PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

GO6F 17/21 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/46693

10 August 2000 (10.08.00)

(21) International Application Number: PCT/US00/01168

(22) International Filing Date: 18 January 2000 (18.01.00)

(30) Priority Data:

09/239,495 28 January 1999 (28.01.99) Us

(71)(72) Applicant and Inventor: LAKRITZ, David [US/US];
1806 Parkwood Drive, San Mateo, CA 94403 (US).

(74) Agents: GLENN, Michael, A. et al.; Glenn Patent Group, 125
Lake Road, Portola Valley, CA 94028 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, 1LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TI, T™M, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ,
UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: TRANSLATION MANAGEMENT SYSTEM
(57) Abstract

A translation management
system in a computer environment.
A preferred embodiment of the
invention automatically detects
when a document, data stream,
or non-text file in the master
language has been updated
and notifies the wuser which
corresponding documents, data
streams, or non-text files in the
other languages require translation
which are then staged and
dynamically routed and sequenced
to individual translation resources
where the actual translation
is performed. Management
status, reporting, scheduling, and
accounting information is sent to
the user as the translation process
ensues. The user in notified of the
completion of translation and the
invention coordinates the delivery
of the translated documents, data
streams, or non-text files back to
the user’s site for installation and
optional review. The invention

101

102

Developer

Workflow
Manager

makes a variety of translation Language
resources instantly available to the D.atabase/
user which include both automated File System

translation tools as well as human

translators. The translation resources are connected to the invention using a flexible architecture that can be deployed on intranets as well

as the Internet.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Ccz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
P
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MwW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

TRANSLATION MANAGEMENT SYSTEM

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

The invention relates to the multilingual translation of documents in a computer
environment. More particularly, the invention relates to the management of monolingual
documents, data streams, non-text files, and databases to enable their translation into
target languages in a computer environment.

DESCRIPTION OF THE PRIOR ART

The surge of growth in Internet access across the world has created the need for
multilingual Web sites. The majority of Web sites are created in English which creates a
problem for non-English speaking Intemet users. This also creates a problem for Web
site managers that maintain Web sites that are, or attempt to be, multilingual. The Web
site content must be constantly maintained to be up to date and synchronized in all of
the languages supported by the Web site.

One approach is shown in PCT International Publication Number WO97/18516 of
Flanagan et al., published on 22 May, 1997. This application integrafes a machine
translator in the end user’'s Web browser. The user selects the desired target language
and the Web document retrieved by the browser is then translated by the machine
translator. Unfortunately, errors occur in the translation and the appropriate content is not
consistently displayed to the user.

An alternative implementation in the above application places pre-translated Web
pages on a Web server. The Web server stores all of the translated Web pages
locally. The Web site visitor sends a request to the Web server for a page in a specific ,,
language. The Web server searches for the pre-translated page that has been stored
locally and sends it to the Web visitor's Web browser. This creates a storage and file
management problem on the Web server because of the duplication of each entire
page of the Web site.

Some search engines on the Internet offer an option to translate the hits that come back
from a search query into different languages. The user initiates the translation through a
menu selection. The translation is performed automatically by machine.

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Japanese Pat. No. 9-114852 is a method for a search unit which takes a search string in
a second foreign language and translates it into a first foreign language. The translated
search string is used to search the original document which is in the first foreign language.

Japanese Pat. No. 9-44502 is a method wherein a document in a first foreign language
is translated into a second foreign language. The two documents are then displayed
separately or together through a user interface.

European Pat. No. 0376741B1 issued to Francisco on 18 October, 1995, is a method
for displaying error messages on a document collating and envelope stuffing machine.
Said error messages exist simultaneously in a plurality of languages and are displayed
in the language specified by the user. This approach has storage and maintenance
problems because each error message must be duplicated in its entirety for each
language.

European Pat. Appl. No. EP0774722A2 of Microsoft Corporation published on 21
May 1997, is a method for an information retrieval system that separates the design and
content components of a document page. Pages are created with controls that define
areas for content to be inserted into said pages.

It would be advantageous to provide a translation management system that gives the
user local control of the multilingual translation of electronic content. It would further be
advantageous to provide a translation management system that aliows the user to
easily manage, schedule, and track translation resources and the content that are sent to
the translation resources, thereby enhancing the maintainability of the system as a whole.

SUMMARY OF THE INVENTION

The invention provides a translation management system. The invention utilizes an
intuitive user interface for managing document transiation for multilingual Internet Web
sites, documents, data streams, and non-text files, enabling the user to incrementally
update the language content of a Web site or document and enhancing the
maintainability and storage of multilingual electronic content.

A preferred embodiment of the invention automatically detects when a document, data
stream, or non-text file in the master language has been updated and notifies the user
which corresponding documents, data streams, or non-text files in the other languages
require translation. The documents, data streams, or non-text files requiring translation

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

are staged and dynamically routed and sequenced to individual transiation resources
where the actual translation is performed.

Management status, reporting, scheduling, and accounting information is sent to the user
as the translation process ensues. The user is notified of the completion of translation
and the invention coordinates the delivery of the transiated documents, data streams, or
non-text files back to the user’s site for installation and optional review.

The invention makes a variety of translation resources instantly available to the user.
These translation resources include both automated translation tools as well as human
translators. The translation resources are connected to the invention using a flexible
architecture that can be deployed on intranets as well as the Intemet.

Other aspects and advantages of the invention will become apparent from the following
detailed description in combination with the accompanying drawings, illustrating, by way
of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block schematic diagram of the major components of a preferred embodiment
of the invention according to the invention;

Fig. 2 is a block schematic diagram of the placement of the Visitor module in a network
environment according to the invention;

Fig. 3 is a block schematic diagram of a decision flow diagram of the Visitor module
according to the invention;

Fig. 4 is a block schematic diagram of the major components of the Developer module
according to the invention;

Fig. 5 is a block schematic diagram of the placement of the Developer module in a
network environment according to the invention;

Fig. 6 is a block schematic diagram of the major components of the Workflow Manager
module according to the invention;

Fig. 7 is a block schematic diagram of a decision flow diagram of the Manager’s Console
module according to the invention;

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Fig. 8 is a block schematic diagram of the major components of the Manager’'s Console
module according to the invention;

Fig. 9 is a block schematic diagram of the major components of the Adaptor segment of
the Workflow Pipeline module according to the invention;

Fig. 10 is a block schematic diagram of a decision flow diagram of the Adaptor module
according to the invention;

Fig. 11 is a block schematic diagram of the major components of the Adaptor module
according to the invention; and

Fig. 12 is a block schematic diagram of the placement of the Workflow Manager module
in a network environment according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention is embodied in a translation management system for computer
applications. A system according to the invention provides an intuitive user interface for
managing document content translation for multilingual Internet Web sites, documents,
data streams, and non-text files, enabling the user to incrementally update the language
content of a Web site or document and automatically initiate the translation of the content
into the corresponding target languages, keeping the multilingual content synchronized
and enhancing its maintainability and storage. Many existing application programs use
approaches that make it difficult for the user to manage the translation and synchronization
of multifingual content.

A preferred embodiment of the invention provides a comprehensive suite of three
modules that allow a user to build, operate and maintain a multilingual Web site easily
and efficiently. The invention enhances an existing Web site by adding advanced
multilingual content management and process control capabilities to the customer‘s Web
server. It also uses standard and open interfaces thus enabling the invention to work with
all Web servers on supported platforms.

Each module is easy to set up and does not require special modifications to the Web
site. The invention provides an easy migration path from early-stage customers who are
only interested in measuring overseas visitor traffic to more sophisticated customers who

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

need to manage the rapid translation of changing content on large, distributed multilingual
Web sites.

Referring to Fig. 1, the invention provides three components. The Visitor module 101,
the Developer module, and the Workflow Manager module 103.

Each module accesses one or more language and country databases and file systems
104. The Visitor 101, Developer 102, and Workflow Manager 103 modules can
operate in the same environment or in a standalone mode.

The Visitor module greatly enhances the multilingual Web site visitor's experience by
providing an automated and seamless way to serve content in the correct language.
Web site publishers can serve all their multilingual content through a single point of entry
using the Visitor module. Web site visitors will immediately understand the information
they see when they enter a site because it will be instantly presented in their language
and for their country.

With respect to Fig. 2, the Visitor module 202 works in tandem with a customer‘s
existing Web server 203. It automatically determines the language and country of a
Web site visitor and directs the Web server 203 to deliver the appropriate localized
content contained in one or more country/language databases and/or file-based content
in a file system 204 to the visitor's browser 201. Recently accessed localized content is
placed into a Cache 206. The content is placed in the Cache 206 so that if a similar
request comes in for a document in that language and for that country, then the cached
version will be pushed out to the browser 201. This saves time and processor
overhead for accessing the database and file system 204 to rebuild the requested
content. In addition, Visitor 202 informs the browser 201 of the proper font and content
encoding needed to display the selected language and enables the browser 201 to
download the font using, for example, Bitstream‘s TrueDoc technology, if required.

The Visitor module intercepts input text that is submitted using an HTML form (e.g., a
customer feedback form), and writes it into a form database 205, in a manner so that it is
easily translated later via the Workflow Manager. Most Web sites have forms that allow
site visitors to submit comments or request more information from the site host. This
feedback might not be in English and would otherwise be incomprehensible to the
recipient in a multilingual environment.

The form database 205 includes sufficient information to identify the country, language
and encoding of the text to properly interpret it for subsequent translation. Furthermore,

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

the invention inciudes a novel database viewer which allows the transiated content to be
viewed in the context of the form in which it was originally entered.

Referring to Fig. 3, the Visitor module determines the Web site visitor's language and
country 301 from one or more of the following criteria:

- Language preference setting in the browser

- Cookie from previous visit to the Web site

- Root domain of the visitor

- Manual selection by visitor

- Language content available on the server

- Local database of countries and languages of the world
- Local configuration files on the Web site

The Visitor module supports content in all languages and encodings, including Unicode.
Manual language selection is easily implemented through the use of a special command
set described later in this document thus eliminating the need for complex CGl scripts or
interlinked pages. The required content for the Web site visitor's language and country
is checked to see if has been previously requested and resident in the cache 302. If the
content is in the cache, then it is delivered from the cache 303.

If the required content is not in the cache, then the Web server is notified of the
appropriate localized content required 304. The appropriate content is then placed into
the cache for future reference 305. The Web site visitor's country and language
preferences are recorded in the server log 306. The enhanced Web server log gives
the site manager a detailed breakdown of country and language for visitors to the Web
site. Finally, the browser is notified of the proper display font and allowed to download
the font 307.

Input text that is submitted using an HTML form is intercepted 308. The text is
converted to an internal format 309 and is placed in the forms database 310 for later
translation.

The Developer module enables the Web site developer to build a single ‘master* site
which is subsequently displayed in any number of languages, compared with
conventional methods whereby the site is re-engineered for each language.

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Referring to Fig. 4, the Developer module contains all of the features of the Visitor
module 401 which records the Web site visitor's country and language preferences in
the server log 404.

A toolkit 402 is provided which allows a master site to be built that is language and
country-independent. The actual language content is placed in a language and country
database and/or file system 403 where it is easily managed and maintained. When a
visitor enters the site, the requested document is automatically served in the visitor's
language and for the visitor's country by filling in a document template from the master
site with the correct language and country content from one or more databases.

This structure makes the site more compact, reduces site resource requirements and
lowers the cost of operating the site.

The cost of making a design change is also reduced as only the master site needs to be
updated. This is in contrast to the more time-consuming and expensive approach of
propagating a single change throughout all language versions of the site which is
unnecessary with the invention.

Keeping the translated content in a database 403 also makes it extremely easy and
cost-effective to add additional languages to the site. Adding a language simply
involves translating the appropriate content and creating new entries in the database
403. The Developer module makes it unnecessary to replicate the entire site for each
new language and country as would typically be the case.

The toolkit 402 offers the multilingual Web designer a great deal of flexibility. It allows a
site to be built which combines content common to all languages with content that is
specific to a particular language and country. For example, company-wide information
which needs to be served in all languages is easily combined with regional-specific
information that may only be required in a single language.

The invention provides special tags that are used to insert language or country-specific
content into an HTML document. The tags are: Multi-country server-side includes
(MCSSI); and Multi-language server-side includes (MLSSI). MCSSI allows locale-
specific elements of an HTML document to be dynamically included as a function of the
current region or country, while MLSSI allows localized elements of an HTML document
to be included as a function of the current language.

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The Developer module also supports the incremental construction of a multilingual Web
site through a feature that makes it unnecessary to fully populate the site's language
matrix completely with documents. If a requested document does not exist (i.e., it has
not been translated into the requested language), the invention automatically retrieves
the document in the next most appropriate language for the visitor, or the default
language of the document, as specified by the Web site manager. Documents can
exist on separate servers and/or databases.

The invention walks down a priority list of languages for a designated country. If a
document in the language that is first on the priority list is not present on the server, it
then looks for the next most appropriate language. The list is sorted according to the
most prevalent language or dialect for a particular country. For example, the languages
entries for Egypt are {arabic, french, english, berber}. A visitor from Egypt will be
presented with a requested document in Arabic, if it is available. If it is not, the system
will look for one in French, and so on.

When a visitor is presented with content in an alternate language, an informational text
message can be included telling the visitor that the preferred language was not
available. The informational text is supplied in the most recently valid language for the
visitor's country and language and is embedded within Javascript code. The Javascript
code is embedded within the HTML stream that is sent back to the server. The HTML
“body” tag has an optional attribute where Javascript code can be inserted after the tag.
The informational text contained within the Javascript code is in english and enclosed -
within the appropriate system tags described below, enabling it to be replaced with its
translation in the most recently valid language of the visitor. The informational text has
been pretranslated into all of the languages in the system database for the customer.
This allows easy access to the appropriate translation for the informational text based on
the most recently valid language for the visitor's country and language.

This aliows a multilingual Web site to be built incrementally, such that only a portion of
the documents on the site need be translated and documents not available in a
requested language will be served in the next most appropriate language for a Web
site visitor.

This also gives the customer the option of translating only a subset of the total content
on the site. The Developer module controls all aspects of content navigation and
delivery for the entire site so that a visitor will always be served in the most appropriate
language, based on what language content is actually available on the server. The

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

visitor will never see an error message (/.e. a "404 - document not found") because the
requested content is not available in the visitor's language.

Regions are mapped and organized according to the Web site’s needs. For example,
a mutli-user server can have a separate region definition for each user’s site. The regions
file organizes the regions, countries, and languages that the user is concerned with and is
configured by the user. The user sets up a mapping, for example, one user can have
information specific to Italy and another user can have information that is just concemed
with the European region and is not concerned with Italy. This approach allows a
hierarchical region-based lookup scheme. Content is hierarchically stored as country and
language independent elements such that a one-to-many and many-to-one mapping
exists between country and language. The advantage to this approach is that there is
no content duplication; the user has only as many files in the system as he has unique
content.

With respect to Figs. 4 and 5, the toolkit 402 also features a novel mechanism to create
localized content for specific geographic regions or countries by using a template-based
approach to dynamically create documents tailored for a specific language or country.
This feature makes it easy to create a true global site localized for each area of the world
with the smallest achievable site footprint on the Web server 503.

A template contains placeholders for country and language-specific information that has
been removed from a document. This information is dynamically inserted from a
TermDB 508 (an external glossary), another template or document located in a
database or file system 509, or provided automatically by the Developer module 502
when the composite document is presented to the browser 501.

The basic approach to creating a template has two steps. First, remove as much
country and language-specific information as possible from a document. Then, replace
this information with appropriate tags and commands specific to the invention and
described later in this document.

The advantage to using templates is that a single document can easily support many
languages and countries. For example, a single form or CGl-generated document can
be constructed so that it will be automatically localized for different languages and locales.
This significantly reduces the number of documents that have to be maintained on the
site and makes it very easy to add new languages. It also allows a single update to a
document to be immediately propagated to all languages and countries.

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

This technique allows country or regional content to be conveniently separated from the
structure of the document, thereby making it easy to change a design often by updating
a single file. This in turn eliminates the ripple effect often seen when a single change
must propagate through all of the localized documents on the site. This aliows the Web
Server 503 to control the locale-independent templates 504, language-specific
elements 505, country-specific elements 506, and static HTML content 507.

Visitors to a multilingual Web site may wish to enter information and feedback into a fill-
out form in their local language to send back to the Web site manager. A mechanism is
provided, and described above, which facilitates the acquisition and translation of this
information. The Developer module captures and tags all such information in a sufficient
manner so it can be subsequently transiated and analyzed by the customer.

This approach allows a site to be built with minimal effort and cost, and allows the site to
grow over time to meet the exact needs of the customer.

Referring to Fig. 6, the Workflow Manager module enables the Web site manager to
orchestrate the creation of foreign language versions of the site and to automatically keep
them synchronized and up-to-date, cost-effectively and with minimal effort. The
Workfiow Manager module provides a Manager's Console 601, access to a Workflow
Pipeline 602, and customizable Translation Resources 603. Translation queues 604
hold the incoming translated documents and outgoing documents to be translated.
Documents, data streams, and non-text content are stored in one or more language and
country databases and/or file systems 605. Data streams and non-text content are
considered documents in the following text.

A brief summary of the duties of the three primary components are:

- the Manager's Console, which serves as the user interface
- the Workflow Pipeline, or transport layer
- a set of Translation Resources that perform the actual translation work

The Workflow Manager moduie is the core component of the invention. The module
allows the Web site manager, with no prior linguistic experience, to effortlessly manage
the traditionally complex process of translating and updating a multilingual Web site.

The Workflow Manager module provides a natural migration path beyond the Visitor

and Developer modules. The Visitor and Developer modules provide a solution to
efficiently serve and organize content on a multilingual Web site. The Workflow

10

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Manager completes the product family by enabling the language content on the site to
be kept up-to-date, efficiently and cost-effectively.

The Web's very nature is dynamic. A monolingual Web site must be updated
frequently to remain current. A multilingual Web site has an even more demanding
problem of requiring all languages to be updated and synchronized simultaneously.
Using traditional techniques, the cost and time required to perform this update and
synchronization exceed the benefit and lifetime of the newly updated information to be
served, effectively rendering the Web site useless. The Workflow Manager provides a
solution to this paradox by reducing the cost and time requirement for language update
and synchronization dramatically, thereby ensuring that information on the Web site is
always current, regardless of language.

The Manager's Console is the user interface for the Workflow Manager and is the
primary point of interaction for the Web site manager.

Referring to Fig. 7, the Manager's Console detects when a document in the master
language has been updated 705. It then notifies the Web site manager which
corresponding documents in the other languages require translation 706. The Manager's
Console provides "one-touch” translation, whereby at the click of a button, documents
from any source requiring translation are converted to the internal format 703, staged
down the Workflow Pipeline 704 then dynamically routed and sequenced to the
individual Translation Resources where the actual translation is performed. Documents
may be Web based and non-Web based and may also contain non-text elements.
The documents may contain or refer to additional dependent components such as
graphics, audio, video, and other muiti-media elements.

When the Web site manager initiates the translation process, the newly updated master
language document and its constituent elements, together with associated control
information will be converted by the Console to an internal format, one which is more
suitable for information transport over the Workfiow Pipeline 703.

The Manager's Console automatically controls the sequencing and selection of
Translation Resources during workflow processing according to subject matter of the
document to be processed, target language of the translation, quality level (whether
draft-only or high quality is required) and other variables. The Web site manager can
also individually specify the use of a specific set of Translation Resources.

11

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The Manager's Console provides management status and reporting as the transiation
process ensues 707. It then automatically notifies the Web site manager of the
document translation completion and coordinates the delivery of the transiated
documents back to the Web site for installation and optional review 708. The Web site
manager can directly install the translated documents back onto the active area of the
Web site at the click of a button, or can make them available for internal review within the
organization.

Status information is presented through a highly usable interface that facilitates interaction
and improves the productivity of the Web site manager. The Console interface is
designed to allow translation and update of the muitilingual Web site to be performed
cost-effectively and with minimal effort by a non-specialist.

New languages are easily added to the site as well. The Web site manager simply
selects the new language from a pulldown list 701, and the Manager's Console
automatically initiates the translation of documents into the desired language, under the
control of the Web site manager 702. The documents are converted to the internal
format used by the invention 703 and staged down the Workflow Pipeline 704.

The Manager’s Console also has a built-in access and version control system which
allows it to be easily integrated with a third-party authoring or document management
system on the Web site.

With respect to Fig. 8, a task view of the Manager’'s Console is shown. The Update
Status module 801 updates the Web site manager of the document translation status.
The Complete Document module 803 retrieves the translated document and its
constituent or dependent components from the Translation queues 804 and updates the
associated document status information. The document delivery to the Web site
manager is then coordinated by the Coordinate Document Delivery module 802.

Documents that need to be translated are extracted from the language and country
databases and file systems 808 and are sent to Translation Queues 804. The Project
Analyzer moduie 806 receives project components, in the form of documents and other
electronic content from the Translation Queues 804 and analyzes the project in sufficient
detail to determine project cost and resource requirements.

The Project Analyzer module 806 waits until all elements of a project have been

received. It then sends the Scheduler module 805 a description of the project and
instructs the Scheduler module 805 to begin the project. Typically, the Project Analyzer

12

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

module 806 works with the Accounting Manager module 809 to generate a project cost
estimate prior to beginning the project.

Once the Scheduler module 805 receives the project information from the Project
Analyzer module 806, it creates Work Packets, Job Tickets and a Project Schedule. A
single project consists of a set of Work Packets and associated Job Tickets. Each Job
Ticket contains a reference to a Translation Resource. A set of Job Tickets is associated
with a single Work Packet and describes the activities to be performed by that Work
Packet. The Scheduler module 805 generates a Schedule that is sent to the Manager's
Console for review and validation. The documents and their constituent or dependent
components are then scheduled and sent down to the Workfiow Pipeline.

The Scheduler module 805 updates the Project Schedule 810 and notifies the
Accounting Manager module 809 during the course of the project. This permits the
Project Schedule 810 to be adjusted when there are changes in the availability of
Translation Resources, or when manual changes are made to the project by an operator
via the Manager's Console.

The Accounting Manager module 809 updates customer and Translation Resource
accounting in the Accounting Database 811 as jobs complete. The Accounting Manager
module 809 generates project cost estimates (based on input from the Project Analyzer
module 806), handles customer billing, and is responsible for generating purchase
orders for Translation Resources, when needed.

Completed documents and their constituent or dependent components that have been
checked by the Web site manager are then installed in one or more language and
country databases and/or file systems 808 by the Monitor Database Documents
module 807.

The Workflow Pipeline is a transport layer that delivers documents and their constituent
or dependent components requiring translation to the Translation Resources where the
actual work is performed. The Workflow Pipeline is heavily instrumented so that status
and tracking of ongoing work is instantly conveyed to the Web site manager on the
Manager's Console.

The Workflow Pipeline uses a highly configurable architecture allowing a variety of
Translation Resources to be instantly available to the Web site manager. These
Translation Resources include both automated translation tools as well as human
translators.

13

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Translation Resources are connected to the Pipeline using an open Application
Programming interface (APIl) known as an Adaptor. Adaptors allow a variety of
Translation Resources to be connected to the Pipeline, making it easy to tailor the
Workflow Manager to meet a customer's requirements. The flexible Pipeline architecture
can be deployed on intranets as well as the Internet.

Referring to Fig. 9, Generators 901 are provided that convert the internal format
document that is used within the Pipeline to the appropriate format required by the
Translation Resource. The Adaptors 902 invoke the specific generator for the
appropriate Translation Resource 904. Each Adaptor accepts the internal format
document, sends the document to the appropriate Generator 901 which converts the
format to one that is acceptable to the Translation Resource 904 attached to the Adaptor
902. The Generator 901 sends the newly formatted document to the Adaptor 902
which in turn sends it to the Translation Resource 904. When the document has been
translated by the Translation Resource 904, the Adaptor 902 accepts the document and
its associated information, and invokes a Parser 903 which converts the document back
into the intemal format. The Parser 903 distributes the packet back up the Pipeline.

Parsers are also invoked whenever a document is extracted from the Translation queues
and sent down the Pipeline. The Parser converts the document into the internal format.
Generators are, in a similar manner, invoked whenever a transiated document is posted
back onto the Translation queues after completion of translation. The Generator converts
the internal format document back to the document’s original format (e.g., HTML). The
document is then sent to the final destination.

With respect to Fig. 10, the Adaptor converts work packets to the appropriate
Translation Resource format 1001. The packets are then routed to the appropriate
Translation Resource 1002.

The Adaptor also receives packets from Translation resources 1003. The packet is
converted back to the work packet format 1004 and the status and control information in
the work packet is updated 1005. The Manager’s Console is then notified of the work
packet's availability 1006 in the transiation queue.

This degree of flexibility allows new translation technologies and translation service
providers to be quickly integrated into the workflow process. Additional resources are
easily allocated to accommodate sites which require frequent update and
synchronization.

14

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Referring to Fig. 11, a task view of the Adaptor is shown. The Convert to Translation
Resource module 1101 converts work packets to the appropriate Translation Resource
format that is understood by the resource. The packets are then routed to the Translation
Resource by the Route Packet module 1102.

Packets are received by the Receive Packet module 1103. The Convert/Update
Packet module 1104 performs the packet conversion back to the work packet format
and updates the packet's status and control information. It then notifies the Manager's
Console that the work packet is available in the translation queue.

The Workflow Pipeline together with the Translation Resources ailow the translation
process to proceed rapidly and efficiently.

Translation Resources are centralized or distributed functional blocks which are connected
to the Workflow Pipeline where the actual work, including translation, is performed. A
typical workflow process will use one or more Translation Resources in a specified
sequence to complete the required work.

A Translation Resource performs transtation or other linguistic functions on a set of input
documents and their constituent or dependent components and produces a set of
output documents that have been transformed linguistically.

The Workflow Pipeline connects to any type of Translation Resource.
Four examples of Translation Resources are:

- Machine translation systems

- Translation memory systems

- Human translators

- Terminology management systems
Machine translation is software which provides fully automatic, draft-quality translations.
Translation memory systems provide a database of source/target translation pairs for a
particular document. When an updated version of a document needs to be translated,

the translation memory can be used to pre-transiate the document with translations from
the previous version of the document.

15

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Human translators are linked to the Workflow Pipeline through a special Adaptor that
connects to the Internet or a customer’s intranet. This allows any translator, anywhere in
the world, to join a virtual translation team and provide translation services to multilingual
Web sites or any other translation application serviced by the invention.

Terminology management systems provide functions that are necessary to support the
entire translation process, such as automated generation and retrieval of client-specific
glossaries and lexicons. Both human-based as well as technology-based Translation
Resources require access to appropriate glossaries and lexicons to ensure that linguistic
transformations are performed in the correct terminological domain.

Technology-based Translation Resources are easily upgraded as their technology
improves. For example, older machine translation or translation memory systems are
replaced with newer systems simply by unplugging the old systems and plugging in
the new ones through the Adaptors on the Workflow Pipeline.

The Manager's Console provides the Web site manager with fully automated
management of the entire translation process. The following is a description of how the
Web site manager interacts with the Manager's Console in the process of keeping a site
up-to-date.

With respect to Fig. 12, when the site is current and all language content is up-to-date,
the Manager's Console 1202 reports to the Web site manager 1201 that no action is
required.

If a document in the master language is subsequently updated -- perhaps out-of-date
product information on the Web site is being updated -- the Console 1202 will
immediately alert the Web site manager 1201 that the corresponding foreign language
versions of the document are out-of-date and need to be re-translated.

From this point, the Web site manager simply clicks on a button, using the Console's
1202 "one-touch" translation feature, to automatically initiate the re-translation and update
of each document. No additional action is required from the Web site manager 1201
until the documents have been translated and are ready to be mounted back onto the
site.

When the Web site manager 1201 initiates the translation process, the newly updated

master language document together with associated control information will be converted
by the Console 1202 to an internal format, one which is more suitable for information

16

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

transport over the Workflow Pipeline 1206. The converted document together with
relevant control and status information is known as a work packet . The Workflow
Pipeline 1206 is responsible for sending and receiving work packets to an appropriate
set of Translation Resources 1207, 1208, 1209 where they are processed.

The sequence in which the Translation Resources are engaged by the Pipeline is pre-
determined according to:

- Settings previously established by the Web site manager
- Subject matter of the content

- Target language of the translation

- Availability of a particular Resource

When a work packet is dispatched to a Translation Resource 1207 for processing, the
packet first flows from the translation queues 1205, through the Pipeline Adaptor for that
Resource where it is converted from the Workflow's internal format into one that can be
processed by that Resource.

Once the Translation Resource 1207 has finished its processing, the packet which
contains the work completed by the Translation Resource 1207 flows back through the
Adaptor where it is re-converted back into the Pipeline's internal format. The Adaptor is
also responsible for analyzing the completion status of the Translation Resource and
updating the packet's control and status information accordingly.

A simplified example of a typical workflow sequence is shown below.

1. Machine Translation: automatically transiate the untranslated (i.e. new) sections of
the document.

2. Translation Memory: pre-translate the document using saved source/target
translation pairs from the previous version of the document.

3. Human Translation: post-edit the sections of the document that were machine
translated and review the entire document for quality.

4. Terminology Management: obtain the correct lexicons and glossaries required to
properly apply the other Translation Resources.

Since the Pipeline 1206 is heavily instrumented, the Console 1202 gives the Web Site
manager 1201 continuous updates on the progress of the translation. The Console
1202 also uses status information to automatically provide dynamic dispatch and control
decisions to achieve the fastest and most cost-effective tumaround time.

17

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

After completion of the workflow sequence, the transiated documents are routed back to
the Console 1202 where the Web site manager 1201 is notified of their completion.
From there, the Web site manager 1201 can directly install the translated documents
back onto the active area of the Web site 1203, file system (local or remote), or
database (local or remote) at the click of a button, or can make them available for intemal
review within the organization. For example, when the translated documents are
installed onto the active area of the Web site 1203, they are referenced by the
appropriate language HTML commands 1210, 1211, 1212, 1213, 1214, 1215
inserted into the Web site pages and the translated content is removed from the
translated documents and stored back in the database.

New languages are easily added to the Web site. The Web site manager simply
needs to select the new language from a pulldown list along with the desired documents
on the Manager‘s Console and the necessary steps will be automatically invoked to
inttiate the translation.

The invention provides the Web site manager with an effortiess way of keeping the site
up-to-date.

One skilled in the art will readily appreciate that, although the invention has been
described in the context of Web sites, the same concept applies to other applications.
For example, in a fax application, documents are scanned and sent through the invention
for translation into selected languages. The translated documents are then automatically
faxed to selected locations. Another example would be a universal translator where
spoken words are converted into a data stream and sent through the invention for
translation into designated languages. The translated data stream is converted back into
audible speech and sent to the designated audiences.

The invention is scalable to provide multilingual presentation and management functions
across multiple servers in a distributed environment. For example, some sites might
have English content on one server, Japanese on another, and so on. Each server will
have installed on its respective site, an instance of the invention communicating with
other instances of the invention throughout the system. One server is designated the
master, and the others are slaves for the purpose of managing content. The servers
communicate over a dedicated interface allowing content to be managed in a distributed
fashion. This configuration also supports mirrored sites across multiple servers.

18

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

One skilled in the art will readily appreciate that, although a single user system is
specifically mentioned, the same concept applies to multi-user systems, for example, a
multi-user configuration would be appropriate for an Internet Service Provider (ISP) that
serves multiple customers, with and without multilingual sites, from a single instance of
the invention.

The following is an excerpt of a user manual describing the Visitor and Developer
modules for a preferred embodiment of the invention called “WebPlexer”:

3. Detailed Functional Description

The following sections are ordered beginning with basic functions and gradually
progressing to those that are more advanced. Similar functions have been grouped
together logically for easy reading.

3.1 Communication Ports

WebPlexer has 3 network ports. These ports are used to communicate with the client,
the Web server, and the console. The ports can be assigned to any available port
number on your system and are specified in WebPlexer's WP_Config file.

The 3 ports are:

. IntemetPort. This is the port WebPlexer uses to communicate with the client.

. ServerPort. This is the port WebPlexer uses to communicate with the Web
server.

. ConsolePort. This is the port WebPlexer uses to communicate with a client
that is being used for the console. Please see Section 3.10, "WebPlexer Console,"
for more information on console operation.

Port numbers are assigned starting at 1. Lower numbers are reserved for dedicated
processes like ftp(21), http(80), and teinet(23). The lower numbered ports are also
privileged in that they require root-level authority to use.

For testing, we recommend choosing an available port with a number of at least 3000.

3.1.1 Operating Modes

WebPlexer's InternetPort and ServerPort are configured to support two modes of
operation, ‘test mode' and ‘production mode'.

19

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

3.1.1.1 Test Mode

In test mode, a separate access path is created for clients to send requests to
WebPlexer. Normal http requests to port 80 and the existing Web server are not
affected. This permits off-line testing of WebPlexer functionality until the site has been
validated.

To configure test mode:

1. Set InternetPort to an unused port number. This will be used for all incoming
WebPlexer requests.

2. Set ServerPort to 80. This will allow WebPlexer to connect to your existing Web
server.

To access the Web server via WebPlexer, you would type a URL of the form:
http://www.mysite.com:iiii/

Normal requests of the form:

http://www.mysite.com/

will go directly to the Web server, bypassing WebPlexer.

You can make WebPlexer available to ordinary port 80 users, even in test mode, by
including a special link on a page to send a request to WebPlexer's port.

For example,
 WebPlexer test
could be included on a site‘'s home page.

3.1.1.2 Production Mode

20

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

In production mode, WebPlexer is configured to process all http requests before they
reach the Web server. This would normally be done once off-line testing was
completed and the site was ready to go into production.

To configure production mode:

1. Set InternetPort to 80. All http requests will be processed by WebPlexer. Note that
this will typically mean that WebPlexer must run as a privileged process.

2. Set ServerPort to an unused port. This port will be dedicated to WebPlexer <-->
Web server communication.

3. Reconfigure your Web server so it is connected to ServerPort. This is typically done
by editing your server's httpd.conf file, but the configuration method is determined by
your specific server, so please check the documentation that comes with your Web
server.

Normal requests of the form:

http://www.mysite.com/

will then go to WebPlexer for initial processing.

You can still access the Web server directly, with a URL of the form:
http://www.mysite.com:ssss/

where ssss is the ServerPort assigned above.

3.1.2 Setting InternetPort

InternetPort is set by editing the line:

IntemetPort iiii

in the WP_Config file.

This setting can also be overridden by a command line flag. Please see Section 3.11,
"Runtime Options," for more information.

3.1.3 Setting ServerPort

21

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

ServerPort is set by editing the line:
ServerPort ssss
in the WP_Config file.

This setting can also be overridden by a command line flag. Please see Section 3.11,
"Runtime Options," for more information.

3.1.4 Setting ConsolePort
ConsolePort is set by editing the line:
ConsolePort ccce

in the WP_Config file.

This setting can also be overridden by a command line flag. Please see Section 3.11,
"Runtime Options," for more information.

3.2 Logs

WebPlexer supports 3 types of logs:

. AccesslLog
. ErrorLog
. InformationLog

The filenames of these logs are defined in the WP_Config file. Additional information on
how to define the log files can be found in Chapter 4, "Contents of WebPlexer Files."

NOTE: A fourth log, the Usage Log is generated by the updtusage tool that analyzes
the Information Log. This tool will be included in a future release.

The function of each log is described below. A detailed specification can be found in
Section 4.4, "Log Specifications.”

3.2.1 Accesslog

22

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The AccesslLog records information about each request received by WebPlexer, such
as date, time, and request type. WebPlexer command requests (WPCommands) are
also logged.

NOTE: When WebPlexer is configured for "production mode" (see Section 3.1.1.2,
"Production Mode"), WebPlexer's Access Log should be used in place of the Web
server's access log for analysis and auditing purposes (the Web server's access log will
show all requests originating from WebPlexer).

Examples of AccessLog entries are:

pp93.satcom.net - - [28/Jul/1996:23:37:23 -0700] "GET /cnv.post/info.htm! HTTP/1.0"
302 -

pp93.satcom.net - - [28/Jul/1996:23:37:24 -0700] "GET /cnv.post/english-
american_United-States/info.html HTTP/1.0" 200 3372

pp93.satcom.net - - [28/Jul/1996:23:37:29 -0700] "GET /cnv.post/coming/flags/United-
States.gif HTTP/1.0" 200 3594

3.2.2 InformationLog

The InformationLog contains detailed information about WebPlexer‘s language selection
processing for each request.

Examples of InformationLog entries are:

prune.loria.fr - - [26/Jul/1996:05:44:43 -0700] Country Selection: prune.loria.fr -->
France

prune.loria.fr - - [26/Jul/1996:05:44:43 -0700] Language Set: prune.loria.fr --> {french-
continental, french}

prune.loria.fr - - [26/Jul/1996:05:44:43 -0700] Language Selection: prune.loria.fr -->
French-continental

3.2.3 ErrorLog

The ErrorLog shows any errors that occurred during WebPlexer operation, or during the
processing of a request.

Examples of ErrorLog entries are:

23

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

[23/Jul/1996:03:35:40 -0700] FATAL: Could not send request to HTTP server!!!
[23/Jul/1996:04:03:34 -0700] Timed out when writing response to client

3.2.4 Usagelog

The Usagel.og contains a summary of country and language statistics. It is generated
from the InformationLog using the usage log analysis tool. The Usagelog can be further
processed using the visits log analysis tool. Please see section x.xx for a description of
WebPlexer's log analysis tools.

Examples of Usagel.og entries are:

[17/0ct/1996:13:40:11 -0700] Language: German www(Q7.btx.dtag.de
[17/0ct/1996:14:09:57 -0700] Country: Argentina server1.sminter.com.ar

3.3 Language Selection

WebPlexer's Language Selection feature allows the most appropriate language of a
requested document to be served to a Web browser.

"Most appropriate language” means a language that has been:

. specified as a preference by the Web browser

. automatically selected by WebPlexer from the country of origin
. manually chosen by the user

. specified by a cookie

These three language selection modes all work together seamlessly. They do not
require the addition of any special CGI scripts or links to be added to your Web site.

The language selection algorithm requires that each language be assigned a unique
directory in the document tree. All documents in that language are placed in the
corresponding directory. The entire document tree then becomes a collection of parallel
language directories.

For example, if user ‘joe’ has english, french, and spanish documents on your site, the
directory structure might look like this:
htdocs/
joe/
english/

24

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

index.htmi

info.html
frenchv/

index.html

info.htmt
spanish/

index.html

info.html

WebPlexer's language selection algorithm works by inserting the correct language
directory in the URL before sending the request on to the Web server.

For example, an incoming URL of:

http://www.lai.com/joe

would send a modified URL of:

http://www.lai.com/joe/french

to the Web server, if the browser's preferred language were French.

3.3.1 The Document Matrix

A group of language directories and the documents they contain can be likened to a
matrix. This matrix has one row for each language, and one column for each document in
the collection. When expressed in this form, the collection is known as a document

matrix.
In the example just given, the document matrix might look something like:

index.html info.html
english X X
french X X
spanish X X

where the X’ indicates the presence of a document in that language.

25

10

WO 00/46693 PCT/US00/01168

WebPlexer's exclusive document management feature known as "SPAMM" (Sparse
Matrix Manager) does not require each document to be translated in every language,
and therefore does not require every cell of the document matrix to be filled in.

In addition, SPAMM also permits templates to be placed only in the default language
directory (see Section 3.8.2.3, "Specifying the Local Default Languages") and

eliminates the need for them to be instantiated in every directory.

SPAMM offers an incremental approach to building a multilingual Web site. Please see
Section 3.9.2, "SPAMM (Sparse Matrix Manager)," for more information on this feature.

26

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168
3.3.2 Setting Up Language Selection

WebPlexer's Language Selection feature is enabled by editing a few lines in the
WP_Map file, located in the main WebPlexer directory. Once the file has been set up,
any of the language selection modes (browser-specified, automatic, manual) are
available.

The information that needs to be entered in the WP_Map file is:

1. The top-level URL of your site.

2. The list of languages on your site and the names of the directories where the
documents are located.

3. The encodings in which the documents are represented (e.g. ISO-8859-1)

4. Default directories in case the requested language is not found (usually English).

These four pieces of information together make up what is known as a "URL group"
declaration.

Often a single server will serve multipie sites. You can easily have WebPlexer support
multiple sites by creating a separate URL group for each site.

The next sections explain each component of the URL group declaration.
Please refer to the example WP_Map file supplied with this release while reading the
following sections.
3.3.2.1 Specifying the Top-Level URL
The top-level URL is specified by adding lines of the form
URL::<path> <path_type>
to the WP_Map file.

where

<path>
is the directory path of the top-level URL below the htdoc root.

<path_type>

27

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

is either ‘d‘ or ‘f* depending on whether the path is a directory or a file.

NOTE: In the current implementation, when a directory is specified, it is also necessary
to specify the corresponding top-level file as well (usually index.html).

In the previous example, there would be two lines reading:

URL::/joe d
URL::/joe/index.html f

Note that this file (/joe/index.html) does not actually exist in the document hierarchy but
should match the URL the user will type when entering the site.

If the selected language were French, the URL mappings would be:
http://www.lai.com/joe --> http://www.lai.com/joe/french

and

http://www.lai.com/joe/index.html --> http://www.lai.com/joe/french/index.html

3.3.2.2 Specifying the Language-to-Directory Map and Charset

The language-to-directory map and charset (document encoding) are specified by
adding lines of the form:

<language>: <language_directory> <charset>
immediately after the URL specification.

where
<language>
is the name of the language. Please see Appendix B., "List of Available Languages,"

for a list of which languages are available for this release.

<language_directory>
is the name of the subdirectory containing documents of that language.

<charset>
is the encoding used for documents in that language (e.g. ISO-8859-1)

In the previous example, these lines would read:

28

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

english: english ISO-8859-1
french: french 1ISO-8859-1
spanish: spanish 1ISO-8859-1
3.3.2.3 Specifying the Local Default Languages

The local default languages tell WebPlexer which language to use in case the requested
language is not available on the server.

There are two local default languages that need to be specified. The first is called
‘others" and the second is simply called "default".

The "others" language is chosen when the requested language is valid but does not
exist on the server.

For example, if English, French, and Spanish documents exist on the server, but the
requested language is Russian, WebPlexer will use the language defined as "others".

The "default" language is chosen when WebPlexer cannot determine the language of a
request and none has been specified by the browser. This can happen when the
country of origin cannot be determined because the hostname is unavailable, for
example, when the requester is behind a firewall.

These directories are specified by including the following lines in the WP_Map file:

others: <others_language> <charset>
default: <default_language> <charset>

It is usually the case that "others" and "default" are both set to English.
In the example above, these lines would read:

others: english 1ISO-8859-1
default: english 1ISO-8859-1

The next sections describe the language selection algorithms in more detail.

3.3.3 Browser-Specified Language Selection

29

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

In browser-specified language selection, the browser sends its language preference
along with the http request. The language is set through a preference or option setting in
the browser. The preference is sent to WebPlexer in the "Accept-Language" header
within the request message.

The Accept-Language header is described in the http specification. The specification
allows the browser to send more than one language in the header. The group of
languages is ordered with the most desirable language first.

WebPlexer uses the Accept-Language header to select the correct language. The
header is only used when the request is to a URL that matches the top-level URL given
in the WP_Map file (see Section 4.2.1, "Specifying the Top-Level URL").

For example, if the top-level URL were /joe, and the browser preference were set to
Spanish, a request to:

http://www.lai.com/joe/

would cause the URL to be mapped to:

http://www.lai.com/joe/spanish

and sent to the Web server.

If the browser has specified more than one language, WebPlexer goes through the
languages in order and stop when it finds the first one that is present on the server. If
none of the languages are found, WebPlexer uses the "others" language specified in
the WP_Map file (see Section 4.2.2.1, "others:")

Once the language has been determined, WebPlexer redirects the browser to the
directory for that language. All accesses to relative links within the requested document
stay within that directory.

Changing the browser's language preference does not have any effect until the top-
level URL is again requested and the browser re-enters the site. The recommended

way to change language within a language directory is by manual selection (see Section
3.3.5, "Manual Language Selection").

30

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168
Browser-specified language selection has the highest priority upon entry to the site.
3.3.4 Automatic Language Selection

In automatic language selection, WebPlexer determines the language by first
determining the country from the requester's domain, then looking up the language for
that country in a database.

Automatic language selection is only active under the following two conditions.

1. The request is to the top-level URL specified in the WP_Map file (see Section
3.3.2.1, "Specifying the Top-Level URL").

2. The browser has not set a preferred language (see Section 3.3.3, "Browser-

Specified Language Selection").

NOTE: If the browser has specified a language preference, it overrides any automatic
language selection.

For example, if the top-level URL were /joe, and the host domain were eiffel.tower.fr, a
request to:

http://www.lai.com/joe/

would cause the URL to be mapped to:
http://www.lai.com/joe/french

and sent to the Web server.

The country-to-language database contains a list of languages for each country.
These languages are arranged in order of frequency from most-used to least-used.

This list of languages is processed in the same way as preferred languages are handled
when received from a browser (see Section 3.3.3, "Browser-Specified Language
Selection”). This means that the languages are examined until the first one present on
the server is found.

31

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

For example, the languages of Switzerland are {german. french, italian, romansch} and
will be searched in that order. The rules for selecting the local default languages are the
same as for browser-specified languages, if the language cannot be found.

3.3.5 Manual Language Selection

Manual language selection is effective at any time. Manual language selection overrides
any automatic or browser-specified language.

Manual language selection is performed by issuing a WPCommand whose type is
‘language’. WPCommands are more fully described in Section 3.6.3.3,
"WPCommands." They result in the browser sending a request to WebPlexer of the
form:

http://www_lai.com/joe/xxxx/WPCommand?language=yyyy

where xxxx is the current language (plus country) directory and yyyy is the desired
language to switch to.

NOTE: language (plus country) means that the language directory is appended with the
currently selected country (e.g. english_United-States)

Note that even with manual language selection, the languages and directories in the
WP_Map file still need to be set up as in automatic language selection.

3.3.6 Cookie-based Language Selection
3.3.6.1 Using WPCommand?language

WPCommands are normally issued through hypertext links embedded in an HTML
document. This statement illustrates a simple example,

French

If the user is currently looking at an English document, clicking on the word ‘French’ will
cause the browser to send WebPlexer a request for the URL

http://www.lai.com/joe/english_United-States/
WPCommand?language=french

32

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

which will map to
http://www.lai.com/joe/french_United-States/xxx.html

where xxx.htmi is the current document (the one that contains the WPCommand link).
Note that WebPlexer will return the browser to the original document in the new
language, in this case, French.

The manual language selection feature is performed completely by WebPlexer, without
the need for CGl scripts or complex interlinking of HTML documents. It merely requires
the addition of a link in the HTML to send the WPCommand to WebPlexer for each
desired language.

The WPCommand hypertext link can be used like any other HTML link, that is, it can be
placed within a table, connected to a graphic or icon, or built into an imagemap.

3.3.6.2 Using WPCommand?link

The method described above works well when the number of languages is small.
However, as the number of languages on the server increases, there may not be
enough space to have the links for all the languages appear on each page.

In this case, a generic mechanism exists for handling WPCommands that will move all of
the language selection links off to a separate page. Once the links are moved, a
hypertext link that points to this special language selection page is placed on each page
of your site.

Because of the need to return to the originating page when the language is changed,
WebPlexer requires that a special WPCommand be used to invoke the link to the
change language page.

This WPCommand is of type ‘link’ and takes the name of the page to link to as an
argument. Its external behavior is the same as if a direct HTML link were used, except it
notifies WebPlexer that a change language (or change country) WPCommand is about
to be issued.

This allows WebPlexer to return the browser to the originating page once the language
has changed.

33

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

In the HTML, this link would be coded as

Change Language

and would produce a request URL to WebPlexer of the form

http://www.lai.com/joe/english_United-States/
WPCommand?link=langsel.html

where langsel.html is the language selection page.
3.3.7 Hostname and IP Address Overrides

WebPlexer provides a method of optionally forcing the selection of specific
language(s) for certain hostnames or ip addresses.

This feature overrides automatic language selection when the top-level URL specified in
the WP_Map file is requested. A browser- specified language preference will still be
used if specified.

There are two files used to specify automatic language selection overrides:
HostNameMap and IPAddrMap, both of which are in WebPlexer's language
subdirectory.

The format of these files is described in Section 4.3, "Map Overrides."

3.3.8 Setting the Global Default Language

The global default language is set in the WP_Map file with the directive:

defaultLanguage <language>

and is normally the same as the local default language specified in the URL group
definition. Specifying the local default language is described in Section

3.3.2.3, "Specifying the Local Default Languages."

34

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The global default language is used as the default for the console and for some
WebPlexer initialization.

3.3.9 Content Tagging and Support for Multilingual Browsers

Content tagging allows WebPlexer to inform the browser of the language and charset
used to encode a document when the document is accessed. Some browsers, like
Netscape Navigator, use this information to automatically switch to the correct font and
encoding for a particular language.

Content tagging is always active whenever a document is fetched from a language
directory that is specified in the WP_Map file.

When a document is content tagged, the http Content-Language and Content-Type
response headers are returned with the document to indicate the language and charset in

use.

These fields are automatically updated by WebPlexer even when the language is
changed by manual selection.

3.4 Country Selection

WebPlexer provides three ways by which the country of an incoming request is
determined.

. Automatic country selection
. Manual country selection
. Cookie-based country seiection

These are described in detail below.

3.4.1 Automatic Country Selection

With automatic country selection, WebPlexer determines the country from the
requester's domain. If the domain cannot be determined (usually because the requester

is behind a firewall), the country is set to the global default country (see Section 3.4.5,
"Setting the Global Default Country").

35

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Automatic country selection is only active when the browser request is to the top-ievel
URL specified in the WP_Map file. See Section 3.3.2.1, "Specifying the Top-Level
URL," for a detailed description of how to set the top-level URL.

Once the country has been determined, its value is saved by appending it to the
language directory in the mapped URL.

For example, if the top-level URL were /joe, and the host domain was eiffel.tower.fr, a
request to:

http://www.lai.com/joe/
would cause the URL to be mapped to:
http://www lai.com/joe/french_France/

By embedding the country name in the URL, WebPlexer can retain the country setting
for the lifetime of this session.

3.4.2 Manual Country Selection

Manual country selection is performed by issuing a WPCommand of type "country".
WPCommands are more fully described in Section 3.6.3.3, "WPCommands." They
result in the browser sending a request to WebPlexer of the form:
http://www.lai.com/joe/xxxx/WPCommand?country=yyyy

where xxxx is the current language directory appended to the current country, and yyyy
is the desired country to switch to. Once the country changes, the language will also
change to match the new country.

For example, if the current country is France and the current language is French, and the
current document being viewed is info.html, to request that the country be changed to

German, this request should be sent to WebPlexer:

http://www lai.com/joe/french_France/
WPCommand?country=germany

WebPlexer will respond with a new URL that looks like

36

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

http://www.lai.com/joe/german_Gemany/info.htmi

and which will fetch the German version of the info.htmi document.

3.4.3 Cookie-based Country Selection

3.4.4 Declaring Worldwide Regions

Regions are defined in the WP_Regions file. Regions allow groups of countries to be
combined into geographical areas that are meaningful for the type of content that is on
the site.

For example, if a company had one sales office in Europe, and another in Asia, and had
developed Web site content that was specific to these markets, it might want to create

two regions like this:

Sales_region1: France, Germany, ltaly, Spain
Sales_region2: China, Hong-Kong, Japan

Regions can be either user-defined or pre-defined (default). User-defined regions are
specified in the WP_Regions file (see Section 4.9, "WP_Regions").

Pre-defined (default) regions are established by WebPlexer. Please see Appendix
D., "List of WebPlexer Default Regions." for more information.

Regions are used by the multi-country server-side include feature (see "Multi-Country
Server-Side Includes (MCSSI)"). They allow specific content to be presented to users
from countries in those regions when they enter the Web site.

3.4.5 Setting the Global Default Country

The global default country is set in the WP_Map file with the directive:

defaultCountry <country>

where <country> is one of the valid countries given in Appendix C., "List of Available
Countries."

The global default country is used as the default for the console and for some additional
WebPlexer functions.

37

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

3.5 Country and Language Management

WebPlexer has the unique ability to independently maintain both the country and the
language associated with each request. This provides a great deal of flexibility in
selectively targeting content to specific regions or countries of the world and, at the same
time, making that content available in multiple languages.

It is important to understand how WebPlexer's country management and language
management are different and how they are similar.

In the following description, the term "session" refers to a logical grouping of requests
between browser and WebPlexer. A session begins with the browser making a
request for the top-level URL. It ends with the final response being sent from
WebPlexer to the browser. A session can have any number of request/response pairs
between these two endpoints.

A session has a state associated with it. Included in this state are the country and
language of the requester.

Once the country and language state have been determined from the initial request, they
remain unchanged until the browser initiates an action like manually changing the country
or language.

Unfortunately, the http protocol used for data transport on the Web is a stateless
protocol. This means that the protocol does not allow state to be maintained from one
request to another.

WebPlexer uses a unique persistence mechanism for retaining session state across
multiple requests. This mechanism allows country and language information to be saved
throughout the lifetime of a session.

WebPlexer uses a simple 4-step algorithm for managing country and language when
processing a request:

Determine country.

Determine language from country.
Select content for country.

Modify content for language.

P oOph

38

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Once the country and language for a request have been established, they are available
as state variables within the HTML and can be used for:

1. Content selection based on country, region, or language.

2. Word and phrase replacement out of an external glossary (this glossary is referred
to as a TermDB).

3. Setting language and country-specific "custom variables" such as country flag,
language name, and country name.

4. Sorting a list of items according to sort rules of the currently displayed language.

WebPlexer's 4-step algorithm for country and language management is described in
more detail below.

3.5.1 Determine Country

WebPlexer will first determine the country of the requester if it is not known (on an initial
request), or when it is manually selected (through a WebPlexer change country
command (see Section 3.4.2, "Manual Country Selection")).

3.5.2 Determine Language from Country

WebPlexer uses the country from the previous step to determine the slanguage of the
requester. A list of languages for the selected country is obtained from a database and
the first one that matches a language present on the server is selected.

For example, if the requestor's country were Switzeriand, the requestor's language could
be set to either german, french, italian, or romansch depending on which one was found
first on the server.

The exceptions to this rule are:

1. When the browser specifies the language explicitly in its preferences (see Section
3.3.3, "Browser-Specified Language Selection").

2. When the language is overridden through a HostName or IPAddress map (see
Section 3.3.7, "Hostname and IP Address Overrides").

3. When the language is manually seiected through a WebPlexer change language
command (see Section 3.3.5, "Manual Language Selection").

Once country and language are determined. the following rules apply.

39

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

3.5.3 Select Content for Country

WebPlexer uses the country to dynamically select content specific to that country. This
allows the content to change based on the geographic location of the requester. The
actual selection mechanism is controlled by the multi-country server-side include feature.
This feature is more fully described in "Multi-Country Server-Side Includes (MCSSI)."
Additional information can be found in Section 3.6.1, "Template Model," which describes
WebPlexer's template model.

3.5.4 Modify Content for Language
WebPlexer presents the content in the language selected by the requestor.
There are 3 methods that WebPlexer uses to present content in the selected language:

1. A static document that has been pre-translated is selected from the corresponding
language directory. For example, if the language is French, the document will be
retrieved from the french directory.

2. Content that has been pre-translated is inserted into a template using the multi-
language server-side include feature. This feature is more fully described in *Multi-
Language Server-Side Includes (MLSSI)." Additional information can be found in
Section 3.6.1, "Template Model," which describes WebPlexer's template model.

3. Words and sentences that are marked up with WebPlexer's WPReplace tags are
dynamically "translated" into the requested language using an external TermDB.
WPReplace tags and TermDBs are described in Section 3.6.3.1, "WPReplace," and
Section 3.6.2, "TermDBs (tm)."

3.6 Multilingual ToolKit (tm)

The Multilingual ToolKit is a set of HTML extensions and templates that simplifies the
design and construction of multi-language and multi-country Web pages.

The Multilingual ToolKit consists of several key WebPlexer resources:
1. Atemplate-based model of page construction.
2. Extemal, multilingual glossaries known as TermDBs.

3. A set of HTML extensions to allow country and language settings to dynamically
control a document's content.

40

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

4. Built-in support for manually changing language and country, efiminating the need for
special CGl scripts or complex interlinked pages.

5. Custom variables to facilitate customization of a document according to the current
language and country.

6. Custom functions to change the appearance of a page according to language and
country.

7. Server-side includes to allow a document to be built out of language and country-
specific component parts.

The following sections discuss the specific components of the Multilingual ToolKit in
more detail.

3.6.1 Template Model

WebPlexer's Multilingual ToolKit uses a template-based approach to dynamically
create documents tailored for a specific language or country.

A template contains placeholders for country and language-specific information that has
been removed from a document. This information is dynamically inserted from a
TermDB, another template or document, or provided automatically by WebPlexer
when the composite document is presented to the browser.

The basic approach to creating a template has two steps. First, remove as much country
and language-specific information as possible from a document. Then, replace this
information with appropriate WebPlexer tags and commands.

The advantage to using templates is that a single document can easily support many
languages and countries.

For example, a single form or CGl-generated document can be constructed so that it will
be automatically localized for different languages and locales.

This significantly reduces the number of documents that have to be maintained on the
site and makes it very easy to add new languages. It also allows a single update to a
document to be immediately propagated to all languages and countries.

This technique also allows country or regional content to be conveniently separated from

the structure of the document, making it easy to change a design often by updating a

41

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

single file. This eliminates the ripple effect often seen when a single change must
propagate through all of the localized documents on the site.

3.6.1.1 Template Types

WebPlexer supports three basic kinds of templates.
1. Static (no template).

2. File-based.

3. Tag-based.

One document may contain all three template types. We call such a document a
‘composite” document, since it is made up of multiple elements.

Most documents will have a mixture of these three basic types. In the sampie included
with this release, the file ‘info.html" is a combination of static and tag-based templates,

whereas the tempiate of ‘contact.html’ is completely tag-based.

Please look through the sample files in the htdocs directory of this release for examples
showing the use of templates.

File-based templates require the server-side include feature. This feature is not available
in the current release.

Tag-based templates are the most generic and allow a single document to be used
across all languages and countries.

In general, the smaller the amount of static content in a template, the more generic the
template is and the fewer the number of times it needs to be instantiated.

The next sections discuss the template types in more detail.
Static
Static templates are not really templates at all. They are simply collections of static text.

File-based

42

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

File-based templates allow external files containing localized content such as country,
regional, or language-specific information to be inserted dynamically into a document.
File-based templates are provided using the server-side include feature described in
Section 3.6.3.5, "Server-Side Includes."

Tag-based

Tag-based templates allow replacement of marked-up text with translations from an
external TermDB according to the selected country or language. Tag-based templates
are provided using the WebPlexer HTML extensions described in Section 3.6.3.1,
"WPReplace."

3.6.2 TermDBs (tm)

A TermDB is an HTML representation of a multilingual glossary. The glossary is built in
the form of an HTML table. Rows in the table correspond to entries in the glossary, be
they words, phrases, or arbitrary strings. Columns in the table correspond to individual
languages in the glossary such as English, French, or German.

One language in the TermDB is designated the primary language and is assigned to
column 1 of the table. This primary language is used as the language of the key when
looking up entries in the TermDB.

The TermDB is used together with the WPReplaceBegin and WPReplaceEnd tags.
(See Section 3.6.3.1, "WPReplace"). The tags enclose text that will be replaced by a

TermDB entry. The text must be in the primary language.

The following example shows how the word "hello” would be translated using the
TermDB.

Sample HTML:
<!--WPReplaceBegin-->hello<!--WPReplaceEnd-->
Sample TermDB:

english hello

french bonjour
spanish hola

43

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

When WebPlexer accesses the TermDB, it first finds the word ‘hello’ by looking in row
1 (the primary language row) of the TermDB and finding the column that contains the
desired term. Then it retrieves the term from the row of the table corresponding to the
current language (row 2, in the case of French) in the column it identified as containing the
desired term.

This release of WebPlexer comes with a standard TermDB that includes the names of
all languages and countries translated into 25 languages.

WebPlexer supports the use of muiltiple TermDBs. Each top-level URL declared in the
WP_Map file can be associated with a different TermDB, and muitiple TermDBs can be
defined for a given URL. This makes it possible to maintain several small TermDBs
rather than one large one.

There are three types of TermDBs:
. The System TermDB (included with the product)
. Add-on TermDBs (available from Language Automation)
. User-defined TermDBs (created with the tpbuilder utility, explained in the
next section).

TermDBs, together with WebPlexer's WPReplace tag, allow multilingual terminology to
be centralized. This has several advantages:

. It makes it easy to add support for new languages without changing any of
the documents on the site.

. Changes to the form or structure of a document can be made immediately
available in all languages. All languages can be updated simultaneously.

. The number of documents that need to be maintained on the site is reduced.
it is not necessary to have separate versions of a document for each language.

. A single CGlI script or form can be localized for multiple languages from a

single copy of source code. No update is required when new languages are added.

- TermDBs and the other resources of the Multilingual ToolKit can be used most

effectively if you plan appropriately before you design your site. If you need
assistance in building your multilingual site, please contact Language Automation and
one of our site support engineers will be happy to assist you.

3.6.2.1 Building User-defined TermDBs

44

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

User-defined TermDBs can be created and updated using the tpbuilder utility that
comes with WebPlexer.

tpbuilder has the following syntax:

tpbuilder <controlFile> <outputTermDB>

or

tpbuilder <controlFile> <inputTermDB> <outputTermDB>

The first form is used when creating a new TermDB. The second form is used for
updating an existing TermDB.

controlFile has the following syntax:

comments

<TermDB title string>

<TermDB table caption>

<TermDB text body>

<blank line>

<masterLanguage> <encoding> <input-file>
<language1> <encoding1> <input-file1>
<language2> <encoding2> <input-file2>
<language3> <encoding3> <input-file3>
<language4> <encoding4> <input-filed>

<languageN> <encod.ingN><input-fileN>
where

<TermDB title string>

is the title string in the generated HTML file.

<TermDB table caption>

45

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

is the caption of the generated table.
<TermDB text body>
is the string inserted before the actual table and is part of the text body.

Note that these strings are for informational and readability purposes only and are not
used by WebPlexer.

A line of the form

<languageN> <encodingN> <input-fileN> <comment>

specifies the target language, encoding and input file that contains the list of strings to be
entered into the TermDB. The first line must specify the TermDB's master language.
The master language is used to index into the TermDB using a key. The key is obtained
from the string contained between <!--WPReplaceBegin--> and <!--WPReplaceEnd-->
tags.

NOTE: the control file and input files must be in the same directory.

For example, a typical control file might look iike this:

Joe's TermDB

This is the TermDB for Joe

Joe's TermDB

english 1SO-8859-1 laieng.txt

chinese GB2312 laichs.txt

french ISO-8859-1 laifre.txt

In this case, english is defined to be the master language of the TermDB and the list of
index terms will be taken from the file laieng.txt. The corresponding transiations into

arabic and french will be read from the files laiarah.txt and laifre.txt, respectively.

The input files have the following syntax:

46

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

1:<TermString1>
2:<TermString2>

N:<TermStringN>

where <TermStringN> is a string to be entered into the TermDB for that particular
language. Note that the numbers at the beginning of the line are arbitrary and are used to
easily align the text across each of the input files.

For example, a typical set of input files might look like this:

English
1:hello
2:goodbye
French
1:bonjour
2:au revoir
Spanish
1:hola
2:adios

When tpbuilder is run, it will write status information to stdout.

Updating an Existing TermDB

An existing TermDB is updated using this form of the tpbuilder command:
tpbuilder <controlFile> <inputTermDB> <outputTermDB>

NOTE: The controlFile must contain all of the languages that were specified when the
TermDB was initially created.

Generally speaking, there are three types of update operations that can be performed
on a TermDB.

* Adding new entries (and optionally their translations)
* Replacing old entries (and optionally their translations)

47

10

15

20

25

30

WO 00/46693 PCT/US00/01168

* Deleting entries

These operations are controlled through the contents of the individual input files specified
in the controlFile and are described in more detail below.

Adding an Entry

To add a new entry, simply add a new TermString to the master language input file and
optionally, corresponding TermStrings in the target language input files. If a matching
translation is not found in a target language input file, an empty entry will be created and
will be filled in later when the translation is available through the WebPlexer console's
translation management feature. Please see section x.xx for further information on
console operation.

If an empty TermDB entry is accessed during a lookup, the TermDB will return the value
of the original master language string (i.e. the index).

NOTE: Prior to updating a TermDB, it is recommended that TermStrings that will not
change be removed from the input files (i.e. input files should only specify actions to be
performed during the update).

Replacing an Entry

To replace an entry, simply replace old translation(s) in the target language input files
with new translations of the TermString. The original TermString must be specified in the
master language input file.

If new translations are not available, simply put a blank line in the target language input
file(s) with a number that matches the original TermString in the master language input
file. The translations will be updated later through the WebPlexer console's translation
management feature.

48

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Deleting an Entry

To delete an entry, simply put a minus sign ('-) in front of the line in the master language
input file corresponding to the entry to be deleted. The master language entry for that
TermString along with all translations will be removed from the TermDB.

Including HTML Tags in a TermDB Entry

HTML tags can be included in TermStrings to allow complete HTML constructs to be
embedded between WPReplace tags. This provides a great deal of freedom in
content organization.

Embedded HTML tags must be preceded by a backslash ('\').
For example, the following is a valid TermString:
25:\

The backslash character can also be used as a valid character in the TermString but it
must be preceded by another backslash.

3.6.3 HTML Extensions

The Multilingual ToolKit's HTML extensions are a set of special-purpose commands
and comment-embedded HTML tags. They enable WebPlexer to provide special
country and language processing when serving a document.

The extensions consist of

1. WPReplace for replacing a text string with its translation from a TermDB.

2. WPSort for sorting lists according to the sort rules of the currently selected language.
3. WPCommands for providing the change language/change country function without
the need for CGlI scripts or interlinked pages.

4. CustomVars for dynamically inserting language name, country name, and country flag
into the HTML.

5. Server-side includes for building documents out of country and language-specific
components.

Each of these is described in detail in the following sections.

49

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

3.6.3.1 WPReplace

The WPReplace function replaces a string with its translation.

The string to be replaced and the currently selected language are used as search keys
within a TermDB. The TermDB is accessed and retumns the translation of the string in the
specified language.

The WPReplace function is implemented with two tags:

<!--WPReplaceBegin-->
<!--WPReplaceEnd-->

The string to be replaced is enclosed between the tags:

<l--WPReplaceBegin--> String to be replaced
<!--WPReplaceEnd-->

The string must be in the primary language of the TermDB (see Section 3.6.2,
"TermDBs (tm)").

For example, if a TermDB contained these entries:

english hello

- french bonjour

spanish hola
then, this HTML code
<l--WPReplaceBegin-->hello<!--WPReplaceEnd-->
would produce

bonjour

if the current language were French, and

50

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

hola
if the current language were Spanish.
Please note the following:
1. If the string is not found in the TermDB, it is not replaced.
2. The WPReplace commands are removed after replacement.
Please see the sampile file ‘contact.html’ included with this release for an example of

WPReplace.

Please see Section 4.2.3, "outbound:: Enabling the Output Manager," for information on
how to specify TermDBs.

3.6.3.2 WPSort

The WPSort function sorts a list of items according to the sort rules for the current
language

NOTE: this is restricted in the current release. Please see Section 1.3, "Known Bugs and
Limitations of This Release."

The text to be sorted is divided into a series of lines, each of which contains a key.

Line 1 (sort key = ‘box’): <...coovevrnen. box.......... >
Line 2 (sort key = ‘ball): <................. ball......... >
Line 3 (sort key = ‘car): <......cccouvuu.e. car.......... >

After sorting, the lines will be arranged such that the keys will be in the correct sort order.

Line 1 (sort key = ‘ball’): <................. ball......... >
Line 2 (sort key = 'box’): <...cccecuee. box.......... >
Line 3 (sortkey = ‘car): <................. car.......... >

The WPSort function is implemented with five tags:

<!--WPSortBegin-->
<!l--WPSortEnd-->

51

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

<!l--WPSortFieldBegin-->
<!--WPSortFieldEnd-->

<!--WPSortLineEnd-->

<!--WPSortBegin--> and <!--WPSortEnd--> surround the entire block of text to be
sorted.

<!--WPSortFieldBegin--> and <!--WPSortFieldEnd--> surround the sort key on each
line.

<I--WPSortLineEnd--> delimits adjacent lines.

NOTE: The first line must start with <!--WPSortBegin--> and the last line must end with
<1--WPSortEnd-->.

WPReplace tags can be included within a sort field, and modify a sort key, if desired.
In the above example, the HTML would be coded as
<l--WPSortBegin-->

Sevevrnnens <!--WPSortFieldBegin-->box
<I--WPSortFieldEnd-->......><!--WPSortLineEnd-->

Serreerenn <!--WPSortFieldBegin-->ball
<!--WPSortFieldEnd-->.....><!--WPSortLineEnd-->

Seeecerenee <I--WPSortFieldBegin-->car
<l--WPSortFieldEnd-->......>

<l--WPSortEnd-->
WPSort can be used to sort a list of languages or countries in local-language order.
For example, consider this bulleted list of languages:

<!--WPSortBegin-->

52

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

<!l--WPSortFieldBegin-->
<!--WPReplaceBegin-->English<!--WPReplaceEnd-->
<1--WPSortFieldEnd--> [English]
<!--WPSortLineEnd-->

<l--WPSortFieldBegin-->
<!l--WPReplaceBegin-->French<!--WPReplaceEnd-->
<!I--WPSortFieldEnd--> [French]
<!--WPSortLineEnd-->

<!--WPSortFieldBegin-->
<l--WPReplaceBegin-->German<!--WPReplaceEnd-->
<!--WPSortFieldEnd--> [German]
<!--WPSortEnd-->

This code will allow the list items to be sorted in the correct order, according to the current
language.

In the above example, the WPReplace tags are processed first, replacing the words
"English", "French”, and "German" with their translations. The translations will then be
used as the sort keys.

All WPSort tags are removed before sending the result to the browser.

3.6.3.3 WPCommands

WPCommands are special WebPlexer commands included in a document's HTML.
They allow WebPlexer to manage country and language selection within a document.

WPCommands are coded as hypertext links in a document. When a link is clicked, the
WPCommand is sent to WebPlexer in the request URL.

When WebPlexer receives the WPCommand, it performs some function and returns
the result to the browser.

WPCommands have the form:

53

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

WPCommand?<command>=<arg>
where <command> is one of

1. ik
2. country
3. language

and <arg> is a function of <command>.

Each of these commands is described in more detail in the following sections. See also
Section 3.3.5, "Manual Language Selection," for a discussion of how WPCommands
are used within the HTML.

Link
WPCommand?link=<link_target>

The link command makes a hypertext link to the URL specified by <link_target>.

This command has the side effect of notifying WebPlexer that a hypertext link was
executed. This information is used to save the location where the browser came from,
so it can retum after country or language selection.

When WebPlexer receives a link notification, it saves the current value of the referer
URL in the http request for this session. After a change country or change language
command is executed (see next sections), the saved referer URL is restored and the
browser retums to the page from where the link was issued.

The link command is used when the change country or change language function is
implemented on a separate page. This allows the browser to return to the originating
page once the new country or language is selected. Please see Section 3.3.6.2, "Using
WPCommand?link," for additional information.

An example of the link command is included in the sample documents included with this
release. The change country and change language functions are implemented in the files
‘countsel.html’ and ‘langsel.html’, respectively. These pages are reached by issuing a

WPCommand?link=<link_target> from the index and form pages.

Country

54

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

WPCommand?country=<new_country>
The country command changes the current country to <new_country>.

The current language may also change depending on the session state. (See Section
3.5.2, "Determine Language from Country").

Language
WPCommand?language=<new_{anguage>
The language command changes the current language to <new_languages.
3.6.3.4 Custom Variables
WebPlexer's custom variables are special placeholders that can be included in HTML
code. They are automatically replaced by current country and language information
when the document is served to the browser.
Custom variables begin with ‘&’ and must always be enclosed within

<!--WPReplaceBegin--> and <!--WPReplaceEnd--> tags.

The next sections describe the custom variables supported in this release. Please see
the sample files (e.g. contact.html) for examples of their use.

&country
&country is a placeholder for the translated name of the currently selected country.
The name of the country is translated into the currently selected language.

For example, if the current country were "United-States" and the current language were
Spanish, this sequence

<!--WPReplaceBegin-->&country<!--WPReplaceEnd-->

would be converted to

55

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Estados-Unidos.
&language
&language is a placeholder for the translated name of the currently selected language.
The name of the language is translated into the currently selected language.
For example, if the current language were German, this sequence
<!|--WPReplaceBegin-->&language<!--WPReplaceEnd-->
would be converted to
Deutsch.
&flag
&flag is a placeholder for the name of the gif file containing the flag of the currently
selected country. The name is automatically prepended with ‘flag/’.
The WebPlexer release includes gif images of flags from the countries of the world.

For example, if the current country were Germany, this sequence

<img src="../image/<!--WPReplaceBegin-->&flag
<!--WPReplaceEnd-->" height=30>

would be converted to

3.6.3.5 Server-Side Includes

An ordinary server-side inciude is an HTML tag which causes an external file to be

included within an HTML document. The file is included when the document is served to
the browser.

56

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168
WebPlexer's server-side include extends this capability by making the decision of what
file to include based on the current country, region, or language. This enables a
document to be built dynamically out of country and language-specific components.

WebPlexer supports two kinds of server-side includes:

1. Multi-country server-side includes (MCSSI)
2. Multi-language server-side includes (MLSSI)

MCSSI permits locale-specific elements of a document to be included as a function of
the current region or country.

MLSSI permits localized elements of a document to be inciuded as a function of the
current language.

Multi-Country Server-Side Includes (MCSSI)

The MCSSI feature provides the ability to dynamically insert country and regional-
specific content into the HTML stream.

MCSSI is invoked when this construct:

<!--#WP_include_MCSSI "file_name" -->

is detected in an HTML document being served to the browser.

When WebPlexer detects this command, it will insert the file
<head_bf_mcssi_directory>/<country_or_region_directory>/<ﬁle_name>

in-line into the HTML stream.

Where:

head_of_mcssi_directory is the top-level directory of the MCSSI area on the server
and is defined in the WP_Config file (see Section 4.1, "WP_Config," for more

information) and country_or_region is determined dynamically according to the algorithm
described in "Determining the country_or_region_directory."

57

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The file which is included by MCSSI can itself contain additional WebPlexer tags (such
as WPReplace and Custom Variables, see Section 3.6.3.1, "WPReplace," and
Section 3.6.3.4, "Custom Variables"). It can ailso contain additional MCSSI and MLSSI
includes (see "Multi-Language Server-Side Includes (MLSSI)").

By supporting WebPlexer tags such as WPReplace within the included MCSSI file,
regional-specific content can be further localized according to language. This feature
allows considerable flexibility in serving specific content for a region or country where
more than one language is spoken.

Please note that language-dependent content is normally not included in MCSSI files
and that template tags (see Section 3.6.1.1, "Template Types") such as WPReplace
(see Section 3.6.3.1, "WPReplace") or MLSSI (see "Multi-Language Server-Side
Includes (MLSSI)") should be used instead.

Language-dependent content means any static text that is present in the file. Including
language-dependent content within an MCSSI file is not recommended since an
MCSSI file is included based on the setting of the current country. In other words,
MCSSI files should contain only country or regional-specific content and be
independent of language.

For example, if the current country of the browser is Switzerland, the user might be
viewing the site in either French or German. If an MCSS!I file for Switzerland is included
that contains static text in French, the language will be wrong if the browser is requesting
German.

This problem can be easily solved by replacing the static text in the MCSSI file with
template tags, either by

1. Placing the translations of the static text in a TermDB, and using WPReplace tags in
the MCSSiI file, or

2. Placing each language version of the text in a separate file and including it with a
single MLSSI tag within the MCSSiI file.

Determining the country_or_region_directory

The country_or_region_directory is determined dynamically from a combination of the

following parameters:

58

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

» the browser's currently selected country

» the user-defined region in the WP_Regions file for the selected country

* the WebPlexer default region for the selected country

* where the file is located (i.e. whether it is in the primary, secondary,or tertiary directory
as defined below).

The specific algorithm for determining the country_or_region_directory from the above
information is as follows.

1. The browser's current country is obtained. See Section 3.5, "Country and Language
Management," for information on how this is done.

2. The WP_Regions file is consulted to determine if this country is contained within a
user-defined region. See Section 4.9, "WP_Regions," for a definition of the syntax of
the WP_Regions file.

3. If there is no user-defined region for this country, the WebPlexer pre-defined region
is used instead. See Appendix D., "List of WebPlexer Defauit Regions," for a list of
pre-defined regions.

4. WebPlexer will look in 3 locations for the target MCSSI file. These 3 locations are
known as the primary, secondary, and tertiary MCSSI directories, respectively.

These directories are consulted in order, one at a time until the requested file is found.
The directories are defined below.

a. Primary:
<head_of_mcssi_directory>/<current_country>/<mcssi_file>
Example:

Assume a statement of the form:

<!--#WP_include_MCSSI "xyz.html" -->

and

current country is Japan

head_of_mcssi_directory is <docroot_directory>/mcssi.

59

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Then a primary search would look for the file in:
/ust/local/etc/httpd/htdocs/messi/dapan/xyz.html

b. Secondary:

If the file is not in the primary location, the secondary path will be checked:
<head_of_mcssi_directory>/<current_region>/<mcssi_file>

where current_region is either the user-defined or WebPlexer pre-defined (defauit)
region for this country.

Example:

Assume a statement of the form:
<!--#WP_include_MCSSI "xyz.html" -->

and

current country is Japan

current region is Pacific-Rim

head_of_mcssi_directory is <docroot_directory>/mcssi.

Then a secondary search would look for the file in:
/ust/local/etc/httpd/htdocs/messi/Pacific-Rim/xyz.htmi

¢ Tertiary:

If the file is not in the secondary location, the tertiary path will be checked:
<head_of_mcssi_directory>/<mcssi_file>

5. If the messi_file is not found in either the primary, secondary, or tertiary locations, the

file is considered to be "not found" and the following message will be injected into the
HTML stream in place of the MCSSI directive:

60

10

15

20

25

30

35

WO 00/46693 . PCT/US00/01168

[an error occurred while processing MCSSI directive]

Multi-Language Server-Side Includes (MLSSI)

MLSSI aliows the Web site designer to further customize an HTML document
according to language, more generically than what can be provided by the WPReplace
tags (see Section 3.6.3.1, "WPReplace").

Like MCSSI, MLSSI allows a file to be included in-line by referencing it within an HTML
document. However, the path to the file is determined by the currently active language,
rather than by country or region.

The referenced file is pre-transiated and placed in each of the language directories
referenced in the WP_Map file (see Section 4.2, "WP_Map," for a description of the
WP_Map file). When the HTML document is presented to the browser, the file
included by MLSSI is retrieved from the directory corresponding to the currently active
language and inserted in-line into the HTML stream. This allows a single HTML
document to be easily customized by including components that are specific to the
selected language of the browser.

MLSSI is invoked when this construct:

<!I--#WP_include_MLSS! "file_name" -->

is detected in an HTML document being served to the browser.

When WebPlexer detects this command, it will insert the file
<language_directory>/<file_name>

in-line into the HTML stream.

Where:

language_directory is the directory specified in the WP_Map file and language is

determined according to the rules outlined in Section 3.5, "Country and Language
Management."

61

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The file which is included by MLSSI can itself contain additional WebPlexer tags and
commands (such as WPReplace, see Section 3.6.3.1, "WPReplace"). It can also
contain additional MLSSI and MCSSI includes.

If the MLSSI file_name is not found on the server, the following message will be
injected into the HTML stream in place of the MLSSI directive:

[an error occurred while processing MCSSI directive]
3.7 Muitilingual Navigator (tm)
The Multilingual Navigator is a collection of WebPlexer-enhanced HTML code which can
be used to easily provide language and country selection for any document on the
Web site. It provides complete language and country selection without the need for

CQGl scripts or complex interlinked pages.

The Multilingual Navigator is easily customizable to meet the specific navigation needs
of your site.

The Multilingual Navigator is included with this release in a file called ‘minav.html’. It is
also inciuded on the index.html and contact.html pages in the sample directory.

3.8 Input Manager

WebPlexer‘s input manager allows forms-handling CGl scripts to be intercepted and
user input extracted for later translation. It can be used to support the transiation of
customer feedback forms in a multilingual environment.

To use the input manager, the name of the CGl script to be intercepted is specified in
WebPlexer's WP_Map file along with the location of a template file and an output (.prt -

"pre-translated") file.

There is one line at the end of the WP_Map file for each CGl script to be intercepted.
The format of this line is:

inbound:: <cgi-name> <template-file> <.prt file>
Please see the sampie WP_Map file included with this release for an example.

62

10

15

20

25

30

35

WO 00/46693 : PCT/US00/01168

The template file tells the input manager which fields of the form should be extracted.
When the CGI script is invoked, the input data from those fields is saved and
appended to the output, or .prt (pre-translated) file. This file also contains the time
stamp, current country and language, and domain of the requester.

3.8.1 Template Definition

The input manager template file has the following format:

<FIELD_LIST>

<field1>::L
<field2>::L

<fieldn>::L
<LIST_END>

where <FIELD_LIST> and <LIST_END> are required tokens and the remaining lines list
the field names used in the HTML form. The "L at the end of each line is required.

For example, if an input field in an HTML form were coded as:
<INPUT TYPE="text" NAME="phone" SIZE=40 VALUE="">
the matching line in the tempiate file would be

phone::L

Please see the files ‘contact.html’ and ‘contact.tmpl included in the sample directory of
this release for additional examples.

3.8.2 .prt File Description

The .prt file is the output file that contains data from the extracted fields specified in the
template file.

63

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Each entry of the file is preceded by the time stamp, current country and language, and
host domain.

The .prt files can be queued by the console for later translation. Please see Section
3.10.10, "Maintaining Input Manager Database Files," for more information.

3.9 Document Manager

WebPlexer's document manager manages the selection of documents to serve based
on the current country and language. It requires that documents be placed in parailel
language directories off of the Web server's htdoc root. It also requires that the location
of language directories be specified in the WP_Map file.

The following sections provide additional information.

3.9.1 Arrangement of Documents on the Server

The document manager requires that translated documents be arranged in parallel
language directories off of the Web server's htdoc root. Please see Section 3.3,
"Language Selection," for detailed information on how to arrange the document hierarchy
for the document manager.

3.9.2 SPAMM (Sparse Matrix Manager)

WebPlexer's exclusive document management feature known as "SPAMM" (Sparse
Matrix Manager) provides an incremental approach to building a multilingual Web site.

SPAMM allows the site administrator to translate only a portion of documents on the
site, and into only those languages that are most relevant.

SPAMM is a feature that makes it unnecessary to fully populate the site's language
matrix completely with documents.

If the set of documents on a multilingual Web site is visualized as a matrix, with each row
representing a language and each column representing a document, SPAMM eliminates

the need to populate every cell of the matrix.

When a document is requested in a particular language, WebPlexer will go to that cell of
the matrix and try to retrieve the corresponding document.

64

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

If the document is not there (i.e. it has not been translated into the requested language),
WebPlexer will automatically retrieve it from the default language directory specified by
the "default::" declaration in the WP_Map file for this top-level URL (see Section 4.2,
"WP_Map," for an explanation of how to set up the default language directory).

SPAMM is completely transparent in operation. It does not require any special set-up
or configuration. It also works with MLSSI so that if an included file cannot be found in the
current language directory, it will look in the default directory instead.

Please note that even when SPAMM fetches a document from the default directory,
WebPlexer still maintains the correct settings of country and language. This means that if
a browser clicks on a link from within a document that was fetched from the default
language directory (through SPAMM), WebPlexer will look for the new document in the
currently active language directory, not in the default language directory.

3.9.3 Specifying Language-to-Directory Mapping

The mapping of language to directory must be specified in the WP_Map file so the
document manager can locate documents in the correct language.

Please see Section 3.3.2.2, "Specifying the Language-to-Directory Map and Charset,"
for detailed information on how to specify this mapping.

3.9.4 Specifying Charsets

Please see Section 3.3.2.2, "Specifying the Language-to-Directory Map and Charset,"
for detailed information on how to specify the charset used to encode a document. This
information is used by the document manager.

3.9.5 Using Multi-Country Server-Side Includes (MCSSI)

MCSSI allows an HTML document to be easily customized with country and regional-
specific content using a highly modular, "building-block" approach. This reduces the
number of individual files that need to be kept on the server, lowering the cost and time

required to maintain the site.

One application of MCSSI is to insert a targeted, country-specific banner at the top of
an HTML page. It can also be used to easily tailor a marketing message for a specific

65

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

country or region. For example, a travel company could use this feature to publish
different airfares to various countries or regions. Or, tour packages or travel information
could be presented only to those countries or regions where it is relevant.

The following is a simple example of an HTML document that shows how MCSSI is
used.

<HTML>
<BODY>

<!--WPReplaceBegin-->Welcome to the ABC Travel Site!
<l--WPReplaceEnd-->

<l--#WP_include_MCSSI "airfares.html" -->

</BODY>
</HTML>

When this document is processed, WebPlexer will first determine the current language
and replace the string "Welcome to the ABC Travel Site" with its translation out of the
TermDB. Please see Section 3.6.3.1, "WPReplace," for a description of WPReplace
tags and how the repilacement is done. Note that this is not part of the MCSSI
operation but is included to make the example a bit more realistic.

Next, WebPlexer will process the MCSSI statement as follows:

1. The currently selected country is determined. Please see Section 3.5, "Country and
Language Management," for an explanation of how this is done.

2. The appropriate region that this country belongs to is determined using user-defined
regions from the WP_Regions file and/or WebPlexer predefined (default) regions.
Please see Section 4.9, "WP_Regions," and "Multi-Country Server-Side Includes
(MCSSI)," for more information about how regions are used.

3. Based on the analysis of step 2, the target file, "airfares.html", is fetched from the
appropriate directory on the server. Please see "Determining the
country_or_region_directory," for a description of how this directory is determined.

4. The target file, "airfares.html" is inserted in-line into the HTML stream. Any
WebPlexer tags (e.g. WPReplace) that are included within the file are subsequently
processed.

66

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Note that the included MCSSI file can contain additional WebPlexer tags, including
MLSSI and WPReplace tags. This allows the MCSSiI file to be further customized for
the current language, by replacing strings with their translations using the TermDB.
MCSSI is very easy to use by following the steps given below.

1. Determine which countries or regions are important for your site, based on the
country-specific or regional-specific content you wish to serve to visitors to your site.

2. Group countries together into those regions of interest and edit the WP_Regions file
to identify those regions to WebPlexer. Please see Section 4.9, "WP_Regions," for
information on the syntax of the WP_Regions file.

3. Create country and region directories on your server as shown below, and place in
those directories, any country-specific or regional-specific parts of a document you wish
to have managed by MCSSI.

a. Place country-specific content in these directories:
<head_of_mcssi_directory>/<country>/<mcssi_file>

where:

<head_of_mcssi_directory>

is the top-level directory of the MCSSI area on the server and is defined in the
WP_Config file (see Section 4.1, "WP_Config," for more information).

<country>

is the name of the desired country.

<mcssi_file>

is the target file to be included.

b. Place regional-specific content in these directories:

<head_of_mcssi_directory>/<region>/<mcssi_file>

67

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

where:
<head_of_mcssi_directory>

is the top-level directory of the MCSSI area on the server and is defined in the
WP_Config file (see Section 4.1, "WP_Config," for more information).

<region>

is the name of the desired region. This is either a user-defined region from the
WP_Regions file, or a WebPlexer pre-defined region given in Appendix D., "List of
WebPlexer Default Regions."

<mcssi_file>

is the target file to be included.

c¢. Place generic content (all regions and countries) in this directory:

where:

<head_of_mcssi_directory>

is the top-level directory of the MCSSI area on the server and is defined in the
WP_Config file (see Section 4.1, "WP_Config").

<mcssi_file>

is the target file to be inciuded.

4. Include a statement in your HTML of the form:

<l--#WP_include_MCSSI "airfares.html" -->

where "airfares.html" is the name of the target MCSSI file.

5. When WebPlexer detects the MCSSI include when processing the HTML, it will

fetch the file from the appropriate directory (3a, b, or ¢ from above -- where ever it finds
it first), and insert it in-line into the HTML stream.

68

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

6. Any WPReplace or WebPlexer tags that are found in the inserted file will be
resolved after the file is inserted.

Please note that language-dependent content is normally not included in MCSS! files
and that template tags (see Section 3.6.1.1, "Template Types") such as WPReplace
(see Section 3.6.3.1, "WPReplace") or MLSSI (see "Multi-Language Server-Side
Includes (MLSSI)") should be used instead.

Language-dependent content means any static text that is present in the file. Including
language-dependent content within an MCSSI file is not recommended since an
MCSSI file is included based on the setting of the current country. In other words,
MCSSI files should contain only country or regional-specific content and be
independent of language.

For example, if the current country of the browser is Switzerland, the user might be
viewing the site in either French or German. If an MCSSI file for Switzerland is included
that contains static text in French, the language will be wrong if the browser is requesting
German.

This problem can be easily solved by replacing the static text in the MCSSI file with
template tags, either by

1. Placing the transiations of the static text in a TermDB, and using WPReplace tags in
the MCSSi file, or

2. Placing each language version of the text in a separate file and including it with a
single MLSSI tag within the MCSSI file.

3.9.6 Using Multi-Language Server-Side Includes (MLSSI)

MLSSI is typically used to customize an HTML document by including HTML that might
be too complex to be managed by WPReplace tags. For example, MLSSI can be
used to include a language-specific heading at the top of a form constructed out of

WPReplace tags.

Please see Section 3.6.3.1, "WPReplace," for further information about WPReplace
tags.

69

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

MLSSI also helps to separate the form of a Web site (the structure and layout of the
site) from its content (the actual message to be displayed on the browser).

The design and layout of a multi-language site is usually very similar, and often invariant,
across languages. MLSSI allows the language-dependent parts of the content to be
isolated from the structural design making it easy to update the design of the site and
have changes reflected automatically across all of the languages. Likewise, MLSSI
allows language content to be easily updated and maintained without affecting the
overall site design.

Another application of MLSSI is to include language-specific graphics or image maps
within a template file.

For example, a form-based HTML document that is a pure template can be customized
with a language-specific banner and graphic at the top of the file as follows:

<HTML>
<BODY>

<!--#WP_include_MLSSI "banner.html” -->

<INPUT NAME = "name" > <!--WPReplaceBegin-->name<!--WPReplaceEnd-->
<INPUT NAME = "address" > <!--WPReplaceBegin-->address<!--WPReplaceEnd-->

</BODY>
</HTML>

When this file is processed, the file "banner.html" will be fetched from the language
directory specified in the WP_Map file (i.e. french/banner.html, german/banner.html, etc.)

The contents of the banner.html files might look something like:

french/banner.html:
 Bienvenue

gemanv/banner.htmi:

70

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

 Willkommen

and so on.

Of course, the WPReplace strings ("name", "address") will also be replaced by their
translations from the TermDB during processing of the file. See Section 3.6.3.1,
"WPReplace," for a description of how this is done.

As can be seen, MLSSI can be used to separate out the language-specific
components of an HTML document making it easier to maintain the collection. In the
previous example, if the structure of the HTML form needed to change, it would only
require changing the template file, and not any of the language-specific files on the site.

MLSSI is very easy to use by following the steps given below.

1. Place any language-specific parts of a document you wish to have managed by
MLSSI in the respective language directories specified in the WP_Map file.

2. Include a statement in your HTML of the form:

<!I--#WP_include_MLSSI "component.html" -->

where "component.html” is the name of the file created in step 1.

3. When WebPlexer detects the MLSSI include when processing the HTML, it will
fetch the file from the language directory, as defined in the WP_Map file, corresponding
to the current language selection, and insert it in-line into the HTML stream.

4. Any WPReplace or WebPlexer tags that are found in the inserted file will be
resolved after the file is inserted.

3.9.7 Using CGl Scripts

CGl scripts producing HTML output should be written to be as independent of
language and country as possible. This means these scripts should use the HTML
extensions provided by the Multilingual ToolKit. They should write out templates that
do not contain language-specific or country-specific information. Having only one script
to maintain means that changes can be made easily and efficiently.

When the HTML output of such a CGl script is presented to the browser, WebPlexer

will fill in the template dynamically with current language and country information. Text
that is marked-up with WPReplace tags will also be translated.

71

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

In order for WebPlexer to correctly process a CGl script, the filename of the script must
be changed when it is referenced in an HTML document. The filename must not include
the path to the cgi root, even though the script is actually located in that directory.

In addition, the cgi root must be specified in the WP_Config file (see Section 4.1.18,
“cgiRoot").

For example, suppose that the cgi root is "/cgi-bin".

Nommally, a reference to a CGl script called "script.cgi" would look like this:
CGl

But with WebPlexer, the cgi root should be omitted:

CGl

This will ensure correct country and language processing of the HTML.

3.10 WebPlexer Consoie
3.10.1 Setting the Console Port
3.10.2 Setting the Console Password
3.10.3 Invoking the Console
3.10.4 Closing the Consoie
3.10.5 Writing Console Templates
3.10.6 Console Commands
3.10.6.1 System Configuration
3.10.6.2 URL Selection
3.10.6.3 System Status
Status Annunciators
3.10.6.4 Language Status
Status Annunciators
3.10.6.5 Queue Status
3.10.7 Translation Queues
3.10.7.1 Enqueue
3.10.7.2 Dequeue
3.10.7.3 Maintaining the Translation Queues
3.10.7.4 Initiating Off-line Translation Using gtrans
3.10.8 Document Maintenance

72

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

3.10.8.1 Including Document Types

3.10.8.2 Including Specific Documents

3.10.8.3 Excluding Documents

3.10.9 Maintaining TermDBs

3.10.10 Maintaining Input Manager Database Files
3.10.11 Log Analysis

3.10.11.1 Usage utility

3.10.11.2 Visits utility

3.11 Runtime Options

WebPlexer accepts a number of command line flags used for configuration and
debugging. These are described below.

3.11.1 Configuration Flags
-internetport port
-serverport port

-consoleport port

These flags override the InternetPort, ServerPort, and ConsolePort specified in the
WP_Config file.

-alog file
-elog file

-ilog file

These flags override the AccesslLog, ErrorLog, and InformationLog specified in the
WP_Config file.

-c file

This flag specifies a configuration file to use other than the default WP_Config.
-version

This flag displays the current version of WebPlexer and libraries.

-restart

73

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

This flag forces WebPlexer to go through a restart sequence.

3.11.2 Debugging Flags

-V

-VV

-debug

These flags cause WebPlexer to send debugging and informational messages to
stderr. They should not be used in normal operation as they will cause some amount of
performance degradation. Type ./webplexer -h for more information.

-t file

This flag uses the specified file to activate WebPlexer's test mode. The test file
contains a list of up to 64 domain suffixes that will be consecutively "spoofed" for each
access.

For example, if the file contained:

frdeit

the first access would appear to come from France, the next from Germany, and the last
from ltaly, then the cycle would repeat. Depending on the access pattern, and the
contents of the document being retrieved (e.qg. if there are embedded graphics), it may
be necessary to repeat the same suffix more than once in the file to achieve the desired
result.

-nobg

This flag tells WebPlexer to run in the foreground and not to fork a child process on
startup.

-noredirection
This is a debugging flag and should not be used in normal operation.
-nosigs

74

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

This disables WebPlexer's exception handiing. Normally, WebPlexer notifies the client
when an exception occurs (if possible).

-noforking

This is another debugging flag that forces requests to be handled by the parent
process.

-h, -help

These flags list and describe the help options.

4. Contents of WebPlexer Files

The following sections give detailed specifications of all WebPlexer external files.
4.1 WP_Config

The WP_Config file contains site-specific information used to set up and configure
WebPlexer.

The WP_Config file is similar in format to a "httpd.conf" file and consists of a series of
key/value pairs, one per line.

A key is a non-blank string ending with one or more white spaces. Examples of keys
are IntemetPort and ServerPort.

A value is a parameter string and varies depending upon the key. Examples of values
are the strings "80" and "logs/WPErrorLog".

Keys are separated from values by one or more column delimiters (spaces or tabs).
Any text on a line after a comment symbol (#) is ignored.

The key / values currently defined for WP_Config are listed in the sections below.
4.1.1 IntemetPort

Syntax:

75

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

IntemetPort <port>

where <port> is the port on the Internet side that WebPlexer monitors for an http
request. When WebPlexer is used in "production mode" (see Section 3.1.1.2,
"Production Mode"), this value will be 80, the standard http port.

Example:

InternetPort 80

4.1.2 ServerPort

Syntax:

ServerPort <port>

where <port> is the port used to communicate with the httpd server. It should be set to
an unused port (e.g. 180) when WebPlexer is in "production mode" (see Section
3.1.1.2, "Production Mode"). It must match the port specified in the Web server's
configuration file.

Example:

ServerPort 180

4.1.3 ConsolePort

Syntax:

ConsolePort <port>

where <port> is the port used to communicate with the WebPlexer console.

Example:

ConsolePort 2800

4.1.4 Accesslog

76

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Syntax:
AccesslLog <filename>

where <filename> is the name of WebPlexer's access log file. It can be relative to the
WebPlexer directory or it can be a fully specified file name.

Example:

Accesslog logs/WPAccessLog
4.1.5 ErrorLog

Syntax:

ErrorLog <filename>

where <filename> is the name of WebPlexer's error log file. It can be relative to the
WebPlexer directory or it can be a fully specified file name.

Example:

Errorlog logs/WPErrorLog
4.1.6 InformationLog
Syntax:

InformationLog <filename>

where <filename> is the name of WebPlexer's information log file. It can be relative to
the WebPlexer directory or it can be a fully specified file name.

Example:
InformationLog logs/WPInfolLog

4.1.7 ServerName

77

10

15

20

25

30

35

WO 00/46693

Syntax:

ServerName <name>

where <name> is the DNS entry name of this server.

Example:

ServerName www.lai.com

4.1.8 RemoteMaintenanceKey

Syntax:

RemoteMaintenanceKey <off | on>

This should be set to "off" in the current release.
4.1.9 Console

Syntax:

Console <off | on>

Disables / enables the WebPlexer console.
4.1.10 MasterLanguage

Syntax:

MasterLanguage <language>

Specifies the language to be used as the master or reference language for the console
(i.e. documents in that language will be used as a reference when determining which

languages are out of date).

Example:

78

PCT/US00/01168

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

MasterLanguage english

NOTE: The language must be one of those supported by WebPlexer (see Appendix
B., "List of Available Languages").

4.1.11 ConsoleTextExtensions
Syntax:
ConsoleTextExtensions <ext1 ext2 ... extN>

The extensions specified as extN indicate what filetypes will be under console
maintenance functions.

Example:

ConsoleTextExtensions .htmi .htm
4.1.12 ConsoleFileinclude

Syntax:

ConsoleFilelnclude <file1 file2 ... fileN>

Specifies individual files to be included under console maintenance functions beyond
those included using the ConsoleTextExtensions directive.

Example:

ConsoleFilelnclude faq.txt info.txt
4.1.13 ConsoleFileExclude

Syntax:

ConsoleFileExclude <file1 file2 ... fileN>

Specifies individual files to be excluded from console maintenance among the set that
was included using the ConsoleTextExtensions directive.

79

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Example:

ConsoleFileExclude dummy.html empty.html

4.1.14 Enqueue

Syntax:

Enqueue <directory>

Specifies the location of the console's enqueue directory.

NOTE: This directory is relative to the DocumentRoot (see below)
Example:

Enqueue enq

4.1.15 Dequeue

Syntax:

Dequeue <directory>

Specifies the location of the console's dequeue directory.

NOTE: This directory is relative to the DocumentRoot (see below)
Example:

Dequeue deq

4.1.16 Pluglns

Pluglns use the WebPlexer API. Information on Pluglns is not available in this release.
However, the WP_Config file should contain the following two lines:

Plugins MLFWI Early 5

80

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Plugins MLFWO Late 5

4.1.17 DocumentRoot

Syntax:

DocumentRoot <path>

where <path> is the path to the Web server's document root.

Example:

DocumentRoot /usr/local/etc/httpd/htdocs/

4.1.18 cgiRoot

Syntax:

cgiRoot <path>

where <path> is the path to the Web server's cgi root, relative to the document root.
NOTE: <path> should not contain a trailing slash.

Example:

cgiRoot /cgi-bin

4.1.19 MCSSIRoot

Syntax:

MCSSIRoot <path>

where <path> is the path to the head of MCSSI directory, relative to the document root.
Example:

MCSSIRoot /webplexer/MCSSI

81

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

4.2 WP_Map

The WP_Map file contains a list of top-level URLs that are subject to language
selection. URLs are organized in URL groups, and as many groups as necessary can
be specified. Each group contains the following information:

1. The top-level URL of the group.

2. The list of languages in the group and the names of the directories where the
documents are located.

3. The encodings in which the documents are represented (e.g. ISO-8859-1)

4. Default directories in case the requested language is not found (usually English).

5. TermDB(s) used when processing files for this group.

6. Input Manager files (CGI script, templates, output files) for any forms contained
within this group.

The format of the file is as shown below. Any text after a comment symbol (#) is
ignored.

URL Group 1 definition

URL::<path1> <path_type>
URL::<path2> <path_type>

URL::<pathN> <path_type>

<language>:<language_directory> <charset>
<language>:<language_directory> <charset>

default:<default_language> <charset> # REQUIRED
others:<others_language> <charset> # REQUIRED

outbound:: ** <TermDB1.1>
outbound:: *' <TermDB1.2>

82

10

15

20

25

30

35

WO 00/46693 : PCT/US00/01168

outbound:: ** <TermDB1.N>

inbound:: <cgi-script1.1> <template-file1.1> <.prt file1.1>
inbound:: <cgi-script1.2> <template-file1.2> <.prt file1.2>
inbound:: <cgi-script1.N> <template-file1.N> <.prt file1.N>
URL Group 2 definition

URL::<path1> <path_type>
URL::<path2> <path_type>

URL::<pathN> <path_type>

<language>:<language_directory> <charset>
<language>:<language_directory> <charset>

default:<default_tanguage> <charset> # REQUIRED
others:<others_language> <charset> # REQUIRED

outbound:: *‘ <TermDB2.1>
outbound:: *‘ <TermDB2.2>
outbound:: ** <TermDB2.N>

inbound:: <cgi-script2.1> <template-file2.1> <.prt file2.1>
inbound:: <cgi-script2.2> <template-file2.2> <.prt file2.2>

inbound:: <cgi-script2.N> <template-file2.N> <.prt file2.N>
URL Group N definition

defaultCountry <country>

83

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

defaultLanguage <language>

4.2.1 Specifying the Top-Level URL

Syntax:

URL::<path> <path_type>

where

<path>

is the directory path of the top-level URL below the htdoc root.
<path_type>

is either ‘d’ or ‘f' depending on whether the path is a directory or a file.
Examples of valid paths and path_types are:

/d

/usert d

/useri/docs d

/useri/docs/info.html f

You can specify as many paths as needed within a URL group.

A directory specification only matches a request for that directory. It will not match any
requests for files in that directory.

For example,
URL::/usert d
would match

GET http://www.lai.com/user
GET http://www.lai.com/user1/

84

10

15

20

25

30

35

WO 00/46693

but would NOT match

GET http://www.lai.com/user1/info.html
GET http://www.lai.com/useri/index.htmi

These would require additional path specifications

URL::/useri/info.html f
URL::/useri/index.html f

4.2.2 Specifying Language/Directory/Charset

Syntax:

<language>: <language_directory> <charset>

where
<language>
is the name of the language.

<language_directory>

PCT/US00/01168

is the name of the subdirectory containing documents of that language.

<charset>

is the encoding used for documents in that language (e.g. ISO-8859-1)

All the URLs in a group share a common language-to-directory map.

NOTE: <language> must be one of the available languages listed in Appendix B., "List

of Available Languages."

Examples of valid language to directory entries are:

french: french 1SO-8859-1
english: eng_docs 1SO-8859-1

85

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

catalan: spanish_dir ISO-8859-1
japanese: japanese 1S0O-2022-JP

There are two reserved <language> names that have special meaning. One is "default"
and the other is "others". Both of these must be specified in the directory map of each
URL group definition. They are described in more detail below.

4.2.2.1 others:

Syntax:

others: <others_language> <charset>

The "others" language is used when the requested language is valid but does not exist
on the server.

For example, if English, French, and Spanish documents exist on the server, but the
requested language is Russian, WebPlexer will use the language defined as "others".

ltis usually the case that "others" is set to English.

Example:

others: english 1ISO-8859-1

4.2.2.2 default:

Syntax:

default: <default_language> <charset>

The "default" language is used when WebPlexer cannot determine the language of a
request and none has been specified by the browser. This can happen when the
country of origin cannot be determined because the hostname is unavailable or when
the requester is behind a firewall.

It is usually the case that "default" is set to English.

Example:

86

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

default: english ISO-8859-1
4.2.3 outbound:: Enabling the Output Manager

The output manager (i.e. Multilingual ToolKit) is enabled by specifying TermDB(s) in the
WP_Map file for a given top-level URL.

All documents containing templates, tags, or other resources of the Multilingual ToolKit
which require dynamic processing will be processed through the listed TermDBs for this
URL group.

Syntax:

outbound:: ** <TermDBN>

where

<TermDBN>

is the name of a TermDB to be applied for this top-level URL.

NOTE: The TermDB should be in the main WebPlexer directory.

Examples:

outbound:: * master_termdb.html
outbound:: * user_termdb.html

4.2.4 inbound:: Enabling the Input Manager

To use the input manager, the name of the CGl script to be intercepted is specified in
the WP_Map file along with the location of a template file and an output (.prt) file for this
URL group.

A separate inbound statement is required for each CGl script.

NOTE: Each inbound statement must specify a different .prt file.

87

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The template file tells the input manager which fields of the form should be extracted.
When the CGI script is invoked, the input data from those fields is saved and
appended to the output, or .prt (pre-translated) file. This file also contains the time
stamp, current country and language, and domain of the requester.

Syntax:

inbound:: <cgi-scriptN> <template-fileN> <.prt fileN>

where

<cgi-scriptN>

is the name of the CGil script to be intercepted.

<template-fileN>

is the name of the file defining the fields to be captured. Please see Section 3.8.1,
“Template Definition," for a definition of this file.

<.prt fileN>

is the name of the output (pre-transiated) file. Please see Section 3.8.2, ".prt File
Description," for a definition of this file.

Examples:

inbound:: form.cgi form.tmpl form.prt
inbound:: contact.cgi contact.tmpl contact.prt

Also see the sample WP_Map file inciuded with this release.
4.2.5 Setting Global Defaults

Global defaults are declared at the end of the WP_Map file and apply to all URL
groups.

4.2.5.1 defaultCountry

88

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

Syntax:

defaultCountry <country>

where

<country>

is the country to be used as WebPlexer's global default country.
NOTE: The country must be a valid country from the country.list file.
Example:

defaultCountry United-States

4.2.5.2 defaultLanguage

Syntax:

defaultLanguage <language>

where

<language>

is the language to be used as WebPlexer's global default language.

NOTE: The language must be a valid language from Appendix B., "List of Available
Languages."

Example:
defaultLanguage english
4.3 Map Overrides

WebPlexer provides two files that can optionally force the selection of specific
language(s) for certain hostnames or [P addresses when the top-level URL is accessed.

89

WO 00/46693 PCT/US00/01168

These files are HostNameMap and IPAddrMap, and are described below.
Both files are in WebPlexer's language subdirectory.

4.3.1 HostName Map

Syntax:

<hostlD1> <language_set1>
<hostID2> <language_set2>

<hostIDN>' <language_setN>

where

<hostiD>

is a hostname

<language_set>

is an ordered list of one or more languages of the form

{<language1>, <language2> <languageN>} .

and languageN is preferred over languageN+1 for this hostID.

NOTE: The HostName Map file must be in WebPlexer's ‘language’ subdirectory.
Examples:

www.lai.com {english}
www.generichost.com {defauit}

4.3.2 |PAddress Map

90

10

15

20

25

30

35

WO 00/46693

Syntax:

<iplD1> <language_set1>
<iplD2> <language_set2>

<ipIDN> <ianguage_setN>
where

<iplD>

is an IP address

<language_set>

is an ordered list of one or more languages of the form
{<language1>, <language2>, ..., <languageN>}

and languageN is preferred over languageN+1 for this ipID.

PCT/US00/01168

NOTE: The IPAddress Map file must be in WebPlexer's ‘language’ subdirectory.

Example:
192.42.172.9 {farsi, russian, english}
4.4 Log Specifications

WebPlexer supports four log file types:

. Accesslog
. ErrorLog
] InformationLog

. Usagelog

91

10

15

20

25

30

35

WO 00/46693) PCT/US00/01168

The filenames corresponding to these log file types, except for the UsageLog, are
defined in the WP_Config file (See Section 4.1.4, "Accesslog," Section 4.1.6,
‘InformationLog," and Section 4.1.5, "ErrorLog," for additional information). The
Usagelog is created and maintained by the usage script, described in Section
3.10.11.1, "Usage utility."

4.4.1 Accesslog

The Accesslog records information about each request received by WebPlexer, such
as date, time, and request type.

Each AccessLog entry conforms to the Common Logfile Format:
<remotehost> <rfc931> <authuser> <[date]> <"request"> <status> <bytes>
where the fields are defined as follows

<remotehost>

Remote hostname (or IP address if DNS hostname is not available).
<rfc931>

The remote logname of the user.

<authuser>

The usemame by which the user has authenticated himself.

<[date]>

Date and time of the request.

<"request">

The request line exactly as it came from the client.

<status>

92

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The HTTP status code retumed to the client.

<bytes>

The content-length of the document transferred.

Examples:

pp93.satcom.net - - [28/Jul/1996:23:37:23 -0700] "GET /cnv.post/info.html HTTP/1.0"
302 -

pp93.satcom.net - - [28/Jul/1996:23:37:24 -0700] "GET /cnv.post/english-
american_United-States/info.html HTTP/1.0" 200 3372

pp93.satcom.net - - [28/Jul/1996:23:37:29 -0700] "GET /cnv.post/coming/flags/United-
States.gif HTTP/1.0" 200 3594

NOTE: When WebPlexer is configured for “production mode" (see Section 3.1.1.2,
"Production Mode"), WebPlexer's AccessLog should be used in place of the Web
server's access log for auditing purposes. The Web server's access log will show all
requests originating from WebPlexer.

4.4.2 ErrorLog

The ErrorLog logs any errors that occurred during WebPlexer operation, or during the
processing of a request.

The format of an ErrorLog entry is:

[date] <Error-Msg>

Examples:

[01/Aug/1996:21:02:23 -0700] Couldn't bind to socket for internet port 3080

4.4.3 Information Log

The InformationLog records information about WebPlexer language and country

selection. An entry is written whenever language or country changes, whether
automatically or by manual selection.

93

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

The format of an InformationLog entry is:

<remotehost> <rfc931> <authuser> <[date]> <status-message>

where the fields are defined as follows

<remotehost>

Remote hostname (or IP address if DNS hostname is not available).

<rfc931>

The remote logname of the user.

<authuser>

The usemame by which the user has authenticated himself.

<[date]>

Date and time of the request.

<status-message>

Status information pertaining to country or language processing.

Examples of InformationLog entries are:

pc113.fiz-karlsruhe.de - - [01/Aug/1996:01:55:13 -0700] Country Selection: pc113.fiz-
karlsruhe.de --> Germany

pc113.fiz-karlsruhe.de - - [01/Aug/1996:01:55:13 -0700] Language Set: pc113.fiz-
karlsruhe.de --> {germany}

pc113.fiz-karlsruhe.de - - [01/Aug/1996:01:55:13 -0700] Language Selection:
pc113.fiz-karlsruhe.de --> German

4.4.4 Usage Log

The Usagel.og contains a summary of country and language statistics. !t is generated
from the InformationLog using the usage log analysis tool. The Usagel.og can be further

94

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

processed using the visits log analysis tool. Please see Section 3.10.11, "Log
Analysis," for a description of WebPlexer's log analysis tools.

The format of a UsagelLog entry is:

<[date]> <™Language:] | ™Country:[> <language | country> <remotehost>
where the fields are defined as follows

<[date]>

Date and time of the request.

<language>

New language of this request (i.e. an entry is created when a visitor enters the site or
changes language once on the site).

<country>

New country of this request (i.e. an entry is created when a visitor enters the site or
changes country once on the site).

Examples of Usagelog entries are:

[17/0ct/1996:13:40:11 -0700] Language: German www07.btx.dtag.de
[17/0ct/1996:14:09:57 -0700] Country: Argentina server1.sminter.com.ar

4.5 CountryMap

The CountryMap contains a database of the world's languages and dialects. It is not
human-readable.

4.5.1 Creating a User-defined CountryMap
4.6 country.list

The country.list file contains a list of available countries. It is identical to the list included in
Appendix C., "List of Available Countries."

95

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

4.7 WP_LangCode
The WP_LangCode file contains the iso639 language map.
4.8 WP_Languages

The WP_Languages file contains a list of available languages and dialects. It is identical
to the list included in Appendix B., "List of Available Languages."

4.9 WP_Regions

The WP_Regions file consists of a list of names of user-defined regions, each one
followed by a list of countries contained within that region.

Syntax:
this is user-defined region1
<user-defined_region1>::

<country1>
<country2>

<countryN>
this is user-defined region2
<user-defined_region2>::

<country1>
<country2>

<countryM>

Blank lines as well as lines beginning with ‘#' are ignored. Tabs at the beginning of a line
are also ignored.

Example:

96

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168
sales_region1::
Japan
China
Hong-Kong

sales_region2::
France
Great-Britain
Germany

Countries must be chosen from the list of valid countries for WebPlexer. See
Appendix C., "List of Available Countries."

The WP_Regions file contains only user-defined regions. WebPlexer also maintains a

set of pre-defined (default) regions. These are listed in Appendix D., "List of
WebPlexer Default Regions."

“Determining the country_or_region_directory," further describes the interaction and
relationship between pre-defined (default) and user-defined regions.

4.10 Master_termdb.html

The Master_termdb is included with the product and contains translations of the names
of the world's countries and languages in the following languages and encodings:

Language Encoding

english ISO-8859-1
english-american 1SO-8859-1
english-british ISO-8859-1
arabic CP1256
portuguese-brazilian ISO-8859-1
chinese-simpilified GB2312
chinese-traditional BIGS

dutch ISO-8859-1
finnish ISO-8859-1
french ISO-8859-1
french-canadian 1ISO-8859-1
french-continental 1SQ-8859-1
german ISO-8859-1

97

WO 00/46693 PCT/US00/01168

greek CP1253
hebrew CP1255
indonesian ISO-8859-1
tafian ISO-8859-1
japanese X-euc-jp
kinyarwanda ISO-8859-1
kirundi 1ISO-8859-1
korean euc-kr
portuguese-continental ISO-8859-1
russian CP1251
samoan 1ISO-8859-1
spanish ISO-8859-1

spanish-castilian 1SO-8859-1
spanish-latin-american 1ISO-8859-1

swedish ISO-8859-1
thai CP874
viethamese VIASCH

Although the invention is described herein with reference to the preferred embodiment,
one skilled in the art will readily appreciate that other applications may be substituted for
those set forth herein without departing from the spirit and scope of the present
invention. Accordingly, the invention shouid only be limited by the Claims inciuded
below.

98

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

CLAIMS

1. A process for managing, tracking, accounting and translating multilingual
electronic content in a computer environment, comprising the steps of:

detecting when a document, data stream, or non-text file in the master
language has been updated; and

notifying the user which corresponding documents, data streams, or non-text
files in the other languages require translation.

2. The process of claim 1, further comprising the steps of:

allowing the user to initiate the translation of a document, data stream, or non-
text file and its constituent or dependent elements;

converting said document, data stream, or non-text file and its constituent or
dependent elements requiring translation to a suitable intemal format;

staging the translation of said document, data stream, or non-text file and its
constituent or dependent elements; and

dynamically routing and sequencing said document, data stream, or non-text
file and its constituent or dependent elements to the appropriate translation resources,
wherein said routing and sequencing is performed according to the subject matter of the
document to be processed, target language of the translation, whether draft-only or high
quality is required, and other variables.

3. The process of claim 1, further comprising the steps of:

analyzing all of the project components in sufficient detail to determine project
cost and resource requirements;

generating a project cost estimate prior to beginning the project;

creating Work Packets, Job Tickets and a Project Schedule for said project;
and

sending said Project Schedule to the user for review and validation.

4, The process of claim 3, further comprising the step of:
adjusting the Project Schedule when there are changes in the availability of
translation resources, or when manual changes are made to the project by a user.

5. The process of claim 1. further comprising the steps of:

99

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

providing management status and reporting as the translation process
progresses to the user;

automatically notifying the user of the completion of translation;

updating customer and translation resource accounting at said translation
completion; and

coordinating the delivery of the translated documents, data streams, or non-
text files and their constituent or dependent elements back to the user for installation into
a Web site, database, or file system or for optional review.

6. The process of claim 1, further comprising the steps of:

adding new language content to a Web site, database, or file system,
wherein the user selects said new language from a pulldown list;

automatically initiating the translation of a document, data stream, or non-text
file into the desired language;

converting said document, data stream, or non-text file requiring translation to a
suitable intemal format;

staging the translation of said document, data stream, or non-text file; and

dynamically routing and sequencing said document, data stream, or non-text
file to the appropriate translation resources, wherein said routing and sequencing is
performed according to the subject matter of the document to be processed, target
language of the translation, whether draft-only or high quality is required, and other
variables.

7. The process of claim 1, further comprising the steps of:

tracking the versions of a translated document, data stream, or non-text file,
wherein said tracking step allows the easy integration with a third-party authoring or
document management system; and

controlling access to a document, data stream, or non-text file and its
constituent or dependent elements being translated.

8. The process of claim 1, further comprising the steps of:

sending documents, data streams, or non-text files to be translated down a
pipeline, wherein said pipeline is connected to a plurality of transiation resources using
one or more open Application Programming Interfaces (API) known as an Adaptor;

sending packets to translation resources through said Adaptor, wherein work
packets are converted to the appropriate translation resource format before sending said
converted work packet to said transiation resource;

receiving packets from translation resources through said Adaptor, wherein
received packets are converted back to the work packet format and the status and

100

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

control information are updated in said work packet before sending said converted
received packet to said pipeline;

wherein said Adaptor allows a variety of transiation resources to be
connected to said pipeline; and

wherein said translation resources perform translation or other linguistic
functions on a set of input documents and produce a set of output documents that have
been transformed linguistically.

9. The process of claim 8, wherein said translation resources are deployed
across intranets as well as the intemet.

10. An apparatus for managing, tracking, accounting and transiating multilingual
electronic content in a computer environment, comprising:

a module for detecting when a document, data stream, or non-text file in the
master language has been updated; and

a module for notifying the user which corresponding documents, data streams,
or non-text files in the other languages require translation.

11. The apparatus of claim 10, further comprising:

a module for allowing the user to initiate the translation of a document, data
stream, or non-text file and its constituent or dependent elements;

a module for converting said document, data stream, or non-text file and its
constituent or dependent elements requiring translation to a suitable intemal format;

a module for staging the translation of said document, data stream, or non-text
file and its constituent or dependent elements; and

a moduie for dynamically routing and sequencing said document, data stream,
or non-text file and its constituent or dependent elements to the appropriate translation
resources, wherein said routing and sequencing is performed according to the subject
matter of the document to be processed, target language of the translation, whether
draft-only or high quality is required, and other variables.

12. The apparatus of claim 10, further comprising:

a module for analyzing all of the project components in sufficient detail to
determine project cost and resource requirements;

a module for generating a project cost estimate prior to beginning the project;

a module for creating Work Packets, Job Tickets and a Project Schedule for
said project; and

101

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

a module for sending said Project Schedule to the user for review and
validation.

13. The apparatus of claim 12, further comprising:

a module for adjusting the Project Schedule when there are changes in the
availability of translation resources, or when manual changes are made to the project by
a user.

14. The apparatus of claim 10, further comprising:

a module for providing management status and reporting as the translation
process progresses to the user;

a module for automaticalily notifying the user of the completion of translation;

a module for updating customer and translation resource accounting at said
translation completion; and

a module for coordinating the delivery of the translated documents, data
streams, or non-text files and their constituent or dependent elements back to the user
for installation into a Web site, database, or file system or for optional review.

15. The apparatus of claim 10, further comprising:

a module for adding new language content to a Web site, database, or file
system, wherein the user selects said new language from a pulldown list;

a module for automatically initiating the translation of a document, data stream,
or non-text file into the desired language;

a module for converting said document, data stream, or non-text file requiring
translation to a suitable intemal format;

a module for staging the transiation of said document, data stream, or non-text
file; and

a module for dynamically routing and sequencing said document, data stream,
or non-text file to the appropriate translation resources, wherein said routing and
sequencing is performed according to the subject matter of the document to be
processed, target language of the translation, whether draft-onily or high quality is
required, and other variabies.

16. The apparatus of claim 10, further comprising:

a module for tracking the versions cf a translated document, data stream, or
non-text file, wherein said tracking step allows the easy integration with a third-party
authoring or document management system; and

a module for controlling access to a document, data stream, or non-text file
and its constituent or dependent elements being translated.

102

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

17. The apparatus of claim 10, further comprising:

a module for sending documents, data streams, or non-text files to be
translated down a pipeline, wherein said pipeline is connected to a plurality of translation
resources using one or more open Application Programming Interfaces (API) known as
an Adaptor,

a module for sending packets to translation resources through said Adaptor,
wherein work packets are converted to the appropriate translation resource format
before sending said converted work packet to said translation resource;

a module for receiving packets from translation resources through said
Adaptor, wherein received packets are converted back to the work packet format and
the status and control information are updated in said work packet before sending said
converted received packet to said pipeline;

wherein said Adaptor allows a variety of translation resources to be
connected to said pipeline; and

wherein said translation resources perform translation or other linguistic
functions on a set of input documents and produce a set of output documents that have
been transformed linguistically.

18. The apparatus of claim 17, wherein said translation resources are deployed
across intranets as well as the Intemet.

19. A program storage medium readable by a computer, tangibly embodying a
program of instructions executable by the computer to perform method steps for
managing, tracking, accounting and translating multilingual electronic content in a computer
environment, comprising the steps of:

detecting when a document, data stream, or non-text file in the master
language has been updated; and

notifying the user which corresponding documents, data streams, or non-text
files in the other languages require translation.

20. The method of claim 19, further comprising the steps of:

allowing the user to initiate the translation of a document, data stream, or non-
text file and its constituent or dependent elements;

converting said document, data stream, or non-text file and its constituent or
dependent elements requiring translation to a suitable intemal format;

staging the translation of said document, data stream, or non-text file and its
constituent or dependent elements; and

103

10

15

20

25

30

35

WO 00/46693 PCT/US00/01168

dynamically routing and sequencing said document, data stream, or non-text
file and its constituent or dependent elements to the appropriate transiation resources,
wherein said routing and sequencing is performed according to the subject matter of the
document to be processed, target language of the translation, whether draft-only or high
quality is required, and other variables.

21. The method of claim 19, further comprising the steps of:

analyzing all of the project components in sufficient detail to determine project
cost and resource requirements;

generating a project cost estimate prior to beginning the project;

creating Work Packets, Job Tickets and a Project Schedule for said project;
and

sending said Project Schedule to the user for review and validation.

22. The method of claim 21, further comprising the step of:
adjusting the Project Schedule when there are changes in the availability of
translation resources, or when manual changes are made to the project by a user.

23. The method of claim 19, further comprising the steps of:

providing management status and reporting as the translation process
progresses to the user;

automatically notifying the user of the completion of translation;

updating customer and translation resource accounting at said translation
completion; and

coordinating the delivery of the translated documents, data streams, or non-
text files and their constituent or dependent elements back to the user for installation into
a Web site, database, or file system or for optional review.

24. The method of claim 19, further comprising the steps of:

adding new language content to a Web site, database, or file system,
wherein the user selects said new language from a pulldown list;

automatically initiating the translation of a document, data stream, or non-text
file into the desired language;

converting said document, data stream, or non-text file requiring translation to a
suitable intemal format;

staging the translation of said document, data stream, or non-text file; and

dynamically routing and sequencing said document, data stream, or non-text
file to the appropriate transiation resources, wherein said routing and sequencing is
performed according to the subject matter of the document to be processed, target

104

10

15

20

25

30

WO 00/46693 PCT/US00/01168

language of the translation, whether draft-only or high quality is required, and other
variables.

25. The method of claim 19, further comprising the steps of:

tracking the versions of a translated document, data stream, or non-text file,
wherein said tracking step allows the easy integration with a third-party authoring or
document management system; and

controlling access to a document, data stream, or non-text file and its
constituent or dependent elements being translated.

26. The method of claim 19, further comprising the steps of:

sending documents, data streams, or non-text files to be translated down a
pipeline, wherein said pipeline is connected to a plurality of translation resources using
one or more open Application Programming Interfaces (AP1) known as an Adaptor;

sending packets to translation resources through said Adaptor, wherein work
packets are converted to the appropriate translation resource format before sending said
converted work packet to said translation resource;

receiving packets from translation resources through said Adaptor, wherein
received packets are converted back to the work packet format and the status and
control information are updated in said work packet before sending said converted
received packet to said pipeline;

wherein said Adaptor allows a variety of translation resources to be
connected to said pipeline; and

wherein said translation resources perform translation or other linguistic
functions on a set of input documents and produce a set of output documents that have
been transformed linguistically.

27. The method of claim 26, wherein said translation resources are deployed
across intranets as well as the Intemet.

108

WO 00/46693 PCT/US00/01168

112

101

102

Developer

Workflow
Manager

104

Language
Database/
File System

Fig. 1

WO 00/46693 PCT/US00/01168

2/12
201 202 203
B Visitor Web
TOWSEr |y — Module Server
205 204
Fom Country/
Database Language
Database/
File
System
206
Cache

Fig. 2

WO 00/46693 PCT/US00/01168

3/12

308

301
Determine Intercept form] /
language and input

country of visitor

303 309

/ Convert to /
intemal format

Deliver the
cached content

Is content in
cache?

310
y
Place into
304 forms /
Notify Web servel database
of appropriate

localized content

l 305
Place content /

into cache
l< 306
Record country and
language i
specifications of the F|g, 3
web site visitor in
server log
Y 307

Notify browser of
?roper display

ont

WO 00/46693 PCT/US00/01168

4/12

401 402

404 403
Server Language
Log Database/
File
System

Fig. 4

WO 00/46693 PCT/US00/01168

5/12
501 502 503
Browser Developer Web
Module Server
508
504
\ Locale-independent
505 Templates
Term DB |
Language-specific
506 Elements
509 |
Country-specific
507 Elements
Country & \ Static HTML
Region
Database/
File
System

Fig. 5

WO 00/46693 PCT/US00/01168

6/12

601

Manager's
Console

602

Workflow
Pipeline

Translation
Resources

Language Translation
Database/ Queues
File 605 604

System

Fig. 6

WO 00/46693

7/12
701 -
Select 05 Monitor
language \ documents
for any
changes
702 ¢
Inftiate / Notify web site
translation 706 manager of any

document
\ changes and any
corresponding

Convert
document to

'

document that
need updating

~
o
@

intemal format/

Stage documents
to be translated
down the workflow|
pipeline

704

r

Fig. 7

PCT/US00/01168

707

N

Update web
site manager o
document
translation
status

708

Coordinate
delivery of
translated
documents to
web site
manager

WO 00/46693 PCT/US00/01168

8/12
User
User 802
801
Coordinate
Update Document
Delive
Status ry
803
Complete
Document
804
- Translation
User Queues
805
Monitor .
Database Kﬂ?ﬁer
Documents
Document
807 806
810
808 Accounting —
= Manager -
Project
- Schedules
Language
Database/ 811
File 809
System
Fig. 8 Accounting

Database

WO 00/46693 PCT/US00/01168

9/12

901 902 903

Generator Adaptor

Translation
Resource

Fig. 9

WO 00/46693

Convert work
packet to
translation
resource format

:

Route packet to
appropriate
translation
resource

1001

1002

Fig. 10

10/12

Receive packet
from translation /

resource

l

PCT/US00/01168

1003

1004

Convert packet to

work packet format /

l

1005

status and control
information

Update work packet's /

l

1006

Notify console

module that packet /

is available

WO 00/46693 PCT/US00/01168

11/12

Convert to
Translation
Resource
Format

Receive
Packet

Route
Packet

Fig. 11

WO 00/46693

1201

e

Webmaster's

Browser

1205

N
1206
\ _ 1208 4215

PCT/US00/01168

12/12
1202
Workflow Web
Manager Server
Module
1210

Translation

Fig. 12

English HTML

French HTML

German HTML

Japanese HTML

ftalian HTML

Spanish HTML

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

