wO 2014/176310 A2 || 0F V00000 O 0O O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/176310 A2

30 October 2014 (30.10.2014) WIPO | PCT
(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GO6F 9/44 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. o HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
PCT/US2014/035094 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
23 April 2014 (23.04.2014) SC, 8D, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(25) Filing Language: English ZW.
(26) Publication Language: English (84) Designated States (uniess otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/815,052 23 April 2013 (23.04.2013) Us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicant: AB INITIO TECHNOLOGY LLC [US/US]; TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
201 Spring Street, Lexington, Massachusetts 02421 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
. . . . MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
72) %g:‘a“tﬁirﬁcggfﬂf::iﬁufez‘%1?7"3’ (‘I‘j’s)Hu"klebe“y Hill TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
g g : KM, ML, MR, NE, SN, TD, TG).
(74) Agent: MASON, Elliott, J. III; Occhiuti & Rohlicek LLP, o, o0
321 Summer Street, Boston, Massachusetts 02210 (US). ublished:
ithout international h t and to b blished
(81) Designated States (unless otherwise indicated, for every yitivout tiernationar search report nd o be repusishe

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

upon receipt of that report (Rule 48.2(g))

(54) Title: CONTROLLING TASKS PERFORMED BY A COMPUTING SYSTEM

100
COMPILER
106
Y
p
108
A\ i
USER MEMORY
% -« INTERFACE SYSTEM
14 10
12)
EXECUTION ENVIRONMENT
A S/

FIG. 1

(57) Abstract: Controlling tasks includes: receiving ordering
information (104) that specifies at least a partial ordering
among a plurality of tasks; and generating instructions for
performing at least some of the tasks based at least in part on
the ordering information. Instructions are stored for executing
a first subroutine corresponding to a first task, including a
first control section that controls execution of at least a
second subroutine corresponding to a second task, the first
control section including a function configured to change
state information associated with the second task, and to de-
termine whether or not to initiate execution of the second sub-
routine based on the changed state information. Instructions
are stored for executing the second subroutine, including a
task section for performing the second task and a second con-
trol section that controls execution of a third subroutine cor-
responding to a third task.

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

CONTROLLING TASKS PERFORMED BY A COMPUTING
SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Application No. 61/815,052, filed on
April 23, 2013.

BACKGROUND

This description relates to controlling tasks performed by a computing system.

In some techniques for controlling tasks performed by a computing system, an
individual task is performed by a process or thread that is spawned for that task and
terminates after that task has been completed. An operating system of the computing
system, or other centralized control entity that uses features of the operating system,
may be used to schedule different tasks, or manage communication between different
tasks. A control flow graph may be used to define a partial ordering of tasks by
indicating certain upstream tasks (e.g., task A) that must complete before other
downstream tasks (e.g., task B) begin. There may be a control process that manages
spawning of new processes for performing tasks according to the control flow graph.
After the control process spawns process A for performing task A, the control process
awaits notification by the operating system that process A has terminated. After
process A has terminated, the operating system notifies the control process, and then

the control process spawns process B for performing task B.

SUMMARY

In one aspect, in general, a method for controlling tasks performed by a
computing system includes: receiving ordering information that specifies at least a
partial ordering among a plurality of tasks; and generating, using at least one
processor, instructions for performing at least some of the tasks based at least in part
on the ordering information. The generating includes: storing instructions for
executing a first subroutine corresponding to a first task, the first subroutine including
a first control section that controls execution of at least a second subroutine
corresponding to a second task, the first control section including a function
configured to change state information associated with the second task, and to
determine whether or not to initiate execution of the second subroutine based on the

changed state information; and storing instructions for executing the second

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

subroutine, the second subroutine including a task section for performing the second
task and a second control section that controls execution of a third subroutine
corresponding to a third task.

Aspects can include one or more of the following features.

The ordering information includes a control flow graph that includes directed
edges between pairs of the nodes that represent respective tasks, where a directed
edge from an upstream node to a downstream node indicates that the task represented
by the upstream node precedes the task represented by the downstream node in the
partial ordering.

The control flow graph includes a directed edge between a first node
representing the first task and a second node representing the second task, and a
directed edge between the second node and a third node representing the third task.

The function is configured to: decrement or increment a counter associated
with the second task, and determine whether or not to initiate execution of the second
subroutine based on the value of the counter.

The function is configured to perform an atomic operation that atomically
decrements or increments the counter and reads a value of the counter.

The changed state information comprises a history of previous calls of the
function with an argument that identifies the second task.

The function is one of a plurality of different functions, and the state
information captures a history of previous calls of any of the plurality of different
functions with an argument that identifies the second task.

The second control section includes logic that determines whether or not the
task section for performing the task is called.

The logic determines whether or not the task section for performing the task is
called based on the value of a flag associated with the second task.

The first control section controls execution of at least: the second subroutine
corresponding to the second task, and a fourth subroutine corresponding to a fourth
task.

The ordering information indicates that the first task precedes the second task
in the partial ordering, and indicates that the first task precedes the fourth task in the
partial ordering, and does not constrain the order of the second and forth tasks relative

to each other in the partial ordering.

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

The first control section includes: a first function that determines whether or
not to spawn a new process for executing the second subroutine, and a second
function that initiates execution of the fourth subroutine using the same process that
executed the first subroutine.

In another aspect, in general, a computer program is stored on a computer-
readable storage medium, for controlling tasks. The computer program includes
instructions for causing a computing system to: receive ordering information that
specifies at least a partial ordering among a plurality of tasks; and generate
instructions for performing at least some of the tasks based at least in part on the
ordering information. The generating includes: storing instructions for executing a
first subroutine corresponding to a first task, the first subroutine including a first
control section that controls execution of at least a second subroutine corresponding to
a second task, the first control section including a function configured to change state
information associated with the second task, and to determine whether or not to
initiate execution of the second subroutine based on the changed state information;
and storing instructions for executing the second subroutine, the second subroutine
including a task section for performing the second task and a second control section
that controls execution of a third subroutine corresponding to a third task.

In another aspect, in general, a computing system for controlling tasks
includes: an input device or port configured to receive ordering information that
specifies at least a partial ordering among a plurality of tasks; and at least one
processor configured to generate instructions for performing at least some of the tasks
based at least in part on the ordering information. The generating includes: storing
instructions for executing a first subroutine corresponding to a first task, the first
subroutine including a first control section that controls execution of at least a second
subroutine corresponding to a second task, the first control section including a
function configured to change state information associated with the second task, and
to determine whether or not to initiate execution of the second subroutine based on the
changed state information; and storing instructions for executing the second
subroutine, the second subroutine including a task section for performing the second
task and a second control section that controls execution of a third subroutine
corresponding to a third task.

In another aspect, in general, a computing system for controlling tasks

includes: means for receiving ordering information that specifies at least a partial

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

ordering among a plurality of tasks; and means for generating instructions for
performing at least some of the tasks based at least in part on the ordering
information. The generating includes: storing instructions for executing a first
subroutine corresponding to a first task, the first subroutine including a first control
section that controls execution of at least a second subroutine corresponding to a
second task, the first control section including a function configured to change state
information associated with the second task, and to determine whether or not to
initiate execution of the second subroutine based on the changed state information;
and storing instructions for executing the second subroutine, the second subroutine
including a task section for performing the second task and a second control section
that controls execution of a third subroutine corresponding to a third task.

In another aspect, in general, a method for performing tasks includes: storing,
in at least one memory, instructions for performing a plurality of tasks, the
instructions including, for each of at least some of the tasks, a respective subroutine
that includes a task section for performing that task and a control section that controls
execution of a subroutine of a subsequent task; and executing, by at least one
processor, at least some of the stored subroutines. The executing includes: spawning
a first process for executing a first subroutine for a first task, the first subroutine
including a first task section and a first control section; and after the first task section
returns, calling at least one function included in the first control section that
determines whether or not to spawn a second process for executing a second
subroutine.

Aspects can include one or more of the following features.

The function is configured to: decrement a counter associated with the second
subroutine, and determine whether or not to initiate execution of the second
subroutine based on the value of the counter.

The function, when called with an argument that identifies a second task
corresponding to the second subroutine, is configured to determine whether or not to
initiate execution of the second subroutine based on state information that captures a
history of previous calls of the function with an argument that identifies the second
task.

The function is one of a plurality of different functions, and the state
information captures a history of previous calls of any of the plurality of different

functions with an argument that identifies the second task.

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

The function is configured to: initiate execution of the second subroutine in
the first process, and spawn the second process to continue execution of the second
subroutine in response to execution time of the second subroutine passing a
predetermined threshold.

The function is configured to provide the second process a stack frame that
was associated with the first process.

The function is configured to return after spawning the second process to
enable the first process to continue executing concurrently with the second process.

The first control section includes logic that determines whether or not the first
task section is called.

The logic determines whether or not the first task section is called based on the
value of a flag associated with the first task.

The second subroutine corresponds to a second task, and the first control
section is based at least in part on ordering information that specifies at least a partial
ordering among a plurality of tasks that include the first task and the second task.

The ordering information includes a control flow graph that includes directed
edges between pairs of the nodes that represent respective tasks, where a directed
edge from an upstream node to a downstream node indicates that the task represented
by the upstream node precedes the task represented by the downstream node in the
partial ordering.

In another aspect, in general, a computer program is stored on a computer-
readable storage medium, for performing tasks. The computer program includes
instructions for causing a computing system to: store instructions for performing a
plurality of tasks, the instructions including, for each of at least some of the tasks, a
respective subroutine that includes a task section for performing that task and a
control section that controls execution of a subroutine of a subsequent task; and
execute at least some of the stored subroutines. The executing includes: spawning a
first process for executing a first subroutine for a first task, the first subroutine
including a first task section and a first control section; and after the first task section
returns, calling at least one function included in the first control section that
determines whether or not to spawn a second process for executing a second
subroutine.

In another aspect, in general, a computing system for performing tasks

includes: at least one memory storing instructions for performing a plurality of tasks,

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

the instructions including, for each of at least some of the tasks, a respective
subroutine that includes a task section for performing that task and a control section
that controls execution of a subroutine of a subsequent task; and at least one processor
configured to execute at least some of the stored subroutines. The executing includes:
spawning a first process for executing a first subroutine for a first task, the first
subroutine including a first task section and a first control section; and after the first
task section returns, calling at least one function included in the first control section
that determines whether or not to spawn a second process for executing a second
subroutine.

In another aspect, in general, a computing system for performing tasks
includes: means for storing instructions for performing a plurality of tasks, the
instructions including, for each of at least some of the tasks, a respective subroutine
that includes a task section for performing that task and a control section that controls
execution of a subroutine of a subsequent task; and means for executing at least some
of the stored subroutines. The executing includes: spawning a first process for
executing a first subroutine for a first task, the first subroutine including a first task
section and a first control section; and after the first task section returns, calling at
least one function included in the first control section that determines whether or not
to spawn a second process for executing a second subroutine.

Aspects can include one or more of the following advantages.

When tasks are performed by a computing system, there is a cost in processing
time associated with spawning new processes for executing the tasks, and associated
with swapping back and forth between the task processes and a scheduler or other
central process that maintains task dependency and ordering. The techniques
described herein enable new processes to be selectively spawned, or running
processes to be selectively reused, in a manner that is computationally efficient. A
compiler is able to avoid the need to rely solely on a centralized scheduler with a
decentralized scheduling mechanism based on a relatively small amount of code
added to subroutines for executing the tasks. Completion of tasks automatically leads
to the computing system performing other tasks according to an input constraint, such
as a control flow graph, in a way that allows for concurrency and conditional logic.
Compiler generated code associated with a task calls functions at runtime to
determine whether or not to perform other tasks based on state information stored in

counters and flags. Thus, the compiler generated code is effectively implementing a

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

state machine that controls the calling of task subroutines at runtime. Without the
extra overhead of switching to and from a scheduler, the computing system can more
efficiently execute fine-grained potentially concurrent tasks.

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS
FIG. 1 is a block diagram of a computing system.
FIG. 2A is a diagram of a control flow graph.
FIG. 2B — 2D are diagrams of process lifetimes associated with execution of
subroutines for the nodes of the control flow graph of FIG. 2A.
FIGS. 3 and 4 are diagrams of control flow graphs.

DESCRIPTION

FIG. 1 shows an example of a computing system 100 in which the task control
techniques can be used. The system 100 includes a storage system 102 for storing
task specifications 104, a compiler 106 for compiling the task specifications into task
subroutines for performing the tasks, and an execution environment 108 for executing
task subroutines loaded into a memory system 110. Each task specification 104
encodes information about what tasks are to be performed, and constraints on when
those tasks can be performed, including ordering constraints among different tasks.
Some of the task specifications 104 may be constructed by a user 112 interacting over
a user interface 114 of the execution environment 108. The execution environment
108 may be hosted, for example, on one or more general-purpose computers under the
control of a suitable operating system, such as a version of the UNIX operating
system. For example, the execution environment 108 can include a multiple-node
parallel computing environment including a configuration of computer systems using
multiple central processing units (CPUs) or processor cores, either local (e.g.,
multiprocessor systems such as symmetric multi-processing (SMP) computers), or
locally distributed (e.g., multiple processors coupled as clusters or massively parallel
processing (MPP) systems, or remote, or remotely distributed (e.g., multiple
processors coupled via a local area network (LAN) and/or wide-area network
(WAN)), or any combination thercof. Storage device(s) providing the storage system

102 may be local to the execution environment 108, for example, being stored on a

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

storage medium connected to a computer hosting the execution environment 108 (e.g.,
a hard drive), or may be remote to the execution environment 108, for example, being
hosted on a remote system in communication with a computer hosting the execution
environment 108, over a remote connection (e.g., provided by a cloud computing
infrastructure).

FIG. 2A shows an example of a control flow graph 200 that defines a partial
ordering to be imposed on a set of tasks to be performed by the computing system
100. The partial ordering defined by the control flow graph 200 is encoded in a stored
task specification 104. In some implementations, the user 112 selects various types of
nodes to be included in a control flow graph, and connects some of those nodes with
links that represent an ordering constraint between the connected nodes. One type of
node is a task node, represented by square-corner blocks in FIG. 2A. Each task node
represents a different task to be performed. A directed link connected from a first task
node (at the origin of the directed link) to a second task node (at the destination of the
directed link) imposes the ordering constraint that the first node’s task must complete
before the second node’s task can begin. Another type of node is a junction node,
represented by rounded-corner blocks in FIG. 2A. Unless the control flow graph
includes conditional behavior, a junction node simply serves to impose an ordering
constraint. A junction node with a single input link and multiple output links imposes
an ordering constraint such that the task of the task node connected by the input link
must complete before any task of a task node connected by an output link can begin.
A junction node with multiple input links and a single output link imposes an ordering
constraint such that all tasks of the task nodes connected by an input link must
complete before the task of the task node connected by the output link can begin. A
task node can also be a destination of multiple input links, imposing an ordering
constraint such that all tasks of the task nodes connected by an input link must
complete before the task of that task node can begin. With conditional behavior, a
task node with multiple input links also provides different logical behavior than a
junction node with multiple inputs, as described in more detail below.

After a control flow graph has been constructed, the compiler 106 compiles
the task specification 104 that encodes task information and ordering information
represented by that control flow graph, and generates instructions for performing the
tasks. The instructions may be in the form of low-level machine code that is ready to

be executed, or in the form of higher level code that is further compiled to provide the

10

15

20

25

WO 2014/176310 PCT/US2014/035094

low-level machine code that will ultimately be executed. The generated instructions
include a subroutine for each task node (a “task subroutine”), and a subroutine for
each junction node (a “junction subroutine). Each of the task subroutines includes a
task section (also called a task body) for performing a corresponding task. A task
node includes some description of the corresponding task to be performed such that
the compiler is able to generate an appropriate task section. For example, in some
implementations, a task node identifies a particular function to be called, a program to
be run, or other executable code to be included in the task section. Some of the task
subroutines may also include a control section that controls execution of a subsequent
subroutine for another node in the control flow graph. A task subroutine for a task
node that is not connected to any downstream nodes may not need a control section
since control does not need to be passed to any subsequent task after its completion.
Each of the junction subroutines includes a control section as its main body since the
purpose of a junction node is to specify a constraint on the flow of control.

An example of a function included in the control section is a “chain” function,
which determines whether or not to spawn a new process for executing a subroutine
for a subsequent node based on state information associated with the nodes of the
control flow graph. The argument of the chain function identifies that subsequent
node. The table below shows an example of function included in subroutines written
by the compiler for each of the nodes of the control flow graph 200, where the task
section of task subroutines is represented by the function call T#() and the rest of the
subroutine is considered to represent the control section. (In other examples, the task
section may include multiple function calls, with the task being completed after the
last function returns.) Junction subroutines do not include a task section, and are
therefore made up entirely of a control section. In this example, separate function

calls are separated by a semicolon, in the order in which they are to be called.

Node Subroutine
task node T1 T1(); chain(J1)
junction node J1 chain (T2); chain(T3)
task node T2 T2(); chain(J2)
task node T3 T3(); chain(J2)
junction node J2 chain(T4)

10

15

20

25

WO 2014/176310 PCT/US2014/035094

task node T4 T4()

Table 1
After the task specification 104 has been compiled, the computing system 100 loads
the generated subroutines into the memory system 110 of the execution environment
108. When a particular subroutine is called, a program counter will be set to a
corresponding address at the start of a portion of an address space of the memory
system 110 where the subroutine is stored.

At a scheduled time, or in response to user input or a predetermined event, the
computing system 100 begins to execute at least one of the loaded subroutines
representing a root of the control flow graph. For example, for the control flow graph
200, the computing system 100 spawns a process for executing the task subroutine for
the task node T1. As the subroutine starts execution, the process will first call the task
section for performing the task of task node T1, and then after the task section returns
(indicating completion of the task of task node T1), the process will call the chain
function in the control section of the subroutine. The state information used by the
chain function to determine whether or not to spawn a new process for executing a
subroutine for a particular node is information that captures the history of previous
chain functions called with that particular node as an argument, as described in more
detail below.

This history information can be maintained in activation counters associated
with different nodes. The values of the counters can be stored, for example, in a
portion of the memory system 110, or in other working storage. Before the first
process is spawned, the value of the activation counter for each node is initialized to
the number of input links into that node. So, for the control flow graph 200, there are

six activation counters initialized to following values.

Node Activation Counter
Value
task node T1 0
junction node J1 1
task node T2 1
task node T3 1

-10-

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

junction node J2 2

task node T4 1

Table 2
Since the task node T1 does not have any input links, its activation counter is
initialized to zero. Alternatively, for an initial node, which does not have any input
links, there does not need to be an activation counter associated with that node. The
control section of different nodes that are connected over an input link will decrement
the activation counter of the downstream linked node and will determine an action
based on the decremented value. In some implementations, the functions that access
the counters can use an atomic operation that atomically decrements the counter and
reads a value of the counter either before or after the decrement operation (e.g., an
atomic “decrement-and-test” operation). In some systems, such operations are
supported by native instructions of the system. Alternatively, instead of decrementing
the counter until its value reaches zero, the counter can start at zero and the functions
can increment the counter until its value reaches a predetermined threshold that has
been initialized to the number of input links into a node (e.g., using an atomic
“increment-and-test” operation).

A call to the chain function “chain(N)” decrements the activation counter of
node N, and if the decremented value is zero, the chain function triggers execution of
the subroutine of node N by a newly spawned process, and then returns. If the
decremented value is greater than zero, the chain function simply returns without
triggering execution of a new subroutine or spawning a new process. The control
section of a subroutine may include multiple calls to the chain function, as in the
junction subroutine for the junction node J1 in Table 1. After the last function in the
control section returns, the process executing the subroutine may exit, or for some
function calls (e.g., for the “chainTo” function call described below), the process
continues executing another subroutine. This conditional spawning of new processes
enables task subroutines to be executed (potentially concurrently) according to a
desired partial ordering, without requiring switching to and from a scheduler process
to manage the spawning of new processes.

For the subroutines of Table 1, the call to the chain function “chain(J1)” after

the task section for task subroutine T1 returns results in the activation counter for

-11-

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

node J1 being decremented from 1 to 0, resulting in execution of the junction
subroutine, which includes the calls to the chain function “chain (T2)” and
“chain(T3).” Each of these calls result in the respective activation counters for nodes
T2 and T3 to be decremented from 1 to 0, resulting in the execution of the task
subroutines for nodes T2 and T3. Both task subroutines include a control section that
calls “chain(J2),” which decrements the activation counter for node J2. Whichever of
the task bodies for nodes T2 and T3 finishes first will lead to a call to a chain function
that decrements the activation counter for node J2 from 2 to 1. The task section to
finish second will lead to a call to a chain function that decrements the activation
counter for node J2 from 1 to 0. Thus, only the last of the tasks to complete will
result in execution of the junction subroutine for node J2, which leads to the last call
to a chain function “chain(T4)” and decrementing of the activation counter for node
T4 from 1 to 0, which initiates execution of the task subroutine for node T4. After the
task section for node T4 returns, the control flow is complete since there is no control
section for the task subroutine for node T4.

In the example of the subroutines of Table 1, a new process is spawned for the
subroutine of each node in the control flow graph 200. While some efficiency is
obtained by the subroutine of each process including a control section that determines
whether or not to spawn a new process in its own without requiring a central task
monitoring or scheduling process, even more efficiency can be obtained by certain
compiler optimizations to the control sections. For example, in one compiler
optimization, if there is a single call to the chain function in a control section of a first
subroutine, then the next subroutine (i.e., the argument of that chain function) can be
executed (when the activation counter reaches zero) within the same process that is
executing the first subroutine — a new process does not need to be spawned. One way
to accomplish this is for the compiler to explicitly generate a different function call
(c.g., a “chainTo” function instead of the “chain” function) for the last output link of a
node. The chainTo function is like the chain function, except that instead of spawning
a new process to execute the subroutine of its argument when the activation counter is
zero, it causes the same process to execute the subroutine of its argument. If a node
has a single output link, then its compiled subroutine will have a control section with
a single call to the chainTo function. If a node has multiple output links, then its
compiled subroutine will have a control section with one or more calls to the chain

function and a single call to the chainTo function. This reduces the number of

- 12-

10

15

20

25

WO 2014/176310 PCT/US2014/035094

subroutine spawned in independent processes and their associated startup overhead.
Table 3 shows an example of subroutines that would be generated for the control flow

graph 200 using this compiler optimization.

Node Subroutine
task node T1 T1(); chainTo(J1)
junction node J1 chain(T2); chainTo(T3)
task node T2 T2(); chainTo(J2)
task node T3 T3(); chainTo(J2)
junction node J2 chainTo(T4)
task node T4 T4()
Table 3

In the example of the subroutines of Table 3, a first process executes the
subroutines of nodes T1 and J1, and then a new process is spawned to execute the
subroutine of node T2, while the first process continues to execute the subroutine of
node T3. Whichever of these two processes is the first to return from their respective
task section is the first to decrement the activation counter of junction node J2 (from 2
to 1), and then it exits. The second process to return from its task section decrements
the activation counter of junction node J2 from 1 to 0, and then it continues by
executing the subroutine of junction node J2, which is the function call
“chainTo(T4),” and finally the subroutine of task node T4. FIG. 2B shows an
example of the lifetimes of the first and second processes as they execute subroutines
for different nodes in the control flow graph 200, for a case in which the task of node
T3 finishes before the task of node T2. The points along the lines that represent the
processes correspond to execution of subroutines for different nodes (connected to the
points by dashed lines). The lengths of the line segments between the points are not
necessarily proportional to the time elapsed, but are just meant to show the relative
order in which different subroutines are executed, and where the new process is
spawned.

Another example of a modification that can potentially improve efficiency
further is delayed spawning of new process until a threshold is met that indicates that

a particular subroutine may benefit from concurrency. Concurrent execution of

- 13-

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

multiple subroutines by different processes is especially beneficial if each of the
subroutines takes a significant amount of time to complete. Otherwise, if any of the
subroutines takes a relatively short amount of time to complete compared to other
subroutines, that subroutine could be executed serially with another subroutine
without much loss in efficiency. The delayed spawning mechanism allows multiple
tasks that take a significant amount of time, and are able to be performed together, to
be performed by concurrently running processes, but also attempts to prevent
spawning of a new process for shorter tasks.

In an alternative implementation of the chain function that uses delayed
spawning, the chain function, like the chainTo function, causes the same process to
start execution of the subroutine of its argument. But, unlike the chainTo function, a
timer tracks the time it takes to execute the subroutine, and if a threshold time is
exceeded, the chain function spawns a new process to continue execution of the
subroutine. The first process can continue as if the subroutine had completed, and the
second process can take over execution of the subroutine where the first process left
off. One mechanism that can be used to accomplish this is for the second process to
inherit the subroutine’s stack frame from the first process. The stack frame for a
subroutine that is being executed includes a program counter that points to a particular
instruction, and other values including related to the subroutine execution (e.g., local
variables and register values). In this example, the stack frame of the task subroutine
for T2 would include a return pointer that enables a process to return to the junction
subroutine for J1 after completion of the task subroutine for T2. When the delayed
spawning timer is exceeded, a new process is spawned and is associated with the
existing stack frame of the task subroutine for T2, and the first process immediately
returns to the junction subroutine for J1 (to call “chainTo(T3)”). The return pointer in
the inherited stack frame is removed (i.e., nulled out) since the new process does not
need to return to the junction subroutine for J1 after completion of the task subroutine
for T2. So, delayed spawning enables a subroutine for a subsequent task to be
performed without the overhead of spawning a new process for cases in which the
task is quick (relative to a configurable threshold), and reduces the overhead involved
in spawning a new process for cases in which the task is longer by inheriting an
existing stack frame.

FIG. 2C shows an example of the lifetime of the first and second processes as

they execute subroutines for different nodes in the control flow graph 200, for a case

- 14-

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

in which the task of node T2 is longer than the delayed spawning threshold. When
the spawning threshold is reached, process 1 spawns process 2, which inherits the
stack frame of the subroutine performing the task of node T2 and continues executing
that subroutine. In this example, the task of node T3 (performed by process 1)
finishes before the task of node T2 (started by process 1 and completed by process 2)
finishes. So, in this example, it is process 1 that decrements the activation counter of
J2 from 2 to 1 (and then exits), and it is process 2 that decrements the activation
counter of J2 from 1 to 0, resulting in process 2 performing the task of task node T4.
In this example, concurrent execution of the task of node T2 and the task of node T3
is allowed, after it is determined that such concurrency will contribute to overall
efficiency.

FIG. 2D shows an example of the lifetime of a single process as it executes
subroutines for different nodes in the control flow graph 200, for a case in which the
task of node T2 is shorter than the delayed spawning threshold. In this example, the
task of node T2 (performed by process 1) finishes before the task of node T3 (also
performed by process 1). So, in this example, process 1 decrements the activation
counter of J2 from 2 to 1 after completing the task of node T2, and process 1
decrements the activation counter of J2 from 1 to 0 after completing the task of node
T3, resulting in process 1 performing the task of task node T4. In this example,
concurrent execution of the tasks of node T2 and node T3 is sacrificed for the
efficiency gained by avoiding the need to spawn a second process, after it is
determined that task of node T2 can be completed quickly.

Another type of node that can be included in a control flow graph is a
condition node, represented by circles in a control flow graph 300 shown in FIG. 3.
Condition nodes define conditions for determining whether or not a task of a task
node connected to the output of the condition node is to be performed. If at runtime
the defined condition is true then control flow proceeds downstream past that
condition node, but if at runtime the defined condition is false then control flow does
not proceed past that condition node. If the condition is false, then tasks of task nodes
downstream of the condition node are only performed if there are other paths through
the control flow graph that lead to those task nodes (and are not themselves blocked
by other false condition nodes).

The compiler generates a “condition subroutine” for each condition node, and

also uses the condition defined by a condition node to modify the subroutines of

- 15-

10

15

20

WO 2014/176310

PCT/US2014/035094

certain other nodes downstream of the condition node. For example, the compiler

may generate instructions for a “skip mechanism” that will be applied at runtime to

follow the flow of control defined by the control flow graph. In the skip mechanism,

cach node has an associated “skip flag” controlling whether or not the corresponding

task section (if any) is executed. If the skip flag is set, then execution of the task

section is suppressed (with the node being in a “suppressed” state), and this

suppression may be propagated to other tasks by appropriate control code that was

placed into the control section by the compiler. In the previous examples, the task

section of a task subroutine preceded the control section. In the following examples,

the control section of some task subroutines includes control code that occurs before

the task section (also called a “prologue”) and control code that occurs after the task

section (also called an “epilogue”). For example, to implement this skip mechanism

the compiler includes in the prologue (i.e., code to be executed before the task

section) conditional instructions (e.g., if statements) and calls to a “skip function,”

which is called with an argument that identifies a downstream node. The compiler

includes in the epilogue (i.e., code to be executed after the task section) calls to the

chain or chainTo function. In some cases, only the prologue may be executed and

both the task section and the epilogue may be skipped due to the stored state

represented by the values of the skip flags. Table 4 shows an example of subroutines

that would be generated for the control flow graph 300.

Node

Subroutine

task node T1

T1(); chainTo(J1)

junction node J1

chain(C1); chain(C2); chainTo(J3)

condition node C1

if (<condition1>)
chainTo(T2)
else

skip(T2)

condition node C2

if (<condition2>)
chainTo(T3)
else

skip(T3)

task node T2

if (skip)

-16-

WO 2014/176310 PCT/US2014/035094

skip(J2)
else

T2(); chainTo(J2)
task node T3 if (skip)

skip(J2)
else

T3(); chainTo(J2)

junction node J2 if (skip)
skip(T4)
else
chainTo(T4)
task node T4 if (skip)
skip(J3)
else

T4(); chainTo(J3)

junction node J3 if (skip)

skip(T5)
else
chainTo(T5)
task node T5 if (skip)

return
else

T50)

Table 4

Like the chain and chainTo functions, the skip function “skip(N)” decrements
the activation counter of its argument (node N) and executes the corresponding
subroutine if the decremented value is 0. In this example, the skip function follows
the behavior of the chainTo function by continuing to use the same process without
spawning a new one, however, the compiler can use two versions of the skip function
that behave as the chain and chainTo functions do to control task spawning in a
similar manner. The compiler generates subroutines for nodes downstream of a

conditional node such that, if the skip flag of the node whose subroutine is being

-17-

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

executed is set (i.e., evaluates to a Boolean true value), it calls skip on the
downstream node without calling a task section, and if the skip flag is cleared (i.e.,
evaluates to a Boolean false value), it does call a task section (if the node is a task
node) and calls chain on the downstream node. Alternatively, the compiler can
include conditional statements in the control sections of subroutines by default
without having to determine which nodes are downstream of a conditional node. In
particular, an “if” statement to check the skip flag can be included by default for the
subroutine of every node without the compiler having to determine whether or not to
include it (though that may lead to unnecessary checking of the skip flag).

If there are condition nodes in a control flow graph, then nodes with multiple
inputs acquire a logical behavior at runtime that depends on the type of the node. A
junction node with multiple input links and a single output link corresponds to a
logical “OR” operation, such that at least one input node connected by an input link
must have its subroutine execute a chain call (and not a skip call) if the output node
connected by the output link is to have its subroutine be the argument of a chain call
(and not a skip call). A task node with multiple input links and a single output link
corresponds to a logical “AND” operation, such that all of the input nodes connected
by an input link must have their subroutines execute a chain call (and not a skip call)
if the subroutine of that task node is to be the argument of a chain call (and not a skip
call).

To ensure this logical behavior, the skip flags associated with the nodes are set
and cleared at runtime according to predetermined rules. Initial values of the skip
flags are provided during an initialization phase that occurs before execution of any of
the subroutines of the nodes in the control flow graph, and also depend on the type of
the node. The compiler also uses different versions of the skip function and chain
function, which have different behavior depending on the type of the node. One
example of the predetermined set of rules for changing the skip flag of a node N, and
the behavior of the different versions of functions used by the compiler, is as follows.

e For a multi-input junction node (an OR operation): skip flag is initially
set, skip OR(N) does not change skip flag, chain OR(N) clears skip
flag

- 18-

10

15

20

25

30

WO 2014/176310 PCT/US2014/035094

e For a multi-input task node (an AND operation): skip flag is initially
cleared, skip AND(N) sets skip flag, chain AND(N) does not change
skip flag

e For a single-input node: skip flag is initially set, skip(N) does not
change skip flag, chain(N) clears skip flag

The behavior of the chainTo function is the same as the chain function with respect to
the skip flag. For a single-input node, the behaviors of the OR operation and the
AND operation are equivalent, and either can be used (such as the behavior of the OR
operation in this example). For this set of rules, the starting node(s) (i.e., nodes
without any input links) have their skip flag cleared (if its initial value is not already
cleared).

For the control flow graph 300, consider the case in which the condition for
node C1 is true, the condition for node C2 is false, and the task for node T3 finishes
before the node C2 condition check is completed: the subroutine for node T3 would
follow chain logic (as opposed to skip logic), which clears the skip flag of node J2,
and decrements the activation counter for node J2 (from 2 to 1); and then the
subroutine for node T4 follows skip logic (which does not change the skip flag), and
decrements the activation counter for node J2 (from 1 to 0), which leads to chain(T5)
since the skip flag of node J2 was cleared by the subroutine of node T3.

Other rules are also possible. Another example of the predetermined set of
rules for changing the skip flag of a node N, and the behavior of the different versions
of functions used by the compiler, is as follows.

e For a junction node: skip flag is initially set, skip_J(N) does not change
skip flag, chain J(N) clears skip flag

e For a task node or conditional node: skip flag is initially cleared,
skip(N) sets skip flag, chain(N) does not change skip flag

For this set of rules, the starting node(s) (i.e., nodes without any input links) will also
have their skip flag cleared (if its initial value is not already cleared).

The compiler can optionally perform a variety of optimizations of conditional
statements or other instructions in the control section of subroutines based on analysis
of the control flow graph. For example, from the control flow graph 300, it can be
determined that the task of task node T35 will not be skipped regardless of whether the

conditions of condition nodes C1 and C2 are true or false, because there is a link

- 19-

10

15

WO 2014/176310 PCT/US2014/035094

between junction node J1 and junction node J3 that will ultimately lead to the
execution of the task of task node T5. So, the compiler is able to generate a
subroutine for task node T35 that avoids a check of its skip flag and simply calls its
task section T5(). Other optimizations can be made by the compiler, for example, by
leaving out intermediate skip flag checks and skip function calls for cases in which an
entire section of a control flow graph is to be skipped after a conditional node, as long
as any other inputs a downstream node after the skipped section are handled
appropriately (i.e., decrementing the counter of the downstream node the number of
times that it would have been decremented if the intermediate calls for the skipped
section had been included).

FIG. 4 shows an example of a simple control flow graph 400 that includes a
multi-input task node T3, with input links from task nodes T1 and T2 that each follow
condition node (C1 and C2, respectively). In this example, the task node T3
corresponds to a logical AND operation such that the tasks of nodes T1 and T2 must
both be executed (and not skipped) for the task of node T3 to be executed. Table 5
shows an example of subroutines that would be generated for the control flow graph

400.

Node Subroutine

junction node J1 chain(C1); chainTo(C2)

condition node C1 if (<condition1>)
chainTo(T1)
else

skip(T1)

condition node C2 if (<condition2>)
chainTo(T2)
else
skip(T2)
task node T1 if (skip)
skip(T3)

else
T1(); chainTo(T3)
task node T2 if (skip)

- 20-

10

15

20

25

WO 2014/176310 PCT/US2014/035094

skip(T3)
else

T2(); chainTo(T3)
task node T3 if (skip)

return
else

T30

Table 5

In some implementations, junction nodes (or other nodes) can be configured to
provide various kinds of logical operations that depend on characteristics of the inputs
to the node. For example, a node can be configured to provide a logical AND
operation when all inputs are designated as “required” inputs, and a logical OR
operation when all inputs are designated as “optional” inputs. If some inputs are
designated as “required” and some inputs are designated as “optional”, then a set of
predetermined rules can be used to interpret the combination of logical operations to
be performed by the node.

The task control techniques described above can be implemented using a
computing system executing suitable software. For example, the software may
include procedures in one or more computer programs that execute on one or more
programmed or programmable computing system (which may be of various
architectures such as distributed, client/server, or grid) each including at least one
processor, at least one data storage system (including volatile and/or non-volatile
memory and/or storage elements), at least one user interface (for receiving input using
at least one input device or port, and for providing output using at least one output
device or port). The software may include one or more modules of a larger program,
for example, that provides services related to the design, configuration, and execution
of dataflow graphs. The modules of the program (e.g., elements of a dataflow graph)
can be implemented as data structures or other organized data conforming to a data
model stored in a data repository.

The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special

purpose computing system or device), or delivered (e.g., encoded in a propagated

-21-

10

15

20

WO 2014/176310 PCT/US2014/035094

signal) over a communication medium of a network to a tangible, non-transitory
medium of a computing system where it is executed. Some or all of the processing
may be performed on a special purpose computer, or using special-purpose hardware,
such as coprocessors or field-programmable gate arrays (FPGAS) or dedicated,
application-specific integrated circuits (ASICs). The processing may be implemented
in a distributed manner in which different parts of the computation specified by the
software are performed by different computing elements. Each such computer
program is preferably stored on or downloaded to a computer-readable storage
medium (e.g., solid state memory or media, or magnetic or optical media) of a storage
device accessible by a general or special purpose programmable computer, for
configuring and operating the computer when the storage device medium is read by
the computer to perform the processing described herein. The inventive system may
also be considered to be implemented as a tangible, non-transitory medium,
configured with a computer program, where the medium so configured causes a
computer to operate in a specific and predefined manner to perform one or more of
the processing steps described herein.

A number of embodiments of the invention have been described.
Nevertheless, is to be understood that the foregoing description is intended to
illustrate and not to limit the scope of the invention, which is defined by the scope of
the following claims. Accordingly, other embodiments are also within the scope of
the following claims. For example, various modifications may be made without
departing from the scope of the invention. Additionally, some of the steps described
above may be order independent, and thus can be performed in an order different

from that described.

-2

WO 2014/176310 PCT/US2014/035094

What 1s claimed is:

1. A method for controlling tasks performed by a computing system, the

method including:

receiving ordering information that specifies at least a partial ordering among

a plurality of tasks; and

generating, using at least one processor, instructions for performing at least
some of the tasks based at least in part on the ordering information, the

generating including:

storing instructions for executing a first subroutine corresponding to a
first task, the first subroutine including a first control section
that controls execution of at least a second subroutine
corresponding to a second task, the first control section
including a function configured to change state information
associated with the second task, and to determine whether or
not to initiate execution of the second subroutine based on the

changed state information; and

storing instructions for executing the second subroutine, the second
subroutine including a task section for performing the second
task and a second control section that controls execution of a

third subroutine corresponding to a third task.

2. The method of claim 1, wherein the ordering information includes a
control flow graph that includes directed edges between pairs of the nodes that
represent respective tasks, where a directed edge from an upstream node to a
downstream node indicates that the task represented by the upstream node precedes

the task represented by the downstream node in the partial ordering.

3. The method of claim 2, wherein the control flow graph includes a
directed edge between a first node representing the first task and a second node
representing the second task, and a directed edge between the second node and a third

node representing the third task.

-3

WO 2014/176310 PCT/US2014/035094

4. The method of any preceding claim, wherein the function is configured
to: decrement or increment a counter associated with the second task, and determine
whether or not to initiate execution of the second subroutine based on the value of the

counter.

5. The method of claim 4, wherein the function is configured to perform
an atomic operation that atomically decrements or increments the counter and reads a

value of the counter.

6. The method of any preceding claim, wherein the changed state
information comprises a history of previous calls of the function with an argument

that identifies the second task.

7. The method of claim 6, wherein the function is one of a plurality of
different functions, and the state information captures a history of previous calls of
any of the plurality of different functions with an argument that identifies the second

task.

8. The method of any preceding claim, wherein the second control
section includes logic that determines whether or not the task section for performing

the task is called.

9. The method of claim 8, wherein the logic determines whether or not
the task section for performing the task is called based on the value of a flag

associated with the second task.

10. The method of any preceding claim, wherein the first control section
controls execution of at least: the second subroutine corresponding to the second task,

and a fourth subroutine corresponding to a fourth task.

-24-

WO 2014/176310 PCT/US2014/035094

11. The method of claim 10, wherein the ordering information indicates
that the first task precedes the second task in the partial ordering, and indicates that
the first task precedes the fourth task in the partial ordering, and does not constrain the

order of the second and forth tasks relative to each other in the partial ordering.

12. The method of claim 10 or 11, wherein the first control section
includes: a first function that determines whether or not to spawn a new process for
executing the second subroutine, and a second function that initiates execution of the

fourth subroutine using the same process that executed the first subroutine.

13. A computer program stored on a computer-readable storage medium,
for controlling tasks, the computer program including instructions for causing a

computing system to:

receive ordering information that specifies at least a partial ordering among a

plurality of tasks; and

generate instructions for performing at least some of the tasks based at least in

part on the ordering information, the generating including:

storing instructions for executing a first subroutine corresponding to a
first task, the first subroutine including a first control section
that controls execution of at least a second subroutine
corresponding to a second task, the first control section
including a function configured to change state information
associated with the second task, and to determine whether or
not to initiate execution of the second subroutine based on the

changed state information; and

storing instructions for executing the second subroutine, the second
subroutine including a task section for performing the second
task and a second control section that controls execution of a

third subroutine corresponding to a third task.

14. A computing system for controlling tasks, the computing system

including:

-05-

WO 2014/176310 PCT/US2014/035094

an input device or port configured to receive ordering information that

specifies at least a partial ordering among a plurality of tasks; and

at least one processor configured to generate instructions for performing at
least some of the tasks based at least in part on the ordering

information, the generating including:

storing instructions for executing a first subroutine corresponding to a
first task, the first subroutine including a first control section
that controls execution of at least a second subroutine
corresponding to a second task, the first control section
including a function configured to change state information
associated with the second task, and to determine whether or
not to initiate execution of the second subroutine based on the

changed state information; and

storing instructions for executing the second subroutine, the second
subroutine including a task section for performing the second
task and a second control section that controls execution of a

third subroutine corresponding to a third task.

15. A computing system for controlling tasks, the computing system

including:

means for receiving ordering information that specifies at least a partial

ordering among a plurality of tasks; and

means for generating instructions for performing at least some of the tasks
based at least in part on the ordering information, the generating

including:

-26-

WO 2014/176310 PCT/US2014/035094

storing instructions for executing a first subroutine corresponding to a
first task, the first subroutine including a first control section
that controls execution of at least a second subroutine
corresponding to a second task, the first control section
including a function configured to change state information
associated with the second task, and to determine whether or
not to initiate execution of the second subroutine based on the

changed state information; and

storing instructions for executing the second subroutine, the second
subroutine including a task section for performing the second
task and a second control section that controls execution of a

third subroutine corresponding to a third task.

16. A method for performing tasks, the method including:

storing, in at least one memory, instructions for performing a plurality of
tasks, the instructions including, for each of at least some of the tasks,
a respective subroutine that includes a task section for performing that
task and a control section that controls execution of a subroutine of a

subsequent task; and

executing, by at least one processor, at least some of the stored subroutines,

the executing including:

spawning a first process for executing a first subroutine for a first task,
the first subroutine including a first task section and a first

control section; and

after the first task section returns, calling at least one function included
in the first control section that determines whether or not to

spawn a second process for executing a second subroutine.

17. The method of claim 16, wherein the function is configured to:
decrement a counter associated with the second subroutine, and determine whether or

not to 1nitiate execution of the second subroutine based on the value of the counter.

-27-

WO 2014/176310 PCT/US2014/035094

18. The method of claim 16 or 17, wherein the function, when called with
an argument that identifies a second task corresponding to the second subroutine, is
configured to determine whether or not to initiate execution of the second subroutine
based on state information that captures a history of previous calls of the function

with an argument that identifies the second task.

19. The method of claim 18, wherein the function is one of a plurality of
different functions, and the state information captures a history of previous calls of
any of the plurality of different functions with an argument that identifies the second

task.

20. The method of claim 16, wherein the function is configured to: initiate
execution of the second subroutine in the first process, and spawn the second process
to continue execution of the second subroutine in response to execution time of the

second subroutine passing a predetermined threshold.

21. The method of claim 20, wherein the function is configured to provide

the second process a stack frame that was associated with the first process.

22. The method of claim 20 or 21, wherein the function is configured to
return after spawning the second process to enable the first process to continue

executing concurrently with the second process.

23. The method of claim 16, wherein the first control section includes

logic that determines whether or not the first task section is called.

24. The method of claim 23, wherein the logic determines whether or not
the first task section is called based on the value of a flag associated with the first

task.

-8

WO 2014/176310 PCT/US2014/035094

25. The method of claim 16, wherein the second subroutine corresponds to
a second task, and the first control section is based at least in part on ordering
information that specifies at least a partial ordering among a plurality of tasks that

include the first task and the second task.

26. The method of claim 25, wherein the ordering information includes a
control flow graph that includes directed edges between pairs of the nodes that
represent respective tasks, where a directed edge from an upstream node to a
downstream node indicates that the task represented by the upstream node precedes

the task represented by the downstream node in the partial ordering.

27. A computer program stored on a computer-readable storage medium,
for performing tasks, the computer program including instructions for causing a

computing system to:

store instructions for performing a plurality of tasks, the instructions including,
for each of at least some of the tasks, a respective subroutine that
includes a task section for performing that task and a control section

that controls execution of a subroutine of a subsequent task; and
execute at least some of the stored subroutines, the executing including:

spawning a first process for executing a first subroutine for a first task,
the first subroutine including a first task section and a first

control section; and

after the first task section returns, calling at least one function included
in the first control section that determines whether or not to

spawn a second process for executing a second subroutine.

28. A computing system for performing tasks, the computing system

including:

- 20.

WO 2014/176310 PCT/US2014/035094

at least one memory storing instructions for performing a plurality of tasks, the
instructions including, for each of at least some of the tasks, a
respective subroutine that includes a task section for performing that
task and a control section that controls execution of a subroutine of a

subsequent task; and

at least one processor configured to execute at least some of the stored

subroutines, the executing including:

spawning a first process for executing a first subroutine for a first task,
the first subroutine including a first task section and a first

control section; and

after the first task section returns, calling at least one function included
in the first control section that determines whether or not to

spawn a second process for executing a second subroutine.

29. A computing system for performing tasks, the computing system

including:

means for storing instructions for performing a plurality of tasks, the
instructions including, for each of at least some of the tasks, a
respective subroutine that includes a task section for performing that
task and a control section that controls execution of a subroutine of a

subsequent task; and
means for executing at least some of the stored subroutines, the executing
including:

spawning a first process for executing a first subroutine for a first task,
the first subroutine including a first task section and a first

control section; and

after the first task section returns, calling at least one function included
in the first control section that determines whether or not to

spawn a second process for executing a second subroutine.

- 30-

PCT/US2014/035094

17

WO 2014/176310

| "Old

LINIFANNOHIANT NOILLNO3IX3

oH vit

NZFLSAS J0V4d3LNI i
AHOWIN d3asn
A __
801
50T —
d3TdNOD vol
\\l}
/lllll\\\

01

A4

QO
—

WO 2014/176310

217
<
-
QA
-
@
~ -
3
o
)
8V

T1

PCT/US2014/035094

FIG. 2A

PCT/US2014/035094

317

WO 2014/176310

de¢ Old

(+ 012) 2r LINaW3IHD3A
|

NMVdS

L SS300Hd

T

al

)

TR a—

i
¢SS

O-———-=-==—"
Q--=--

300Hd

(001 1) 2P INIW3HO3d

L

?

HL

PCT/US2014/035094

417

WO 2014/176310

Oc¢ Ol

(1 012) gr INaWIHEO3a
|

! NMVJS
| |
! ! } SS300Hd
L 1 Pl 1 Pl P
_ % ¢ ?
| [| t]
| | t |
— " “
— . m N m
—| el ! je— !
P _
N |
. |
Al <« 2 i T D m—— Ll
m |l e
“ “ r
| | v
| b 5 A

2 $53004d .
INVHS HOVLS 2L LIHIHNI

(001 1) 2 INIWNIHO3A

PCT/US2014/035094

5/7

WO 2014/176310

dc¢ Oid

(1 012) gr IN3WIY03q

(0 01 1) 2P INIWIHO3A

| L $S300Hd
? ? — ? ? P
| I I | I 1
| | | | I I
“ “ _ " " “
m L i — m
|
“ o & “
1
" 1
|
vl le— 2r m W e H
- ¢l
N | 00¢

WO 2014/176310 6/7

PCT/US2014/035094

5

J3
—

T4

)
J2

is
S

300
——

T1

FIG. 3

WO 2014/176310

77

400

-
)

PCT/US2014/035094

FIG. 4

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings

