat	
atctccactg	
acgtaaggaa	
tgaccacaa	
tcccactatc	9300
cttcgcaaga	
cccttcctct	
atataaggaa	
gttcatttca	
tttggagagg	
accaggtgtt	9360
accggcgcgc	
caggcctgtt	
agtctgatta	
attaagcgat	
cgcggccct	
gatcacctgt	9420
cgtacagtat	
ttctacattt	
gatgtgtat	
ttgtgaagaa	
catcaaacaa	
9480	

aacaaggact ggcttaata tcatgataag tattatggta attaattaat tggcaaaaac	9540
aacaatgaag ctaaaatttt atttatttag ccttgcgggt aatttcttgt gatgatcttt	9600
tttttattt tctaattata tatagtttcc tttgcggta aatgctaaag gtttgagaga	9660
gttatgctct tttttcttc ctcttctt tttaacttta tcatacaaataa tttgaataaa	9720
aatgtgagta cattgagctc atttaaataa gctt	9754

<210> 14
 <211> 1696
 <212> DNA
 <213> Artificial

 <220>
 <223> element

<400> 14 caaatttatt atgtgtttt tttccgtggt cgagattgtg tattattctt tagtattac	60
aagactttta gctaaaattt gaaagaattt acttaagaa aatcttaaca tctgagataa	120
tttcagcaat agattatatt tttcattact ctagcagtat tttgcagat caatcgcaac	180
atatatggtt gtttagaaaaaa atgcactata tatataatata ttatTTTC aattaaaagt	240
gcatgatata taatataatata atatataatata atgtgtgtgt gtatatggc aaagaaattc	300
ttatacaaat atacacgaac acatataattt gacaaaatca aagtattaca ctaaacaatg	360
agttggtgca tggccaaaac aaatatgttag attaaaaattt ccagcctcca aaaaaaaatc	420
caagtgttgt aaagcattat atatataatag tagatccaa attttgtac aattccacac	480
tgatcgaatt tttaaagttt aatatctgac gtaggatttt ttatgtct tacctgacca	540
tttactata acattcatac gttttcattt gaaatatcct ctataattat attgaatttg	600
gcacataata agaaacctaa ttggtgattt attttactag taaatttctg gtgatggct	660
ttctactaga aagctctcgaaaatctgg accaaatcca tattccatga cttcgattgt	720
taaccctatt agtttcaca aacatactat caatatcatt gcaacggaaa aggtacaagt	780
aaaacattca atccgatagg gaagtgtatgtt aggagggtgg gaagacaggc ccagaaagag	840
atttatctga cttgtttgt gtatagttt caatgttcat aaaggaagat ggagacttga	900
gaagttttt ttggactttt ttttagcttg ttggcggtt tttttttga tcaataactt	960
tgttggcgtt atgatttgta atatttcgtt ggactcttta gtttatttag acgtgctaacc	1020
tttggggc ttatgacttg ttgtacata ttgtacaga tgacttgatg tgactgactaat	1080
ctttacacat taaacatagt tctgtttttt gaaagttctt attttcattt ttatttgaat	1140
gttatataattttt tttctatatt tataattctt gtaaaaggca aattttgcattt ttaaatgaaa	1200
aaaatataataa ttccacagtt tcacctaattc ttatgcattt agcagtacaa attcaaaaat	1260

ttcccatattt tattcatgaa tcataccatt atatattaac taaatccaag gtaaaaaaaa	1320
ggtatgaaag ctctatagta agtaaaatat aaattccccca taaggaaagg gccaaagtcca	1380
ccaggcaagt aaaatgagca agcaccactc caccatcaca caatttcact catagataac	1440
gataagattc atgaaattat cttccacgtg gcattattcc agcggttcaa gccgataagg	1500
gtctcaacac ctctccttag gccttgtgg cggttaccaa gtaaaattaa ctcacacat	1560
atccacactc aaaatccaac ggtgtagatc ctagtccact tgaatctcat gtatcctaga	1620
ccctccgatc actccaaagc ttgttctcat tgggttatac attatataata gatgaccaaa	1680
gcactagacc aaacct	1696

<210> 15
 <211> 1696
 <212> DNA
 <213> Zea mays

<400> 15	
caaatttatt atgtgtttt tttccgtggt cgagattgtg tattattttt tagttttttt	60
aagactttta gctaaaattt gaaagaattt acttaagaa aatcttaaca tctgagataa	120
tttcagcaat agattatattttt cttcattact ctagcagtat tttgcagat caatcgcaac	180
atatatggtt gtttagaaaaaa atgcactata tatataataa ttatttttt aattaaaagt	240
gcatgatata taatataataat atatataataat atgtgtgtgt gtatatggc aaagaaattt	300
ttatacataat atacacgaac acatataattt gacaaaatca aagtattaca ctaaacaatg	360
agttggtgca tggccaaaac aaatatgttag attaaaaattt ccagcctcca aaaaaaaatc	420
caagtgttgtt aaagcattat atatataataat tagatccaa atttttgtac aattccacac	480
tgtatcgaatt tttaaagttt aatatctgac gttaggatttt tttaatgtct tacctgacca	540
tttactaata acattcatac gttttcattt gaaatatcct ctataattat attgaattttt	600
gcacataata agaaacctaa ttggtgattt attttacttag taaatttctg gtgtatggct	660
ttctactaga aagctctcgaaaatcttgg accaaatcca tattccatga ctgcatttgt	720
taaccctatt agtttcaca aacatactat caatatcatt gcaacggaaa aggtacaagt	780
aaaacattca atccgatagg gaagtgtatgtt aggagggttgg gaagacaggc ccagaaagag	840
atttatctga cttgtttgtt gtatagttt caatgttcat aaaggaagat ggagacttga	900
gaagttttttt ttggactttt ttttagctttt ttggcgttt ttttttttga tcaataactt	960
tgttgggctt atgatttgta atatttcgtt ggactcttta gtttatttagt acgtgctaac	1020
tttggggc ttatgacttg ttgtacata ttgtacaga tgacttgatg tgctgactaat	1080
ctttacacat taaacatagt tctgtttttt gaaagttctt attttcattt ttatttgaat	1140

gttatatatatt tttcttatatt tataattcta gtaaaaggca aattttgctt ttaaatgaaa 1200
aaaatataata ttccacagtt tcacctaatc ttatgcattt agcagtacaa attcaaaaat 1260
ttcccatttt tattcatgaa tcataccatt atatattaac taaatccaag gtaaaaaaaaa 1320
ggtatgaaag ctctatagta agtaaaatataaattccccca taaggaaagg gccaaagtcca 1380
ccaggcaagt aaaatgagca agcaccactc caccatcaca caatttcact catagataac 1440
gataagattc atgaaattat cttccacgtg gcattattcc agcggttcaa gccgataagg 1500
gtctcaacac ctctccttag gccttgtgg ccgttaccaa gtaaaattaa cctcacacat 1560
atccacactc aaaatccaac ggtgtagatc ctagtccact tgaatctcat gtatcctaga 1620
ccctccgatc actccaaagc ttgttctcat tggttatac attatatata gatgaccaaa 1680
gcactagacc aaacct 1696