US 20080016043A1

a9y United States

a2y Patent Application Publication
Bakalash et al.

10) Pub. No.: US 2008/0016043 A1
43) Pub. Date: Jan. 17, 2008

(54)

(76)

@
(22)

(63)

RELATIONAL DATABASE MANAGEMENT
SYSTEM (RDBMS) EMPLOYING
MULTI-DIMENSIONAL DATABASE (MDDB)
FOR SERVICING QUERY STATEMENTS
THROUGH ONE OR MORE CLIENT
MACHINES

Inventors: Reuven Bakalash, Beer Sheva (IL);
Guy Shaked, Shdema (IL); Joseph
Caspi, Herzlyia (IL)

Correspondence Address:

Thomas J. Perkowski, Esq., P.C.
Soundview Plaza

1266 East Main Street
Stamford, CT 06902 (US)

Appl. No.: 11/825,644

Filed: Jul. 6, 2007

Related U.S. Application Data

Continuation of application No. 10/842,648, filed on
May 10, 2004, now abandoned, which is a continu-
ation of application No. 10/314,884, filed on Dec. 9,
2002, which is a continuation of application No.
09/796,098, filed on Feb. 28, 2001, now abandoned,
which is a continuation-in-part of application No.
09/514,611, filed on Feb. 28, 2000, now Pat. No.
6,434,544, and which is a continuation-in-part of

application No. 09/634,748, filed on Aug. 9, 2000,
now Pat. No. 6,385,604.

Publication Classification

(51) Int. CL
GOGF 7/06 (2006.01)
GOG6F 17/30 (2006.01)
(52) US.Cl oo 707/3; 707/B17; 707/E17
(57) ABSTRACT

A relational database management system (RDBMS) for
servicing query statements through one or more client
machines. The RDBMS comprises a query interface adapted
to receive query statements from the client machines. The
query handling mechanism (i) receives each request from
the query interface, (ii) extracts a set of dimensions associ-
ated with the request, (iii) uses the dimensions to retrieve
aggregated fact data from a multi-dimensional database
(MDDB), and (iv) forwards retrieved aggregated fact data to
the query processing mechanism for subsequent processing.
When the query processing mechanism determines that
servicing of one or more query requests require data stored
in the relational tables, then the query processing mecha-
nism automatically routes the requests to the relational data
tables, so that data can be accessed from the relational tables
and forwarded to the query processing mechanism for use in
servicing the requests, in a manner transparent to the client
machine.

AND DICING

MOLAP SERVER
2 b’
1
' PRESENTATION| |
, MODULE !
l |
1]
I]
i WEB !
s -
]
N gﬁﬁi AGGREGATED ; Afggggs‘\/{:\?l)”' APPLICATION Lt
- 1N <> LOGIC |<= '
DATA + BASE RETRIE I CLIENT
LOADER DATA ! VAL MODULE CLIENT/ | | 21 quERiES
! MODULE SERVER || 3
1]

) = A
DATA MULTIDIMENSIONAL |~ o RATIOS |
WAREHOUSE DATA BASE (MDDB) | ° QUERY o RANKS ,

I o MASHING . API !
DA FORECAST !
b e AG(';EX'NG o EXCEPTION '
X REGATION SCANNING l'
! o SLICING '
: I

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 1 of 50

J9Ae J2AeT
uonelUdSdId o160 uoneo)ddy
suior pue Butuoied sjqe |
uoddns uonezjjewiouaq
Buiouaisyu) ajebalbby-a1g

(LYY HOIdd)
18he sseqeeq v 6i4

Buiuoniued ejeq
BuiyseH

Buixapuj jejjeied
Buipeo |e|jeled
fianooal g dnyoeg
Aenp ejeq |9jjeied

uoljewou|

juud [0JJu0D MOl
0VIAR30IS Buiinpayog
HNG ejeg Buiuiencg Ausnp
JOAld Ble(S}se%9104
uMop-|Iig Buiisyi4 xa|dwo)
SHsly uoljepljosuo) olweulq
sdejp swiojsuel |
sydeis syuey
SpUS soiiey
- <
dvVT1OW
DELI3IUY swiduy JVIOQ
dVI10 [euonedy

pajidwod

(dL10)
SuIdYsAS
(sna@ uissasol g
ISNOYIIBAA BIB(] EO—moﬁmﬂﬂ.ﬂﬁ
sul-uQ

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 2 of 50

[} 1
! ONIOIQ ANV “ gl Ol14d
| ONIDITS o !
“ ONINNYOS NOILYOTHOOY o |
I NOILd3DX3 - ONIXIANI o "
_ 1SVD3H0d o
| IdY ONIHSYW o
3 SHNVY o AYIND o ! (@aaw) 3SvE v1va mm:oxm&dﬁ
| SOILVY - i TYNOISNIWIAILINW

4 | N
) | \
i]
lo |
" H3IAY3S I1NAOW | \ v1iva

wm_mmso _“ \Fzm_l_o wl_DDOS— |._<>w_m|_lwm] . ww<m + <|_|<D mmD<OI_ wEmnm
IN3NO 1 <> 21901 <> <4 <— viva K—

| ANV SS300V I g3alvoayoov
[}

b P [}
_ !)

]
“ a3m ! N
" _
| i
! |
! 3INaow |
| | NOILVLNISIYd !
L e e e
¥3IAYIS dVI0W

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 3 of 50

(LYV YOoIdd)
ve b4
(gaaw) eseg ejeq
[BUOISUBWIPHINK
....................... dv10 (SWEQY) weysAs swabeueyy
.. : sseq Bieq [2uoneion
s8jqelleAa Jo ,
aBeiojs eoshugd 9jqe] uoneoo||y sbed
V
IBA 1A ‘JBA
Sieie : dv100 uL \ 1 bl
i g0y woly —
ejep oiseq - !
Buipeo ‘1en ‘IeA / JEA
a1 N
{oa'ta‘'ua}
............................ €L ¢l L1
ASNOHIYYM

viva

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 4 of 50

(LMY HOIdd)
ge 614

(dJainjoejnuew Aq ‘syonpoud (e 6°8) syonpoud
(sseah ‘syjuow ‘syeam ‘shep ‘*6°a) swy
(sjusuijuos ‘salyunod ‘seess ‘sanio "6'9) Aydeibosb

OFa

Patent Application Publication Jan. 17,2008 Sheet 5 of 50 US 2008/0016043 A1

Array structure of a
multidimensional variable

DO
0 1 2 3 4 5

Fig. 2C
(PRIOR ART)

Patent Application Publication Jan. 17,2008 Sheet 6 of 50 US 2008/0016043 A1

Page Allocation Table pointing on physical
records of a multidimensional variable (e.g. the two
first rows of a variable of FIG. 2B reside in page # 0)

Page# Page of physical records

Fig. 2D
(PRIOR ART)

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 7 of 50

(aaaw) eseg ejeq
|euoIsuawIpiNpy

dv10

bunebeaibby

<t

(8aaw) sseg ejeq

leuoisuUSWIPHINpy
dv10

(LYY HOIYd)
ve B4

L=

aseg ejeQ
[euonejay
e
dvi0 0}
gjep oiseq | ASNOHIHVM
buipeoy vivdad

aseg ejeq
leuonejoy

“MQ u Buio)g
Alieoiporiag

dL10

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 8 of 50

ejep
pajebaibbe pue oiseq
jJO 3|qe] uonedo|)y ebed

(LYV HOIdd)
de 614
so|qeLleA Jo
abelojs |eaishyd
A Y
ejep oiseq
NN
J0 3|qe uoneoo||y abe
si9yuiod si8jujod
A uoneboaibby

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 9 of 50

(LYV HOIdd)
L0¢ Bi4

ejep pajebalbby elep (2Iseq) mey papeo-]

YH'ZAEH2a 2H'za IH 2a

_M__m____tjj_____________

(oa‘tg‘zca)
Juswsis eyeq

ca
0d

1d

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 10 of 50

(LYV HOoldd)
€o¢ bi4

Aydtessiy gL Jo Aouednooo jenedg

slapenp
_ Suyjuopy
,_N Y EETY sfeQ

v v T
o 0 0
..........
......

.........
..........
.......

(2@ 3niL
0a

1d

(LYY HOIYd)
Zo¢ b4

uolsuswip JA|L 40 Ayoselaly

O --00000000 st

[0 - QOO0 oM
[] oeoe [J [Stuon

H _H_ siapen

(LYY HOldd)
B4

US 2008/0016043 A1

.

z

m obelolg | m_mm._.
- SSE| | co_umoo__<,m ed
2

2 R

&

= P

S gaQN—= ssao01d Buibed

= ejep ssaippy

g

|5

Z fowayy

£ WvSa

|5

2

=

g

=

[~™

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 12 of 50

avolviva

a3LvIND1V-3¥d IOVINIDNII (Lav .mo_mn:
| G ‘614
%00} %05 %0
< \Y4 -
\ A
JINIL AYIND
3INOZ
NOILYINDTVO-34d
NNWILJO
\\ \ // %0S
WNWIXVIN 40
37I1S 3Svaviva JOVIN3O¥ad
aaLvinowo
ATINA ,
IwiL
NOILYINDTVO-34d ANV 1 %001

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 13 of 50

V9 Old

JHOLS V.1Vva TVNOISNIWIaILTIN

_ —

| YIAYIS dVY10 _

| I

| T |
> J_ | MO viva

SINTITO | _ Q3LVOIHOOVY

INS ANV | | anvw3a No

AI“Iv “ SISATYNY | <—j

<+ _

|

>
—>
>

(SNOILYDINddY
‘AN INOY4 IND ‘133HSAVIYHLS '©'3)

NOILYOIHOOV 40 SINIITO ¥IHIO <—

H3AY3AS NOILYOIYOOY

NOILVO3YOOV

‘SNOILONNS HOrvin

<

S,

(swaay)
ISNOHIHYM
viva

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 14 of 50

89 Ol 4
1S3no3y

. A..oh_ ‘ogar (‘D13 ‘ogar ‘idv.

IdY ‘0800 ‘ga-310 “JOS ‘0800 ‘gd-210

‘2a70) IOV4HILNI ‘gd10) IDV4HILNI

LN3IITO NOLLYDIYOOV Vviva 3svd
§ /
—{>
; <— S3114 ¥3HLO
: ¥3zAWNY ||| 3NioNa m@m«% : | sLsn
> R 1NdNI NOILYDIHOOY sy < <+—S374 1V14
— <+—+ Saay
&
H3ATANVYH
aaaw
IOYNYIA HIADVYNYIN
DLNOD 5 OI4NOD
= 9
gaaw
= v

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 15 of 50

29Ol 4
Ty
F1NAON
ITINAOCIN F1NAOWN H3qd03Y . s
AINIFWIOVNYIN [<K—— LNIWIDOVNVIN [<t— anNy <] V1va-3sve
JOVHO1S NOILYOIHOOV SISATVYNY
AHOUVY3IH
N—

i 1
; ! .

1S3N0D3y ﬁ JFTNAOW LNIWIDOVNVYIN

ga NOILVO3IHOOY ¥aDO

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 16 of 50

a9 ol

ANINIOVYNYIN
NOILLYO3YO9Y OL

_

V1vQa 3401S

LNIWIOVYNYN
FOVHOLS OL

V1va 3IA3idl3y

1NdiNO v1iva

v1iva 31vindivo

i

ON:

¢a3LVINDIVI-I¥d VLIV

3N3N0O 1LS3ND3Y

<—— 1S3N03Y 8a

US 2008/0016043 A1

(SNOILVOITddY ‘aN3
LNOY4 IND ‘133HSAVIYIS '9'3)

NOILVOIHOOV 40 SLINIIND ¥3IHIO <+—

V. Ol4d
8 W4O41V1d ¥ INNO41V1d
| wod1v1d 3uvmasvH | | Wu041v1d FavmanvH |
_ , — _ |
|__NILSAS ONILVNIJO | | WILSAS ONILYYIHO |
_ _ _ 3
_ _ | _
I I _ _
_ _ _ _ 3ISNOHIAUYM
<
: “ _ _ wanugs [VLV
o 1 (In© anv _ NOILVOIHOOVY
SINIMOdAVIO] | SISATVNY) |<—t |
| {¥3nyasdavio| | _
<+ | _
| | _
- | |
_
_
_
I
|
I
_

Patent Application Publication Jan. 17,2008 Sheet 17 of 50

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 18 of 50

SIN3ITO

g9 914

“ WHO4L1V1d 34VYMAYVH J_

_ W3LSAS ONILVYHIdO _

_ _

_ _

| _

_ |
T _
- (Ino anv dINGIS !
- NOILYOIHOOV| | JSNOHIUVYM
o SISATYNY) [< v1iva
<+ ¥3AYIS VIO !
] |

_

_ _

_ _

_ _

_ _

| _

US 2008/0016043 A1

Jan. 17,2008 Sheet 19 of 50

Patent Application Publication

Y8 Ol4d
W wgy N 6L 001 SV @aNI43a W2 v | ea
W yzz © 000'09L'1 &0l IN000'EPZ 9 | sa
wozyz 4 8% SA330XT O 062 0L+ 8 NPEY'EZ9 9 | va
wez yy 4L W $56°€9 €00 6L s | e
wg w og N 696 [z WLy v | za
wgy Yol W 2z 6 WZoE 9 | 1a
Z9°A .
NOILNIANI LNIHHND dn-TIo¥ ¥3Ldv38no |, SINTVA YLVa WId 40
40 NOILYINIWITdHI %wﬁv% NI S3NTVA 20 yagwnn | @ ALSNIAIAONIYIT | o oainivao wan | wan

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 20 of 50

V6 Old

NOISN3IWIA IS IHL
NI NOILLVOIHOOV TVILINI

NOISNIWIQ LS}

Y

vivd 3sva/

Patent Application Publication Jan. 17,2008 Sheet 21 of 50 US 2008/0016043 A1

FI1G.9B

E

2
z
2 5 833
2 w " Geo
W= \ — T 252
=0 \ S Wi
: \ 385
: \

i{g\\\\\\\\

N\

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 22 of 50

¢06 Ol 4

Z ANV L S3SVD ‘€ NOISNINIA
NI NOILVOIHOOV 31034Ia 'Y

e
¢'Wia g
€'Wia
} ISVO
¢ 3ASVO
1

106 ©14

C ANV L SISV ‘T NOISNIWId
NI NOILLVYO3IHOOV d31034ia 'V

L'NIA

¢'NId
€'nIia

L ASVO

¢ 3ASVO

RN
<

US 2008/0016043 A1

VoL ©OI14d

3011S edw
JAIM-LINN Y

ERIERAN (¢ \
NOISNIWIA LS}

L

e

I

© 0o oo
AN

o oo o |yivd|®gnil vLva

Patent Application Publication Jan. 17,2008 Sheet 23 of 50

vivd

anl| o000 |vival fant | viva aNi | viva | %ani SLNIOd V1vQ

X7 e
td

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 24 of 50

g0l 914
SOV HIVd d 3Z2IS 20714 N3 1MVIS
J714 AYOLD3HId uN “ani | %ani
/.
3714 V1va
(o]
e}
(o]
(@]
Z+U
°© 0o o |YlVa|® ANI|viva]| gy
0
viva| “ani | o o o o |viva| ®ant |vival %ant |vival fant [vival Caw
d d d d %

Patent Application Publication Jan. 17,2008 Sheet 25 of 50 US 2008/0016043 A1

ﬂ@
» ©® 6 ©
STRUCT. 3

(©)
(0)
~ L
o Yic =
(=) b "
(<
(w)
\
© 2
&

Patent Application Publication Jan. 17,2008 Sheet 26 of 50 US 2008/0016043 A1

BEGIN
‘L 1101

LOAD CATALOGUE FROM DBMS

!

EXTRACT DATA DESCRIBING MULTIPLE
HIERARCHIES FOR AT LEAST ONE DIMENSION

!

LOOP OVER ITEMS IN THE MULTIPLE HIERARCHIES

!

FOR EACH ITEM IN MULTIPLE
HIERARCHIES

:

IDENTIFY PARENT (IF ANY) OF ITEMS
INCLUDING GRANDPARENT, GREAT
GRANDPARENT AND ADD TO PARENT 1109

LIST

‘L 1111

LOOP OVER HIERARCHIES

J7 1113

FOR EACH HIERARCHY e

|

IDENTIFY CHILD OF ITEM AND ADD TO
GROUP IN CHILD LIST FOR THE 1115
HIERARCHY

é 1117

END LOOP OVER HIERARCHIES | /

1103

1105

1107

SN

N

\

N

‘L 1119
END LOOP OVER ITEMS

\\

FIG. 11C()

Patent Application Publication Jan. 17,2008 Sheet 27 of 50 US 2008/0016043 A1

VERIFY INTEGRITY OF HIERARCHIES

l

IF ERROR IS FOUND, FIX OR REPORT TO USER

Y
FOR A GIVEN ITEM IN CHILD LIST

LOOP THROUGH ITEMS IN THE CHILD LIST /

1129
GIVEN ITEM YES 1131
HAS NO CHILD? v /
/ ADD ENTRY FOR
NO ITEM IN LEVEL 0

OF ORDERED LIST

< |

y

1133
END OF LOOP THROUGH ITEMS IN CHILD LIST /

F 1 G. 11C(ii)

Patent Application Publication Jan. 17,2008 Sheet 28 of 50 US 2008/0016043 A1

()

Y 1135
CURRENT LEVEL = LEVEL 0

:>J7 /1137

ADD ITEM(S) IN CURRENT LEVEL OF ORDERED
LIST TO WORK LIST

\/
LOOP THROUGH ITEMS IN WORKLIST 1141
UNTIL EMPTY

‘I’ 1143
FOR A GIVEN ITEM IN WORKLIST

!

LOOP THROUGH PARENTS OF GIVEN Ve 1145
ITEM AS SPECIFIED IN PARENT LIST

J7 1147
FOR A GIVEN PARENT OF GIVEN ITEM /

1149

ANY
OTHER PARENTS,
A CHILD OF A GIVEN
PARENT

YES

F 1 G. 11C(iii)

Patent Application Publication Jan. 17,2008 Sheet 29 of 50 US 2008/0016043 A1

ADD ENTRY FOR GIVEN PARENT TO NEXT 1151
LEVEL (CURRENT LEVEL + 1), IF NEED BE /

‘I7 ' / 1183

IF NO CHILD OF GIVEN ITEM (AS SPECIFIED IN
CURRENT LEVEL OF ORDERED LIST) IS
COVERED BY CHILDREN (INCLUDING
GRANDCHILDREN, ETC.) OF ITEM(S) OF ENTRY
FOR GIVEN PARENT IN NEXT LEVEL OF
ORDERED LIST, ADD GIVEN ITEM TO ENTRY IN
NEXT LEVEL OF ORDERED LIST FOR PARENT

‘E 1155

{ END LOOP OVER PARENTS OF GIVEN ITEM

!

'DELETE ITEM FROM WORKLIST

!

END OF LOOP EVEN ITEMS IN WORKLIST

!

INCREMENT CURRENT LEVEL

!

RETURN

1157

1159

1161

1163

SN

F1G. 11C(iv)

Patent Application Publication Jan. 17,2008 Sheet 30 of 50 US 2008/0016043 A1

PARENT LIST CHILD LIST
ITEM PARENT(S) ITEM CHILD(REN)
A C,H,D _—
B C,I,D B _—
F E,H,D F —_
G E,I,D G —_—
C D C <A, B>
H D H - <F, G>
E D E <A, F>
| D | <B, G>
D _ D <A, B, F, G>, <H, I>, <C, E>
F1G. 11C(v) F1G. 11C(vi)
ORDERED LIST ORDERED LIST ORDERED LIST
LEVEL 0 LEVEL 1 LEVEL 2
ITEM CHILD(REN) ITEM CHILD(REN) ITEM CHILD(REN)

A —_— C A B . D C,E

B —_— H A F

F —_— | B,G

G _— E F,G

FIG.11C(xvi) FI1G.11C(vii) F1G. 11C(ix)

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 31 of 50

¢l Ol4d

J1NAONW NOILVINHO4SNVYHL AHOYUVYH3IH

FTNAOCI ONIXIANI ANV ONIAvO1

dINION3 NOLLYO3HOOV

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 32 of 50

ISNOHIAVM VLivd
TVHIN3ID

€L oOl4

H3INY3S
NOILVOIHOOV

ASNOHIUVM
vivd

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 33 of 50

(Ldv HoIdd) ¥ 'O | 4

viva a3aZinvindoN-3a

JONVHOX3 g-2-9 1a3

SYH3IAYIS 93IM A3TT19VN3-O3

ONININ V1vd

dv10

S1dVI V1vd

ISNOHIUVM V1vd

(VLva @31d09) ONISSIO0¥d LOVHLIX3
S1OHS-dVNS

WILSAS gd
IVNOILYWHOANI

v1iva d3ZnviNgdoON
V1vad d3ss3o0dd INIT-NO
vivd SNONNILNOD

ININNOYIANT
TVNOILVYH3dO0

0¢

A4

vivd

ol

(Ldv doidd) 6L 'O | 5

—— e ——— — —— e e e —_ —— e . e e —_————————y

US 2008/0016043 A1

_ dv10 TYNOILYT3Y _ (d110)
I — (M3IIA | LNGWNOYIANT T¥NOILVYYIdO
l¢—— NS NV T8 ‘ILvY3dO '31vadn | == -
| ONIAYIND ONISS300¥d ‘aav) SHO1vy3do I " [
- | IVOILATYNY | _
S SUOHLIW aNY _ _ _
‘= _ SWSINVHOIW 1¥0ddNS _ _
< _ | I |
«0 I | _ |
~—
g | 3 saave {|! | _
= | JAdvwwns || 1 avor _
| b
(v =] ONILHOd3Y Sav.L AY¥IND _ D.Z(_
= _ JONIAYAND P D — _ an = |
= _ NO 1¥0d3y TevL | T avato o |
= _ 10V L | ovaixa _
p “ “ || viva _
3 _
- ‘ _
| ONIAYIND - D ! _ _
g _ N N by |
= _ S379v1 NOISNIWIA | _ |
> | |
= IND ANV . _ _
= _ INIONT |
= 9NISSIOONd AYVYNOLLDIA _ _
nm “ WOLLANY | NOILVOOOV | 1o 30vRAINI o “ _ _
= IYOISVIVAIVNOILY1aY |, ~ ~ T T T 7 -
= _ dv10 9aam S | 9\.
.m __ \H (3SNOHIYYM VLVA) Swaay _/ON
s o lee—— ===
< 2z
~N—
=
2
[
=W

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 35 of 50

291 ©14
A
r N
6 TIANVYANIZ
¢ HION LONId MY TIE5 WONA
rA MNV1g IWNA S311108 ‘INIM 1D313S
¥y AVNNOQYVHD *HOLVYY3dO 1093roud
s31L108 INIM 11Ns3y
a9l 914
AL
'd -
rA 9661 | MNVIg 3Inn4g ‘6661 < SI ¥V3IA IHIHM
HVYT13D WOY4 S31LLog
v 9661 | AVYNNOGXYVYHD “HYIA ‘INIM 193713S
S311109 | ¥VY3A ANIM 11nsS3
*HOLYHIdO 1019183y
Yol O 4
6 661 JIANVYANIZ
€ €661 HION LONId
4 9661 MNVY1g JNNA
14 9661 | AVNNOQXYVHO
S31L1L08 | ¥V3A 3NIM dvT1130

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 36 of 50

VI ©14
13vd
ALID 1HOIIM | 010D | AWVNd | #d
NIOr a
ALD | #dL #d #S ds
S1¥Vd Q3Iddns
NIOP
L— Nior
. \4
ol NO¥4 #d1 dl ALID | SniviS| aIWvNS | #S
aol¥3ad IniL S311ddNS

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 37 of 50

AIATNLL

NOISN3IWIA
aoly3d

AINA0™d

NOISN3NIa
S$10Naoyd

vel Ol4d

30Idd
INNODSId
S1INN
ANTVA

AIAIAN
AIXNA0Ud
ATMINIL

S10v4

{AINLIN ‘AINA0Yd AIHINIL
= A AHYIYd 318VL S1OV4d

AIXLIN

NOISNINId
S13INHVIN

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 38 of 50

dV3A

S319vL LOovd’
AYVINNNS _

dg8lL 91 d
3014d
INNOJSIa
|| SLINN
. INTVA
[}
! YILUVND
[}
AL
— AIIAOYd
- AIMINIL
S HLNOW
J ATMINIL \ /
ATIAONd
—t
sIlavL —_ ___________ 7
NOISNIWIQ << - - - -- - ___-

S

ATGALANW

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 39 of 50

- e G ems W G e G e P N G G W R Eh Em En EE E e e En En e wm Em Em Em e

ITNAOW
NOILVOIHOOV
aaw

V6l O 14

(8)31avL 10v4d

A

108

AJVYNOLLOIQ
J401S V1va - V13N

J401S VLvad TVYNOILVI3IY

FHVMAUVH
Ad3N0O

108

FOV4HILNI

A

SWSINVHOIN 1H40ddNS

— e — e - . s - e EE D W W T R WY T W TR e e e WE W T B e e e W G e A e - -

Ad3Ind

3INIHOVIA
IN3INO

AY3dNO

HHOML3IN
Ad3NO

INIHOVIA
IN3ITO

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 40 of 50

JFTINAOW NOILYOITHOOV aain

IIIIII g6l Ol 4
||||||||||||||||||||||||||| -
|
|
|
¥3Iavo [« }
INISNT < viva | (s)31avi
NOILLYOIHOOVY asvyg |« t
= : “ {1a} ANYNOILOIQ
|
|
]
_ | N3IW3ILVLS
mm..__nnﬁ% 1 oS
¥ITANVH |
aaw 31VYNIQH00D !
A9 HO134 |
4/ _
H _
|
|
8adaw TOHINOD _
IINAOW
aaw _
|
- |

Patent Application Publication Jan. 17,2008 Sheet 41 of 50 US 2008/0016043 A1

(BEGIN)

Y 601
BASE DATA LOADER LOADS DICTIONARY FROM META-DATA /
STORE, EXTRACTS DIMENSIONS FROM DICTIONARY AND
FORWARDS DIMENSIONS TO AGGREGATION ENGINE

Yy
BASE DATA LOADER LOADS FACT TABLE(S) FROM RDBMS, 603

EXTRACTS ATOMIC DATA AND FORWARDS ATOMIC DATATO /
AGGREGATION ENGINE

Y

AGGREGATION ENGINE ROLLS UP (AGGREGATES) THE 605
ATOMIC DATA IN AT LEAST ONE DIMENSION /

DEFINE REFERENCE THAT PROVIDES USER WITH ABILITY 607
TO QUERY MDDB IN THE MDD AGGREGATION MODULE /

\ 4

CLIENT FORWARDS SQL STATEMENT(S) - SOME MAY REFER

TO REFERENCE DEFINED IN STEP 607 - TO THE QUERY V 609
HANDLER

A 4
QUERY HANDLER RECEIVES SQL STATEMENT(S) FROM 611
CLIENTS L/

613

SQL STATEMENT NO

ON REFERENCE DEFINED 625
IN STEP 607
? 4 /
NORMAL sQL
YES PROCESSING

F I G. 19C(i)

Patent Application Publication Jan. 17,2008 Sheet 42 of 50 US 2008/0016043 A1

ROUTE SQL STATEMENT(S) TO SQL HANDLER IN MO 615
AGGREGATION MODULE /

\ 4

RECEIVE SQL STATEMENT IN SQL HANDLER AND EXTRACT 617
DIMENSIONAL COORDINATES

A 4

MDD HANDLER USES DIMENSIONAL COORDINATES TO 619
ADDRESS THE MDDB AND RETRIEVE DATATHEREIN |/
3 621
RETURN RETRIEVED DATA TO USE /
A
END

F I G. 19C(ii)

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 43 of 50

ael ©il4d

LININFOVNVYIN
NOILYOIHOOV OL

_

V1ivd 340l1S

LNIWIOVNVIN
FOVHOLS OL

Viva IAIHL3d

1Nd1No v1iva

S3A

Y1vd 31viNno1vo
A

ON

¢d31VINO1TVO-3dd V.ivd

3N3N0 1S3N03Y

<+—— 1S3N034 8a

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 44 of 50

lyNoILvi3y 3LonaYy

| v sv aasiomim aaw

7

d61 O 1 d

31avL

>
<

ANIWILVIS MIIA LVIHD
40 SNV3IW AG d3HSINgv.is3
FTNAOW AAIN HLIM MNIT

"319vL ILONIY V ONIONIHIIIN
S319VYNT WSINVHOIN MIIA
IWSINVHOIIN ONIONIH343d 310N

SIN3IW3LVIS

l«—————— 708
M3IIA

Patent Application Publication Jan. 17,2008 Sheet 45 of 50 US 2008/0016043 A1

\ 22'

2 W
@ @
<
2h
5
N =
N\ | 5
O
2
\ Erx
i
& 2>
yY =
<
>
<
LL
»
s
)
2z =
w82 B
1L
<
zﬁg
CKE
yy
&
ws
Ty
w -
r Q<
ey
oo m

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 46 of 50

961 Old

(8)319vL LOV4 -

I1NAON
NOILVOIHOOV
aaw

(AYVYNOLLOIQ)
34018 V1va - V13N -

3HOLS V1vd TvNOLLYT13d

N S3JINY3S -

14Vd TVNOILLV134-NON

A

ONITANVH AY3NO

SWSINVHOIW LH0ddNsS

14Vd TYNOILY 13

Ad3N0

HHOMLIN

AY3N0O

INIHOVWN
IN3INO

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 47 of 50

Vv0Z © 14

g WHO41Yd V WHOALY1d
[WH04LY1d 39vMmadvH WHO4LV1d IHVYMAYUVH
SO o)
—I-II"'.I'IIIIIIII"I'II"I" IIIIIIII I—
ya 3INAOW ! viva
zz” | | Nolvoausovaaw [¢ > SWSINVHOIW 1HOddNS ANY [#
_ F-OLS VLVA WYNOLLYIIY | |
>
_ ! s3anaEno
e e e e e e e e e e . . e e S —— S . ——— — — —— —— —— — — — — — —

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 48 of 50

44

d0c 914

WHO41V1d FHVMAEVH

SO
IIIIIIIIIIIIIIIIIIIIIIII -
_
: |
31NAONW WSINVHOIW ! v.Lva
1¥0ddNS any _
NOILVOIHOOV — 5
aam « » | 3yolsviva | s3mano
IVNOILY13Y

— — —— — —— — — — — — T Ar— G——— — — e S Simmy ey m—— St — — w—

US 2008/0016043 A1

Patent Application Publication Jan. 17,2008 Sheet 49 of 50

il ©1 4
.NN/
(8)31av.Ll Lov4d
< (AYVYNOILDIA)
J1NAON 3HOLS v1ivad - V13w
NOILYOIUDOV |
aaw

5

10S

3JHO0LS V1vad TWNOLLY13Y

H3TANVH | .
N0 | [$rog™] 3oV

A

A

SINSINVHO3W 140ddNS

SINEAY™ ISNOHIIVM Y1vd

AH3ND

ONILYOJTY
dv10
3SIYdYIINT
TYNOLLYIZy | ISmIdUELNG
—
IND ANV
ONISSID0Nd
TVOILATYNY
ANIHOV
AHOMUAN s’ INamo

US 2008/0016043 A1
N
AN
O
L

| — ™ N
_
_ 21901 |
7 || SISAIVNY (S)anavL LovA |
= _ dvi1o _
2 _ |
A |
= |
@ | (AYVYNOILOIQ) _
s “ IMNAON L« JYOLS VLVa - VL3N _
S NOILYOIHUOOV | [
~ _ aan I
- _ 3HOLS Y1va TYNOILYT3Y _
=
S “ 108 _
5 |
£ | _ INIHOVIN
&
= _ Y3TANVH , AN
= <+“—> o HYOMLIN
£ _ adano [Fpg | 3OV AYIND AY3ND
= i
3 I ~ SWSINVHO3W 1¥0ddNns "
2 SIWEQY dV10 ISNOHIUYM V.LVQ
<
=
g
S
="

US 2008/0016043 Al

RELATIONAL DATABASE MANAGEMENT
SYSTEM (RDBMS) EMPLOYING
MULTI-DIMENSIONAL DATABASE (MDDB) FOR
SERVICING QUERY STATEMENTS THROUGH
ONE OR MORE CLIENT MACHINES

RELATED CASES

[0001] This is a Continuation of U.S. application Ser. No.
10/842,648 filed May 10, 2004, which is a Continuation of
U.S. application Ser. No. 10/314,884 filed Dec. 9, 2002;
which is a Continuation of U.S. application Ser. No. 09/796,
098 filed Feb. 28, 2001, now abandoned; which is a Con-
tinuation-in-part of: U.S. application Ser. No. 09/514,611
filed Feb. 28, 2000, now U.S. Pat. No. 6,434,544, and U.S.
application Ser. No. 09/634,748 filed Aug. 9, 2000, now U.S.
Pat. No. 6,385,604; each said Application being commonly
owned by HyperRoll Israel, Limited, and incorporated
herein by reference in its entirety.

BACKGROUND OF THE INVENTION
[0002]

[0003] The present invention relates to a method of and
system for aggregating data elements in a multi-dimensional
database (MDDB) supported upon a computing platform
and also to provide an improved method of and system for
managing data elements within a MDDB during on-line
analytical processing (OLAP) operations and as an integral
part of a database management system.

[0004] 2. Brief Description Of The State Of The Art

[0005] The ability to act quickly and decisively in today’s
increasingly competitive marketplace is critical to the suc-
cess of organizations. The volume of information that is
available to corporations is rapidly increasing and frequently
overwhelming. Those organizations that will effectively and
efficiently manage these tremendous volumes of data, and
use the information to make business decisions, will realize
a significant competitive advantage in the marketplace.

1. Field of Invention

[0006] Data warehousing, the creation of an enterprise-
wide data store, is the first step towards managing these
volumes of data. The Data Warehouse is becoming an
integral part of many information delivery systems because
it provides a single, central location where a reconciled
version of data extracted from a wide variety of operational
systems is stored. Over the last few years, improvements in
price, performance, scalability, and robustness of open com-
puting systems have made data warehousing a central com-
ponent of Information Technology CIT strategies. Details on
methods of data integration and constructing data ware-
houses can be found in the white paper entitled “Data
Integration: The Warehouse Foundation” by Louis Rollleigh
and Joe Thomas.

[0007] Building a Data Warehouse has its own special
challenges (e.g. using common data model, common busi-
ness dictionary, etc.) and is a complex endeavor. However,
just having a Data Warehouse does not provide organiza-
tions with the often-heralded business benefits of data ware-
housing. To complete the supply chain from transactional
systems to decision maker, organizations need to deliver
systems that allow knowledge workers to make strategic and
tactical decisions based on the information stored in these
warehouses. These decision support systems are referred to

Jan. 17, 2008

as On-Line Analytical Processing (OLAP) systems. OLAP
systems allow knowledge workers to intuitively, quickly,
and flexibly manipulate operational data using familiar
business terms, in order to provide analytical insight into a
particular problem or line of inquiry. For example, by using
an OLAP system, decision makers can “slice and dice”
information along a customer (or business) dimension, and
view business metrics by product and through time. Reports
can be defined from multiple perspectives that provide a
high-level or detailed view of the performance of any aspect
of the business. Decision makers can navigate throughout
their database by drilling down on a report to view elements
at finer levels of detail, or by pivoting to view reports from
different perspectives. To enable such full-functioned busi-
ness analyses, OLAP systems need to (1) support sophisti-
cated analyses, (2) scale to large numbers of dimensions, and
(3) support analyses against large atomic data sets. These
three key requirements are discussed further below.

[0008] Decision makers use key performance metrics to
evaluate the operations within their domain, and OLAP
systems need to be capable of delivering these metrics in a
user-customizable format. These metrics may be obtained
from the transactional databases pre-calculated and stored in
the database, or generated on demand during the query
process. Commonly used metrics include:

[0009] (1) Multidimensional Ratios (e.g. Percent to
Total)—“Show me the contribution to weekly sales and
category profit made by all items sold in the Northwest
stores between July 1 and July 14.”

[0010] (2) Comparisons (e.g. Actual vs. Plan, This
Period vs. Last Period)—“Show me the sales to plan
percentage variation for this year and compare it to that
of the previous year to identify planning discrepan-
cies.”

[0011] (3) Ranking and Statistical Profiles (e.g. Top
N/Bottom N, 70/30, Quartiles)—“Show me sales, profit
and average call volume per day for my 20 most
profitable salespeople, who are in the top 30% of the
worldwide sales.”

[0012] (4) Custom Consolidations—“Show me an
abbreviated income statement by quarter for the last
two quarters for my Western Region operations.”

[0013] Knowledge workers analyze data from a number of
different business perspectives or dimensions. As used here-
inafter, a dimension is any element or hierarchical combi-
nation of elements in a data model that can be displayed
orthogonally with respect to other combinations of elements
in the data model. For example, if a report lists sales by
week, promotion, store, and department, then the report
would be a slice of data taken from a four-dimensional data
model.

[0014] Target marketing and market segmentation appli-
cations involve extracting highly qualified result sets from
large volumes of data. For example, a direct marketing
organization might want to generate a targeted mailing list
based on dozens of characteristics, including purchase fre-
quency, size of the last purchase, past buying trends, cus-
tomer location, age of customer, and gender of customer.
These applications rapidly increase the dimensionality
requirements for analysis.

US 2008/0016043 Al

[0015] The number of dimensions in OLAP systems range
from a few orthogonal dimensions to hundreds of orthogonal
dimensions. Orthogonal dimensions in an exemplary OLAP
application might include Geography, Time, and Products.

[0016] Atomic data refers to the lowest level of data
granularity required for effective decision making. In the
case of a retail merchandising manager, “atomic data” may
refer to information by store, by day, and by item. For a
banker, atomic data may be information by account, by
transaction, and by branch. Most organizations implement-
ing OL AP systems find themselves needing systems that can
scale to tens, hundreds, and even thousands of gigabytes of
atomic information.

[0017] As OLAP systems become more pervasive and are
used by the majority of the enterprise, more data over longer
time frames will be included in the data store (i.e. data
warehouse), and the size of the database will increase by at
least an order of magnitude. Thus, OLAP systems need to be
able to scale from present to near-future volumes of data.

[0018] In general, OLAP systems need to (I) support the
complex analysis requirements of decision-makers, (2) ana-
lyze the data from a number of different perspectives (i.e.
business dimensions), and (3) support complex analyses
against large input (atomic-level) data sets from a Data
Warehouse maintained by the organization using a relational
database management system (RDBMS).

[0019] Vendors of OLAP systems classify OLAP Systems
as either Relational OLAP (ROLAP) or Multidimensional
OLAP (MOLAP) based on the underlying architecture
thereof. Thus, there are two basic architectures for On-Line
Analytical Processing systems: the ROLAP Architecture,
and the MOLAP architecture.

[0020] The Relational OLAP (ROLAP) system accesses
data stored in a Data Warehouse to provide OLAP analyses.
The premise of ROLAP is that OLAP capabilities are best
provided directly against the relational database, i.e. the
Data Warehouse.

[0021] The ROLAP architecture was invented to enable
direct access of data from Data Warehouses, and therefore
support optimization techniques to meet batch window
requirements and provide fast response times. Typically,
these optimization techniques include application-level table
partitioning, pre-aggregate inferencing, denormalization
support, and the joining of multiple fact tables.

[0022] A typical prior art ROLAP system has a three-tier
or layer client/server architecture. The “database layer”
utilizes relational databases for data storage, access, and
retrieval processes. The “application logic layer” is the
ROLAP engine which executes the multidimensional reports
from multiple users. The ROLAP engine integrates with a
variety of “presentation layers,” through which users per-
form OLAP analyses.

[0023] After the data model for the data warehouse is
defined, data from on-line transaction-processing (OLTP)
systems is loaded into the relational database management
system (RDBMS). If required by the data model, database
routines are run to pre-aggregate the data within the
RDBMS. Indices are then created to optimize query access
times. End users submit multidimensional analyses to the
ROLAP engine, which then dynamically transforms the

Jan. 17, 2008

requests into SQL execution plans. The SQL execution plans
are submitted to the relational database for processing, the
relational query results are cross-tabulated, and a multidi-
mensional result data set is returned to the end user. ROLAP
is a fully dynamic architecture capable of utilizing pre-
calculated results when they are available, or dynamically
generating results from atomic information when necessary.

[0024] Multidimensional OLAP (MOLAP) systems utilize
a proprietary multidimensional database (MDDB) to pro-
vide OLAP analyses. The MDDB is logically organized as
a multidimensional array (typically referred to as a multi-
dimensional cube or hypercube or cube) whose rows/col-
umns each represent a different dimension (i.e., relation). A
data value is associated with each combination of dimen-
sions (typically referred to as a “coordinate”). The main
premise of this architecture is that data must be stored
multidimensionally to be accessed and viewed multidimen-
sionally.

[0025] As shown in FIG. 1B, prior art MOLAP systems
have an Aggregation, Access and Retrieval module which is
responsible for all data storage, access, and retrieval pro-
cesses, including data aggregration (i.e. preaggregation) in
the MDDB. As shown in FIG. 1B, the base data loader is fed
with base data, in the most detailed level, from the Data
Warehouse, into the Multi-Dimensional Data Base
(MDDB). On top of the base data, layers of aggregated data
are built-up by the Aggregation program, which is part of the
Aggregation, Access and Retrieval module. As indicated in
this figure, the application logic module is responsible for
the execution of all OLAP requests/queries (e.g. ratios,
ranks, forecasts, exception scanning, and slicing and dicing)
of data within the MDDB. The presentation module inte-
grates with the application logic module and provides an
interface, through which the end users view and request
OLAP analyses on their client machines which may be
web-enabled through the infrastructure of the Internet. The
client/server architecture of a MOLAP system allows mul-
tiple users to access the same multidimensional database
(MDDB).

[0026] Information (i.e. basic data) from a variety of
operational systems within an enterprise, comprising the
Data Warehouse, is loaded into a prior art multidimensional
database (MDDB) through a series of batch routines. The
Express™ server by the Oracle Corporation is exemplary of
a popular server which can be used to carry out the data
loading process in prior art MOLAP systems. As shown in
FIG. 2B, an exemplary 3-D MDDB is schematically
depicted, showing geography, time and products as the
“dimensions” of the database. The multidimensional data of
the MDDRB is logically organized in an array structure, as
shown in FIG. 2C. Physically, the Express™ server stores
data in pages (or records) of an information file. Pages
contain 512, or 2048, or 4096 bytes of data, depending on
the platform and release of the Express™ server. In order to
look up the physical record address from the database file
recorded on a disk or other mass storage device, the
Express™ server generates a data structure referred to as a
“Page Allocation Table (PAT)”. As shown in FIG. 2D, the
PAT tells the Express™ server the physical record number
that contains the page of data. Typically, the PAT is orga-
nized in pages. The simplest way to access a data element in

US 2008/0016043 Al

the MDDB is by calculating the “offset” using the additions
and multiplications expressed by a simple formula:

Offset=Months+Product™*(#
of_Months*# of Products)

of_Months)+City*(#

[0027] During an OLAP session, the response time of a
multidimensional query on a prior art MDDB depends on
how many cells in the MDDB have to be added “on the fly”.
As the number of dimensions in the MDDB increases
linearly, the number of the cells in the MDDB increases
exponentially. However, it is known that the majority of
multidimensional queries deal with summarized high level
data. Thus, as shown in FIGS. 3A and 3B, once the atomic
data (i.e. “basic data”) has been loaded into the MDDB, the
general approach is to perform a series of calculations in
batch in order to aggregate (i.e. pre-aggregate) the data
elements along the orthogonal dimensions of the MDDB and
fill the array structures thereof. For example, revenue figures
for all retail stores in a particular state (i.e. New York) would
be added together to fill the state level cells in the MDDB.
After the array structure in the database has been filled,
integer-based indices are created and hashing algorithms are
used to improve query access times. Pre-aggregation of
dimension DO is always performed along the cross-section
of the MDDB along the D0 dimension.

[0028] As shown in FIGS. 3C1 and 3C2, the raw data
loaded into the MDDB is primarily organized at its lowest
dimensional hierarchy, and the results of the pre-aggrega-
tions are stored in the neighboring parts of the MDDB.

[0029] As shown in FIG. 3C2, along the TIME dimension,
weeks are the aggregation results of days, months are the
aggregation results of weeks, and quarters are the aggrega-
tion results of months. While not shown in the figures, along
the GEOGRAPHY dimension, states are the aggregation
results of cities, countries are the aggregation results of
states, and continents are the aggregation results of coun-
tries. By pre-aggregating (i.e. consolidating or compiling)
all logical subtotals and totals along all dimensions of the
MDDB, it is possible to carry out real-time MOLAP opera-
tions using a multidimensional database (MDDB) contain-
ing both basic (i.e. atomic) and pre-aggregated data. Once
this compilation process has been completed, the MDDB is
ready for use. Users request OLAP reports by submitting
queries through the OLAP Application interface (e.g. using
web-enabled client machines), and the application logic
layer responds to the submitted queries by retrieving the
stored data from the MDDB for display on the client
machine.

[0030] Typically, in MDDB systems, the aggregated data
is very sparse, tending to explode as the number of dimen-
sion grows and dramatically slowing down the retrieval
process (as described in the report entitled “Database Explo-
sion: The OLAP Report”, incorporated herein by reference).
Quick and on line retrieval of queried data is critical in
delivering on-line response for OLAP queries. Therefore,
the data structure of the MDDB, and methods of its storing,
indexing and handling are dictated mainly by the need of fast
retrieval of massive and sparse data.

[0031] Different solutions for this problem are disclosed in
the following US Patents, each of which is incorporated
herein by reference in its entirety:
[0032] U.S. Pat. No. 5,822,751 “Efficient Multidimen-
sional Data Aggregation Operator Implementation”

Jan. 17, 2008

[0033] U.S. Pat. No. 5,805,885 “Method And System
For Aggregation Objects”

[0034] U.S. Pat. No. 5,781,896 “Method And System
For Efficiently Performing Database Table Aggregation
Using An Aggregation Index”

[0035] U.S. Pat. No. 5,745,764 “Method And System
For Aggregation Objects”

[0036] In all the prior art OLAP servers, the process of
storing, indexing and handling MDDB utilize complex data
structures to largely improve the retrieval speed, as part of
the querying process, at the cost of slowing down the storing
and aggregation. The query-bounded structure, that must
support fast retrieval of queries in a restricting environment
ot high sparcity and multi-hierarchies, is not the optimal one
for fast aggregation.

[0037] In addition to the aggregation process, the Aggre-
gation, Access and Retrieval module is responsible for all
data storage, retrieval and access processes. The Logic
module is responsible for the execution of OLAP queries.
The Presentation module intermediates between the user and
the logic module and provides an interface through which
the end users view and request OLAP analyses. The client/
server architecture allows multiple users to simultaneously
access the multidimensional database.

[0038] Insummary, general system requirements of OLAP
systems include: (1) supporting sophisticated analysis, (2)
scaling to large number of dimensions, and (3) supporting
analysis against large atomic data sets.

[0039] MOLAP system architecture is capable of provid-
ing analytically sophisticated reports and analysis function-
ality. However, requirements (2) and (3) fundamentally limit
MOLAP’s capability, because to be effective and to meet
end-user requirements, MOLAP databases need a high
degree of aggregation.

[0040] By contrast, the ROLAP system architecture
allows the construction of systems requiring a low degree of
aggregation, but such systems are significantly slower than
systems based on MOLAP system architecure principles.
The resulting long aggregation times of ROLAP systems
impose severe limitations on its volumes and dimensional
capabilities.

[0041] The graphs plotted in FIG. 5 clearly indicate the
computational demands that are created when searching an
MDDB during an OLAP session, where answers to queries
are presented to the MOLAP system, and answers thereto are
solicited often under real-time constraints. However, prior
art MOLAP systems have limited capabilities to dynami-
cally create data aggregations or to calculate business met-
rics that have not been precalculated and stored in the
MDDB.

[0042] The large volumes of data and the high dimension-
ality of certain market segmentation applications are orders
of magnitude beyond the limits of current multidimensional
databases.

[0043] ROLAP is capable of higher data volumes. How-
ever, the ROLAP architecture, despite its high volume and
dimensionality superiority, suffers from several significant
drawbacks as compared to MOLAP:

US 2008/0016043 Al

[0044] Full aggregation of large data volumes are very
time consuming, otherwise, partial aggregation
severely degrades the query response.

[0045] Tt has a slower query response
[0046] 1t requires developers and end users to know
SQL

[0047] SQL is less capable of the sophisticated analyti-
cal functionality necessary for OLAP

[0048] ROLAP provides limited application functional-
ity

[0049] Thus, improved techniques for data aggregation
within MOLAP systems would appear to allow the number
of dimensions of and the size of atomic (i.e. basic) data sets
in the MDDB to be significantly increased, and thus increase
the usage of the MOLAP system architecture.

[0050] Also, improved techniques for data aggregation
within ROLAP systems would appear to allow for maxi-
mized query performance on large data volumes, and reduce
the time of partial aggregations that degrades query
response, and thus generally benefit ROLAP system archi-
tectures.

[0051] Thus, there is a great need in the art for an
improved way of and means for aggregating data elements
within a multi-dimensional database (MDDB), while avoid-
ing the shortcomings and drawbacks of prior art systems and
methodologies.

[0052] Modern operational and informational database
systems, as described above, typically use a database man-
agement system (DBMS) (such as an RDBMS system,
object database system, or object/relational database system)
as a repository for storing data and querying the data. FIG.
14 illustrates a data warehouse-OLAP domain that utilizes
the prior art approaches described above. The data ware-
house is an enterprise-wide data store. It is becoming an
integral part of many information delivery systems because
it provides a single, central location wherein a reconciled
version of data extracted from a wide variety of operational
systems is stored. Details on methods of data integration and
constructing data warehouses can be found in the white
paper entitled “Data Integration: The Warehouse Founda-
tion” by Louis Rolleigh and Joe Thomas.

[0053] Building a Data Warehouse has its own special
challenges (e.g. using common data model, common busi-
ness dictionary, etc.) and is a complex endeavor. However,
just having a Data Warehouse does not provide organiza-
tions with the often-heralded business benefits of data ware-
housing. To complete the supply chain from transactional
systems to decision maker, organizations need to deliver
systems that allow knowledge workers to make strategic and
tactical decisions based on the information stored in these
warehouses. These decision support systems are referred to
as On-Line Analytical Processing (OLAP) systems. Such
OLAP systems are commonly classified as Relational OLAP
systems or Multi-Dimensional OLAP systems as described
above.

[0054] The Relational OLAP (ROLAP) system accesses
data stored in a relational database (which is part of the Data
Warchouse) to provide OLAP analyses. The premise of
ROLAP is that OLAP capabilities are best provided directly

Jan. 17, 2008

against the relational database. The ROL AP architecture was
invented to enable direct access of data from Data Ware-
houses, and therefore support optimization techniques to
meet batch window requirements and provide fast response
times. Typically, these optimization techniques include
application-level table partitioning, pre-aggregate inferenc-
ing, denormalization support, and the joining of multiple
fact tables.

[0055] As described above, a typical ROLAP system has
a three-tier or layer client/server architecture. The “database
layer” utilizes relational databases for data storage, access,
and retrieval processes. The “application logic layer” is the
ROLAP engine which executes the multidimensional reports
from multiple users. The ROLAP engine integrates with a
variety of “presentation layers,” through which users per-
form OLAP analyses. After the data model for the data
warehouse is defined, data from on-line transaction-process-
ing (OLTP) systems is loaded into the relational database
management system (RDBMS). If required by the data
model, database routines are run to pre-aggregate the data
within the RDBMS. Indices are then created to optimize
query access times. End users submit multidimensional
analyses to the ROLAP engine, which then dynamically
transforms the requests into SQL execution plans. The SQL
execution plans are submitted to the relational database for
processing, the relational query results are cross-tabulated,
and a multidimensional result data set is returned to the end
user. ROLAP is a fully dynamic architecture capable of
utilizing pre-calculated results when they are available, or
dynamically generating results from the raw information
when necessary.

[0056] The Multidimensional OLAP (MOLAP) systems
utilize a proprietary multidimensional database (MDDB) (or
“cube”) to provide OLAP analyses. The main premise of this
architecture is that data must be stored multidimensionally
to be accessed and viewed multidimensionally. Such
MOLAP systems provide an interface that enables users to
query the MDDB data structure such that users can “slice
and dice” the aggregated data. As shown in FIG. 15, such
MOLAP systems have an aggregation engine which is
responsible for all data storage, access, and retrieval pro-
cesses, including data aggregation (i.e. pre-aggregation) in
the MDDB, and an analytical processing and GUI module
responsible for interfacing with a user to provide analytical
analysis, query input, and reporting of query results to the
user. In a relational database, data is stored in tables. In
contrast, the MDDB is a non-relational data structure—it
uses other data structures, either instead of or in addition to
tables—to store data.

[0057] There are other application domains where there is
a great need for improved methods of and apparatus for
carrying out data aggregation operations. For example,
modern operational and informational databases represent
such domains. As described above, modern operational and
informational databases typically utilize a relational data-
base system (RDBMS) as a repository for storing data and
querying data. FIG. 16A illustrates an exemplary table in an
RDBMS; and FIGS. 16B and 16C illustrate operators (que-
ries) on the table of FIG. 16 A, and the result of such queries,
respectively. The operators illustrated in FIGS. 16B and 16C
are expressed as Structured Query Language (SQL) state-
ments as is conventional in the art.

US 2008/0016043 Al

[0058] The choice of using a RDBMS as the data reposi-
tory in information database systems naturally stems from
the realities of SQL standardization, the wealth of RDBMS-
related tools, and readily available expertise in RDBMS
systems. However, the querying component of RDBMS
technology suffers from performance and optimization prob-
lems stemming from the very nature of the relational data
model. More specifically, during query processing, the rela-
tional data model requires a mechanism that locates the raw
data elements that match the query. Moreover, to support
queries that involve aggregation operations, such aggrega-
tion operations must be performed over the raw data ele-
ments that match the query. For large multi-dimensional
databases, a naive implementation of these operations
involves computational intensive table scans that leads to
unacceptable query response times.

[0059] 1In order to better understand how the prior art has
approached this problem, it will be helpful to briefly
describe the relational database model. According to the
relational database model, a relational database is repre-
sented by a logical schema and tables that implement the
schema. The logical schema is represented by a set of
templates that define one or more dimensions (entities) and
attributes associated with a given dimension. The attributes
associated with a given dimension includes one or more
attributes that distinguish it from every other dimension in
the database (a dimension identifier). Relationships amongst
dimensions are formed by joining attributes. The data struc-
ture that represents the set of templates and relations of the
logical schema is typically referred to as a catalog or
dictionary. Note that the logical schema represents the
relational organization of the database, but does not hold any
fact data per se. This fact data is stored in tables that
implement the logical schema.

[0060] Star schemas are frequently used to represent the
logical structure of a relational database. The basic premise
of star schemas is that information can be classified into two
groups: facts and dimensions. Facts are the core data ele-
ments being analyzed. For example, units of individual item
sold are facts, while dimensions are attributes about the
facts. For example, dimensions are the product types pur-
chased and the data purchase. Business questions against
this schema are asked looking up specific facts (UNITS)
through a set of dimensions (MARKETS, PRODUCTS,
PERIOD). The central fact table is typically much larger
than any of its dimension tables.

[0061] An exemplary star schema is illustrated in FIG.
17A for suppliers (the “Supplier” dimension) and parts (the
“Parts” dimension) over time periods (the “Time-Period”
dimension). It includes a central fact table “Supplied-Parts”
that relates to multiple dimensions—the “Supplier”, “Parts”
and “Time-Period”dimensions. A central fact table and a
dimension table for each dimension in the logical schema of
FIG. 17A may be used to implement this logical schema. A
given dimension table stores rows (instances) of the dimen-
sion defined in the logical schema. Each row within the
central fact table includes a multi-part key associated with a
set of facts (in this example, a number representing a
quantity). The multi-part key of a given row (values stored
in the S#,P#,TP# fields as shown) points to rows (instances)
stored in the dimension tables described above. A more
detailed description of star schemas and the tables used to
implement star schemas may be found in C. J. Date, “An

Jan. 17, 2008

Introduction to Database Systems,” Seventh Edition, Addi-
son-Wesley, 2000, pp. 711-715, herein incorporated by
reference in its entirety.

[0062] When processing a query, the tables that implement
the schema are accessed to retrieve the facts that match the
query. For example, in a star schema implementation as
described above, the facts are retrieved from the central fact
table and/or the dimension tables. Locating the facts that
match a given query involves one or more join operations.
Moreover, to support queries that involve aggregation opera-
tions, such aggregation operations must be performed over
the facts that match the query. For large multi-dimensional
databases, a naive implementation of these operations
involves computational intensive table scans that typically
leads to unacceptable query response times. Moreover, since
the fact tables are pre-summarized and aggregated along
business dimensions, these tables tend to be very large. This
point becomes an important consideration of the perfor-
mance issues associated with star schemas. A more detailed
discussion of the performance issues (and proposed
approaches that address such issues) related to joining and
aggregation of star schema is now set forth.

[0063] The first performance issue arises from computa-
tionally intensive table scans that are performed by a naive
implementation of data joining. Indexing schemes may be
used to bypass these scans when performing joining opera-
tions. Such schemes include B-tree indexing, inverted list
indexing and aggregate indexing. A more detailed descrip-
tion of such indexing schemes can be found in “The Art of
Indexing”, Dynamic Information Systems Corporation,
October 1999. All of these indexing schemes replaces table
scan operations (involved in locating the data elements that
match a query) with one or more index lookup operation.
Inverted list indexing associates an index with a group of
data elements, and stores (at a location identified by the
index) a group of pointers to the associated data elements.
During query processing, in the event that the query matches
the index, the pointers stored in the index are used to retrieve
the corresponding data elements pointed therefrom. Aggre-
gation indexing integrates an aggregation index with an
inverted list index to provide pointers to raw data elements
that require aggregation, thereby providing for dynamic
summarization of the raw data elements that match the
user-submitted query.

[0064] These indexing schemes are intended to improve
join operations by replacing table scan operations with one
or more index lookup operation in order to locate the data
elements that match a query. However, these indexing
schemes suffer from various performance issues as follows:

[0065] Since the tables in the star schema design typi-
cally contain the entire hierarchy of attributes (e.g. in a
PERIOD dimension, this hierarchy could be
day>week>month>quarter>year), a multipart key of
day, week, month, quarter, year has to be created; thus,
multiple meta-data definitions are required (one of each
key component) to define a single relationship; this
adds to the design complexity, and sluggishness in
performance.

[0066] Addition or deletion of levels in the hierarchy
will require physical modification of the fact table,
which is time consuming process that limits flexibility.

US 2008/0016043 Al

[0067] Carrying all the segments of the compound
dimensional key in the fact table increases the size of
the index, thus impacting both performance and scal-
ability.

[0068] Another performance issue arises from dimension
tables that contain multiple hierarchies. In such cases, the
dimensional table often includes a level of hierarchy indi-
cator for every record. Every retrieval from fact table that
stores details and aggregates must use the indicator to obtain
the correct result, which impacts performance. The best
alternative to using the level indicator is the snowflake
schema. In this schema aggregate tables are created sepa-
rately from the detail tables. In addition to the main fact
tables, snowflake schema contains separate fact tables for
each level of aggregation. Notably, the snowflake schema is
even more complicated than a star schema, and often
requires multiple SQL statements to get the results that are
required.

[0069] Another performance issue arises from the pair-
wise join problem. Traditional RDBMS engines are not
design for the rich set of complex queries that are issued
against a star schema. The need to retrieve related informa-
tion from several tables in a single query—"join process-
ing”—is severely limited. Many RDBMSs can join only two
tables at a time. If a complex join involves more than two
tables, the RDBMS needs to break the query into a series of
pairwise joins. Selecting the order of these joins has a
dramatic performance impact. There are optimizers that
spend a lot of CPU cycles to find the best order in which to
execute those joins. Unfortunately, because the number of
combinations to be evaluated grows exponentially with the
number of tables being joined, the problem of selecting the
best order of pairwise joins rarely can be solved in a
reasonable amount of time.

[0070] Moreover, because the number of combinations is
often too large, optimizers limit the selection on the basis of
a criterion of directly related tables. In a star schema, the fact
table is the only table directly related to most other tables,
meaning that the fact table is a natural candidate for the first
pairwise join. Unfortunately, the fact table is the very largest
table in the query, so this strategy leads to selecting a
pairwise join order that generates a very large intermediate
result set, severely affecting query performance.

[0071] There is an optimization strategy, typically referred
to as Cartesian Joins, that lessens the performance impact of
the pairwise join problem by allowing joining of unrelated
tables. The join to the fact table, which is the largest one, is
deferred until the very end, thus reducing the size of
intermediate result sets. In a join of two unrelated tables
every combination of the two tables’ rows is produced, a
Cartesian product. Such a Cartesian product improves query
performance. However, this strategy is viable only if the
Cartesian product of dimension rows selected is much
smaller than the number of rows in the fact table. The
multiplicative nature of the Cartesian join makes the opti-
mization helpful only for relatively small databases.

[0072] In addition, systems that exploit hardware and
software parallelism have been developed that lessens the
performance issues set forth above. Parallelism can help
reduce the execution time of a single query (speed-up), or
handle additional work without degrading execution time
(scale-up). For example, Red Brick™ has developed STAR-

Jan. 17, 2008

join™ technology that provides high speed, parallelizable
multi-table joins in a single pass, thus allowing more than
two tables can be joined in a single operation. The core
technology is an innovative approach to indexing that accel-
erates multiple joins. Unfortunately, parallelism can only
reduce, not eliminate, the performance degradation issues
related to the star schema.

[0073] One of the most fundamental principles of the
multidimensional database is the idea of aggregation. The
most common aggregation is called a roll-up aggregation.
This type is relatively easy to compute: e.g. taking daily
sales totals and rolling them up into a monthly sales table.
The more difficult are analytical calculations, the aggrega-
tion of Boolean and comparative operators. However these
are also considered as a subset of aggregation.

[0074] In a star schema, the results of aggregation are
summary tables. Typically, summary tables are generated by
database administrators who attempt to anticipate the data
aggregations that the users will request, and then pre-build
such tables. In such systems, when processing a user-
generated query that involves aggregation operations, the
pre-built aggregated data that matches the query is retrieved
from the summary tables (if such data exists). FIGS. 18A
and 18B illustrate a multi-dimensional relational database
using a star schema and summary tables. In this example, the
summary tables are generated over the “time” dimension
storing aggregated data for “month”, “quarter” and “year”
time periods as shown in FIG. 18B. Summary tables are in
essence additional fact tables, of higher levels. They are
attached to the basic fact table creating a snowtlake exten-
sion of the star schema. There are hierarchies among sum-
mary tables because users at different levels of management
require different levels of summarization. Choosing the level
of aggregation is accomplished via the “drill-down” feature.

[0075] Summary tables containing pre-aggregated results
typically provide for improved query response time with
respect to on-the-fly aggregation. However, summary tables
suffer from some disadvantages:

[0076] summary tables require that database adminis-
trators anticipate the data aggregation operations that
users will require; this is a difficult task in large
multi-dimensional databases (for example, in data
warehouses and data mining systems), where users
always need to query in new ways looking for new
information and patterns.

[0077] summary tables do not provide a mechanism that
allows efficient drill down to view the raw data that
makes up the summary table—typically a table scan of
one or more large tables is required.

[0078] querying is delayed until pre-aggregation is
completed.

[0079] there is a heavy time overhead because the vast
majority of the generated information remains unvis-
ited.

[0080] there is a need to synchronize the summary
tables before the use.

[0081] the degree of viable parallelism is limited
because the subsequent levels of summary tables must
be performed in pipeline, due to their hierarchies.

US 2008/0016043 Al

[0082] for very large databases, this option is not valid
because of time and storage space.

Note that it is common to utilize both pre-aggregated
results and on-the-fly aggregation in support aggrega-
tion. In these system, partial pre-aggregation of the
facts results in a small set of summary tables. On-the-
fly aggregation is used in the case the required aggre-
gated data does not exist in the summary tables.

[0083] Note that in the event that the aggregated data does
not exist in the summary tables, table join operations and
aggregation operations are performed over the raw facts in
order to generate such aggregated data. This is typically
referred to as on-the-fly aggregation. In such instances,
aggregation indexing is used to mitigate the performance of
multiple data joins associated with dynamic aggregation of
the raw data. Thus, in large multi-dimensional databases,
such dynamic aggregation may lead to unacceptable query
response times.

[0084] Inview of the problems associated with joining and
aggregation within RDBMS, prior art ROLAP systems have
suffered from essentially the same shortcomings and draw-
backs of their underlying RDBMS.

[0085] While prior art MOLAP systems provide for
improved access time to aggregated data within their under-
lying MDD structures, and have performance advantages
when carrying out joining and aggregations operations, prior
art MOLAP architectures have suffered from a number of
shortcomings and drawbacks. More specifically, atomic
(raw) data is moved, in a single transfer, to the MOLAP
system for aggregation, analysis and querying. Importantly,
the aggregation results are external to the DBMS. Thus,
users of the DBMS cannot directly view these results. Such
results are accessible only from the MOLAP system.
Because the MDD query processing logic in prior art
MOLAP systems is separate from that of the DBMS, users
must procure rights to access to the MOLAP system and be
instructed (and be careful to conform to such instructions) to
access the MDD (or the DBMS) under certain conditions.
Such requirements can present security issues, highly unde-
sirable for system administration. Satisfying such require-
ments is a costly and logistically cumbersome process. As a
result, the widespread applicability of MOLAP systems has
been limited.

[0086] Thus, there is a great need in the art for an
improved mechanism for joining and aggregating data ele-
ments within a database management system (e.g.,
RDBMS), and for integrating the improved database man-
agement system (e.g., RDBMS) into informational database
systems (including the data warehouse and OL AP domains),
while avoiding the shortcomings and drawbacks of prior art
systems and methodologies.

SUMMARY AND OBJECTS OF PRESENT
INVENTION

[0087] Accordingly, it is a further object of the present
invention to provide an improved method of and system for
managing data elements within a multidimensional database
(MDDB) using a novel stand-alone (i.e. external) data
aggregation server, achieving a significant increase in sys-
tem performance (e.g. decreased access/search time) using a
stand-alone scalable data aggregation server.

Jan. 17, 2008

[0088] Another object of the present invention is to pro-
vide such system, wherein the stand-alone aggregation
server includes an aggregation engine that is integrated with
an MDDB; to provide a cartridge-style plug-in accelerator
which can communicate with virtually any conventional
OLAP server.

[0089] Another object of the present invention is to pro-
vide such a stand-alone data aggregration server whose
computational tasks are restricted to data aggregation, leav-
ing all other OLAP functions to the MOLAP server and
therefore complementing OLAP server’s functionality.

[0090] Another object of the present invention is to pro-
vide such a system, wherein the stand-alone aggregation
server carries out an improved method of data aggregation
within the MDDB which enables the dimensions of the
MDDB to be scaled up to large numbers and large atomic
(i.e. base) data sets to be handled within the MDDB.

[0091] Another object of the present invention is to pro-
vide such a stand-alone aggregration server, wherein the
aggregation engine supports high-performance aggregation
(i.e. data roll-up) processes to maximize query performance
of large data volumes, and to reduce the time of partial
aggregations that degrades the query response.

[0092] Another object of the present invention is to pro-
vide such a stand-alone, external scalable aggregation
server, wherein its integrated data aggregation (i.e. roll-up)
engine speeds up the aggregation process by orders of
magnitude, enabling larger database analysis by lowering
the aggregation times.

[0093] Another object of the present invention is to pro-
vide such a novel stand-alone scalable aggregation server for
use in OLAP operations, wherein the scalability of the
aggregation server enables (i) the speed of the aggregation
process carried out therewithin to be substantially increased
by distributing the computationally intensive tasks associ-
ated with data aggregation among multiple processors, and
(i) the large data sets contained within the MDDB of the
aggregation server to be subdivided among multiple proces-
sors thus allowing the size of atomic (i.e. basic) data sets
within the MDDB to be substantially increased.

[0094] Another object of the present invention is to pro-
vide such a novel stand-alone scalable aggregation server,
which provides for uniform load balancing among proces-
sors for high efficiency and best performance, and linear
scalability for extending the limits by adding processors.

[0095] Another object of the present invention is to pro-
vide a stand-alone, external scalable aggregation server,
which is suitable for MOLAP as well as for ROLAP system
architectures.

[0096] Another object of the present invention is to pro-
vide a novel stand-alone scalable aggregation server,
wherein an MDDB and aggregation engine are integrated
and the aggregation engine carries out a high-performance
aggregation algorithm and novel storing and searching
methods within the MDDB.

[0097] Another object of the present invention is to pro-
vide a novel stand-alone scalable aggregation server which
can be supported on single-processor (i.e. sequential or
serial) computing platforms, as well as on multi-processor
(i.e. parallel) computing platforms.

US 2008/0016043 Al

[0098] Another object of the present invention is to pro-
vide a novel stand-alone scalable aggregation server which
can be used as a complementary aggregation plug-in to
existing MOLAP and ROLAP databases.

[0099] Another object of the present invention is to pro-
vide a novel stand-alone scalable aggregation server which
carries out an novel rollup (i.e. down-up) and spread down
(i.e. top-down) aggregation algorithms.

[0100] Another object of the present invention is to pro-
vide a novel stand-alone scalable aggregation server which
includes an integrated MDDB and aggregation engine which
carries out full pre-aggregation and/or “on-the-fly” aggre-
gation processes within the MDDB.

[0101] Another object of the present invention is to pro-
vide such a novel stand-alone scalable aggregation server
which is capable of supporting MDDB having a multi-
hierarchy dimensionality.

[0102] Another object of the present invention is to pro-
vide a novel method of aggregating multidimensional data
of atomic data sets originating from a RDBMS Data Ware-
house.

[0103] Another object of the present invention is to pro-
vide a novel method of aggregating multidimensional data
of atomic data sets originating from other sources, such as
external ASCII files, MOLAP server, or other end user
applications.

[0104] Another object of the present invention is to pro-
vide a novel stand-alone scalable data aggregation server
which can communicate with any MOLAP server via stan-
dard ODBC, OLE DB or DLL interface, in a completely
transparent manner with respect to the (client) user, without
any time delays in queries, equivalent to storage in MOLAP
server’s cache.

[0105] Another object of the present invention is to pro-
vide a novel “cartridge-style” (stand-alone) scalable data
aggregation engine which dramatically expands the bound-
aries of MOLAP into large-scale applications including
Banking, Insurance, Retail and Promotion Analysis.

[0106] Another object of the present invention is to pro-
vide a novel “cartridge-style” (stand-alone) scalable data
aggregation engine which dramatically expands the bound-
aries of high-volatility type ROLAP applications such as, for
example, the precalculation of data to maximize query
performance.

[0107] Another object of the present invention is to pro-
vide a generic plug-in cartridge-type data aggregation com-
ponent, suitable for all MOLAP systems of different ven-
dors, dramatically reducing their aggregation burdens.

[0108] Another object of the present invention is to pro-
vide a novel high performance cartridge-type data aggre-
gration server which, having standardized interfaces, can be
plugged-into the OLAP system of virtually any user or
vendor.

[0109] Another object of the present invention is to pro-
vide a novel “cartridge-style” (stand-alone) scalable data
aggregation engine which has the capacity to convert long
batch-type data aggregations into interactive sessions.

Jan. 17, 2008

[0110] In another aspect, it is an object of the present
invention to provide an improved method of and system for
joining and aggregating data elements integrated within a
database management system (DBMS) using a non-rela-
tional multi-dimensional data structure (MDDB), achieving
a significant increase in system performance (e.g. decreased
access/search time), user flexibility and ease of use.

[0111] Another object of the present invention is to pro-
vide such an DBMS wherein its integrated data aggregation
module supports high-performance aggregation (i.e. data
roll-up) processes to maximize query performance of large
data volumes.

[0112] Another object of the present invention is to pro-
vide such an DBMS system, wherein its integrated data
aggregation (i.e. roll-up) module speeds up the aggregation
process by orders of magnitude, enabling larger database
analysis by lowering the aggregation times.

[0113] Another object of the present invention is to pro-
vide such a novel DBMS system for use in OLAP opera-
tions.

[0114] Another object of the present invention is to pro-
vide a novel DBMS system having an integrated aggregation
module that carries out an novel rollup (i.e. down-up) and
spread down (i.e. top-down) aggregation algorithms.

[0115] Another object of the present invention is to pro-
vide a novel DBMS system having an integrated aggregation
module that carries out full pre-aggregation and/or “on-the-
fly” aggregation processes.

[0116] Another object of the present invention is to pro-
vide a novel DBMS system having an integrated aggregation
module which is capable of supporting a MDDB having a
multi-hierarchy dimensionality.

[0117] These and other object of the present invention will
become apparent hereinafter and in the Claims to Invention
set forth herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0118] In order to more fully appreciate the objects of the
present invention, the following Detailed Description of the
Tlustrative Embodiments should be read in conjunction with
the accompanying Drawings, wherein:

[0119] FIG. 1A is a schematic representation of an exem-
plary prior art relational on-line analytical processing
(ROLAP) system comprising a three-tier or layer client/
server architecture, wherein the first tier has a database layer
utilizing an RDBMS for data storage, access, and retrieval
processes, the second tier has an application logic layer (i.e.
the ROLAP engine) for executing the multidimensional
reports from multiple users, and the third tier integrates the
ROLAP engine with a variety of presentation layers, through
which users perform OLAP analyses;

[0120] FIG. 1B is a schematic representation of a gener-
alized embodiment of a prior art multidimensional on-line
analytical processing (MOLAP) system comprising a base
data loader for receiving atomic (i.e. base) data from a Data
Warehouse realized by a RDBMS, an OLAP multidimen-
sional database (MDDB), an aggregation, access and retrival
module, application logic module and presentation module
associated with a conventional OLAP sever (e.g. Oracle’s

US 2008/0016043 Al

Express Server) for supporting on-line transactional pro-
cessing (OLTP) operations on the MDDB, to service data-
base queries and requests from a plurality of OLAP client
machines typically accessing the system from an informa-
tion network (e.g. the Internet);

[0121] FIG. 2A is a schematic representation of the Data
Warchouse shown in the prior art system of FIG. 1B
comprising numerous data tables (e.g. T1, T2 . . . Tn) and
data field links, and the OLAP multidimensional database
shown of FIG. I B, comprising a conventional page alloca-
tion table (PAT) with pointers pointing to the physical
storage of variables in an information storage device;

[0122] FIG. 2B is a schematic representation of an exem-
plary three-dimensional MDDB and organized as a 3-di-
mensional Cartesian cube and used in the prior art system of
FIG. 2A, wherein the first dimension of the MDDB is
representative of geography (e.g. cities, states, countries,
continents), the second dimension of the MDDB is repre-
sentative of time (e.g. days, weeks, months, years), the third
dimension of the MDDB is representative of products (e.g.
all products, by manufacturer), and the basic data element is
a set of variables which are addressed by 3-dimensional
coordinate values;

[0123] FIG. 2C is a schematic representation of a prior art
array structure associated with an exemplary three-dimen-
sional MDDB, arranged according to a dimensional hierar-
chy;

[0124] FIG. 2D is a schematic representation of a prior art
page allocation table for an exemplary three-dimensional
MDDB, arranged according to pages of data element
addresses;

[0125] FIG. 3Ais a schematic representation of a prior art
MOLAP system, illustrating the process of periodically
storing raw data in the RDBMS Data Warehouse thereof,
serially loading of basic data from the Data Warehouse to the
MDDB, and the process of serially pre-aggregating (or
pre-compiling) the data in the MDDB along the entire
dimensional hierarchy thereof;

[0126] FIG. 3B is a schematic representation illustrating
that the Cartesian addresses listed in a prior art page allo-
cation table (PAT) point to where physical storage of data
elements (i.e. variables) occurs in the information recording
media (e.g. storage volumes) associated with the MDDB,
during the loading of basic data into the MDDB as well as
during data preaggregation processes carried out there-
within;

[0127] FIG. 3C1 is a schematic representation of an exem-
plary three-dimensional database used in a conventional
MOLAP system of the prior art, showing that each data
element contained therein is physically stored at a location
in the recording media of the system which is specified by
the dimensions (and subdimensions within the dimensional
hierarchy) of the data variables which are assigned integer-
based coordinates in the MDDB, and also that data elements
associated with the basic data loaded into the MDDB are
assigned lower integer coordinates in MDDB Space than
pre-aggregated data elements contained therewithin;

[0128] FIG. 3C2 is a schematic representation illustrating
that a conventional hierarchy of the dimension of “time”

Jan. 17, 2008

typically contains the subdimensions “days, weeks, months,
quarters, etc.” of the prior art;

[0129] FIG. 3C3 is a schematic representation showing
how data elements having higher subdimensions of time in
the MDDB of the prior art are typically assigned increased
integer addresses along the time dimension thereof;

[0130] FIG. 4 is a schematic representation illustrating
that, for very large prior art MDDBs, very large page
allocation tables (PATs) are required to represent the address
locations of the data elements contained therein, and thus
there is a need to employ address data paging techniques
between the DRAM (e.g. program memory) and mass
storage devices (e.g. recording discs or RAIDs) available on
the serial computing platform used to implement such prior
art MOLAP systems;

[0131] FIG. 5 is a graphical representation showing how
search time in a conventional (i.e. prior art) MDDB
increases in proportion to the amount of preaggregation of
data therewithin;

[0132] FIG. 6A is a schematic representation of a gener-
alized embodiment of a multidimensional on-line analytical
processing (MOLAP) system of the present invention com-
prising a Data Warehouse realized as a relational database,
a stand-alone Aggregration Server of the present invention
having an integrated aggregation engine and MDDB, and an
OLAP server supporting a plurality of OLAP clients,
wherein the stand-alone Aggregation Server performs aggre-
gation functions (e.g. summation of numbers, as well as
other mathematical operations, such as multiplication, sub-
traction, division etc.) and multi-dimensional data storage
functions;

[0133] FIG. 6B is a schematic block diagram of the
stand-alone Aggregation Server of the illustrative embodi-
ment shown in FIG. 6A, showing its primary components,
namely, a base data interface (e.g. OLDB, OLE-DB, ODBC,
SQL, IDBC, API, etc.) for receiving RDBMS flat files lists
and other files from the Data Warehouse (RDBMS), a base
data loader for receiving base data from the base data
interface, configuration manager for managing the operation
of the base data interface and base data loader, an aggrega-
tion engine and MDDB handler for receiving base data from
the base loader, performing aggregation operations on the
base data, and storing the base data and aggregated data in
the MDDB; an aggregation client interface (e.g. OLDB,
OLE-DB, ODBC, SQL, JIDBC, API, etc.) and input analyzer
for receiving requests from OLAP client machines, cooper-
ating with the aggregation engine and MDDB handler to
generate aggregated data and/or retrieve aggregated data
from the MDDB that pertains to the received requests, and
returning this aggregated back to the requesting OLAP
clients; and a configuration manager for managing the
operation of the input analyzer and the aggregation client
interface.

[0134] FIG. 6C is a schematic representation of the soft-
ware modules comprising the aggregation engine and
MDDB handler of the stand-alone Aggregation Server of the
illustrative embodiment of the present invention, showing a
base data list structure being supplied to a hierarchy analysis
and reorder module, the output thereof being transferred to
an aggregation management module, the output thereof
being transferred to a storage module via a storage manage-

US 2008/0016043 Al

ment module, and a Query Directed Roll-up (QDR) aggre-
gation management module being provided for receiving
database (DB) requests from OLAP client machines (via the
aggregation client interface) and managing the operation of
the aggregation and storage management modules of the
present invention;

[0135] FIG. 6D is a flow chart representation of the
primary operations carried out by the (DB) request serving
mechanism within the QDR aggregation management mod-
ule shown in FIG. 6C;

[0136] FIG. 7A is a schematic representation of a separate-
platform type implementation of the stand-alone Aggrega-
tion Server of the illustrative embodiment of FIG. 6B and a
conventional OLAP server supporting a plurality of client
machines, wherein base data from a Data Warehouse is
shown being received by the aggregation server, realized on
a first hardware/software platform (i.e. Platform A) and the
stand-alone Aggregation Server is shown serving the con-
ventional OLAP server, realized on a second hardware/
software platform (i.e. Platform B), as well as serving data
aggregation requirements of other clients supporting diverse
applications such as spreadsheet, GUI front end, and appli-
cations;

[0137] FIG. 7B is a schematic representation of a shared-
platform type implementation of the stand-alone Aggrega-
tion Server of the illustrative embodiment of FIG. 6B and a
conventional OLAP server supporting a plurality of client
machines, wherein base data from a Data Warehouse is
shown being received by the stand-alone Aggregation
Server, realized on a common hardware/software platform
and the aggregation server is shown serving the conven-
tional OLAP server, realized on the same common hard-
ware/software platform, as well as serving data aggregation
requirements of other clients supporting diverse applications
such as spreadsheet, GUI front end, and applications;

[0138] FIG. 8A is a data table setting forth information
representative of performance benchmarks obtained by the
shared-platform type implementation of the stand-alone
Aggregation Server of the illustrative embodiment serving
the conventional OLAP server (i.e. Oracle EXPRESS
Server) shown in FIG. 7B, wherein the common hardware/
software platform is realized using a Pentium II 450 Mhz, 1
GB RAM, 18 GB Disk, running the Microsoft NT operating
system (OS);

[0139] FIG. 9A is a schematic representation of the first
stage in the method of segmented aggregation according to
the principles of the present invention, showing initial
aggregration along the 1st dimension;

[0140] FIG. 9B is a schematic representation of the next
stage in the method of segmented aggregation according to
the principles of the present invention, showing that any
segment along dimension 1, such as the shown slice, can be
separately aggregated along the remaining dimensions, 2
and 3, and that in general, for an N dimensional system, the
second stage involves aggregation in N-1 dimensions. The
principle of segementation can be applied on the first stage
as well, however, only a large enough data will justify such
a sliced procedure in the first dimension. Actually, it is
possible to consider each segment as an N-1 cube, enabling
recursive computation.

[0141] FIG. 9C1 is a schematic representation of the
Query Directed Roll-up (QDR) aggregation method/proce-

Jan. 17, 2008

dure of the present invention, showing data aggregation
starting from existing basic data or previously aggregated
data in the first dimension (D1), and such aggregated data
being utilized as a basis for QDR aggregation along the
second dimension (D2);

[0142] FIG. 9C2 is a schematic representation of the
Query Directed Roll-up (QDR) aggregation method/proce-
dure of the present invention, showing initial data aggrega-
tion starting from existing previously aggregated data in the
second third (D3), and continuing along the third dimension
(D3), and thereafter continuing aggregation along the sec-
ond dimension (D2);

[0143] FIG. 10A is a schematic representation of the
“slice-storage” method of storing sparse data in the disk
storage devices of the MDDB of FIG. 6B in accordance with
the principles of the present invention, based on an ascend-
ing-ordered index along aggregation direction, enabling fast
retrieval of data;

[0144] FIG. 10B is a schematic representation of the data
organization of data files and the directory file used in the
storages of the MDDB of FIG. 6B, and the method of
searching for a queried data point therein using a simple
binary search technique due to the data files ascending order;

[0145] FIG. 11A is a schematic representation of three
exemplary multi-hierarchical data structures for storage of
data within the MDDB of FIG. 6B, having three levels of
hierarchy, wherein the first level representative of base data
is composed of items A,B,F, and G, the second level is
composed of items C,E,H and I, and the third level is
composed of a single item D, which is common to all three
hierarchical structures;

[0146] FIG. 11B is a schematic representation of an opti-
mized multi-hierarchical data structure merged from all
three hierarchies of FIG. 11A, in accordance with the
principles of the present invention;

[0147] FIG. 11C(i) through 11C(ix) represent a flow chart
description (and accompanying data structures) of the opera-
tions of an exemplary hierarchy transformation mechanism
of the present invention that optimally merges multiple
hierarchies into a single hierarchy that is functionally
equivalent to the multiple hierarchies.

[0148] FIG. 12 is a schematic representation showing the
levels of operations performed by the stand-alone Aggrega-
tion Server of FIG. 6B, summarizing the different enabling
components for carrying out the method of segmented
aggregation in accordance with the principles of the present
invention;

[0149] FIG. 13 is a schematic representation of the stand-
alone Aggregation Server of the present invention shown as
a component of a central data warehouse, serving the data
aggregation needs of URL directory systems, Data Marts,
RDBMSs, ROLAP systems and OLAP systems alike;

[0150] FIG. 14 is a schematic representation of a prior art
information database system, wherein the present invention
may be embodied;

[0151] FIG. 15 is a schematic representation of the prior
art data warehouse and OLAP system, wherein the present
invention may be embodied;

US 2008/0016043 Al

[0152] FIGS. 16A-16C are schematic representations of
exemplary tables employed in a prior art Relational Data-
base Management System (RDBMS); FIGS. 16B and 16C
illustrate operators (queries) on the table of FIG. 16A, and
the result of such queries, respectively;

[0153] FIG. 17A is a schematic representation of an exem-
plary dimensional schema (star schema) of a relational
database;

[0154] FIG. 18A is a schematic representation of an exem-
plary multidimensional schema (star schema);

[0155] FIG. 18B is a schematic representation of tables
used to implement the schema of FIG. 18A, including
summary tables storing results of aggregation operations
performed on the facts of the central fact table along the
time-period dimension, in accordance with conventional
teachings;

[0156] FIG. 19A is a schematic representation of an exem-
plary embodiment of a DBMS (for example, an RDBMS as
shown) of the present invention comprising a relational
datastore and an integrated multidimensional (MDD) aggre-
gation module supporting queries from a plurality of clients,
wherein the aggregation engine performs aggregation func-
tions (e.g. summation of numbers, as well as other math-
ematical operations, such as multiplication, subtraction,
division etc.) and non-relational multi-dimensional data
storage functions.

[0157] FIG. 19B is a schematic block diagram of the MDD
aggregation module of the illustrative embodiment of the
present invention shown in FIG. 6A.

[0158] FIGS. 19C(i) and 19C(ii), taken together, set forth
a flow chart representation of the primary operations carried
out within the DBMS of the present invention when per-
forming data aggregation and related support operations,
including the servicing of user-submitted (e.g. natural lan-
guage) queries made on such aggregated database of the
present invention.

[0159] FIG. 19D is a flow chart representation of the
primary operations carried out by the (DB) request serving
mechanism within the MDD control module shown in FIG.
6B.

[0160] FIG. 19E is a schematic representation of the view
mechanism of an DBMS that enables users to query on the
aggregated data generated and/or stored in the MDD Aggre-
gation module according to the present invention.

[0161] FIG. 19F is a schematic representation of the
trigger mechanism of the DBMS that enables users to query
on the aggregated data generated and/or stored in the MDD
Aggregation module according to the present invention.

[0162] FIG. 19G is a schematic representation of the
DBMS of the present invention, illustrating a logically
partitioning into a relational part and a non-relational part.
The relational part includes the relational data store (e.g.,
table(s) and dictionary) and support mechanisms (e.g., query
handling services). The non-relational part includes the
MDD Aggregation Module. Data flows bidirectionally
between the relational part and the non-relational part as
shown.

[0163] FIG. 20A shows a separate-platform type imple-
mentation of the DBMS system of the illustrative embodi-

Jan. 17, 2008

ment shown in FIG. 19A, wherein the relational datastore
and support mechanisms (e.g., query handling, fact table(s)
and dictionary of the DBMS) reside on a separate hardware
platform and/or OS system from that used to run the MDD
Aggregation Module of the present invention.

[0164] FIG. 20B shows a common-platform type imple-
mentation of the DBMS system of the illustrative embodi-
ment shown in FIG. 19A, wherein the relational datastore
and support mechanisms (e.g., query handling, fact table(s)
and dictionary of the DBMS) share the same hardware
platform and operating system (OS) that is used to run the
MDD Aggregation Module of the present invention.

[0165] FIG. 21 is a schematic representation of the DBMS
of the present invention shown as a component of a central
data warehouse, serving the data storage and aggregation
needs of a ROLAP system (or other OLAP system).

[0166] FIG. 22 is a schematic representation of the DBMS
of the present invention shown as a component of a central
data warehouse, wherein the DBMS includes integrated
OLAP Analysis Logic (and preferably an integrated Presen-
tation Module) that operates cooperatively with the query
handling of the DBMS system and the MDD Aggregation
Module to enable users of the DBMS system to execute
multidimensional reports (e.g., ratios, ranks, transforms,
dynamic consolidation, complex filtering, forecasts, query
governing, scheduling, flow control, pre-aggregate inferenc-
ing, denomalization support, and/or table partitioning and
joins) and preferably perform traditional OLAP analyses
(grids, graphs, maps, alerts, drill-down, data pivot, data surf,
slice and dice, print).

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS OF THE
PRESENT INVENTION

[0167] Referring now to FIGS. 6A through 13, the pre-
ferred embodiments of the method and system of the present
invention will be now described in great detail hereinbelow,
wherein like elements in the Drawings shall be indicated by
like reference numerals.

[0168] Through this invention disclosure, the term “aggre-
gation” and “preaggregation” shall be understood to mean
the process of summation of numbers, as well as other
mathematical operations, such as multiplication, subtrac-
tion, division etc.

[0169] In general, the stand-alone aggregation server and
methods of and apparatus for data aggregation of the present
invention can be employed in a wide range of applications,
including MOLAP systems, ROLAP systems, Internet URL-
directory systems, personalized on-line e-commerce shop-
ping systems, Internet-based systems requiring real-time
control of packet routing and/or switching, and the like.

[0170] For purposes of illustration, initial focus will be
accorded to improvements in MOLAP systems, in which
knowledge workers are enabled to intuitively, quickly, and
flexibly manipulate operational data within a MDDB using
familiar business terms in order to provide analytical insight
into a business domain of interest.

[0171] FIG. 6A illustrates a generalized embodiment of a
multidimensional on-line analytical processing (MOLAP)
system of the present invention comprising: a Data Ware-

US 2008/0016043 Al

house realized as a relational database; a stand-alone car-
tridge-style Aggregation Server of the present invention
having an integrated aggregation engine and a MDDB; and
an OLAP server communicating with the Aggregation
Server, and supporting a plurality of OLAP clients. In
accordance with the principles of the present invention, the
stand-alone Aggregation Server performs aggregation func-
tions (e.g. summation of numbers, as well as other math-
ematical operations, such as multiplication, subtraction,
division etc.) and multi-dimensional data storage functions.

[0172] Departing from conventional practices, the prin-
ciples of the present invention teaches moving the aggrega-
tion engine and the MDDB into a separate Aggregation
Server having standardized interfaces so that it can be
plugged-into the OLAP server of virtually any user or
vendor. This dramatic move discontinues the restricting
dependency of aggregation from the analytical functions of
OLAP, and by applying novel and independent algorithms.
The stand-alone data aggregation server enables efficient
organization and handling of data, fast aggregation process-
ing, and fast access to and retrieval of any data element in
the MDDB.

[0173] As will be described in greater detail hereinafter,
the Aggregation Server of the present invention can serve
the data aggregation requirements of other types of systems
besides OLAP systems such as, for example, URL directory
management Data Marts, RDBMS, or ROLAP systems.

[0174] The Aggregation Server of the present invention
excels in performing two distinct functions, namely: the
aggregation of data in the MDDB; and the handling of the
resulting data base in the MDDB, for “on demand” client
use. In the case of serving an OLAP server, the Aggregation
Server of the present invention focuses on performing these
two functions in a high performance manner (i.e. aggregat-
ing and storing base data, originated at the Data Warehouse,
in a multidimensional storage (MDDB), and providing the
results of this data aggregation process “on demand” to the
clients, such as the OLAP server, spreadsheet applications,
the end user applications. As such, the Aggregation Server of
the present invention frees each conventional OLAP server,
with which it interfaces, from the need of making data
aggregations, and therefore allows the conventional OLAP
server to concentrate on the primary functions of OLAP
servers, namely: data analysis and supporting a graphical
interface with the user client.

[0175] FIG. 6B shows the primary components of the
stand-alone Aggregation Server of the illustrative embodi-
ment, namely: a base data interface (e.g. OLDB, OLE-DB,
ODBC, SQL, JDBC, AP], etc.) for receiving RDBMS flat
files lists and other files from the Data Warehouse
(RDBMS), a base data loader for receiving base data from
the base data interface, configuration manager for managing
the operation of the base data interface and base data loader,
an aggregation engine for receiving base data from the base
loader, a multi-dimensional database (MDDB); a MDDB
handler, an input analyzer, an aggregation client interface
(e.g. OLDB, OLE-DB, ODBC, SQL, API, JDBC, etc.) and
a configuration manager for managing the operation of the
input analyzer and the aggregation client interface.

[0176] During operation, the base data originates at data
warehouse or other sources, such as external ASCII files,
MOLAP server, or others. The Configuration Manager, in

Jan. 17, 2008

order to enable proper communication with all possible
sources and data structures, configures two blocks, the Base
Data Interface and Data Loader. Their configuration is
matched with different standards such as OLDB, OLE-DB,
ODBC, SQL, API, JDBC, etc.

[0177] As shown in FIG. 6B, the core of the data Aggre-
gation Server of the present invention comprises: a data
Aggregation Engine; a Multidimensional Data Handler
(MDDB Handler); and a Multidimensional Data Storage
(MDDB). The results of data aggregation are efficiently
stored in the MDDB by the MDDB Handler.

[0178] As shown in FIGS. 6A and 6B, the stand-alone
Aggregation Server of the present invention serves the
OLAP Server (or other requesting computing system) via an
aggregation client interface, which preferably conforms to
standard interface protocols such as OLDB, OLE-DB,
ODBC, SQL, IDBC, an API, etc. Aggregation results
required by the OLAP server are supplied on demand.
Typically, the OLAP Server disintegrates the query, via
parsing process, into series of requests. Each such request,
specifying a n-dimensional coordinate, is presented to the
Aggregation Server. The Configuration Manager sets the
Aggregation Client Interface and Input Analyzer for a proper
communication protocol according to the client user. The
Input Analyzer converts the input format to make it suitable
for the MDDB Handler.

[0179] An object of the present invention is to make the
transfer of data completely transparent to the OLAP user, in
a manner which is equivalent to the storing of data in the
MOLAP server’s cache and without any query delays. This
requires that the stand-alone Aggregation Server have
exceptionally fast response characteristics. This object is
enabled by providing the unique data structure and aggre-
gation mechanism of the present invention.

[0180] FIG. 6C shows the software modules comprising
the aggregation engine and MDDB handler components of
the stand-alone Aggregation Server of the illustrative
embodiment. The base data list, as it arrives from RDBMS
or text files, has to be analyzed and reordered to optimize
hierarchy handling, according to the unique method of the
present invention, as described later with reference to FIGS.
11A and 11B.

[0181] The function of the aggregation management mod-
ule is to administrate the aggregation process according to
the method illustrated in FIGS. 9A and 9B.

[0182] In accordance with the principles of the present
invention, data aggregation within the stand-alone Aggre-
gation Server can be carried out either as a complete
pre-aggregation process, where the base data is fully aggre-
gated before commencing querying, or as a query directed
roll-up (QDR) process, where querying is allowed at any
stage of aggregation using the “on-the-fly” data aggregation
process of the present invention. The QDR process will be
described hereinafter in greater detail with reference to FIG.
9C. The response to a request (i.e. a basic component of a
client query), by calling the Aggregation management mod-
ule for “on-the-fly” data aggregation, or for accessing pre-
aggregated result data via the Storage management module.
The query/request serving mechanism of the present inven-
tion within the QDR aggregation management module is
illustrated in the flow chart of FIG. 6D.

US 2008/0016043 Al

[0183] The function of the Storage management module is
to handle multidimensional data in the storage(s) module in
a very efficient way, according to the novel method of the
present invention, which will be described in detail herein-
after with reference to FIGS. 10A and 10B.

[0184] The request serving mechanism shown in FIG. 6D
is controlled by the QDR aggregation management module.
Requests are queued and served one by one. If the required
data is already pre-calculated, then it is retrieved by the
storage management module and returned to the client.
Otherwise, the required data is calculated “on-the-fly” by the
aggregation management module, and the result moved out
to the client, while simultaneously stored by the storage
management module, shown in FIG. 6C.

[0185] FIGS. 7A and 7B outline two different implemen-
tations of the stand-alone (cartridge-style) Aggregation
Server of the present invention. In both implementations, the
Aggregation Server supplies aggregated results to a client.

[0186] FIG. 7A shows a separate-platform type implemen-
tation of the MOLAP system of the illustrative embodiment
shown in FIG. 6A, wherein the Aggregation Server of the
present invention resides on a separate hardware platform
and OS system from that used to run the OLAP server. In this
type of implementation, it is even possible to run the
Aggregation Server and the OLAP Server on different-type
operating systems (e.g. NT, Unix, MAC OS).

[0187] FIG. 7B shows a common-platform type imple-
mentation of the MOLAP system of the illustrative embodi-
ment shown in FIG. 6B, wherein the Aggregation Server of
the present invention and OLAP Server share the same
hardware platform and operating system (OS).

[0188] FIG. 8A shows a table setting forth the benchmark
results of an aggregation engine, implemented on a shared/
common hardware platform and OS, in accordance with the
principles of the present invention. The common platform
and OS is realized using a Pentium II 450 Mhz, 1 GB RAM,
18 GB Disk, running the Microsoft NT operating system.
The six (6) data sets shown in the table differ in number of
dimensions, number of hierarchies, measure of sparcity and
data size. A comparison with ORACLE Express, a major
OLAP server, is made. It is evident that the aggregation
engine of the present invention outperforms currently lead-
ing aggregation technology by more than an order of mag-
nitude.

[0189] The segmented data aggregation method of the
present invention is described in FIGS. 9A through 9C2.
These figures outline a simplified setting of three dimensions
only; however, the following analysis applies to any number
of dimensions as well.

[0190] The data is being divided into autonomic segments
to minimize the amount of simultaneously handled data. The
initial aggregation is practiced on a single dimension only,
while later on the aggregation process involves all other
dimensions.

[0191] At the first stage of the aggregation method, an
aggregation is performed along dimension 1. The first stage
can be performed on more than one dimension. As shown in
FIG. 9A, the space of the base data is expanded by the
aggregation process.

Jan. 17, 2008

[0192] In the next stage shown in FIG. 9B, any segment
along dimension 1, such as the shown slice, can be sepa-
rately aggregated along the remaining dimensions, 2 and 3.
In general, for an N dimensional system, the second stage
involves aggregation in N-1 dimensions.

[0193] The principle of data segmentation can be applied
on the first stage as well. However, only a large enough data
set will justify such a sliced procedure in the first dimension.
Actually, it is possible to consider each segment as an N-1
cube, enabling recursive computation.

[0194] 1t is imperative to get aggregation results of a
specific slice before the entire aggregation is completed, or
alternatively, to have the roll-up done in a particular
sequence. This novel feature of the aggregation method of
the present invention is that it allows the querying to begin,
even before the regular aggregation process is accom-
plished, and still having fast response. Moreover, in rela-
tional OLAP and other systems requiring only partial aggre-
gations, the QDR process dramatically speeds up the query
response.

[0195] The QDR process is made feasible by the slice-
oriented roll-up method of the present invention. After
aggregating the first dimension(s), the multidimensional
space is composed of independent multidimensional cubes
(slices). These cubes can be processed in any arbitrary
sequence.

[0196] Consequently the aggregation process of the
present invention can be monitored by means of files, shared
memory sockets, or queues to statically or dynamically set
the roll-up order.

[0197] In order to satisfy a single query coming from a
client, before the required aggregation result has been pre-
pared, the QDR process of the present invention involves
performing a fast on-the-fly aggregation (roll-up) involving
only a thin slice of the multidimensional data.

[0198] FIG. 9C1 shows a slice required for building-up a
roll-up result of the 2*¢ dimension. In case 1, as shown, the
aggregation starts from an existing data, either basic or
previously aggregated in the first dimension. This data is
utilized as a basis for QDR aggregation along the second
dimension. In case 2, due to lack of previous data, a QDR
involves an initial slice aggregation along dimension 3, and
thereafter aggregation along the 2¢ dimension.

[0199] FIG. 9C2 shows two corresponding QDR cases for
gaining results in the 3d dimension. Cases I and 2 differ in
the amount of initial aggregation required in 2 dimension.

[0200] FIG. 10A illustrates the “Slice-Storage” method of
storing sparse data on storage disks. In general, this data
storage method is based on the principle that an ascending-
ordered index along aggregation direction, enables fast
retrieval of data. FIG. 10A illustrates a unit-wide slice of the
multidimensional cube of data. Since the data is sparse, only
few non-NA data points exist. These points are indexed as
follows. The Data File consists of data records, in which
each n-I dimensional slice is being stored, in a separate
record. These records have a varying length, according to the
amount of non-NA stored points. For each registered point
in the record, INDK stands for an index in a n-dimensional
cube, and Data stands for the value of a given point in the
cube.

US 2008/0016043 Al

[0201] FIG. 10B illustrates a novel method for randomly
searching for a queried data point in the MDDB of FIG. 6B
by using a novel technique of organizing data files and the
directory file used in the storages of the MDDB, so that a
simple binary search technique can then be employed within
the Aggregation Server of the present invention. According
to this method, a metafile termed DIR File, keeps pointers to
Data Files as well as additional parameters such as the start
and end addresses of data record (IND,, IND,), its location
within the Data File, record size (n), file’s physical address
on disk (D_Path), and auxiliary information on the record
(Flags).

[0202] A search for a queried data point is then performed
by an access to the DIR file. The search along the file can be
made using a simple binary search due to file’s ascending
order. When the record is found, it is then loaded into main
memory to search for the required point, characterized by its
index IND,. The attached Data field represents the queried
value. In case the exact index is not found, it means that the
point is a NA.

[0203] In another aspect of the present invention, a novel
method is provided for optimally merging multiple hierar-
chies in multi-hierarchical structures. The method, illus-
trated in FIGS. 11A, 11B, and 11C is preferably used by the
Aggregation Server of the present invention in processing
the table data (base data), as it arrives from RDBMS.

[0204] According to the devised method, the inner order
of hierarchies within a dimension is optimized, to achieve
efficient data handling for summations and other mathemati-
cal formulas (termed in general “Aggregation”). The order
of hierarchy is defined externally. It is brought from a data
source to the stand-alone aggregation engine, as a descriptor
of data, before the data itself. In the illustrative embodiment,
the method assumes hierarchical relations of the data, as
shown in FIG. 11A. The way data items are ordered in the
memory space of the Aggregation Server, with regard to the
hierarchy, has a significant impact on its data handling
efficiency.

[0205] Notably, when using prior art techniques, multiple
handling of data elements, which occurs when a data ele-
ment is accessed more than once during aggregation pro-
cess, has been hitherto unavoidable when the main concern
is to effectively handle the sparse data. The data structures
used in prior art data handling methods have been designed
for fast access to a non NA data. According to prior art
techniques, each access is associated with a timely search
and retrieval in the data structure. For the massive amount
of data typically accessed from a Data Warehouse in an
OLAP application, such multiple handling of data elements
has significantly degraded the efficiency of prior art data
aggregation processes. When using prior art data handling
techniques, the data element D shown in FIG. 11A must be
accessed three times, causing poor aggregation perfor-
mance.

[0206] In accordance with the data handling method of the
present invention, the data is being pre-ordered for a singular
handling, as opposed to multiple handling taught by prior art
methods. According to the present invention, elements of
base data and their aggregated results are contiguously
stored in a way that each element will be accessed only once.
This particular order allows a forward-only handling, never
backward. Once a base data element is stored, or aggregated

Jan. 17, 2008

result is generated and stored, it is never to be retrieved again
for further aggregation. As a result the storage access is
minimized. This way of singular handling greatly elevates
the aggregation efficiency of large data bases. An efficient
handling method as used in the present invention, is shown
in FIG. 7A. The data element D, as any other element, is
accessed and handled only once.

[0207] FIG. 11A shows an example of a multi-hierarchical
database structure having 3 hierarchies. As shown, the base
data has a dimension that includes items A,B,F, and G. The
second level is composed of items C,E.H and 1. The third
level has a single item D, which is common to all three
hierarchical structures. In accordance with the method of the
present invention, a minimal computing path is always
taken. For example, according to the method of the present
invention, item D will be calculated as part of structure 1,
requiring two mathematical operations only, rather than as in
structure 3, which would need four mathematical operations.
FIG. 11B depicts an optimized structure merged from all
three hierarchies.

[0208] FIG. 11C(i) through 11C(ix) represent a flow chart
description (and accompanying data structures) of the opera-
tions of an exemplary hierarchy transformation mechanism
of the present invention that optimally merges multiple
hierarchies into a single hierarchy that is functionally
equivalent to the multiple hierarchies. For the sake of
description, the data structures correspond to exemplary
hierarchical structures described above with respect to
FIGS. 11(A) and 11(B). As illustrated in FIG. 11C(1), in step
1101, a catalogue is loaded from the DBMS system. As is
conventional, the catalogue includes data (“hierarchy
descriptor data”) describing multiple hierarchies for at least
one dimension of the data stored in the DBMS. In step 1103,
this hierarchy descriptor data is extracted from the cata-
logue. A loop (steps 1105-1119) is performed over the items
in the multiple hierarchy described by the hierarchy descrip-
tor data.

[0209] In the loop 1105-1119, a given item in the multiple
hierarchy is selected (step 1107); and, in step 1109, the
parent(s) (if any)—including grandparents, great-grandpar-
ents, etc.—of the given item are identified and added to an
entry (for the given item) in a parent list data structure,
which is illustrated in FIG. 11C(v). Each entry in the parent
list corresponds to a specific item and includes zero or more
identifiers for items that are parents (or grandparents, or
great-grandparents) of the specific item. In addition, an inner
loop (steps 1111-1117) is performed over the hierarchies of
the multiple hierarchies described by the hierarchy descrip-
tor data, wherein in step 1113 one of the multiple hierarchies
is selected. In step 1115, the child of the given item in the
selected hierarchy (if any) is identified and added (if need
be) to a group of identifiers in an entry (for the given item)
in a child list data structure, which is illustrated in FIG.
11C(vi). Each entry in the child list corresponds to a specific
item and includes zero or more groups of identifiers each
identifying a child of the specific item. Each group corre-
sponds to one or more of the hierarchies described by the
hierarchy descriptor data.

[0210] The operation then continues to steps 1121 and
1123 as illustrated in FIG. 11C(ii) to verify the integrity of
the multiple hierarchies described by the hierarchy descrip-
tor data (step 1121) and fix (or report to the user) any errors

US 2008/0016043 Al

discovered therein (step 1123). Preferably, the integrity of
the multiple hierarchies is verified in step 1121 by iteratively
expanding each group of identifiers in the child list to
include the children, grandchildren, etc of any item listed in
the group. If the child(ren) for each group for a specific item
do not match, a verification error is encountered, and such
error is fixed (or reported to the user (step 1123). The
operation then proceeds to a loop (steps 1125-1133) over the
items in the child list.

[0211] In the loop (steps 1125-1133), a given item in the
child list is identified in step 1127. In step 1129, the entry in
the child list for the given item is examined to determine if
the given item has no children (e.g., the corresponding entry
is null). If so, the operation continues to step 1131 to add an
entry for the item in level 0 of an ordered list data structure,
which is illustrated in FIG. 11C(vii); otherwise the operation
continues to process the next item of the child list in the
loop. Each entry in a given level of the order list corresponds
to a specific item and includes zero or more identifiers each
identifying a child of the specific item. The levels of the
order list described the transformed hierarchy as will readily
become apparent in light of the following. Essentially, loop
1125-1333 builds the lowest level (level 0) of the trans-
formed hierarchy.

[0212] After loop 1125-1133, operation continues to pro-
cess the lowest level to derive the next higher level, and
iterate over this process to build out the entire transformed
hierarchy. More specifically, in step 1135, a “current level”
variable is set to identify the lowest level. In step 1137, the
items of the “current level” of the ordered list are copied to
a work list. In step 1139, it is determined if the worklist is
empty. If so, the operation ends; otherwise operation con-
tinues to step 1141 wherein a loop (steps 1141-1159) is
performed over the items in the work list.

[0213] In step 1143, a given item in the work list is
identified and operation continues to an inner loop (steps
1145-1155) over the parent(s) of the given item (which are
specified in the parent list entry for the given item). In step
1147 of the inner loop, a given parent of the given item is
identified. In step 1149, it is determined whether any other
parent (e.g., a parent other than the given patent) of the given
item is a child of the given parent (as specified in the child
list entry for the given parent). If so, operation continues to
step 1155 to process the next parent of the given item in the
inner loop; otherwise, operation continues to steps 1151 and
1153. In step 1151, an entry for the given parent is added to
the next level (current level+1) of the ordered list, if it does
not exist there already. In step 1153, if no children of the
given item (as specified in the entry for the given item in the
current level of the ordered list) matches (e.g., is covered by)
any child (or grandchild or great grandchild etc) of item(s)
in the entry for the given parent in the next level of the
ordered list, the given item is added to the entry for the given
parent in the next level of the ordered list. Levels 1 and 2 of
the ordered list for the example described above are shown
in FIGS. 11C(viii) and 11C(ix), respectively. The children
(including grandchildren and great grandchildren. etc) of an
item in the entry for a given parent in the next level of the
ordered list may be identified by the information encoded in
the lower levels of the ordered list. After step 1153, opera-
tion continues to step 1155 to process the next parent of the
given item in the inner loop (steps 1145-1155) After pro-
cessing the inner loop (steps 1145-1155), operation contin-

Jan. 17, 2008

ues to step 1157 to delete the given item from the work list,
and processing continues to step 1159 to process the next
item of the work list in the loop (steps 1141-1159).

[0214] After processing the loop (steps 1141-1159), the
ordered list (e.g., transformed hierarchy) has been built for
the next higher level. The operation continues to step 1161
to increment the current level to the next higher level, and
operation returns (in step 1163) to step 1138 to build the next
higher level, until the highest level is reached (determined in
step 1139) and the operation ends.

[0215] FIG. 12 summarizes the components of an exem-
plary aggregation module that takes advantage of the hier-
archy transformation technique described above. More spe-
cifically, the aggregation module includes an hierarchy
transformation module that optimally merges multiple hier-
archies into a single hierarchy that is functionally equivalent
to the multiple hierarchies. A second module loads and
indexes the base data supplied from the DBMS using the
optimal hierarchy generated by the hierarchy transformation
module. An aggregation engine performs aggregation opera-
tions on the base data. During the aggregation operations
along the dimension specified by the optimal hierarchy, the
results of the aggregation operations of the level 0 items may
be used in the aggregation operations of the level 1 items, the
results of the aggregation operations of the level 1 items may
be used in the aggregation operations of the level 2 items,
etc. Based on these operations, the loading and indexing
operations of the base data, along with the aggregation
become very efficient, minimizing memory and storage
access, and speeding up storing and retrieval operations.

[0216] FIG. 13 shows the stand-alone Aggregation Server
of the present invention as a component of a central data
warehouse, serving the data aggregation needs of URL
directory systems, Data Marts, RDBMSs, ROLAP systems
and OLAP systems alike.

[0217] The reason for the central multidimensional data-
base’s rise to corporate necessity is that it facilitates flexible,
high-performance access and analysis of large volumes of
complex and interrelated data.

[0218] A stand-alone specialized aggregation server,
simultaneously serving many different kinds of clients (e.g.
data mart, OLAP, URL, RDBMS), has the power of deliv-
ering an enterprise-wide aggregation in a cost-effective way.
This kind of server eliminates the roll-up redundancy over
the group of clients, delivering scalability and flexibility.

[0219] Performance associated with central data ware-
house is an important consideration in the overall approach.
Performance includes aggregation times and query response.

[0220] Effective interactive query applications require
near real-time performance, measured in seconds. These
application performances translate directly into the aggre-
gation requirements.

[0221] In the prior art, in case of MOLAP, a full pre-
aggregation must be done before starting querying. In the
present invention, in contrast to prior art, the query directed
roll-up (QDR) allows instant querying, while the full pre-
aggregation is done in the background. In cases a full
pre-aggregation is preferred, the currently invented aggre-
gation outperforms any prior art. For the ROLAP and
RDBMS clients, partial aggregations maximize query per-

US 2008/0016043 Al

formance. In both cases fast aggregation process is impera-
tive. The aggregation performance of the current invention
is by orders of magnitude higher than that of the prior art.

[0222] The stand-alone scalable aggregation server of the
present invention can be used in any MOLAP system
environment for answering questions about corporate per-
formance in a particular market, economic trends, consumer
behaviors, weather conditions, population trends, or the state
of any physical, social, biological or other system or phe-
nomenon on which different types or categories of informa-
tion, organizable in accordance with a predetermined dimen-
sional hierarchy, are collected and stored within a RDBMS
of one sort or another. Regardless of the particular applica-
tion selected, the address data mapping processes of the
present invention will provide a quick and efficient way of
managing a MDDB and also enabling decision support
capabilities utilizing the same in diverse application envi-
ronments.

[0223] The stand-alone “cartridge-style” plug-in features
of the data aggregation server of the present invention,
provides freedom in designing an optimized multidimen-
sional data structure and handling method for aggregation,
provides freedom in designing a generic aggregation server
matching all OLAP vendors, and enables enterprise-wide
centralized aggregation.

[0224] The method of Segmented Aggregation employed
in the aggregation server of the present invention provides
flexibility, scalability, a condition for Query Directed Aggre-
gation, and speed improvement.

[0225] The method of Multidimensional data organization
and indexing employed in the aggregation server of the
present invention provides fast storage and retrieval, a
condition for Segmented Aggregation, improves the storing,
handling, and retrieval of data in a fast manner, and con-
tributes to structural flexibility to allow sliced aggregation
and QDR. It also enables the forwarding and single handling
of data with improvements in speed performance.

[0226] The method of Query Directed Aggregation (QDR)
employed in the aggregation server of the present invention
minimizes the data handling operations in multi-hierarchy
data structures.

[0227] The method of Query Directed Aggregation (QDR)
employed in the aggregation server of the present invention
eliminates the need to wait for full aggregation to be
completed, and provides build-up aggregated data required
for full aggregation.

[0228] In another aspect of the present invention, an
improved DBMS system (e.g., RDBMS system, object
oriented database system or object/relational database sys-
tem) is provided that excels in performing two distinct
functions, namely: the aggregation of data; and the handling
of the resulting data for “on demand” client use. Moreover,
because of improved data aggregation capabilities, the
DBMS of the present invention can be employed in a wide
range of applications, including Data Warehouses support-
ing OLAP systems and the like. For purposes of illustration,
initial focus will be accorded to the DBMS of the present
invention. Referring now to FIGS. 19 through FIGS. 21, the
preferred embodiments of the method and system of the
present invention will be now described in great detail
herein below.

Jan. 17, 2008

[0229] Through this document, the term “aggregation”
and “pre-aggregation” shall be understood to mean the
process of summation of numbers, as well as other math-
ematical operations, such as multiplication, subtraction,
division etc. It shall be understood that pre-aggregation
operations occur asynchronously with respect to the tradi-
tional query processing operations. Moreover, the term
“atomic data” shall be understood to refer to the lowest level
of data granularity required for effective decision making. In
the case of a retail merchandising manager, atomic data may
refer to information by store, by day, and by item. For a
banker, atomic data may be information by account, by
transaction, and by branch.

[0230] FIG. 19A illustrates the primary components of an
illustrative embodiment of an DBMS of the present inven-
tion, namely: support mechanisms including a query inter-
face and query handler; a relational data store including one
or more tables storing at least the atomic data (and possibly
summary tables) and a meta-data store for storing a dictio-
nary (sometimes referred to as a catalogue or directory); and
an MDD Aggregation Module that stores atomic data and
aggregated data in a MDDB. The MDDB is a non-relational
data structure-it uses other data structures, either instead of
or in addition to tables-to store data. For illustrative pur-
poses, FIG. 19A illustrates an RDBMS wherein the rela-
tional data store includes fact tables and a dictionary.

[0231] 1t should be noted that the DBMS typically
includes additional components (not shown) that are not
relevant to the present invention. The query interface and
query handler service user-submitted queries (in the pre-
ferred embodiment, SQL query statements) forwarded, for
example, from a client machine over a network as shown.
The query handler and relational data store (tables and
meta-data store) are operably coupled to the MDD Aggre-
gation Module. Importantly, the query handler and inte-
grated MDD Aggregation Module operate to provide for
dramatically improved query response times for data aggre-
gation operations and drill-downs. Moreover, it is an object
of the present invention to make user-querying of the
non-relational MDDB no different than querying a relational
table of the DBMS, in a manner that minimizes the delays
associated with queries that involve aggregation or drill
down operations. This object is enabled by providing the
novel DBMS system and integrated aggregation mechanism
of the present invention.

[0232] FIG. 19B shows the primary components of an
illustrative embodiment of the MDD Aggregation Module of
FIG. 19A, namely: a base data loader for loading the
directory and table(s) of relational data store of the DBMS;
an aggregation engine for receiving dimension data and
atomic data from the base loader, a multi-dimensional
database (MDDB); a MDDB handler and an SQL handler
that operate cooperatively with the query handler of the
DBMS to provide users with query access to the MDD
Aggregation Module, and a control module for managing
the operation of the components of the MDD aggregation
module. The base data loader may load the directory and
table(s) of the relational data store over a standard interface
(such as OLDB, OLE-DB, ODBC, SQL, API, JDBC, etc.).
In this case, the DBMS and base data loader include
components that provide communication of such data over
these standard interfaces. Such interface components are

US 2008/0016043 Al

well known in the art. For example, such interface compo-
nents are readily available from Attunity Corporation.

[0233] During operation, base data originates from the
table(s) of the DBMS. The core data aggregation operations
are performed by the Aggregation Engine; a Multidimen-
sional Data (MDDB) Handler; and a Multidimensional Data
Storage (MDDB). The results of data aggregation are effi-
ciently stored in the MDDB by the MDDB Handler. The
SQL handler of the MDD Aggregation module services
user-submitted queries (in the preferred embodiment, SQL
query statements) forwarded from the query handler of the
DBMS. The SQL handler of the MDD Aggregation module
may communicate with the query handler of the DBMS over
a standard interface (such as OLDB, OLE-DB, ODBC, SQL,
API, JDBC, etc.). In this case, the support mechanisms of
the RDBMS and SQL handler include components that
provide communication of such data over these standard
interfaces. Such interface components are well known in the
art. Aggregation (or drill down results) are retrieved on
demand and returned to the user.

[0234] Typically, a user interacts with a client machine
(for example, using a web-enabled browser) to generate a
natural language query, that is communicated to the query
interface of the DBMS, for example over a network as
shown. The query interface disintegrates the query, via
parsing, into a series of requests (in the preferred embodi-
ment, SQL statements) that are communicated to the query
handler of the DBMS. It should be noted that the functions
of the query interface may be implemented in a module that
is not part of the DBMS (for example, in the client machine).
The query handler of the DBMS forwards requests that
involve data stored in the MDD of the MDD Aggregation
module to the SQL hander of the MDD Aggregation module
for servicing. Each request specifies a set of n-dimensions.
The SQL handler of the MDD Aggregation Module extracts
this set of dimensions and operates cooperatively with the
MDD handler to address the MDDB using the set of
dimensions, retrieve the addressed data from the MDDB,
and return the results to the user via the query handler of the
DBMS.

[0235] FIG. 19C(i) and 19C(ii) is a flow chart illustrating
the operations of an illustrative DBMS of the present
invention. In step 601, the base data loader of the MDD
Aggregation Module loads the dictionary (or catalog) from
the meta-data store of the DBMS. In performing this func-
tion, the base data loader may utilize an adapter (interface)
that maps the data types of the dictionary of the DBMS (or
that maps a standard data type used to represent the dictio-
nary of the DBMS) into the data types used in the MDD
aggregation module. In addition, the base data loader
extracts the dimensions from the dictionary and forwards the
dimensions to the aggregation engine of the MDD Aggre-
gation Module.

[0236] Instep 603, the base data loader loads table(s) from
the DBMS. In performing this function, the base data loader
may utilize an adapter (interface) that maps the data types of
the table(s) of the DBMS (or that maps a standard data type
used to represent the fact table(s) of the DBMS) into the data
types used in the MDD Aggregation Module. In addition, the
base data loader extracts the atomic data from the table(s),
and forwards the atomic data to the aggregation engine.

[0237] In step 605, the aggregation engine performs
aggregation operations (i.e., roll-up operation) on the atomic

Jan. 17, 2008

data (provided by the base data loader in step 603) along at
least one of the dimensions (extracted from the dictionary of
the DBMS in step 601) and operates cooperatively with the
MDD handler to store the resultant aggregated data in the
MDDB. A more detailed description of exemplary aggrega-
tion operations according to a preferred embodiment of the
present invention is set forth below with respect to the QDR
process of FIGS. 9A-9C.

[0238] In step 607, a reference is defined that provides
users with the ability to query the data generated by the
MDD Aggregation Module and/or stored in the MDDB of
the MDD Aggregation Module. This reference is preferably
defined using the Create View SQL statement, which allows
the user to: i) define a table name (TN) associated with the
MDDB stored in the MDD Aggregation Module, and ii)
define a link used to route SQL statements on the table TN
to the MDD Aggregation Module. In this embodiment, the
view mechanism of the DBMS enables reference and linking
to the data stored in the MDDB of the MDD Aggregation
Engine as illustrated in FIG. 19E. A more detailed descrip-
tion of the view mechanism and the Create View SQL
statement may be found in C. J. Date, “An Introduction to
Database Systems,” Addison-Wesley, Seventh FEdition,
2000, pp. 289-326, herein incorporated by reference in its
entirety. Thus, the view mechanism enables the query han-
dler of the DBMS system to forward any SQL query on table
TN to the MDD aggregation module via the associated link.
In an alternative embodiment, a direct mechanism (e.g., NA
trigger mechanism) may be used to enable the DBMS
system to reference and link to the data generated by the
MDD Aggregation Module and/or stored in the MDDB of
the MDD Aggregation Engine as illustrated in FIG. 19F. A
more detailed description of trigger mechanisms and meth-
ods may be found in C. J. Date, “An Introduction to
Database Systems,” Addison-Wesley, Seventh FEdition,
2000, pp. 250, 266, herein incorporated by reference in its
entirety.

[0239] In step 609, a user interacts with a client machine
to generate a query, and the query is communicated to the
query interface. The query interface generate one or more
SQL statements. These SQL statements may refer to data
stored in tables of the relational datastore, or may refer to the
reference defined in step 607 (this reference refers to the data
stored in the MDDB of the MDD Aggregation Module).
These SQL statement(s) are forwarded to the query handler
of the DBMS.

[0240] In step 611, the query handler receives the SQL
statement(s); and optionally transforms such SQL state-
ment(s) to optimize the SQL statement(s) for more efficient
query handling. Such transformations are well known in the
art. For example, see Kimball, “Aggregation Navigation
With (Almost) No MetaData”, DBMS Data Warehouse
Supplement, August 1996.

[0241] In step 613: the query handler determines whether
the received SQL statement(s) [or transformed SQL state-
ment(s)] is on the reference generated in step 607. If so,
operation continues to step 615; otherwise normal query
handling operations continue in step 625 wherein the rela-
tional datastore is accessed to extract, store, and/or manipu-
late the data stored therein as directed by the query, and
results are returned back to the user via the client machine,
if needed.

US 2008/0016043 Al

[0242] 1In step 615, the received SQL statement(s) [or
transformed SQL statement(s)] is routed to the MDD aggre-
gation engine for processing in step 617 using the link for
the reference as described above with respect to step 607.

[0243] Instep 617, the SQL statement(s) is received by the
SQL handler of the MDD Aggregation Module, wherein a
set of one or more N-dimensional coordinates are extracted
from the SQL statement. In performing this function, SQL
handler may utilize an adapter (interface) that maps the data
types of the SQL statement issued by query handler of the
DBMS (or that maps a standard data type used to represent
the SQL statement issued by query handler of the DBMS)
into the data types used in the MDD aggregation module.

[0244] In step 619, the set of N-dimensional coordinates
extracted in step 617 are used by the MDD handler to
address the MDDB and retrieve the corresponding data from
the MDDB.

[0245] Finally, in step 621, the retrieved data is returned to
the user via the DBMS (for example, by forwarding the
retrieved data to the SQL handler, which returns the
retrieved data to the query handler of the DBMS system,
which returns the results of the user-submitted query to the
user via the client machine), and the operation ends.

[0246] 1t should be noted that the table data (base data), as
it arrives from DBMS, may be analyzed and reordered to
optimize hierarchy handling, according to the unique
method of the present invention, as described above with
reference to FIGS. 11A, 11B, and 11C.

[0247] Moreover, the MDD control module of the MDD
Aggregation Module preferably administers the aggregation
process according to the method illustrated in FIGS. 9A and
9B. Thus, in accordance with the principles of the present
invention, data aggregation within the DBMS can be carried
out either as a complete pre-aggregation process, where the
base data is fully aggregated before commencing querying,
or as a query directed roll-up (QDR) process, where query-
ing is allowed at any stage of aggregation using the “on-
the-fly” data aggregation process of the present invention.
The QDR process will be described hereinafter in greater
detail with reference to FIG. 9C. The response to a request
(i.e. a basic component of a client query) requiring “on-the-
fly”” data aggregation, or requiring access to pre-aggregated
result data via the MDD handler is provided by a query/
request serving mechanism of the present invention within
the MDD control module, the primary operations of which
are illustrated in the flow chart of FIG. 6D. The function of
the MDD Handler is to handle multidimensional data in the
storage(s) module in a very efficient way, according to the
novel method of the present invention, which will be
described in detail hereinafter with reference to FIGS. 10A
and 10B.

[0248] The SQL handling mechanism shown in FIG. 6D is
controlled by the MDD control module. Requests are
queued and served one by one. If the required data is already
pre-calculated, then it is retrieved by the MDD handler and
returned to the client. Otherwise, the required data is cal-
culated “on-the-fly” by the aggregation engine, and the
result moved out to the client, while simultaneously stored
by the MDD handler, shown in FIG. 6C.

[0249] As illustrated in FIG. 19G, the DBMS of the
present invention as described above may be logically

Jan. 17, 2008

partitioned into a relational part and a non-relational part.
The relational part includes the relational datastore (e.g.,
table(s) and dictionary) and support mechanisms (e.g., query
handling services). The non-relational part includes the
MDD Aggregation Module. As described above, bidirec-
tional data flow occurs between the relational part and the
non-relational part as shown. More specifically, during data
load operations, data is loaded from the relational part (i.e.,
the relational datastore) into the non-relational part, wherein
it is aggregated and stored in the MDDB. And during query
servicing operations, when a given query references data
stored in the MDDB, data pertaining to the query is gener-
ated by the non-relational part (e.g., generated and/or
retrieved from the MDDB) and supplied to the relational
part (e.g., query servicing mechanism) for communication
back to the user. Such bidirectional data flow represents an
important distinguishing feature with respect to the prior art.
For example, in the prior art MOLAP architecture as illus-
trated in FIG. 1B, unidirectional data flows occurs from the
relational data base (e.g., the Data Warehouse RDBMS
system) into the MDDB during data loading operations.

[0250] FIGS. 20A and 20B outline two different imple-
mentations of the DBMS of the present invention. In both
implementations, the query handler of the DBMS system
supplies aggregated results retrieved from the MDD to a
client.

[0251] FIG. 20A shows a separate-platform implementa-
tion of the DBMS system of the illustrative embodiment
shown in FIG. 19A, wherein the relational part of the DBMS
reside on a separate hardware platform and/or OS system
from that used to run the non-relational part (MDD Aggre-
gation Module). In this type of implementation, it is even
possible to run parts of the DBMS system and the MDD
Aggregation Module on different-type operating systems
(e.g. NT, Unix, MAC OS).

[0252] FIG. 20B shows a common-platform implementa-
tion of the DBMS system of the illustrative embodiment
shown in FIG. 20A, wherein the relational part of the DBMS
share the same hardware platform and operating system
(OS) that is used to run the non-relational part (MDD
Aggregation Module).

[0253] FIG. 21 shows the improved DBMS (e.g.,
RDBMS) of the present invention as a component of a data
warehouse, serving the data storage and aggregation needs
of'a ROLAP system (or other OLAP systems alike). Impor-
tantly, the improved DBMS of the present invention pro-
vides flexible, high-performance access and analysis of large
volumes of complex and interrelated data. Moreover, the
improved Data Warehouse DBMS of the present invention
can simultaneously serve many different kinds of clients
(e.g. data mart, OL AP, URL) and has the power of delivering
an enterprise-wide data storage and aggregation in a cost-
effective way. This kind of system eliminates redundancy
over the group of clients, delivering scalability and flexibil-
ity. Moreover, the improved DBMS of the present invention
can be used as the data store component of in any informa-
tional database system as described above, including data
analysis programs such as spread-sheet modeling programs,
serving the data storage and aggregation needs of such
systems.

[0254] FIG. 22 shows an embodiment of the present
invention wherein the DBMS (e.g., RDBMS) of the present

US 2008/0016043 Al

invention is a component of a data warehouse-OLAP sys-
tem. The DBMS operates as a traditional data warehouse,
serving the data storage and aggregation needs of an enter-
prise. In addition, the DBMS includes integrated OLAP
Analysis Logic (and preferably an integrated Presentation
Module not shown) that operates cooperatively with the
query handling of the DBMS system and the MDD Aggre-
gation Module to enable users of the DBMS system to
execute multidimensional reports (e.g., ratios, ranks, trans-
forms, dynamic consolidation, complex filtering, forecasts,
query governing, scheduling, flow control, pre-aggregate
inferencing, denomalization support, and/or table partition-
ing and joins) and preferably perform traditional OLAP
analyses (grids, graphs, maps, alerts, drill-down, data pivot,
data surf, slice and dice, print). Importantly, the improved
DBMS of the present invention provides flexible, high-
performance access and analysis of large volumes of com-
plex and interrelated data. Moreover, the improved DBMS
of the present invention can simultaneously serve many
different kinds of clients (e.g. data mart, other OLAP sys-
tems, URL-Directory Systems) and has the power of deliv-
ering enterprise-wide data storage and aggregation and
OLAP analysis in a cost-effective way. This kind of system
eliminates redundancy over the group of clients, delivering
scalability and flexibility. Moreover, the improved DBMS of
the present invention can be used as the data store compo-
nent of in any informational database system as described
above, serving the data storage and aggregation needs of
such systems.

Functional Advantages Gained By The Improved
DBMS Of The Present Invention

[0255] The features of the DBMS of the present invention,
provides for dramatically improved response time in han-
dling queries issued to the DBMS that involve aggregation,
thus enabling enterprise-wide centralized aggregation.
Moreover, in the preferred embodiment of the present inven-
tion, users can query the aggregated data in an manner no
different than traditional queries on the DBMS.

[0256] The method of Segmented Aggregation employed
by the novel DBMS of the present invention provides
flexibility, scalability, the capability of Query Directed
Aggregation, and speed improvement.

[0257] Moreover, the method of Query Directed Aggre-
gation (QDR) employed by the novel DBMS of the present
invention minimizes the data handling operations in multi-
hierarchy data structures, eliminates the need to wait for full
aggregation to be complete, and provides for build-up of
aggregated data required for full aggregation.

[0258] It is understood that the System and Method of the
illustrative embodiments described herein above may be
modified in a variety of ways which will become readily
apparent to those skilled in the art of having the benefit of
the novel teachings disclosed herein. All such modifications
and variations of the illustrative embodiments thereof shall
be deemed to be within the scope and spirit of the present
invention as defined by the Claims to Invention appended
hereto.

What is claimed is:

1. A relational database management system (RDBMS)
for servicing query statements through one or more client
machines, said RDBMS comprising:

Jan. 17, 2008

a RDBMS query interface adapted to receive query state-
ments from said one or more client machines;

a query processing mechanism for processing each query
statement received from said RDBMS query interface,
and generating one or more query requests by disinte-
grating the query statement so that each said query
request specifies a set of dimensions;

a query handling mechanism operably coupled to said
RDBMS query interface; and

a relational data store having relational tables for storing
fact data, and a meta-data store for storing a dictionary
containing dimension data;

a multi-dimensional database (MDDB) for storing aggre-
gated fact data in a multi-dimensional data structure;

a data loading mechanism for loading said meta-data and
said fact data into said MDDB;

an aggregation engine for calculating aggregated fact data
from the fact data according to a multi-dimensional
data aggregation process;

a data handling mechanism for storing aggregated fact
data in said MDDB and retrieving aggregated fact data
from said MDDB;

wherein said query handling mechanism (i) receives each
query request, (i) extracts a set of dimensions associ-
ated with said query request, (iii) uses said dimensions
to retrieve aggregated fact data from said MDDB, and
(iv) forwards retrieved aggregated fact data to said
query processing mechanism for subsequent process-
ing, if needed; and

wherein when said query processing mechanism deter-
mines that servicing of one or more query requests
require data stored in said relational tables, then said
query processing mechanism automatically routes said
one or more query requests to said relational data
tables, so that data can be accessed from said relational
tables and forwarded to said query processing mecha-
nism for use in servicing said one or more query
requests, in a manner transparent to said client
machine; and

wherein when said query processing mechanism deter-
mines that servicing of one or more query requests
require aggregated data stored in said MDDB, then said
query processing mechanism automatically routes said
one or more query requests to said MDDB, so that
aggregated data can be accessed from said MDDB and
forwarded to said query processing mechanism for use
in servicing said one or more query requests, in a
manner transparent to said client machine.

2. The RDBMS of claim 1, wherein said a query handling

mechanism comprises:

an RDBMS query handler operably coupled to said
RDBMS query interface; and

a MDDB query handler operably coupled to a first data
communication interface, for (i) receiving each query
request from said RDBMS query handler, (ii) extract-
ing a set of dimensions associated with said query
request, (iii) providing said dimensions to said data
handling mechanism so that said data handling mecha-

US 2008/0016043 Al

nism can retrieve aggregated fact data from said
MDDB, and (iv) forwarding retrieved aggregated fact
data to said RDBMS query processing mechanism for
subsequent processing, if needed; and
3. The RDBMS of claim 1, where said data loading
mechanism is in data communication with said relational
data store by way of a second data communication interface,
for loading said meta-data and said fact data into said MDB.
4. The RDBMS of claim 1, wherein after data loading
operations, the fact data is initially aggregated along at least
one of the dimensions extracted from said dictionary and
aggregated multi-dimensional data results are stored in said
MDDB, and

wherein during query servicing operations, the fact data is
aggregated on demand along additional dimensions
extracted from said query request and aggregated
multi-dimensional data results are stored in said
MDDB.

5. The RDBMS of claim 3, wherein said multi-dimen-
sional data structure comprises a plurality of data storage
cells, and wherein each said data storage cell is indexed with
multiple dimensions and stores either base data values or
aggregated multi-dimensional data values.

6. The RDBMS of claim 3, wherein during data loading
operations, said data loading mechanism extracts dimension
data from the dictionary in said meta-data store, and for-
wards the dimension data over said first data communication
interface to said aggregation engine and configures said
MDDB using said dimension data.

7. The RDBMS of claim 3, wherein during aggregation
operations, said data loading mechanism extracts fact data
from said relational tables, and forwards the fact data to said
aggregation engine over said first data communication inter-
face; and wherein said aggregation engine calculates aggre-
gated multi-dimensional data from the fact data according to
said multi-dimensional data aggregation process, and stores
the aggregated multi-dimensional data in said MDDB speci-
fied by a set of multi-dimensional coordinates.

8. The RDBMS of claim 1, wherein said query statement
is an SQL-type query statement and each query request is an
SQL-type query request.

20

Jan. 17, 2008

9. The RDBMS of claim 2, wherein said first data
communication interface is a standard interface selected
from the group selected from OLDB, OLE-DB, ODBC,
SQL, API, and JDBC.

10. The RDBMS of claim 3, wherein said second data
communication interface is a standard interface selected
from the group selected from OLDB, OLE-DB, ODBC,
SQL, API, and JDBC.

11. The RDBMS of claim 1, wherein said RDBMS query
interface is implemented in a module within said RDBMS.

12. The RDBMS of claim 1, wherein a user interacts with
said client machine using a web-enabled browser to generate
a natural language type query statement, and said natural
language type query statement is communicated to said
RDBMS query interface.

13. The RDBMS of claim 2, wherein said MDDB query
handler further includes means for transforming each query
request so as to optimize the query request for efficient query
handling.

14. The RDBMS of claim 2, wherein said MDDB query
handler further includes an adapter for mapping the data
types of the query statement issued by said RDBMS query
handler, and/or for mapping a standard data type used to
represent the query request issued by said RDBMS query
handler into the data types used in said MDD aggregation
module.

15. The RDBMS of claim 1, wherein said multi-dimen-
sional aggregation process supported by said aggregation
engine further operates as follows:

(a) if the aggregated multi-dimensional data required to
service a given query statement is already pre-calcu-
lated and stored within said MDDB, then the pre-
aggregated multi-dimensional data is retrieved by said
data handling mechanism and returned to said client
machine via said RDBMS query handler; and (b) if the
required multi-dimensional data is not already pre-
aggregated and stored within said MDDB, then the
required aggregated multi-dimensional data is calcu-
lated on demand by said aggregation engine, and the
aggregated multi-dimensional data result is automati-
cally forwarded to said client machine.

#* #* #* #* #*

