(1 P1 0314853-0 B1 OB

(22) Data do Dep6sito: 11/08/2003

(45) Data de Concessao: 22/03/2016

Ministério do Desenvolvimento, Industria

e do Comércio Exterior (RPI 2359)

Instituto Nacional da Propriedade Industrial

(54) Titulo: METODO PARA MANIPULAGAO DE THREADS EM UM SISTEMA DE PROCESSAMENTO
DE DADOS E SISTEMA DE PROCESSAMENTO DE DADOS

(51) Int.Cl.: GO6F 9/46
(30) Prioridade Unionista: 19/09/2002 US 10/246,889
(73) Titular(es): INTERNATIONAL BUSINESS MACHINES CORPORATION

(72) Inventor(es): ALFREDO MENDOZA, JOEL HOWARD SCHOPP

1/25

Relatério Descritivo da Patente de Invencgdo para: *“METODO
PARA MANIPULAGKO DE THREADS EM UM SISTEMA DE PROCESSAMENTO
DE DADOS E SISTEMA DE PROCESSAMENTO DE DADOS”.

Antecedentes da Invencao

Campo Técnico

[0001] A presente invencado se refere, de um modo
geral, a um sistema de processamento de dados aperfeicgoado
e, em particular, a um método e a um aparelho para
gerenciamento de threads em um sistema de processamento de
dados.

Descricdo da Técnica Relacionada

[0002] Uma thread é uma unidade bdsica de utilizacéo
da unidade central de processamento (CPU) Uma thread,
usualmente, tem um contador de programa, um conjunto de
registradores e um espa¢o na pilha. Uma thread compartilha
com outras threads sua secdo de cdédigo, secdo de dados e
recursos operacionais do sistema, tais como arquivos e
sinais. Esses componentes também sdao conhecidos como uma
"tarefa". Alguns sistemas implementam threads de usudrio em
bibliotecas de nivel de usudrio, em lugar de utilizar as
chamadas do sistema, de modo que a comutacdo de thread nao
precisar chamar o© sistema operacional e causar uma

interrupg¢dao no kernel.

2/25

[0003] As threads operam, em muitos aspectos, da
mesma maneira que os processos. Uma thread pode estar em um
de diversos estados: pronta, bloqueada, em espera,
processando ou terminada. As threads de usudrio em um espaco
de usudrio sdo processadas por threads de kernel em um
kernel. Uma thread de kernel também ¢é referida como um
"processador virtual". Em alguns casos, um modelo de um para
um é usado, em que cada thread de usudrio tem uma thread de
kernel correspondente. Em outros casos, um modelo de M:N é
usado, em que muitas threads de usuario sdo processadas em
umas poucas threads de kernel para promover um desempenho
acentuado. Com esse modelo, situacgdes ocorrem, tais como
bloqueio em um mutex, em que uma thread de kernel nao é mais
necessdria para processar uma thread de usudrio. Um mutex é
um mecanismo de bloqueio envolvendo o uso de um flag de
programag¢ao usado para bloquear e liberar um objeto. Quando
sdo adgquiridos dados que ndo podem ser compartilhados ou é
iniciado o ©processamento que ndo pode ser realizado
simultaneamente em qualquer parte no sistema, o mutex é
ajustado para "travar", o que bloqueia outras tentativas
para usa-lo. O mutex € ajustado para "destravar", quando os
dados ndo sdo mais necessdrios ou a rotina estd acabada. Se

nenhuma outra thread de usudrio for processavel no momento,

3/25

essa thread de kernel se separard daquela thread de usudrio
particular e entrard em um estado de espera.

[0004] A separacdao de uma thread de kernel para
entrar em um estado de espera resulta em um numero de acdes
ocorrendo. Uma acao empreendida é que a thread de kernel
comuta de uma pilha de usudrio para sua prépria pilha menor.
Adicionalmente, a thread de kernel habilita o mascaramento
de sinal para bloquear a maioria dos sinais. Quando a thread
de kernel é necessdria mals uma vez, essa thread comutard
para a pilha da thread de usudrio e habilitard diversos
atributos especificos de thread, tais como mascaras de
sinais.

[0005] A presente invencdo reconhece dque esse
mecanismo de separacdao e subsequente re-conexao usados
correntemente envolve um grande overheard de desempenho.
Cada separacdo ou re-conexdo requer uma chamada de sistema
para copiar dados do espagco do usudrio para o espago do
kernel ou para o espa¢o do kernel a partir do espag¢o do
usudrio. Adicionalmente, diversos bloqueios sdo usados na
biblioteca do kernel e no kernel, resultando em contencdo de
bloqueio possivelmente crescente. Esse tipo de separacao
também envolve problemas potenciais de manipulacao de
sinais. Especificamente, uma pequena janela estd presente

antes que a thread de kernel bloqueie os sinais onde, a

4/25

thread de kernel poderia receber um sinal enquanto executando
em sua pilha de kernel pequena. A presente invencdo também
reconhece que um manipulador de sinais, que funciona bem em
uma pilha de thread de usudrio maior, pode estourar a pilha
de thread de kernel menor, corrompendo a memdéria e/ ou
fazendo com que o aplicativo passe por uma descarga de
memdria.

[0006] Esses dois problemas de baixo desempenho e
estouro de pilha sdo problemas distintos, mas tem uma causa
de origem similar. Essa causa é a separacdao das threads de
kernel "inativas". Portanto, seria vantajoso ter um método,
aparelho e instrugdes de computador aperfeicoados para
manipulacdo das threads de kernel inativas de uma maneira
que reduza o baixo desempenho e evite o estouro da pilha.

Sumario da Invencao

[0007] A presente invencdo proporciona um método, um
aparelho e instrucdes de computador para gerenciamento de
threads. Uma thread de kernel associada com uma thread de
usudrio é detectada como sendo desnecessdria pela thread de
usudrio. A thread de kernel é parcialmente separada em que
os dados para a thread ndo mudam pilhas em resposta a thread

de kernel sendo desnecessaria.

5/25

[0008] De preferéncia, a thread de kernel é colocada
em uma lista parcialmente separada e em um estado nao
processavel simultaneamente corna thread de usuario.

[0009] De preferéncia, quando a thread de usudrio
desperta da espera, a thread de kernel é removida da lista
parcialmente separada de modo que a re-conexao da thread de
usudrio é desnecessdaria.

[0010] De preferéncia, as threads executam em um
sistema operacional AIX.

[0011] De preferéncia, os dados para a thread de
kernel permanecem em uma pilha de usudrio, sem requerer a
cépia dos dados para uma pilha de kernel para parcial
separacao da thread de kernel.

[0012] De preferéncia, a detecgcdo de que uma thread
de kernel é desnecessdria e a separacdo parcial de thread de
kernel sdo realizadas usando uma biblioteca.

[0013] De preferéncia, quando a thread de usudrio
saili do estado de espera, € determinado se uma segunda thread
de kernel é separada em lugar de parcialmente separada e, se
a segunda thread de kernel for separada, ela € anexada a
thread de usudario.

[0014] De preferéncia, o estado ndo processdvel € um

estado de espera ou de um estado de repouso.

6/25

[0015] De acordo com outro aspecto, a presente
invengdo proporciona um sistema de processamento de dados
para gerenciamento de threads, o sistema de processamento de
dados compreendendo: um sistema de barramento; uma unidade
de comunicacdo conectada ao sistema de barramento; uma
memdéria conectada ao sistema de barramento, em que a memdria
inclui wum conjunto de instrugdes; e uma unidade de
processamento conectada ao sistema de barramento, em que a
unidade de processamento executa o conjunto de instrucgdes
para detectar uma thread de kernel associada com uma thread
de usudrio como sendo desnecessdria pela thread de usudrio;
e a separacgado parcial da thread de kernel, em que os dados
para a thread ndo mudam pilhas em resposta a thread de kernel
sendo desnecessaria.

Breve Descricdo dos Desenhos

[0016] A presente invencdo serd agora descrita, a
guisa de exemplo apenas, com referéncia a uma concretizacgao
preferida, como ilustrado nos desenhos anexos, em que:

[0017] A figura 1 é uma representacdo pictorial de
um sistema de processamento de dados em gque a presente
invengao pode ser implementada de acordo com uma

concretizagdo preferida da presente invencao.

7/25

[0018] A figura 2 é um diagrama em blocos de um
sistema de processamento de dados em que a presente invencao
pode ser implementada.

[0019] A figura 3 e um diagrama ilustrando
componentes usados na manipulac¢do de threads de kernel.

[0020] As figuras 4A - 4C sao ilustracdes de
estruturas de dados wusadas em uma lista parcialmente
separada.

[0021] A figura 5 é um fluxograma de um método
conhecido usado para manipulacdo de chamadas de bloqueio.

[0022] A figura 6 é um fluxograma de um método usado
para gerenciamento de threads inativas.

[0023] A figura 7 é um fluxograma de um método
conhecido usado para ativar uma thread de kernel.

[0024] A figura 8 é um fluxograma de um método usado
para manipulacdo de uma thread de kernel.

Descrigdo Detalhada da Concretizagado Preferida

[0025] Com referéncia agora as figuras e em
particular com referéncia a figura 1, uma representacao
pictorial de um sistema de processamento de dados, em que a
presente invencdo pode ser implementada, € representado de
acordo com uma concretizacdo preferida da presente invencgdao.
Um computador 100 é representado, o qual inclui uma unidade

de sistema 102, um terminal de exibicdo de video 104, um

8/25

teclado 106, dispositivos de armazenamento 108, que podem
incluir discos flexivelis e outros tipos de midias de
armazenamento permanentes e removiveis e mouse 110.
Dispositivos de entrada adicionais podem ser incluidos com
computador pessoal 100, tal como, por exemplo, um joystick,
uma touchpad, uma tela de toque, um trackball, um microfone
e semelhantes. O computador 100 pode ser implementado usando
qualquer computador adequado, tal como um computador IBM
eServer ou um computador IntelliStation, que sdo produtos da
International Business Machines Corporation, localizada em
Armonk, New York. Embora a representacdo apresentada mostre
um computador, outras concretizacdes da presente invencao
podem ser implementadas em outros tipos de sistemas de
processamento de dados, tais como um computador de rede. O
computador 100 também inclui, de preferéncia, uma interface
grdfica de usuario (GUI), que pode ser implementada por meio
de software de sistemas residente em meio legivel em
computador em operacao dentro do computador 100.

[0026] Com referéncia agora a figura 2, um diagrama
em blocos de um sistema de processamento de dados é mostrado
em que a presente invencdo pode ser implementada. O sistema
de processamento de dados 200 é um exemplo de um computador,
tal como o computador 100 na figura 1, em que cdédigo ou

instrugdes implementando os processos da presente invencao

9/25

podem ser localizadas. O sistema de processamento de dados
200 emprega uma arquitetura de Dbarramento local de
interligagdo de componentes periféricos (PCI). Embora o
exemplo representado empregue um barramento PCI, outras
arquiteturas de Dbarramento, tais como ©Porta Gréfica
Acelerada (AGP) e Arquitetura Padrao para a Industria (ISA),
podem ser usadas. O processador 202 e a memdria principal
204 s&o conectados ao barramento local PCI 206 através da
ponte PCI 208. A ponte PCI 208 também pode incluir um
controlador de meméria integrado e memdéria cache para o
processador 202. No exemplo representado, o adaptador de
rede de 4rea local (LAN) 210, o adaptador de barramento
principal de pequena interface de sistema de computador SCSIT
212 e a interface de Dbarramento de expansdo 214 séao
conectados ao barramento local PCI 206 por conexdao direta de
componentes. Em contraste, o adaptador de 4udio 216,
adaptador grdafico 218 e adaptador de audio/ video 219 sé&o
conectados ao barramento local PCI 206 por meio de placas de
adicdo inseridas em slots de expansdo. A 1interface de
barramento de expansdao 214 proporciona uma conexao para um
adaptador de teclado e mouse 220, modem 222 e memdria
adicional 224. O adaptador de barramento principal SCSI 212
proporciona uma conexdo para mecanismo de disco rigido 226,

mecanismo de fita 228 e mecanismo de CD-ROM 230.

10/25

Implementacdes tipicas de barramento local PCI suportarao
trés ou quatro slots de expansdo ou conectores de introducdo
de adicéao.

[0027] Um sistema operacional roda no processador
202 e é wusado para coordenar e proporcionar controle de
varios componentes dentro do sistema de processamento 200 na
figura 2. O sistema operacional pode ser um sistema
operacional comercialmente disponivel, tal como um Advanced
Interactive eXecutive (AIX) ou Windows XP. AIX é uma versao
do UNIX e estd disponivel a partir da International Business
Machines Corporation. O Windows XP estd disponivel a partir
da Microsoft Corporation. As instru¢des para o sistema
operacional e aplicacdes ou programas estdo localizadas nos
dispositivos de armazenamento, tais como um mecanismo de
disco rigido 226, e podem estar localizadas na memdéria
principal 204 para execugao pelo processador 202.

[0028] Aqueles de habilidade comum na técnica
compreenderam que © hardware na figura 2 pode variar,
dependendo da implementag¢dao. Outros hardware internos ou
dispositivos periféricos, tais como memdria flash somente de
leitura (ROM), memdéria ndo voldtil equivalente ou-mecanismos
de discos oéticos e semelhantes, podem ser usados em adicgao

ou em lugar do hardware representado na figura 2. Também, os

11/25

processos da presente inveng¢do podem ser aplicados a um
sistema de processamento de dados de multiprocessador.

[0029] Por exemplo, o sistema de processamento de
dados 200, se opcionalmente configurado como um computador
em rede, pode ndo incluir um adaptador de barramento
principal SCSI 212, mecanismo de disco rigido 226, mecanismo
de fita 228 e o mecanismo de CD-ROM 230. Naquele caso, O
computador, a ser chamado, adequadamente, de um computador
cliente, inclui algum tipo de interface de comunicag¢des de
rede, tal como um adaptador LAN 210, um modem 222 ou
semelhante. Como outro exemplo, o sistema de processamento
de dados 200 pode ser um sistema autdédnomo configurado para
ser inicializéavel, sem contar com algum tipo de interface de
comunicacdes de rede, quer ou ndao o sistema de processamento
de dados 200 compreenda algum tipo de interface de
comunicac¢des de rede. Como um outro exemplo, o sistema de
processamento de dados 200 pode ser um assistente pessoal
digital (PDA), que ¢é configurado com Rom e/ ou ROM flash
para proporcionar memdéria ndo volatil para armazenar
arquivos de sistemas operacionais e/ ou dados gerados pelo
usudrio.

[0030] O exemplo representado na figura 2 e os
exemplos descritos acima ndo implicam em limitag¢des de

arquitetura. Por exemplo, o sistema de processamento de dados

12/25

200 também pode ser um computador notebook ou um computador
portdatil além de tomar a forma de um PDA. O sistema de
processamento de dados 200 também pode ser um quiosque ou um
meio da Web.

[0031] Os processos da presente invencao sao
realizados pelo processador 202 usando instrucgdes
implementadas por computador, que podem estar localizadas em
uma memdria, tal como, por exemplo, memdéria principal 204,
meméria 224 ou em um ou mais dispositivos periféricos 226 -
230.

[0032] Voltando agora a figura 3, um diagrama
ilustrando componentes usados na manipulacgdo de threads de
kernel ¢é representado de acordo com uma concretizacgdo
preferida da presente invengdo. Neste exemplo, threads de
usudrio 300, 302, 304, 306 e 308 estdo localizadas no espaco
de kernel 310, enquanto as threads de Kernel 312, 314, e 316
estdo localizadas no espagco de Kernel 318. Essas threads
neste exemplo seguem o modelo M:N, em que muitas threads de
usudrio sdo processadas em umas poucas threads de kernel
para aumentar o desempenho.

[0033] Atualmente, a thread de usudrio 300 estd sendo
processada pela thread de kernel 312, a thread de usudrio
304 estd sendo processada pela thread de kernel 314 e a

thread de usuario 306 esta sendo processada pela thread de

13/25

kernel 316. As operagdes realizadas para essas threads de
usudrio estdo localizadas nas pilhas de thread de usuario
320. Cada thread de usudrio estda associada com uma pilha de
thread de usudrio. As threads de kernel 312, 314 e 316 tém
dados localizados nas pilhas de thread de usuario 320. A
pilha particular nas pilhas de thread de usudrio 320 € uma
pilha associada com a thread de wusudrio que estd sendo
processada pela thread de kernel.

[0034] Normalmente, se uma thread de kernel, tal como
a thread de kernel 312, ndo é mais necessaria para processar
uma thread de usudrio, tal como a thread de usudrio 300, a
thread de kernel 312 se separard e introduzird um estado de
espera junto com a thread de usudrio 300. As threads de
kernel em um estado de espera, normalmente, sdo colocadas em
lista separada 322, que e gerenciada pela biblioteca de
Pthread 324. A Dbiblioteca Pthread 324 ¢é uma biblioteca
carregavel dinamicamente, que ¢ usada em AIX. Com uma
separacdo da thread de usudrio 300, a informacdo para thread
de kernel 312, que representa o indicador de pilha corrente
que aponta para a pilha de thread de usuario em pilhas de
thread de usuario 320, é modificada para apontar para a area
reservada para sua pilha de thread de kernel nas pilhas de
thread de kernel 326. Quando a thread de usudrio 300 sai de

um estado de espera, a thread de kernel 312 pode ser removida

14/25

da lista separada 322 e re-anexada a thread de usuario 300.
Alternativamente, se a thread de kernel 312 estiver
indisponivel, outra thread de kernel disponivel na lista
separada 322 pode ser anexada a thread de usudrio 300.
[0035] De acordo com uma concretizacao preferida da
presente invengdo, quando a thread de usudrio 300 introduz
um estado em que a thread de kernel 312 é desnecessaria, tal
como um estado de espera, a thread de kernel 312 é colocada
na lista parcialmente separada 328, em lugar de na lista
separada 322, pela biblioteca de Pthread 324. Com a separacao
parcial, a thread de kernel 312 ndo muda sua pilha ou mdscara
de sinal. Ao invés disso, a thread de kernel 312 é colocada
na lista parcialmente separada 328 e fica em espera
simultaneamente com a thread de usudrio 300. Nesse estado de
espera simultdneo, a thread de kernel 312 mantém a informacédo
tal como a pilha e a médscara de sinal da thread de usuario
pela qual estd esperando, simultaneamente. Essa informacgdo
também €& referida como "atributos especificos de thread de
usudrio". Com essa espera simultdnea, a thread de kernel 312
se identifica como estando disponivel para processar outras
threads de wusudario, mas preferira uma thread na 1lista
separada 322 a ser usada primeiro. A preferéncia € dada ao
processamento da thread de usudrio com que a thread de kernel

312 estd associada, a thread de wusudario 300. A lista

15/25

parcialmente separada 328 pode ser implementada de maneiras
diferentes, dependendo da implementacdao particular. Neste
exemplo, essa lista é implementada como um kernel ligado de
estruturas de threads.

[0036] Se a thread de usudrio 300 sai de um estado
de espera, a thread de kernel 312 se removera da lista
parcialmente separada 328 e continuard processando a thread
de usudrio 300. Esse mecanismo proporciona um curso em Jue
a laténcia menor estd envolvida na ativacdo de uma thread na
biblioteca de Pthread 324. Esse mecanismo é uUtil quando da
ativacdo de um mutex contestado, uma varidvel de condicgdo ou
um sinal porque ag¢des realizadas em seguida a esses eventos,
frequentemente, precisam ser completadas, antes que o resto
do programa possa progredir.

[0037] Se uma thread de kernel na lista parcialmente
separada 328 ¢é necessdria para processar outra thread de
usudrio posteriormente, uma penalidade de desempenho para a
separacdo restante pode ser evitada através da separacdo do
estado da thread de usudrio corrente para o estado da nova
thread de usudrio, sem separacgdo da thread de kernel. Por
exemplo, se a thread de kernel 312 estd na lista parcialmente
separada 328 e outra thread de usudrio, tal como a thread de
usudrio 302, requer a thread de kernel 312 para processar

aquela thread, a pilha associada com a thread de usudrio 300

16/25

pode ser anexada a thread de usudrio 302, através da mudanca
das propriedades dentro da pilha para a thread de usuédrio
300 para correspondéncia com aquelas da thread de usuario
302. Por exemplo, o indicador de pilha e a mdscara de sinal
podem ser mudados daquelas para a thread de usudrio 300 para
a thread de usudrio 302.

[0038] Como um resultado, uma thread de kernel sé
pode se separar completamente quando uma thread de usuario
associada com a thread de kernel sai ou termina.
Consequentemente, o baixo desempenho associado com as
separacdes normais é evitado na maioria dos casos.

[0039] Voltando a seguir as figuras 4A - 4C,
ilustracdes de estruturas de dados usadas em uma lista
parcialmente separada sao representadas de acordo com uma
concretizagdo preferida da presente invencgao. Essas
estruturas de dados podem ser usadas para implementar uma
lista parcialmente separada, tal como a lista parcialmente
separada 328, na figura 3.

[0040] Na figura 4A, uma lista encadeada e usada para
indicar as threads de kernel diferentes. Por exemplo, as
entradas 400 e 402 sdao usadas para indicar as threads de
kernel diferentes. O marcador de cabeca de lista 406
identifica o comeco da lista encadeada. A entrada 400 contém

o indicador anterior 408 e o indicador seguinte 410. Esses

17/25

ponteiros sdo usados para indicar uma entrada anterior e a
seguinte dentro da 1lista encadeada. Ainda, a entrada 400
inclui o ponteiro 416 e a entrada 402 inclui o ponteiro 418,
com esses indicadores apontando para threads de kernel, tais
como as threads de kernel 420 e 422.

[0041] A seguir, na figura 4B, a informacdo usada na
estrutura da lista é incorporada nas estruturas de threads.
Neste exemplo, o marcador de cabeca da lista 430 aponta para
o comego ou primeira thread, a thread de kernel 432. A thread
de kernel 432 contém o indicador seguinte 434 que aponta
para a thread de kernel 436. A thread de kernel 432 também
inclui o indicador anterior 438, que aponta para algum kernel
anterior na lista. A thread de kernel 436 contém o ponteiro
anterior 440, que aponta de volta para a thread de kernel
432. O ponteiro seguinte 442 na thread de kernel 436 aponta
para a thread de kernel seguinte na lista. Este exemplo é a
estrutura de lista preferida nos exemplos ilustrados.

[0042] Na figura 4C, o arranjo 450 é wusado para
apontar para as threads de kernel diferentes. O marcador de
cabeca da lista 452 aponta para o comeco da fila 450, que
contém os ponteiros 454, 456 e 458. Esses indicadores apontam
para as threads de kernel 460, 462 e 464, respectivamente.
Esses exemplos sado proporcionados apenas como ilustragdes

com relacdo a como uma lista parcialmente separada pode ser

18/25

implementada. Outros tipos de estruturas, tais como uma
arvore, podem ser usadas, dependendo da implementacgdo
particular.

[0043] Com referéncia agora a figura 5, um fluxograma
de um método conhecido usado para manipulacdo de chamadas de
bloqueio é representado. O método ilustrado na figura 5 pode
ser implementado em uma biblioteca, tal como a biblioteca de
Pthread 324 na figura 3. Uma chamada de bloqueio é qualquer
chamada que pode fazer com que uma thread ao nivel do usudrio
mude de um estado de processamento-ou processavel para outro
estado que € um estado de repouso ou de espera.

[0044] O método comeca pela detecgcdao de uma chamada
potencialmente de bloqueio (etapa 500). O método separa a
thread de kernel da thread de usudrio (etapa 502). A etapa
502 requer o baixo desempenho de copiar informagdes da pilha
de thread de usudrio para uma pilha de thread de kernel, bem
como outras operacgdes, tails como mudanca de mascaramento de
sinais para sinais de bloqueio. A seguir, o método procura
por uma nova thread de usudrio para processamento (etapa
504). Se a thread processdvel for encontrada, a thread de
kernel se anexa a nova thread de usudrio (etapa 506). A etapa
506 envolve baixo desempenho, tal como cdédpia de dados de uma
pilha de thread de kernel para a pilha de thread de usudrio,

bem como estabelecimento de uma mascara de sinal. A nova

19/25

thread de usudrio é processada (etapa 508) e o método termina
em seguida.

[0045] Com referéncia mais uma vez a etapa 504, se
ndo houver threads processdveis, a thread de kernel ¢&é
colocada em uma lista separada e vai para um estado de espera
(etapa 510). Em seguida, o método aguarda para detectar uma
thread de usuario que se torna processdvel (etapa 512). Em
seguida, a thread de kernel ¢ anexada a thread de usudrio
que ¢ separada como sendo processavel (etapa 514). A thread
de usudrio é, entdo, processada pela thread de kernel (etapa
514). A thread de usudrio €, entdo, processada pela thread
de kernel (etapa 516) e o método termina em seguida.

[0046] Voltando agora a figura 6, um fluxograma de
um método usado para gerenciamento de threads inativas é
representado de acordo com uma concretizacgdo preferida da
presente invencdo. O método ilustrado na figura 6 pode ser
implementado em uma biblioteca, tal como a biblioteca de
Pthread 324 na figura 3.

[0047] O método comeca pela detecgdao de uma chamada
potencialmente de Dbloqueio (etapa 600). Essa chamada
potencialmente de blogueio é uma que colocada a thread ao
nivel do usudrio em um estado de repouso ou de espera. Uma
thread que estd em espera ou em repouso é referida como uma

thread "ndo processavel". O método, entdo, procura por uma

20/25

nova thread de usudrio para processar (etapa 602). Se uma
thread de usudrio processédvel for encontrada, o método comuta
a thread de kernel para a nova thread de usudrio (etapa 604).
A comutacdo na etapa 604 pode ser realizada através do uso
de um distribuidor ao nivel do usudrio. Dependendo da
implementacdo particular, essa comutagdo pode ou nao
requerer a separacdao e re-conexao do thread de kernel. A
thread de usudrio é processada pela thread de kernel (etapa
606) com o método terminando em seguida.

[0048] Voltando mais uma vez a etapa 602, se nenhuma
thread de usudrio processdvel for encontrada, a thread de
kernel é colocada em uma espera parcialmente separada (etapa
608). Nesse tipo de espera, a thread de kernel é colocada em
uma lista parcialmente separada e, entdo, entra em um estado
de espera. A thread de usudrio associada com a thread de
kernel ¢é mantida ou relacionada na lista parcialmente
separada com a thread de kernel. Essa associacao é feita
para indicar uma preferéncia para usar aquela thread de
kernel particular para processar a thread de usudrio, em
lugar de processar outra thread de usudrio, a menos que
necessdrio.

[0049] Em seguida, um evento é detectado e processado
(etapa 610). Se o evento for uma thread de usudrio associada

com a thread de kernel tornando-se processavel, aquela thread

21/25

de usudrio é processada pela thread de kernel (etapa 612) e
o método termina em seguida. Com referéncia mais uma vez a
etapa 610 se a thread de usudrio associada com a thread de
kernel sai ou, de outro modo, ndao tem necessidade da thread
de kernel, a thread de kernel é colocada em uma lista
separada e espera (etapa 614), com o método terminando em
seguida. Mais especificamente, a etapa 614 introduz uma série
de etapas ilustradas na figura 5, comecando na etapa 510.

[0050] Voltando a etapa 610, se o evento for qualquer
outro evento, o método procura uma thread de usudrio para
processar (etapa 616). Se nenhuma thread processdvel for
encontrada, o método retorna para a etapa 608. Caso
contrario, se outra thread de usudrio se torna processavel,
o método comuta a thread de kernel para a thread de usuario
que se tornou processdvel (etapa 618). Essa etapa pode
incluir duas operag¢des, uma separagdo e uma conexao.
Alternativamente, uma Unica operacdo, em que a thread de
kernel é comutada da thread de usudrio corrente para a nova
thread de usudrio pode ser empregada. A thread de usudrio é,
entdo, processada pela thread de kernel (etapa 620) com o
método terminando em seguida.

[0051] Com referéncia agora a figura 7, um fluxograma
de um método conhecido usado para ativar uma thread de kernel

é representado. O método ilustrado na figura 7 pode ser

22/25

implementado em uma biblioteca, tal como a biblioteca de
Pthread 324 na figura 3. O método ilustrado nesta figura
permite a uma thread aguardar ou esperar até que uma thread
de usudrio seja detectada como se tornando processavel.

[0052] O método comeca pela verificacdo de uma lista
separada para threads de kernel (etapa 700). Se a lista
separada ndo esta vazia, uma thread de kernel é removida da
lista separada (etapa 702). A thread de kernel é ativada
(etapa 704) com o método terminando em seguida. Com
referéncia mais uma vez a etapa 700, se a lista estiver
vazia, o método termina.

[0053] Voltando agora a figura 8, um fluxograma de
um método usado para manipulacdo de uma thread de kernel é
representado de acordo com uma concretizacdo preferida da
presente invencdo. O método ilustrado na figura 8 pode ser
implementado em uma biblioteca, tal como uma biblioteca de
Pthread 324 na figura 3. Esse método é iniciado em uma thread
de kernel que faz outra thread de kernel processavel.

[0054] O método comeca pela verificacdo de uma lista
separada para uma thread de kernel (etapa 800). Se a lista
separada estiver wvazia, o método verifica wuma lista
parcialmente separada para uma thread de kernel (etapa 802).
Se a lista parcialmente separada estiver vazia, o método

termina. Caso contrdrio, se a lista parcialmente separada

23/25

ndo estiver vazia, uma thread de kernel é removida da lista
semi-separada (etapa 804). Essa thread de kernel, removida
da lista parcialmente separada, é ativada (etapa 806) com o
método terminando em seguida. Naquele ponto, a thread de
kernel é processada.

[0055] Com referéncia mais uma vez a etapa 800, se
a lista separada ndo esta vazia, uma thread de kernel é
removida da lista separada (etapa 808). A thread de kernel
é ativada (etapa 810) com o método terminando em seguida. O
mecanismo da presente invencdo ainda emprega uma lista
separada porque a separag¢ao, em lugar da parcial separacao,
pode ser necessdria em algumas situacdes. Essa lista pode
ser necessdria para as threads de usudrio existentes. Nesse
caso, a selecdo de uma thread de kernel da lista separada é
preferida em relacdo a selecdo de uma thread de kernel de
uma lista parcialmente separada, quando da ativagdo das
threads de usudrio.

[0056] Desse modo, a presente inveng¢do proporciona
um método, um aparelho e instrugdes de computador
aperfeicoados para manipulacdao das threads de kernel
inativas. O mecanismo da presente invencdo evita o baixo
desempenho correntemente envolvido com a separagao e
subsequente re-conexdo de threads de kernel. Ainda, o

mecanismo da presente invencgdao também evita o estouro de

24/25

pilha, que pode ocorrer. Essas vantagens sao proporcionadas
através do uso de um método de separacdo parcial. Esse método
envolve a colocacdao da thread de kernel em uma lista
parcialmente separada, e, entdo, colocar a thread de kernel
em um estado de espera. Aquelas etapas ocorrem sem demandar
as etapas que sdo requeridas, normalmente, na separacgdo de
uma thread de kernel de uma thread de usuédrio.

[0057] E importante notar que, embora a presente
invencao tenha sido descrita no contexto de um sistema de
processamento de dados funcionando completamente, aqueles de
habilidade comum na técnica apreciardo gue os processos da
presente invencdo sdo capazes de serem distribuidos na forma
de um meio de instrucgdes legivel em computador e uma
variedade de formas e que a presente invencdo se aplica
igualmente, independentemente do tipo particular de meios
portadores de sinals realmente usados para realizar a
distribuigcdo. Exemplos de meios legiveis em computador
incluem meios do tipo gravédvel, tais como disco flexivel, um
mecanismo de disco rigido, uma RAM, CD-ROMs, DVD-ROMs e meios
do tipo transmissdo, tais como 1ligacdes de comunicacdes
digitais e analdgicas, ligacdes de comunicacgdes com fio e
sem fio, usando formas de transmissao tais como, por exemplo,
radiofrequéncia e transmissdes de sinais de luz. Os meios

legiveis em computador podem tomar a forma de formatos

25/25

codificados, dque sado decodificados para uso real em um

sistema de processamento de dados particular.

1/4

REIVINDICACOES

1. Método para manipulacdo de threads em um sistema de
processamento de dados, o método caracterizado pelo fato de
compreender:

deteccdo de uma thread de kernel (312, 420, 432)
associada com uma thread de wusudrio (300) como sendo
desnecessdria pela thread de usuario; e

em resposta a thread de kernel (312, 420, 432) sendo
desnecessdria, separacdo parcial da thread de kernel (312,
420, 432), em que os dados para a thread ndo mudam pilhas.

2. Método, de acordo com a reivindicacéao 1,
caracterizado pelo fato de ainda compreender:

colocacdo da thread de kernel (312, 420, 432) em uma
lista parcialmente separada (328); e

colocacdo da thread de kernel (312, 420, 432) em um
estado ndo processdvel simultdneo com a thread de usudrio
(300) .

3. Método, de acordo com a reivindicacéao 2,
caracterizado pelo fato de ainda compreender, em resposta a
ativacdo da thread de usuario da espera, remoc¢do da thread
de kernel (312, 420, 432) da 1lista parcialmente separada
(328), em que a re-conexdo a thread de wusudrio (302) ¢é

desnecessdaria.

2/4

4, Método, de acordo com a reivindicacéao 2,
caracterizado pelo fato de ainda compreender:

em resposta a ativacdo da thread de usuario (304) do
estado de espera, determinagdo de se uma segunda thread de
kernel (314, 422, 436) estd separada (322) em lugar de
parcialmente separada (328); e

em resposta a segunda thread de kernel (314, 422, 436)
estar separada (322), anexagdo da segunda thread de kernel
(314, 422, 436) a thread de usudrio (304).

5. Método, de acordo com a reivindicagao 2,
caracterizado pelo fato de o estado ndo processavel ser um
de um estado de repouso ou estado de espera.

6. Sistema de processamento de dados (200) para
gerenciamento de threads, o sistema de processamento de dados
caracterizado pelo fato de compreender:

meios de deteccdo de thread de kernel (312, 420, 432)
associada com uma thread de wusudrio (300) como sendo
desnecessdria pela thread de usudrio; e

meios de separacdo parcial, em resposta a thread de
kernel (312, 420, 432) ser desnecessdria para a separagdo
parcial da thread de kernel (312, 420, 432), em que dados

para a thread ndo mudam pilhas.

3/4

7. Sistema de processamento de dados, de acordo com a
reivindicacéo 6, caracterizado pelo fato de ainda
compreender:

primeiro meio de colocagdao para colocar a thread de
kernel (312, 420, 432) em uma lista parcialmente separada
(328); e

segundo meio de colocagdo para colocacdo da thread de
kernel (312, 420, 432) em um estado nao processavel
simultdneo com a thread de usudario (300).

8. Sistema de processamento de dados, de acordo com a
reivindicacgao 7, caracterizado pelo fato de ainda
compreender meios de remocdo, em resposta a ativacdo da
thread de usudrio da espera, para remogdo da thread de kernel
da lista parcialmente separada (328), em que a re-conexao é
desnecesséria.

9. Sistema de processamento de dados, de acordo com a
reivindicacéo 7, caracterizado pelo fato de ainda
compreender:

meios de determinacdo, em resposta a ativacdo de thread
de usuario (304) do estado de espera, para determinacdo se
uma segunda thread de kernel (314, 422, 436) estd separada

(322) em lugar de parcialmente separada (328); e

4/4

meios de anexacdo, em resposta a segunda thread de
kernel ser separada (322), para anexacdao da segunda thread
de kernel (314, 422, 436) a thread de usudrio (304).

10. Sistema de processamento de dados, de acordo com a
reivindicagdo 7, caracterizado pelo fato de o estado néo
processavel ser um de um estado de repouso ou um estado de

espera.

CLIENTE
200 202 208 204 216
N \ / /
U
PROCESSADORK LS c:%ggpcu o MEMORIA | Ao,
206
\ BARRAMENTO ﬁ ﬁ

<
e
| [ADAFTASGROE i
I | BARRAMENTO | ~212 I |aDAPTADOR| [BREREECEDEL lapapTanor| |ADAPTADOR DE
I | PRINCIPAL E{ DELAN | Jor i ensAa] | GRAFICO | | AubiorVibEo
1 DE SCS! 226 1
' l N N \ \
: 4 pisco | | 210 214 218 219
i i
I |
' = Fm | {} U Jg
I I
: 98 L a0l | wosew | | wevonn
i TEe—Jcorom | ™ ' AN "
! 1 232 222 224
b e 20 __

1/6

FIGURA 1

FIGURA 2

2/6

FIGURA 3

3 O\
324
306 BIBLIOTECA DE PTHREAD @
\ l
PILHAS DE 322~ LISTA LISTA 328
DE(%%DEL SEPARADA SEMI-SEPARADA
320 300 302 304 306 308
\ \ \ / / 4
Esgﬁ %gE %E%%E:)g% THREAD THREAD THREAD THREAD THREAD
ESPAGO DE
KERNEL THREAD THREAD THREAD
/ N\ N
318 vl 32 314 316
FIGURA 4A
408 416 410 412 418 414
N \ N Z / Z
e e
1 R '
FMARCADOR ‘THREAD - -THREAD
DSECCIBSE'I?\ KE??EIEL \ KE%E‘IEL \
/ 4 400 N 402
406 420 422

458
N\

430
N

MARCADOR
DE CABEGA
DE LISTA

v

438~

THREAD
DE
KERNEL

432

ANTERIOR

4341

SEGUINTE

436
Z

452
/

MARCADOR
DE CABEGA
DE
LISTA

'

3/6

FIGURA 4B

4 THREAD
7 DE
KERNEL

436

~ ANTERIOR

| ~440

SEGUINTE

FIGURA 4C

|~ 454

v

!

Y

THREAD
DE
KERNEL

THREAD
DE
KERNEL

DE
KERNEL

THREAD |

/
464

N
462

N
460

442

4/6

FIGURA &

(Técnica Anterior)

< DETECTAR CHAMADA
300~ POTENCIALMENTE
DE BLOQUEIO

_y

SEPARAR THREAD
502~ DE KERNEL DA
THREAD DE USUARIO

504

THREAD DE
USUARIO PROCESSAVEL
ENCONTRADA

PROCURAR

NOVA THREAD
DE USUARIO PARA
PROCESSAR?

NENHUMA THREAD
DE USUARIO
PROCESSAVEL

COLOCAR NALISTA
510-1 SEPARADAE ESPERA

!

AGUARDAR PARADETECTAR
UMA THREAD DE

512~ USUARIO QUE

SE TORNA PROCESSAVEL

! ‘

ANEXAR A THREAD ANEXAR A NOVA
5141 DE USUARIO THREAD DE USUARIO

™\-506

! !

PROCESSAR THREAD PROCESSAR NOVA
516~ DE USUARIO THREAD DE USUARIO

508

i
FIM

DETECTAR
600~ CHAMADA
POTENCIALMENTE
DE BLOQUEIO
602

NENHUMA THREAD
DE USUARIO
PROCESSAVEL
h 4
608~ ESPERA
SEMI-SEPARADA
THREAD DE USUARIO SA!
OU NAO TEM NECESSIDADE DA NENH%'QAUTSHU%S
THREAD DE KERNEL DETECTAR E “_OUTRO EVENTO PROCURAR PROCESSAVEL

5/6

FIGURA 6

THREAD DE
USUARIO PROCESSAVEL
ENCONTRADA

PROCURAR
NOVA THREAD
DE USUARIO PARA
PROCESSAR?

UMA THREAD DE

PROCESSAR USUARIO?

EVENTO?

610
THREAD ASSOCIADA OUTRA THREAD
COM THREAD SE TORNA 604
DE USUARIO SE PROCESSAVEL
TORNA PROCESSAVEL |
COMUTAR THREAD
COMUTAR DE KERNEL PARA
PARA THREAD NOVA THREAD
Y 612 618 DE USUARIO DE USUARIO
COLOCAR THREAD \ ‘ ‘
EMLISTA \
SEPARADA e PROCESSAR PROCESSAR PROCESSAR
EESPERAS D — THREAD san_- THREAD -FHREAD
THREAD DE USUARIO 620 DE USUARIO DE USUARIO
614 O 606

FIM

6/6

FIGURA 7

(Técnica Anterior)

700~] VERIFICARLISTA | YAZ©
SEPARADA
NAO VAZIA
REMOVER UMA
y THREAD DE KERNEL
DALISTA
702 SEPARADA
ATIVAR AQUELA
7041 THREAD DE KERNEL
n
FIGURA 8 i
INICIO
800
VERIFICAR NA VAZAA
LISTA
SEPARADA ?
802
VERIFICAR
e LISTA SEMI-
SEPARADA ?
NAQ VAZIA \
REMOVER UMA REMOVER UMA
| THREAD DE KERNEL THREAD DE KERNEL
864 -— DALISTA - DALISTA —-F\-808

SEMI-SEPARADA SEPARADA

ATIVAR AQUELA ATIVAR AQUELA
80671 THREAD DE KERNEL THREAD DE KERNEL [™-81()
e I

FiM

1/1

Resumo da Patente de Invencdopara: “METODO PARA MANIPULAGAO
DE THREADS EM UM SISTEMA DE PROCESSAMENTO DE DADOS E SISTEMA
DE PROCESSAMENTO DE DADOS”™.

Método, aparelho e instrugdes para computador para
gerenciamento de threads. Uma thread de kernel (312,
420, 432) associada com uma thread de usuaric (300) &
detectada como sendeo desnecessdria pela thread de usudrio.
A thread de kernel é parcialmente separada (328} em que
dados para a thread ndc mudam pilhas em resposta a thread

de kernel (312, 420, 432) ser desnecessaria.

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

