US 20100070259A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2010/0070259 A1

Plunkett 43) Pub. Date: Mar. 18, 2010
(54) BROWSER SESSION CONTROL SYSTEM (60) Provisional application No. 60/750,288, filed on Dec.
AND METHOD 14, 2005.
(75) Inventor: Mark Plunkett, Oronoco, MN (US) Publication Classification
(51) Imnt.ClL
Correspondence Address: GO6F 15/16 (2006.01)
DORSEY & WHITNEY LLP GOGF 9/455 (2006.01)
INTELLECTUAL PROPERTY DEPARTMENT (52) US.CL i 703/23;709/227
SUITE 1500, 50 SOUTH SIXTH STREET
(57) ABSTRACT

MINNEAPOLIS, MN 55402-1498 (US)
The present invention provides a system and method for

(73) Assignee: Vacava Inc. controlling a web browser session. A system for controlling a
web browser session comprises an emulating engine for auto-
(21) Appl. No.: 12/583,929 matic control of a web browser session by processing a script.
The system further comprises a controlling engine for receiv-
(22) Filed: Aug. 27, 2009 ing a plurality of scripts and managing the distribution of the

scripts to several emulating engines. A method for controlling

a web browser session comprises providing a controller for

receiving a script comprising unique tags and managing the

(63) Continuation of application No. 11/639,383, filed on script, including assigning the script to an emulator. The
Dec. 14, 2006, now Pat. No. 7,596,756. emulator then processes the script.

’

Controller Overview

Related U.S. Application Data

/130

EPI Server (Vacava Web Interface) !

Emulator Overview

Capture Overview

Staris Emulator{s) up.
Controller scans for Jobs on Requesting server(s).
Altematively to have submitied to EPI Server.
Dbtalns Jobs (scfipts from reguesting servar/workstation).
Assigns Jobs to Emulaters based on login information,
Chacks Controlling Wah Site if avallable and if not hokds jobs.
Schedute whether Contralling Web Site can be access.

Checks queue for jabs (seripts).
Pr each t the Ci

Send out status to Capture program.
Up to 99 Emulators possible (imited by CPU and memory)

Display to Administrator Job status
Works with Controller on console.

Web Site.

Emulator # 1

Emulator # 2 %;ﬁ’"‘é
YV
Capture .
Logssu;zmlwms Controlier t"equeS""y
Seyver

/
210

Emulator # n

US 2010/0070259 A1

Mar. 18, 2010 Sheet 1 of 6

Patent Application Publication

uoissjwqns Jdusg

agl

[

13jjoquo)

\

joje|nws

*qof Jo uopeidwod
¥oeq asuodsay

(s9duos) sqof 104 sueag JeAles
I3 10 JONISS |43 O} sjiwigns ey

IBAIAG |d3 3 Aq PasSSEonLd
84 (M jey s)duos sajear)

atl UOREISHOM
Jo 1aa19g Busenbsy

Qal

(s0eHBIU| OAN BABOBA)
K Janes (d3 |

A

psiionuod Buisq
(3US gam) uoisses 3|

A 4

13J0[dX3] JoWIa|
Bujsn Jealsg |43

N otl
UOJiES0} GOM PajionUeD

JAUIBUI U0 JOAIBS |eusaX

MIIAIBAQ UONNOS

US 2010/0070259 A1

Mar. 18, 2010 Sheet 2 of 6

Patent Application Publication

[

Qle

[

suojssjusqns sBoy

aimden

)
g #Jopinuiz

omw\ S

Jajjonuo)

L #Jojenwg

*S8SR00. 8¢ UBD 8)IS oM BuNiofue) Jayaym ainpeLps
*$GOI SPIoY 10U J} pue Sjqe|ieAe 4| ayls GoM Buntonuo) sxveud
“uopEWOju} LBoY LD pasEq suojeinNWZ o) sqof subjssy

“{uonesom/aases Bugsenbes woy sduos) sqof suRqo (fsoutew pue N4 Aq papw) I4qissod sIoleINWS 66 03 dn
ﬁw..mmﬁcaow ﬁﬂmﬂ:ﬂhﬂdh .wu__ﬂcﬁmmh__gcou ieiBoud eInideD) 0 SHES N0 pUag "9)OSUCO UO IB)j0NU0D P SHHOM
| .| -ows qam Bujioauo) su Buplonueo Jdus ysea sassa00lg ;
*dn (s)Jojeinwia speg “(syds) 5qof o Bnanb SI3YD smess qof sqeasiuiwpy o} Aejdsig
MBIAIDAQ J3]10)U0D ' MIAIBAQ JOjRjnIIg MmaRAQ aumden
\ ‘ r . (s0oBpEUl GO BABIEA) JOAISS |4T 4

Qc/

US 2010/0070259 A1

UOREISHIOAN/IOAIDS mc_.mu:uva

¢ 914 o
\@w

ﬁ Apeai (s)ioyejnw3 Q

1

0} %oeq Juas sbessaw ploH Lﬂ

ose”

Jauueos
u # 1aneg Bupsanbay

Qle -

Jauueds
Z # saniag Bupsanbay

’ Jauuess
} # 1aniag Bugsanbay

suoissiwgns s)desoe Jo Buiuuess Jayyg

"

Mar. 18, 2010 Sheet 3 of 6

ait

[YWODSWHNF—-ZY OUWESWLEO QX T OXYXO-IL-—0Z0

uone)ssIopNJeAlss Bunsenbay

ary

Patent Application Publication

“(s1duos) qol peojumop

[1]

"BNBMY J8jjonuod U qof pioy
1Ry $t enenb Joje|nwiz jf
“JOJE|PLUT YDl SLjULEIEp Of Oju; LiBoT)

Joje|nw3x o} qof ubissy

it

snanp
FET 3 1T

0} Jayjeym Yaayd

“|In§ s1 ananb j1 panssi papy ampowes

3AITY uo paseq (s)qof enss)
s qam Buyionuod Auaa o) pasn

SIS3L INTY

S

Qst

lajjanuod

US 2010/0070259 A1

Mar. 18, 2010 Sheet 4 of 6

Patent Application Publication

JoLB pusg
qof sjeuiuua]

Q \ SaA /
M*V//.l 24no20 Joud pid N

“pauinbai y g gam Buigonuon o) Bop |

sajpuey
X0qoquwios pue
XOQiSI| I[e 12A00S|q

“S|pugY MOPUIM UIRIGO “
“otsses 3} dn pglg
Jd1s Woy uaReuol qof WEgO

/ ' afieyg ssadoudalg Y,

J

ot
_/

SOA
Lqofuels

duiels JWRATEP UO PISEQ UG
pue Apoud yBiy tym sqof Joy oo

Qe

(s1di1as) sqofl Joy enenb ueog

ananp Q\u¢

loenwsy

LEOS OOZHEQ awx

[

N .

e

79\

QY
)

l aumden o) qof Jo ssasboud puag ‘

sseippe \
EWs pue JIAISE [IBWA paljads e 6y

IS SpUSS HOXYINO J0j pasn be),

a%)

Jous puag

s6e) sjduos 5| oY) ARed SIOLS BWOS UD

spPeq
dooy Butop Aq 1duos ey} ut sdoo) 8)pUeH
'WOROR S} UL} PUE LCDHIPUOD
pth Buissaooud Aq 562 asie-uay-j) ejpueH

qofl sjeuiuwe|

*Bupoyuois waies Uy GHOOH Aiddy

=jo3jas>
=uonng>
=X

rﬁ ‘uons|dwios pusg g

\ﬁ “JoLia Jnom pajedwod gop

o

se yons ste, i
- uojsses 3|

oL Bujjjauco ‘sBey jdpns yoes toj uogoe)
ejepdosdde au Bunjz; (1duas) qof peay

/ abyg sses0id &

- Och

[

_ (31) Jau0idx3g 1owaqul

osG /

Jojejnwgy J

US 2010/0070259 A1

Mar. 18, 2010 Sheet S of 6

Patent Application Publication

S 94

OBmJ

Qﬂ ’ TN asuodsay ew apo2 JoaId

J Buipuss pue uoissiwqgns qof yoqy
10013
Sualy pUE Saxog
Boeiq) 405 ‘ang 3| GupoduH
‘(jlewuou pue J0.419) Suolipuod

pauyopasd ajpuey ojny

- SN
2papoday 043

A

'ﬂ “Hl e oju| TN spaoj by peo

Qs

(31) 10101dx3 JawRu

4

= ¢

)

~

“qof a1y say7uop; By Q1 005 |
mmm ‘Gey} (=p1eoinos») | 82IN0g N 7

: “19sn ayy sauguapt ey oy
0 'Be} (=oums) ouM A «

S

ﬁ -Bey (=peol>) peo

- =
198 6UllI0AU0D JO THN Ut peaT)
"3jpuey mopum Bujujeqo 3) dnpers

y

4

‘Bey (=dnpeys>) dnpeig

peidAua pue puasn Buisn uj Bo
*Jeneg Bujllonuod jo Tun ul pea

J
's1 gof a1 jeum saypuop) By ey |
. v
mmv& "Bey (=1eum>) Jeum
A
piomssed pue puasn sey 6ej oy h
7 . < »
ﬁv_v.m "6y (=8ws) ey
y, "euy yoeo Buissasosd
awp2ieaujte
*Jou® J0 peadwicd qof usym o} pucdses H - ’ 1dios peay
B puss || Jojenwg o ey N ». d

“ajpuey mopum Suluerqo 31 dnperg

— —"\y5

T4N Ul BUPBo| UBM
©4 PINOYE 1X9) MOPLIM BY} Jeim 5305

aunnoy ssaooidard

SZS | -Bey (=un"asuodsais) TuN esucdsay ;

A 4

By (=mopuims) mopui

- B} {=uiboj>) ujbo _\r/mm
-~ ~

N \/th

ebeyg ssaooide.d - Jojejnwg

]

osh

US 2010/0070259 A1

Mar. 18, 2010 Sheet 6 of 6

Patent Application Publication

589

&.\l |eqei> pue upe(ds ‘susppy> Se yons sbe)
\05 sbe} o0 o

an” |

”
074,
59"

ol

A\%a\

ﬁ suejy pue sexog
Bojelq 1o} ‘o 3 unioeun

“(lewriou pue 1011a) SUGHIPUOD
Y pauyapald sjpuey oy

™~

e} o1 UEIGO UED h

N'9A
B~

“TaiN asuodsay elA apos Joua
Butpuas pue uoIssiLgns qof HOQY

J

_
(~\
uojssas 3| e u) abew) ue oo pinom she |

‘sbey (ebewr> pue =bwis) abeuw|

\N S
'31 Aq peonpoud sGofew ay o))

osucdsas pinom Bojejpeaes> pue Bojlepajy:

sBe) Bojepaaeg pue Bojelpald
S

EOJUMOpS]l> PUB =3|ypeojdn> SR Lans s6e,

1aA3S € 0] 8] B peojumap Jo peoidn E:&K

)

-sBej peojumop pue peoidn ﬁ

\
u.Qchmum
Y sueadde jou Bojeip e o asuodsoy |

*Bey (=Bojesp>) Bojelq H.
\

(‘uonedinus oige spwosd evepergeyi> pue
*91q1:J1> *B1E> "JUIRIQE}s 5B yons sBe |

“sey a|qe, ;A

\.

~

"LOISSas 3} alf 11 |OQUOS UoNNq IPoid
XOQHONO> PUB =0IpEl> ‘VORNGIPSaL>

.u:ozse_Ea=9.ncoa=avmn:c:wmum.rA
sBgy uoyng ;
___ .

Qsh

*1041g
Sa\ ‘UOISSOS 3| Oyl Ut Sewle g u| sjooy Buisn Agq
r] 9|dtwos 0} Uofssas J| 8l so} sitem Bey lqoje,
d ipayodes jougy -Bey (=lqopems) [qouepm
(" *sWeU piox Buish AQ XoqogquI)
> .10 xoqisy B uj uORd9(es e sexet Bey yajag
‘Bey (=109]38>) 198128 [=isl]
_
> P p1ay uoissas 3) e ojul eep Ind be el
“Bey (=o1m>) Sl
AN
r ™~
N WEM ual) esey) JoU) pue
> SRR MOPUIM § Py 65 %0340
‘Bey (=x49910>) woeyo
\ S
(way jo 00Z 1040 e ((14> pue Yyaj> ‘umaps ‘dn>) 916 pue qey
N piayy) sjpuey ued Joje(nwe eyl g $ 14 ‘yor ‘umop 'dn s yons SAa) 10} s6B)
1 683 Jo sy appdwoo e e q) sBe) Aoy
uzow jou aue sBey umoys ey))
4 ~N
eany - g ndeha
P pasousbeyeeg | P seyons M wﬁ WT\M. m“wh“-_%.ﬁ BAD TN
“aul] yoea Bujssesoxd — 4
) sup B le U e - ™
s - ¥0pOS pedy BS[3~ UBY}~)! JO [2A8] XIS apA0Id $5€) ual), I
» < » ‘sbey (=1 esie>) (u) as;g

augnoy ss800.d

c®)

g9

— 520)

I/
744

s19)

A 'sbej (=Luaw>) (uusy |)

a9

obe)g ssanoiy - Jojejnwy

US 2010/0070259 Al

BROWSER SESSION CONTROL SYSTEM
AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application claims priority to U.S. provisional
patent application Ser. No. 60/750,288, filed Dec. 14, 2005,
which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to a system and
method for controlling a web browser session, and more
particularly to a system and method for intelligently and
automatically controlling a web browser session by process-
ing a script that directs the web browser to perform specified
actions.

BACKGROUND OF THE INVENTION

[0003] Asthe Internetbecomes availableto a larger number
of'users, more tasks can be accomplished on-line. Tasks such
as data entry, creating purchase orders, requesting price
quotes, requesting catalogs, brochures, or parts lists, setting
up customer accounts, making reservations, etc., have
become increasingly common behavior for users of the Inter-
net. Having the ability to electronically perform such tasks,
and often receive instant responses, has positively affected
business worldwide.

[0004] However, these tasks become repetitive and time
consuming where a provider of goods and/or services needs
to periodically place orders, set up customer accounts,
request price quotes or parts lists, etc. A data entry specialist
or other representative of the business is required to manually
navigate through the website, often times involving several
web pages, and manually enter the information in the appro-
priate locations of the website.

[0005] There is a need in the art for relieving the data entry
specialist or other users of the Internet from being required to
manually perform repetitive and tedious electronic tasks. Par-
ticularly, there is a need in the art for a system and method of
intelligently and automatically controlling a web browser
session.

BRIEF SUMMARY OF THE INVENTION

[0006] The present invention, in one embodiment, is a
method for controlling a web browser session. The method
comprises providing a controller for receiving a script com-
prising a plurality of unique tags and managing the script,
including assigning the script to an emulator. The emulator
then processes the script. Managing the script may further
include providing a queue for holding and managing a plu-
rality of scripts that are received by the controller. The con-
troller may receive several scripts and may assign the scripts
to one of several emulators that may concurrently process
scripts. The controller may further determine the order in
which scripts are assigned to the emulators. The order may be
based on whether a website specified by the script is valid,
available, or accessible. The emulator generally processes the
script by processing the unique tags provided in the script.
Typically, the processing includes opening a web browser,
loading a specified website, processing the unique tags at the
website, and sending a response to a specified location. Addi-
tionally, the emulator may access operating system controls,
such as window handle information.

Mar. 18, 2010

[0007] The present invention, in another embodiment, is a
method for automatic web browser control. The method com-
prises creating a script of instructions and providing the script
to a controlling system with the ability to manage a plurality
of scripts. The script is assigned to a browser control engine
for processing a plurality of tags contained in the script. A
response may be sent to a location specified by the script.
[0008] The present invention, in another embodiment, is a
system for intelligent control of a web browser session. The
system comprises at least one emulating engine for automatic
control of a web browser session by processing a script. The
system further comprises a controlling engine for receiving a
plurality of scripts and managing the distribution of the
scripts to the emulating engines. The system may also include
arequesting server/workstation and an interface server/work-
station. The interface server/workstation generally comprises
the emulating and controlling engines. The requesting server/
workstation may create the scripts for sending to the control-
ling engine. The requesting server/workstation may select
from several script templates available to create the scripts.
The emulating engine may further have a queue for holding a
plurality of scripts that will be processed by the emulating
engine. Similarly, the controlling engine may have a queue
for holding a plurality of scripts for distributing to the emu-
lating engines.

[0009] While multiple embodiments are disclosed, still
other embodiments of the present invention Will become
apparent to those skilled in the art from the following detailed
description, which shows and describes illustrative embodi-
ments of the invention. As will be realized, the invention is
capable of modifications in various obvious aspects, all with-
out departing from the spirit and scope of the present inven-
tion. Accordingly, the drawings and detailed description are
to be regarded as illustrative in nature and not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a schematic representation of an overview
of one embodiment of a browser control system and method
of the present invention.

[0011] FIG. 2 is a schematic representation of one embodi-
ment of an interface server in accordance with the browser
control system and method of the present invention.

[0012] FIG. 3 is a schematic representation of one embodi-
ment of a controller in accordance with the browser control
system and method of the present invention.

[0013] FIG. 4 is a schematic representation of one embodi-
ment of an emulator in accordance with the browser control
system and method of the present invention.

[0014] FIG. 5 is a schematic representation of one embodi-
ment of a preprocess stage of an emulator in accordance with
the browser control system and method of the present inven-
tion.

[0015] FIG. 6 is a schematic representation of one embodi-
ment of a process stage of an emulator in accordance with the
browser control system and method of the present invention.

DETAILED DESCRIPTION

[0016] The present invention is a novel and advantageous
system and method for the intelligent control of a web
browser session. The present invention may be described
herein in terms of functional block components and various
processing steps. It should be appreciated that such functional
blocks may be realized by any number of hardware and soft-

US 2010/0070259 Al

ware components configured to perform the specified func-
tions. It should be appreciated that the particular implemen-
tations shown and described herein are illustrative of the
invention and its best mode and are not intended to otherwise
limit the scope of the invention in any way. Furthermore, the
connecting lines shown in the various figures contained
herein are intended to represent exemplary functional or
physical relationships between the various elements. It
should be noted that many alternative or additional functional
or physical relationships may be present in a practical
embodiment.

[0017] The system and method for the intelligent control of
a web browser session includes creating a script having
unique tags and sending the script to an interface engine for
processing. The script generally contains instructions for per-
forming a task at a specified website or Internet location.
Some tasks which can be performed by processing a script
include data entry, creating purchase orders, requesting price
quotes, requesting catalogs, brochures, or parts lists, setting
up customer accounts, making reservations, etc. It shall be
recognized that any task that can be completed at a website or
Internet location is contemplated by the system and method
of the present invention. The interface engine comprises a
controller and emulator which together manage and process
the script. The controller manages a plurality of scripts and
assigns each of them to one of a plurality of emulators. Typi-
cally, a plurality of scripts may be processed simultaneously
using a plurality of emulators. The script is processed by
scanning or reading the unique tags and performing the func-
tion corresponding to that particular tag. Some tags may hold
information, e.g., script 1D, for use by the emulator while
other tags may instruct the emulator to perform a specific
function, e.g., start up a browser session. Once the script has
been processed and the specified task has been performed at
the specified website, a response may be sentto a location that
is identified by the script. The response that is sent back may
include any appropriate information relating to the particular
task that was performed, such as an order number or price
quote.

[0018] Generally, the system and method for the intelligent
control of a web browser session can be used to perform
several types of repetitive tasks. Similarly, the system and
method may be used for performing tasks that will only be
infrequently requested, including those that may be requested
only once. An example of use for the system and method of
the present invention includes customer order entry. The sys-
tem and method of the present invention could automatically
create a script and place an order for every customer purchase
request. Although an example is provided for customer order
entry, it is recognized that there are several uses for the system
and method of the present invention, including other types of
data entry.

[0019]

[0020] FIG.1is aschematic representation of an intelligent
and automatic web browser control system 100. System 100
generally comprises requesting server or requesting worksta-
tion 110, host server or host workstation 120, and interface
server or interface workstation 130. Requesting server 110,
host server 120, and interface server 130 may be the same
server or workstation, three separate servers or workstations,
or any combination thereof. For simplification, requesting
server 110, host server 120, and interface server 130 will be
described as separate servers or workstations.

System Overview

Mar. 18, 2010

[0021] Requesting server 110 creates a script that will be
processed by interface server 130. A script contains execut-
able program code, or a set of instructions, that when
executed, will direct a web browser to perform certain actions
at a specified website, hereinafter referred to as a controlling
website. The script may be created with unique tags that direct
the actions. These actions may include, for example, but are
not limited to, simulating pressing a button, filling in text
fields, responding to dialog boxes and alerts produced by the
browser session, making selections in a table, obtaining table
information, downloading or uploading files, making com-
parison of text on a web page, logging in using a user 1D
and/or password, redirecting the opening of a browser win-
dow caused by an action in a current browser window, simu-
lating key strokes, etc.

[0022] A script is created using a script template and user
data. A script template comprises the basic set of instructions
for navigating through a website and performing the desired
action or actions. A script template may be created in one of
several manners, including manually or automatically. For
example, a user can manually navigate through a website to
determine the necessary steps for performing a desired action
atthat website, e.g., placing an order for an item at the website
maintained by a manufacturer or retailer of that item. The user
can then manually create a script template for that action
based on the steps that were necessary for the user to com-
plete. Alternatively, a script may be generated automatically,
such as by a program designed for that purpose. A script
template might not contain any ofthe user data, e.g., customer
information, item number, etc., necessary to complete the
desired action or actions to be performed at the controlling
website. A script template need only be created once and may
bereused whenever it is desired to perform the same task, e.g.,
periodic price quotes. As will be recognized, a script template
can be created for any number of tasks resulting in a plurality
of available script templates.

[0023] Requesting server 110 will create a completed script
by placing specified user data in one of a plurality of available
script templates, depending on what task needs to be per-
formed. One embodiment of a completed script is illustrated
in Appendix A. Appendix A illustrates an exemplary com-
pleted script and is not meant to be limiting in any way. It shall
be recognized that further embodiments of a completed script
may be used with the browser control system of the present
invention.

[0024] A completed script is submitted, or sent, to interface
server 130. Alternatively, interface server 130 scans request-
ing server 110 for completed scripts and retrieves them from
requesting server 110. Interface server 130 processes the
scripts, as will be described, and uses a web browser session,
e.g., Internet Explorer, to complete the instructions specified
in the script.

[0025] Host server 120 is the server location of the control-
ling website where the task specified by the script, and pro-
cessed by interface server 130, is performed. As previously
mentioned, host server 120 may be the same as requesting
server 110 and/or interface server 130. Alternatively, host
server 120 may be entirely separate and unrelated to either
requesting server 110 or interface server 130.

[0026] When the task has been completed, interface server
130 may send a response to requesting server 110 acknowl-
edging that the action has been completed. Alternatively, no
response that the action has been completed is necessary.
Similarly, a confirming response may be sent from interface

US 2010/0070259 Al

server 130 to a server or third-party location other than
requesting server 110. Furthermore, the script processed by
interface server 130 may dictate where the response is to be
sent. Information other than a confirming response, such as
order number, price total, password, etc., may be sent in
addition to, or in lieu of, the confirming response.

[0027]

[0028] Interface server 130, in one embodiment, comprises
a controller and an emulator. Alternatively, any number and
combination of controllers and emulators may be used with
the browser control system and method of the present inven-
tion. In the embodiment illustrated in FIG. 2, one controller
210 and a plurality of emulators 220 are used. In one embodi-
ment, up to ninety-nine emulators are possible. However, it
shall be recognized that a fewer or greater number of emula-
tors may be possible in some embodiments of interface server
130. The number of controllers and emulators that are used
are generally limited by the central processing unit (“CPU”)
and memory of interface server 130.

[0029] Although controller 210 and emulator 220 will be
described in further detail below, generally, controller 210
receives or retrieves one or more completed scripts created by
requesting server 110. Controller 210 assigns each script to an
emulator 220. Controller 210 may assign a script to an emu-
lator 220 that is currently running or may start up a new
emulator 220 for the purpose of processing that script. Emu-
lator 220 subsequently processes the script. Several emula-
tors 220 may each process a separate script concurrently.

[0030] Inanother embodiment, emulator 220 may provide
status information relating to the processing of a script. Status
information may be provided to capture program 230. Cap-
ture program 230, in one embodiment, captures and logs
messages from emulator 220. Messages that may be captured
and logged include, but are not limited to, when processing of
a script starts and ends (e.g., date and time) and the percentage
of processing completed. A start message may include an
identification of the script (e.g., script ID), what type of script
is being processed, who submitted the script, the login ID of
the controlling website, and which emulator 220 is processing
the script. An end message may include a completion code.
The progress of the processing of the script (typically pro-
vided as a percentage of completion) may be dynamically
updated in real time. Capture program 230 may further dis-
play the status information to an interface server administra-
tor. In one embodiment, capture program 230 displays all, or
portions of, the data received from emulator 220 in a table
such that the user can scroll through the data, print the data,
search the data, etc.

[0031]

[0032] Generally, controller 210 manages how, when, and
where completed scripts are obtained. Controller 210 com-
municates with requesting server 110 to receive, or otherwise
obtain, scripts created by requesting server 110. Controller
210 manages the scripts received by placing each script
received in one of a plurality of queues for processing by an
emulator 220. Controller 210 provides a method for holding
off, or waiting on, the assigning and processing of a script
when a controlling website is not active or is otherwise invalid
or unavailable. Exemplary programming code for one
embodiment of a controller of the browser control system and
method of the present invention is illustrated in Appendix B.
It shall be recognized that a controller may be programmed in
several ways, and the programming code in Appendix B is for

Interface Server

Controller

Mar. 18, 2010

illustration purposes only and is not limiting. A detailed
embodiment of controller 210 is described with reference to
FIG. 3.

[0033] Inoneembodiment, at box 310, controller 210 scans
requesting server 110 for at least one completed script. If a
completed script is available, controller 210 requests, or oth-
erwise obtains, the completed script from requesting Server
110. Alternatively, requesting server 110 may send scripts to
controller 210 as they are completed, wherein controller 210
may simply accept the submission of the scripts. In some
embodiments, as shown in FIG. 3, there may be more than one
requesting server 110. Controller 210 may scan, or accept a
submission from, each requesting server 110 separately. Any
number of requesting servers 110 may be employed with
success in accordance with the present invention. In one
embodiment, a requesting server 110 is not given preference,
or priority, over other requesting servers 110. However, it
shall be recognized that giving priority to a requesting server
110, or a subset of a plurality of the requesting servers 110, is
contemplated by the system and method of the present inven-
tion. Giving priority to a particular requesting server 110 shall
generally mean that scripts created by that particular request-
ing server 110 will be processed generally prior to scripts
created by requesting servers 110 with lower priorities.
[0034] In a further embodiment, when a completed script
becomes available on requesting server 110, controller 210
may determine whether to download or accept submission of
the script at step 320. A determination whether to download or
accept submission of the script may depend on whether the
controlling website on which the script is to be processed is
valid, accessible, available, etc., whether the time of submis-
sion of the script is outside the scheduled access time for the
controlling website, or whether an administrator has put a
“hold” on all scripts that use the controlling website. Alter-
natively, there may be any number of reasons, or combination
of reasons, on which controller 210 makes a determination
whether to download or accept submission of a script. If
controller 210 makes the determination not to download or
accept submission of a script, controller 210 sends a response
to requesting server 110 to hold the script at box 330. That is,
in one embodiment, the script is maintained on requesting
server 110 until such time that controller 210 makes a deter-
mination to download or accept submission of the script or
when a condition causing the script to be held changes or is
removed. For example, the controlling website may become
available, or the administrator may have removed a hold for
the controlling website. Alternatively, requesting server 110
may recreate the script or retry submission of the script, each
of' which may be done automatically and/or periodically until
the script is accepted by controller 210. A plurality of scripts
may be waiting on requesting server 110 at any one time,
including scripts that have yet to be submitted for a first time
and scripts that have been put on hold.

[0035] Subsequent to obtaining a completed script from
requesting server 110, controller 210 places the script in
controller queue 340. Thus, controller queue 340 holds
scripts that are ready to be processed by an emulator 220. An
alert may beissued if controller queue 340 is full. An alert that
controller queue 340 is full may be one of the several reasons,
as set forth above, for controller 210 to determine not to
download or accept submission of further scripts from
requesting server 110. Controller 210 may continue down-
loading or accepting submission of scripts once controller

US 2010/0070259 Al

queue 340 is no longer full. The size of controller queue 340
may be limited by CPU and memory of interface server 130.

[0036] Controller 210 manages scripts and assigns them to
an available emulator 220. Controller queue 340 may be
managed in several manners including, but not limited to,
First-In-First-Out (FIFO) and Last-In-First-Out (LIFO) pro-
tocols. Alternatively, any controller queue management
scheme may be used with the browser control system and
method of the present invention. In one embodiment, control-
ler queue 340 may be managed based on priority assigned to
the scripts. In another embodiment, controller queue 340 may
be managed based on controlling website verification sched-
uling. More specifically, as described above, each script is to
be processed by an emulator at a controlling website specified
by the script. Controller 210 may employ verification testing
at box 350 on the specified controlling website to determine
whether the controlling website is valid, accessible, available,
etc. Scripts waiting in controller queue 340 may be scheduled,
or assigned to an emulator 220, based on determinations
made by the verification testing.

[0037] When a script has reached the front of controller
queue 340, controller 210 may assign the script to emulator
220. In one embodiment, the script is assigned to the first
available emulator 220, the number of available emulators
220 generally being limited only by CPU and memory, as
previously discussed. In such a scenario, controller may “start
up” an emulator 220, and the emulator 220 will process the
script. In an alternate embodiment, controller 210 may assign
the script to an emulator 220 that has already been assigned
other scripts and/or is currently processing a previously
assigned script. Controller 210 may assign more than one
script to an emulator 220 for several reasons. For example, a
particular emulator 220 may currently be processing scripts
for a particular user. When controller 210 assigns a script for
the same user, it may assign the new script to the same
emulator 220 as the previously assigned script for the same
user. Similarly, a particular emulator 220 may currently be
processing scripts at a particular controlling website. When
controller 210 assigns a script to be processed on the same
controlling website, it may assign the new script to the same
emulator 220 as the previously assigned script for processing
at the same controlling website. It shall be recognized that
there are a plurality of reasons that controller 210 may assign
a script to an emulator 220 that has already been assigned
other scripts and/or is currently processing a previously
assigned script, including, but not limited to, efficiency,
memory limitations, record keeping, etc.

[0038] Emulator

[0039] Generally, emulator 220 processes a script and intel-
ligently and automatically controls a web browser session.
Emulator 220 may communicate with a controlling website
and host server 120 through browser objects. As part of con-
trolling a browser session, emulator 220 monitors the browser
session and may determine when the browser has finished
running, loading, processing, etc. before emulator 220 per-
forms further tasks dictated by the script. In one embodiment,
to further aid in control of a browser session, emulator 220
may “hook into” or reach into the operating system. Emulator
220 could then access window handles and use other familiar
operating system commands. Exemplary programming code
for one embodiment of an emulator of the browser control
system and method of the present invention is illustrated in
Appendix C. It shall be recognized that an emulator may be
programmed in several ways, and the programming code in
Appendix C is for illustration purposes only and is not limit-
ing. A detailed embodiment of emulator 220 is described with
reference to FIGS. 4 through 6.

Mar. 18, 2010

[0040] Emulator220 is assigned, and receives, a script from
controller 210 as described above. As previously mentioned,
several emulators 220 may each process a separate script
concurrently. Furthermore, each emulator 220 may commu-
nicate with other emulators 220 to aid in control of the
browser sessions. The description below relates to the pro-
cessing of a script by a single emulator 220, but it shall be
recognized that the description is applicable to all emulators
concurrently processing scripts. Emulator 220 places the
script in emulator queue 410. If emulator queue 410 is full, the
script may be held in controller queue 340 until emulator
queue 410 is no longer full. Each emulator 220 maintains its
own emulator queue 410. The size of each emulator queue
340 may be limited by CPU and memory of interface server
130. Emulator queue 410 may be managed in several manners
including, but not limited to, First-In-First-Out (FIFO) and
Last-In-First-Out (LIFO) protocols. Alternatively, any emu-
lator queue management scheme may be used with the
browser control system and method of the present invention.
In the embodiment shown in FIG. 4, emulator queue 410 is
managed by priority, and then based on date and time stamps.
Priority of the script maybe assigned by requesting server
110, controller 210, or emulator 220. Priority may be based
on, but not limited to, the date the script was created, the
deadline required for a response, the importance or confiden-
tiality of the data in the script, the requesting server that
created the script, etc.

[0041] Atbox 420, emulator 220 scans emulator queue 410
for available scripts for processing. Emulator 220 receives an
available script based on the queue management scheme
being used, and the script enters into the preprocess stage at
box 430. The preprocess stage 430 may include several steps,
including, but not limited to, obtaining script information,
starting up a browser session, obtaining the window handle
for the browser session, and logging in to the controlling
website, etc. As can be seen in the exemplary script in Appen-
dix A and in FIGS. 5 and 6, a script may contain several
unique tags. The unique tags provide information useful for
and/or necessary to process the script on the controlling web-
site.

[0042] An exemplary listing of script tags that may be
processed during preprocessing can be seen in FIG. 5 and
include a Window tag 510, Login tag 515, Startup tag 520,
Load tag 525, Response URL tag 535, Me tag 540, What tag
545, Who tag 550, and a Source ID tag 555. A Window tag
510 provides information relating to what the window text
should be when loading a particular controlling website in the
browser session. A Login tag 515 logs in to the controlling
website. A Startup tag 520 causes a browser session to be
started and obtains the window handle. A Startup tag 520 may
further cause a specified website to load in the opened
browser session. Similarly, a Load tag 525 causes a specified
website to load in the current browser session. A Response
URL tag 535 provides information relating to where the
response, if any, will be sent. Typically, the Response URL
tag 535 will provide the location of requesting server 110.
However, it shall be recognized that the response may be sent
to any specified location, including a location other than the
location for requesting server 110, host server 120, or inter-
face server 130. A Me tag 540 provides information relating
to the user ID and password associated with logging in to a
particular website. A What tag 545 generally identifies what
task the script will perform. A Who tag 550 identifies the
user/requester of the script. A Source ID tag 555 provides
information relating to identification of the particular script,
such as a script ID.

US 2010/0070259 Al

[0043] Theunique tags described above comprise an exem-
plary list of unique tags that may be used with the browser
control system and method of the present invention and are
not limiting. It shall be recognized that other tags may be
used, or the tags identified above may provide information or
perform tasks other than those described above. Similarly, it
shall be recognized that fewer or greater types of tags may be
used in any particular completed script. In one embodiment,
there are over 200 tags that may be used.

[0044] At preprocess stage 430, preprocess routine 505
reads through the script. When a preprocessing tag (e.g., the
tags identified above and in FIG. 5) is read, preprocess routine
505 handles the information or task relating to that tag. For
example, when preprocess routine 505 reads a Startup tag
520, preprocess routine 505 will startup a browser session, as
seen at block 530. Preprocess routine 505 may further load a
website specified in the script in the browser session that was
started. Preprocess routine 505 can handle navigation through
multiple controlling websites, if so required by host server
120 or the script in order to complete the task. Preprocess
routine 505 also determines if there is an error during prepro-
cessing. If an error is determined, processing of the script is
aborted, and an error response is sent to the location specified
by a Response URL tag 535, as illustrated at box 560. Pre-
process routine 505 may also automatically handle certain
conditions, at box 565, without instruction from the script,
including conditions that are either normal or in error. Con-
ditions that may be handled automatically by preprocessing
routine 505 without instruction from the script include, but
are not limited to, checking the browser window title, check-
ing for dialog boxes, checking for alerts, and handling “pop-
up” windows.

[0045] Once preprocessing is completed, the script enters
the process stage at box 450. Alternatively, before entering
into the process stage 450, emulator 220 may discover all
window handles of the controlling website that are listbox and
combobox handles at box 440. Emulator 220 may create an
array of these window handles in internal memory. These
handles are needed in order to control the listboxes and com-
boboxes and to obtain all the selections of the listboxes or
comboboxes. The selection of the listboxes and comboboxes
by emulator 220, in one embodiment, is done by using a mix
of'low level coding (e.g., window handles) and object infor-
mation (e.g., obtaining all the selections available for each
listbox/combobox).

[0046] An exemplary listing of script tags that may be
processed during processing can be seen in FIG. 6 and include
an If tag 615, with or without a Then tag 610 and/or Else tag
610, a type of key tag 620, a Check tag 625, a Write tag 630,
a Select tag 635, a Waitobj tag 640, a type of button tag 645,
a type of table tag 650, a Dialog tag 655, a type of upload or
download tag 660, a Filedialog tag 665, a Savedialog tag 665,
a type of image tag 670, or other familiar tags 675 in the art.
If, Then, and Else tags provide for performing certain tasks
depending on whether certain conditions are met, as is known
in the art. Several different types of If tags 615 are available.
In one embodiment, emulator 220 has the ability to process
“if-then” and “if-then-else” statements and looping con-
structs. In a further embodiment, other familiar programming
constructs may be used in accordance with the browser con-
trol system and method of the present invention. A key tag 620
relates to a key that may be pressed on a computer keyboard/
keypad, such as “up,” “down,” “left,” “right,” “F1,” “Tab,” etc.
Emulator 220 may emulate the pressing of the specified key:
A Check tag 625 checks the title of the current browser
session window. If a title is not there, processing may wait
until a title is available. A Write tag 630 places data into a

Mar. 18, 2010

browser field, such as a text field. A Select tag 635 makes a
selection in a listbox or combobox. Necessary listbox and
combobox information may be obtained as described with
reference to box 440 in FIG. 4. A Waitobj 640 tag waits for the
browser session to complete. A button tag 645, such as But-
ton, Submitbutton, Resetbutton, Radio, and Checkbox, pro-
vides button control in the browser session. Similarly, a table
tag 650, such as Tablelink, Table, If-table, and If-tabledata
provides table manipulation in the browser session. A Dialog
tag 655 responds to a dialog that appears in the browser
session with specified text. An upload tag 660, such as
Uploadfile, uploads a data item or file to a specified location.
Similarly, a download tag 660, such as Filedownload, down-
loads a data item or file to a specified location. A Filedialog or
Savedialog tag 665 responds to dialogs produced by the
browser session. An image tag 670, such as IMG or Image,
clicks on an image in the browser session. Other tags 675 may
be provided or created to perform other tasks. For example,
tags such as Hidden, Plain, and Label can obtain text in the
browser session. Similarly, a tag may be provided for han-
dling “pop-up” windows. Alternatively, “pop-up” windows
may be handled automatically by emulator 220 without
instruction by the script, as described below.

[0047] The unique tags described above are an exemplary
list of unique tags that may be used with the browser control
system and method of the present invention and are not lim-
iting. It shall be recognized that other tags may be used or the
tags identified above may provide information or perform
tasks other than those described above. Similarly, it shall be
recognized that fewer or greater types of unique tags may be
used in any particular completed script. In one embodiment,
there are over 200 tags that may be used.

[0048] At process stage 450, process routine 605 reads
through the script. When a processing tag (e.g., the tags
identified above and in FIG. 6) is read, process routine 605
handles the information or task relating to that tag. For
example, when process routine 605 reads a key tag, process
routine 605 will emulate the pressing of a particular key,
specified by the tag, on a computer keyboard. Process routine
605 can handle navigation through multiple controlling web-
sites, if so required by host server 120 or the script in order to
complete the task. Process routine 605 also determines if
there is an error during processing. If an error is determined,
processing of the script is aborted and an error response is sent
to the location specified by a Response URL tag 535, as
illustrated at box 680. Process routine 605 may also automati-
cally handle certain conditions, at box 685, without instruc-
tion from the script, including conditions that are either nor-
mal or in error. Conditions that may be handled automatically
by processing routine 605 without instruction from the script
include, but are not limited to, checking the browser window
title, checking for dialog boxes, checking for alerts, and han-
dling “pop-up” windows.

[0049] With reference back to FIG. 4, after completion of
processing the script, a response may be returned from emu-
lator 220 specifying the script was processed without error, as
shown at box 460. Alternatively, or additionally, a specific
response may be sent back to a specified location, depending
on the script task that was performed. For example, if the task
performed by processing the script was an order submission,
the response may include an order confirmation number.
Similarly, if the task performed by processing the script was
aparts list request, the response may include the parts list that
was received after making the request. It shall be recognized
that each script may perform a task associated with an appro-
priate response, and any information relating to that response
may be sent in a response from emulator 220. The response is

US 2010/0070259 Al

sent to the location specified by a Response URL tag 535.
Typically, the Response URL tag 535 will provide the loca-
tion of requesting server 110. However, it shall be recognized
that the response may be sent to any specified location,
including a location other than the location for requesting
server 110, host server 120, or interface server 130.

[0050] After aresponse is sent, or in the case where an error
terminates the processing of a script, emulator 220 may
retrieve another script from emulator queue 410 based on the
queue management scheme, as described above. The prepro-
cessing and processing of the new script is accomplished in
the same manner as just described. Alternatively, where no
scripts are available in emulator queue 410, emulator 220 may
be closed.

[0051] Although the present invention has been described
with reference to preferred embodiments, persons skilled in
the art will recognize that changes may be made in form and
detail without departing from the spirit and scope of the
invention. For example, although emulator 220 has been
described and illustrated in separate parts, i.e., preprocess
stage 430, process stage 450, etc., it shall be recognized that
in alternative embodiments, emulator 220 can provide for
processing in a fewer or greater number of stages, including
processing in a single stage. In other words, separate stages of
processing are not a necessary limitation of the present inven-
tion, and the description merely discloses one embodiment of
abrowser control system and method of the present invention.

We claim:
1. A method for controlling a web browser session, com-
prising:
providing a controller;
receiving at the controller, at least one script, the at least
one script comprising a plurality of unique tags;

managing the at least one script, wherein managing the at
least one script includes assigning the at least one script
to an emulator; and

processing the at least one script with the emulator.

2. The method of claim 1, wherein managing the at least
one script further includes placing the script in a controller
queue, the controller queue having the ability to contain a
plurality of scripts.

3. The method of claim 1, wherein the at least one script
comprises at plurality of scripts, and assigning the at least one
script to an emulator comprises assigning the plurality of
scripts to a plurality of emulators, each of the plurality of
emulators receiving one or more of the plurality of scripts.

4. The method of claim 3, wherein each of the plurality of
emulators has the ability to process one of the plurality of
scripts at the same time another of the plurality of emulators
processes a different one of the plurality of scripts.

5. The method of claim 1, wherein managing the at least
one script further includes determining the order in which to
assign the at least one script to an emulator.

6. The method of claim 5, wherein determining the order in
which to assign the at least one script to an emulator is based
on whether a website specified in the at least one script is at
least one of the statuses of valid, available, and accessible.

7. The method of claim 1, wherein processing the at least
one script with the emulator comprises processing the plural-
ity of unique tags at a controlling website specified by the
script.

Mar. 18, 2010

8. The method of claim 1, wherein processing the at least
one script with the emulator comprises starting up a browser
session, loading a controlling website, processing the plural-
ity of unique tags at the controlling website, and sending a
response to a location specified by the script.

9. The method of claim 7, wherein processing the at least
one script with the emulator further includes accessing oper-
ating system controls at the location of the controlling web-
site.

10. The method of claim 9, wherein accessing operating
system controls includes accessing window handle informa-
tion.

11. A method for automatic web browser control, compris-
ing:

creating a script of instructions for controlling a browser

session;

providing the script to a controlling system, wherein the

controlling system has the ability to manage a plurality
of scripts;

assigning the script to a browser control engine, wherein

the browser control engine processes the script by pro-
cessing a plurality of unique tags contained in the script;
and

sending a response to location specified by the script.

12. The method of claim 11, wherein the browser control
engine accesses operating system controls of a controlling
website specified by the script during the processing of the
script.

13. The method of claim 12, wherein the browser control
engine accesses window handle information.

14. The method of claim 11, wherein processing a plurality
of'unique tags contained in the script comprises starting up a
browser session, loading a controlling website, and perform-
ing tasks at the controlling website based on the plurality of
unique tags.

15. A system for intelligent control of a web browser ses-
sion, comprising:

at least one emulating engine for automatic control of a

web browser session in response to the processing of a
script; and

a controlling engine for receiving a plurality of scripts and

managing the distribution of the plurality of scripts for
processing by the at least one emulating engine.

16. The system of claim 13, further comprising at least one
requesting workstation and an interface workstation, the
interface workstation comprising the controlling engine and
the at least one emulating engine.

17. The system of claim 14, wherein the at least one
requesting server creates a script for sending to the control-
ling engine.

18. The system of claim 15, wherein the at least one
requesting server comprises a plurality of script templates for
creating a script.

19. The system of claim 13, wherein each of the at least one
emulating engines comprises an emulator queue for holding a
plurality of scripts for processing by emulating engine.

20. The system of claim 13, wherein the controlling engine
comprises a controller queue for holding a plurality of scripts
for distributing to the at least one emulating engine.

sk sk sk sk sk

