

[19] Patents Registry
The Hong Kong Special Administrative Region
香港特別行政區
專利註冊處

[11] 1225309 B
EP 3050556 B1

[12]

STANDARD PATENT SPECIFICATION
標準專利說明書

[21] Application No. 申請編號
16113726.6

[51] Int.C1.⁸ A61K A61P

[22] Date of filing 提交日期
01.12.2016

[54] PROCESS FOR MANUFACTURING A PHARMACEUTICAL PREPARATION CONTAINING GLATIRAMER ACETATE 製備含有醋酸格拉替雷的藥物製劑的工藝方法

Divisional application 17112912.1 filed on 06.12.2017.

分開申請編號 17112912.1 於 06.12.2017 提交

[30] Priority 優先權
28.01.2015 US 201514608126

[43] Date of publication of application 申請發表日期
08.09.2017

[45] Publication of the grant of the patent 批予專利的發表日期
27.04.2018

EP Application No. & Date 歐洲專利申請編號及日期

EP 15186721.5 24.09.2015

EP Publication No. & Date 歐洲專利申請發表編號及日期

EP 3050556 03.08.2016

Date of Grant in Designated Patent Office 指定專利當局批予專利日期

22.03.2017

[73] Proprietor 專利所有人

Teva Pharmaceutical Industries, Ltd.

5 Basel Street P.O. Box 3190

49131 Petach Tikva

ISRAEL

[72] Inventor 發明人

Rakefet COHEN

Sasson HABBAH

Muhammad SAFADI

[74] Agent and / or address for service 代理人及/或送達地址

Deacons

5th Floor

Alexandra House

Central HONG KONG

(19)

(11)

EP 3 050 556 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

22.03.2017 Bulletin 2017/12

(51) Int Cl.:

A61K 9/00 (2006.01)

A61K 38/16 (2006.01)

A61K 38/02 (2006.01)

A61K 47/26 (2006.01)

A61K 9/08 (2006.01)

A61P 25/00 (2006.01)

(21) Application number: 15186721.5

(22) Date of filing: 24.09.2015

(54) PROCESS FOR MANUFACTURING A PHARMACEUTICAL PREPARATION CONTAINING GLATIRAMER ACETATE

VERFAHREN ZUR HERSTELLUNG EINER PHARMAZEUTISCHEN ZUSAMMENSETZUNG
ENTHALTEND GLATIRAMERACETAT

PROCÉDÉ DE FABRICATION D'UN PRODUIT PHARMACEUTIQUE À BASE D'ACÉTATE DE
GLATIRAMER

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(30) Priority: 28.01.2015 US 201514608126

(43) Date of publication of application:

03.08.2016 Bulletin 2016/31

(73) Proprietor: TEVA PHARMACEUTICAL
INDUSTRIES, LTD.

49131 Petah Tikva (IL)

(72) Inventors:

• COHEN, Rakefet

Kokhav Ya'ir-Tzur Yigal (IL)

• HABBAH, Sasson

44862 Kokhav Ya'ir-Tzur Yigal (IL)

• SAFADI, Muhammad

1616401 Nazareth (IL)

(74) Representative: D Young & Co LLP

120 Holborn

London EC1N 2DY (GB)

(56) References cited:

US-A1- 2013 323 771

- Anonymous: "Copaxone, FDA Approved Labeling Text NDA 020622/S-089", TEVA Pharmaceutical Industries Ltd. , 28 January 2014 (2014-01-28), XP002749999, Retrieved from the Internet:
URL:http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020622s089lbl.pdf [retrieved on 2015-11-02]
- Anonymous: "Corning Filtration Guide", Corning Inc. , 2013, page 20PP, XP002750000, Retrieved from the Internet:
URL:http://csmedia2.corning.com/lifesciences/media/pdf/t_filterselectionguide.pdf [retrieved on 2015-11-02]

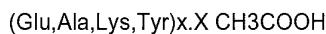
EP 3 050 556 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

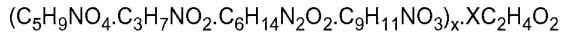
Description

[0001] The disclosures of various publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

5


BACKGROUND OF THE INVENTION

[0002] Glatiramer acetate (GA), the active ingredient of Copaxone®, consists of the acetate salts of synthetic polypeptides, containing four naturally occurring amino acids: L-glutamic acid, L-alanine, L-tyrosine, and L-lysine with an average molar fraction of 0.141, 0.427, 0.095, and 0.338, respectively. The peak average molecular weight of glatiramer acetate is between 5,000 and 9,000 daltons. Glatiramer acetate is identified by specific antibodies (Copaxone, Food and Drug Administration Approved Labeling (Reference ID: 3443331) [online], TEVA Pharmaceutical Industries Ltd., 2014 [retrieved on December 24, 2014], Retrieved from the Internet: <URL: www.accessdata.fda.gov/drugsatfda_docs/label/2014/020622s089lbl.pdf>).


10

[0003] Chemically, glatiramer acetate is designated L-glutamic acid polymer with L-alanine, L-lysine and L-tyrosine, acetate (salt). Its structural formula is:

15

20

CAS-147245-92-9

25

[0004] Copaxone® is a clear, colorless to slightly yellow, sterile, nonpyrogenic solution for subcutaneous injection. Each 1 mL of Copaxone® solution contains 20mg or 40mg of GA, the active ingredient, and 40mg of mannitol. The pH of the solutions is approximately 5.5 to 7.0. Copaxone® 20mg/mL in a prefilled syringe (PFS) is an approved product, the safety and efficacy of which are supported by over two decades of clinical research and over a decade of post-marketing experience. Copaxone® 40mg/mL in a PFS was developed as a new formulation of the active ingredient GA. Copaxone® 40mg/mL is a prescription medicine used for the treatment of people with relapsing forms of multiple sclerosis (Copaxone, Food and Drug Administration Approved Labeling (Reference ID: 3443331) [online], TEVA Pharmaceutical Industries Ltd., 2014 [retrieved on December 24, 2014], Retrieved from the Internet: <URL: www.accessdata.fda.gov/drugsatfda_docs/label/2014/020622s089lbl.pdf>).

30

[0005] US2013/0323771 discloses a process for preparing a polypeptide mixture similar to glatiramer acetate and analyzing the resultant product using peptide mapping.

[0006] Corning Inc. "Corning Filtration Guide" 2013 (csmedia2.corning.com/LifeSciences/Media/pdf/t_filterselectionguide.pdf) discloses Corning membrane filters that may be used in the preparation of peptides.

[0007] It is an object of the present invention to provide an improved process for manufacturing GA drug products.

40

SUMMARY OF THE INVENTION

[0008] The patent provides a process of preparing a pharmaceutical preparation of glatiramer acetate and mannitol in a suitable container comprising the steps of:

45

- (i) obtaining an aqueous pharmaceutical solution of glatiramer acetate and mannitol;
- (ii) filtering the aqueous pharmaceutical solution at a temperature of from above 0°C up to 17.5°C to produce a filtrate; and
- (iii) filling the suitable container with the filtrate obtained after performing step (ii), so as to thereby prepare the pharmaceutical preparation of glatiramer acetate and mannitol in the suitable container.

50

[0009] This patent also describes a prefilled syringe containing 40mg of glatiramer acetate and 40mg mannitol, which syringe is prepared by a process of the invention.

55

[0010] This patent further provides an aqueous pharmaceutical solution comprising 40mg/ml glatiramer acetate and 40mg/ml mannitol, wherein the aqueous pharmaceutical solution

- a) has a viscosity in the range of 2.0-3.5 cPa; or

b) has an osmolality in the range of 275-325 mosmol/Kg.

[0011] This patent also describes a prefilled syringe containing 1ml of an aqueous pharmaceutical solution prepared by a process of the invention.

5 [0012] This patent also describes an automated injector comprising the prefilled syringe prepared by a process of the invention.

[0013] Aspects of the present invention relate to a method of treatment of a human patient suffering from a relapsing form of multiple sclerosis comprising administration to the human patient of three subcutaneous injections of a 40 mg/ml dose of glatiramer acetate per week using the prefilled syringe of this invention, using the aqueous pharmaceutical 10 solution of this invention, or using the automated injector of this invention so as to treat the human patient.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014]

15 Figure 1. Schematic description of filtration process by cooled receiving vessel and filter housing.

Figure 2. Schematic description of filtration process by heat exchanger and cooled filter housing.

20 Figure 3. Pressure record for Experiment No. 1. * Filtration of GA solution at controlled room temperature was stopped and the remaining solution was transferred to the cooled receiving vessels.

25 Figure 4. Pressure record for Experiment No. 2. * Pauses of 3 hours and 5 hours for GA solutions filtered at controlled room temperature and at reduced temperature, respectively. ** Pause of 10 hours for both GA solutions. *** Filtration of GA solution at controlled room temperature was stopped. Remaining GA solution was filtered at reduced temperature.

Figure 5. Pressure record for Experiment No. 3.

30 Figure 6. Schematic description of filtration process by cooled compounding vessel and cooled filter housings on both Filter A and Filter B.

Figure 7. Schematic description of filtration process by heat exchanger and cooled filter housings on both Filter A and Filter B.

35 Figure 8. Schematic description of filtration process by cooled filter housing on only Filter B.

Figure 9. Schematic description of filtration process by cooled filter housings on both Filter A and Filter B.

40 Figure 10. Schematic description of filtration process by cooled compounding vessel.

Figure 11. Schematic description of filtration process by cooled receiving vessel.

DETAILED DESCRIPTION OF THE INVENTION

45

[0015] This invention provides a process of preparing a pharmaceutical preparation of glatiramer acetate and mannitol in a suitable container comprising the steps of:

50 (i) obtaining an aqueous pharmaceutical solution of glatiramer acetate and mannitol;

(ii) filtering the aqueous pharmaceutical solution at a temperature of from above 0°C up to 17.5°C to produce a filtrate; and

55 (iii) filling the suitable container with the filtrate obtained after performing step (ii), so as to thereby prepare the pharmaceutical preparation of glatiramer acetate and mannitol in the suitable container.

[0016] In some embodiments the filtering step (ii) comprises filtering the aqueous pharmaceutical solution through a first filter, or a first filter and a second filter.

[0017] In some embodiments the process further comprises the step of reducing the temperature of the second filter to a temperature from above 0°C up to 17.5°C.

[0018] In some embodiments the process further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C before passing through the second filter.

5 [0019] In some embodiments the filtering step (ii) further comprises the step of receiving the aqueous pharmaceutical solution filtered through the first filter in a receiving vessel.

[0020] In some embodiments the process further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C after leaving the receiving vessel and before entering into the second filter.

10 [0021] In some embodiments the process further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C while in the receiving vessel.

[0022] In some embodiments the process further comprises the step of reducing the temperature of the first filter to a temperature from above 0°C up to 17.5°C.

15 [0023] In some embodiments the process further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C before passing through the first filter.

[0024] In some embodiments the obtaining step (i) comprises compounding the aqueous pharmaceutical solution in a compounding vessel.

20 [0025] In some embodiments the process further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C after leaving the compounding vessel and before entering into the first filter.

[0026] In some embodiments the process further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C while in the compounding vessel.

[0027] In some embodiments the aqueous pharmaceutical solution is passed through the second filter at a rate of 3-25 liters/hour.

25 [0028] In some embodiments the aqueous pharmaceutical solution is passed through the second filter preferably at a rate of 3-22 liters/hour.

[0029] In some embodiments the aqueous pharmaceutical solution is passed through the second filter more preferably at a rate of 3-15 liters/hour.

[0030] In some embodiments the aqueous pharmaceutical solution is passed through the second filter at a rate more preferably at a rate of 3-10 liters/hour.

30 [0031] In some embodiments the pressure during the filtering step (ii) and the pressure during the filling step (iii) is maintained below 5.0 bar.

[0032] In some embodiments the pressure during the filtering step (ii) and the pressure during the filling step (iii) is maintained preferably below 3.0 bar.

[0033] In some embodiments the pressure during the filtering step (ii) and the pressure during the filling step (iii) is maintained below 2.0 bar.

35 [0034] In some embodiments the temperature of the aqueous pharmaceutical solution is between 0°C and 14°C, or the temperature of the aqueous pharmaceutical solution is reduced to a temperature between 0°C and 14°C.

[0035] In some embodiments the temperature of the aqueous pharmaceutical solution is between 0°C and 12°C, or the temperature of the aqueous pharmaceutical solution is reduced to a temperature between 0°C and 12°C.

40 [0036] In some embodiments the temperature of the aqueous pharmaceutical solution is 2°C - 12°C, or the temperature of the aqueous pharmaceutical solution is reduced to 2°C - 12°C.

[0037] In some embodiments the temperature of the aqueous pharmaceutical solution is 4°C - 12°C, or the temperature of the aqueous pharmaceutical solution is reduced to 4°C - 12°C.

45 [0038] In some embodiments the filtering is performed using a sterilizing filter having a pore size of 0.2 μ m or less, wherein the first, the second or both filters are a sterilizing filter having a pore size of 0.2 μ m or less.

[0039] In some embodiments the pharmaceutical preparation in the suitable container is an aqueous pharmaceutical solution comprising 20mg/ml glatiramer acetate and 40mg/ml mannitol.

50 [0040] In some embodiments the pharmaceutical preparation in the suitable container is an aqueous pharmaceutical solution comprising 40mg/ml glatiramer acetate and 40mg/ml mannitol.

[0041] In some embodiments the pharmaceutical preparation in the suitable container is an aqueous pharmaceutical solution having a pH in the range of 5.5-7.0.

55 [0042] In some embodiments the pharmaceutical preparation in the suitable container is an aqueous pharmaceutical solution which is a sterilized aqueous solution which has been sterilized by filtration and without subjecting the aqueous pharmaceutical solution to heat, chemicals, or radiation exposure.

[0043] In some embodiments the pharmaceutical preparation is a lyophilized powder of glatiramer acetate and mannitol.

[0044] In some embodiments the process further comprises a step of lyophilizing the filtrate after it has been filled into the suitable container so as to form a lyophilized powder of glatiramer acetate and mannitol in the suitable container.

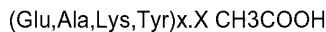
[0045] In some embodiments the suitable container is a syringe, vial, ampoule, cartridge or infusion.

[0046] In some embodiments the suitable container is a syringe.

[0047] In some embodiments the syringe contains 1ml of an aqueous pharmaceutical solution.

5 [0048] This invention describes a prefilled syringe containing 40mg of glatiramer acetate and 40mg mannitol, which syringe is prepared by a process of the invention.

[0049] The prefilled syringe disclosed herein, may contain 1ml of an aqueous pharmaceutical solution of 40mg/ml of glatiramer acetate and 40mg/ml mannitol.


10 *Automated Injection Device*

[0050] The mechanical workings of an automated injection assisting device can be prepared according to the disclosure in European application publication No. EP0693946 and U.S. Patent No. 7,855,176, which are incorporated herein by reference.

15 [0051] All combinations of the various elements described herein are within the scope of the invention.

15 **Definitions**

20 [0052] As used herein, "glatiramer acetate" is a complex mixture of the acetate salts of synthetic polypeptides, containing four naturally occurring amino acids: L-glutamic acid, L-alanine, L-tyrosine, and L-lysine. The peak average molecular weight of glatiramer acetate is between 5,000 and 9,000 daltons. Chemically, glatiramer acetate is designated L-glutamic acid polymer with L-alanine, L-lysine and L-tyrosine, acetate (salt). Its structural formula is:

25 $(\text{C}_5\text{H}_9\text{NO}_4 \cdot \text{C}_3\text{H}_7\text{NO}_2 \cdot \text{C}_6\text{H}_{14}\text{N}_2 \cdot \text{C}_9\text{H}_{11}\text{NO}_3)_x \cdot \text{x} \cdot \text{C}_2\text{H}_4\text{O}_2$

CAS-147245-92-9

30 [0053] As used herein "glatiramer acetate drug substance" is the glatiramer acetate active ingredient prior to its formulation into a glatiramer acetate drug product.

[0054] As used herein, a "glatiramer acetate drug product" is a formulation for pharmaceutical use which contains a glatiramer acetate drug substance. Copaxone® is a commercial glatiramer acetate drug product manufactured by TEVA Pharmaceutical Industries Ltd. (Israel), which is described in Copaxone, Food and Drug Administration Approved Labeling (Reference ID: 3443331) [online], TEVA Pharmaceutical Industries Ltd., 2014 [retrieved on December 24, 2014], Retrieved from the Internet: <URL: www.accessdata.fda.gov/drugsatfda_docs/label/2014/020622s089lbl.pdf>, the contents of which are hereby incorporated by reference. Copaxone® is available as 20mg/mL administered once per day, and/or 40mg/ml administered three times per week.

35 [0055] As used herein, a "sterilizing filter" is a filter with a pore size of 0.2 μm or less which will effectively remove microorganisms.

[0056] By any range disclosed herein, it is meant that all hundredth, tenth and integer unit amounts within the range are specifically disclosed as part of the invention. Thus, for example, 1 mg to 50 mg means that 1.1, 1.2 ... 1.9; and 2, 3 ... 49 mg unit amounts are included as embodiments of this invention.

40 [0057] This invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention as described more fully in the claims which follow thereafter.

45 **Experimental Details**

50 **Methods**

55 [0058] Glatiramer Acetate (GA) Injection 40mg/mL in a prefilled syringe (GA injection 40mg/mL in PFS or Copaxone® 40mg/mL) was developed as a new formulation of the active ingredient glatiramer acetate, which is also used in the marketed product Copaxone® 20mg/mL solution for injection in a prefilled syringe. Copaxone® 40mg/mL is to be administered three times a week by subcutaneous injection to patients with Relapsing Remitting Multiple Sclerosis. The new formulation is based on the formulation of the marketed Copaxone® 20mg/mL solution for injection in a prefilled syringe. Copaxone® 20mg/mL is an approved product, the safety and efficacy of which are supported by over two decades of clinical research and over a decade of post-marketing experience. The only difference between the formu-

lations is the double amount of the active substance used, which results in a solution with double the concentration of glatiramer acetate (40mg/mL vs. 20mg/mL). The amount of mannitol in both Copaxone® formulations remains unchanged (40mg/mL).

[0059] The compositions of Copaxone® 20mg/mL and Copaxone® 40mg/mL are detailed in Table 1.

5

Table 1. Compositions of Copaxone® 20mg/mL and Copaxone® 40mg/mL

Components	Copaxone® 20mg/mL	Copaxone® 40mg/mL
	Content per mL	
Glatiramer Acetate ¹	20.0mg	40.0mg
Mannitol USP/Ph.Eur.	40.0mg	40.0mg
Water for Injection USP/Ph.Eur/JP	q.s. to 1.0mL	q.s. to 1.0mL

15

1. Calculated on the dry basis and 100% assay

20

[0060] Studies were conducted in order to verify that the formulation of Copaxone® 40mg/mL, its manufacturing process and chemical, biological and microbiological attributes are appropriate for commercialization. Studies were also conducted to confirm the suitability of the proposed container closure system for packaging Copaxone® 40mg/mL.

25

[0061] Mannitol was chosen as the tonicity agent for the initially formulated Copaxone® (freeze dried product, reconstituted prior to administration) as it is also a bulking agent. When the currently marketed ready-to-use formulation of Copaxone® 20mg/mL solution for injection prefilled syringe was developed, mannitol was used in this formulation as well, as the osmoregulator. Finally, when the new 40mg/mL formulation was developed, based on the Copaxone® 20mg/mL formulation, mannitol remained as the osmoregulator.

30

[0062] Mannitol is widely used in parenteral formulations as an osmoregulator. It is freely soluble in water and stable in aqueous solutions. Mannitol solutions may be sterilized by filtration. In solution, mannitol is not affected by atmospheric oxygen in the absence of catalysts. The concentration of mannitol in the Copaxone® 40mg/mL is 40mg/mL. Maintaining the mannitol concentration in Copaxone® 40mg/mL resulted in an essentially isotonic solution.

35

[0063] Water for injection (WFI) is the most widely used solvent and inert vehicle in parenteral formulations. Water is chemically stable in all physical states. It is the base for many biological life forms, and its safety in pharmaceutical formulations is unquestioned.

Example 1

40

[0064] The manufacturing process of Copaxone® 40mg/mL comprises:

- Compounding a bulk solution of GA and mannitol in water for injections (WFI).
- Sterilizing filtration of the bulk solution yielding the sterile GA solution in bulk.
- Aseptic filling of sterile bulk solution into syringe barrels and stoppering.
- Inspection and final assembly of the filled syringes.

45

[0065] Initially, filtration of bulk solution from the compounding vessel was performed through a sequential filter train consisting of two sequential sterilizing filters (filters named A₁ and A₂, respectively) to a receiving vessel. From the receiving vessel it was transferred to the intermediate vessel in the filling machine and further through dosing pumps and needles into prefilled syringes. However, due to a Health Authority request to place the sterilizing filter as close as possible to the filling point, the second sterilizing filter was moved between the receiving and intermediate vessels. In the current filtration train, the first sterilizing filter was named Filter A, and the second relocated sterilizing filter was named Filter B. See, Figure 1.

50

[0066] In line with the process for the approved Copaxone® 20mg/mL formulation, all processing steps of the new Copaxone® 40mg/mL formulation were originally conducted at controlled room temperature. However, filtration of the higher concentration solution resulted in a pressure build-up on the second filter, Filter B. Despite the observed pressure increase on Filter B, a high-quality drug product could be obtained by filtration of GA 40mg/mL at controlled room temperature, as confirmed by release and stability data. Nevertheless, an improved filtration process was needed which avoided the build-up on the second filter.

[0067] Flow rate for fluids can be defined by the differential pressure, and inversely moderated by viscosity. Viscosity, in turn, is usually reciprocal in relation to temperature (Meltzer and Jornitz, Filtration and Purification in the Biopharmaceutical Industry, Second Edition, CRC Press, 2007, page 166). Increasing the temperature of a solution will normally decrease the viscosity, thereby enhancing the flow rate.

5 [0068] In an attempt to solve the pressure build-up problem on the second filter, the temperature condition of the filtration was raised above controlled room temperature. Although the viscosity decreased, the filterability decreased, resulting in a failed attempt.

[0069] The following studies were performed:

10 • Filter Validation Study: Determination of ranges for the manufacturing parameters related to sterilizing Filter A and sterilizing Filter B of the bulk solution, as well as confirmation of filter compatibility with the drug product.

• Filtration Process: Selection of the sterilizing filtration conditions best suitable for the manufacturing process and the quality of the drug product.

15

Filters Used for Copaxone® 20mg/mL and Copaxone® 40mg/mL Manufacturing

[0070] The manufacturing process of Copaxone® 40mg/mL was based on the process used to produce the marketed Copaxone® 20mg/mL solution for injection in a prefilled syringe. Therefore the same filters used for filtration of marketed product were used.

20 [0071] Two sterilizing filters were used, each of which having a pore size of 0.2 μ m or less, to effectively remove microorganisms. Sterilization is achieved only by filtration using sterilizing filters and not by using other methods, e.g. sterilization is achieved without using heat, chemicals, or radiation exposure.

25 Filter Validation Study - Confirmation and Setting of Parameters Associated with Filter Compatibility and with Sterilizing Filtration

[0072] The following tests were performed in order to confirm the filter validity:

30 • *Extractables testing* - assessment of extractables released from the filter upon steam sterilization and their removal from the filter by a model solvent, thus assessing the volume to be discarded after the filtration through the Filter B, prior to beginning of the aseptic filling.

35 • *Compatibility/adsorption testing* - assessment of the chemical compatibility of GA 20mg/mL and GA 40mg/mL solution with the filter material and the extent of its adsorption to the filter, thus assessing the volume to be discarded after the filtration through Filter B, prior to beginning of the aseptic filling in order to provide assay within specifications.

40 • *Residual effect* - To ensure that no significant residual GA 20mg/mL or GA 40mg/mL solution that might affect the post use integrity test remains on the filter after filtration.

• *Bacterial challenge* - To ensure that the filtration process does not affect the ability of the filter to provide a sterile solution.

[0073] The above tests were conducted using maximum pressure (up to 5.0 bar). The validation study demonstrated that the selected filtration system is capable of providing a high quality Copaxone® 20mg/mL and Copaxone® 40mg/mL.

[0074] Given the strict and well-defined operational and equipment parameters of the GA 40mg/mL solution filtration process, a plan to mitigate the potential increase in pressure by reducing the filtration temperature was developed.

[0075] Without much expectations, it was decided to examine the filtration process of GA 40mg/mL sterile bulk solution through Filter B under reduced temperature conditions, using the same filters and filtration train as for the filtration at controlled room temperature.

[0076] Accordingly, experiments were performed in order to compare the filtration of GA 40mg/mL sterile bulk solution through Filter B under reduced temperature and controlled room temperature in the production environment and to ensure that there is no difference with regard to the quality and stability profiles of the filtered solutions. In all experiments, the sterile bulk solution was prepared according to the standard compounding and filtration train (see Figure 1) and filtered through two filters: Filter A and Filter B.

[0077] The experiments tested two different cooling technologies (cooled receiving vessels vs heat exchanger) with cooled filter. The studies are schematically depicted in Figure 1 and Figure 2. Further details about these experiments and their outcomes are provided hereafter.

Filtration Process - Experiment No. 1

[0078] The objective of Experiment No. 1 was to compare the filterability of a batch of bulk solution held and filtered through Filter B at either controlled room temperature or under reduced temperature conditions (cooling by double-jacketed receiving vessel and cooled Filter B housing).

[0079] The study is schematically depicted in Figure 1. The experimental design and the obtained results are summarized in Table 2 and Figure 3.

Table 2. Experimental Design and Results for Experiment No. 1.

10	Experiment Outline	Reduced Temperature Filtration	Controlled Room Temperature Filtration	
15	Compounding	According to standard manufacturing procedure ¹		
20	Holding time in the receiving vessel	13 hours	13 hours	
25	Temperature of solution held in the receiving vessel	6.6-10.7°C ²	17.8-24.6°C	
30	Planned regimen for filtration though Filter B ³	<p><u>Intermittent filtration:</u></p> <p><i>Stage I</i> - 5 filtration steps of filtration of about 10 liters of bulk solution - followed by pauses of about 50 minutes each, followed by a pause of 5 hours.</p> <p><i>Stage II</i> - 4 filtration steps of filtration of about 10 liters of bulk solution - followed by pauses of about 50 minutes each, followed by a pause of about 10 hours.</p> <p><i>Stage III</i> - Filtration of remaining solution.</p>		
35	Total volume of bulk solution filtered	About 125L. Filtration was completed.	About 85 liters. Filtration was stopped due to increase in pressure on Filter B.	
40	<p>1 One bulk solution was prepared and divided into two portions. Bulk solution size: 230 liters. Filtration of solution at controlled room temperature was stopped after 85 liters have been pushed through the filter due to increased pressure and the remaining solution was transferred to the cooled receiving vessels.</p> <p>2 The temperature increased (to 14.9°C) once during the filtration following the addition of the remaining solution kept at ambient temperature.</p> <p>3 The filtrations were carried out in parallel.</p>			

[0080] Surprisingly, filtration at reduced temperature allowed filtration to be completed without the pressure increase associated with filtration at controlled room temperature.

Example 2Filtration Process - Experiment No. 2

[0081] The first objective of Experiment No. 2 was to evaluate whether local cooling of GA 40mg/mL solution using a Heat Exchanger (HE) could improve the filterability through cooled Filter B compared to filterability of the same bulk solution at controlled room temperature.

[0082] The second objective of Experiment No. 2 was to confirm that there is no difference in the quality of the drug product filled into syringes at controlled room temperature and drug product filled into syringes at reduced temperature.

[0083] Cooling by heat exchanger was evaluated as it seemed to be much easier to steam sterilize than using the double jacketed receiving vessels. The HE was located between the receiving vessel and Filter B. Consequently, as opposed to Experiment No. 1 (in which the solution was cooled by the double-jacketed receiving vessels following filtration through Filter A and kept cooled prior to filtration through Filter B), the solution in this experiment was held at controlled room temperature prior to filtration of the locally cooled (by HE) GA solution through Filter B.

[0084] The study is schematically depicted in Figure 2. The experimental design and the obtained results are summarized in Table 3. The pressure observed over the course of the filling process of Experiment No. 2 is shown in Figure 4.

Table 3. Experimental Design and Results for Experiment No. 2.

5	Experiment Outline	Reduced Temperature Filtration	Controlled Room Temperature Filtration	
10	Compounding	According to standard manufacturing procedure ¹		
15	Filtration into a receiving vessel	Filtration of all the bulk solution through Filter A into a receiving vessel held at controlled room temperature		
20	Temperature of solution held in the receiving vessel	Controlled room temperature		
25	Holding time in the receiving vessel	19 hours		
30	Planned regimen for filtration through Filter B	The solution is locally cooled as it is transferred through a HE and filtered through cooled Filter B. Three consecutive filtration and filling stages. About 3 hours break between Stage I and Stage II and about 10 hours break between Stage II and Stage III.	The solution is filtered through Filter B at controlled room temperature. Three consecutive filtration and filling stages. About 5 hours break between Stage I and Stage II and about 10 hours break between Stage II and Stage III.	
35	Temperature of solution transferred through the HE	6.4-12°C	No use of HE	
40	Duration of filtration through Filter B ²	24 hours	19 hours	
45	Temperature of solution transferred through Filter B	5.7-8.8°C	Ambient temperature	
50	Total volume of bulk solution filtered and filled into syringes	154L	63L ³	
	Storage conditions during stability studies	Long term (2-8°C) Accelerated (25°C/60% RH) - completed 6 months Stress (40°C/75%RH)- completed 3 months		
	Stability data	The stability data showed that the drug product has a similar stability profile when it is filtered at controlled room temperature or under reduced temperature conditions. Both filtration processes demonstrate similar impurity profiles.		
	1 One bulk solution was prepared and divided into two portions. Bulk solution size: 230 liters. 2 Both filtration processes (reduced and controlled room temperature) were carried out in parallel for comparison. At each stage, filtration was carried out at controlled room temperature, followed by filtration at reduced temperature. 3 Filtration of solution at controlled room temperature was stopped due to pressure increase and the remaining solution was filtered at reduced temperature.			

Example 3

Filtration Process - Experiment No. 3

[0085] One objective of Experiment No. 3 was to confirm whether cooling of GA 40mg/mL bulk solution prior to filtration, using HE and cooled filter housing, allows filtration and filling of batches of 130L size within various manufacturing

regimens.

[0086] Another objective of Experiment No. 3 was to evaluate the influence of holding time at various stages of the manufacturing process on filterability of GA 40mg/mL.

[0087] Another objective of Experiment 3 was to demonstrate with a high degree of assurance that locally cooled GA 40mg/mL solution filtered through Filter B is not different in its quality and stability profile from GA 40mg/mL solution filtered through Filter B at controlled room temperature conditions with regard to pre-determined parameters and limits.

[0088] A series of three batches of bulk solution, manufactured at various regimens, were prepared. Each bulk solution was prepared from an identical combination of the same three drug substance batches.

[0089] The experimental design and results are summarized in Table 4.

Table 4. Experimental Design and Results for Experiment No. 3

Experiment Outline	Reduced Temperature Filtration	Controlled Room Temperature Filtration	Reduced Temperature Filtration	Controlled Room Temperature Filtration
Batch No.	A	A-2 ¹	B	C
Compounding	Standard compounding	Standard compounding	Standard compounding	Standard compounding
Batch size	First 130L from bulk solution A	Remaining 50L from bulk solution A	180L	180L
Holding time in the compounding vessel ²	4 hours	4 hours (same bulk solution as A)	8 hours	3.5 hours
Holding time in the receiving vessel ³	1.5 hours	10.5 hours ⁴	16 hours	13 hours
Duration of filtration through Filter B	7 hours	3 hours	19.5 hours	13 hours
Total duration of entire process (total holding time)	12.5 hours	17.5 hours	43.5 hours	29.5 hours
Temperature range before Filter B	10.4-12.2°C	Controlled room temperature	10.2-11.7°C	Controlled room temperature
Temperature range after Filter B	9.3-11.0°C	Controlled room temperature	9.0-10.2°C	Controlled room temperature
Maximum pressure before Filter B	0.6 bar	0.3 bar	0.6 bar	2.5 bar ⁵
Total volume filled into syringes	130L	50L	180L	134L
Storage conditions during stability studies	Long term (2-8°C) Accelerated (25°C/60%RH) Stress (40°C/60%RH)	Stress (40°C/60%RH)	Long term (2-8°C) Accelerated (25°C/60%RH) Stress (40°C/60%RH)	Long term (2-8°C) Accelerated (25°C/60%RH) Stress (40°C/60%RH)

(continued)

5	Experiment Outline	Reduced Temperature Filtration	Controlled Room Temperature Filtration	Reduced Temperature Filtration	Controlled Room Temperature Filtration
10	Stability data and conclusions	Stability data showed that the drug product has a similar stability profile at all three storage conditions, regardless of whether it is filtered at controlled room temperature or under reduced temperature conditions. Both filtration processes result in product having substantially the same degradation and impurity profile at stress conditions.			
15		1 Batches A and A-2 are from the same bulk solution. Filter B was replaced with a new filter prior to filtration of A-2. 2 Compounding and subsequent holding time in the compounding vessel (incl. filtration through filter A). 3 Time from end of filtration through Filter A to beginning of filtration through Filter B and filling. 4 Since A-2 was filtered and filled into syringes subsequent to the filtration and filling of A, the stated holding time represents the sum of the holding time of A in addition to the time A-2 was held until the filtration at controlled room temperature was initiated. 5 Throughout the filling, gradual increase of filtration pressure was required in order to maintain flow rate that would correspond to the rate required for continuous filling.			
20		[0090] Based on the results of Experiment No. 3, it was confirmed that local cooling by heat exchanger is sufficient in order to enable filtration of a 130L batch. In addition, the quality and stability profile of GA 40mg/mL solutions filtered at controlled room temperature and reduced temperature were found to be substantially identical.			
25					

[0090] Based on the results of Experiment No. 3, it was confirmed that local cooling by heat exchanger is sufficient in order to enable filtration of a 130L batch. In addition, the quality and stability profile of GA 40mg/mL solutions filtered at controlled room temperature and reduced temperature were found to be substantially identical.

Example 4

[0091] Cooling of GA 40mg/mL bulk solution below 17.5°C in the compounding vessel before passing through cooled Filter A and cooled Filter B in sequence (see Figure 6) results in lower pressure during the filtration step of both Filter A and Filter B as compared to the holding the same bulk solution in the compounding vessel and passing it through Filter A and Filter B at controlled room temperature (Cooling of the bulk solution by using double jacketed compounding vessel and cooling the filters by using double jacketed filter housings).
[0092] Reducing the temperature of the GA 40mg/mL bulk solution in the compounding vessel and passing it through cooled Filter A and Filter B in sequence (see Figure 6) significantly reduces impairment of filterability caused by the total duration of the process (holding time) as well as by filtering larger volume, compared to the same bulk solution held and filtered under controlled room temperature.

Example 5

[0093] Local cooling of GA 40mg/mL bulk solution by a heat exchanger and passing the solution through cooled Filter A and cooled Filter B in sequence (see Figure 7) results in lower pressure during the filtration step of both Filter A and Filter B as compared to passing the same bulk solution held and filtered under controlled room temperature.
[0094] Reducing the temperature of the GA 40mg/mL bulk solution using a heat exchanger and passing it through cooled Filter A and cooled Filter B in sequence (see Figure 7) significantly reduces impairment of filterability caused by the total duration of the process (holding time) as well as by filtering larger volume, compared to the same bulk solution held and filtered under controlled room temperature.

Example 6

[0095] Passing the sterilized GA 40mg/mL bulk solution from the receiving vessel through cooled Filter B (see Figure 8) significantly results in lower pressure during the filtration step compared to passing the same bulk solution filtered through Filter B under controlled room temperature.
[0096] Passing the sterilized GA 40mg/mL bulk solution from the receiving vessel through cooled Filter B (see Figure 8) significantly reduces impairment of filterability caused by the total duration of the process (holding time) as well as by filtering larger volume, compared to the same bulk solution held and filtered under controlled room temperature.

Example 7

[0097] Passing GA 40mg/mL bulk solution from the compounding vessel through cooled Filter A and cooled Filter B

in sequence (see Figure 9) results in lower pressure during the filtration step of both Filter A and Filter B as compared to passing the same bulk solution filtered under controlled room temperature.

[0098] Passing GA 40mg/mL bulk solution from the receiving vessel through cooled Filter A and Filter B in sequence (see Figure 9) significantly reduces impairment of filterability caused by the total duration of the process (holding time) as well as by filtering larger volume, compared to the same bulk solution filtered under controlled room temperature.

Example 8

[0099] Cooling of GA 40mg/mL bulk solution below 17.5°C in the compounding vessel before passing through Filter A and Filter B in sequence (see Figure 10) results in lower pressure during the filtration step of both Filter A and Filter B as compared to the holding the same bulk solution in the compounding vessel and passing it through Filter A and Filter B at controlled room temperature (Cooling of the bulk solution by using double jacketed compounding vessel).

[0100] Reducing the temperature of the GA 40mg/mL bulk solution in the compounding vessel and passing it through Filter A and Filter B in series (see Figure 10) significantly reduces impairment of filterability caused by the total duration of the process (holding time) as well as by filtering larger volume, compared to the same bulk solution held and under controlled room temperature.

Example 9

[0101] Cooling of GA 40mg/mL bulk solution below 17.5°C in the receiving vessel before passing through Filter B (see Figure 11) results in lower pressure during the filtration step of Filter B as compared to the holding the same bulk solution in the compounding vessel at controlled room temperature (Cooling of the bulk solution by using double jacketed compounding vessel).

[0102] Reducing the temperature of the GA 40mg/mL bulk solution in the receiving vessel (see Figure 10) significantly reduces impairment of filterability caused by the total duration of the process (holding time) as well as by filtering larger volume, compared to the same bulk solution held under controlled room temperature.

Discussion of Examples 1-9

[0103] Reducing the temperature of GA 40mg/mL sterile bulk solution significantly improved its filterability, as demonstrated by the much lower increase in pressure on Filter B during filtration and filling and by the larger volume that can be filtered at reduced temperature. Pressure increases were observed when the sterile bulk solution was held and filtered at controlled room temperature, while there was no significant increase in the pressure when the solution was filtered under reduced temperature conditions.

[0104] The holding time of the bulk solution during filtration through Filter B negatively affects the filterability of the solution. However, the total duration of the process (holding time) impaired the filterability significantly less when filtration was performed under reduced temperature conditions. Consequently, longer holding time can be used with reduced temperature filtration.

[0105] Both cooling of the solution by passing it through a heat exchanger (local cooling) and/or cooling of the whole bulk (e.g. by double-jacketed receiving vessel) before filtration through cooled Filters A or B or A and B were found to be suitable solutions for reduced temperature filtration.

[0106] Accumulated stability data indicate that there is no substantial difference with regard to quality and stability profile between the solution filtered under reduced temperature conditions and the solution filtered at controlled room temperature.

[0107] In sum, the performed experiments show that reduced temperature filtration through Filter B significantly improved the filterability of GA 40mg/mL solution compared to the filterability of the solution when filtered at controlled room temperature. Moreover, reducing the temperature of the bulk solution during the compounding stage or before passing through Filter A, or reducing the temperature of Filter A also improves the filterability of GA 40mg/mL solution compared to the filterability of the solution at controlled room temperature.

[0108] Consequently, the proposed manufacturing process for commercial batches of GA 20mg/mL and GA 40mg/mL includes cooling of the solution prior to filtration of the bulk solution through Filter B.

Example 10

55 *Container Closure System*

[0109] The container closure systems selected for the Copaxone® 40mg/mL are the same as those used for the marketed product Copaxone® 20mg/mL PFS. The container closure system consists of a colorless glass barrel, a plastic

plunger rod and a grey rubber stopper.

Long Term and Accelerated Stability Studies

5 [0110] Satisfactory stability data after up to 36 months storage under long-term storage conditions ($5^{\circ}\text{C} \pm 3^{\circ}\text{C}$) and after 6 months storage under accelerated conditions ($25^{\circ} \pm 2^{\circ}\text{C}/60 \pm 5\% \text{ RH}$) are available. The data demonstrate that the proposed container closure systems are suitable for protection and maintenance of the drug product quality throughout its proposed shelf-life.

10 Protection from Light

[0111] Marketed Copaxone® should be stored protected from light. Based on this recommendation, it is proposed that Copaxone® 40mg/mL be similarly packed in PVC transparent blisters inside a carton box, which provides light protection. The light protection of the proposed packaging when used for the Copaxone® 40mg/mL is recommended in accordance with the results obtained from a photostability study comparing the following packaging configurations:

1. Glass barrel syringe and plunger rod (Primary package);
 Glass barrel syringe and plunger rod in a transparent blister (partial secondary package);
 Glass barrel syringe and plunger rod in a transparent blister inside carton box (complete intended packaging configuration).
 20

[0112] As a reference, the following configurations were added:

25 2. Glass barrel syringe and plunger rod wrapped in aluminum foil;
 Glass barrel and plunger rod in a transparent blister wrapped in aluminum foil.

[0113] All packages were simultaneously exposed to standardized sunlight (5 KLUX) for 10 days and to near UV light for additional 5 days.

[0114] All the obtained results from the photostability study are within the specifications. However, the impurity peak detected is lower when the drug product is packed in its complete packaging configuration. The carton box was shown to improve the photostability and gives light protection as good as that of aluminum foil, which is regarded as a complete light protector. The intended packaging configuration is therefore considered suitable for its use.
 30

[0115] A storage statement to protect the product from light exposure should be added to the product label.

35 Microbiological Attributes

[0116] The medicinal product is a sterile, single dose, parenteral dosage form. Sterilization is achieved by sterile filtration.

[0117] A microbial limits test is performed for the drug substance. The sterility and bacterial endotoxins are monitored upon release and throughout stability studies of the drug product, using pharmacopoeia methods. The limits applied are identical to those applied for the marketed Copaxone®.
 40

[0118] The same container closure systems are used for the Copaxone® 20mg/mL and Copaxone® 40mg/mL. The integrity testing studies performed to demonstrate the efficacy of the container closure systems on use for the marketed product are also considered relevant for Copaxone® 40mg/mL.

45

Example 11

Viscosity

50 [0119] The average viscosity of batches of Copaxone® 20mg/mL filtered under controlled room temperature and the average viscosity of batches of Copaxone® 40mg/mL filtered under reduced temperature were obtained and compared. The average viscosity of different batches of Copaxone® 20mg/mL filtered under controlled room temperature are reported in Table 5. The average viscosity of different batches of Copaxone® 40mg/mL filtered under reduced temperature are reported in Table 6.

55

Table 5. Viscosity of Batches of Copaxone® 20mg/mL Filtered Under Controlled Room Temperature

Batch No.	Average Viscosity [cPa]	Standard Deviation
1	1.92 ¹	0.03
2	1.58 ¹	0.00
3	1.58 ¹	0.00
4	1.57 ²	0.00
5	1.67 ²	0.01
Water for Injection	0.93 ²	0.00
Average	1.664	

1 Each value is an average of 3 individual results. Values obtained using Rheocalc V2.5 Model LV, Spindle CP40, speed 80 rpm, Shear Rate 600 1/sec, Temperature 25°C±0.1
 2 Each value is an average of 6 individual results. Values obtained using Rheocalc V2.5 Model LV, Spindle CP40, speed 80 rpm, Shear Rate 600 1/sec, Temperature 25°C±0.1

Table 6. Viscosity of Batches of Copaxone® 40mg/mL Filtered Under Reduced Temperature

Batch No.	Average Viscosity [cPa] ¹	Standard Deviation
1	2.82	0.000
2	2.92	0.008
3	2.91	0.010
4	2.61	0.012
5	2.61	0.004
6	2.73	0.021
7	2.61	0.016
Average	2.743	0.007

1 Each value is an average of 6 individual results. Values obtained using Rheocalc V2.5 Model LV, Spindle CP40, speed 80 rpm, Shear Rate 600 1/sec, Temperature 25°C±0.1

Osmolality

[0120] The osmolality of batches of Copaxone® 20mg/mL filtered under controlled room temperature and the osmolality of batches of Copaxone® 40mg/mL filtered under reduced temperature were measured. Samples from each batch were tested in triplicates. The results are reported in Table 7.

Table 7. Osmolality of Batches of Copaxone® 20mg/mL Filtered Under Controlled Room Temperature and Batches of Copaxone® 40mg/mL Filtered Under Reduced Temperature

Batch No.	GA Dose	Mannitol Dose	Average Osmolality	Relative Standard Deviation (RSD)
Copaxone® 40mg/mL No. 1	40 mg/ml	40 mg/ml	303 mosmol/Kg	1.2
Copaxone® 40mg/mL No. 2	40 mg/ml	40 mg/ml	300 ¹ mosmol/Kg	1.7
Copaxone® 40mg/mL No. 3	40 mg/ml	40 mg/ml	302 mosmol/Kg	2.1

(continued)

	Batch No.	GA Dose	Mannitol Dose	Average Osmolality	Relative Standard Deviation (RSD)
5	Copaxone® 20mg/mL No. 1	20 mg/ml	40 mg/ml	268 mosmol/Kg	2.6
	Copaxone® 20mg/mL No. 2	20 mg/ml	40 mg/ml	264 mosmol/Kg	1.2
10	Placebo	0 mg/ml	40 mg/ml	227 mosmol/Kg	0
1 Calculated from 4 measurements.					

[0121] The results show that the osmolality of batches of Copaxone® 40mg/mL were well within the ranges of an isotonic solution. The results also show that the batches of Copaxone® 40mg/mL conformed to the general parenteral drug product osmolality limits of 300 ± 30 mosmol/Kg. Further, the results indicate that batches of Copaxone® 20mg/mL were slightly hypotonic.

20 Claims

1. A process of preparing a pharmaceutical preparation of glatiramer acetate and mannitol in a suitable container comprising the steps of:
 - (i) obtaining an aqueous pharmaceutical solution of glatiramer acetate and mannitol;
 - (ii) filtering the aqueous pharmaceutical solution at a temperature from above 0°C up to 17.5°C to produce a filtrate; and
 - (iii) filling the suitable container with the filtrate obtained after performing step (ii), so as to thereby prepare the pharmaceutical preparation of glatiramer acetate and mannitol in the suitable container.
2. The process of claim 1, wherein the filtering step (ii) comprises filtering the aqueous pharmaceutical solution through a first filter, or a first filter and a second filter.
3. The process of claim 2 further comprising the step of reducing the temperature of the second filter to a temperature from above 0°C up to 17.5°C.
4. The process of claim 2 or claim 3 further comprising the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C before passing through the second filter.
5. The process of any one of claims 2-4, wherein the filtering step (ii) further comprises the step of receiving the aqueous pharmaceutical solution filtered through the first filter in a receiving vessel, and further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C after leaving the receiving vessel and before entering into the second filter.
6. The process of any one of claims 2-5, wherein the filtering step (ii) further comprises the step of receiving the aqueous pharmaceutical solution filtered through the first filter in a receiving vessel, and further comprises the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C while in the receiving vessel.
7. The process of any one of claims 2-6 further comprising the step of reducing the temperature of the first filter to a temperature from above 0°C up to 17.5°C.
8. The process of any one of claims 2-7 further comprising the step of reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C before passing through the first filter.
9. The process of any one of claims 2-8, wherein the obtaining step (i) comprises
 - (a) compounding the aqueous pharmaceutical solution in a compounding vessel;

(b) compounding the aqueous pharmaceutical solution in a compounding vessel and reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C after leaving the compounding vessel and before entering into the first filter; or
 5 (c) compounding the aqueous pharmaceutical solution in a compounding vessel and reducing the temperature of the aqueous pharmaceutical solution to a temperature from above 0°C up to 17.5°C while in the compounding vessel.

10. The process of any one of claims 1-9, wherein

10 (a) the filtering step (ii) comprises filtering the aqueous pharmaceutical solution through a first filter, or a first filter and a second filter, and wherein the aqueous pharmaceutical solution is passed through the second filter at a rate of 3-25 liters/hour; at a rate of 3-22 liters/hour; at a rate of 3-15 liters/hour; or at a rate of 3-10 liters/hour;
 (b) the pressure during the filtering step (ii) and the pressure during the filling step (iii) is maintained below 5.0 bar; or below 3.0 bar; or below 2.0 bar; or
 15 (c) the filtering step (ii) comprises filtering the aqueous pharmaceutical solution through a first filter, or a first filter and a second filter, and wherein the filtering is performed using a sterilizing filter having a pore size of 0.2 μ m or less, wherein the first, the second or both filters are a sterilizing filter having a pore size of 0.2 μ m or less.

20. The process of any one of claims 1-10, wherein

20 (a) the temperature of the aqueous pharmaceutical solution is between 0°C and 14°C, or between 0°C and 12°C, or between 2°C and 12°C, or between 4°C and 12°C; or
 (b) the temperature of the aqueous pharmaceutical solution is reduced to a temperature between 0°C and 14°C, or between 0°C and 12°C, or between 2°C and 12°C, or between 4°C and 12°C.

25. The process of any one of claims 1-11, wherein

30 (i) the pharmaceutical preparation in the suitable container is an aqueous pharmaceutical solution comprising 20mg/ml glatiramer acetate and 40mg/ml mannitol, or 40mg/ml glatiramer acetate and 40mg/ml mannitol, or
 (ii) the pharmaceutical preparation in the suitable container is an aqueous pharmaceutical solution having a pH in the range of 5.5-7.0.

35. The process of any one of claims 1-12, wherein the pharmaceutical preparation in the suitable container is an aqueous pharmaceutical solution which is a sterilized aqueous solution which has been sterilized by filtration and without subjecting the aqueous pharmaceutical solution to heat, chemicals, or radiation exposure.

40. The process of any one of claims 1-11, wherein the pharmaceutical preparation is a lyophilized powder of glatiramer acetate and mannitol, and the process further comprises a step of lyophilizing the filtrate after it has been filled into the suitable container so as to form a lyophilized powder of glatiramer acetate and mannitol in the suitable container.

45. The process of any one of claims 1-14, wherein

(a) the suitable container is a syringe, vial, ampoule, cartridge or infusion; or
 (b) the suitable container is a syringe, wherein the syringe contains 1ml of an aqueous pharmaceutical solution.

Patentansprüche

50. 1. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung von Glatirameracetat und Mannitol in einem geeigneten Behälter umfassend die Schritte:

(i) Erhalten einer wässrigen pharmazeutischen Lösung von Glatirameracetat und Mannitol;
 (ii) Filtern der wässrigen pharmazeutischen Lösung bei einer Temperatur von über 0°C bis 17,5°C, um ein Filtrat herzustellen; und
 55 (iii) Füllen des geeigneten Behälters mit dem nach der Durchführung des Schrittes (ii) erhaltenen Filtrats, um dadurch die pharmazeutische Zusammensetzung von Glatirameracetat und Mannitol in dem geeigneten Behälter herzustellen.

2. Verfahren nach Anspruch 1, wobei der Filtrierschritt (ii) das Filtern der wässrigen pharmazeutischen Lösung durch einen ersten Filter, oder einen ersten Filter und einen zweiten Filter umfasst.
3. Verfahren nach Anspruch 2, weiterhin umfassend den Schritt des Herabsetzens der Temperatur des zweiten Filters auf eine Temperatur von über 0°C bis 17,5°C.
4. Verfahren nach Anspruch 2 oder Anspruch 3, weiterhin umfassend den Schritt des Herabsetzens der Temperatur der wässrigen pharmazeutischen Lösung auf eine Temperatur von über 0°C bis 17,5°C, bevor sie den zweiten Filter passiert.
5. Verfahren nach einem der Ansprüche 2-4, wobei der Filtrierschritt (ii) weiterhin den Schritt der Aufnahme der durch den ersten Filter gefilterten wässrigen pharmazeutischen Lösung in ein Aufnahmegeräß umfasst, und weiterhin den Schritt des Herabsetzens der Temperatur der wässrigen pharmazeutischen Lösung auf eine Temperatur von über 0°C bis 17,5°C umfasst, nachdem sie das Aufnahmegeräß verlassen hat und bevor sie in den zweiten Filter eintritt.
10. Verfahren nach einem der Ansprüche 2-5, wobei der Filtrierschritt (ii) weiterhin den Schritt der Aufnahme der durch den ersten Filter gefilterten wässrigen pharmazeutischen Lösung in ein Aufnahmegeräß umfasst, und weiterhin den Schritt des Herabsetzens der Temperatur der wässrigen pharmazeutischen Lösung auf eine Temperatur von über 0°C bis 17,5°C umfasst, während sie in dem Aufnahmegeräß ist.
15. Verfahren nach einem der Ansprüche 2-6, weiterhin umfassend den Schritt des Herabsetzens der Temperatur des ersten Filters auf eine Temperatur von über 0°C bis 17,5°C.
20. Verfahren nach einem der Ansprüche 2-7, weiterhin umfassend den Schritt des Herabsetzens der Temperatur der wässrigen pharmazeutischen Lösung auf eine Temperatur von über 0°C bis 17,5°C, bevor sie den ersten Filter passiert.
25. Verfahren nach einem der Ansprüche 2-8, wobei der Schritt des Erhaltens (i) umfasst
 30. (a) Compoundieren der wässrigen pharmazeutischen Lösung in einem Compoundiergefäß; (b) Compoundieren der wässrigen pharmazeutischen Lösung in einem Compoundiergefäß und Herabsetzen der Temperatur der wässrigen pharmazeutischen Lösung auf eine Temperatur von über 0°C bis 17,5°C, nachdem sie das Compoundiergefäß verlassen hat und bevor sie in den ersten Filter eintritt; oder (c) Compoundieren der wässrigen pharmazeutischen Lösung in einem Compoundiergefäß und Herabsetzen der Temperatur der wässrigen pharmazeutischen Lösung auf eine Temperatur von über 0°C bis 17,5°C, während sie in dem Compoundiergefäß ist.
35. 10. Verfahren nach einem der Ansprüche 1-9, wobei
 40. (a) der Filtrierschritt (ii) das Filtern der wässrigen pharmazeutischen Lösung durch einen ersten Filter, oder einen ersten Filter und einen zweiten Filter umfasst, und wobei die wässrige pharmazeutische Lösung durch den zweiten Filter mit einer Rate von 3-25 Litern/Stunde; mit einer Rate von 3-22 Litern/Stunde; mit einer Rate von 3-15 Litern/Stunde; oder mit einer Rate von 3-10 Litern/Stunde geleitet wird; (b) der Druck während des Filtrierschritts (ii) und der Druck während des Füllungsschritts (iii) unter 5,0 bar; oder unter 3,0 bar; oder unter 2,0 bar gehalten wird; oder (c) der Filtrierschritt (ii) das Filtern der wässrigen pharmazeutischen Lösung durch einen ersten Filter, oder einen ersten Filter und einen zweiten Filter umfasst, und wobei das Filtern unter Verwendung eines sterilisierenden Filters mit einer Porengröße von 0,2 µm oder weniger durchgeführt wird, wobei der erste, der zweite oder beide Filter sterilisierende Filter mit einer Porengröße von 0,2 µm oder weniger sind.
45. 11. Verfahren nach einem der Ansprüche 1-10, wobei
 50. (a) die Temperatur der wässrigen pharmazeutischen Lösung zwischen 0°C und 14°C, oder zwischen 0°C und 12°C, oder zwischen 2°C und 12°C, oder zwischen 4°C und 12°C liegt; oder (b) die Temperatur der wässrigen pharmazeutischen Lösung auf eine Temperatur zwischen 0°C und 14°C, oder zwischen 0°C und 12°C, oder zwischen 2°C und 12°C, oder zwischen 4°C und 12°C, herabgesetzt wird.
55. 12. Verfahren nach einem der Ansprüche 1-11, wobei

(i) die pharmazeutische Zusammensetzung in dem geeigneten Behälter eine wässrige pharmazeutische Lösung umfassend 20 mg/ml Glatirameracetat und 40 mg/ml Mannitol, oder 40 mg/ml Glatirameracetat und 40 mg/ml Mannitol ist; oder
5 (ii) die pharmazeutische Zusammensetzung in dem geeigneten Behälter eine wässrige pharmazeutische Lösung mit einem pH in dem Bereich von 5,5-7,0 ist.

10 13. Verfahren nach einem der Ansprüche 1-12, wobei die pharmazeutische Zusammensetzung in dem geeigneten Behälter eine wässrige pharmazeutische Lösung ist, die eine sterilisierte wässrige Lösung ist, die durch Filtration und ohne dass die wässrige pharmazeutische Lösung Hitze, Chemikalien oder Strahlenexposition ausgesetzt wurde, sterilisiert wurde.

15 14. Verfahren nach einem der Ansprüche 1-11, wobei die pharmazeutische Zusammensetzung ein lyophilisiertes Pulver von Glatirameracetat und Mannitol ist, und wobei das Verfahren weiterhin einen Schritt des Lyophilisierens des Filtrats umfasst, nachdem es in den geeigneten Behälter gefüllt wurde, um ein lyophilisiertes Pulver von Glatirameracetat und Mannitol in dem geeigneten Behälter zu bilden.

15 15. Verfahren nach einem der Ansprüche 1-14, wobei

20 (a) der geeignete Behälter eine Spritze, ein Fläschchen, eine Ampulle, eine Kartusche oder eine Infusion ist; oder
(b) der geeignete Behälter eine Spritze ist, wobei die Spritze 1 ml einer wässrigen pharmazeutischen Lösung enthält.

Revendications

25 1. Procédé de préparation d'une préparation pharmaceutique d'acétate de glatiramère et de mannitol dans un contenant approprié comprenant les étapes :

30 (i) d'obtention d'une solution pharmaceutique aqueuse d'acétate de glatiramère et de mannitol ;
(ii) de filtration de la solution pharmaceutique aqueuse à une température allant de plus de 0°C jusqu'à 17,5°C pour produire un filtrat ; et
(iii) de remplissage du contenant approprié avec le filtrat obtenu après réalisation de l'étape (ii), de manière à préparer ainsi la préparation pharmaceutique d'acétate de glatiramère et de mannitol dans le contenant approprié.

35 2. Procédé selon la revendication 1, où l'étape de filtration (ii) comprend la filtration de la solution pharmaceutique aqueuse à travers un premier filtre, ou un premier filtre et un second filtre.

40 3. Procédé selon la revendication 2 comprenant en outre l'étape de réduction de la température du second filtre à une température allant de plus de 0°C jusqu'à 17,5°C.

45 4. Procédé selon la revendication 2 ou la revendication 3 comprenant en outre l'étape de réduction de la température de la solution pharmaceutique aqueuse à une température allant de plus de 0°C jusqu'à 17,5°C avant le passage à travers le second filtre.

50 5. Procédé selon l'une quelconque des revendications 2-4, où l'étape de filtration (ii) comprend en outre l'étape de réception de la solution pharmaceutique aqueuse filtrée à travers le premier filtre dans un récipient récepteur, et comprend en outre l'étape de réduction de la température de la solution pharmaceutique aqueuse à une température allant de plus de 0°C jusqu'à 17,5°C après le départ du récipient récepteur et avant l'entrée dans le second filtre.

55 6. Procédé selon l'une quelconque des revendications 2-5, où l'étape de filtration (ii) comprend en outre l'étape consistant à recevoir la solution pharmaceutique aqueuse filtrée à travers le premier filtre dans un récipient récepteur, et comprend en outre l'étape de réduction de la température de la solution pharmaceutique aqueuse à une température allant de plus de 0°C jusqu'à 17,5°C tandis qu'elle se trouve dans le récipient récepteur.

55 7. Procédé selon l'une quelconque des revendications 2-6 comprenant en outre l'étape de réduction de la température du premier filtre à une température allant de plus de 0°C jusqu'à 17,5°C.

8. Procédé selon l'une quelconque des revendications 2-7 comprenant en outre l'étape consistant à réduire la température de la solution pharmaceutique aqueuse à une température allant de plus de 0°C jusqu'à 17,5°C avant le passage à travers le premier filtre.

5 9. Procédé selon l'une quelconque des revendications 2-8, où l'étape d'obtention (i) comprend

(a) le mélange de la solution pharmaceutique aqueuse dans un récipient mélangeur ;
(b) le mélange de la solution pharmaceutique aqueuse dans un récipient de mélange et la réduction de la température de la solution pharmaceutique aqueuse à une température allant de plus de 0°C jusqu'à 17,5°C 10 après le départ du récipient de mélange et l'entrée dans le premier filtre ; ou
(c) le mélange de la solution pharmaceutique aqueuse dans un récipient de mélange et la réduction de la température de la solution pharmaceutique aqueuse à une température allant de plus de 0°C jusqu'à 17,5°C pendant qu'elle se trouve dans le récipient de mélange.

15 10. Procédé selon l'une quelconque des revendications 1 à 9, où

(a) l'étape de filtration (ii) comprend la filtration de la solution pharmaceutique aqueuse à travers un premier filtre, ou un premier filtre et un second filtre, et où la solution pharmaceutique aqueuse est passée à travers le second filtre à un débit de 3-25 litres/heure ; à un débit de 3-22 litres/heure ; à un débit de 3-15 litres/heure ; 20 ou à un débit de 3-10 litres/heure ;
(b) la pression pendant l'étape de filtration (ii) et la pression pendant l'étape de remplissage (iii) sont maintenues en dessous de 5,0 bar ; ou en dessous de 3,0 bars ; ou en dessous de 2,0 bars ; ou
(c) l'étape de filtration (ii) comprend la filtration de la solution pharmaceutique aqueuse par l'intermédiaire d'un 25 premier filtre, ou d'un premier filtre et d'un second filtre, et où la filtration est effectuée en utilisant un filtre stérilisant présentant une taille de pores de 0,2 µm ou moins, où le premier, le second ou les deux filtres sont des filtres stérilisants présentant une taille de pore de 0,2 µm ou moins.

11. Procédé selon l'une quelconque des revendications 1 à 10, où

30 (a) la température de la solution pharmaceutique aqueuse est comprise entre 0°C et 14°C, ou entre 0°C et 12°C, ou entre 2°C et 12°C, ou entre 4°C et 12°C ; ou
(b) la température de la solution pharmaceutique aqueuse est réduite à une température comprise entre 0°C et 14°C, ou entre 0°C et 12°C, ou entre 2°C et 12°C, ou entre 4°C et 12°C.

35 12. Procédé selon l'une quelconque des revendications 1 à 11, où

(i) la préparation pharmaceutique dans le contenant approprié est une solution pharmaceutique aqueuse comprenant 20 mg/ml d'acétate de glatiramère et 40 mg/ml de mannitol, ou 40 mg/ml d'acétate de glatiramère et 40 mg/ml de mannitol, ou
40 (ii) la préparation pharmaceutique dans le récipient approprié est une solution pharmaceutique aqueuse présentant un pH dans une plage de 5,5-7,0.

13. Procédé selon l'une quelconque des revendications 1 à 12, où la préparation pharmaceutique dans le contenant approprié est une solution pharmaceutique aqueuse qui est une solution aqueuse stérilisée qui a été stérilisée par filtration et sans soumettre la solution pharmaceutique aqueuse à de la chaleur, à des produits chimiques, ou à une exposition au rayonnement.

45 14. Procédé selon l'une quelconque des revendications 1 à 11, où la préparation pharmaceutique est une poudre lyophilisée d'acétate de glatiramère et de mannitol, et le procédé comprend en outre une étape de lyophilisation du filtrat après qu'il a été introduit dans le contenant approprié de manière à former une poudre lyophilisée d'acétate de glatiramère et de mannitol dans le contenant approprié.

50 15. Procédé selon l'une quelconque des revendications 1 à 14, où

(a) le contenant approprié est une seringue, un flacon, une ampoule, une cartouche ou une perfusion ; ou
(b) le contenant approprié est une seringue, où la seringue contient 1 ml d'une solution pharmaceutique aqueuse.

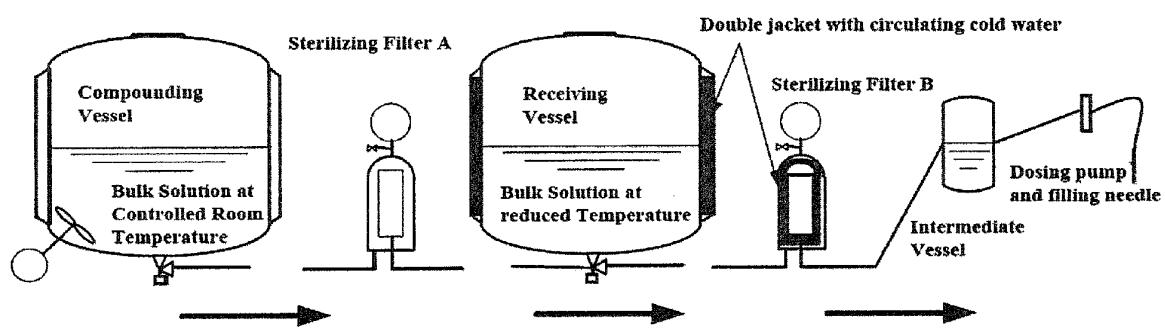


Figure 1

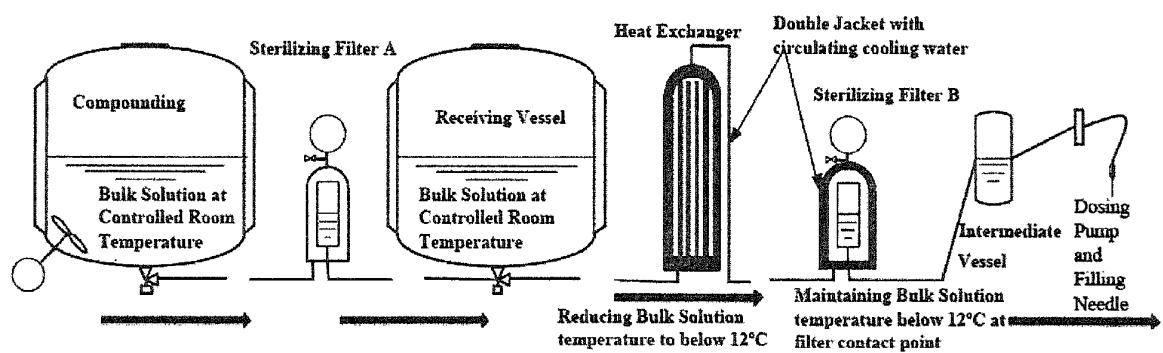


Figure 2

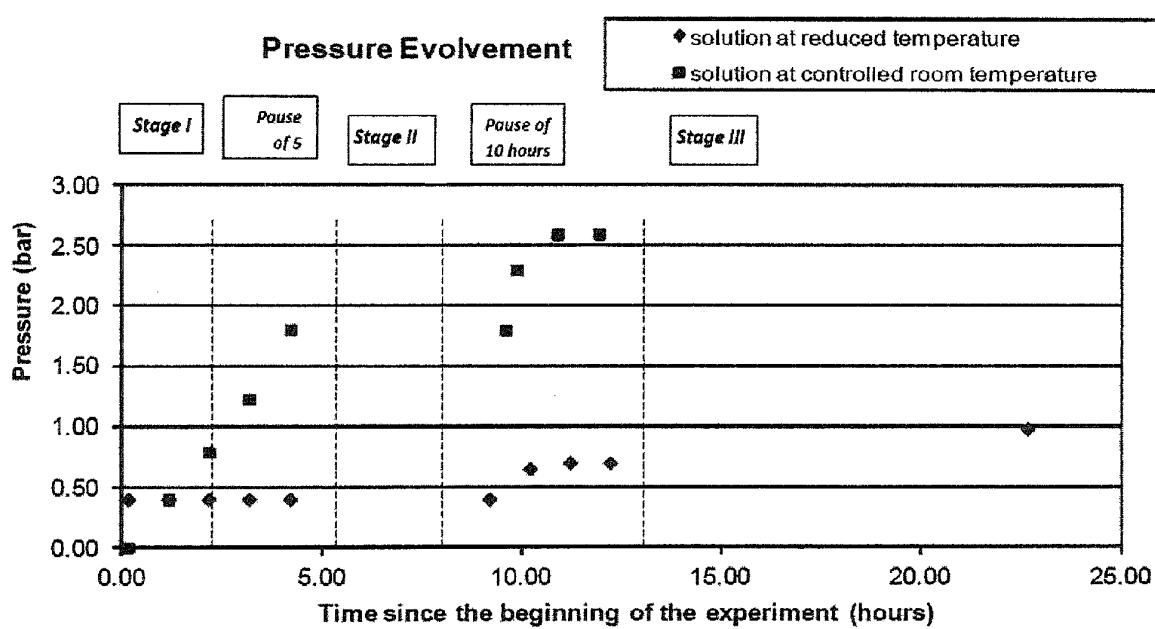


Figure 3

Pressure - Reduced Temperature vs Controlled Room Temperature

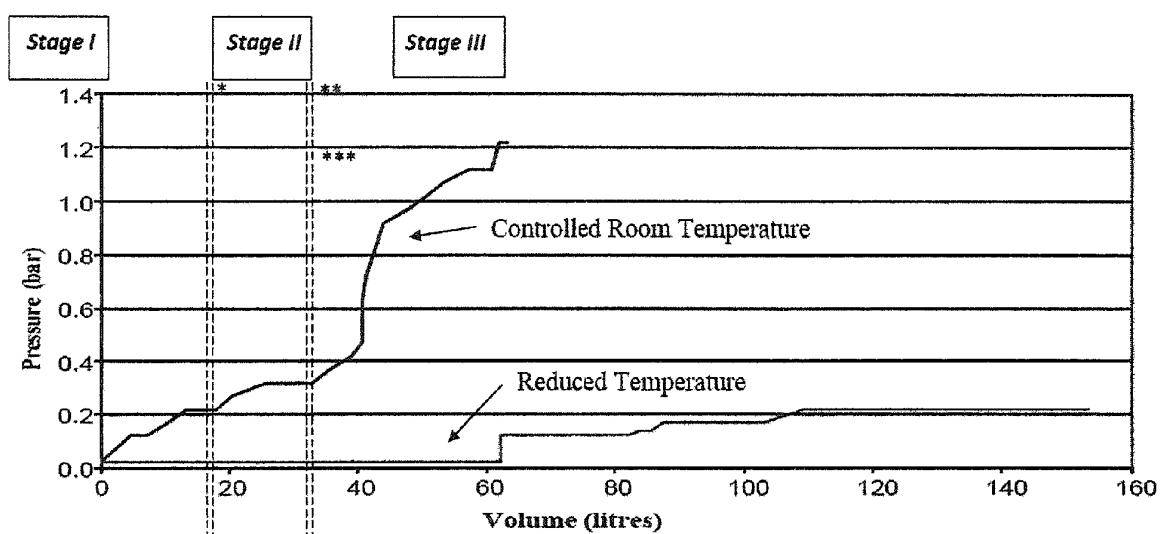


Figure 4

**Comparison of Controlled Room Temperature vs Reduced Temperature Filtration
within 24 Hours Time Limitation**

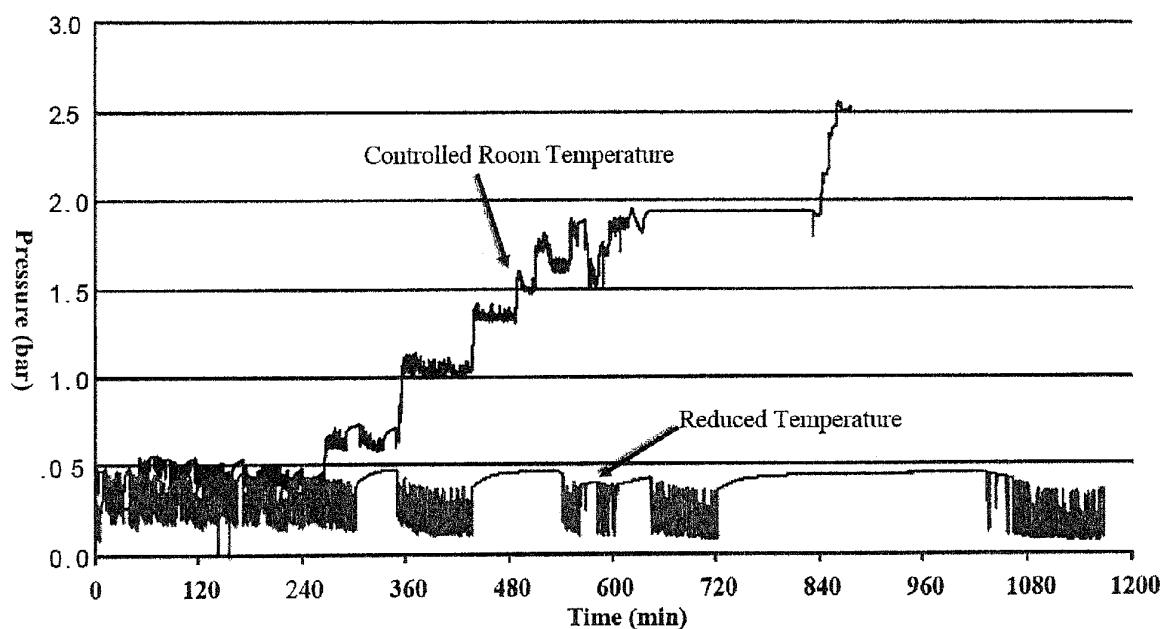


Figure 5

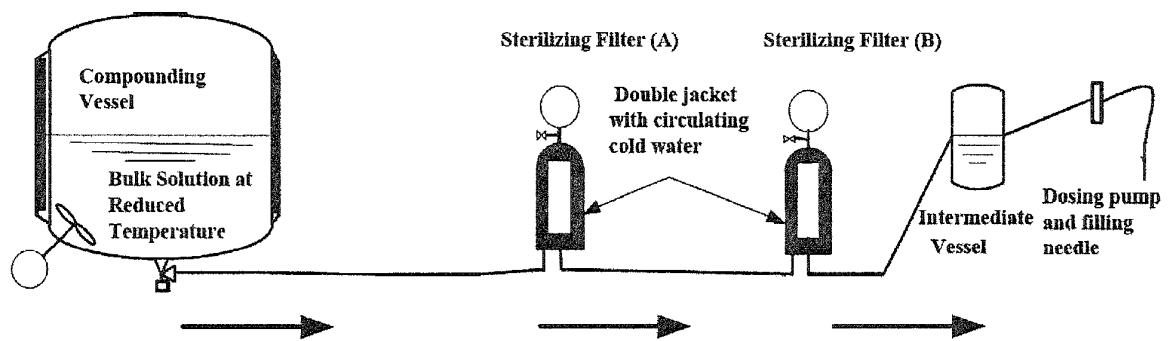


Figure 6

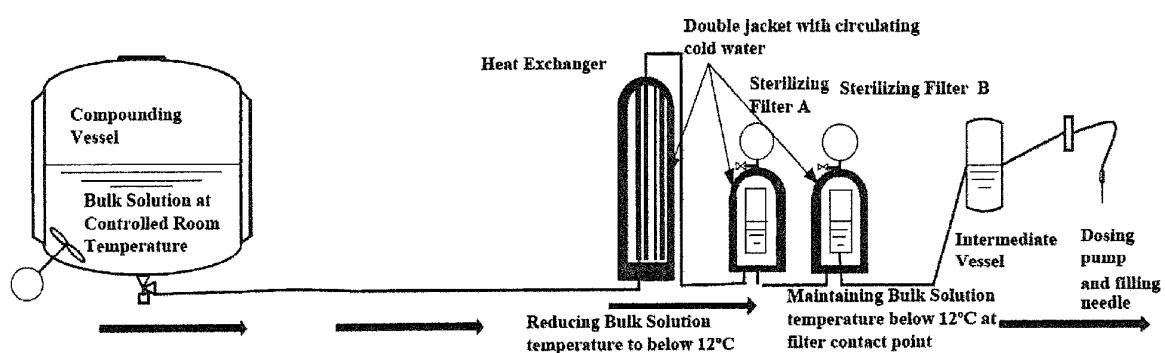


Figure 7

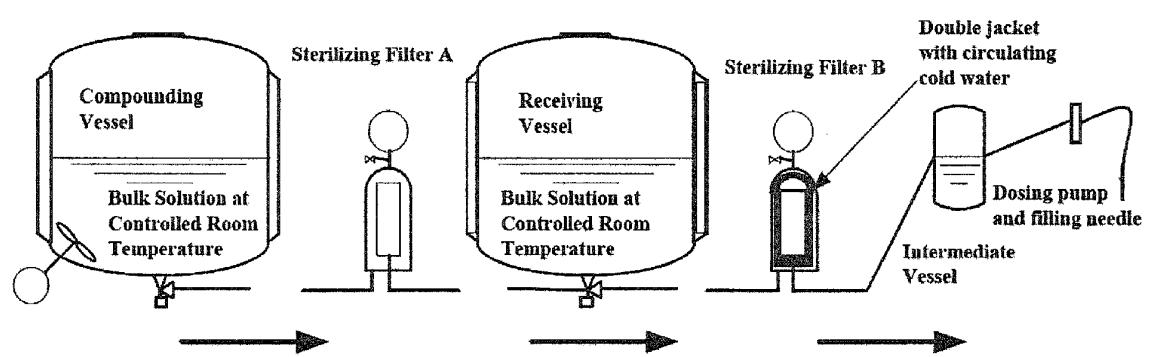


Figure 8

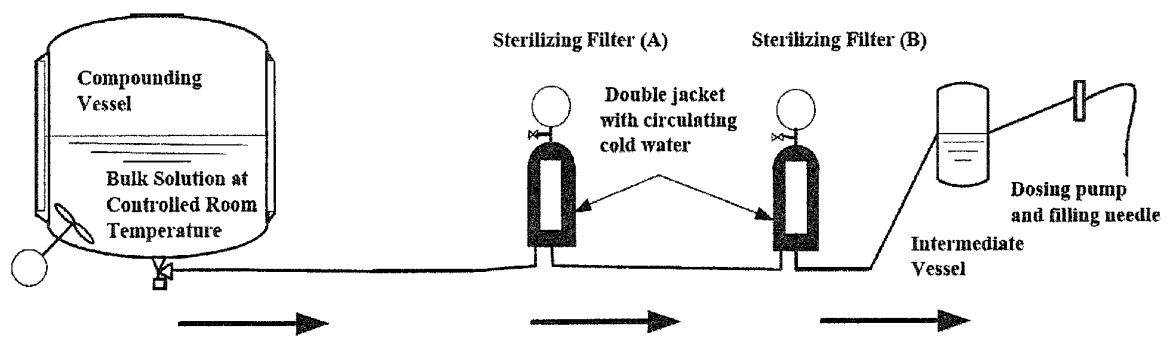


Figure 9

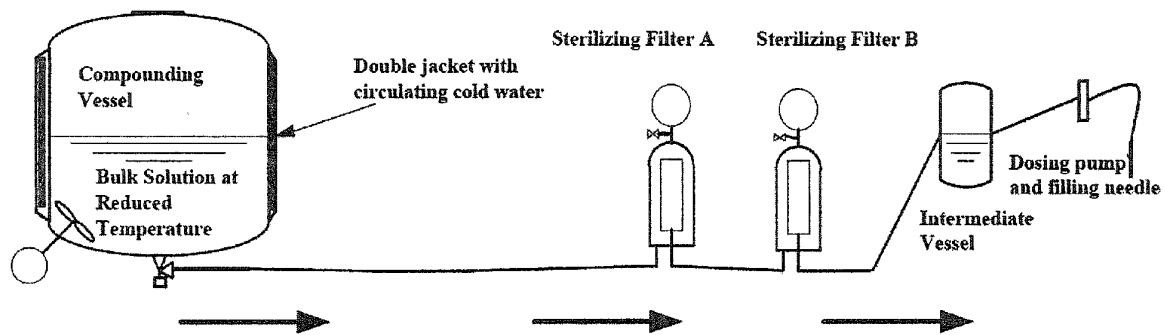


Figure 10

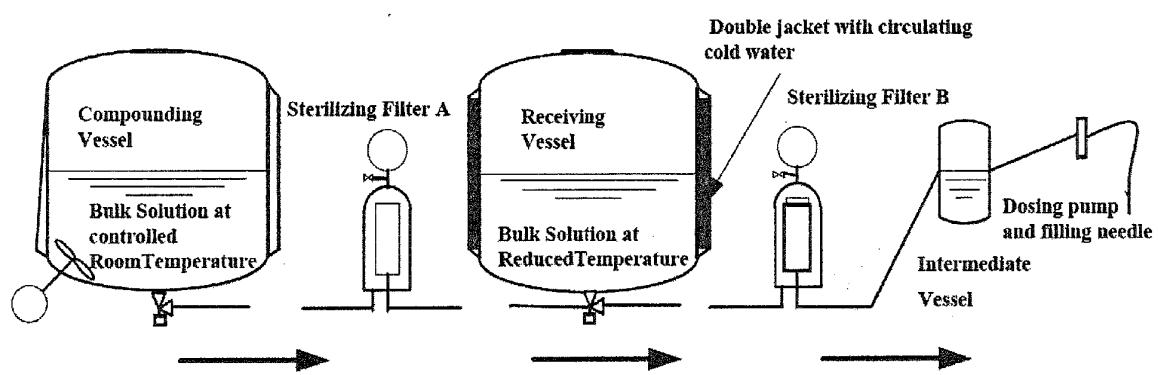


Figure 11

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 20130323771 A [0005]
- EP 0693946 A [0050]
- US 7855176 B [0050]

Non-patent literature cited in the description

- MELTZER ; JORNITZ. Filtration and Purification in the Biopharmaceutical Industry. CRC Press, 2007, 166 [0067]