发明名称 纳米模具和纳米薄膜及使用水溶性前体制备纳米模具和纳米薄膜的方法

摘要
本发明涉及一种制备组合物的方法，该组合物是用来制备纳米模具和纳米薄膜的，包括：在导致物质（进一步）水解的条件下，让选自硅和主族及副族金属元素化合物的水溶胶和/或醇溶胶，与具有可水解的烷氧基物质（至少包括一种有机改性烷氧基硅烷或由它而得到的预缩合物）接触，然后将所产生的醇或原来就任意存在的醇全部除去。本发明的特征在于，醇被充分地除去，使其在组合物中剩余量不超过20%（重量）。
1. 制备组合物的方法，该组合物是用来制备纳米模具和纳米薄膜，包括在导致物质进一步水解的条件下，让选自硅和周期表中的主族及过渡族金属元素化合物的溶溶胶和/或醇溶胶，与具有可水解的烷氧基，至少包括一种有机改性烷氧基硅烷或由它而得到的预缩合物的物质接触，然后将所产生的醇或原来就存在的任何醇除去，其特征在于，是将这样的数量脱醇，使组合物中剩余的醇含量不超过 20% 重量。

2. 权利要求 1 的方法，其中除了初始就已存在的任何醇的总量之外，脱醇的数量相当于初始存在的烷氧基全部水解的理论产醇量的至少 30% 重量。

3. 权利要求 1 的方法，其中除了初始就已存在的任何醇的总量之外，脱醇的数量相当于初始存在的烷氧基全部水解的理论产醇量的至少 50% 重量。

4. 权利要求 1 的方法，其中脱醇之后，向组合物中加水以控制适宜的粘度。

5. 权利要求 2 的方法，其中脱醇之后，向组合物中加水以控制适宜的粘度。

6. 权利要求 1 的方法，其中使用了水溶胶。

7. 权利要求 2 的方法，其中使用了水溶胶。

8. 权利要求 3 的方法，其中使用了水溶胶。

9. 权利要求 4 的方法，其中使用了水溶胶。

10. 权利要求 1 的方法，其中构成该溶胶的化合物由至少一种元素衍生而来，该元素选自硅和周期表中的第三、第四主族以及第三至第五过渡族金属。

11. 权利要求 2 的方法，其中构成该溶胶的化合物由至少一种元素衍生而来，该元素选自硅和周期表中的第三、第四主族以及第三至第五过渡族金属。

12. 权利要求 4 的方法，其中构成该溶胶的化合物由至少一种元素衍生而来，该元素选自硅和周期表中的第三、第四主族以及第三至第五过渡族金属。
13. 权利要求 6 的方法，其中构成该溶胶的化合物由至少一种元素衍生而来，该元素选自硅和周期表中的第三、第四主族以及第三至第五过渡族金属。

14. 权利要求 1 的方法，其中构成该溶胶的化合物为由 Si、Al、Sn、Ti 或 Zr 衍生而来的化合物。

15. 权利要求 2 的方法，其中构成该溶胶的化合物为由 Si、Al、Sn、Ti 或 Zr 衍生而来的化合物。

16. 权利要求 4 的方法，其中构成该溶胶的化合物为由 Si、Al、Sn、Ti 或 Zr 衍生而来的化合物。

17. 权利要求 6 的方法，其中构成该溶胶的化合物为由 Si、Al、Sn、Ti 或 Zr 衍生而来的化合物。

18. 权利要求 1 的方法，其中构成该溶胶的化合物包含至少一种氧化物、水合氧化物、硫化物、硒化物或磷酸盐。

19. 权利要求 2 的方法，其中构成该溶胶的化合物包含至少一种氧化物、水合氧化物、硫化物、硒化物或磷酸盐。

20. 权利要求 4 的方法，其中构成该溶胶的化合物包含至少一种氧化物、水合氧化物、硫化物、硒化物或磷酸盐。

21. 权利要求 6 的方法，其中构成该溶胶的化合物包含至少一种氧化物、水合氧化物、硫化物、硒化物或磷酸盐。

22. 权利要求 10 的方法，其中构成该溶胶的化合物包含至少一种氧化物、水合氧化物、硫化物、硒化物或磷酸盐。

23. 权利要求 1 的方法，其中构成该溶胶的化合物包含至少一种氧化物或水合氧化物。

24. 权利要求 2 的方法，其中构成该溶胶的化合物包含至少一种氧化物或水合氧化物。

25. 权利要求 4 的方法，其中构成该溶胶的化合物包含至少一种氧化物或水合氧化物。

26. 权利要求 6 的方法，其中构成该溶胶的化合物包含至少一种氧化物或水合氧化物。

27. 权利要求 10 的方法，其中构成该溶胶的化合物包含至少一种氧化物或水合氧化物。
28. 权利要求1-27之一的方法，其中该溶胶是SiO₂、Al₂O₃、AlOOH、
TiO₂和/或ZrO₂溶胶。

29. 权利要求1-27之一的方法，其中该有机改性烷氧基硅烷包含至少一种通式(I)的化合物:

\[R'_{4x}Si(OR)_x \]
(I)

这里基团R是具有1-8个碳原子的未取代的或取代的烃基；基团R'互相之间是相同的或不同的，并且每个R'是具有1-20个碳原子的未取代的或取代的烃基；x为1，2或3。

30. 权利要求28的方法，其中该有机改性烷氧基硅烷包含至少一种通式(I)的化合物:

\[R'_{4x}Si(OR)_x \]
(I)

这里基团R是具有1-8个碳原子的未取代的或取代的烃基；基团R'互相之间是相同的或不同的，并且每个R'是具有1-20个碳原子的未取代的或取代的烃基；x为1，2或3。

31. 权利要求29的方法，其中的基团R是C₁₄的烷基；x是2或3；基团R'，或至少一个R'基团，具有可进行加聚或缩聚反应的基团。

32. 权利要求30的方法，其中的基团R是C₁₄的烷基；x是2或3；基团R'，或至少一个R'基团，具有可进行加聚或缩聚反应的基团。

33. 权利要求29的方法，其中的基团R是甲基和乙基；x是3；基团R'，或至少一个R'基团，具有可进行加聚或缩聚反应的基团。

34. 权利要求30的方法，其中的基团R是甲基和乙基；x是3；基团R'，或至少一个R'基团，具有可进行加聚或缩聚反应的基团。

35. 权利要求31的方法，其中该可进行加聚或缩聚反应的基团是环氧基或活化了的碳-碳多重键。

36. 权利要求32的方法，其中该可进行加聚或缩聚反应的基团是环氧基或活化了的碳-碳多重键。

37. 权利要求33的方法，其中该可进行加聚或缩聚反应的基团是环氧基或活化了的碳-碳多重键。

38. 权利要求34的方法，其中该可进行加聚或缩聚反应的基团是环氧基或活化了的碳-碳多重键。

39. 权利要求31的方法，其中该可进行加聚或缩聚反应的基团是(甲
专利申请文本内容

40. 权利要求32的方法，其中该可进行加聚或缩聚反应的基团是(甲基)丙烯酸基团。

41. 权利要求33的方法，其中该可进行加聚或缩聚反应的基团是(甲基)丙烯酸基团。

42. 权利要求34的方法，其中该可进行加聚或缩聚反应的基团是(甲基)丙烯酸基团。

43. 权利要求29的方法，其中的基团R′，或至少一个R′基团，是ω-缩水甘油基-C_{2-6}烷基或ω-(甲基)丙烯酰氧基-C_{2-6}烷基。

44. 权利要求30的方法，其中的基团R′，或至少一个R′基团，是ω-缩水甘油基-C_{2-6}烷基或ω-(甲基)丙烯酰氧基-C_{2-6}烷基。

45. 权利要求31的方法，其中的基团R′，或至少一个R′基团，是ω-缩水甘油基-C_{2-6}烷基或ω-(甲基)丙烯酰氧基-C_{2-6}烷基。

46. 权利要求32的方法，其中的基团R′，或至少一个R′基团，是ω-缩水甘油基-C_{2-6}烷基或ω-(甲基)丙烯酰氧基-C_{2-6}烷基。

47. 权利要求35的方法，其中的基团R′，或至少一个R′基团，是ω-缩水甘油基-C_{2-6}烷基或ω-(甲基)丙烯酰氧基-C_{2-6}烷基。

48. 权利要求36的方法，其中的基团R′，或至少一个R′基团，是ω-缩水甘油基-C_{2-6}烷基或ω-(甲基)丙烯酰氧基-C_{2-6}烷基。

49. 权利要求31的方法，其中的组合物中加有加聚或缩聚反应的催化剂。

50. 权利要求32的方法，其中的组合物中加有加聚或缩聚反应的催化剂。

51. 权利要求33的方法，其中的组合物中加有加聚或缩聚反应的催化剂。

52. 权利要求35的方法，其中的组合物中加有加聚或缩聚反应的催化剂。

53. 权利要求36的方法，其中的组合物中加有加聚或缩聚反应的催化剂。

54. 权利要求43的方法，其中的组合物中加有加聚或缩聚反应的催化剂。
55. 权利要求44的方法，其中的组合物中加有加聚或缩聚反应的催化剂。

56. 权利要求1-27之一的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

57. 权利要求28的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

58. 权利要求29的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

59. 权利要求31的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

60. 权利要求33的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

61. 权利要求35的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

62. 权利要求43的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

63. 权利要求49的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

64. 权利要求55的方法，其中导致具有可水解基团的物质进一步水解的条件包含：(a)每个可水解的烷氧基至少存在0.5mol的H₂O，和(b)存在水解反应的酸性催化剂。

65. 权利要求1-27之一的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的1-50%。
66. 权利要求 28 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

67. 权利要求 29 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

68. 权利要求 31 之一的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

69. 权利要求 35 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

70. 权利要求 39 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

71. 权利要求 43 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

72. 权利要求 49 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

73. 权利要求 56 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 1-50%。

74. 权利要求 1-27 之一的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 5-30%。

75. 权利要求 28 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 5-30%。

76. 权利要求 29 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 5-30%。

77. 权利要求 31 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 5-30%。

78. 权利要求 35 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 5-30%。

79. 权利要求 43 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 5-30%。

80. 权利要求 49 的方法，其中该溶胶按这样的数量加入，使得最终模具或最终薄膜中的溶胶固含量分别占模具或薄膜重量的 5-30%。

81. 权利要求 5 的方法，其中该溶胶按这样的数量加入，使得最终模具
或最终薄膜中的溶胶固含量分别占模具或薄膜重量的5-30%。

82. 制备纳米模具或带有纳米薄膜的基材的方法，其中将根据权利要求
1的方法制备的组合物
 (a)引入模具；或
 (b)施用于基材；和
随后进行热固化，有或没有进行光化学固化。

83. 权利要求82的方法，其中该基材为玻璃、塑料或金属。

84. 根据权利要求82的方法得到的纳米模具和带有纳米薄膜的基材在
光学上的应用。
纳米模具和纳米薄膜及使用水溶性前体
制备纳米模具和纳米薄膜的方法

本发明涉及纳米模具(nanostructured forms)和纳米薄膜及通过稳定的水
溶性前体制备纳米模具和纳米薄膜的方法，特别是适合于光学用途的纳米
模具和纳米薄膜。

在文献中，已经描述了为涂覆目的，用含水前体制备透明材料(包括有
机/无机复合材料)的方法。

应活性的有机改性硅烷和憎性的有机改性硅烷开始，并在含水硅溶胶和磷
酸(作为催化剂)的存在下进行水解。没有除去在缩合反应中所形成的醇。

中的可进行自由基交联的丙烯酸酯基单体和有机改性硅烷开始，这些硅烷
的有机自由基，在胶状二氧化硅和非离子表面活性剂的存在下，可同样地
构成自由基交联体系。水解和缩合反应在不同的过程步骤中进行。这里也
没有除去在缩合反应中所形成的醇。

JP-A-36-37167 中，描述了一种类似的体系，其中的硅烷具有阴离子性
的可交联自由基。

合粘合剂，至少一种氨基硅烷组分和尺寸低于 20nm 的胶状微粒开始。在
这种情况下，也没有除去由硅烷水解所形成的醇。

US-A-4799963 描述了硅烷基复合材料的制备方法，其中额外混入了胶
状的二氧化硅或纳米级的氧化铝。

所引用的参考文献不包含任何有关作用机制的说明，也没有他们所描
述的体系贮存期限的信息。同样，在大多数情况下，缺乏有关剩余溶剂含
量的信息，尽管在合成方法的数学再加工中建议，剩余溶剂含量按体积计
不超过 10%。

以所述的现有文献为基础所进行的研究指出，通过控制具有功能性硅
烷的胶状体系的涂覆，可以降低水敏性，也就是改善水解和缩合反应；
并且这种体系可用于制备稳定的体系，以生产模具和薄膜，尤其是适用于工业中应用的模具和薄膜。

因此，本发明的目的是提供一种通过稳定的水溶性中间体制备纳米模具和薄膜的方法，特别是适用于光学用途的纳米模具和薄膜的方法。

根据本发明，现发现，可以通过涂覆来使用具有活波的单聚体或低聚体组分(硅烷或其聚合成物)并经过静电处理而稳定化的(因此而极其浓度敏感)含水胶状悬浮液；而且在浓缩过程中，该悬浮液因此而不表现出Stern (Z. Elektrochem., 508 (1924))所描述的效应，即两个带有同种电荷的微粒互相接近时的聚集效应；并不表现出化学反应，而在其它情况下，两个具有活波表面基团的微粒之间的化学反应是自发地进行的。通过除去(在减压下进行)缩合反应中所生成的醇(一般是甲醇或乙醇)，实现浓缩和反应平衡向产物一侧移动，同时生成表面缩合物，从而就得到了缩合物的非常高高的贮存稳定性(大于 14 天)和相对较低的剩余溶剂含量(按重量计，一般不超过 20%，具体地讲，不超过 10%)的结合。

由于表面改性剂与微粒之间的化学键(例如氢键或金属-氧键(-Al-O-Si-、-Si-O-Si-等，参见 Chem. Mat. 7 (1995), 1050-52))的可逆性，如果加热，上面所述的过程就向相反的方向进行，因此微粒是可以交联并固化的。还可以通过适当地选择表面改性剂上面的有机基团，发生进一步的反应(例如这些有机基团之间互相发生的反应)。

这样就可以使水溶胶(如偏硅石、TiO₂、ZrO₂或SiO₂溶胶，以及周期表中的主族和过渡金属化合物的其它水溶胶)与有机改性硅烷按这样的方式发生反应，即脱除溶剂(如果需要)然后将剩下的液体分散于水中，得到稳定的、澄清溶液。为了使微粒与有机改性烷氧基硅烷的涂覆反应进行到这样的程度，即产生水解和缩合均稳定的液体体系，脱除溶剂(醇)是必需的。用通常的技术，就可以将这些体系用于涂覆，这取决于有机改性烷氧基硅烷上面的官能团；如果需要，可借助于合适的催化剂进行热固化或光化学固化。在热固化的情况下，形成无机网状交联；如果所用的有机基团合适，还形成与无机网状交联平行的有机交联。所合成的纳米复合材料因其高透明度而著名。如果将其用作薄膜，对很多种基材，它们均展示良好的粘合性和极高的抗划伤性。

因此，本发明提供一种制备组合物的方法，并用该组合物制备纳米模
具和薄膜，该方法包括：在导致物质(进一步)水解的条件下，让选自硅和主
族及副族金属元素化合物的水溶胶和/或醇溶胶，与具有可水解的烷氧基物
质(至少包括一种有机改性烷氧基硅烷或由它而得到的预缩合物)接触；然后
将所生产的醇或原来就任意存在的各种醇除去，并且特征在于，除去这样
数量的醇，以使组合物的剩余醇含量不超过 20%(重量)，优选不超过 15%(重
量)，特别是不超过 10%(重量)。

本发明还提供通过上述方法所获得的组合物，并用这些组合物制备纳米
模具和带有纳米薄膜的基材。

本发明的方法不同于现有技术的类似方法，具体地讲是由于这样的事
实，即除去体系中存在的大部分溶剂(醇)。这使水解和缩合平衡向产物一侧
移动，并使相应的液体体系稳定化。一般地，对烷氧基水解所形成的醇，
至少其理论产量(按重量计)的 30%，特别是 50%，最好是 70%要被除去。特
别优选至少 80%(重量)，更优选 90%(重量)的这种醇要被除去。这种计算不
包括任何原来就存在的醇(例如来自溶胶原料的醇；假设这种醇被 100%除
去)，但包括在制备所用预缩合物的过程中已有生成的醇。因此，总体上保
证硅烷中存在的可缩合(水解的)基团有 10-80%(优选 20-50%)发生缩合反
应。

最好在减压下将醇从反应体系中移出，以避免体系的过量热载荷。一
般地，将醇移出体系时的温度不应超过 60 ℃，具体地不应超过 50 ℃，优
选不应超过 40 ℃。

在下文中，我们更详细地描述用于本发明方法的原料。

所用的溶胶可以是水溶胶、醇溶胶或水/醇溶胶。优选使用简单的水溶
胶。如果使用含醇溶胶，那么所用的醇最好具有 1-4 个碳原子，也就是甲醇、
乙醇、丙醇或一种丁醇。

本发明的溶胶包含选自硅和主族及过渡金属的一种或多种元素的一种
或多种类化合物(优选一种化合物)。优选的主族和过渡金属包含周期表中的第
三和第四主族的金属(特别是 Al、Ga、Ge 和 Sn)，以及第三至第五副族的
金属(特别是 Ti、Zr、Hf、V、Nb 和 Ta)。其他可导致良好结果的金属
化合物，如 Zn、Mo 和 W 的化合物，也是可以选择的。

优选的相应的元素化合物包含氧化物、氢氧化氧化物、硫化物、硒化
物或磷酸盐，特别优选氧化物、氢氧化氧化物。因此，本发明所用溶胶中
的化合物具体地(优选地)包含 SiO₂、Al₂O₃、AlOOH(特别是勃母石)、TiO₂、ZrO₂及它们的混合物。

用于本发明方法的溶胶所具有的固含量，按重量计一般为 5-50%。优选 10-40%，特别优选 15-30%。

用于本发明方法的含可水解烷基氧的物质，包括至少一种有机改性烷氧基硅烷和/或由其衍生而来的预缩合物。用于本发明的有机改性烷氧基硅烷，优选具有结构式(I)的有机改性烷氧基硅烷:

R’₄ₓSi(OR)ₙ (I)

其中基团 R 之间是相同的或不同的(优选相同的)而且可以是未取代的或取代的(优选未取代的)烃基，这些烃基具有 1-8 个特别优选 1-4 个碳原子(优选甲基或乙基)；基团 R’之间是相同的或不同的而且可以是未取代的或取代的烃基，这些烃基具有 1-20 个碳原子；x 为 1、2 或 3。

上面结构式中 R’基团的例子是烷基、链烯基、芳基、烷基芳基、芳基烷基、芳基链烯基和链烯基芳基(每种情况下优选具有 1-12 个，特别是 1-8 个碳原子的基团，包括但不限于环状基团)，这些基团可以嵌入氧原子、硫原子、氮原子或 NR”基团(R”是氨或 C₁₄ 的烷基)并且可以具有一个或多个取代基。这些取代基选自卤素和未取代的或取代的氨基、酰胺基、羧基、巯基、氰酸根、羟基、烷氧基、烷氧基羰基、丙烯酰氧基、甲基丙烯酰氧基或环氧基。

在上述通式(I)的烷氧基硅烷中，至少有一种是优选的，其中的至少一个 R’基具有可进行加聚(包括聚加成反应)或缩聚反应的基团。

这种可进行加聚或缩聚反应的基团优选包含环氧基或(最好是活化的)碳碳多重键(特别是双键)，(甲基)丙烯酸基是最后提到的基团的特别优选的例子。

因此，在用于本发明的通式(I)的有机改性烷氧基硅烷中，特别优选这样的有机改性烷氧基硅烷，其中 x 是 2 或 3 并优选 3，而且一个基团(唯一的基团)R’是ω-缩水甘油氧基-C₂₆烷基或ω-(甲基)丙烯酰氧基-C₂₆烷基。

这种硅烷的特例是 3-缩水甘油氧基丙基三(甲)乙氧基硅烷、3,4-环氧丁基三甲氧基硅烷、2-(3,4-环氧乙基)乙基三甲氧基硅烷、以及 3-(甲基)丙烯酰氧基丙基三(甲)乙氧基硅烷。其中 x 为 1 或 2 的适宜化合物的例子，还有 3-缩水甘油氧基丙基二
甲基(甲)乙氧基硅烷、3-缩水甘油氧基丙基甲基二(甲)乙氧基硅烷、3-(甲基)丙烯酰氧基丙基甲基二(甲)乙氧基硅烷和2-(甲基)丙烯酰氧基丙基甲基二(甲)乙氧基硅烷。

此外，可独立使用(如果需要，最好和含有上述可进行加聚或缩聚反应基团的烷氧基硅烷一起使用)的烷氧基硅烷的例子是四甲氧基硅烷、四乙氧基硅烷、四n-丙氧基硅烷、四n-丁氧基硅烷、环己基三甲氧基硅烷、环戊基三甲氧基硅烷、乙基三甲氧基硅烷、苯基三甲氧基硅烷、n-丙基三甲氧基硅烷、环己基三甲氧基硅烷、二甲基二甲氧基硅烷、二甲基二甲氧基硅烷、二异丙基二甲氧基硅烷、苯基甲基二甲氧基硅烷、苯基三乙氧基硅烷、苯基三乙氧基硅烷、苯基甲基二乙氧基硅烷和苯基二甲基乙氧基硅烷。

特别地，如果希望本发明的纳米模具和薄膜具有排斥污垢和水的特性和低的表面能，可以将硅烷与有机改性烷氧基硅烷一起使用，该硅烷具有与硅直接相连的氯化烷基(至少具有4个碳原子，并且最好具有至少3个碳原子)，其中占据硅α位和β位的碳原子最好不带有氧原子。这种硅烷的例子有(十二氟-1,1,2,2-四氯辛基)甲基二乙氧基硅烷、(十二氟-1,1,2,2-四氯辛基)三乙氧基硅烷、(十七氟-1,1,2,2-四氯癸基)甲基二乙氧基硅烷和(十七氟-1,1,2,2-四氯癸基)三乙氧基硅烷。

当然，除上述硅烷(特别是有机改性硅烷)之外，那些具有可水解烷氧基基团的非硅烷类物质也可以用于本发明。这种非硅烷类的物质的例子是铝、钛、锆、钽、铌、锡、铈、钨、锗和硼的醇盐(优选含有C_{1-4}烷氧基的醇盐)。这类化合物的特例是仲丁醇化铝、异丙醇钛盐、丁醇钛盐、异丙醇锆盐、丙醇锆盐、丁醇锆盐、乙醇锆盐、丁醇锆盐、乙醇铝盐、丁醇铝盐、乙醇铝盐、仲丁醇钛盐、乙醇钛(VI)盐、乙醇锆盐、异丙醇锆盐及二-叔丁基氧铝三乙氧基硅烷。

特别是当醇盐(如Al、Ti、Zr等的醇盐)相对较活泼时，建议用它们的络合形式来使用，适宜的络合剂如不饱和羧酸及β-二羧基化合物，例如甲基丙烯酸、乙酰丙酮和乙酰乙酸乙酯。如果除了有机改性烷氧基硅烷之外，还使用含可水解烷氧基的物质，那么有机改性烷氧基硅烷与其它物质的摩尔比至少为2:1，最好，特别是至少为5:1，优选至少为10:1。

在本发明的方法中，如果使用(最好是使用)含可进行加聚或缩聚反应基
团的有机改性烷氧基硅烷，那么最好将引发剂混入相应的组合物，此引发剂与有机基团的摩尔比通常不超过0.15:1。

例如，当使用通式(I)的硅烷含有环氧基时，特别适宜的的引发剂包括咪唑、胺、酸酐及Lewis酸。当使用咪唑时，1-甲基咪唑是特别优选的。其它优选的典型引发剂是2-甲基咪唑和2-苯基咪唑。选自伯、仲、叔胺的引发剂有：乙二胺、二亚乙基三胺、三亚乙基四胺、1,6-二氧基乙烷、1,6-二(二甲基氨基)乙烷、四甲基乙二胺、N,N',N'',N'''-五甲基二亚乙基三胺、1,4-二氮杂环[2.2.2]辛烷、1,2-二氮杂环乙烷、2-氨基甲基-3,3,5-三甲基环戊基胺、4,4'-二氮杂环乙基甲烷、1,3-双(氨甲基)环己烷、双(4-氨基-3-甲基环己基)甲烷、1,8-二氨基-P-甲烷、3-氨乙基-3,3,5-三甲基环己基胺(异佛尔酮二胺)、哌嗪、哌啶、乌洛托品、2(4-氨基苯基)甲烷和2(4-氨基苯基)砜。用作引发剂的胺还可用于硅烷的官能化，这样的例子有：N-(2-氨基乙基)-3-氨基丙基三乙氧基硅烷、N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷和氨基丙基三乙氧基硅烷。另外，也可以使用胺的三氟化硼加合物，例如，BF₃·乙胺。进一步地，要导致有机交联，还可以借助于酸酐(最好与胺一起)，例如，乙基双环[2.2.1]己烯-2,3-二甲酸酐、六氢化苯二甲酸酐、邻苯二甲酸酐、1,2-环己烷二甲酸酐以及[3-(三乙氧基甲硅烷基)丙基]琥珀酸酐。

此外，适合于目前情况下环氧基团交联的催化剂是(任意预水解的)铝、钛和锌的醇盐(如Al(OCH₂CH₃)₃)和有机酸酐(如丙酸)。

当使用上述通式(I)的具有(甲基)丙烯酸基团的硅烷时，可将常规的热聚合催化剂或光聚合催化剂加到组合物中。优选使用的热聚合催化剂的例子是偶氮二异丁腈、二酰基过氧化物(如过氧化二苯甲酰和过氧化二月桂酰)、过氧化碳酸酯、过氧化烷基酯、过氧化酰基、烷基或芳基过氧化物、酮过氧化物和过氧化氢。

当然也可以将纯的有机组分混入组合物，该有机组分可与通式(I)的硅烷上的活性基团发生反应，因此在固化过程中可以导致进一步的交联。例如，当使用含有(甲基)丙烯酸基团的硅烷时，有用的交联剂的例子是双酚A二丙烯酸酯、双酚A双甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯、新戊二醇二丙烯酸酯和二乙醇二丙烯酸酯。
三乙二醇二甲基丙烯酸酯、四乙二醇二丙烯酸酯、四乙二醇二甲基丙烯酸酯、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸酯、2,2,3,3-四氟代-1,4-丁二醇二丙烯酸酯和二甲基丙烯酸酯、1,1,5,5-四氢全氟代戊基-1,5-二丙烯酸酯和二甲基丙烯酸酯、六氟双酚 A 二丙烯酸酯和二甲基丙烯酸酯、八氟代-1,6-己二醇二丙烯酸酯和二甲基丙烯酸酯、1,3-二(3-甲基丙烯酰氧基丙基)四(三甲基甲硅氧基)二硅氧烷、1,3-二(3-丙烯酰氧基丙基)四(三甲基甲硅氧基)二硅氧烷、1,3-二(3-甲基丙烯酰氧基丙基)四甲基二硅氧烷和1,3-二(3-丙烯酰氧基丙基)四甲基二硅氧烷。

如果期望纳米模具和薄膜具有亲水特性，例如，还可以将导致这种亲水特性的组分引入本发明的组合物中。为此，可以使用能够与无机基材形成共价键的组分(如具有自由羟基的组分，例如(甲基)丙烯酸 2-羟乙酯)，或者使用可在基材中自由移动的亲水组分(如表面活性剂)，或者将二者组合使用。

为了使含可水解烷氧基的物质和/或相应的预缩合物(进一步)水解，本发明所使用的条件最好包含：每摩尔的可水解烷氧基至少存在 0.5 摩尔的水。由于溶胶中的水，通常这样的水量已经存在。如果情况不是这样，那么就应独立地补加相应数量的水。

如果存在烷氧基水解(和缩合)的催化剂，将是更优选的。酸性催化剂，例如含水(无机)酸如 HCl，是此目的的优选催化剂。

所用原料(溶胶和含可水解烷氧基的物质)的比例最好这样选择，使得最终的模具或最终的薄膜(固化后)中的固含量(源自溶胶)，分别占模具或薄膜重量的 1-50%，特别是 5-30%。

在导致含可水解烷氧基物质水解的条件下，将水溶胶和/或醇溶胶与含可水解烷氧基的物质接触的方法，对熟练的技术人员而言是熟悉的，并且此方法将在下面的实施例中得到进一步的阐明。伴随溶剂(醇)从组合物(通常意味着有 10-80%，特别是 20-50%的初始的可水解烷氧基已进行了缩合反应)中除去，可以证实这样做是有益的，即为特定的目的，通过加水将产物组合物调整到合适的粘度。此组合物的粘度，尤其是用作涂覆目的，最好低于 5000 mPas，特别是低于 3000 mPas。

为了借助于本发明的组合物制备纳米模具和带有纳米薄膜的基材，可将这种组合物引入模具或者施用于基材，然后一如果需要，在室温或稍高
的温度下预先干燥之后，尤其是制备薄膜时进行热固化(另外，如果需要，可进行光化学固化)。制备薄膜时，可以使用所有的常规涂覆技术，如浸涂、流涂、辊涂、喷涂、刮涂、旋涂或丝网印刷。

固化温度的范围通常为90-300℃，特别是110-200℃，尤其是制备薄膜时，还取决于要涂覆的基材的温度稳定性。

象开始时提到的那样，适于本发明的组合物涂覆的基材种类非常广，对于这些基材甚至不需要表面处理，多数情况下展现出良好的粘附性和极高的抗划伤性。特别优选的用作薄膜制备的基材是玻璃、透明或不透明塑料和金属。合适的塑料有聚碳酸酯、聚(甲基)丙烯酸酯、聚苯乙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、聚丙烯和聚乙烯，优选的金属基材是铝。

因此，根据本发明所获得的组合物适合于大量的应用。这些应用的例子如下：

增强抗划伤和抗磨损的涂层：
- 家用物品和运输工具的面涂层
- 透明和不透明的聚合物组分
- 金属基材
- 陶瓷和玻璃基材

提高贵金属和非贵金属抗磨损和抗腐蚀的涂层：
- Mg：发动机组、眼睛架、体育设施、轮缘、传动箱
- Al：运输工具的车体、轮缘、饰面元件、家具、热交换器
- 钢：生产部件的压模、卫生设备
- Zn：屋顶构造、轻武器、安全气囊加速计滑块
- Cu：门用附件、热交换器、脸盆

提高清洁行为的涂覆：

有关这类应用的例子，参见DE-A-19544763。

提高脱模和降低粘附性的涂层：
- 金属和聚合物传送带
- 聚合反应的滚筒
- 生产聚苯乙烯部件的压模

- 面涂层和饰面的抗乱涂写涂层

抗冷凝效应的涂覆：

16
- 运输工具的玻璃制品
- 眼镜
- 镜子(如浴室镜、汽车的倒视镜和化妆镜)
- 光学部件(如光谱仪的镜子和激光的棱镜)
- 包装组件(如气象仪器的外壳)
- 抗反射特性的涂层:
 - 显热元件的聚合物或玻璃屏(如汽车仪表板、显示窗口的玻璃)
与食品相关的涂层:
 - 扩散障碍层(防止如气体、乙醛、铅离子或碱金属离子、气味和香味的扩散)
- 中空玻璃制品的涂层:
 - 饮料瓶的涂层，以增加破裂压力
 - 通过涂层使无色玻璃着色
光学模具和自持薄膜的生产:
- 纳米级柔性焦距透镜组
- 抗划伤和抗磨损包装薄膜

实施例对本发明作进一步解释的作用。在所有的实施例中，由水解所形成的溶剂(乙醇)至少近95%被除去。

实施例 1

在 27.8g(0.1mol)的(3-缩水甘油氧基丙基)三乙氧基硅烷(GLYEO)中，混入 27.8g 的二氧化硅溶胶(重量浓度 30%的 SiO₂ 水溶液，Bayer 出品的 Levasil® 200S)，然后将所得到的混合物在室温下搅拌 5 小时。其后，再通过蒸馏(旋转蒸馏器，最高浴温 40 ℃)，将水解所形成的乙醇除去。在剩余物中混入 1.11g(0.0005mol)的 N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷(DIAMO)，并在室温下搅拌 1 小时。用所得的产物涂覆聚碳酸酯薄板、铝薄板和 CR-39 透镜。已通过电晕放电对聚碳酸酯薄板进行了预处理。已涂覆的聚碳酸酯薄板和铝薄板在室温存放 30 分钟，然后在 130 ℃下固化 4 小时。CR-39 透镜在室温存放 30 分钟，然后在 90 ℃下固化 4 小时。

实施例 2

重复实施例 1，只是用 3.05g(0.001mol)的[3-(三乙氧基丙基)丙基]
琥珀酸酐(GF20)代替DIAMO。通过泰伯(Taber)磨耗试验(轮子材料为CS
10F,1000转，轮子载荷500g)，对覆盖了此组合物的聚碳酸酯薄膜进行抗
磨损研究，结果发现光损失7%。
实施例3
5 重复实施例1，只是用勃姆石悬浮液(2.78g的Disperal®P3溶于25g蒸
馏水中)代替二氧化硅溶胶。
实施例4
重复实施例3，只是3.78g(0.01mol)的Al(OEtOBu)3代替DIAMO作催
化剂。
10 实施例5
在27.8g(0.1mol)的GLYEO中，混入27.8g如实施例1所描述的二氧化
硅溶胶。然后将所得到的混合物在室温下搅拌5小时，再按实施例1所描
述的那样，将解所产生的醚除去。在剩余物中混入2.84g(0.01mol)的TiO2
溶胶，并在室温下搅拌1小时。
15 TiO2溶胶是这样制备的，即将28.42g(0.1mol)的原钛酸四异丙酯
(Ti(OiPr)4)溶解于60ml的异丙醇中，并按1:1的摩尔比将浓盐酸加到溶液中。
在室温下搅拌2小时之后，通过旋转蒸发器除去挥发性成分，并将剩余物
吸收于70ml的水中。
实施例6
20 139.0g(0.5mol)的GLYEO与62.4g(0.3mol)的四乙氧基硅烷(TEOS)混合。
在反应混合物中混入HCl酸化的勃姆石悬浮液(12.82g的纳米级勃姆石粉末
溶于128.20g的0.1N HCl溶液)，并在室温下搅拌5小时。再按实施例1所
描述的那样，通过蒸馏将水解所形成的醚除去。然后，向混合物中加入
3.78g(0.01mol)的Al(OEtOBu)3，随后在室温下搅拌1小时。
25 用这样制备的组合物，涂层经电晕放电预处理过的聚碳酸酯板和等离
子体预处理过的CR-39透镜，并分别在130℃和90℃热固化1小时。
实施例7
20 在29.0g(0.1mol)的3-甲基丙烯酰氧基丙基三乙氧基硅烷中，混入29.0g
如实施例1所描述的二氧化硅溶胶，并在室温下搅拌16小时。然后在所得
的混合物中混入13.0g(0.1mol)的甲基丙烯酸2-羟乙酯(作为亲水组分)，并在
室温下搅拌30分钟。紧接着再按实施例1所描述的那样，通过蒸馏将水解
所形成的乙醇从反应混合物中除去，向浓缩的反应混合物中加入 0.48g 的过氧化二苯甲酰（按存在的双键计为 1mol%）。

将这样制备的组合物，施用于经电晕放电预处理过的聚甲基丙烯酸甲酯薄膜，并分别在 95°C 热固化 4 小时。

实施例 8

在 55.6g 的 3-缩水甘油氧基丙基三乙氧基硅烷中，混入 0.51g 的十三氟-1,1,2,2-四氢辛基-1-三乙氧基硅烷并搅拌，向产物混合物混入 10.85g 的 0.1 N HCl(与烷氧基硅烷水解所需要的化学计量量的水相当)，室温下搅拌 24 小时之后，加入如实施例 1 所描述的二氧化硅溶胶 55.6g，并将混合物在室温下搅拌 4 小时。通过旋转蒸发器，按实施例 1 所描述的那样，将水解所形成的醇除去(除去量为 26.4g)。然后，将 2.22g 的 DIAMO 加到混合物中，并在室温下再搅拌混合物 1 小时。

实施例 9

将 278.42g 的 GLYEO 和 10g 的反应产物(3-异氰酸根合丙基三乙氧基硅烷与聚乙二醇 600 的反应产物)，与 54g 的 0.1 N HCl 共水解，并在室温下搅拌 5 小时。用旋转蒸馏器(浴温 25°C, 30-40mbar)除去预水解所形成的乙醇。然后，搅拌下将 926g 如实施例 1 所描述的二氧化硅溶胶加到此混合物中，之后将混合物在室温下搅拌 16 小时。其后，将 11.12g 作为引发剂的 DIAMO 加到混合物中，并在室温下再搅拌 1 小时。然后在剧烈搅拌下，加入 20g 聚硅氧烷基的非离子表面活性剂。

用产物组合物涂覆涂法玻璃基材，并在 130°C 的干燥烘箱中固化 4 小时。

实施例 10

重复实施例 1，只是用 1.32g(0.005mol)的三甲氧基甲硅烷基丙基二乙基三胺(TRIAMO)代替 DIAMO。

实施例 11

重复实施例 1，只是用 0.74g(0.01mol)的丙酸作为引发剂代替 DIAMO。

实施例 12

重复实施例 1，只是用 3.87g(0.01mol)的 Al(OEtOBu)3作为引发剂代替 DIAMO。

实施例 13
重复实施例 1，只是用 0.41g(0.005mol)的 1-甲基咔唑作为引发剂代替 DIAMO。

实施例 14

重复实施例 1，只是用 5.27g(0.01mol)的混合物代替 DIAMO，此混合物是通过用 GF20A 按 1:1 的摩尔比在冰冷冷却下酸化 3-氨基丙基三乙氧基硅烷(AMEO)而得到的。

实施例 15

重复实施例 6，只是用 95.5g 如实施例 1 所描述的二氧化硅胶体代替 HCl-酸化的勃姆石悬浮液，并增加 5 倍量的催化剂。

用产物组合物，涂覆经电晕放电预处理过的聚碳酸酯板和等离子体预处理过的 CR-39 透镜，并分别在 130 ℃和 90 ℃热固化 1 小时。

实施例 16

在 27.8g(0.1mol)的 GLYEO 中，混入 13.5g 0.1 N HCl，并在室温下搅拌 2 小时。将 27.8g 的有机溶胶(30%重量的 SiO2 溶于异丙醇，Bayer PPL 6454-6456)加到此预水解物中，将所得的混合物在室温下搅拌 5 小时。然后，通过蒸馏将水解所形成的乙醇和异丙醇溶剂除去。在剩余物中混入 18.9g 的 H2O(pH 3.2)。其后，在剧烈搅拌下加入 1.11g(0.0005mol)的 DIAMO，并将混合物在室温下搅拌 1 小时。

用产物组合物涂覆聚碳酸酯薄板、铝薄板和 CR-39 透镜。已通过电晕放电对聚碳酸酯薄板进行了预处理。已涂覆的聚碳酸酯薄板和铝薄板在室温存放 30 分钟，然后在 130 ℃下固化 4 小时。CR-39 透镜在室温存放 30 分钟，然后在 90 ℃下固化 4 小时。

实施例 17

在 139.0g(0.5mol)的 GLYEO 中，混入 62.4g(0.3mol)的 TEOS，并按化学计量量混入 0.1N 的盐酸。将反应混合物在室温下搅拌 16 小时。然后通过蒸馏将水解和缩合所形成的乙醇除去。然后，向浓缩的反应混合物中混入 HCl-酸化的勃姆石悬浮液(12.82g 的纳米级勃姆石粉末溶于 128.8g 的 0.1N HCl 溶液)，并在室温下搅拌 3 小时。然后，向混合物中滴加 3.78g(0.01mol)的 Al(OEtOBu)3。将如此制备的涂覆材料在室温下搅拌大致 4 小时。

涂覆经电晕放电预处理过的聚碳酸酯薄板和等离子体预处理过的 CR-39 透镜，并分别在 130 ℃和 90 ℃热固化 1 小时。
实施例 18

在 139.0g(0.5mol)的 GLYEO 中, 混入 62.4g(0.3mol)的 TEOS, 并按化学计量量混入 0.1N 的盐酸。将反应混合物在室温下搅拌 16 小时。然后通过蒸馏将水解和缩合所形成的乙醇除去。然后, 将浓缩的反应混合物中混
入 30%重量的已酸化的二氧化硅溶胶溶液(参见实施例 1), 并在室温下搅拌 3 小时。然后, 向混合物中滴加 18.9g(0.05mol)的 Al(OEtOBu)₃。将此制备的涂覆材料在室温下搅拌大致 4 小时。

涂覆经电晕放电预处理过的聚碳酸酯薄膜和等离子体预处理过的 CR-39 透镜, 并分别在 130 ℃和 90 ℃热固化 1 小时。

实施例 19

在 27.8g(0.1mol)的 GLYEO 中, 混入 0.51g 的氟代硅烷(参见实施例 8; 相对于 GLYEO 为 1mol%)并搅拌混合物。向混合物中混入 5.46g 的 0.1N HCl, 与水解所需的化学计量量的水相当。然后将混合物在室温下搅拌 24 小时。然后通过旋转蒸发器将水解和缩合所形成的醇除去。向剩余物中混
入 3.87g(0.01mol)的 Al(OEtOBu)₃ 和 27.8g 的已酸化的二氧化硅溶胶(参见实施例 1), 并在室温下搅拌 3 小时。

实施例 20

在 27.8g(0.1mol)的 GLYEO 中, 混入 0.225g 的氟代硅烷(参见实施例 8; 相对于 GLYEO 为 0.5mol%)并搅拌混合物。向混合物中混入 5.43g 的 0.1N HCl, 与水解所需的化学计量量的水相当。然后将混合物在室温下搅拌 24 小时, 并通过旋转蒸发器将水解和缩合所形成的醇除去。除去量(约 13g)相当于约 95%。将剩余物分散于勃姆石悬浮液(2.78g 的 Dispersal® P3 溶于 0.1N 的盐酸溶液), 并混入 1.89g(0.005mol)的 Al(OEtOBu)₃, 并在室温下搅拌 1 小时。