Office de la Propriete Canadian CA 2666364 A1 2008/05/29

Intellectuelle Intellectual Property
du Canada Office (21) 2 666 364
S-FnZL%?QéSQZna " mfgt?yn%yaﬁ; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1
(86) Date de depot PCT/PCT Filing Date: 2007/11/20 (51) ClLInt./Int.Cl. GO6F 7/00(2006.01)

(87) Date publication PCT/PCT Publication Date: 2008/05/29 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2009/04/14 PALANTIR TECHNOLOGIES, INC., US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2007/085202 JAIN. AKASH. US:

(87) N° publication PCT/PCT Publication No.: 2008/06420/ MCGREW, ROBERT J.. US:

(30) Priorité/Priority: 2006/11/20 (US11/602,626) GETTINGS, NATHAN, US
(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : CREATION DE DONNEES DANS UN MAGASIN DE DONNEES AU MOYEN D'UNE ONTOLOGIE
DYNAMIQUE
(54) Title: CREATING DATA IN A DATA STORE USING A DYNAMIC ONTOLOGY

302 Receive input data "1310 Apply next parser definition
l R to input data field value

304 Identify object type
associated with input data rows

and property typefs) assaciated
with input data field(s)

l

200 Read input data row and
detimited field value(s)

l

| 308 Select set of parser |
| definitions associated with *

property type of input data field

318 Create a property instance of
the property type associated with
» malching sub-definition of parser
definition and store input data field
value

| YES 314 Other parser

definitions?

#

316 Raise error or
discard property

data fields and rows

l

instantiate ob .
;12; stantiate object c?f contect 324 Store object
object type and associate with —| . .
instance in database

| property instances F ig. 3

Transforming Data Using a Dynamic Ontology

320 Repeat for all other input J: |

(57) Abréegée/Abstract:
In one embodiment, a method comprises creating and storing an ontology for a data store In response to receliving first user input
defining the ontology, wherein the ontology comprises a plurality of data object types and a plurality of object property types;

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

C an a dg http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC

OPIC - CIPO 191

CA 2666364 A1 2008/05/29

ey 2 666 364
13) A1

(57) Abrege(suite)/Abstract(continued):
creating one or more parser definitions In response to recelving second user input defining the parser definitions, wherein each of

the parser definitions specifies one or more sub-definitions of how to transform first input data into modified input data that Is
compatible with one of the object property types; and storing each of the one or more parser definitions in association with one of

the plurality of object property types.

CA 02666364 2009-04-14

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [4

International Bureau

(43) International Publication Date
29 May 2008 (29.05.2008)

(51) International Patent Classification:
GO6F 7/00 (2006.01)

(21) International Application Number:
PCT/US2007/085202

(22) International Filing Date:
20 November 2007 (20.11.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/602,626 20 November 2006 (20.11.2006) US

(71) Applicant (for all designated States except US): PALAN-
TIR TECHNOLOGIES, INC. [US/US]; 1530 Page Mill
Road, Palo Alto, California 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JAIN, Akash
[US/US]; 1530 Page Mill Road, Palo Alto, California
94304 (US). MCGREW, Robert J. [US/US]; 1530 Page
Mill Road, Palo Alto, California 94304 (US). GET-
TINGS, Nathan [US/US]; 1530 Page Mill Road, Palo
Alto, California 94304 (US).

(10) International Publication Number

WO 2008/064207 A3

(74) Agents: PALERMO, Christopher J. etal.; 2055 Gateway
Place, Suite 550, San Jose, California 95110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EL, ES, I,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(88) Date of publication of the international search report:
7 August 2003

(54) Title: CREATING DATA IN A DATA STORE USING A DYNAMIC ONTOLOGY

302 Receive input data

. e e —— s e —

| 319 Apply next narser definition

'l | j to input data field value i
. 1 — f
04 Identify chjecttype 1 P 318 Create a property instance of
ociated with input dala rows | - I he t inted Wi
ass 'a ed wi '“DH al ‘ W - 312 YES the prtlupert'pr lvpe g;gocnteo with
anu property type(s) associated \ Maleh? _>—— matching sub-definition of parser
with input data field{s) . .definition and store input data field
e i—— .. Cma—— L ..; - /,f’ \ra|ue
i \INO e
| 206 Read put data row and /_,./’ i \
detimited field valve(s) 5 -)
) ' _\fE_S -~ 314 Other parser
definitions?
X - efinitions ///
388 Select sel of parser \ g i
,: definiticns associated with = \;'”N o
property tyne of input data field {0
I 316 Raise error ori
discard properfy
) w...j_.._.
|| 320 Repeat for all ciher input [* e

data fields and rows » . - —

i
L 2

372 Instantiate object of cerrect
object fype and associate with >

property instatices

324 Store object
instance in database ¢

B T L L I T ————

Fig. 3

Transforming Bata Using a Dynamic Cntolagy

7 A3 0L) 0 D000 R O R R

— (57) Abstract: In one embodiment, a method comprises creating and storing an ontology for a data store in response to receiving
e first user input defining the ontology, wherein the ontology comprises a plurality of data object types and a plurality of object property
types; creating one or more parser definitions in response to receiving second user input defining the parser definitions, wherein each
\& of the parser definitions specifies one or more sub-definitions of how to transform first input data into modified input data that is
compatible with one of the object property types; and storing each of the one or more parser definitions in association with one of
the plurality of object property types.

4

WO 2008/0

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

CREATING DATA IN A DATA STORE USING A DYNAMIC ONTOLOGY

FIELD OF THE INVENTION

[0001] The present disclosure generally relates to techniques for creating data in a data
store.
BACKGROUND

[0002] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Theretore,
unless otherwise indicated, it should not be assumed that any of the approaches described 1n
this section quality as prior art merely by virtue of their inclusion 1n this section.

[0003] Computer-based database systems, such as relational database management
systems, typically organize data according to a fixed structure of tables and relationships.
The structure may be described using an ontology, embodied 1n a database schema,
comprising a data model that 1s used to represent the structure and reason about objects 1n the
structure.

[0004] An ontology of a database 1s normally fixed at the time that the database 1s
created. Any change in the ontology represented by the schema 1s typically extremely
disruptive to the database system and requires a database administrator to modity tables or
relationships, or create new tables or relationships.

[0005] The rigidity of the typical database ontology is a serious drawback for
organizations that require flexible and dynamic data processing techniques according to
changes 1n the data that 1s collected. For example, intelligence analysis 1s poorly suited to

conventional fixed ontology systems.

SUMMARY

[0006] In one embodiment, a method comprises creating and storing an ontology for a
data store 1n response to receiving first user input defining the ontology, wherein the ontology
comprises a plurality of data object types and a plurality of object property types; creating
one or more parser definitions 1n response to recerving second user input defining the parser
definitions, wherein each of the parser definitions specifies one or more sub-definitions of
how to transform first input data into modified input data that 1s compatible with one of the
object property types; storing each of the one or more parser definitions 1n association with
one of the plurality of object property types; wherein the machine-executed operation 1s at

least one of (a) sending said instructions over transmission media, (b) receiving said

_1-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

instructions over transmission media, (¢) storing said instructions onto a machine-readable
storage medium, and (d) executing the instructions.

[0007] In one feature, the method further comprises receiving the first input data;
determining whether the first input data matches one of the parser sub-definitions; using a
matching one of the parser sub-definitions, creating and storing the moditied input data;
storing the modified input data in a property of the property type that 1s identified in the
matching one of the parser sub-definitions.

[0008] In another feature, creating and storing one or more parser definitions comprises
creating and storing one or more program code modules, wherein each of the code modules
comprises computer program code which when executed causes transtorming the first input
data into the modified input data.

[0009] In another feature, creating and storing one or more parser definitions comprises
creating and storing one or more transformation expressions, wherein each of the
transformation expressions comprises one or more syntactic patterns and a property type
identifier associated with each of the syntactic patterns.

[0010] In yet another feature, creating and storing one or more parser definitions
comprises creating and storing one or more transformation expressions, wherein each of the
transformation expressions comprises one or more syntactic patterns and a property type
identifier associated with each of the syntactic patterns, and the method further comprises
receiving the first input data; determining whether the first input data matches one of the
syntactic patterns; using a matching one of the syntactic patterns, creating and storing
modified input data; storing the modified input data in a property of the property type that 1s
identified by the property type 1dentifier associated with the matching one of the syntactic
patterns.

[0011] In still another feature, creating one or more parser definitions comprises creating
one or more parser definitions comprising a constraint on what moditied input data 1s
acceptable for creation of a property of one of the object property types. In a further feature,
creating one or more parser definitions comprises creating one or more parser definitions
comprising a default value to substitute for one component of the modified input data.
[0012] In another feature, the method further comprises receiving the first input data;
determining whether the first input data matches successive different ones of the parser sub-
definitions until a matching parser sub-definition 1s identified; using a matching one of the
parser sub-definitions, creating and storing the modified input data; storing the modified
input data i1n a property of the property type that 1s 1identified in the matching one of the

parser sub-definitions.

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

[0013] According to another embodiment, a data storage system comprises a data store;
an ontology coupled to the data store and comprising a plurality of data object types and a
plurality of object property types; a parser coupled to the ontology and configured to receive
input data and transtorm the input data into modified data to store 1n a property of one of the
property types according to one or more parser definitions; wherein each ot the object
property types comprises one or more of the parser definitions, wherein each of the parser
definitions specifies one or more sub-definitions of how to transtorm first input data into
moditied input data that 1s compatible with one of the object property types.

[0014] According to another embodiment, an apparatus comprises means for creating and
storing an ontology for a data store in response to recerving first user input defining the
ontology, wherein the ontology comprises a plurality of data object types and a plurality of
object property types; means for creating one or more parser definitions 1n response to
recerving second user input defining the parser definitions, wherein each of the parser
definitions specifies one or more sub-definitions of how to transtorm first input data into
modified input data that is compatible with one of the object property types; and means for
storing each of the one or more parser definitions 1n association with one of the plurality of
object property types.

[0015] In another embodiment, a graphical user intertace comprises an expression pattern
field contigured to accept user input specifying a transformation expression pattern that
specities how to transform first input data into modified input data; one or more parser sub-
definitions each comprising: a portion of the transformation expression pattern; a combo box
configured to accept user input specifying one of a plurality of object property component
types of an ontology of a data store; wherein each of the parser sub-definitions specifies how
to transform a portion of the first input data into a portion of modified input that can be stored
in the specitied component of one of the plurality of object property types.

[0016] In one feature, the one or more parser sub-definitions comprise a constraint on
how to transform the portion of the first input data into the portion of modified input data that
1s compatible with one of the object property types. In yet another feature, the one or more
parser sub-definitions comprise a default value to substitute for the modified input data if 1t 1S

empty.

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The present invention 1s 1llustrated by way of example, and not by way of
limitation, 1n the figures of the accompanying drawings and in which like reference numerals

refer to similar elements and 1n which:

[0018] FIG. 1 illustrates a system for creating data in a data store using a dynamic
ontology;

[0019] FIG. 2 1llustrates defining a dynamic ontology for use in creating data in a data
store;

[0020] FIG. 3 1llustrates a method of transforming data and creating the data 1in a data
store using a dynamic ontology;

[0021] FIG. 4 illustrates an example object type editor;

[0022] FIG. 5A illustrates an example parser editor;

[0023] FIG. 5B illustrates an example property editing wizard 1in which multiple parsers
have been created for a particular property; and

[0024] FIG. 6 1llustrates a computer system with which an embodiment may be

implemented.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0025] In the following description, for the purposes of explanation, numerous specific
details are set forth 1n order to provide a thorough understanding ot the present invention. It
will be apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown 1n block diagram
form 1n order to avoid unnecessarily obscuring the present invention. In an embodiment, a
user of a database system specifies an ontology of the database in terms of object types and
property types for properties of the objects. The user further specifies how to parse input data
for the database and how to map the parsed data into database elements such as objects or
object properties. The database 1s chosen as an example embodiment, other embodiments

such as flat files or search indexes could be considered as well.

L. DYNAMIC ONTOLOGY DATABASE SYSTEM

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

[0026] FIG. 1 illustrates a system for creating data in a database using a dynamic
ontology. A parser 102 is coupled to an ontology 106, which 1s coupled to a database 108. In
an embodiment, ontology 106 comprises stored information providing a data model ot data
stored 1n database 103, and the ontology 1s defined by one or more object types 110 and one
or more property types 116. One or more objects 112 in the database 108 may be instantiated
based on the object types 110, and each of the objects has one or more properties 114A, 114B
that are instantiated based on property types 116. The property types 116 each may comprise
one or more components 118, such as a string, number, etc. Property types 116 may be
instantiated based on a base type 120. For example, a base type 120 may be “Locations™ and
a property type 116 may be “Home.”

[0027] In an embodiment, a user of the system uses an object type editor 124 to create the
object types 110 and define attributes of the object types. In an embodiment, a user of the
system uses a property type editor 126 to create the property types 116 and define attributes
of the property types.

[0028] In an embodiment, creating a property type 116 using the property type editor 126
involves defining at least one parser definition using a parser editor 122. A parser definition
comprises metadata that informs parser 102 how to parse input data 100 to determine whether
values 1n the input data can be assigned to the property type 116 that 1s associated with the
parser definition. In an embodiment, each parser definition may comprise a regular
expression parser 104A or a code module parser 104B. In other embodiments, other kinds of
parser definitions may be provided using scripts or other programmatic elements. The
clements of a regular expression parser 104A and a code module parser 104B are described
further 1n subsequent sections. Once defined, both a regular expression parser 104A and a
code module parser 104B can provide input to parser 102 to control parsing of input data 100.
[0029] In one embodiment of using the system of FIG. 1, input data 100 1s provided to
parser 102. An object-property mapping for the input data 100 enables the parser to
determine which object type 110 should receive data from a row of the input data, and which
property types 116 should receive data from individual field values in the input data. Based

on the object-property mapping 101, the parser 102 selects one of the parser definitions that 1s

5.

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

associated with a property type in the input data. The parser parses an input data field using
the selected parser definition, resulting 1n creating modified data 103. The modified data 103
1s added to the database 108 according to ontology 106 by storing values of the modified data
in a property of the specified property type. As a result, input data 100 having varying format
or syntax can be created 1n database 108. The ontology 106 may be modified at any time
using object type editor 124 and property type editor 126. Parser editor 122 enables creating
multiple parser definitions that can successftully parse input data 100 having varying format
or syntax and determine which property types should be used to transform 1nput data 100 into
modified input data 103.

1. DEFINING A DYNAMIC ONTOLOGY

[0030] FIG. 2 illustrates defining a dynamic ontology for use in creating data in a
database. For purposes of 1llustrating a clear example, steps 202-209 of FIG. 2 are first
described at a high level, and details of an example implementation follow the high level
description.

[0031] In step 202, one or more object types are created for a database ontology. In step
206, one or more property types are created for each object type. As indicated 1n step 204,
the attributes of object types or property types of the ontology may be edited or modified at
any time.

[0032] In step 208, at least one parser definition 1s created for each property type. At step
209, attributes of a parser definition may be edited or modified at any time.

In an embodiment, each property type 1s declared to be representative of one or more object
types. A property type 1s representative of an object type when the property type 1s
intuitively associated with the object type. For example, a property type of “Social Security
Number” may be representative of an object type “Person” but not representative of an object
type “Business.”

[0033] In an embodiment, each property type has one or more components and a base
type. In an embodiment, a property type may comprise a string, a date, a number, or a

composite type consisting of two or more string, date, or number elements. Thus, property

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

types are extensible and can represent complex data structures. Further, a parser definition
can reference a component of a complex property type as a unit or token.

[0034] An example of a property having multiple components 1s a Name property having
a Last Name component and a First Name component. An example of raw input data 1s
“Smith, Jane”. An example parser definition specifies an association of input data to object
property components as follows: {LAST_NAME}, {FIRST_NAME }->Name:Last,
Name:First. In an embodiment, the association {LAST _NAME}, {FIRST NAME} 1s
defined 1n a parser definition using regular expression symbology. The association
{LAST_NAME}, {FIRST_NAME} indicates that a last name string followed by a first name
string comprises valid input data for a property of type Name. In contrast, input data of
“Smith Jane” would not be valid for the specified parser definition, but a user could create a
second parser definition that does match input data of “Smith Jane”. The definition
Name:Last, Name:First specifies that matching input data values map to components named
“Last” and “First” of the Name property.

[0035] As a result, parsing the input data using the parser definition results 1n assigning
the value “Smith” to the Name:Last component of the Name property, and the value “Jane” to
the Name:First component of the Name property.

[0036] In an embodiment, administrative users use an administrative editor to create or
edit object types and property types. In an embodiment, users use the administrative editor to
specity parser definitions and to associate regular expressions, code modules or scripts with
the parser definitions. In the administrative editor, a user can specity attributes and
components of a property type. For example, in one embodiment a user specifies a graphical
user interface 1con that 1s associated with the property type and displayed in a user interface
for selecting the property type. The user further specifies a parser definition that 1s associated
with the property type and that can parse input data and map the input data to properties
corresponding to the property type. The user turther specifies a display tormat for the
property type indicating how users will see properties of that property type.

[0037] FIG. 4 illustrates an example object type editor. In an embodiment, an object type

editor panel 402 comprises graphical buttons 404 for selecting add, delete, and edit functions,

7-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

and one or more rows 406 that 1identify object types and a summary of selected attributes of
the object types. Example selected attributes that can be displayed in object editor panel 402
include an object type name 408 (for example, “Business™), a uniform resource 1dentifier
(URI) 410 specitying a location of information defining the object type (for example,
“com.palantir.object.business’), and a base type 412 of the object type, also expressed in URI
format (for example, “‘com.palantir.object.entity”). Each URI also may include a graphical
icon 414.

[0038] In an embodiment, a user interacts with a computer to perform the following steps
to define an object type. Assume for purposes of an example that the new object type 1s
Vehicle. Using the object type editor, the user selects the “Add Object Type” button 404 and
the computer generates and displays a panel that prompts the user to enter values for a new
object type. The user selects a base object type of Entity, which may comprise any person,
place or thing. The user assigns a graphical 1icon to the Vehicle object type. The user assigns
a display name of “Vehicle™ to the object type.

[0039] In an embodiment, a user interacts with the computer to define a property type in a
sumilar manner. ‘The user specifies a name for the property type, a display name, and an 1con.
The user may specity one or more validators for a property type. Each validator may
comprise a regular expression that input data modified by a parser must match to constitute
valid data for that property type. In an embodiment, each validator 1s applied to input data
before a process can store the modified input data 1in an object property of the associated
property type. Validators are applied after parsing and before input data 1s allowed to be
stored 1n an object property.

[0040] In various embodiments, validators may comprise regular expressions, a set of
fixed values, or a code module. For example, a property type that 1s a number may have a
validator comprising a regular expression that matches digits 0 to 9. As another example, a
property type that 1s a US state may have a validator that comprises the set { AK, AL, CA ...
VA} of valid two-letter postal abbreviations for states. Validator sets may be extendible to
allow a user to add further values. A property type may have component elements, and each

component element may have a ditferent validator. For example, a property type of

_§-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

“Address” may comprise as components “City”, “State”, and “ZIP”, each of which may have
a different validator.

[0041] In an embodiment, defining a property type includes identifying one or more
assoclated words for the property type. The associated words support search functions in
large database systems. For example, a property type of “Address” may have an associated
word of “*home”™ so that a search 1n the system for “home” properties will yield “Address™ as
one result.

[0042] In an embodiment, defining a property type includes identifying a display
formatter for the property type. A display formatter specifies how to print or display a
property type value.

[0043] In an embodiment, the parser definitions each include a regular expression that
matches valid input, and the parser uses a regular expression processing module. For
example, conventional Java language processors typically have regular expression processing
modules built in. In an embodiment, parser definitions comprising regular expressions may
be chained together. In another embodiment, one or more of the parser definitions each
include a code module that contains logic for parsing input data and determining whether the
input data matches a specitied syntax or data model. The code module may be written in
Java, JavaScript, or any other suitable source language.

[0044] In an embodiment, there may be any number of parser definitions and sub-
definitions. The number of parser definitions 1s unimportant because the input data 1s applied
successively to each parser definition until a match occurs. When a match occurs, the input
data 1s mapped using the parser sub definitions to one or more components of an instance of
an object property. As a result, input data can vary syntactically from a desired syntax but
correct data values are mapped 1nto correct object property values in a database.

[0045] Accordingly, referring again to FIG. 2, creating a parser definition for a property
type at step 208 may comprise selecting a parser type such as a regular expression, code
module, or other parser type. When the parser type 1s “code module,” then a user specifies
the name of a particular code module, script, or other functional element that can perform

parsing for the associated property type.

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

[0046] In an embodiment, defining a property type includes creating a definition of a
parser for the property type using a parser editor. FIG. SA illustrates an example parser
editor user interface screen display. In an embodiment, screen display 502 comprises a
Parser Type combo box 504 that can receive a user selection of a parser type, such as
“Regular Expression™ or “Code Module.” Screen display 502 further comprises a Name text
entry box 506 that can receive a user-specified name for the parser definition.

[0047] When the parser type 1s “regular expression,” steps 214-220 are performed. At
step 214, regular expression text 1s specified. For example, when the Parser Type value of
combo box 504 1s “Regular Expression,” screen display 502 comprises an Expression Pattern
text box 508 that can receive a user entry of regular expression pattern text.

[0048] In step 216, a property type component and a matching sub-definition of regular
expression text 1s specified. For example, screen display 502 further comprises one or more
property type component mappings 510. Each property type component mapping associates
a sub-definition of the regular expression pattern text with the property type component that
1s shown 1in a combo box 512. A user specifies a property type component by selecting a
property type component using combo box 512 for an associated sub-definition 513. As
shown 1n step 218, specitying a property type component and sub-definition of regular
expression text may be repeated for all other property type components of a particular
property type. As seen in the example of FIG. SA, six (6) property type component
mappings 510 have been created for different property types (ADDRESS1, ADDRESS2,
ADDRESS3, CITY, STATE, ZIP).

[0049] In step 220, a user may specity one or more constraints, default values, and/or
other attributes of a parser definition. In the example of FIG. 5A, the user also may specity
that a match to a particular property type component 1s not required by checking a “Not
Required” check box 514. Screen display 502 may further comprise a Default Value text box
514 that can receive user input for a default value for the property type component. If a
Detault Value 1s specitied, then the associated property type receives that value 1f no match
occurs for associated grouping of the regular expression. In alternative embodiments, other

constraints may be specified.

-10-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

[0050] At step 222, the parser definition 1s stored 1n association with a property type. For
example, selecting the SAVE button 520 of FIG. 5A causes storing a parser definition based
on the values entered in screen display S02. Parser definitions may be stored in database 103.
[0051] For purposes of 1llustrating a clear example, the approach of FIG. 2 has been
described with reference to FIG. SA. However, the approach of FIG. 2 may be implemented

using other mechanisms for creating and specifying the values and elements 1dentified in
FIG. 2, and the particular GUI of FIG. SA 1s not required.

[1I. CREATING DATA IN A DATABASE USING A DYNAMIC ONTOLOGY

[0052] FIG. 3 illustrates a method of transforming data and creating the data in a database
using a dynamic ontology. For purposes of 1llustrating a clear example, the approach of FIG.
3 1s described herein with reference to FIG. 1. However, the approach of FIG. 3 may be
implemented using other mechanisms for performing the functional steps of FIG. 3, and the
particular system of FIG. 1 is not required.

[0053] In step 302, input data 1s recerved. In an embodiment, an input data file 1s
received. The input data file may comprise a comma-separated value (CSV) file, a
spreadsheet, XML or other input data file format. Input data 100 of FIG. 1 may represent
such file formats or any other form of input data.

[0054] In step 304, an object type associated with input data rows of the input data is
identified, and one or more property types associated with input data fields of the input data
are 1dentified. For example, the object-property mapping 101 of FIG. 1 specities that input
data 100 comprises rows corresponding to object type PERSON and fields corresponding to
property type components LAST_NAME, FIRST_NAME of property type NAME. The
object-property mapping 101 may be integrated into input data 100 or may be stored as
metadata 1in association with a data input tool.

[0055] In step 306, a row of data 1s read from the input data, and one or more field values
are 1dentified based on delimiters or other field 1dentifiers 1n the input data.

[0056] In step 308, a set of parser definitions associated with the property type of a

particular input data field is selected. For example, metadata stored as part of creating a

-11-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

property type specifies a set of parser definitions, as previously described 1in connection with
FIG. SA.

[0057] In step 310, the next parser definition 1s applied to an input data field value. Thus,
data fields are read from each row of the file and matched to each parser that has been
defined for the corresponding property types. For example, assume that the mapping
indicates that an input data CSV file comprises (Last Name, First Name) values for Name
properties of Person objects. Data fields are read from the input data CSV file and compared
to each of the parsers that has been defined for the Name property type given the First Name
field and Last Name field. If a match occurs for a (Last Name, First Name) pair value to any
of the parsers for the Name property type, then the parser transforms the input data pair of
(,Last Name, First Name) into modified input data to be stored 1n an instantiation of a Name
property.

[0058] [f applying a definition at step 310 results in a match to the input data, as tested at
step 312, then at step 318 a property instance 1s created, and the input data field value 1s
stored 1n a property of the property type associated with the matching sub-definition of the
parser definition. For example, referring to FIG. SA, assume that the input data matches the
regular expression 508 for an ADDRESS value. The mapping 510 specifies how to store the
data matching each grouping of the regular expression into a component of the ADDRESS
property. In response, an instance of an ADDRESS property 1s created in computer memory
and the matching modified input data value 1s stored 1in each component of the property
instance.

[0059] If no match occurs at step 312, then control transfers to step 314 to test whether
other parser definitions match the same input data value. FIG. 5B illustrates an example
property editing wizard in which multiple parsers have been created for a particular property,
and through the loop shown 1n FIG. 3, each of the multiple parsers can be used in matching
input data. If no match occurs to the given parser definition, then any other parser
definitions for that property type are matched until either no match occurs, or no other parser

definitions are available.

-12-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

[0060] If a grouping 1s empty, then the component is filled by the default value for that
component, 1f 1t exists. If no other parser definitions are available, then control transters from
step 314 to step 316, at which point an error 1s raised or the property 1s discarded

At step 320, the preceding steps are repeated for all other values and rows 1n the 1input data
until the process has transtformed all the input data into properties in memory.

[0061] At step 322, an object of the correct object type 1s instantiated. For example, the
object-property mapping 101 may specity an object type for particular input data, and that
type of object 1s instantiated. The newly created object 1s associated 1n memory with the
properties that are already 1n memory. The resulting object 1s stored 1n the database 1n step
324,

[0062] Steps in the preceding process may be organized in a pipeline. Using the
approaches herein, a user can self-define a database ontology and use automated, machine-
based techniques to transform input data according to user-defined parsers and store the
transformed data in the database according to the ontology. The approach provides efficient
movement of data into a database according to an ontology. The input data has improved
intelligibility after transformation because the data is stored 1n a canonical ontology. Further,
the approach 1s tlexible and adaptable, because the user can modity the ontology at any time
and 1s not tied to a fixed ontology. The user also can define multiple parsers to result in
semantic matches to input data even when the syntax of the input data is variable.

IV. EXAMPLE IMPLEMENTATION HARDWARE

[0063] FIG. 6 is a block diagram that illustrates a computer system 600 upon which an
embodiment of the invention may be implemented. Computer system 600 includes a bus 602
or other communication mechanism for communicating information, and a processor 604
coupled with bus 602 for processing information. Computer system 600 also includes a main
memory 606, such as a random access memory (RAM) or other dynamic storage device,
coupled to bus 602 for storing information and instructions to be executed by processor 604.
Main memory 606 also may be used for storing temporary variables or other intermediate
information during execution of instructions to be executed by processor 604. Computer

system 600 further includes a read only memory (ROM) 608 or other static storage device

13-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

coupled to bus 602 for storing static information and instructions for processor 604. A
storage device 610, such as a magnetic disk or optical disk, 1s provided and coupled to bus
602 for storing information and 1nstructions.

[0064] Computer system 600 may be coupled via bus 602 to a display 612, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 614,
including alphanumeric and other keys, 1s coupled to bus 602 for communicating information
and command selections to processor 604. Another type of user input device 1s cursor control
616, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 604 and for controlling cursor movement
on display 612. This input device typically has two degrees of freedom 1n two axes, a first
axis (e.g., x) and a second axis (e.2., y), that allows the device to specity positions 1n a plane.
[0065] The 1invention 1s related to the use of computer system 600 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 600 1n response to processor 604 executing
one or more sequences of one or more 1nstructions contained 1n main memory 606. Such
instructions may be read into main memory 606 from another machine-readable medium,
such as storage device 610. Execution of the sequences of instructions contained in main
memory 606 causes processor 604 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used 1n place of or in combination with
software instructions to implement the invention. Thus, embodiments of the invention are
not limited to any specific combination of hardware circuitry and software.

[0066] The term “machine-readable medium™ as used herein refers to any medium that
participates in providing data that causes a machine to operation 1n a specific tashion. In an
embodiment implemented using computer system 600, various machine-readable media are
involved, for example, 1in providing instructions to processor 604 for execution. Such a
medium may take many forms, including but not limited to, non-volatile media, volatile
media, and transmission media. Non-volatile media includes, for example, optical or
magnetic disks, such as storage device 610. Volatile media includes dynamic memory, such

as main memory 606. Transmission media includes coaxial cables, copper wire and fiber

_14-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

optics, including the wires that comprise bus 602. Transmission media can also take the form
of acoustic or light waves, such as those generated during radio wave and infrared data
communications. All such media must be tangible to enable the instructions carried by the
media to be detected by a physical mechanism that reads the instructions into a machine.
[0067] Common forms of machine-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other medium from which a computer can read.
[0068] Various forms of machine-readable media may be involved in carrying one or
more sequences of one or more 1nstructions to processor 604 for execution. For example, the
instructions may initially be carried on a magnetic disk of a remote computer. The remote
computer can load the instructions 1nto 1ts dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 600 can receive the data
on the telephone line and use an infrared transmitter to convert the data to an infrared signal.
An infrared detector can receive the data carried in the infrared signal and appropriate
circuitry can place the data on bus 602. Bus 602 carries the data to main memory 606, from
which processor 604 retrieves and executes the instructions. The instructions received by
main memory 606 may optionally be stored on storage device 610 either before or after
execution by processor 604.

[0069] Computer system 600 also includes a communication interface 618 coupled to bus
602. Communication interface 618 provides a two-way data communication coupling to a
network link 620 that 1s connected to a local network 622. For example, communication
interface 618 may be an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of telephone line. As
another example, communication interface 618 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN. Wireless links may also be

implemented. In any such implementation, communication interface 618 sends and receives

_15-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

clectrical, electromagnetic or optical signals that carry digital data streams representing
various types of information.

[0070] Network link 620 typically provides data communication through one or more
networks to other data devices. For example, network link 620 may provide a connection
through local network 622 to a host computer 624 or to data equipment operated by an
Internet Service Provider (ISP) 626. ISP 626 in turn provides data communication services
through the worldwide packet data communication network now commonly referred to as the
“Internet” 628. Local network 622 and Internet 628 both use electrical, electromagnetic or
optical signals that carry digital data streams. The signals through the various networks and
the signals on network link 620 and through communication interface 618, which carry the
digital data to and from computer system 600, are exemplary forms of carrier waves
transporting the information.

[0071] Computer system 600 can send messages and receive data, including program
code, through the network(s), network link 620 and communication interface 618. In the
Internet example, a server 630 might transmit a requested code for an application program
through Internet 628, ISP 626, local network 622 and communication interface 618.

[0072] The received code may be executed by processor 604 as it is received, and/or
stored 1n storage device 610, or other non-volatile storage for later execution. In this manner,
computer system 600 may obtain application code 1n the form of a carrier wave.

[0073] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. Thus, the sole and exclusive indicator of what is the invention, and 1s
intended by the applicants to be the invention, 1s the set of claims that issue from this
application, in the specific form 1n which such claims 1ssue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained 1n such claims shall
govern the meaning of such terms as used 1n the claims. Hence, no limitation, element,
property, feature, advantage or attribute that is not expressly recited in a claim should limit
the scope of such claim 1in any way. The specification and drawings are, accordingly, to be

regarded 1n an illustrative rather than a restrictive sense.

_16-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

CLAIMS

What 1s claimed 1s:

. A method comprising performing a machine-executed operation involving
instructions, wherein said instructions are instructions which, when executed by one or more
processors, cause the one or more processors to perform certain steps including:
creating and storing an ontology for a data store 1n response to recerving first user
input defining the ontology, wherein the ontology comprises a plurality of data
object types and a plurality of object property types;
creating one or more parser definitions 1n response to receiving second user input
defining the parser definitions, wherein each ot the parser definitions specifies
one or more sub-definitions of how to transform first input data into moditied
input data that 1s compatible with one of the object property types;
storing each of the one or more parser definitions in association with one of the
plurality of object property types;
wherein the machine-executed operation 1s at least one of (a) sending said instructions
over transmission media, (b) receiving said instructions over transmission
media, (¢) storing said 1nstructions onto a machine-readable storage medium,

and (d) executing the instructions.

2. The method of claim 1, further comprising:
receiving the first input data;
determining whether the first input data matches one of the parser sub-definitions;
using a matching one of the parser sub-definitions, creating and storing the modified
input data;
storing the modified input data 1n a property of the property type that is 1dentified in

the matching one of the parser sub-definitions.

3. The method of claim 1, wherein creating and storing one or more parser definitions
comprises creating and storing one or more program code modules, wherein each of the code

modules comprises computer program code which when executed causes transtforming the

first input data into the modified input data.

4. The method of claim 1, wherein creating and storing one or more parser definitions

comprises creating and storing one or more transformation expressions, wherein each of the

_17-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

transformation expressions comprises one or more syntactic patterns and a property type

identifier associated with each of the syntactic patterns.

d. The method of claim 1, wherein creating and storing one or more parser definitions
comprises creating and storing one or more transformation expressions, wherein each of the
transformation expressions comprises one or more syntactic patterns and a property type
identitier associated with each of the syntactic patterns, and further comprising:
rece1ving the first input data;
determining whether the first input data matches one ot the syntactic patterns;
using a matching one of the syntactic patterns, creating and storing modified input
data;
storing the modified input data 1n a property of the property type that 1s identified by
the property type identitier associated with the matching one of the syntactic

patterns.

0. The method of claim 1, wherein creating one or more parser definitions comprises
creating one or more parser definitions comprising a constraint on the modified input data

that 1s compatible with one of the object property types.

7. The method of claim 1, wherein creating one or more parser definitions comprises
creating one or more parser definitions comprising a default value to substitute for a missing

component of the modified input data.

3. The method of claim 1, further comprising:
rece1ving the first input data;
determining whether the first input data matches one of the parser sub definitions;
using a matching one of the one of the parser sub definitions, using the transformation
expressed 1n the sub definition to transform portions ot the input to
components of the object property to create and store the modified input data;
storing the modified input data 1n a property of the property type that is 1dentified in

the matching one of the parser sub-definitions.

9. A data storage system, comprising:
a data store;
an ontology coupled to the data store and comprising a plurality of data object types

and a plurality ot object property types;

_18-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

a parser coupled to the ontology and configured to receive input data and transtorm
the input data into modified data to store in a property specified by one of the
property types according to one or more parser definitions;

wherein each of the object property types comprises one or more of the parser
definitions, wherein each of the parser definitions specifies one or more sub-
definitions of how to transtorm portions of first input data into modified input

data that 1s to be stored 1n components of one of the object property types.

10. The system of claim 9, wherein the parser further comprises logic which when
executed by one or more processors 1n the system causes the processor to perform: receiving
the first input data; determining whether the first input data matches one of the parser
definitions; using the transtormation expressed 1n the matching parser definition to transform
portions of the input to components of the object property to create and store the modified
input data; storing the modified input data 1n a property of the property type that is identified

in the matching one of the parser definitions.

11. The system of claim 9, wherein the one or more parser definitions comprise one or
more program code modules, wherein each of the code modules comprises computer program
code which when executed causes transtorming the first input data into the moditfied input

data.

12. The system of claim 9, wherein the one or more parser definitions comprise one or
more transformation expressions, wherein each of the transtormation expressions comprises
one or more syntactic patterns and a property type 1dentifier associated with each of the

syntactic patterns.

13. The system of claim 9, wherein the one or more parser definitions comprise one or
more transformation expressions, wherein each of the transtormation expressions comprises
one or more syntactic patterns and a property type 1dentifier associated with each of the
syntactic patterns, and wherein the parser further comprises logic which when executed
causes recerving the first input data; determining whether the first input data matches one ot
the syntactic patterns; using a matching one of the syntactic patterns, creating and storing
modified input data; storing the modified input data in a property of the property type that is
identified by the property type 1dentifier associated with the matching one of the syntactic

patterns.

_19-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

14. The system of claim 9, wherein the one or more validator definitions comprise a
constraint on how to transform first input data into modified input data that 1s compatible

with one of the object property types.

15. The system of claim 9, wherein the one or more parser definitions comprise a default

value to substitute for a missing component of the modified input data.

16. The system of claim 9, wherein the parser turther comprises logic which when
executed causes recerving the first input data; determining whether the first input data
matches successive different ones of the parser definitions until a matching parser definition
1s 1dentified; using a matching one of the parser definitions, creating and storing the moditied
input data; storing the modified input data in a property of the property type that 1s identified

in the matching one of the parser sub-definitions.

17. An apparatus, comprising:

means for creating and storing an ontology for a data store 1n response to receirving
first user input defining the ontology, wherein the ontology comprises a
plurality of data object types and a plurality of object property types;

means for creating one or more parser definitions in response to receiving second user
input defining the parser definitions, wherein each of the parser definitions
specifies one or more sub-definitions of how to transform first input data into
moditied input data that 1s compatible with one ot the object property types;

means for storing each of the one or more parser definitions 1n association with one of

the plurality of object property types.

13. The apparatus of claim 17, further comprising:
means for receiving the first input data;
means for determining whether the first input data matches one of the parser
definitions;
means for, creating and storing the modified input data using a matching one of the
parser definitions;
means for storing the modified input data 1n a property of the property type that 1s

identitied in the matching one of the parser definitions.

19. The apparatus of claim 17, wherein the means for creating and storing one or more

parser definitions comprises means for creating and storing one or more program code

2()-

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

modules, wherein each of the code modules comprises computer program code which when

executed causes transforming the first input data into the modified input data.

20). The apparatus of claim 17, wherein the means for creating and storing one or more
parser definitions comprises means for creating and storing one or more transformation
expressions, wherein each of the transformation expressions comprises one or more syntactic

patterns and a property type i1dentifier associated with each of the syntactic patterns.

21. The apparatus of claim 17, wherein the means for creating and storing one or more
parser definitions comprises creating and storing one or more transformation expressions,
wherein each of the transformation expressions comprises one or more syntactic patterns and
a property type identifier associated with each of the syntactic patterns, and further
comprising:
means for recerving the first input data;
means for determining whether the first input data matches one of the syntactic
patterns;
means for using a matching one of the syntactic patterns, creating and storing
moditied input data;
means for storing the modified input data 1n a property of the property type that 1s
identitied by the property type 1dentifier associated with the matching one of

the syntactic patterns.

22. The apparatus of claim 17, further comprising:

means for recerving the first input data;

means for determining whether the first input data matches successive different ones
of the parser sub-definitions until a matching parser sub-definition is
identified;

means for creating and storing the modified input data using a matching one of the
parser sub-definitions;

means for storing the modified input data 1n a property of the property type that 1s

identified in the matching one of the parser sub-definitions.

23. A graphical user interface, comprising:
an expression pattern field configured to accept user input specitying a transformation
expression pattern that specifies how to transform first input data into

moditied input data;

21 -

CA 02666364 2009-04-14
WO 2008/064207 PCT/US2007/085202

one or more parser sub-definitions each comprising:
a portion of the transformation expression pattern;
a combo box configured to accept user input specifying one of a plurality of
object property types of an ontology of a data store;
wherein each of the parser sub-definitions specifies how to transform a portion
of the first input data into modified input data that 1s to be stored 1n a

component of one of the object property types.

24. The graphical user interface of claim 23, wherein the one or more parser sub-
definitions comprise a constraint field contigured to receive user input specifying a constraint

on the portion of modified input to be stored 1n a property of the specitied property type.

25. The graphical user interface of claim 23, wherein the one or more parser sub-
definitions comprise a default field contigured to receive user input specifying a default value

to substitute for a missing component of the modified input data.

D).

CA 02666364 2009-04-14

PCT/US2007/085202

WO 2008/064207

1/7

[31

. wE,@nan ou. ol T .

[sedy |
| Auedoid ITT

?m.%i.m?.w \,
Ausdoid VHiT |

{ G

i

i

jo}p3 adA |
Ausdold 971 |

o]
| 12lq0 01T |

10yip3 adA |
109lq0 2T |

aseqeleq 30T . e N mmo_OEO .@dl_w

19sied 70T Ele(d Sgcaqﬂ

BleQ]

paIPOW TOT |

13sied 9|Npon
8poJ g¥01

|18sied uoissaldxd |

1enbay VrOT 4/

10}iP4
1981Bd 771

buiddey
Apadoid-108lqo TOT

]

CA 02666364 2009-04-14

PCT/US2007/085202

WO 2008/064207

2/7

y

i

szcmcoaeoo_

ABojoju(dleuAQ e Buiule(

odA) Auadold ypm |
U0i]e100SSe Ui uoniuysp
Jesled alo)g 777

4

i

uoljiuyep 1asied Jo sanguye
134]0 ‘anjea jnejsp
‘(s)utedisuog Alvads 077

!

|

adA) Altedoid
1|yo 10} |

Jeaday 377 |

]X8] UoIssaidxa Jejnbail §o

adA) Ausdoud Ajoedg T17

uoljod buiysjew pue sjusuodwon |

|

——

\ X
.]

sk

X0}

uoissaldxs lejnbas Ajivadg ¥1Z

| 019

1d113S ‘gnpow apom
10 sweu Ayoadg 4%4

s|npow
P09

Xxobay

adA} jasied Jayjo 1o
‘s|npow 8pod ‘uoissaldxs
leinbaijoses 017

_

suolulsp 1esied Jo
sajnquie 1ip3 60¢

t
adA) Apadoud yoes 1o
“uomuyep Jesied auo |

seg| e sjeal) ap7 |

\ 4

adA) Gm.ﬁm Loes 10}

N
_—

sadA} Auedold
10 sadA} 198lgo

jo sainquie Ip3 $0¢

i

sodA) Alsdold alow
10 8UC |)e8I1) 907

$

ADOJOJuUO aseqejep
10} s8dA] 108[qo asouw

» 10 oUO dB)esl) 707

CA 02666364 2009-04-14

PCT/US2007/085202

WO 2008/064207

3/7

AbojojuQ a1weuAq e buisn ejeq Buiwiojsues |

C 517

8SEQE)Ep Ul 80ue)sul
}o8lqo 8101 ¥TE

Saoue)sul Auadold
UM s)e1oosse pue adAj 10s(qo
}02.1109 J0 }98(qo alenuBISu| 77F

r

q

v —— P - .

anjen
p|al} ejep Jndui 810}s pue uomiulep
i9sied jo uouysp-qns buiyojews
M pajeloosse adA Auadoid sy
j0 aouejsul Ausdold e ajesl) It

| J,

Auadold pieasip
10 10118 8siey GI¢

¢ SUCHIULBP
19s1ed 1840 FIE

SdA

1

snjea pjoy ejep indurop [
| uoniuyep Jesied 1xau Ajddy TTT

SMOJ pue spjalj ejep

indul Jayjo jje Joy jeadey B7T

!

plail elep ndul jo adAy Auadosd
U}IM paleioosse suoniulep
I18sied J018S 199188 80¢

,

4

M

~ (s)enten pjay} pajiwijep
pue moi ejep ndui pesy apt

,ﬁ

(S)p19y elep ndul yuim
pajeloosse (sjadA) Auadoid pue
SMod ejep Indul ylim pajeloosse

adA; joslqo Ajusp| 70€

ejep Sgc_-mzmomm 70¢

CA 02666364 2009-04-14

PCT/US2007/085202

WO 2008/064207

4/7

ua'pop-1oalqo-mueled: wos

co.no.._mﬁomsoémm_ma. wod
us'pop‘10alqoue|ed wod
A9 pop’1oalqoiinueed: wod

- pI2INS’ pop10aiqoijueled woo

Beuks'pop-198(qo-iueled: wod

130419y popryoslqounjueed wod | “INVOHO L1SI1HOYY3L

JNO0OVNAS

Ao'pop-1oaiqoiuejed: wood

us'pop-i2a(qoiuered: woa

pI2INS pop-198iqonueed wod
Bunybis popiosigoiueed wod

pop-198/qo-inuejed wod
A9 pOp108(qoinjueled: woo
ua"popoalqo-mueed: wod
AS'pOp109(qoinueled: woo
ua'pop-1oalqo-mueed: wod
A9 pop’108lqoiijueled: wol
A9 pop-108(qojuejed’ wod
As"pop:}oalqo-ueled: uiod
us'pop-10siqouejead: wod
A9 pop-1oaiqouejed: woo

pop‘}o8iqo muejed: wo?

Jes 109[qoijuejed woa
I1e0"198[qo inueed woo
~ uosJad'1oafqonueed wod
yuawAhed joslqoiueed wod
anbsow'pop-1osigounueled: wod

pa|' pop 10aiqoiueed woo
b1y 108lqonuered wos
Jusngjosfqoinueled wod

ONIGINOE 3diDINS

439NW04J 34I10INS
ONILHOIS

W04 oS

11v0 INOHd

~ NOS¥3d
LNIWAVd
3NDSON
MOVLLY 037
1HOI

1N3JA3

J1ua108iqoiueled - wod

lews j0alqounueed wod | ——1 | 80V vz
Jus wnoop-joaiqoinueled: woo 42 INFWNOO0J

——1 ALILN3

{

pop‘10aiqo-inueled: wos
ﬂﬂ 199[qo iueed: wod

109[qo-lijueled- wod

adA aseg

usbeased pop:109(qoijueled: woo
Wwi0}J)0'108lqo 1uefed woo

1NJOV 35V
WH04 d190

—ﬂ auIsng'0a(qo.nueed: woo SS3INISNA

se'pop’1asiqoijueled: wod
ke[

14SSV

VN 3dAl 1037490

H maaﬂm.po 1p3

_ ad pelqoeppg || edAL elqo EL

|

L — I —
| | ,
KHE.

J0}Ip3 8dA] 199140

14007

E——

¢Ov

0¥

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/085202

V& Ol

- _ ‘an[eA }nejag [J:pasinbay ﬁoz_ H_ n__N_ ({pIm{s}p\)

_“mz_m> Jnejaq [CJ:padinbay uozﬁA m._.%_ J[s\wmy))

_||.|. o o _“ms_m> ynejeg CJ:pannbay JoN AH_ >.:o_ [sumi])

~ |:anieA unejeq [1:peainbay 10N _..Iu_mwwmmoci._ﬂ,;,:

01§

CA 02666364 2009-04-14

WO 2008/064207

S5/7

_ 8sied Jusuod EE_umm_ _ .“_

ﬁ . Emmoeq [sum\})
| _|| — — T |_”m=_m> jInejaq [J:pauinbay JoRT=prsSINAAY)s [Sim)

905 |

]

¢0§

10)1p3 Jasied

SUBSTITUTE SHEET (RULE 26)

CA 02666364 2009-04-14

PCT/US2007/085202

WO 2008/064207

6/7

_ UMO(] A0 _
_Il dn sAON _
_ SAOWY

_ MIN PPY

o =

~Ipv{sipy) (L [sum]

N0JY (PGP

9 {sipy) ‘(L [sum]

*L

) ‘(L [sum]) *(,[sumi])

] Budnoid (SIpy (swml) D) o EwD
.ulajled UoISSalax3

SWMLL) L 1STWL) L IS

uia)yed uoissaldxy

aysodwod siayewinuejed wod a)sodwon

[SWm))

LW]) ‘(,[sum]

LsWwm]) ‘(L [samy]

) (LI
‘CIswm]) ‘(L Iswm) (L [samy

4L

¥L

W) (L Isum)
) {

swmil) ‘(L Isw)) “(Llsww)) :

sy} ‘(LIsum]) “(, [sumy

‘uiayed uoissaldxy
:uJd)Jed uoissasdxg

ulajjed uorssaldxg
ujajjed uoissasdg

xoba4-siaye winueed: wod uotssaidxg Jeinbay

xahaJ sieye wnjueped wod
xabaJ siaye wnueed wod

uo1ssaldx3 seinbay

u01$sa1dxy Je|nbay
u0issaidxg Je|nboy
uoI1Ssaidxg Jenbay

xabas sioyewueed wod
xabas siayew njuejed: woo

xabaJ-sigyew njueed wod U01S$a1dX3 Je|nbay

sbuy

awep Jesled
:$13sJed

400

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/085202
7/7

CA 02666364 2009-04-14

WO 2008/064207

529
| LSOk

09 —
2\ [y | D — m
MIOMLIN |y 0V4AING | | F09
201 | NOILVOINNWWOO | | ¥0SS300Md | .

.

919
1Od1INOD

| yosuno |

b9

| 301A30 LNdNI|

3Ng N\
&S -

LANYAINT

30IA3Q K&

| AVIdSId

8¢9

SELRER

| owiols |

,
.
: M
,
r

.
’

9 ‘51

302 Receive input data

|

304 identify object type
associated with input data rows

and property type(s) associated
with input data field(s)

Phihrtmciih

l

2006 Read input data row and
delimited field valug(s)

1

308 Select set of parser
definitions associated with

property type of input data field

320 Repeat for all other input
data fields and rows

Y

322 Instantiate object of correct
object type and associate with
property instances

310 Apply next parser definition
. to input data field value

| YES 314 Other parser

definitions’?

316 Raise error or
discard property

318 Create a property instance of
the property type associated with
matching sub-definition of parser

definition and store input data field

vaiue

324 Store object
instance in database

Fig. 3

Transforming Data Using a Dynamic Ontology

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - abstract drawing

