a2 United States Patent

Tsuruya et al.

US010394480B2

US 10,394,480 B2
Aug. 27,2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)
(86)

87

(65)

(1)

(52)

STORAGE DEVICE AND STORAGE DEVICE
CONTROL METHOD

Applicant: HITACHI, LTD., Tokyo (JP)

Inventors: Masahiro Tsuruya, Tokyo (JP); Ryo
Hanafusa, Tokyo (JP); Osamu
Kawaguchi, Tokyo (JP)

Assignee: Hitachi, Ltd., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 15/769,418
PCT Filed: Jan. 22, 2016

PCT No.:

§ 371 (e)(D),
(2) Date:

PCT/IP2016/051783

Apr. 19, 2018

PCT Pub. No.: W02017/126096
PCT Pub. Date: Jul. 27, 2017

Prior Publication Data

US 2018/0314426 A1 Nov. 1, 2018
Int. C.

GO6F 3/06 (2006.01)

GO6F 12/04 (2006.01)

GO6F 12/10 (2016.01)

GO6F 12/02 (2006.01)

U.S. CL.

CPC oo, GO6F 3/064 (2013.01); GO6F 3/0608

(2013.01); GO6F 3/0631 (2013.01);
(Continued)

ART CF RCM
COSNEIT?OLO};ROCESS

(58) Field of Classification Search
CPC ...... GOG6F 3/064; GO6F 3/0608; GOGF 3/0631;
GO6F 3/0659; GO6F 3/0679; GO6F 12/04;

(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS

1/2014 Shilane ............... GO6F 16/1748
707/825

8,631,052 B1*

10/2014 Yamamoto et al.
(Continued)

8,862,805 B2

OTHER PUBLICATIONS

International Search Report of PCT/JP2016/051783 dated Feb. 16,
2016.

Primary Examiner — Hiep T Nguyen
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC

(57) ABSTRACT

It is possible to prevent unoccupied blocks from being
depleted by a write of logical-physical management infor-
mation. A processor is capable of performing an unoccupied
user block generation process by moving user data stored in
allocated user blocks in order to generate unoccupied user
blocks serving as unoccupied blocks among allocated user
blocks, and performing an unoccupied meta block genera-
tion process by moving meta data stored in allocated meta
blocks in order to generate unoccupied meta blocks serving
as unoccupied blocks among the allocated meta blocks. The
processor calculates the number of unoccupied meta blocks
to be consumed, that is, the number of unoccupied meta
blocks to be consumed by the unoccupied user block gen-
eration process. The processor performs the unoccupied
meta block generation process based on the number of
unoccupied meta blocks to be consumed.

13 Claims, 17 Drawing Sheets

1400

UNoCCUpIED K
USER BLOCKS
INSOFFICTENT?

1401
R

CALCULATE USER
RCM AMOUNT

CALCULATE NUMBER OF
UNQCCUPIED META BLOCKS
CONSUMED 8Y USER RCM

1402

UNOCCUBIED ™%
META BLOCKS,
INSUFFICIENT?

CALCULATE META
RCM AMOUNT

1404
i

PERFORM USER RCM 17




US 10,394,480 B2
Page 2

(52) US. CL
CPC .......... GO6F 3/0659 (2013.01); GOGF 3/0679
(2013.01); GO6F 12/0246 (2013.01); GO6F
12/04 (2013.01); GO6F 12/10 (2013.01); GO6F
2212/1044 (2013.01);, GO6F 2212/401
(2013.01); GO6F 2212/7201 (2013.01); GO6F
2212/7204 (2013.01); GOGF 2212/7207
(2013.01); GO6F 2212/7209 (2013.01)
(58) Field of Classification Search
CPC ....ccoeonueue GOG6F 12/0246; GO6F 12/10; GO6F
2212/1044; GO6F 2212/7201; GO6F
2212/401; GO6F 2212/7204; GOGF
2212/7207; GO6F 2212/7209
USPC ittt 711/103
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0174847 Al* 7/2010 Paley ............. GO6F 12/0246
711/103

2011/0022778 Al1* 1/2011 Schibilla ............. GO6F 12/0246
711/103

2011/0320685 Al* 12/2011 Gorobets ............ GO6F 12/0246
711/103

2013/0121075 Al* 5/2013 Hutchison ........... G11C 11/5628
365/185.11

2015/0363327 Al* 12/2015 Chaitanya ............. GOG6F 3/0608
711/103

2017/0017588 Al*  1/2017 Frid ...ccoooiviininns GO6F 13/18

* cited by examiner



U.S. Patent Aug. 27, 2019 Sheet 1 of 17 US 10,394,480 B2

0108
A
HIGHER-LEVEL
DEVICE
0100
v
" o101
STORAGE I/F |- 0103
0107
9106 ’ ’ 9104
au INTERNAL VAN~
NETWORK MEMORY
q105
SSD
FM CONTROLLER CONTROLLER
9102

FM [ FM FM FM

[ 1B I |

FM FM FM FM

| I | l

: $SD




U.S. Patent Aug. 27, 2019 Sheet 2 of 17 US 10,394,480 B2

9104
| 9200
0203 0204
oy T
prOGRAM | PROGRAM "
[OGICALTO-PAVSICAL ], %2 TRV, -0
CONVERSION PROGRAM] ™ DECCMERESGIONPROGRAM)
PRE R
' " PROGRAM AREA
0/201
2P o BN
i MANAGEMENT TBL |
BLOCK . v DEVICE | /-
MANAGEMENT TBL | INFORMATION TBL |
STATISTICL |0
INFORMATION TBL |
TBL AREA
0202
—
0214
USERDATA |/
DATA BUFFER AREA
MAIN MEMORY




US 10,394,480 B2

Sheet 3 of 17

Aug. 27, 2019

U.S. Patent

W
078
39Vd G I
< ! _ M voso” |
" co0 1 I I f
2010 _ | | |
e ivow e | R w— - Y
“ P
S0€0 e . e
RESEI EiSe \
BLd WPeA mWhaa | omlac
L]
:
< mo,mm r« ¢ E <
YOTO SOE0 0120
19vd WI901
_ =
I Z0g0 |
m
[
€914
oowo

3IvdS S534Aav
TVIISAHd

A0VdS SS3Ady WII1901



Sheet 4 of 17

U.S. Patent US 10,394,480 B2

Aug. 27,2019

9209
0400 0401 0402 0403 0404
A A A A A /
| status | REYSICAL SIZE SUBSET #
0 VALID A 4 {
1 VALID B8 2 0 L 0305
2 UNALLOCATED ; {
L2P TBL
9210
05;00 0%01 05;02 05'03
¥, avi v AL
(7P TBL ’ " STORAGE "~ SURSET
SUBSET # STATUS PUACE ADDRESS
0 VALID MAIN MEMORY p
1 VALID M a
) UNALLOCATED i

L2P TBL
MANAGEMENT TBL




US 10,394,480 B2

Sheet 5 of 17

Aug. 27,2019

U.S. Patent

SYO078 Y13W G3LYDOTIY SYD078 ¥3SN GILYIOTIV
h.omo wow¢o 90980 S080
AR “ ._\,Q\ «.\/,,,\‘. “ A/
i [
i "
o1 _
oy B yoong s !
T (ciegRnol} H078 435N dTTvA
| |
I ]
1 [}
~ 04INOD X008
0090
C___ 181 42
mowm

99Ol

W4

AdOWII NIVIA



US 10,394,480 B2

Sheet 6 of 17

Aug. 27,2019

U.S. Patent

0019 V13 QILVO0TIV SH007d ¥3Sn d3Lvo0TIvY

A

AN

2

£090

. \. /
8090 9090 S090

;
FAv

I aRva

toa v W Y0078 ¥3sn !
110 Ma3TdnD00NNs %0074 ¥3SN aIvA WA

| -

~ T0¥LNOD 0018

£09

v

0050

18141

AJOWIIW NIVIN

[ OD1d



U.S. Patent

Aug. 27,2019

Sheet 7 of 17

US 10,394,480 B2

9211
//)‘ /
0200 07/01 07‘02 0703 0704
’ ' " VALID DATA | =~ FM LIFE
BLOCK # STATUS | DATATYPE | pEReeNTAGE | INFORMATION
VALID )

0 (CLGSE) USER 80 % XXXX

1 (\(/)/?DLEII\?) META 50 % YYYY

2 UNOCCUPIED META 2772

BLOCK
MANAGEMENT TBL




U.S. Patent

Aug. 27,2019

Sheet 8 of 17

US 10,394,480 B2

9212
ITEM NAME VALUE

. MAXIMUM LOGICAL

08007 . CAPACITY 25600.0 GB
| TOTAL FM

0801, CAPACITY 4000.0 GB
,,,,,, MAIN MEMORY

08027/ . META CAPACITY 3.2GB
e | VALID LOGICAL

0803 DATA SIZE 4000.0GB

08047} USER DATA SIZE 2000.0 GB

0805 _| META DATA SIZE 4.06GB
T VALID USER

0806 BLOCK COUNT W
o UNOCCUPIED USER

0807 BLOCK COUNT X
] VALID META

0808 BLOCK COUNT Y
UNOCCUPIED META

0809 BLOCK COUNT Z

DEVICE
INFORMATION TBL




US 10,394,480 B2

Sheet 9 of 17

Aug. 27,2019

U.S. Patent

791 NOILYIWEOINI
TVOILSILVIS
I._x_\,_wﬂ/m_J/__MM_v_ b ST g9 09T g5 0°000¢ NL N
I”__u,%&.w_.wmvm_vm_wmmﬂ 1:0001 a9 v'9 49 5°000¢ L T
DS | o | v | o | 529 &
AINIANTL OILYd 371S 371S JWIL ANV i
J1TIM ¥3SN J4TAM _>_M_ v1va <._m_>_ v1vd N_m_m: 310 EE:_Z%EZW@
momo vomc momo« Nomo Homo oomo
mamo




U.S. Patent

Aug. 27,2019

Sheet 10 of 17

FIG.11

C START OF USER DATA
WRITE PROCESS

4
ACQUIRE COMMAND FROM I/
HIGHER-LEVEL DEVICE __~

TORE

\
RECEIVE WRITE DATAAND I,
S ITINBUFFER

J

NOTIFY HIGHER-LEVEL DEVICE f,
OF WRITE COMPLETION

J

COMPRESS WRITE DATA

A
ACQUIRE L2P
TBL ADDRESS

A

REFERENCE L2P TBL

A
DETERMINE WRITE DESTINATION |
PHYSICAL ADDRESS 1°

A
WRITE COMPRESSED
DATA INTO FM

3

UPDATE L2P TBL

A

BLOCK CONTROL

END )

1000
1001
1002

1003

1004
-/

1005

1006

1007

ke

1008

1009

US 10,394,480 B2



U.S. Patent Aug. 27, 2019 Sheet 11 of 17 US 10,394,480 B2

FIG.12

( START OF UNMAP PROCESS)

1100

y
ACQUIRE COMMAND FROM |
HIGHER-LEVEL DEVICE |

\ 4 1004

ACQUIRE L2P
TBL ADDRESS

y 1005
REFERENCE L2PTBL |V

y 1101
CHANGE STATUS OF RELEVANT |/
ENTRY IN L2P TBL TO UNALLOCATED’

1102

ALL ENTRIES FOR
RELEVANT L2P TBL
SUBSET INVALID?

1103

CHAYCE STATLS OF RELEAT ENTRES
L2P TEL VRNAGEVENT TEL TOUNALLOCTED

v 1104
NOTIFY HIGHER-LEVEL DEVICE OF ./
UNMAP COMPLETION

v 1009
BLOCK CONTROL A

C END )




U.S. Patent Aug. 27, 2019 Sheet 12 of 17 US 10,394,480 B2

FIG.13

GT ART OF L2P TBL ADDRESS
ACQUISITION PROCESS
1200

4' eV
REFERENCE L2PTBL |
MANAGEMENT TBL

1201

Y N
STATUS VALID? 2

STORED IN |~~~ No

MAIN MEMORY?
Y %203
Yes UNOCCUPIED ™

SPACE IN MAIN
MEMORY?

No
1204

ACQUIRE UNOCCUPIED SPACE BY WIRITING L2P 1,/
TBL SUBSET STORED IN MAIN MEMORY INTO FM

L 4 1205

READ L2P TBL SUBSET FROM FH INTO MAINE/
MEMORY OR CREATE NEW L2P TBL SUBSET"

\ 4 1206

RETURN MAIN MEMORY {1
ADDRESS OF L2PTBL _~

A

C D)




U.S. Patent Aug. 27, 2019 Sheet 13 of 17 US 10,394,480 B2

FIG.14

Q START OF BLOCK
CONTROL PROCESS

1300
v

A 4
REFERENCE DEVICE INFORMATION TBL
AND STATISTICAL INFORMATION TBL

1301
y avs

RCM CONTROL

STATISTICAL

INFORMATION
CHANGED?
%303
BLOCK ALLOCATION 11
CONTROL

1304

A /4
UPDATE DEVICE INFORMATION TBL
AND STATISTICAL INFORMATION TBL

A

C END )




U.S. Patent Aug. 27, 2019 Sheet 14 of 17 US 10,394,480 B2

FIG.15

C START OF RCM )
CONTROL PROCESS

UNOCCUPIED
USER BLOCKS
INSUFFICIENT?

1401
/

CALCULATE USER
RCM AMOUNT

v 1402

CALCULATE NUMBER OF yv
UNOCCUPIED META BLOCKS
CONSUMED BY USER RCM

UNOCCUPIED
META BLOCKS
INSUFFICIENT?

CALCULATE META
RCM AMOUNT

Y }405
PERFORM META RCM

y 1406
PERFORM USER RCM I

v

Q END )




U.S. Patent Aug. 27, 2019 Sheet 15 of 17 US 10,394,480 B2

CSTART OF BLOCK ALLOCATION
CONTROL PROCESS
y
1505
~ optiaL bk |V
JETACAPACITY No A ALLOCATION RATIO
DATA SIZE?

1501
CALCULATE CURRENT |/
USER DATASIZE
\ 4 1502
CALCULATE CURRENT |/
META DATASIZE
CACURTE CORRET s L
ALLOCATED METABLOQ
FM WRITE RATIO COURT TOBE INCREAGED
OR DECREASED?
AU CORRET T0 B
USER WRITE TENDENCY |~ NCRERED | 1508
ALLOCATED METABLOCK 11/
INCREASE PROCESS
A %509
ALLOCATED NETA BLOCK T/
DECREASE PROCESS

C )




U.S. Patent Aug. 27, 2019 Sheet 16 of 17 US 10,394,480 B2

FIG.17

START OF ALLOCATED META
BLOCK INCREASE PROCESS

UNOCCUPIED
USER BLOCKS

INSUFFICIENT?
Yes
1301
RCM CONTROL v
v 1601

CHANGE UNOCCUPIED USER BLOCKS/\/
TO UNOCCUPIED META BLOCKS

l 1602

UPDATE BLOCK n
MANAGEMENT TBL

'
 w )




U.S. Patent Aug. 27, 2019 Sheet 17 of 17 US 10,394,480 B2

FIG.18

START OF ALLOCATED META
BLOCK DECREASE PROCESS

UNOCCUPIED
META BLOCKS
INSUFFICIENT?

1301
RCM CONTROL %
\ 4 1701

CHANGE UNOCCUPIED META BLOCKS 1/
TO UNOCCUPIED USER BLOCKS

l 1702

UPDATE BLOCK h/
MANAGEMENT TBL /

'
 w )




US 10,394,480 B2

1
STORAGE DEVICE AND STORAGE DEVICE
CONTROL METHOD

TECHNICAL FIELD

The present invention relates to a storage device.

BACKGROUND ART

In a storage device and a computer, a hard disk drive
(HDD) is generally used as a physical storage medium. In
recent years, however, a physical storage medium (e.g., a
solid-state drive (SSD)) having a flash memory (FM) is
widely used as a new physical storage medium that super-
sedes the HDD. The SSD mainly includes one or more than
one FM chip and a controller for controlling the FM chip,
and is advantageous in that it performs an 1/O process far
more rapidly than the HDD. However, in order to achieve
such rapidity, it is necessary to use a control technology
appropriate for FM characteristics.

The FM (typically a NAND-type FM) erases data in a unit
called “block” (block erasure), and reads and writes data in
a unit called “page.” A block is a set of a predetermined
number of pages. The time required for block erasure is one
order of magnitude longer than required for block read and
write operations. The terms “block(s)” and “page(s)” here-
inafter denote the block(s) and page(s) of the FM unless
otherwise stated.

Because of FM characteristics, a page storing data cannot
be overwritten with new data. Therefore, in order to rewrite
the data on the page, it is necessary to erase a relevant block
and then write new data. Accordingly, before erasing a
block, it is necessary to copy valid data in the block to
another block. Thus, a longer period of time is required for
rewriting data than writing into an unused area available
upon block erasure. Consequently, it is necessary to reduce
the time required for a data rewrite or prevent a higher-level
device from recognizing an increase in response time.

In order to reduce the above-mentioned time required for
a data rewrite, a method of additionally writing data to an
unused area is employed for rewriting data into the FM.
Thus, the SSD includes a logical address space to be
provided to a higher-level device and a physical address
space corresponding to each FM page. The logical address
space and the physical address space are mapped by using
individual address correspondence information (logical-
physical management information). A process of referencing
the logical-physical management information and acquiring
a corresponding physical address from a logical address is
referred to as logical address-physical address conversion
(logical-to-physical conversion). This process is imple-
mented by a controller incorporated in the SSD.

Read and write operations to the FM in the SSD will now
be described briefly. In a read operation, in order to identify
the physical address where requested data is stored, the SSD
references logical address-physical address management
information (logical-physical management information) and
performs logical-to-physical conversion. Subsequently,
based on the physical address derived from logical-to-
physical conversion, the SSD acquires the requested data
from the FM. In a write operation, the SSD writes write data
into an unused area available upon FM block erasure.
Subsequently, in the logical-physical management informa-
tion, the SSD updates a physical address associated with a
requested logical address to a physical address of newly
written data (performs a logical-physical update). If, in this
instance, an unoccupied block, that is, a block erased and

10

15

20

25

30

35

40

45

50

55

60

65

2

writable, is not available, a process of acquiring an unoc-
cupied block needs to be performed because the SSD cannot
perform a write.

A process called “reclamation (or garbage collection)”
(hereinafter abbreviated to RCM) is performed to acquire an
unoccupied block. In a reclamation process, a completely
invalid block, that is, an erasable block filled with invalid
data, is prepared by moving only valid data from a written
block to another block (rewriting). It should be noted that an
unoccupied block is necessary for the reclamation process.
Therefore, if no unoccupied block is available, the SSD
cannot continue with an I/O operation. Such deadlock in FM
resource allocation is called the “depletion of unoccupied
blocks.”

Consequently, the SSD makes it possible to perform a
continuous /O operation by considering the number of
unoccupied blocks necessary for RCM and adjusting the
amount of data to be moved by RCM (hereinafter referred to
as the RCM amount) as needed to maintain the required
number of unoccupied blocks. Further, the logical-physical
management information needs to be accessed when a read
or write operation to the FM in the SSD or an RCM
operation is to be performed. Therefore, the SSD caches the
whole logical-physical management information, which is
stored in the FM, in a main memory, such as a high-speed
dynamic random-access memory (DRAM), in order to
reduce the processing overhead involved in accessing the
logical-physical management information.

Due to the above-described technology, the SSD is supe-
rior to the HDD in performance. However, the SSD is more
expensive than the HDD in terms of the price per unit
capacity (bit cost). Therefore, a known technology
described, for example, in Patent Document 1 reduces the bit
cost by using a data compression or other data reduction
function.

PRIOR ART DOCUMENT
Patent Document

Patent Document 1: U.S. Pat. No. 8,862,805

SUMMARY OF THE INVENTION
Problem to be Solved by the Invention

For the SSD, the size of the logical-physical management
information is determined by the size of the logical address
space. Therefore, an SSD having the data compression or
other data reduction function has a larger logical address
space than an SSD having no data reduction function, and
has several to several ten times the logical-physical man-
agement information of the SSD having no data reduction
function. In this instance, the SSD cannot cache all the
logical-physical management information in the main
memory. Further, if the logical-physical management infor-
mation not storable in the main memory is stored in the FM,
the logical-physical management information is read from
and written into the FM. This may result in the depletion of
unoccupied blocks.

Means for Solving the Problem

In order to solve the above problems, according to an
aspect of the present invention, there is provided a storage
device including a main memory, a nonvolatile semicon-
ductor memory, and a processor connected to the main



US 10,394,480 B2

3

memory and the nonvolatile semiconductor memory. The
processor stores in the nonvolatile semiconductor memory at
least part of meta data indicative of the relationship between
a logical address provided to a higher-level device and a
physical address of user data in the nonvolatile semicon-
ductor memory, and stores part of the meta data in the main
memory. The processor allocates blocks in the nonvolatile
semiconductor memory as allocated user blocks for storing
the user data and as allocated meta blocks for storing the
meta data. The processor is capable of performing an
unoccupied user block generation process and an unoccu-
pied meta block generation process. The unoccupied user
block generation process moves user data stored in the
allocated user blocks in order to generate unoccupied user
blocks, namely, unoccupied blocks among the allocated user
blocks. The unoccupied meta block generation process
moves meta data stored in the allocated meta blocks in order
to generate unoccupied meta blocks, namely, unoccupied
blocks among the allocated meta blocks. The processor
calculates the number of unoccupied meta blocks to be
consumed, that is, the number of unoccupied meta blocks to
be consumed by the unoccupied user block generation
process. The processor performs the unoccupied meta block
generation process based on the number of unoccupied meta
blocks to be consumed.

Effect of the Invention

It is possible to prevent unoccupied blocks from being
depleted by a write of logical-physical management infor-
mation.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating an exemplary configura-
tion of an SSD 0100.

FIG. 2 is a diagram illustrating an exemplary configura-
tion of a main memory 0104.

FIG. 3 is a diagram illustrating the correspondence
between a logical address space 0300 and a physical address
space 0301.

FIG. 4 is a diagram illustrating an exemplary configura-
tion of an L2P TBL 0209.

FIG. 5 is a diagram illustrating an exemplary configura-
tion of an L2P TBL management TBL 0210.

FIG. 6 illustrates an overview of block control 0600 in a
first state.

FIG. 7 illustrates an overview of block control 0600 in a
second state.

FIG. 8 is a diagram illustrating an exemplary configura-
tion of a block management TBL 0211.

FIG. 9 is a diagram illustrating an exemplary configura-
tion of a device information TBL 0212.

FIG. 10 is a diagram illustrating an exemplary configu-
ration of a statistical information TBL 0213.

FIG. 11 is a flowchart illustrating an example of a user
data write process.

FIG. 12 is a flowchart illustrating an example of an unmap
process.

FIG. 13 is a flowchart illustrating an example of an L.2P
TBL address acquisition process.

FIG. 14 is a flowchart illustrating an example of a block
control process.

FIG. 15 is a flowchart illustrating an example of an RCM
control process.

FIG. 16 is a flowchart illustrating an example of a block
allocation control process.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 17 is a flowchart illustrating an example of an
allocated meta block increase process.

FIG. 18 is a flowchart illustrating an example of an
allocated meta block decrease process.

MODES FOR CARRYING OUT THE
INVENTION

An embodiment will now be described with reference to
the accompanying drawings. It is assumed that the present
embodiment is applied to an SSD having a data compression
function. However, the present embodiment is also appli-
cable to an SSD that does not have the data compression
function but requires the management of meta data that
cannot be completely stored in a main memory. Further, the
present embodiment is merely an example that implements
the present invention, and does not limit the technical scope
of the present invention.

In the following description, the expression “xxx table” is
occasionally used to explain about various information.
However, various information may alternatively be
expressed by using a data structure other than a table. In
order to indicate that “xxx table” is not dependent on a data
structure, “xxx table” may be referred to as “xxx informa-
tion.”

In the following description, a number is used as identi-
fication information for identifying an element (e.g., L2P
TBL). However, a different type of identification informa-
tion (e.g., name or identifier) may alternatively be used.

When a process is subsequently described by using the
term “program” as a subject, it may be said that the process
is performed by a controller or a processor. The reason is that
a program is executed by a processor (e.g., a central pro-
cessing unit (CPU)) included in a controller (storage con-
troller or SSD controller) in order to perform a predeter-
mined process by appropriately using a storage resource
(e.g., memory) and/or a communication interface device
(e.g., communication port). The controller may include a
hardware circuit that performs a part or the whole of the
process. A computer program may be installed from a
program source. The program source may be a program
distribution server or a computer-readable storage medium.

In the following description, the units of period or time
are not limited. For example, the unit of period or time can
be expressed by one unit or a combination of two or more
units selected from among year, month, day, hour, minute,
and second.

In the following description, it is assumed that a nonvola-
tile semiconductor storage medium included in an SSD is a
flash memory (FM). It is assumed that the flash memory is
typically a NAND-type flash memory that is to be erased in
the unit of a block and read/written in the unit of a page.
However, a flash memory other than a NAND-type flash
memory, such as a NOR-type flash memory, may alterna-
tively be used. Further, instead of a flash memory, a different
type of nonvolatile semiconductor storage medium, such as
a phase-change memory, may be used.

FIG. 1 is a diagram illustrating an exemplary configura-
tion of an SSD 0100.

The SSD 0100 includes an SSD controller 0101 and one
or more than one FM 0102. The SSD controller 0101
controls the operation of the SSD 0100. The SSD controller
0101 includes a storage I/F 0103, a main memory 0104, an
FM controller 0105, and a CPU 0106. The storage I/F 0103
is an interface that provides connection to a higher-level
device 0108. The FM controller 0105 controls the FM. The



US 10,394,480 B2

5

elements included in the SSD controller 0101 are intercon-
nected through an internal network 0107.

The higher-level device 0108 is an example of a device
that uses the SSD 0100, and may be, for example, an
application server, a storage device, or a storage controller.

The CPU 0106 is a processor that provides overall control
of the SSD controller 0101 and operates based on a micro-
program stored in the main memory 0104. The FM control-
ler 0105 is controlled by the CPU 0106 to perform a read,
a write, or an erase on the FM 0102. The internal network
0107 may include a switch. Further, the internal network
0107 may be substituted by an application-specific inte-
grated circuit (ASIC) having a switching function.

In the present embodiment, the SSD 0100 is a storage
medium that includes one or more than one FM and a
controller controlling the FM. For example, the appearance
form of the SSD 0100 is not limited to a specific form factor.

FIG. 2 is a diagram illustrating an exemplary configura-
tion of the main memory 0104.

The main memory 0104 includes a program area 0200, a
TBL area 0201, and a data buffer area 0202. The program
area 0200 and the TBL area 0201 store programs and tables
for controlling the SSD 0100. The data buffer area 0202
temporarily stores user data 0214 that is transmitted and
received to and from the higher-level device 0108.

The program area 0200 stores an 1/O program 0203, an
unmap program 0204, a logical-to-physical conversion pro-
gram 0205, a data compression/decompression program
0206, an [.2P (logical to physical conversion) TBL (table)
control program 0207, and a block control program 0208.

The 1/O program 0203 processes a read or write request
from the higher-level device 0108. The unmap program
0204 processes an unmap request (a request for invalidating
certain data) from the higher-level device 0108. The logical-
to-physical conversion program 0205 performs logical-to-
physical conversion. The data compression/decompression
program 0206 compresses or decompresses user data while
the I/O program 0203 is executed. The L.2P TBL control
program 0207 provides control over a storage place (the
main memory 0104 or the FM 0102) where an L.2P TBL
0209, which is meta data, is stored. The block control
program 0208 controls FM resources by managing, for
example, a write destination block, the number of unoccu-
pied blocks, an RCM amount, and the number of blocks to
be allocated to user data and meta data.

The L2P TBL 0209 contains information about mapping
of logical addresses and physical addresses. An L2P TBL
management TBL 0210 contains information for managing
whether the L2P TBL 0209 is stored in the main memory
0104 or in the FM 0102. A block management TBL 0211
contains information about block status. A device informa-
tion TBL 0212 contains information about device resources.
A statistical information TBL 0213 contains a history of
device status at a specific point of time.

Logical-physical management information will now be
described.

The SSD 0100 provides the higher-level device 0108 with
a logical address space larger than a physical address space
by compressing write data and storing it in the FM 0102.
Thus, the size of the logical-physical management informa-
tion becomes too large to be completely stored in the main
memory 0104.

In order to manage the above-described logical-physical
management information, the SSD 0100 reads, as needed,
the logical-physical management information from the FM
0102 into the main memory 0104 and writes, as needed, the
logical-physical management information back into the FM

10

15

20

25

30

35

40

45

50

55

60

65

6

0102 (hierarchical logical-physical method). An SSD having
no compression function is capable of storing the whole
logical-physical management information in a main
memory. Therefore, when the logical-physical management
information is accessed for a read/write process, no read/
write operation is performed on the FM. Meanwhile, if
relevant logical-physical management information is not
found in the main memory (in the event of a logical-physical
failure) when logical-to-physical conversion and logical-
physical management information is to be updated in a
situation where the hierarchical logical-physical method is
employed, it is necessary to save (write) the logical-physical
management information from the main memory into the
FM and then acquire (read) necessary logical-physical man-
agement information from the FM into the main memory.
Consequently, if a logical-physical failure frequently occurs,
the logical-physical management information, which is meta
data, is frequently read from and written into the FM.

In general, the size of logical page, which is the manage-
ment unit of user data (the unit of logical-to-physical con-
version), is several kilobytes. Meanwhile, the size of the
logical-physical management information is several bytes
per logical page and can be regarded as relatively small.
Thus, it is conceivable that the amount of meta data write
subsequent to a logical-physical failure is smaller than the
amount of user data write. However, the hierarchical logical-
physical method needs to manage whether the meta data
exists in the main memory or in the FM, and the FM needs
to be read and written in the unit of a page. Therefore, the
meta data is managed in the unit of a plurality of logical
pages (e.g., the same several kilobytes as the logical page
size). Consequently, for a single logical-physical failure,
several kilobytes of meta data needs to be written. Further,
when the SSD has the compression function, the user data is
compressed before being written into the FM. Therefore, the
higher the compression ratio for the user data (the smaller
the size of compressed data as compared with the size of
uncompressed data), the larger the amount of user data
storable in the SSD and thus the greater the number of
logical pages to be managed. This increases the amount of
meta data and decreases the percentage of meta data storable
in the main memory. That is to say, the higher the data
compression ratio, the smaller the amount of user data write
into the FM and the higher the probability of logical-
physical failure occurrence. Therefore, the amount of meta
data write accounts for a high percentage of the total amount
of write into the FM.

Further, as is the case with a user data write, a meta data
write into the FM also consumes unoccupied blocks. How-
ever, when control is exercised to maintain the number of
unoccupied blocks as needed for RCM in a conventional
SSD and other I/O continuation (hereinafter referred to as
block control), such a meta data write is not taken into
consideration. Therefore, the depletion of unoccupied
blocks may occur in an SSD having the data compression
function.

When, for example, unoccupied blocks are to be effi-
ciently generated for RCM, the amount of valid-data move-
ment is decreased. That is to say, blocks having a low
percentage of valid data (a high percentage of invalid data)
are selected as a target for RCM, and then valid data in the
selected blocks are moved. However, if user data is stored in
the blocks selected as a target for RCM, the logical-physical
management information needs to be referenced and
updated for moving the user data. Therefore, a logical-
physical failure occurs at the time of RCM, and a meta data
write into the FM subsequent to the occurrence of the



US 10,394,480 B2

7

logical-physical failure also consumes the unoccupied
blocks. Further, even if the amount of RCM is increased to
achieve recovery from the consumption of the unoccupied
blocks, unoccupied blocks are further consumed for the
same reason because conventional block control is not
capable of distinguishing between user data and meta data.
Consequently, a chain reaction may occur so that the speed
of generation of unoccupied blocks due to RCM becomes
lower than the speed of consumption of unoccupied blocks.
As a result, unoccupied blocks may be depleted in some
cases.

A method of managing the logical-physical management
information to prevent the above-described depletion of
unoccupied blocks will now be described.

FIG. 3 is a diagram illustrating the correspondence
between a logical address space 0300 and a physical address
space 0301.

The logical address space 0300, which is provided for the
higher-level device 0108, corresponds to one or more logical
pages 0302. The physical address space 0301, which is
associated with the FM 0102, corresponds to one or more
pages 0304. The FM 0102 has one or more blocks 0303.
Each block 0303 is the unit of data erasure in the FM 0102,
and has one or more pages 0304. Each page 0304 is the unit
of data read/write in the FM 0102.

The logical address space 0300 and the physical address
space 0301 are mapped by the L.2P TBL 0209. The L2P TBL.
0209 has one or more L2P TBL subsets 0305. The L2P TBL
management TBL 0210 is stored in the main memory 0104,
and has information indicating whether each L2P TBL
subset 0305 (meta data) is stored in the main memory 0104
or in the FM 0102 and at what address within the main
memory 0104 or the FM 0102.

The CPU 0106 manages the L2P TBL of the whole logical
address space by dividing it into the L.2P TBL subsets 0305
having a predetermined number of entries. The data size of
each L2P TBL subset 0305 is, for example, is not larger than
the page size, which is the access unit of the FM 0102. The
mapping between the logical addresses and physical
addresses of all user data is expressed by a plurality of L2P
TBL subsets 0305. The CPU 0106 stores some of the L2P
TBL subsets 0305 in the main memory 0104 and stores the
remaining [.2P TBL subsets 0305 in the FM 0102. The CPU
0106 may alternatively store all the L2P TBL subsets 0305
in the FM 0102 and store some of L2P TBL subsets 0305 in
the main memory 0104.

When the above-described management method is used,
the L.2P TBL that cannot be completely stored in the main
memory 0104 can be stored in the FM 0102. Further, a part
of the L2P TBL can be stored in the main memory 0104 in
order to achieve high-speed logical-to-physical conversion.

FIG. 4 is a diagram illustrating an exemplary configura-
tion of the L2P TBL 0209.

The L2P TBL 0209 has an entry for each logical page.
Each entry includes a logical page # (number) 0400, a status
0401, a physical address 0402, a size 0403, and subset #
0404. The logical page # 0400 is an identifier of a logical
page and unique. The status 0401 indicates whether the
logical page is associated with a physical address (valid or
unallocated). The physical address 0402 indicates the physi-
cal address of the beginning of an area associated with the
logical page in the FM 0102. The size 0403 indicates the
data size of compressed data on the logical page. The subset
# 0404 indicates an identifier of an L2P TBL subset 0305 to
which the logical page belongs. The physical address 0402
and the size 0403 may be substituted, for example, by a
physical page number and the number of physical pages.

10

15

20

25

30

35

40

45

50

55

60

65

8

Further, in the order of logical page numbers, the L2P TBL
0209 is divided into the L2P TBL subsets 0305, which are
each provided for a predetermined number of entries.

FIG. 5 is a diagram illustrating an exemplary configura-
tion of the L2P TBL management TBL 0210.

The L2P TBL management TBL 0210 has an entry for
each L.2P TBL subset 0305. Each entry includes an [.2P TBL.
subset # 0500, a status 0501, a storage place 0502, and a
subset address 0503. The L2P TBL subset # 0500 is an
identifier of an L.2P TBL subset and unique. The status 0501
indicates whether the L2P TBL subset is associated with the
L2P TBL 0209 (valid or unallocated). The storage place
0502 indicates whether the L2P TBL subset is stored in the
main memory 0104 or in the FM 0102. The storage place
0502 may alternatively indicate whether or not the L2P TBL.
subset is stored in the main memory 0104. The subset
address 0503 indicates a physical address of the FM 0102 at
which the L2P TBL subset is stored or a main memory
address of the main memory 0104 at which the L2P TBL
subset is stored. If the L2P TBL subset is stored in both the
FM 0102 and the main memory 0104, the subset address
0503 may indicate both addresses.

FIG. 6 illustrates an overview of block control 0600 in a
first state. FIG. 7 illustrates an overview of block control
0600 in a second state.

As a write into the FM 0102, a user data write (user WR)
0601, a user data RCM (user RCM) 0602, a meta data write
(meta WR) 0603, and a meta data RCM (meta RCM) 0604
are performed. The user data write (user WR) 0601 is
writing user data from the higher-level device 0108 into the
FM 0102. The user data RCM (user RCM) 0602 moves user
data stored in the FM 0102 to achieve RCM. The meta data
write (meta WR) 0603 writes into the FM 0102 meta data
indicative of user data on which a user WR 0601 is per-
formed. The meta data RCM (meta RCM) 0604 moves meta
data stored in the FM 0102 to achieve RCM. The amount of
data written into the FM 0102 by user WR, meta WR, user
RCM, and meta RCM is referred to as the total FM write
amount.

Block control 0600 manages the number of blocks gen-
erated and consumed by user WR 0601, user RCM 0602,
meta WR 0603, and meta RCM 0604, and adjusts the RCM
amount. Further, block control 0600 manages the FM 0102
in the unit of a block 0303 by dividing the FM 0102 into four
groups, namely, valid user blocks 0605, unoccupied user
blocks 0606, valid meta blocks 0607, and unoccupied meta
blocks 0608. The valid user blocks 0605 are allocated for
user data and used to store valid user data. The unoccupied
user blocks 0606 are unoccupied blocks allocated for user
data. The valid meta blocks 0607 are allocated for meta data
and used to store valid meta data. The unoccupied meta
blocks 0608 are unoccupied blocks allocated for meta data.
The valid user blocks 0605 and the unoccupied user blocks
0606 are collectively referred to as the allocated user blocks,
and the valid meta blocks 0607 and the unoccupied meta
blocks 0608 are collectively referred to as the allocated meta
blocks. Additionally, block control 0600 controls the number
of allocated user blocks and the number of allocated meta
blocks.

How the number of allocated meta blocks is dynamically
changed will now be described with reference to FIGS. 6
and 7. The first state is a state where meta WR 0603 and
meta RCM 0604 are smaller in amount than user WR 0601
and user RCM 0602. When a large amount of data is
uncompressed, the logical address space is small relative to
the user data size, the amount of meta data is small, and a
small amount of meta data moves between the main memory



US 10,394,480 B2

9

0104 and the FM 0102. Further, when an 1/O pattern is for
local address accessing, a small amount of meta data moves
between the main memory 0104 and the FM 0102. In such
an instance, block control 0600 decreases the number of
allocated meta blocks. This lowers the valid data percentage
in each valid user block 0605, decreases the amount of user
RCM 0602, and decreases the total FM write amount. The
valid data percentage is the ratio of the number of valid
pages to the number of pages in a block. The total FM write
amount is the total amount of write into the FM 0102 that is
performed by user WR 0601, user RCM 0602, meta WR
0603, and meta RCM 0604.

Meanwhile, the second state is a state where the amounts
of meta WR 0603 and meta RCM 0604 are increased as
compared to the first state. When a large amount of data is
compressed, the logical address space is large relative to the
user data size, the amount of meta data is large, and a large
amount of meta data moves between the main memory 0104
and the FM 0102. Further, when the 1/O pattern is for wide
address accessing, a large amount of meta data moves
between the main memory 0104 and the FM 0102. In such
an instance, block control 0600 increases the number of
allocated meta blocks. This lowers the valid data percentage
in each valid meta block 0607, decreases the amount of meta
RCM 0604, and decreases the total FM write amount.

FIG. 8 is a diagram illustrating an exemplary configura-
tion of the block management TBL 0211.

The block management TBL 0211 has an entry for each
block. Each entry includes a block # 0700, a status 0701, a
data type 0702, a valid data percentage 0703, and FM life
information 0704. The block # 0700 is an identifier of a
block and unique. The status 0701 indicates the status of the
block, namely, “valid (closed),” “valid (open),” or “unoc-
cupied.” The “valid (closed)” state is a state where all pages
in the block are written. The “valid (open)” state is a state
where some pages in the block are written. The “unoccu-
pied” state is a state where the block is erased. The valid data
percentage 0703 indicates the ratio of the number of valid
pages to the number of pages in the block. The FM life
information 0704 is the information about life, such as the
number of erasures of the block. The status 0701 may
indicate an “invalid” state where all pages in the block are
invalid and the block is unerased. Further, the valid data
percentage 0703 may be substituted, for example, by the
number of valid pages, the number of invalid pages, or the
invalid data percentage, which is the ratio of the number of
invalid pages to the number of pages in the block.

FIG. 9 is a diagram illustrating an exemplary configura-
tion of the device information TBL 0212.

The device information TBL 0212 includes a maximum
logical capacity 0800, a total FM capacity 0801, a main
memory meta capacity 0802, a valid logical data size 0803,
a user data size 0804, a meta data size 0805, a valid user
block count 0806, an unoccupied user block count 0807, a
valid meta block count 0808, and an unoccupied meta block
count 0809.

The maximum logical capacity 0800 is a preset capacity
indicative of the maximum amount of user data storable in
the SSD 0100 having the data compression function. The
total FM capacity 0801 is a preset value indicative of the
capacity of the FM 0102 included in the SSD 0100. That is
to say, the SSD 0100 is capable of providing the higher-level
device 0108 with the maximum logical capacity 0800 larger
than the total FM capacity 0801. The main memory meta
capacity 0802 is a preset value indicative of the capacity of
the main memory 0104 included in the SSD 0100 that is
available for storing meta data. The valid logical data size

5

10

15

20

25

30

35

40

45

50

55

60

10

0803 indicates the size of uncompressed user data stored in
the SSD 0100. The user data size 0804 indicates the physical
size of compressed user data stored in the FM 0102. The
meta data size 0805 indicates the physical size of meta data
stored in the main memory 0104 and the FM0102. The valid
user block count 0806 indicates the total number of allocated
user blocks that are allocated for user data to store valid data.
The unoccupied user block count 0807 indicates the total
number of unoccupied allocated user blocks and corre-
sponds to the unoccupied user blocks 0606. The valid meta
block count 0808 indicates the total number of allocated
meta blocks that are allocated for meta data and used to store
valid data. The unoccupied meta block count 0809 indicates
the total number of unoccupied allocated meta blocks and
corresponds to the unoccupied meta blocks 0608.

When the valid logical data size 0803 increases, the meta
data size 0805 also increases.

FIG. 10 is a diagram illustrating an exemplary configu-
ration of the statistical information TBL 0213.

The statistical information TBL 0213 has an entry for
each generation. Each entry includes a generation # 0900, an
update date and time 0901, a user data size 0902, a meta data
size 0903, an FM write ratio 0904, and a user write tendency
0905.

The generation # 0900 is an identifier indicative of a time
point and unique. The update date and time 0901 indicates
the date and time when the information about the entry is
updated. The user data size 0902 indicates the physical size
of compressed user data that is stored in the FM 0102 when
the entry is updated, and corresponds to the user data size
0804 included in the device information TBL 0212. The
meta data size 0903 indicates the physical size of meta data
that is stored in the main memory 0104 and the FM 0102
when the entry is updated, and corresponds to the meta data
size 0805 included in the device information TBL 0212. The
FM write ratio 0904 indicates the ratio between the amount
of user data write into the FM 0102 and the amount of meta
data write into the FM 0102 during a period between the last
entry update and the current entry update. The user write
tendency 0905 is information about the tendency of user
write between the last statistical information update and the
current entry update and indicative, for example, of an /O
length and an access pattern (sequential or random).

The CPU 0106 may prepare an entry in the statistical
information TBL 0213 on a periodic basis, each time a write
is performed, or each time the L.2P TBL 0209 is referenced.

Operations of the SSD 0100 will now be described.

FIG. 11 is a flowchart illustrating an example of a user
data write process.

The user data write process is initiated upon receipt of a
write command issued from the higher-level device 0108
and continued until the write command is completed.

The CPU 0106 acquires the write command from the
higher-level device 0108 (step 1000).

After analyzing the write command, the CPU 0106
requests the higher-level device 0108 to transmit write data,
and stores the write data received from the higher-level
device 0108 in the data buffer area 0202 (step 1001).

The CPU 0106 transmits a write completion response to
the higher-level device 0108 (step 1002).

The CPU 0106 compresses the write data stored in the
data buffer area 0202 (step 1003).

The CPU 0106 performs an [.2P TBL address acquisition
process to acquire a subset’s main memory address corre-
sponding to a logical address of the L.2P TBL 0209 that is
indicated by the write command (step 1004). This process
will be described in detail later.



US 10,394,480 B2

11

Based on the subset’s main memory address acquired in
step 1004 and the logical page # calculated from the write
command, the CPU 0106 acquires an entry of the relevant
logical page that is included in the subset (step 1005).

Based on the information in the block management TBL
0211, the CPU 0106 determines a write destination physical
address (step 1006). The write destination physical address
is determined by using the status 0701 and life information
0704 in the block management TBL 0211. As the write
destination physical address, the CPU 0106 selects, for
example, a block having a long remaining life or a page
subsequent to an open block.

The CPU 0106 issues to the FM 0102 a write request for
writing compressed data at the write destination physical
address determined in step 1006, and waits for the comple-
tion of the write (step 1007).

After the write request issued instep 1007 is completed,
the CPU 0106 updates the physical address 0402 of the
relevant entry in the L2P TBL 0209 (step 1008).

The CPU 0106 calls a block control process, exercises, for
example, RCM control and block count control for control-
ling the number of blocks to be allocated to meta data, and
then terminates the block control process (step 1009). This
process will be described in detail later.

According to the above-described write process, the CPU
0106 is able to register the write destination physical address
in a subset within the main memory 0104 that is associated
with a logical address designated by the write command.

FIG. 12 is a flowchart illustrating an example of an unmap
process.

The unmap process is initiated upon receipt of an unmap
command issued from the higher-level device 0108 and
continued until the unmap command is completed.

The CPU 0106 acquires the unmap command from the
higher-level device 0108 (step 1100). The unmap command
is, for example, a trim command. The unmap command
indicates that the higher-level device 0108 no longer uses
data within a designated logical address range. Thus, the
unmap command permits the CPU 0106 to invalidate the
designated logical address range.

The CPU 0106 performs the L.2P TBL address acquisition
process to acquire a subset’s main memory address in the
L2P TBL 0209 that corresponds to the unmap command
(step 1004). This process will be described in detail later.

Based on the subset’s main memory address acquired in
step 1004 and the logical page # calculated from the unmap
command, the CPU 0106 acquires an entry of the relevant
logical page that is included in the subset (step 1005).

The CPU 0106 changes the status 0401 of the relevant
entry of the relevant subset to “unallocated” (step 1101).

The CPU 0106 determines whether all entries of the
relevant subset are invalid (step 1102). If the result of
determination indicates that all the entries are invalid
(“YES” at step 1102), the CPU 0106 proceeds to step 1103
(A). If; by contrast, all the entries are not invalid (“NO” at
step 1102), the CPU 0106 proceeds to step 1104 (B).

A)

The CPU 0106 references the L2P TBL management TBL
0210 and changes the status 0501 of the entries of the
relevant subset to “unallocated” (step 1103). This increases
the invalid data percentage of allocated meta blocks. Sub-
sequently, the CPU 0106 proceeds to step 1104 (B).
®)

The CPU 0106 transmits an unmap completion response
to the higher-level device 0108 (step 1104).

The CPU 0106 calls the block control process, exercises,
for example, RCM control and block count control for

10

15

20

25

30

35

40

45

50

55

60

65

12

controlling the number of blocks to be allocated to meta
data, and then terminates the block control process (step
1009). This process will be described in detail later.

According to the above-described unmap process, the
CPU 0106 is able to remove the mapping of physical
addresses in a subset within the main memory 0104 that is
associated with logical addresses designated by the unmap
command.

FIG. 13 is a flowchart illustrating an example of the L.2P
TBL address acquisition process.

In step 1004 of the above-described user data write
process and unmap process, the CPU 0106 performs the L.2P
TBL address acquisition process.

The CPU 0106 references the L2P TBL management TBL
0210, and acquires an entry in the L2P TBL subset 0305 that
is associated with a logical page designated by the command
(step 1200).

Based on the information acquired in step 1200, the CPU
0106 determines whether the status 0501 of the relevant L2P
TBL subset 0305 is valid (step 1201). If the result of
determination indicates that the status 0501 is valid (“YES”
at step 1201), the CPU 0106 proceeds to step 1202 (D). If,
by contrast, the status 0501 is not valid (“NO” at step 1201),
the CPU 0106 proceeds to step 1203 (E).

D)

Based on the information acquired in step 1200, the CPU
0106 determines whether the main memory is the storage
place 0502 for the relevant L2P TBL subset 0305 (step
1202). If the result of determination indicates that the main
memory is the storage place 0502 (“YES” at step 1202), the
CPU 0106 proceeds to step 1206 (H). If, by contrast, the
main memory is not the storage place 0502 (“NO” at step
1202), the CPU 0106 proceeds to step 1203 (E).

E)

The CPU 0106 determines whether the main memory
0104 has an unoccupied area adequate for newly storing the
L2P TBL subset 0305 (step 1203). If the result of determi-
nation indicates that the main memory 0104 does not have
such an unoccupied area (“NO” at step 1203), the CPU 0106
proceeds to step 1204 (F). If, by contrast, the main memory
0104 has such an unoccupied area (“YES” at step 1203), the
CPU 0106 proceeds to step 1205 (G).
®

The CPU 0106 acquires an unoccupied space by selecting
an L2P TBL subset 0305 stored in the main memory 0104,
writing the selected L.2P TBL subset 0305 into the FM 0102,
changing the storage place 0502 for the relevant entry in the
L2P TBL management TBL 0210 to “FM,” and changing the
physical address/main memory address 0503 to the physical
address of the storage destination (step 1204). The L2P TBL
subset 0305 to be written into the FM 0501 may be deter-
mined based on managed information such as the informa-
tion about reference and update frequencies. Upon comple-
tion of step 1204, the CPU 0106 proceeds to step 1205 (G).
If'the L.2P TBL subset 0305 stored in the main memory 0104
is stored in the FM 0102 as well and the L2P TBL subset
0305 stored in the main memory 0104 is not updated, it is
not necessary for the CPU 0106 to perform step 1204.

If the result obtained in step 1201 is “YES,” the CPU 0106
reads the relevant L2P TBL subset from the FM 0102 into
the main memory 0104, changes the storage place 0502 for
the relevant [.2P TBL subset in the L2P TBL management
TBL 0210 to the main memory, and changes the subset
address 0503 to the main memory address of the storage
destination (step 1205). If, by contrast, the result obtained
instep 1201 is “NO,” the CPU 0106 creates a new [.2P TBL
subset 0305 in the main memory 0104, changes the status



US 10,394,480 B2

13
0501 of the relevant entry in the L2P TBL management TBL.
0210 to valid, changes the storage place 0502 to the main
memory, and changes the subset address 0503 to the main
memory address of the storage destination (step 1205).
Subsequently, the CPU 0106 proceeds to step 1206 (H).
(H)

The CPU 0106 returns the subset address 0503 of the
relevant entry in the L2P TBL management TBL 0210, and
then terminates the process (step 1206).

According to the above-described L2P TBL address
acquisition process, the CPU 0106 is able to acquire the
position within the main memory 0104 where a subset
associated with a designated logical address exists. Further,
if the subset is not stored in the main memory 0104, the CPU
0106 is able to read the subset from the FM 0102 into the
main memory 0104.

FIG. 14 is a flowchart illustrating an example of the block
control process.

In step 1009 of the above-described user data write
process and unmap process, the CPU 0106 performs the
block control process.

The CPU 0106 acquires various information from at least
one of the device information TBL 0212 and statistical
information TBL 0213 (step 1300).

The CPU 0106 performs an RCM control process to
calculate the RCM amounts required for user data and meta
data, respectively, based on the various information acquired
in step 1300, and execute RCM (step 1301). This process
will be described in detail later.

The CPU 0106 checks a latest generation entry in the
statistical information TBL 0213, which is acquired in step
1300, to determine whether any change is applied to an
earlier generation entry (step 1302). For example, the CPU
0106 pays attention to a specific field of the statistical
information TBL 0213 and calculates the ratio between a
latest generation entry and an immediately preceding gen-
eration entry. If the calculated ratio is outside a preset range,
the CPU 0106 determines that a change is applied. The
specific field is, for example, the meta data size 0903. The
specific field may be at least one of the user data size 0902,
meta data size 0903, FM write ratio 0904, and user write
tendency 0905. If the result of determination indicates that
a change is applied (“YES” at step 1302), the CPU 0106
proceeds to step 1303 (J). If, by contrast, no change is
applied (“NO” at step 1302), the CPU 0106 proceeds to step
1304 (K).
™

The CPU 0106 performs a block allocation control pro-
cess to calculate, based on the information acquired in step
1300, the number of allocated user blocks and the number of
allocated meta blocks that minimize the total FM write
amount, and increase or decrease the numbers of such blocks
(step 1303). This process will be described in detail later.
Subsequently, the CPU 0106 proceeds to step 1304 (K).
)

The CPU 0106 updates various information in the device
information TBL 0212 and the statistical information TBL
0213, and then terminates the process (step 1304). The CPU
0106 may update the statistical information TBL 0213 in
each execution of step 1304 or after an elapse of a preset
period of time since the last update.

According to the above-described block control process,
the CPU 0106 is able to change the number of allocated user
blocks and the number of allocated meta blocks when it is
determined that statistical information is changed. If it is
determined that the statistical information is not changed,
the CPU 0106 is able to determine that the current number

10

15

20

25

30

35

40

45

50

55

60

65

14

of allocated user blocks and the current number of allocated
meta blocks are optimal, and maintain the current number of
allocated user blocks and the current number of allocated
meta blocks.

FIG. 15 is a flowchart illustrating an example of the RCM
control process.

In step 1301 of the above-described block control process,
the CPU 0106 performs the RCM control process.

Based on the information acquired in step 1300, the CPU
0106 determines whether unoccupied user blocks are insuf-
ficient (step 1400). If, for example, the number of unoccu-
pied user blocks is smaller than an unoccupied user block
count threshold value, the CPU 0106 determines that the
unoccupied user blocks are insufficient. The unoccupied user
block count threshold value may be preset or calculated by
multiplying the number of allocated user blocks by a preset
unoccupied user block ratio. If the number of blocks to be
used for the RCM control process is given, whether the
unoccupied user blocks are insufficient is determined by
newly calculating the number of unoccupied user blocks by
subtracting the number of blocks to be used from the number
of unoccupied user blocks. If the result of determination
indicates that the unoccupied user blocks are insufficient
(“YES” at step 1400), the CPU 0106 proceeds to step 1401
(M). If, by contrast, the unoccupied user blocks are not
insufficient (“NO” at step 1400), the CPU 0106 proceeds to
step 1403 (N).
™M)

Based on the information acquired in step 1300 and on the
block management TBL 0211, the CPU 0106 calculates a
user RCM amount required for acquiring sufficient unoccu-
pied user blocks (the amount of user data to be moved
(rewritten) in order to acquire unoccupied user blocks) (step
1401). For example, the CPU 0106 calculates the number of
insufficient unoccupied user blocks relative to the unoccu-
pied user block count threshold value, and calculates, as the
user RCM amount, the number of valid pages to be moved
from the number of insufficient blocks and the percentage of
valid data in valid user blocks.

Based on the user RCM amount calculated in step 1401,
the CPU 0106 calculates the number of unoccupied meta
blocks to be consumed by the RCM (the number of unoc-
cupied meta blocks to be consumed) (step 1402). For
example, the CPU 0106 determines the total size of L2P
TBL subsets 0305 that are associated with valid pages
included in a user RCM target block and stored in the FM
0102, and calculates, as the number of unoccupied meta
blocks to be consumed, the number of unoccupied meta
blocks required for writing meta data having the same size
as the determined total size into the FM 0102. Alternatively,
the CPU 0106 may calculate a logical-physical failure rate
and statistically calculate, based on the calculated logical-
physical failure rate, the number of unoccupied meta blocks
to be consumed. Upon completion of step 1402, processing
proceeds to step 1403 (N).

N)

When step 1402 is performed based on the information
acquired in step 1300, the CPU 0106 considers a meta RCM
consumption block count calculated in step 1402 and deter-
mines whether unoccupied meta blocks are insufficient (step
1403). For example, the CPU 0106 calculates a predicted
unoccupied meta block count by subtracting the meta RCM
consumption block count from the number of unoccupied
meta blocks. If the predicted unoccupied meta block count
is smaller than an unoccupied meta block count threshold
value, the CPU 0106 determines that the unoccupied meta
blocks are insufficient. The unoccupied meta block count



US 10,394,480 B2

15

threshold value may be preset or calculated by multiplying
the number of allocated meta blocks by a preset unoccupied
meta block ratio. If the result of determination indicates that
the unoccupied meta blocks are insufficient (“YES” at step
1403), the CPU 0106 proceeds to step 1404 (0). If, by
contrast, the unoccupied meta blocks are not insufficient
(“NO” at step 1403), the CPU 0106 proceeds to step 1406
.

©)

Based on the information acquired in step 1300 and on the
block management TBL 0211, the CPU 0106 calculates a
meta RCM amount required for the acquisition of sufficient
unoccupied blocks (the amount of meta data to be moved
(rewritten) in order to acquire unoccupied meta blocks) (step
1404).

Based on the meta RCM amount calculated in step 1404,
the CPU 0106 performs meta RCM to acquire unoccupied
meta blocks (step 1405). Subsequently, the CPU 0106
proceeds to step 1406 (P).
®)

Based on the user RCM amount calculated in step 1401,
the CPU 0106 performs user RCM to acquire unoccupied
user blocks, and then terminates the process (step 1406). If
step 1401 is not performed, this process is not performed.

According to the above-described RCM control process,
the CPU 0106 is able to perform meta RCM without
affecting allocated user blocks by first calculating the user
RCM amount and then calculating the meta RCM amount
based on the user RCM amount. Subsequently, the CPU
0106 is able to prevent the depletion of unoccupied meta
blocks by performing user RCM.

FIG. 16 is a flowchart illustrating an example of the block
allocation control process.

In step 1303 of the above-described block control process,
the CPU 0106 performs the block allocation control process.

Based on the information acquired in step 1300, the CPU
0106 determines whether the main memory meta capacity
0802 is exceeded by the meta data size 0805 (step 1500). If
the result of determination indicates that the main memory
meta capacity 0802 is exceeded by the meta data size 0805
(“YES” at step 1500), the CPU 0106 proceeds to step 1501
(R). I, by contrast, the meta data size 0805 is not larger than
the main memory meta capacity 0802 (“NO” at step 1500),
the CPU 0106 terminates the process.
®)

The CPU 0106 calculates the current user data size 0902
(step 1501).

The CPU 0106 calculates the current meta data size 0903
(step 1502).

The CPU 0106 calculates the current FM write ratio 0904
(step 1503).

The CPU 0106 calculates the current user write tendency
0905 (step 1504).

Based on the values calculated in steps 1501 to 1504, the
CPU 0106 calculates, as an optimal block allocation ratio, a
block allocation ratio between user data and meta data that
minimizes the total FM write amount (step 1505). The block
allocation ratio is the ratio between the number of allocated
user blocks and the number of allocated meta blocks. Here,
the CPU 0106 may, for example, retain in the main memory
0104 a table indicating a value combination of the user data
size, meta data size, FM write ratio, user write tendency, and
optimal block allocation ratio, and reference the table to
determine the optimal block allocation ratio corresponding
to the values calculated in steps 1501 to 1504. The block
allocation ratio may be the ratio of the number of allocated
meta blocks to the total number of blocks in the FM 0102.

15

20

30

40

45

16

Instead of the block allocation ratio, either the number of
allocated meta blocks or the number of allocated user blocks
may be used. The CPU 0106 may use a preset calculation
formula to determine the optimal block allocation ratio from
the values calculated in steps 1501 to 1504.

The CPU 0106 obtains the current block allocation ratio
based on the information acquired in step 1300, and deter-
mines whether the optimal block allocation ratio is different
from the current block allocation ratio (step 1506). If, for
example, the ratio between the optimal block allocation ratio
and the current block allocation ratio is outside a preset
range, the CPU 0106 determines that the optimal block
allocation ratio is different from the current block allocation
ratio. If the result of determination indicates that the optimal
block allocation ratio is different from the current block
allocation ratio (“YES” at step 1506), the CPU 0106 pro-
ceeds to step 1507 (S). If, by contrast, the optimal block
allocation ratio is not different from the current block
allocation ratio (“NO” at step 1506), the CPU 0106 termi-
nates the process.
®)

Based on the result obtained in step 1506, the CPU 0106
determines whether the total FM write amount can be
minimized by increasing or decreasing the number of allo-
cated meta blocks (step 1507). Here, if the number of
allocated meta blocks determined by the optimal block
allocation ratio is regarded as the optimal number of allo-
cated meta blocks and the number of meta blocks to be
changed, which is determined by subtracting the current
number of allocated meta blocks from the optimal number of
allocated meta blocks, is positive, the CPU 0106 determines
that the number of allocated meta blocks should be
increased. If the result of determination indicates that the
number of allocated meta blocks should be increased (“TO
BE INCREASED” at step 1507), the CPU 0106 proceeds to
step 1508 (T). If, by contrast, the number of allocated meta
blocks should be decreased (“TO BE DECREASED” at step
1507), the CPU 0106 proceeds to step 1509 (U).

(M

The CPU 0106 performs an allocated meta block increase
process to increase the number of allocated meta blocks, and
then terminates the process (step 1508). This process will be
described in detail later.

)

The CPU 0106 performs an allocated meta block decrease
process to decrease the number of allocated meta blocks, and
then terminates the process (step 1509). This process will be
described in detail later.

According to the above-described block allocation control
process, the CPU 0106 is able to calculate the optimal block
allocation ratio based on the status of the SSD 0100. Further,
if the current block allocation ratio is different from the
optimal block allocation ratio, the CPU 0106 is able to make
the current block allocation ratio closer to the optimal block
allocation ratio. Furthermore, the CPU 0106 is able to
calculate the optimal block allocation ratio for minimizing
the total FM write amount by using measured values, such
as those included in the device information TBL 0212 and
the statistical information TBL 0213, and the relationship
between the measured values and the optimal block alloca-
tion ratio. Moreover, minimizing the total FM write amount
prevents the depletion of unoccupied blocks, improves the
performance of the SSD 0100, and increases the life of the
FM 0102.

Instead of the block allocation ratio, the number of
allocated meta blocks or the number of allocated user blocks
may be used. Further, instead of the optimal block allocation



US 10,394,480 B2

17

ratio, the optimal number of allocated meta blocks or the
optimal number of allocated user blocks may be used.

FIG. 17 is a flowchart illustrating an example of the
allocated meta block increase process.

In step 1508 of the above-described block allocation
control process, the CPU 0106 performs the allocated meta
block increase process.

After blocks to be added are acquired from unoccupied
user blocks in order to increase the number of allocated meta
blocks by the number of blocks to be changed, the CPU 0106
determines whether the number of unoccupied user blocks is
insufficient (step 1600). Here, if the number of post-change
unoccupied user blocks, which is calculated by subtracting
the number of blocks to be changed from the current number
of unoccupied user blocks, is smaller than the unoccupied
user block count threshold value, the CPU 0106 determines
that the number of unoccupied user blocks is insufficient. If
the result of determination indicates that the number of
unoccupied user blocks is insufficient (“YES” at step 1600),
the CPU 0106 proceeds to step 1301 (W). If, by contrast, the
number of unoccupied user blocks is not insufficient (“NO”
at step 1600), the CPU 0106 proceeds to step 1601 (X).
W)

The CPU 0106 regards the number of blocks to be
changed as the number of blocks to be used and performs the
above-described RCM control process in order to generate
unoccupied user blocks (step 1301). Subsequently, the CPU
0106 proceeds to step 1601 (X).

X)

The CPU 0106 changes unoccupied user blocks corre-
sponding to the number of blocks to be changed, to unoc-
cupied meta blocks (step 1601).

The CPU 0106 updates information in the block manage-
ment TBL 0211 that relates to the blocks changed in step
1601, and then terminates the process (step 1602).

According to the above-described allocated meta block
increase process, the CPU 0106 is able to increase the
number of allocated meta blocks by changing unoccupied
user blocks to unoccupied meta blocks.

FIG. 18 is a flowchart illustrating an example of the
allocated meta block decrease process.

In step 1509 of the above-described block allocation
control process, the CPU 0106 performs the allocated meta
block decrease process.

After blocks to be removed are acquired from unoccupied
meta blocks in order to decrease the number of allocated
meta blocks by the number of blocks to be changed, the CPU
0106 determines whether the number of unoccupied meta
blocks is insufficient (step 1700). Here, if the number of
post-change unoccupied meta blocks, which is calculated by
subtracting the number of blocks to be changed from the
current number of unoccupied meta blocks, is smaller than
the unoccupied user block count threshold value, the CPU
0106 determines that the number of unoccupied meta blocks
is insufficient. If the result of determination indicates that the
number of unoccupied meta blocks is insufficient (“YES” at
step 1700), the CPU 0106 proceeds to step 1301 (Y). If, by
contrast, the number of unoccupied meta blocks is not
insufficient (“NO” at step 1700), the CPU 0106 proceeds to
step 1701 (7).

)

The CPU 0106 regards the number of blocks to be
changed as the number of blocks to be used and performs the
above-described RCM control process in order to generate
unoccupied meta blocks (step 1301). Subsequently, the CPU
0106 proceeds to step 1701 (7).

25

30

40

45

50

18
@)

The CPU 0106 changes unoccupied meta blocks corre-
sponding to the number of blocks to be changed, to unoc-
cupied user blocks (step 1701).

The CPU 0106 updates information in the block manage-
ment TBL 0211 that relates to the blocks changed in step
1701, and then terminates the process (step 1702).

According to the above-described allocated meta block
decrease process, the CPU 0106 is able to decrease the
number of allocated meta blocks by changing unoccupied
meta blocks to unoccupied user blocks.

The present embodiment is able to perform a continuous
1/O operation in an SSD having a data compression function
without causing the depletion of unoccupied blocks. Further,
the present embodiment is able to dynamically change the
number of blocks to be allocated to user data and meta data
in order to decrease the amount of valid data movement that
occurs during user RCM and meta RCM. If, for example, the
amount of meta data write accounts for a high percentage of
the total FM write amount, the percentage of valid data
included in each block of meta data can be decreased by
increasing the number of blocks to be allocated to meta data.
This decreases the amount of valid data movement during
RCM. That is to say, the total FM write amount can be
decreased to improve device performance and device life.

Instead of the data compression function, the SSD 0100
may have a deduplication function or other data reduction
function cable of writing into the FM 0102 by decreasing the
amount of write data from the higher-level device 0108. The
above-mentioned data reduction function changes the logi-
cal address space of the SSD 0100 and thus changes the
amount of meta data. Further, the data reduction function
reduces the bit cost by providing the higher-level device
0108 with a logical address space that is larger than a
physical address space determined by the number of allo-
cated user blocks.

The terms will now be described. A storage device cor-
responds, for example, to the SSD 0100. A main memory
corresponds, for example, to the main memory 0104. A
nonvolatile semiconductor memory corresponds, for
example, to the FM 0102. A processor corresponds, for
example, to the CPU 0106. An unoccupied user block
generation process corresponds, for example, to the user
RCM. An unoccupied meta block generation process corre-
sponds, for example, to the meta RCM. An amount of user
data movement corresponds, for example, to the user RCM
amount. An amount of meta data movement corresponds, for
example, to the meta RCM amount. Allocation information
corresponds, for example, the block allocation ratio, the
number of allocated meta blocks, and the number of allo-
cated user blocks. Optimal allocation information corre-
sponds, for example, to the optimal block allocation ratio,
the optimal number of allocated meta blocks, and the
optimal number of allocated user blocks. An allocated block
change process corresponds, for example, to the block
allocation control process. A change condition corresponds,
for example, to the condition in step 1302. A measured value
corresponds, for example, to a certain value in the device
information TBL 0212 or the statistical information TBL
0213.

While the present invention has been described in con-
junction with a particular embodiment, the particular
embodiment is merely illustrative and not restrictive, and the
scope of the present invention is not limited to the above-
described configuration. Persons of skill in the art will
appreciate that the present invention may be implemented in
various other embodiments.



US 10,394,480 B2

19
DESCRIPTION OF REFERENCE CHARACTERS
0100: SSD
0101: SSD controller
0102: FM

0103: Storage I/F

0104: Main memory

0105: FM controller

0106: CPU

0107: Internal network
0108: Higher-level device
0300: Logical address space
0301: Physical address space
0302: Logical page

0303: Block

0304: Page

The invention claimed is:

1. A storage device comprising:

a main memory;

a nonvolatile semiconductor memory; and

a processor connected to the main memory and the

nonvolatile semiconductor memory, wherein:

the processor stores in the nonvolatile semiconductor

memory at least part of meta data indicative of the
relationship between logical addresses provided to a
higher-level device and physical addresses of user data
in the nonvolatile semiconductor memory, and stores
part of the meta data in the main memory;

the processor allocates blocks in the nonvolatile semicon-

ductor memory as allocated user blocks for storing the
user data and as allocated meta blocks for storing the
meta data;

the processor is capable of performing an unoccupied user

block generation process and an unoccupied meta block
generation process, the unoccupied user block genera-
tion process being adapted to move user data stored in
the allocated user blocks in order to generate unoccu-
pied user blocks serving as unoccupied blocks among
the allocated user blocks, the unoccupied meta block
generation process being adapted to move meta data
stored in the allocated meta blocks in order to generate
unoccupied meta blocks serving as unoccupied blocks
among the allocated meta blocks;

the processor calculates the number of unoccupied meta

blocks to be consumed, that is, the number of unoccu-
pied meta blocks to be consumed by the unoccupied
user block generation process; and

the processor performs the unoccupied meta block gen-

eration process based on the number of unoccupied
meta blocks to be consumed.

2. The storage device according to claim 1, wherein the
processor receives write data from the higher-level device,
generates user data by decreasing the amount of the write
data, and writes the generated user data into the allocated
user blocks.

3. The storage device according to claim 2, wherein:

the processor determines whether the unoccupied user

blocks are insufficient;

if the unoccupied user blocks are determined to be insuf-

ficient, the processor calculates the amount of user data
movement indicative of the amount of user data to be
moved by the unoccupied user block generation pro-
cess;

based on the amount of user data movement, the processor

calculates the number of unoccupied meta blocks to be
consumed;

10

15

20

25

30

40

45

55

60

20

based on the number of unoccupied meta blocks to be
consumed, the processor determines whether the unoc-
cupied meta blocks are insufficient; and

if the unoccupied meta blocks are determined to be

insufficient, the processor performs the unoccupied
meta block generation process and then performs the
unoccupied user block generation process.
4. The storage device according to claim 3, wherein:
the processor acquires a measured value by measuring a
write into the nonvolatile semiconductor memory; and

based on the measured value, the processor performs an
allocated block change process of changing the number
of allocated user blocks and the number of allocated
meta blocks.

5. The storage device according to claim 4, wherein,
based on the measured value, the allocated block change
process is performed on allocation information indicative of
the number of allocated user blocks and the number of
allocated meta blocks to determine optimal allocation infor-
mation and change the allocation information in accordance
with the optimal allocation information, the optimal alloca-
tion information being the allocation information for mini-
mizing the amount of write into the nonvolatile semicon-
ductor memory.

6. The storage device according to claim 5, wherein the
allocated block change process changes unoccupied user
blocks to unoccupied meta blocks when increasing the
number of allocated meta blocks, and changes unoccupied
meta blocks to unoccupied user blocks when decreasing the
number of allocated meta blocks.

7. The storage device according to claim 6, wherein:

the measured value includes the size of user data stored in

the nonvolatile semiconductor memory, the size of
meta data stored in the nonvolatile semiconductor
memory, the amount of user data write into the non-
volatile semiconductor memory, the amount of meta
data write into the nonvolatile semiconductor memory,
or the I/O pattern of user data; and

the allocated block change process uses a predefined

relationship between the measured value and the opti-
mal allocation information to determine the optimal
allocation information from the measured value.

8. The storage device according to claim 7, wherein:

the processor repeatedly acquires the measured value, and

determines whether a predefined change condition is
satisfied by a change in the measured value; and

if the change condition is determined to be satisfied by the

change in the measured value, the processor performs
the allocated block change process.

9. The storage device according to claim 8, wherein:

the processor divides the space of the logical addresses

into a plurality of sections and divides the meta data
into a plurality of subsets corresponding to the plurality
of sections;

the processor stores subset position information in the

main memory, the subset position information showing
positions that are within the main memory or the
nonvolatile semiconductor memory and used to store
the subsets; and

when accessing specific user data, the processor performs

a subset position acquisition process based on the
subset position information in order to acquire the
position of a subset corresponding to the specific user
data.

10. The storage device according to claim 9, wherein:

the processor stores block management information in the

main memory, the block management information indi-



US 10,394,480 B2

21

cating the status of each block in the nonvolatile
semiconductor memory; and

upon receiving the write data that is to be written at a first

logical address from the higher-level device, the pro-
cessor performs the subset position acquisition process
to acquire the position of a subset corresponding to the
first logical address, selects the physical address of a
write destination for user data in accordance with the
write data, writes generated user data at the write
destination, and causes the subset corresponding to the
first logical address to reflect the relationship between
the first logical address and the physical address of the
write destination.

11. The storage device according to claim 10, wherein the
processor compresses the write data to generate user data
based on the write data.

12. The storage device according to claim 11, wherein,
upon receiving a request for unmapping a second logical
address from the higher-level device, the processor performs
the subset position acquisition process to acquire the posi-
tion of a subset corresponding to the second logical address
and, based on the subset corresponding to the second logical
address, causes the subset corresponding to the second
logical address to reflect the release of a physical address
from the second logical address.

13. A storage device control method for controlling a
storage device including a main memory and a nonvolatile
semiconductor memory, the storage device control method
comprising the steps of:

10

15

20

25

22

storing in the nonvolatile semiconductor memory at least
part of meta data indicative of the relationship between
logical addresses provided to a higher-level device and
physical addresses of user data in the nonvolatile
semiconductor memory, and storing part of the meta
data in the main memory;

allocating blocks in the nonvolatile semiconductor
memory as allocated user blocks for storing the user
data and as allocated meta blocks for storing the meta
data;

performing an unoccupied user block generation process
by moving user data stored in the allocated user blocks
in order to generate unoccupied user blocks serving as
unoccupied blocks among the allocated user blocks,
and performing an unoccupied meta block generation
process by moving meta data stored in the allocated
meta blocks in order to generate unoccupied meta
blocks serving as unoccupied blocks among the allo-
cated meta blocks;

calculating the number of unoccupied meta blocks to be
consumed, that is, the number of unoccupied meta
blocks to be consumed by the unoccupied user block
generation process; and

performing the unoccupied meta block generation process
based on the number of unoccupied meta blocks to be
consumed.



