
ROAD GAUGES

Filed Feb. 8, 1963

Attorneys

1

3,295,209 ROAD GAUGES Edwin Young, 44 Marian Drive, Lakeside Park, South Fort Mitchell, Ky. 41017 Filed Feb. 8, 1963, Ser. No. 257,276 11 Claims. (Cl. 33—86)

This invention relates to road gauges for use in checking the profile or contour of the surface of a road or other

paved area.

Paved areas such as streets and highways in particular, are customarily constructed in accordance with specifications and drawings which prescribe the contour or profile of the pavement along a straight line, particularly the transverse profile of a road or highway showing its crowned 15 profile, longitudinal profiles such as the edges and the center line, and other intermediate lines of those portions of a road in which transition from the transversely crowned contour of a straight section of such road through the tangent into a curve in which the transverse profile 20 may be a straight sloping line or an upwardly crowned or downwardly curved or bowed transverse contour or profile. The profiles and contours of the foregoing type are usually defined with specified tolerances beyond which the surface must not deviate from the prescribed profile 25 or contour. In order to determine whether a highway has been built, within permitted tolerances, to conform with the various contours specified, it has been the general practice in the past, to make such determination through the efforts of a surveying crew equipped with conventional 30 surveying instruments. Such a survey requires a very substantial amount of time and labor, which in terms of cost is substantial. Further, a surveying crew by collecting field data which is subsequently processed can only check a limited amount of highway during a working day, and 35 the accuracy of any such surveying is subject to introduction of human error, both in collection of field data and in computations involved in converting the field data to a form comparable with the specifications and in comparing same to the specifications, the field data at least being 40 subject to instrumental error as well.

Some straight sections of highway of a width of 24 feet, have a specified transverse pavement surface profile which is symmetric with reference to the center-line of the 24 foot pavement. One such profile has an upwardly con- 45 vex parabolic central portion extending symmetrically for three feet on both sides of the centerline of the pavement and then along a tangent straight line of constant downward slope of 3/16 inch to the foot to the edges of the highway. Checking the parabolic profile of the six foot wide 50 central portion is a difficult task when conventional surveying instruments are used. As a result the central portion of the concrete pavement is apt to be assumed to be of prescribed parabolic profile, sole reliance being placed upon the shape of the screed of the cement leveling or 55 spreading machine because of the difficulty of satisfactory surveying. In the laying of asphalt or petroleum type surfacing materials, same are usually laid in the form of two twelve foot ribbons which slope downwardly and outwardly from the center line at which they meet, the para- 60 bolic contour of the central portion of the pavement is simply that contour which results from rolling of the peak with a road roller incident to compacting of the material.

An object of this invention is to provide a device which may be conveniently transported and operated by one 65

person.

Another object of this invention is to provide a device of the foregoing character with which one person may check the surface of a highway for conformity with specifications of the character mentioned above.

Another object of this invention is to provide a device of the above character, so constructed as to be readily 2

adapted for use in checking highway pavement contours of various usual lengths.

Another object of this invention is to provide a device of the above character which may be used to check the conformity of various contours of a road surface to specifications, speedily and accurately at a substantial saving in time and labor.

Another object of this invention is to provide a device of the above character which is so constructed as to be 10 light in weight, strong, rugged, resistant to permanent distortion affecting its accuracy, easily transportable by one man from place to place in compact condition, easily placed in operative condition or in compact condition by one man and may be easily transported from profile line profile line checking positions by one man.

Another object of this invention is to provide a device of the above character which may be easily checked for correctness in the field at the time it is placed in operative condition or at any time when it is in operative condition, thereby avoiding waste of time through use of an errone-

Another object of this invention is to provide a device of the above character which is constructed so as to substantially minimize the effect of any distortion, temporary or otherwise, of the frame or other portion, of the device upon readings obtained through its use in checking surface profile contours and the like.

Another object of this invention is to provide a device of the above character having an elongate supporting frame, at least one stringline supported at two points adjacent respective ends of said frame and spanning the distance between said points in a substantially straight line fashion and parallel to an imaginary straight line extending between points which perpendiculars from the stringline at the stringline supporting points intersect the surface, the contour of which is to be checked.

Another object of this invention is to provide a device of the above character having a lightweight, strong frame comprising a plurality of sections adapted to be repeatedly secured in predetermined aligned relation to each other.

Another object of this invention is to provide means for measuring the distance from points on the surface of the pavement beneath the stringline to the stringline at any

desired point therealong.

The above and other features of this invention will in part be obvious and will in part be apparent to those having ordinary skill in the art to which this invention pertains, from the following detailed description and the drawings of the illustrative embodiment of the invention disclosed.

In the drawings:

FIG. 1 is a view in side elevation of what presently appears to be a preferred embodiment of my invention;

FIG. 2 is a top plan view in the device shown in FIG. 1; FIG. 3 is a view in perspective of an end portion of the device shown in FIG. 1;

FIG. 4 is a fragmentary view in perspective of the central portion of the device shown in FIG. 1;

FIG. 5 is a fragmentary view in perspective of a fragmentary portion of the device of FIGS. 1 and 2 viewed in the direction of arrow V in FIG. 2;

FIG. 6 is a view in perspective of the fragmentary portion of the device shown in FIG. 5, but viewed from the direction of arrow VI in FIG. 2;

FIG. 7 is a fragmentary view in perspective of a portion of one of the end columns of the device shown in FIG. 1: and.

FIG. 8 is a view in perspective of a stringline reading standard or measuring gauge used in cooperation with the device of FIG. 1 for measuring the elevation of a

point on the pavement surface beneath the stringline of the device of FIG. 1 from a standing position.

In the following detailed description and the drawing, like reference characters indicate like parts and any dimensions given are, unless otherwise stated, for purposes 5 of illustration and not for any purposes of limitation.

A stringline device constructed in accordance with an embodiment of this invention is shown generally in FIGS. 1 and 2, and comprises a frame 20, central column 23, end columns 21, 22 and stringline 24 supported for co- 10 operation with stringline reading standard 25 shown in FIG. 8.

Frame 20 is preferably light in weight, stiff and strong in construction, but need not be rigid in the inflexible sense, as some flexibility is quite acceptable as will here- 15 inafter appear, I have found that many parts of frame 20 may be made from straight grained, clear, white pine lumber which has been impregnated with raw linseed oil and cured, while others may be of strong lightweight metal alloys.

As shown in FIGS. 1 and 2, frame 20 has a central portion 26 coupled by span portions 27, 28 to end portions 29, 30 and is preferably constructed with an underprofile having camber or arch at least as great as that of the greatest crowned profile as might be encountered in 25 a surface to be gauged.

Central portions 26, shown in FIGS. 1, 2, 4, 5 and 6, has an upper stringer 31 having a top member 31t and a bottom member 31b, a lower stringer 32, spaced by central spacer 33, and end spacers 34, 35. The stringers 30 and spacers are joined together by suitable securing means such as is shown in FIGS. 5 and 6, where an upper saddle plate 36 and a lower saddle plate 37 are respectively shown straddling upper and lower stringers 31, 32. Bolt 38 extends successively from its head, down through 35 aligned apertures in a handle anchor 39, upper saddle plate 36, upper stringer top and bottom members 31t and 31b, end spacer 34, lower stringer 32 and lower saddle plate 37 into engagement with a nut (not shown). I prefer that bolt 38 is snuggly received in the apertures, 40 as may be accomplished by drilling and tapping them to size for bolt 38, in order that bolt 38 serves to index as well as secure the several parts engaged by it. Another bolt 38 similarly secures corresponding portions of members relative to end spacer 35.

Upper saddle bracket 40 straddles the mid-portion of upper stringer 31 and lower saddle bracket 41 cradles or straddles the mid-portion of lower stringer 32 as shown most clearly in FIG. 4, and are secured in place by a bolt 42 which extends successively through bracket 40, 50 upper stringer 31 (31t and 31b) central spacer 33, lower stringer 32 and bracket 41 into cooperation with a nut,

Span portion 28 of frame 20 has an upper stringer 51 having a top member 51t and a bottom member 51b and 55a lower stringer 52 spaced by central spacer 53 and end spacers 54, 55. The stringers and spacers are joined together in a manner similar to that in which the similar portions of central portion 26, are secured, namely, a pair of saddle plates 56, 57, respectively straddle the upper 60 and lower stringer 51, 52 at locations opposite each spacer 53, 54, 55 and a bolt 58 with its head in cooperative engagement with an upper saddle plate 56 extends successively through the upper saddle plate, upper stringer, the respective spacer, lower stringer and lower 65 saddle plate into cooperative engagement with a nut (not shown).

Span portion 27 is a substantial duplicate of span portion 28 and like reference characters have been applied to corresponding parts thereof in accordance with the 70 above description of portion 28.

End portion 30 has an upper stringer 61, having a top member 61t and a bottom member 61b, and a lower stringer 62 spaced by end spacers 64, 65. Upper saddle plate 66 straddles upper stringer 61 and a lower saddle 75 characters used in the following description of column

plate 67 straddles lower stringer 62. Bolt 68 extends successively through plate 66, stringer 61, end spacer 65, stringer 62 and plate 67 into engagement with a nut (not shown). Upper stringer 61, end spacer 64 and lower stringer 62 may be secured by suitable means such as glue, mechanical fastening means or the like.

End portion 29 is a substantial duplicate of end portion 30 and like reference characters have been applied to corresponding parts thereof in accordance with the above description of end portion 30.

The portions 30, 28, 26, 27 and 29 of frame 20 are coupled together so as to be secured in aligned tandem relation by lockable hinged joints, a representative one of which is illustrated in FIGS. 5 and 6.

The adjacent end faces of portions 26 and 28 are smooth, flat and so oriented that when in face-to-face abutment the portions 26 and 28 will be in desired alignment. Portions 26 and 28 are then secured as by clamping or the like in aligned positions with their end faces in face-to-face abutting relation as shown in FIGS. 5 and 6. Hinge means such as hinges 78 shown in FIG. 6, are then applied by securing the hinge plates 79 to end spacer 34 and hinge plates 80 to end spacer 54 as hereinafter described, while the axis of the hinge pins 81 is disposed in the plane of abutment of the end faces of the frame portions 26, 28. The play or slack in the hinge is substantially removed by pulling the hinge plates 79, 80 in opposite directions so as to end to draw them into greater spaced relation to each other and into firm engagement with the coupling hinge pin 81.

Similarly, hinges 76 couple portions 28 and 30, hinges 77 couple portions 26 and 27 and hinges 75 couple portions 27 and 29, so that frame 20 may be folded into the condition in which its portions are substantially in sideby-side parallel relation with the end portions 29, 30

Respective similar lock means 50, 72, 73, 74 are provided for securing each hinged joint against folding and each like lock means 50, as shown particularly in FIG. 5, may be associated with indexing means.

Index-plates 59, 60 are respectively secured to portions 26 and 28 with their edge faces abutting at 71 in the plane of the end faces of portions 26 and 28, as shown in FIG. 5. Index plate 59 and hinge plates 79 may be secured, at least in part, by screws or bolts 69, the heads of which may for example engage the plates 79 while nuts 69n engaging the bolts also engage plate 59. Index plate 60 and hinge plates 80 are similarly secured by bolts 70 and nuts 70n.

Base 43 is secured in fixed relation to index plates 60, by screws or bolts 44 with lug 45 projecting. A latch base 46 is secured in fixed relation to index plate 59 by a pair of bolts 69 and nuts 69n. A turret 47 is pivotally mounted on base 46 for rotation about an axis parallel to a radius of the axis of pivoting of hinges 78. A hookbolt 48 is supported in turret 47 for sliding movement along a radius of the axis of turret pivoting and its sliding movement is effected and controlled by swinging movement of latch handle 49. The latch hook-bolt 48 is shown in retracted or latched condition in full lines in FIG. 5 and by swinging handle 49 in a clockwise direction as viewed in FIG. 5, hook-bolt 48 may be advanced into the position shown in dashed lines and then swung in clockwise unison movement with the turret 47 and handle 49 into a position in which it will not engage lug 45 when the hinged joint is swung open. Locking of the hinged joint may be effected by swinging portions 26 and 28 into alignment with index plates 59, 60 abutting, and then effecting counterclockwise movement of handle 49 to swing turret 47 to the position of FIG. 5, preferably determined by an indexing stop (not shown), and then continuing swing of handle 49 to retract hook-bolt 48 into securing engagement with lug 45.

End columns 21 and 22 are alike and the reference

5

22, FIG. 3, apply to corresponding portions of column 21.

Column 22, shown in FIGS. 1, 2 and particularly in FIG. 3, has an angle form base 82 supported on a pair of spaced pedestals or feet 83, 84. Angle columns 85, 86 are secured to the vertical flange 82v of base 82 by securing means 87 such as bolts, screws, rivets or the like, and also to the horizontal flange 82h of base 82 by similar securing means or brackets not shown. Angle columns 85, 86 have spaced parallel opposed flanges 85i, 86i between which frame end portion 30 is indexingly received while it rests on top of the flange 82h spaced above the surface to be gauged and with its end face abutting flange 82v. Angle columns 85, 86 are supportingly coupled by tie-bars 38 and 89.

Tie-bar 88 has a vertical flange 88 ν , secured to angle columns 85, 86 by securing means 87c, in coplanar relation to flange 82 ν and which like 82 ν serves as an indexing abutment for frame end portion 30. Horizontal flange 88h of tie-bar 88 is in substantial alignment with the upper surface of stringer 61. Leaf or plate 90 is secured by means 90s to flange 88h and extends in overlying relation to the upper surface of stringer 61. Aligned apertures are provided in flange 82h, members 62, 64, 61h, and 61h of portion 30 and plate 90 to receive indexing and securing bolt 91 with which wing-nut 91h cooperates to secure column 22 and frame 21 in predetermined relation.

Tie-bar 89 has a vertical flange 89v fixedly secured by securing means 87t to angle columns 85, 86 and a protec- 30 tive horizontal flange 89p beneath which stringline anchoring and supporting means are disposed. Stringline support 93 has a body portion 93b secured in faceto-face relation to flange 89v by screws 93s. A notched anchor lug portion 93a is provided at one end of body 35 93b and a stringline support finger 93f which is curved and externally grooved to support and hold stringline 24 without its riding over an edge which might damage it. As shown in FIGS. 3 and 7, two stringline supports are provided on each column. Screws 93s preferably 40 extend through slots in the body portion 93b of stringline support 93 in order that the position of the latter may be adjusted in relation to the column while screws 93s are loosened and then fixedly secured when they are tightened. Stringline 24 has a permanent loop 241 in 45 its one end which encircles an anchor lug 93a and cooperates with a retaining notch therein. Stringline 24 extends from loop 241 through the external groove in finger 93f of column 22 to the groove in a cooperating finger 93f on column 21 and thence to tension spring 92 50 to one end of which it is secured. Tension spring 92 is adjacent its other end supported by an anchor lug 93a, FIG. 7. A pair of stringlines 24 are supported in spaced parallel relation, one on each side of frame 20, and spaced laterally thereof.

In order that the frame 20 may be supported in a predetermined condition, I provide central column 23 in cooperative relation to the pair of saddle brackets 40, 41 and central portion 26 of frame 20. Guides 94 are secured to coplanar faces of adjacent vertical flanges of 60 saddle brackets 40, 41. Guides 94 each cooperate with an edge 96 and face 97 of slide 95 to limit it to substantially linear vertical movement. Slide 95 is rigid, stiffened by angle form reinforcing member 95r and has a horizontal foot 95f braced by angle member 95b and 65having toe 95t and heel 95h. Slide 95 is thus a rigid assembly slideably related to frame 20. Arched bracket 98 is secured to the upper saddle bracket 40 by securing means such as screws 98s. Threaded stem 99 is secured to arched bracket 98 in parallel relation to the line of 70 movement of slide 95 and extends through an aperture provided in arms 95a of the slide. A pair of wingnuts 100t, 100b are provided in threaded relation to stem 99 and on opposite sides of slide arm 95a which may be securely clamped in fixed relation to stem 99 as desired. 75 Ĝ

When frame 20, columns 21, 22, 23 and stringline 24 have been assembled, the assembly is placed on a supporting surface and the central column 23 is moved into the position in which frame 20 is straight and parallel to the stringlines 24 as shown in FIG. 2.

The stringlines 24 may be made of any suitable material such as thread, cord or other nonkinking, lightweight, strong, durable material of small cross-section, for example, nylon thread, fish line, cable cord or the like, which may be substantially tensioned so as to provide a substantially straight reference line. Wing nuts 100t and 100b are then positioned so as to clamp arm 95a in the position relative to stem 99 in which frame 20 has the arch or camber with which it was constructed.

Positioning of the stringlines is effected by loosening screws 93s, locating each stringline support 93 so that stringline 24 at the tip of support finger 93f is a predetermined perpendicular distance above a point on edge 83e or 84e in the plane of the undersurfaces of the pedestals 83, 84, and then retightening the screws 93s. Each stringline support 93 is positioned so that it supports the stringline 24 the same predetermined perpendicular distance from the plane of the under surfaces of the pedestals 83, 84 and in the same relation to the subjacent edge 83e or 84e as the case may be. The stringlines 24 are placed under equal tension and index bracket 101 is secured to central spacer 33, FIG. 4, so as to support index finger 102 for swinging about a vertical axis and through an arc of at least 180°. The index finger 102 extends radially from its axis a distance very slightly less than one half the distance between the spaced, parallel stringlines 24 and bracket 101 is so positioned that each stringline 24 will be adjacent the tip of the index finger 102 when the latter extends perpendicularly to the former. Thus, the index finger 102 may be used to determine if frame 20 is aligned in relation to the stringline 24 and is supported with the proper amount of camber or arch relative to the plane of the end column feet 83, 84 and irrespective of the elevation of the portion of the surface upon which heel and toe abutments 95h, 95t rest, with reference to that plane of end column feet 83, 84.

Once index finger 102 is so located, the frame, columns and stringline unit may be transported from place to place by grasping bar-handle 103, the ends of which are suitably connected to handle anchors 39 by means such as strong rope 103r which may also be somewhat elastic, as nylon rope, for example, which because of its elasticity, would as rope 103r serve to cushion jerks or shocks which may be transmitted from the handle to the stringline unit. The unit may be set down in a position as desired, central column 23 shifted laterally of the line between columns 21, 22 if necessary, and wing nuts 100t and 100b rotated if necessary to restore the proper camber to frame 20, all in a precise fashion as indicated by references of index finger 102 in relation to string-lines 24.

When the stringline unit is set up in predetermined relation, the stringlines 24 are parallel to each other and to the plane of pedestals or feet 83, 84, and thus by measuring the distances from a series of points spaced along a stringline 24 to corresponding points on the surface therebeneath, the contour of the surface along a line beneath the stringline may be easily determined.

To measure the distance from a point on the stringline 24 to a point therebeneath on the surface being gauged, I provide a stringline reading standard 25 shown in FIG. 8. Standard 25 has a staff 105, which may be white pine treated and cured as mentioned earlier, or other lightweight suitable material, secured to a base 105b. Strut 105s joins spaced portions of staff 105 and base 105b for greater rigidity. A pair of wear-resistant surface-engaging abutments 105a and 105c are secured to base 105b, the plane of the surface-contacting faces of the abutments being coplanar and the staff 105 extending

perpendicularly to said plane. A slide 106 is secured in slideable relation to staff 105 by strap 105t secured to staff 105 and by strap 106t secured to slide 106. Sliding of slide 106 along staff 105 is controlled by knob 107 mounted for rotation on staff 105 and which may be a 5 capstan about which a portion of cable 108 is tightly wrapped. The ends of cable 108 are secured to cable anchors 108a provided on slide 106 whereby rotation of knob 107 shifts slide 106 up or down along staff 105. A mirror 109, preferably a concave, magnifying mirror, 10 is adjustably mounted on the lower end portion of slide 106 adjacent finger 106f which extends across one face of staff 105. A pointer 106p is mounted on slide 106 adjacent its upper end at substantially the eye level of the gauger or operator. Scale 110 is mounted on staff 105 in 15 cooperative relation to adjacent pointer 106p. With pointer 106p at the index or "zero deviation" line 110i of scale 110, the tip of finger 106f is positioned so as to spaced from the abutment edge 105e a distance equal to the distance from stringline 24 to the subjacent 20 pedestal edge 83e or 84e. Thus, with mirror 109 properly positioned, a gauge operator by turning knob 107 may with the aid of mirror 109 move finger 106f into the position wherein its tip is at stringline 24, FIG. 8, and then read scale 110 at pointer 106p. As shown, sur- 25 face points below the reference plane supporting end collumn feet 83, 84 will result in readings between the "zero" line 110i and the minus sign (-) at the upper end of scale 110 while points above the reference plane will give readings between the "zero" line 110i and the 30 plus sign (+) at the lower end of scale 110. Also the reading stand 25 may be used to verify its own setting and the proper positioning of the stringlines 24 at the tip of each finger 93f where mark readings should be indicated, that is pointer 106p should indicate scale "zero" line 110i 35 when finger 106f is at stringline 24. With very little experience a gauge operator can check the tension in stringline 24 by plucking same and listening to the sound

For gauging highway surface contours or the like, 40 reading stations may be indicated by marks 111 on the top surface of frame 20 at one foot or other desired space intervals.

Since highway pavements are constructed in standard widths, the number of sections comprising frame 20 may be easily varied, to alter its length, for example, a plurality of sections may be substituted for each of the single span portions 27, 28 or longer end portions substituted for portions 29, 30 when frame 20 is constructed as herein disclosed.

Having thus described what presently appears to be 50 a preferred embodiment of my invention, it will be apparent to those having ordinary skill in the art to which this invention pertains that various modifications and changes may be made in the illustrative embodiment, without departing from the spirit or scope of the appended claims.

What I claim and desire to secure by Letters Patent is: 1. A pavement surface contour gauging device comprising in combination a frame having two spaced indexing fingers, a stringline supported by and in fixed relation to said frame and extending on a substantially straight line between and predetermined by said spaced fingers cooperating therewith and means cooperating with said stringline and severally with selected points on the pavement surface therebeneath to determine the location of each of said points with reference to said stringline whereby the profile of said surface beneath said stringline may be determined.

prising in combination a frame having two spaced indexing fingers, a stringline supported by and in fixed relation to said frame and extending on a substantially straight line between and predetermined by said spaced fingers cooperating therewith and a reading standard cooperating 75

with said stringline and successively with selected points on the pavement surface therebeneath to measure the distance to each of said points from said stringline whereby the profile of said surface beneath said stringline may be determined.

3. A pavement surface contour gauging device comprising in combination a frame having two spaced indexing fingers, a stringline supported by said frame and extending on a substantially straight line between and predetermined by said spaced fingers cooperating therewith, a staff, a scale thereon, a slide movable along said staff, a pointer arm on said slide for cooperating with said stringline, a scale indicator on said slide cooperating with said scale, means for moving said slide along said staff to place said pointer arm in cooperating relation with said stringline while said staff engages a selected point on the pavement surface therebeneath and said scale indicator and scale indicate the location of said point with reference to said stringline whereby the location of any point on the vertical profile of said surface on a line beneath said stringline may be determined.

4. A device for gauging the contour of a pavement surface comprising in combination a pair of spaced end columns, a frame supported by and supportingly joining said end columns, a pair of substantially parallel spaced stringlines supported adjacent their ends at equal height by said columns, each one of said pair being equally spaced laterally on opposite sides of said frame and loading the frame under compressive forces directed longitudinally thereof, and means for measuring the distance between selected points on one said stringline and the surface therebeneath while the stringline is in a selected position whereby the profile of said surface along a line beneath said stringline may be determined with reference to said stringline.

5. A device for gauging the contour of a pavement surface comprising in combination a pair of spaced end columns; a frame having a camber arch sufficient to preclude contact with the subjacent pavement surface and supported above said surface by and supportingly joining said end columns, a pair of substantially parallel spaced stringlines supported adjacent their ends at equal height by said columns each one of said pair equally spaced laterally on opposite sides of said frame and loading said frame under compressive forces directed longitudinally thereof, and means for measuring the distance between selected points on one said stringline and the surface therebeneath whereby the profile of said surface along a line beneath said stringline may be determined with reference to said stringline.

6. A device for gauging the contour of a pavement surface comprising in combination a pair of spaced end columns, a semi-rigid frame having a preferred camber arch sufficient to preclude contact with the subjacent 55 pavement surface and supported adjacent its ends by and supportingly joining said end columns, a central column, means adjustably coupling said central column in supporting relation to said frame intermediate said end columns for supporting said frame in the condition in which it has said preferred camber arch, a pair of substantially parallel spaced stringlines supported adjacent their ends at equal height by said end columns and equally spaced laterally of said frame, and means for measuring the distance between selected points on one said stringline and the surface therebeneath whereby the profile of said surface along a line beneath said stringline may be determined with reference to said stringline.

7. A device for gauging the contour of a pavement surface comprising in combination a pair of spaced end 2. A pavement surface contour gauging device com- 70 columns, a semi-rigid frame having a preferred camber arch sufficient to preclude contact with the subjacent pavement surface and supported adjacent its ends by and joining said end columns, a central column, means adjustably coupling said central column in supporting relation to said frame intermediate said end columns for supporting said frame in the condition in which it has said preferred camber arch, a pair of substantially parallel spaced stringlines supported adjacent their ends at equal height of said end columns and equally spaced laterally of said frame, index means mounted on said frame and cooperating with said stringlines to indicate the condition of said frame by its relation to said stringlines, and means for measuring the distance between selected points on one said stringline and the surface therebeneath whereby the profile of said surface along a line beneath said stringline 10 may be determined with reference to said stringline.

8. A device for gauging the contour of a pavement surface comprising in combination a pair of spaced end columns, a semi-rigid frame having a preferred camber arch sufficient to preclude contact with the subjacent 15 pavement surface and supported adjacent its ends by and joining said end columns, a central column, means adjustably coupling said central column in supporting relation to said frame intermediate said end columns for supporting said frame in the condition in which it has said 20 preferred camber arch, a pair of substantially parallel spaced stringlines supported adjacent their ends at equal height by said columns and equally spaced laterally of said frame, index means mounted on same frame and cooperating with said stringlines to indicate the condition 25 of said frame by its relation to said stringlines, a staff cooperatively engaging said surface substantially at a point beneath said stringline, a scale on said staff, a slide on and movable along said staff, a pointer arm on said slide for cooperating with one said stringline, a scale indicator on said slide cooperating with said scale, means for moving said slide along said staff to support said pointer arm at said stringline and said scale indicator in cooperation with said scale whereby the distance relationship between the staff engaged point on the surface and said stringline 35 is indicated by said scale and indicator in determining the profile of said surface along a line beneath said stringline with reference to said stringline.

9. A pavement surface gauging device comprising in combination a supporting frame, an elongate thin line member extending spanwise between and supported at two spaced points by and in fixed relation to said supporting frame, said line member being alongside said supporting frame and above and substantially parallel to an imaginary straight line between two spaced points on a pavement surface and means supported at any selected point upon said surface between said two spaced points and beneath said line member in cooperative indicating

relation to said line member, whereby the elevational relation to the imaginary line of the point supporting said second mentioned means may be determined.

10. A pavement surface gauging device comprising in combination a supporting frame an elongate thin line member alongside said supporting frame and extending spanwise between and supported at two spaced points by and in fixed relation to said supporting frame, said spaced points each being equidistant from respective predetermined equally spaced points on a surface to be gauged, said line member being substantially parallel to an imaginary straight line between said points on said surface and means supported at a point upon said surface between said spaced surface points and in cooperative indicating relation to said line member, whereby the elevational relation to the imaginary line of the point supporting said second mentioned means may be determined.

11. A device for gauging the contour of a pavement surface comprising in combination a pair of spaced end columns, a semi-rigid frame supported adjacent its ends by and joining said end columns, a central column, means coupling said central column in supporting relation to said frame intermediate said end columns for supporting said frame, the frame being supported above the pavement surface by the central and end columns, a stringline supported adjacent its ends by said end columns and in fixed relation to said frame, and means for measuring the distance between selected points on said stringline and the surface therebeneath, whereby the profile of said surface along a line beneath said stringline may be determined with reference to said stringline.

References Cited by the Examiner UNITED STATES PATENTS

uu				
	683,115	9/1901	Gilliom	3386
	953,490	3/1910	Roughen	33—174
	1,093,867	4/1914	Legare	33—174
	1,967,758	7/1934	Pierce	33—174
40	2,523,255	9/1950	Coleman	33—86
	2,666,265	1/1954	Attig	33—169
	3,087,247	4/1963	Busch	33—1

FOREIGN PATENTS

855,835 12/1960 Great Britain.

LEONARD FORMAN, *Primary Examiner*. SAMUEL S. MATTHEWS, *Examiner*.