

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2009-152184

(P2009-152184A)

(43) 公開日 平成21年7月9日(2009.7.9)

(51) Int.Cl.

HO 1 M	8/02	(2006.01)
HO 1 M	8/10	(2006.01)
HO 1 M	4/86	(2006.01)

F 1

HO 1 M	8/02
HO 1 M	8/10
HO 1 M	8/02
HO 1 M	4/86

テーマコード(参考)

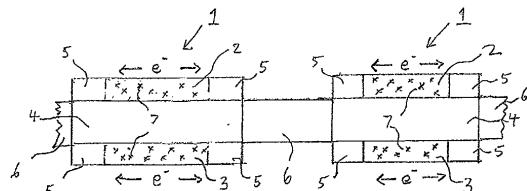
Y	5 H O 1 8
	5 H O 2 6
E	
B	

審査請求 未請求 請求項の数 11 O L 外国語出願 (全 23 頁)

(21) 出願番号 特願2008-298595 (P2008-298595)
 (22) 出願日 平成20年11月21日 (2008.11.21)
 (31) 優先権主張番号 60/989,748
 (32) 優先日 平成19年11月21日 (2007.11.21)
 (33) 優先権主張国 米国(US)

(71) 出願人 507045041
 オングストローム パワー インク.
 ANGSTROM POWER INC.
 カナダ国, ブリティッシュ コロンビア州
 , V7P 3N4, ノース バンクーバー
 , ウエスト 1番 ストリート 980,
 #109
 (74) 代理人 100074099
 弁理士 大菅 義之
 (72) 発明者 ジェラード エフ. マクリーン
 カナダ国, ブリティッシュ コロンビア州
 V7V 1N3, ウエスト バンクーバー,
 マリーン ドライブ 3895

最終頁に続く


(54) 【発明の名称】導電性を増強した触媒層を有する平面型燃料電池

(57) 【要約】 (修正有)

【課題】平面構造を有する固体高分子形燃料電池の導電性を高めたセル構造を提供する。

【解決手段】アノード電極と、カソード電極と、固体高分子電解質とを具えた複数の固体高分子形燃料電池1を平面に配置する。燃料電池1の面内導電路を短縮するために、電極の少なくとも一方の端部に集電手段を結合し、導電性を高めるために、アノード触媒層2およびカソード触媒層3のうちの少なくとも一方が、黒鉛、カーボンナノチューブ、および耐蝕性金属からなる群から選択される高導電性添加物を含む構成とする。

【選択図】図1

【特許請求の範囲】**【請求項 1】**

平面型構造をなすように配置された、複数の固体高分子形燃料電池であって、各燃料電池が、

アノード電極と、
カソード電極と、
固体高分子電解質と

と含み、各電極が触媒層を含む、
という複数の固体高分子形燃料電池と、

電極の少なくとも一方の端部に結合した、集電手段と
を含む平面型燃料電池系であって、ここで、

前記アノードの前記触媒層および前記カソードの前記触媒層のうちの少なくとも一方が
、高導電性添加物を含む
ことを特徴とする、平面型燃料電池系。

【請求項 2】

前記高導電性添加物が、黒鉛、カーボンナノチューブ、耐蝕性金属、もしくはそれらの組み合わせを含む、請求項1記載の平面型燃料電池系。

【請求項 3】

カーボンナノチューブである前記高導電性添加物が、単壁ナノチューブ、ナノチューブ膜、もしくは複壁ナノチューブである、請求項2記載の平面型燃料電池系。

【請求項 4】

耐蝕性金属である前記高導電性添加物が、金である、請求項2記載の平面型燃料電池系
。

【請求項 5】

前記高導電性添加物を用いて、面内方向に関する導電性を、面を貫く方向に関する導電性よりも高める、請求項1記載の平面型燃料電池系。

【請求項 6】

前記触媒層のうちのひとつ以上の、前記電極の面と平行な方向における抵抗が、前記触媒層の前記電極の前記面と垂直な方向における抵抗よりも低い、請求項1記載の平面型燃料電池系。

【請求項 7】

一方の電極中の前記高導電性添加物が、前記電極に隣接した対応する前記集電装置のうちのひとつに結合する、請求項1記載の平面型燃料電池系。

【請求項 8】

平面型燃料電池系の性能を高める方法であって、
高導電性添加物を、アノード触媒層およびカソード触媒層のうちの少なくとも一方に
、燃料電池系のオーミック損失を減らす上で充分な程度に入れこむステップ
を含み、

ここで前記燃料電池系が、

平面型構造をなすように配置された複数の固体高分子形燃料電池であって、各燃料電池が、

アノード電極と、
カソード電極と、
固体高分子電解質と

と含み、各電極が触媒層を含む、
という複数の固体高分子形燃料電池と、

前記電極の端部に結合した、集電手段と
を含む
ことを特徴とする、方法。

【請求項 9】

10

20

30

40

50

前記高導電性添加物が、黒鉛、カーボンナノチューブ、耐蝕性金属、もしくはそれらの組み合わせを含む、請求項8記載の方法。

【請求項 10】

前記燃料電池系のオーミック損失が、前記触媒層の電気抵抗を含む、請求項8記載の方法。

【請求項 11】

前記触媒層の前記電気抵抗が、前記電極に対して平行な面内方向での電気抵抗を含む、請求項10記載の方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、平面型固体高分子形燃料電池の改良に関する。特に本発明は、そうした燃料電池内の触媒層の導電性を高めるための構造および方法に関する。

【背景技術】

【0002】

燃料電池での性能損失をおおまかに分類すれば、触媒活性に関連した力学的損失、材料界面にて、導電性が低いおよび／もしくは接触抵抗が高いような材料を電流が通ることから生じるオーミック損失（オーム抵抗損失）、そして反応剤の利用度が不充分なことから発生する質量移動、となるだろう。

【発明の概要】

【発明が解決しようとする課題】

【0003】

平面型燃料電池には、オーミック損失が比較的大きいという欠点がある。二極式構造とは異なり、平面型燃料電池では、電極活性領域内の反応箇所から、電極の端部に結合された集電装置（current collector）へと、電流を通している。このため、面内導電路が長いと損失が大きくなってしまうので、損失を減らすために平面型燃料電池の集電装置同士は比較的近づけて設置する必要がある。しかしこうした寸法上の制約があると、電極活性領域の利用可能な空間が限定されてしまうのである。

【課題を解決するための手段】

【0004】

本発明の実施形態群は、平面構造として配置された複数の固体高分子形燃料電池を具えた平面型燃料電池系に関し、ここで各燃料電池は、アノード電極と、カソード電極と、固体高分子電解質とを具えている。各電極には、触媒層が含まれる。またこの系には、電極の少なくとも一方の端に結合した集電装置も含まれる。アノード触媒層とカソード触媒層のうちの少なくとも一方は、高導電性添加物を含む。

【発明の効果】

【0005】

平面構造を有する固体高分子形燃料電池の性能を、触媒層のうちのひとつ以上の導電性を高めることによって改良する。

【図面の簡単な説明】

【0006】

図面では、複数の図を通して、類似する番号は同様の構成要素を示す。類似する番号であって接尾辞が異なるものは、同様の構成要素に関するさまざまな例を表している。図面では、限定を目的としてではなくあくまで一例として、本明細書にて述べるさまざまな実施形態群を描いてある。

【図1】系内の燃料電池の例示的な実施形態の図である。

【図2】燃料電池系の、面を貫く方向の寸法および面内寸法を描いたものである。

【発明を実施するための形態】

【0007】

〔説明〕

10

20

30

40

50

この「発明を実施するための形態」には、「発明を実施するための形態」の一部をなす付随図面への参照が含まれている。図面では、あくまで例示のために、本発明を実施可能な特定の実施形態群を示してある。本明細書では、これらの実施形態群のことを「実施例」とも称する。本明細書内で参照する刊行物、特許、および特許文書のすべては、参照によって個別に組み込まれたかのように、その全体が参照によって本明細書に包含される。本明細書と、参照によって包含した文書との間に用法の不一致があった場合、包含した文書（群）での用法は、本明細書での用法を補完するものであると見做されたい。互いに矛盾する不一致があった場合には、本明細書での用法が優先する。

【0008】

本明細書では、特許文書での一般的な用法と同様にして、"a" もしくは "an"（「ひとつの」「或る」など）という語を、「ひとつもしくは複数」を含むものとして使っており、これは "at least one" もしくは "one or more"（「少なくともひとつの」「ひとつ以上の」など）といったほかの例または用法には依存しないものである。本明細書では、"or"（「もしくは」「または」など）という語は、非排他的な or として使われる。例えば、"A or B"（「AもしくはB」）には、特にほかに定めないかぎりは、"A but not B"（「AであってBでない」）、"B but not A"（「BであってAでない」）、および "A and B"（「AかつB」）が含まれる。

【0009】

付随の請求項では、"including"（「含む」「有する」など）および "in which"（「その...には」など）という語はそれぞれが、"comprising"（「含む」「有する」など）と "wherein"（「ここでその...には」など）の普通英語における等価な語として使われている。また後述する請求項では、"including" および "comprising" という語は非限定的なものである。これはつまり、系、装置、物、もしくは工程は、"including" や "comprising" といった語の後に請求項内に列挙された要素に加えてさらに別の要素を含むことができて、しかもそうした要素をさらに含めてもなお、その請求項の範囲内を逸脱することはない、ということである。そしてまた後述の請求項では、"first"（「第一の」）、"second"（「第二の」）、"third"（「第三の」）などといった語を、単なる標識として使っているに過ぎず、その対象に数字的な要件を課そうとしているわけではない。

【0010】

旧来の燃料電池では、バイポーラプレート（セパレータプレートとしても知られる）を使い、燃料電池が產生する電流を集めていた。こうしたバイポーラプレートは典型的には、膜電極部材（membrane electrode assemblies; MEAs）と平行になるよう、「スタック式」（積層式）構成を以って配置される。このような燃料電池では気体放出層を用いており、各燃料電池への反応剤の分配と、MEAの面に対して垂直な方向での導電性の増強との双方のために役立っている。

【0011】

平面型の、"端で集める"（'edge collected'）種類の燃料電池は往々にして、電子を、電極に沿って「面内」方向に、集電をする箇所である各燃料電池の端部へと輸送する必要がある。それゆえ、オーミック損失が比較的大きいという欠点がある。このため本的に、平面型燃料電池の活性領域を大きくするには限界があるので、オーミック損失が系の性能に過剰な影響を及ぼすことはない。集電装置同士の間の電極活性領域のために使える空間を増やすためにできることとしては、集電装置間の面内方向の抵抗を下げる（つまり、導電性を高める）、というものがある。いくつかの燃料電池系では、導電性を改良するために電極の上部に気体放出層を配することで、この問題に取り組もうとしている。だがこの解決法では、電極と気体放出層との間の接触を維持するために外部からの加圧が必要となってしまうため、系の全体的な「設備の平衡」に影響が出て、エネルギー密度的に不利になってしまう。

【0012】

本発明は、電極触媒層での導電性が向上した平面型固体高分子燃料電池系に関する。こ

10

20

30

40

50

れを実現するにあたっては、高導電性添加物を、アノード触媒層およびカソード触媒層のうちの少なくとも一方に入れ込むことで行うことができる。導電性添加物としては、黒鉛（グラファイト）、カーボンナノチューブ、耐蝕性金属、もしくはそれらの組み合わせを含めることができる。そして触媒層の導電性を高めれば、平面型燃料電池系の性能を高めることにもつながるのである。

【0013】

〔定義〕

本明細書では、「燃料電池」（"fuel cell"）とは、化学エネルギーを電気エネルギーへと、電気化学反応を介して転換する装置のことである。本発明では、任意の適切な種類の燃料電池および適正な材料を使うことができ、例えば、プロトン交換膜形燃料電池（PE MFCs）、固体酸化物形燃料電池（SOFCs）、熔融炭酸塩形燃料電池（MCFCs）、アルカリ形燃料電池、そのほかの適切な燃料電池、およびそれらの材料、といったものを使うことができるが、これらに限定はされない。燃料電池のさらなる例としては、直接メタノール形燃料電池、直接水素化硼素形燃料電池、磷酸形燃料電池などがある。燃料電池では燃料としてさまざまな任意の種類の反応剤を使用でき、例えば、水素、メタノール、エタノール、ブタン、蟻酸、水素化硼素化合物（水素化硼素ナトリウムや水素化硼素カリウムを含む）などを使用できるが、これらに限定はされない。

10

【0014】

本明細書では、「平面型燃料電池アレイ」（"planar fuel cell array"）とは、アレイをなすように構成された一個以上の燃料電池のことを指す。このアレイには、独立した燃料電池（群）が、アレイが蔽う領域上に任意の適切な手法を以って実質的に二次元的に配置されるようにして含まれている。例えば独立した燃料電池群の活性領域を配置するにあたっては、ほぼ平行に並んだ縞の列か、または二次元格子構造の節点に分布する形状かをなすようにできる。この二次元格子としては例えば、矩形、正方形、三角形、もしくは六角形の格子が使え、しかもこれらは完全な正多角形である必要がない。アレイが蔽う領域の巾と長さの双方にわたって配置される形状がなすパターンが提供されるようによく、例えばパターンが格子型パターンよりも対称性を欠いていてもよい。薄層燃料電池群を、超薄層として構築されるアレイをなすようにも配置できる。こうしたアレイ内では、独立した単位燃料電池群を、直列配置もしくは直列-並列配置として接続できる。こうした配置で燃料電池を接続することにより、燃料電池のアレイから電力を送達するに際し、電圧を高め、かつ電流を低減できるのである。平面型燃料電池アレイを、一方向に関して薄く、しかも多数の電気化学電池を支持できる可撓性シートを使って形成してもよい。こうした燃料電池は、シートの一方の面から利用できる或る種（カソードなど）の活性領域と、シートの反対側の面から利用できる別の種（アノードなど）の活性領域とを有してもよい。こういった活性領域を、シートの各々の側に在る領域内にくるように配置してもよい（例えば、シート全体が活性領域で蔽われている必然性はないが、いずれにせよ活性領域が増大するので、燃料電池の性能は向上することになる）。

20

30

【0015】

こうした平面型燃料電池アレイの例は、共有に係るU.S. Patent Application 2005/025004、標題 "Electrochemical cells having current-carrying structures underlying electrochemical reaction layers"（この参照により記載全体が本開示に含まれる）に述べられている。

40

【0016】

平面型燃料電池アレイはほぼ平坦（まつたら）であってもよいし、またはこのアレイに關する曲面を有していてもよい。平面型燃料電池アレイは可撓性でもよい。本明細書では、「可撓性」（"flexible"）とは、変形、まげ、しない、もしくは撓りができるような層または部品のことを指す。燃料電池の層、アレイ、複合層、または部品に、部分的にもしくは実質的に、一方向以上に關して可撓性を持たせるようにしてよい。可撓性燃料電池層を、全体的にもしくは部分的に可撓性にすることで、囲いこむような構造をつくるようにしてよい。例えば燃料電池層では、一個以上の剛体部品を、一個以上の可撓性部

50

品に組み込むようにできる。可撓性燃料電池層の例は、共有に係るU.S. Patent Application Serial No. 12/238,241、標題 "Fuel cell systems including space-saving fluid plenum and related methods"（この参照により記載全体が本開示に含まれる）に述べられている。

【0017】

本明細書では、「触媒」("catalyst")もしくは「電気化学反応層」("electrochemical reaction layer")とは、材料もしくは物質(か、または、材料もしくは物質でできた層)であって、それ自体が改変も消費もされることなく、反応速度の開始もしくは増大を助けるようなものなどを指す。触媒層には、懸案の用途にとって適切な任意の種類の電気触媒材料を含めることができる。触媒もしくは触媒層には、純白金、炭素で担持した白金、白金黒、白金-ルテニウム、パラジウム、銅、酸化錫、ニッケル、金、黒色炭素の混合物、ならびに一種以上の結合剤、を含めることができる。結合剤としては、ポリプロピレン、ポリエチレン、ポリカーボナート、ポリイミド、ポリアミド、フルオロポリマー、および他のポリマー膜を使用できる。ポリイミドの一例としてはカブトンTMがある。フルオロポリマーの一例としてはPTFE(ポリテトラフルオロエチレン)もしくはテフロンTMがある。他のフルオロポリマーとしては、PFSA(過フロ化スルホン酸)、FEP(フロ化エチレンプロピレン)、PEEK(ポリエーテルエーテルケトン)、およびPFA(過フロ化アルコキシエチレン)が含まれる。また、こうした結合剤には、PVDF(二フロ化ポリビニリデン)粉末(KynarTMなど)や二酸化珪素粉末を含めてもかまわない。この結合剤には、ポリマーの任意の組み合わせを含めてもよい。黒色炭素としては、任意の適切な細かくされた炭素材を使うことができ、例えば、アセチレン黒色炭素、炭素微粒子、カーボンフレーク、カーボンファイバー、カーボンニードル、カーボンナノチューブ、およびカーボンナノ粒子のうちの一種以上を使用できる(後述)。

10

20

30

【0018】

図1には、平面型構造を有する燃料電池系で用いられる、固体高分子形燃料電池1を示してある。燃料電池1の持つ電極には、固体高分子電解質4の両側にそれぞれ配置されたアノード触媒層2およびカソード触媒層3が含まれる。集電装置5は、アノード触媒層2およびカソード触媒層3の端部に配置されている。こうした燃料電池系は任意に、適切な平面型支持手段もしくは基板6の上に搭載してもよい。そして、反応性触媒層に入出する電流は、燃料電池1の面内方向に流れる(電流e⁻の方向を、図1に矢印で示した)。集電装置5は、触媒層2,3の端部にて電流を集める。また集電装置5は、燃料電池1がどうやって相互接続されているかに依って、系内の隣接する燃料電池間へと電流を輸送する。複数の燃料電池1を含めて、直列および/もしくは並列なアレイとして組みこむことで、マイクロ燃料電池系をつくりあげてもよい。また、複数の燃料電池を、適切な電池相互接続部(不図示)を介して電気的に接続することで、所望の直列および/もしくは並列構成をつくりあげてもよい。

【0019】

図1では、電解質4が、第一の主要面および第二の主要面を持つように描いてある。そして、電解質の厚さ(主要面に垂直な方向)よりも相対的に大きな、主要面に平行な長さ方向と巾方向を有する実質的二次元構造ができていることがわかる。アノード触媒層2およびカソード触媒層3を有する電極を、電解質の第一の主要面の上および第二の主要面の上にそれぞれ、主要面とほぼ平行になるようにして配置できる。図1に示したように、電流は、だいたい「面内」に、言い換えれば電解質と電極の主要面に平行な方向に流れている(図2の要素8を参照のこと)。参考までに、電解質と電極の主要面にほぼ垂直な寸法がその方向のことを、「面を貫く」("through-plane")方向ともいう(図2の要素9を参照のこと)。

40

【0020】

燃料電池1の性能、ひいては系全体の性能を、アノード触媒層2およびカソード触媒層3の導電性を高めることで向上できる。そしてこれを実現するには、適切な高導電性材料7を触媒層に入れこみ、電流の向きについて選択的に抵抗を下げればよい。導電性

50

素子（触媒層、電極、集電装置、および電池相互接続部など）のうちのどれにでも、電流の向きについて選択的に低い電気抵抗を呈するような高導電性材料を含められる、ということを理解されたい。こうした高導電性材料によって、触媒層の電気抵抗を、高導電性材料を有さない触媒層の電気抵抗よりも低くできる。こうした高導電性材料によって電流に平行な方向での電気抵抗を下げるだけではなく、任意に、電流に垂直な方向での電気抵抗を、高導電性材料を有さない触媒層の電気抵抗に較べて下げることもできる。

【0021】

或る実施形態群では、アノードおよび／もしくは触媒層の、面内方向（図1で矢印で示し、図2で要素8として示した）に関する導電性を、面を貫く方向（電流のだいたいの方向にほぼ垂直な方向、図2で要素9として示した）に関する導電性よりも高くすることができる。相対的な導電性を、面内方向にて若干高めるようにしてもよいし、あるいは、面内方向にて大幅に高めるようにしてもかまわない。同様に、触媒層の電気抵抗を電流方向に関して下げることができる。まず第一に、電流方向での電気抵抗を、高導電性添加物を加えていない触媒層の電気抵抗に較べて低くできる。そして第二に任意選択として、電流方向での電気抵抗を、電流に対して垂直な方向での電気抵抗に較べて低くしてもよい。

10

【0022】

層2,3中の触媒としては、白金黒を使用できる。このように、抗酸化性を示し、燃料欠乏に対して堅牢で、耐蝕性を持つようなものから、高導電性材料を択ぶことができる。触媒および／もしくは追加した高導電性材料を堆積するにあたっては、任意の適切な堆積法を使用でき、一例としては噴霧式堆積法を使えるがこれに限定はされない。堆積法によって、触媒および／もしくは高導電性材料の光学分割度を高めやすくなる。

20

【0023】

高導電性材料もしくは添加物には、黒鉛、カーボンナノチューブ、および耐蝕性金属（金など）を含めることができる。カーボンナノチューブは、単壁ナノチューブであってもよいし複壁ナノチューブであってもかまわない。

20

【0024】

単壁カーボンナノチューブとは、黒鉛の単原子厚シート（グラフェンという）を巻き上げてつくった、ナノメートル位の直径を持った継ぎ目のない円筒のことである。これにより、長さ対直径の比が1,000,000を超すようなナノ構造が得られる。こうした円筒状炭素分子の持つ新規な特性は、ナノ技術、電気科学、光学、その他材料科学の分野でのさまざまな用途において有用な可能性を秘めている。こうした分子はなみはずれた強度と独特的の電気特性を有しており、熱の良導体でもある。無機ナノチューブも既に合成されている。

30

【0025】

ほとんどの単壁ナノチューブの直径は、1ナノメートル程度であり、チューブ長はその数千倍ということもある。単壁ナノチューブの構造は、グラフェンシートを巻いて継ぎ目のない円筒をつくるように設計できる。グラフェンシートを巻くやりかたは、キラルベクトルと呼ばれる指数（n,m）の対で表す。整数n, mは、グラフェンのハニカム結晶格子の二方向に沿う単位ベクトルの係数を示す。m=0であれば、ナノチューブが「ジグザグ型」であるという。n=mであれば、ナノチューブが「アームチェア型」であるという。それ以外ならば「キラル型」という。

40

【0026】

単壁ナノチューブは、複壁カーボンナノチューブ類にはない重要な電気的特性を有しているため、カーボンナノチューブのうちでも非常に重要な類であるといえる。最近の電子工学の基盤となっているマイクロ電子機器の尺度の先を行く縮小化電子工学を行うためのものとしては、単壁ナノチューブが最右翼である。こうした系を構成する最下位の要素は導線であるから、単壁ナノチューブが優れた導体となるだろう。

【0027】

複壁ナノチューブは、複数の黒鉛の層を巻き上げて筒状にしたものからできている。二

50

壁カーボンナノチューブは、単壁ナノチューブと非常に似通った形態性と特性とを併せ持ちつつも、化学物質への抵抗性を格段に向上させたようなものである。このことは官能化がナノチューブに新たな特性を与えるのに必要な場合には特に重要であって、例えば化学官能基をナノチューブの表面に移植する場合に重要であるといえる。単壁ナノチューブの場合、共有結合による官能化により、C=C二重結合がいくつか切れて、ナノチューブの構造に「孔」があくので、力学的特性と電気的特性が変化することになる。二壁ナノチューブの場合は、外側の壁だけが修飾されることになる。

【0028】

また、ほかのナノチューブ構造を使ってもよく、例えばフラーライト、トーラス、ナノバッド (nanobuds) などを使用できる。フラーライトとは、フラーレンと、関連する化合物および物質とが、固相発現したものである。重合化した単壁ナノチューブは、強い非圧縮性のナノチューブ形態であるので、フラーライトの一種であるといえ、硬度から考えればダイヤモンドにも匹敵する。しかし、ナノチューブを絡みあわせるやりかたに因り、重合化した単壁ナノチューブは、ダイヤモンドをきれいに切断できるような対応する結晶格子を持たない。これと同じ構造で、受けた衝撃を材料全体に散らすようにして、もっと脆くない材料を得ることもできる。ナノトーラスは、理論的にはカーボンナノチューブをトーラス（円環；ドーナツ型）になるように曲げたものであるとされている。磁気モーメントや耐熱性などの特性は、トーラスの半径および円筒の半径に大幅に依存する。カーボンナノバッドは、既に発見されている炭素の二種の同素体、すなわちカーボンナノチューブとフラーレンを組み合わせた、新たに発見された物質である。この新規な物質では、フラーレン様の「芽（バッド）」が、下地であるカーボンナノチューブの外側壁に共有結合している。この混成物質には、フラーレンとカーボンナノチューブ双方の有用な特性が具わっている。特にカーボンナノバッドには、非常に優れた電界放出素子としての用途が見つかっている。

10

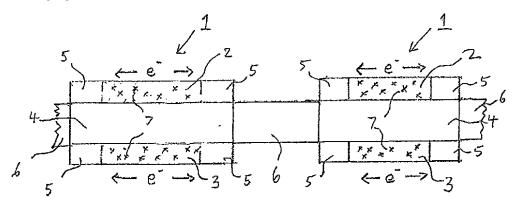
20

30

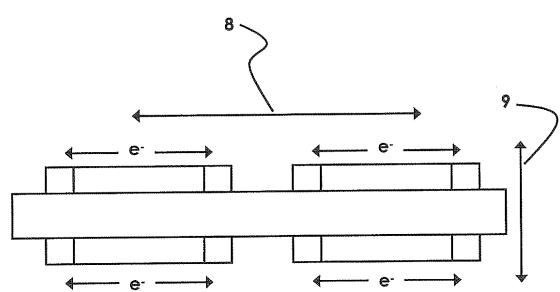
40

【0029】

グラフェンの対称性と独特的電気的構造により、ナノチューブの構造はその電気特性に多大な影響を与えることになる。 (n,m) ナノチューブを考えてみると、 $n-m$ の値が3の倍数になるなら、ナノチューブは金属的な性質を有し、それ以外ならばナノチューブは半導体になる。なので、すべてのアームチェア型 ($n=m$) ナノチューブは金属的な性質を有し、そしてナノチューブ (5,0), (6,4), (9,1) などはいずれも半導体になる。金属的ナノチューブの電流密度は、銀や銅といった金属の1,000倍を超えることもある。


【0030】

燃料電池もしくは燃料電池系のさまざまな動作方法を使って、組みこんだ高導電性材料の特性を改変してもよい。例えば、カーボンナノチューブ膜を通して水を流す（フィルター母材抜きで、つまり水がカーボンナノチューブの外表面上を流れるようにする）場合、電流の印加によって水流の正確な制御が可能となる。ナノチューブ膜は、ハニカムセルに類似した不透膜母材の表面に対して垂直な方へ配向した、端が閉じていないナノチューブ群からできている。流体と気体分子はひとまとめになってこの膜を通過できる。膜の黒鉛質のナノチューブ芯部を水が通る速度は、旧来の流体動力学で予想されていたものの数倍にも達する。


【0031】

本発明の実施形態群はまた、平面型燃料電池系の性能を向上させる方法にも関する。この方法には、高導電性添加物を、アノード触媒層およびカソード触媒層のうちの少なくとも一方に、燃料電池系のオーミック損失を減らす上で充分な程度に入れこむステップが含まれる。本方法には、触媒層の電気抵抗を減らすことによって、燃料電池系のオーミック損失を低減するステップを含めてもよい。さらに本方法には、触媒層の面内方向における抵抗を下げるステップを含めてもかまわない。こうしたオーミック損失を減らすには、高導電性材料を触媒層に加えればよい。この高導電性材料には、黒鉛、カーボンナノチューブ、耐蝕性金属、もしくはそれらの組み合わせ、を含めることができる。

【図1】

【図2】

フロントページの続き

(72)発明者 ジェレミー シュルーテン
カナダ国, ブリティッシュ コロンビア州 V2V 7P9, ミッション, ヘンダーソン ストリ
ート 8653
F ターム(参考) 5H018 AA06 EE02 EE05
5H026 AA06 CV06 CX05 EE02 EE05 HH06

【外國語明細書】

[Title of the invention] **Planar fuel cell having catalyst layer with improved conductivity**

[Technical field]

[0001] The invention relates to improvements for planar solid polymer electrolyte fuel cells. In particular it relates to constructions and methods for increasing the electrical conductivity of the catalyst layers in the fuel cell.

[Background art]

[0002] Performance losses in fuel cells can generally be attributed to kinetic losses associated with catalytic activity, ohmic losses resulting from current flow through materials with low conductivity and/or high contact resistance at material interfaces, and mass transfer from insufficient reactant availability.

[Disclosure of the invention]

[The problem to be solved by the invention]

[0003] Planar fuel cells generally suffer from relatively high ohmic losses. Unlike bipolar architectures, planar fuel cells conduct current from reaction sites within the electrode active area to current collectors coupled to the edge of the electrodes. For this reason, current collectors should be spaced relatively close to one another in planar fuel cells in order to reduce losses resulting from longer in-plane conduction paths. However, these dimensional constraints limit the available electrode active area space.

[Means to solve the problem]

[0004] Embodiments of the invention relate to a planar fuel cell system including a plurality of solid polymer electrolyte fuel cells arranged in a planar architecture, each fuel cell including an anode electrode, a cathode electrode, and a solid polymer electrolyte. Each electrode includes a catalyst layer. The system also includes current collectors coupled to at least one edge of an electrode. At least one of the anode and cathode catalyst layers includes a highly electrically conductive additive.

[Effect of the invention]

[0000] The performance of solid polymer electrolyte fuel cells having planar architecture is improved by increasing the electrical conductivity in at least one of

the catalyst layers.

[Best mode to carry out the invention]

Description:

[0008] The Detailed Description includes references to the accompanying drawings, which form a part of the Detailed Description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as "examples." All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.

[0009] In this document, the terms "a" or "an" are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of "at least one" or "one or more." In this document, the term "or" is used to refer to a nonexclusive or, such that "A or B" includes "A but not B," "B but not A," and "A and B," unless otherwise indicated.

[0010] In the appended claims, the terms "including" and "in which" are used as the plain-English equivalents of the respective terms "comprising" and "wherein." Also, in the following claims, the terms "including" and "comprising" are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms "first," "second," and "third," etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.

[0011] Conventional fuel cells utilize bipolar plates (also known as separator plates) to collect current produced by the fuel cell. These bipolar plates are typically arranged parallel to membrane electrode assemblies (MEAs), in a 'stacked' or layered configuration. Such fuel cells use gas diffusion layers both to enable reactant distribution to each fuel cell and to enhance electrical conductivity in a direction perpendicular to the plane of the MEA.

[0012] Planar, 'edge collected' fuel cells generally suffer from relatively high ohmic losses due to the need to transfer electrons "in-plane" along the electrodes to the edge of each fuel cell, where current is collected. This inherently constrains

the maximum size of active area of planar fuel cells so that ohmic losses do not excessively impact performance of the system. One way to increase the allowable electrode active area space between the current collectors is to lower the in-plane resistance (i.e. increase the conductivity) between the current collectors. Some planar fuel cell systems attempt to address this issue through use of gas diffusion layers disposed on top of the electrodes to improve conductivity; however, this solution requires external compression in order to maintain contact between the electrodes and the gas diffusion layer, which contributes to the overall 'balance of plant' of the system, negatively impacting energy density.

[0013] The present invention relates to a planar solid polymer electrolyte fuel cell system having improved electrical conductivity in the electrode catalyst layers. This may be achieved by incorporating a highly electrically conductive additive in at least one of the anode and cathode catalyst layers. The electrically conductive additive may comprise graphite, carbon nanotubes, corrosion tolerant metals, or combinations thereof. Improving the catalyst layer conductivity in turn improves the performance of the planar fuel cell system.

Definitions:

[0014] As used herein, "fuel cell" refers to a device that converts chemical energy to electrical energy through an electrochemical reaction. Any suitable type of fuel cell and appropriate materials can be used according to the present invention including without limitation proton exchange membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFCs), molten carbonate fuel cell (MCFCs), alkaline fuel cells, other suitable fuel cells, and materials thereof. Further examples of fuel cells include direct methanol fuel cells, direct borohydride fuel cells, and phosphoric acid fuel cells. Fuel cells may utilize any number of different reactants as fuel, including but not limited to hydrogen, methanol, ethanol, butane, formic acid, borohydride compounds (including sodium borohydride and potassium borohydride),

[0015] As used herein, "planar fuel cell array" refers to one or more fuel cells configured to form an array that includes individual fuel cells that are arranged substantially two-dimensionally in any of various suitable ways on an area covered by the array. For example, active regions of individual fuel cells may be arranged to provide columns of substantially parallel stripes, or shapes distributed at nodes of a two-dimensional lattice configuration, which may be a rectangular, square, triangular or hexagonal lattice, for example, and which is not necessarily completely regular. A pattern of shapes distributed in both a width and a length

dimension of the area covered by the array may be provided, such that a pattern may be less regular than a lattice-type pattern, for example. Thin layer fuel cells may be arranged into arrays constructed of very thin layers. Within such an array, individual unit fuel cells may be coupled in a series or series-parallel arrangement. Coupling fuel cells in such an arrangement may permit electrical power to be delivered from an array of fuel cells at increased voltages and reduced currents. The planar fuel cell array may be formed using a flexible sheet which is thin in one dimension and which supports a number of electrochemical cells. The fuel cells may have active areas of one type (e.g. cathodes) that are accessible from one face of the sheet and active areas of another type (e.g. anodes) that are accessible from an opposed face of the sheet. The active areas may be disposed to lie within areas on their respective faces of the sheet (e.g. it is not mandatory that the entire sheet be covered with active areas, however, the performance of a fuel cell may be increased by increasing its active area).

[0016] Examples of such planar fuel cell arrays can be found in commonly-owned U.S. Patent Application 2005/0250004, entitled "Electrochemical cells having current-carrying structures underlying electrochemical reaction layers", the disclosure of which is herein incorporated in its entirety by reference.

[0017] A planar fuel cell array may be substantially flat or level, or may have a curvature imparted to it. A planar fuel cell array may be flexible. As used herein, "flexible" refers to a layer or component that may be deformed, bent, flexed or plied. Fuel cell layers, arrays, composite layers, or components may be partially or substantially flexible in one or more directions. A flexible fuel cell layer may be flexible in whole or in part, so-as-to embrace, for example, a fuel cell layer having one or more rigid components integrated with one or more flexible components. Examples of flexible fuel cell layers can be found in commonly-owned U.S. Patent Application Serial No. 12/238,241, entitled "Fuel cell systems including space-saving fluid plenum and related methods", the disclosure of which is herein incorporated in its entirety by reference.

[0018] As used herein, "catalyst", or "electrochemical reaction layer" refers to a material or substance (or layer of a material or substance) that assists in starting or increasing the rate of a reaction, without being modified or consumed itself. Catalyst layers may comprise any type of electrocatalyst material suitable for the application at hand. Catalysts or catalyst layers may include pure platinum, carbon-supported platinum, platinum black, platinum-ruthenium, palladium, copper, tin oxide, nickel, gold, mixtures of carbon black, and one or more binders.

Binders may include polypropylene, polyethylene, polycarbonate, polyimides, polyamides, fluoropolymers and other polymer films. An example of a polyimide includes Kapton™. An example of a fluoropolymer is PTFE (polytetrafluoroethylene) or Teflon™. Other fluoropolymers include PFSA (perfluorosulfonic acid), FEP (fluorinated ethylene propylene), PEEK (poly ether ether ketones) and PFA (perfluoroalkoxyethylene). The binder may also include PVDF (polyvinylidene difluoride) powder (e.g., Kynar™) and silicon dioxide powder. The binder may include any combination of polymers. The carbon black may include any suitable finely divided carbon material such as one or more of acetylene black carbon, carbon particles, carbon flakes, carbon fibers, carbon needles, carbon nanotubes, and carbon nanoparticles, as further described herein.

[0019] FIG. 1 shows two solid polymer electrolyte fuel cells 1 employed in a fuel cell system having a planar architecture. Fuel cells 1 have electrodes comprising anode catalyst layers 2 and cathode catalyst layers 3 that are disposed on opposite sides of solid polymer electrolyte 4. Current collectors 5 are located at the edge of the anode and cathode catalyst layers 2, 3. The fuel cell system may optionally be mounted on an appropriate planar support or substrate 6. The current flow to and from the reactive catalyst layers is thus in the plane of fuel cells 1 (the direction of current flow, e-, is indicated by arrows in Figure 1). Current collectors 5 collect current at the edges of the catalyst layers 2, 3 and, depending on how fuel cells 1 are interconnected, transport current to adjacent fuel cells in the system. A plurality of fuel cells 1 may be included and integrated in a series and/or parallel array to make up a micro fuel cell system. The plurality of fuel cells may be electrically connected via suitable cell interconnects (not shown) to make up a desired series and/or parallel configuration.

[0020] Referring to FIG. 1, the electrolyte 4 may be described as having first and second major surfaces, forming a substantially two-dimensional structure with length and width dimensions parallel to the major surfaces being relatively larger than the thickness of the electrolyte (perpendicular to the major surfaces). Electrodes comprising anode and cathode catalyst layers 2, 3 may be disposed on the first and second major surfaces of the electrolyte, substantially parallel to the major surfaces. As illustrated in FIG. 1, current flow is shown as being generally "in-plane" or parallel to the major surfaces of the electrolyte and electrodes (see element 8 of FIG. 2). For reference, a dimension or direction substantially perpendicular to the major surfaces of the electrolyte and electrodes may be

referred to as a "through-plane" direction or dimension (see element 9 of FIG. 2). [0021] The performance of fuel cells 1, and hence of the system overall, is improved by increasing the electrical conductivity of anode and/or cathode catalyst layers 2, 3. Here, this is achieved by incorporating a suitable, highly electrically conductive material 7 in the catalyst layer to lower the resistance in the direction of current flow. It is understood that any of the conductive elements, such as the catalyst layer, the electrode, the current collector, and the cell interconnect, may include highly conductive materials that exhibit lower electrical resistance in the direction of current flow. These highly conductive materials may lower electrical resistance of the catalyst layer relative to a catalyst layer without such highly conductive materials. The highly conductive materials may optionally lower electrical resistance perpendicular to the direction of current flow relative to a catalyst layer without such highly conductive materials, in addition to lowering the electrical resistance parallel to the direction of current flow.

[0022] In some embodiments, the electrical conductivity of the anode and/or catalyst layers may be higher, in the in-plane direction (as shown by arrows in Figure 1, and element 8 in Figure 2) than in the through-plane direction (substantially perpendicular to the general direction of current flow, illustrated by element 9 in Figure 2). The relative conductivity may be slightly higher in the in-plane direction, or may be substantially higher in the in-plane direction. Similarly, the electrical resistance of the catalyst layer may be lower in the direction of current flow. First, it may be lower in the direction of current flow relative to a catalyst layer with no highly conductive additive and second, it may be optionally lower relative to a direction perpendicular to the current flow.

[0023] The catalyst in layers 2, 3 may be platinum black. As such, the highly conductive material may be selected to exhibit stability against oxidation, be robust to fuel starvation, and to be corrosion tolerant. The catalyst and/or added highly conductive material may be deposited via any suitable deposition technology, such as spray deposition, as one non-limiting example. Deposition techniques may facilitate high resolution of the catalyst and/or the highly conductive material.

[0024] Highly conductive materials or additives may include graphite, carbon nanotubes, and corrosion tolerant metals (e.g. gold). Carbon nanotubes may be single-walled carbon nanotubes or multi-walled nanotubes.

[0025] A single-walled carbon nanotube is a one-atom thick sheet of graphite (called graphene) rolled up into a seamless cylinder with diameter on the order of

a nanometer. This results in a nanostructure where the length-to-diameter ratio may exceed 1,000,000. Such cylindrical carbon molecules have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. Inorganic nanotubes have also been synthesized.

[0026] Most single-walled nanotubes have a diameter of close to 1 nanometer, with a tube length that may be many thousands of times longer. The structure of a single-walled nanotube may be conceptualized by wrapping a graphene sheet into a seamless cylinder. The way the graphene sheet is wrapped is represented by a pair of indices (n,m) called the chiral vector. The integers n and m denote the number of unit vectors along two directions in the honeycomb crystal lattice of graphene. If m=0, the nanotubes are called "zigzag". If n=m, the nanotubes are called "armchair". Otherwise, they are called "chiral".

[0027] Single-walled nanotubes are a very important variety of carbon nanotube because they exhibit important electric properties that are not shared by the multi-walled carbon nanotube variants. Single-walled nanotubes are the most likely candidate for miniaturizing electronics beyond the micro electromechanical scale that is currently the basis of modern electronics. The most basic building block of these systems is the electric wire, and single-walled nanotubes may be excellent conductors.

[0028] Multi-walled nanotubes consist of multiple layers of graphite rolled in on themselves to form a tube shape. Double-walled carbon nanotubes may combine very similar morphology and properties as compared to single-walled nanotubes, while improving significantly their resistance to chemicals. This is especially important when functionalisation is required, for example the grafting of chemical functions at the surface of the nanotubes, to add new properties thereto. In the case of single-walled nanotubes, covalent functionalisation will break some C=C double bonds, leaving "holes" in the structure on the nanotube and thus modifying both its mechanical and electrical properties. In the case of double-walled nanotubes, only the outer wall is modified.

[0029] Other nanotube structures may also be used, such as fullerites, torus, nanobuds, etc. Fullerites are the solid-state manifestation of fullerenes and related compounds and materials. Being highly incompressible nanotube forms, polymerized single-walled nanotubes are a class of fullerites and are comparable to diamond in terms of hardness. However, due to the way that nanotubes

intertwine, polymerized single-walled nanotubes don't have the corresponding crystal lattice that makes it possible to cut diamonds neatly. This same structure results in a less brittle material, as any impact that the structure sustains is spread out throughout the material. A nanotorus is a theoretically described carbon nanotube bent into a torus (doughnut shape). Properties such as magnetic moment, thermal stability, etc. vary widely depending on radius of the torus and radius of the tube. Carbon nanobuds are a newly discovered material combining two previously discovered allotropes of carbon: carbon nanotubes and fullerenes. In this new material, fullerene-like "buds" are covalently bonded to the outer sidewalls of an underlying carbon nanotube. This hybrid material has useful properties of both fullerenes and carbon nanotubes. In particular, they have been found to be exceptionally good field emitters.

[0030] Because of the symmetry and unique electronic structure of graphene, the structure of a nanotube strongly affects its electrical properties. For a given (n,m) nanotube, if $n - m$ is a multiple of 3, then the nanotube is metallic, otherwise the nanotube is a semiconductor. Thus all armchair ($n=m$) nanotubes are metallic, and nanotubes (5,0), (6,4), (9,1), etc. are semiconducting. Metallic nanotubes may have an electrical current density more than 1,000 times greater than metals such as silver and copper.

[0031] Various methods of operating the fuel cell or fuel cell system may be used to alter properties of the incorporated highly conductive material. For example, the flow of water through carbon nanotube membranes (without filler matrix, thus flow is on the outside surface of carbon nanotubes) may be precisely controlled through the application of electrical current. Nanotube membranes are films composed of open-ended nanotubes that are oriented perpendicularly to the surface of an impermeable film matrix like the cells of a honeycomb. Fluids and gas molecules may pass through the membrane en masse. Water may pass through the graphitic nanotube cores of the membrane at speeds several magnitudes greater than classical fluid dynamics would predict.

[0032] Embodiments of the invention also related to a method for improving the performance of a planar fuel cell system, including incorporating a highly electrically conductive additive into at least one of anode and cathode catalyst layers, sufficient to reduce ohmic losses in a fuel cell system. The method may include reducing ohmic losses in the fuel cell system by reducing the electrical resistivity of the catalyst layer, and may further include reducing the in-plane resistivity of the catalyst layer. The ohmic losses may be reduced by the addition

of a highly conductive material to the catalyst layer. The highly conductive material may include graphite, carbon nanotubes, corrosion tolerant metals, or combinations thereof.

[Brief description of the drawings]

[0005] In the drawings, like numerals describe similar components throughout the several views. Like numerals having different letter suffixes represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.

[0006] FIG. 1 is an illustration of an exemplary embodiment of a fuel cell in the system.

[0007] FIG. 2 is an illustration of through-plane and in-plane dimensions of a fuel cell system.

1. A planar fuel cell system comprising:

a plurality of solid polymer electrolyte fuel cells arranged in a planar architecture, each fuel cell comprising

an anode electrode,

a cathode electrode, and

a solid polymer electrolyte, each electrode comprising a catalyst layer; and

current collectors coupled to at least one edge of an electrode,

wherein at least one of the anode and cathode catalyst layers comprises a highly electrically conductive additive.

2. The planar fuel cell system of claim 1, wherein the highly electrically conductive additive comprises graphite, carbon nanotubes, corrosion tolerant metals, or combinations thereof.

3. The planar fuel cell system of claim 2 wherein the carbon nanotube additive is a single wall nanotube, a nanotube membrane, or a multiwall nanotube.

4. The planar fuel cell system of claim 2 wherein the corrosion tolerant metal additive is gold.

5. The planar fuel cell system of claim 1, wherein the highly electrically conductive additive is adapted to provide higher electrical conductivity in an in-plane direction relative to a through-plane direction.

6. The planar fuel cell system of claim 1, wherein a resistance of at least one of the catalyst layers in a direction parallel to the plane of the electrode is lower than a resistance of the catalyst layers in a direction perpendicular to the plane of the electrode.

7. The planar fuel cell system of claim 1, wherein the highly conductive additive in one electrode is coupled to one of the corresponding current collectors adjacent to the electrode.

8. A method for improving the performance of a planar fuel cell system, comprising:

incorporating a highly electrically conductive additive into at least one of anode and cathode catalyst layers, sufficient to reduce ohmic losses in a fuel cell system; the fuel cell system comprising,

a plurality of solid polymer electrolyte fuel cells arranged in a planar architecture, each fuel cell comprising

an anode electrode,

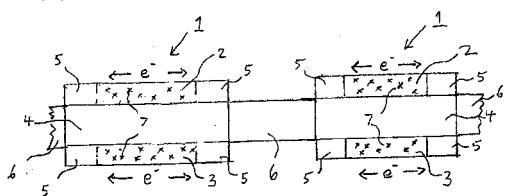
a cathode electrode, and

a solid polymer electrolyte, each electrode comprising a catalyst layer; and

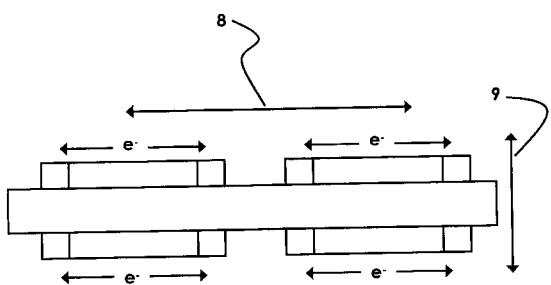
current collectors coupled to the edge of the electrodes.

9. The method of claim 8, wherein the highly electrically conductive additive comprises graphite, carbon nanotubes, corrosion tolerant metals, or combinations thereof.

10. The method of claim 8, wherein ohmic losses in the fuel cell system comprise electrical resistivity of the catalyst layer.


11. The method of claim 10, wherein the electrical resistivity of the catalyst layer comprises the electrical resistivity in an in-plane direction parallel relative to the electrodes.

[Summary]


The performance of solid polymer electrolyte fuel cells having planar architecture is improved by increasing the electrical conductivity in at least one of the catalyst layers. The conductivity is increased by incorporating a highly electrically conductive additive selected from the group consisting of graphite, carbon nanotubes, and corrosion tolerant metals.

[Selected figure]Fig. 1

【図1】

【図2】

