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(57) Abstract: A wide ion beam source (10) includes a plurality of RF windows (26,28, 30) arranged in a predetermined relation-
ship, a single plasma chamber (12) disposed on a first side of the plurality of RF windows, a plurality of RF antennas (20, 22, 24),
each RF antenna of the plurality of RF antennas disposed on a second side of a respective RF window of the plurality of RF win -
dows, the second side being opposite the first side, and a plurality of RF sources (14, 16, 18), each RF source coupled to a respective
RF antenna of the plurality of RF antennas, wherein a difference in frequency of a first RF signal produced by a first RF source
coupled to a first RF antenna from that of a second RF signal produced by a second RF source coupled to an RF antenna adjacent to
the first RF antenna is greater than 10 kHz.
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INDUCTIVELY COUPLED PLASMA ION SOURCE

WITH MULTIPLE ANTENNAS FOR WIDE ION BEAM

Cross-Reference to Related Applications

[0001] This application claims the benefit of U.S. Provisional Patent Application Ser. No.
61/682,356, filed on August 13, 2012, the entire content of which is hereby incorporated by

reference in its entirety.

Field of the Disclosure

[0002] The disclosure relates generally to the field of semiconductor device fabrication, and

more particularly to an ion source having multiple antennas for producing a wide ion beam.

Background of the Disclosure

[0003] Ion implantation is a process used to dope ions into a work piece or target substrate.
Large format ion implantation applications, such as implantation into large area flat panels,
require extra wide (e.g. 2-6 meter wide) ribbon ion beams. In addition to having to provide high
plasma densities necessary for sustaining high ion beam currents, the plasma sources employed
in large format applications are targeted to provide very good plasma uniformity (1-2%) over
extended lengths. For gaseous precursors, inductively coupled plasma (ICP) sources have
proven to be a suitable solution for producing wide ribbon ion beams. For example, an RF
inductively coupled plasma source provides reasonably high ion beam currents (about 1 mA/cm
Boron) and relatively good uniformity (< 2% over 700 mm). However, further extension of the
ion beam width is not possible with a single RF antenna due to physical constraints on RF
antenna and dielectric RF window lengths. For example, long antennas have high antenna
inductance, which, for usual RF frequencies, requires matching units with non-physical tuning

and loading capacitors values.
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[0004] Moreover, overall antenna length is limited because an antenna may be designed to
not exceed % of the RF electromagnetic wavelength due to the standing wave effect that might
develop in the antenna loops. Due to this consideration, for an operating frequency of 13.56
MHz, the maximum antenna length (taken by summing up the lengths of all antenna turns) is

about 5 meters.

[0005] In addition, dielectric windows, which allow RF power transmission therethrough and
provide vacuum sealing of plasma chambers, are constrained in size because windows generally
must be made thicker as they are made larger. For example, in order to sustain 1 atmosphere of
pressure under 250-300° Celsius thermal stress, a 1 meter long and 15 centimeter high window
must have a thickness of about 15 millimeters in the case of quartz and about 10 millimeters in
the case of alumina. However, thick windows provide poor RF power coupling with a

detrimental effect on plasma density.

Summary

[0006] In view of the foregoing, novel wide ion beam sources based upon RF plasmas are

disclosed.

[0007] In an exemplary embodiment of the present disclosure, a wide ion beam source include a
plurality of RF windows arranged in a predetermined relationship, a single plasma chamber
disposed on a first side of the plurality of RF windows, a plurality of RF antennas, each RF
antenna of the plurality of RF antennas disposed on a second side of a respective RF window of
the plurality of RF windows, the second side being opposite the first side. The wide ion beam
source further includes a plurality of RF sources, each RF source coupled to a respective RF
antenna of the plurality of RF antennas, wherein a difference in frequency of a first RF signal
produced by a first RF source coupled to a first RF antenna from that of a second RF signal
produced by a second RF source coupled to an RF antenna adjacent to the first RF antenna is
greater than 10 kHz.

[0008] In another embodiment, a method for producing a wide ion beam includes arranging a
plurality of RF windows in a predetermined relationship adjacent a single plasma chamber along
a first side of the plurality of RF windows, disposing an RF antenna of a plurality of RF antennas

on a second side of a respective RF window of the plurality of RF windows, the second side
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being opposite the first side, and coupling an RF source of a plurality of RF sources to a
respective RF antenna of the plurality of RF antennas, wherein a difference in frequency of a
first RF signal produced by a first RF source coupled to a first RF antenna from that of a second
RF signal produced by a second RF source coupled to an RF antenna adjacent to the first RF
antenna is greater than 10 kHz.

[0009] In a further embodiment, a system for producing a wide ion beam includes a plurality of
RF windows arranged in a predetermined relationship, a single plasma chamber disposed on a
first side of the plurality of RF windows, and a plurality of RF antennas, wherein each RF
antenna of the plurality of RF antennas is disposed on a second side of a respective RF window
of the plurality of RF windows, the second side being opposite the first side. The system also
includes a plurality of RF sources each configured to operate at a frequency within 2% of 13.56
MHz, wherein each RF source is coupled to a respective RF antenna of the plurality of RF
antennas, wherein a difference in frequency of a first RF signal produced by a first RF source
coupled to a first RF antenna from that of a second RF signal produced by a second RF source

coupled to an RF antenna adjacent to the first RF antenna is greater than 10 kHz.

Brief Description of the Drawings

[0010] By way of example, a specific embodiment of the disclosed device will now be

described, with reference to the accompanying drawings, in which:

[0011] FIG. 1 is a top view illustrating an ion source in accordance with the present

disclosure.
[0012] FIG. 2 is a cross-section of the ion source of FIG. 1 taken along line A-A’ of FIG. 1;

[0013] FIG. 3 is a top view illustrating an alternative ion source in accordance with the

present disclosure;

[0014] FIG. 4a is a graph illustrating the calculated modulation effects for two waves of
13.56 MHz that differ in operating frequency by 5 Hz;

[0015] FIG. 4b is a graph illustrating measured beam profiles for an ion source having two

RF sources set to operate at the same frequency;
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[0016] FIG. 4c is a graph illustrating the calculated modulation effects for two waves of
13.56 MHz that differ in operating frequency by 100 KHz, illustrated over 100 microseconds;

[0017] FIG. 4d is a graph illustrating the calculated modulation effects for two waves of
13.56 MHz that differ in operating frequency by 100 KHz, illustrated over approximately 10

microseconds; and

[0018] FIG 5. is a graph illustrating measured beam profiles for an ion source having three

RF sources set to operate at different frequencies.

Detailed Description

[0019] A device in accordance with the present disclosure will now be described more fully
hereinafter with reference to the accompanying drawings, in which preferred embodiments of the
device are shown. This device, however, may be embodied in many different forms and should
not be construed as being limited to the embodiments set forth herein. Rather, these
embodiments are provided so that this disclosure will be thorough and complete, and will fully
convey the scope of the device to those skilled in the art. In the drawings, like numbers refer to

like elements throughout.

[0020] The present embodiments relate to apparatus and methods for providing a wide ion
source using RF plasmas. In various embodiments, a wide ion source is disclosed that facilitates
the operation of multiple, spatially-overlapping plasmas to produce a very wide ion beam

without requiring continuous monitoring and adjustment of the RF signal phases.

[0021] Referring to FIGS. 1 and 2, an embodiment of a RF plasma ion source 10 (hereinafter
referred to as “the RF ion source 10”) in accordance with the present disclosure is shown. The
RF ion source 10 may include a single plasma chamber 12, multiple RF sources 14, 16, and 18
(each including an RF generator “rf” and matching network “MN”) having respective RF
antennas 20, 22, and 24, multiple RF windows 26, 28, and 30, one or more gas inlets 32, and a

face plate 34 having an extraction aperture 36 through which ions are extracted from the single

2% ¢

plasma chamber 12. For the sake of convenience and clarity, terms such as “front,” “rear,”

99 ¢cs

up,” “down,” “inwardly,

2% <¢ bR Y

“top,” “bottom, outwardly,” “horizontal,” “vertical,” “lateral,” and

“longitudinal” will be used herein to describe the relative placement and orientation of
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components of the RF ion source 10, each with respect to the geometry and orientation of the RF
ion source 10 as it appears in FIG. 2. Said terminology will include the words specifically
mentioned, derivatives thereof, and words of similar import. FIGS. 1 and 2 may also be
described with reference to an XYZ coordinate system, such that the horizontal direction of FIG.
1 is parallel with the X-axis, the vertical direction of FIG. 1 is parallel with the Y-axis, and the
Z-axis is perpendicular to the plane of FIG. 1. The axes of FIG. 2 are oriented such that the
horizontal direction of FIG. 2 is parallel with the X-axis, the vertical direction of FIG. 2 is

parallel with the Z-axis, and the Y-axis is perpendicular to the plane of FIG. 2.

[0022] The plasma chamber 12 may be a rectangular, cylindrical or more complex-shaped
enclosure provided for holding a feed gas at low pressure. The plasma chamber 12 may include
vertically-extending (i.e. extending the z direction in FIG. 2) sidewalls 38, 40, 42, and 44 that
define an interior space having a total width in the x direction of 3 meters. The plasma chamber
12 may be made smaller or larger depending on the width of a desired ion beam, such as a ribbon
ion beam. Elongated joint shoulders 46 and 48 may extend in the y direction (FIG. 2) across the
open top end of the plasma chamber 12 in a spaced, parallel relationship to RF window supports
50, 52, and 54 that may have the same characteristics, shape and size. The face plate 34 seals the
bottom end of the plasma chamber 12. An extraction aperture 36, which may extend across the
entire face plate 34 of the plasma chamber 12, may provide an opening through which a wide ion
beam may be extracted from the plasma chamber 12 as described below. The extraction aperture
36 may be an opening almost the entire 3 m length of the RF ion source 10. In one embodiment,
the extraction aperture 36 is an approximately rectangular opening 3-30 millimeters (mm) in
extent in the y direction and the full size of the ion beam (i.e., 3 meters (m) in the x direction).
The face plate 34 may be 3-10 mm thick in the z direction and the edges of the extraction
aperture 36 may be configured to better form a beam when ions are extracted from the plasma.
The sidewalls 38, 40, 42 and 44, joint shoulders 46 and 48, may be formed of aluminum,
aluminum alloys, or stainless steel. The face plate may be made of tungsten, stainless steel,
graphite or a dielectric such as alumina, quartz or sapphire. Inside the plasma chamber, thin
liners made of quartz, graphite, silicon carbide or silicon sprayed aluminum might be used to

cover metal plasma chamber walls.
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[0023] The RF windows 26, 28 and 30 may be planar members and may each have a shape
in the horizontal plane that is similar to the shape of the RF window supports 50, 52 and 54. The
RF windows 26, 28, and 30 may be arranged in a predetermined relationship. For example, the
RF windows 26, 28, and 30 may be arranged to lie parallel to one another. The RF windows 26,
28, and 30 may lie in the same plane, that is, may have a coplanar relationship to one another.
The embodiments are not limited in this context. The RF windows 26, 28 and 30 may be
mounted within, and may vacuum seal, the RF window supports 50, 52 and 54. For example, the
edges of the RF windows 26, 28 and 30 may be seated within recesses formed in the vertical
surfaces of the sidewalls 38, 40, 42 and 44 and joint shoulders 46 and 48. Alternatively, it is
contemplated that the RF windows 26, 28 and 30 may be fastened to the top surfaces of the
sidewalls 38, 40, 42 and 44 and joint shoulders 46 and 48, such as with adhesives or mechanical
fasteners. It is further contemplated that high temperature O-rings or other suitable sealing
member may be disposed intermediate the edges of the RF windows 26, 28 and 30 and the
sidewalls 38, 40, 42 and 44 and joint shoulders 46 and 48 for establishing a vacuum seal
therebetween. The RF windows 26, 28 and 30 may thus be disposed in a horizontal orientation
vertically intermediate the interior of the plasma chamber 12 and the RF antennas 20, 22 and 24

(described below).

[0024] The exemplary embodiment of the RF ion source 10 is shown in FIGS. 1 and 2 with
three RF window supports 50, 52 and 54 having three respective RF windows 26, 28 and 30
disposed therein, wherein each RF window 26, 28 and 30 may be 1 meter wide. Thus, and end-
to-end dimension of the RF windows 26, 28, 30, which are arranged in a linear relationship, may
be 3 meters. However, since the RF ion source 10 is provided with independent RF sources,
such as RF sources 14, 16 and 18, there is no constraint on the number of RF window supports,
RF windows, or associated RF antennas and RF sources. Moreover, the RF antennas 20, 22 and
24 can be arranged in variety of configurations. For example, the RF antennas 20, 22 and 24
may be arranged in a 1-D pattern (i.e. 1 row by multiple columns) to provide a linear plasma
source, or in a 2-D pattern (i.e. multiple rows by multiple columns) for large area ion assisted
deposition. Because each RF antenna 20, 22 and 24 is fed by an independent RF chain (i.e. RF
generator + matching network + RF voltage equilibration capacitor) the plasma source width
(and implicitly the extracted beam width) in the case of 1-D geometry and the surface area in the

case of 2-D geometry are theoretically unlimited. Thus the present embodiments extend to ion

6
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sources that may generate ion beams having cross sections that extend for many meters in two

mutually perpendicular directions.

[0025] The RF windows 26, 28 and 30 are the media through which RF energy from the RF
antennas 20, 22 and 24 are coupled to the feed gas 60 inside the plasma chamber 12, as further
described below. The RF windows 26, 28 and 30 may be formed of any conventional material,
including, but not limited to, alumina, sapphire, or quartz, that is capable of facilitating such
coupling. Although alumina and quartz provide desirable properties for certain applications,
they have relatively low thermal conductivity and may be prone to vacuum seal failures with the

sidewalls 38, 40, 42 and 44 of the plasma chamber 12 at high operating temperatures.

[0026] As illustrated in FIG. 2, the RF sources 14, 16 and 18 and respective RF antennas 20,
22 and 24 may be disposed above the RF windows 26, 28 and 30 for providing effective RF
energy coupling to the low pressure feed gas 60 inside the plasma chamber 12. The RF antennas
20, 22 and 24 may have a serpentine shape, as shown in FIG. 1, which will be familiar to those
of ordinary skill in the art. However, the particular shape, size, and configuration of the RF
antennas 20, 22 and/or 24 may be varied without departing from the present disclosure. For
example, RF antennas of the flat spiral variety may be employed, such as those shown in FIG. 3.
In the FIG. 3 embodiment RF ion source 300 includes RF generators rfl, rf2, and rf3 coupled to
respective flat spiral RF antennas 302, 304 and 306 through matching networks MN1, MN2 and
MN3 and voltage equilibrating capacitors C1, C2, and C3.

[0027] Referring again to FIGS. 1 and 2, during operation of the RF ion source 10, the feed
gas 60 is supplied to the interior of the plasma chamber 12 via gas inlets 32 that are evenly
spaced about the perimeter of the plasma chamber 12. The feed gas 60 may be, or may include
or contain, in some embodiments, hydrogen, helium, oxygen, nitrogen, arsenic, boron,
phosphorus, aluminum, indium, antimony, carborane, alkanes, or other p-type or n-type dopant
contained gas mixtures. The RF sources 14, 16 and 18 supply RF power to the plasma chamber
12 via the RF antennas 20, 22 and 24 and through the RF windows 26, 28, 30 to disassociate and
ionize the dopant-containing gas molecules in the feed gas 60 and thereby produce desired ionic
species. The dopant ions thus generated are subsequently extracted from the plasma chamber 12

by extraction electrodes (not shown) positioned at or adjacent to the face plate 34 to form a wide
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ion beam 64 that is directed toward a substrate (not shown). As illustrated more clearly in FIG.
2, plasma is thus created by the independent RF sources 14, 16 and 18 in a single plasma
chamber 12 (i.e. there are no walls dividing the chamber 12 into separate spaces). Independent
powering of each RF source 14, 16 and 18 and a multicusp magnetic field configuration that
surrounds the plasma source (not shown) provides greater flexibility in facilitating plasma
uniformity across a plasma chamber having such an extended width (e.g. 3 meters in the
exemplary embodiment). The multicusp magnetic field is produced by appropriately-situated
permanent magnets, and may be used to make a more uniform plasma in the ion extraction

region.

[0028] Since the feed gas inlets 32 are evenly distributed about the perimeter of the plasma
chamber 12, the only remaining considerations for ensuring plasma uniformity are the
dimensions of the joint shoulders 46 and 48 (in both z and x directions), the localized power
deposition (i.e., intensity) given by the spatial separation of the RF antennas 20, 22 and 24, and
interference effects between the RF antennas 20, 22 and 24. Each of these considerations will

now be addressed in-turn.

[0029] A typical inductively coupled (ICP) plasma with an electron temperature of about 3-4
¢V and an electron density of about 1-5x10'" cm™ will be characterized by an electron collision
frequency of ~1-5x10° sec™ , and consequently a plasma conductivity

o=ne’[my, ~2-6x10°Q 'm~. Thus, for a 13.56 MHz RF driving frequency and low
operating pressure (e.g., several mTorr), the plasma will have a skin depth (the depth beneath the
RF window where most of the RF power is deposited) of & = (2/ou,c)'* =2 —3cm . 1t therefore

follows that if the joint shoulders 46 and 48 are made shorter than about 2-3 cm in the z direction
they will not affect the uniformity of the plasma in the plasma chamber 12, since the RF power
emitted by the RF antennas 20, 22 and 24 will be deposited deeper in the plasma chamber 12
than the lower termini of the joint shoulders 46 and 48. The dimension of the joint shoulders 46
and 48 in the x direction may be 2-2.5 ¢cm to provide adequate structural strength for supporting
the RF windows 26, 28 and 30, as well as to provide adequate space to accommodate the O-
rings. These o-rings are made of temperature resistant fluorocarbon rubber and are placed in

grooves that surround the RF window supports 50, 52 and 54. They project 1-3 mm out of the
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grooves so that RF windows 26, 28 and 30 sit on them and thus, when the chamber is pumped

down, they ensure plasma chamber vacuum sealing.

[0030] With regard to the spatial separation of the RF antennas 20, 22 and 24, the RF
antennas 20, 22 and 24 may be positioned very close to one another, but may be spaced apart by
at least 1.5 centimeters to prevent electrical arcing between the RF antennas 20, 22 and 24 in
high voltage situations, such as may occur during a plasma ignition stage. The maximum
separation distance between two adjacent antennas at which non-uniformity in plasma density
will start to appear is about 3-4 skin plasma skin depths. As shown in FIG. 3, each of the RF
antennas 302, 304 and 306 may be provided with an appropriate RF generator (rf1, rf2, rf3) and
appropriate matching network (MN1, MN2, MN3). In order to promote even distribution of
voltage along the RF antennas 302, 304 and 306, the “grounded” legs of each of the RF antennas
may be provided with an equilibration capacitor (C1-C3). To extract positive ions the plasma
source should be at an elevated electrical potential up to 100 kV that is ensured by an extraction
power supply. Then the extraction electrode system, which typically is composed of a ground
electrode and a suppression electrode, may extract positive ions with energy equal to the

electrical potential drop between the plasma chamber and the electrical ground.

[0031] With regard to the effect of cross talk or interference between the RF antennas 20, 22
and 24 (or 302, 304 and 306), the inventors have found that even if the RF sources 14, 16 and 18
are set to operate at the same driving frequency small differences in the actual operating
frequencies may still exist. This is because the frequency accuracy of a typical RF source is
about £0.005%, which equates to about = 700 Hz for a 13.56 MHz driving frequency. This
slight difference in frequencies may result in an undesirable modulation of the induced RF
electric field in the plasma. For example, the electric field of two RF waves having the same

amplitude but different frequencies may be described by

¥y o~ Aeln if§1;i+ @h?}, (1)

where A is the amplitude of the electric field (for simplicity taken equal for both waves), o the
pulsation is equal to 2xf-with f the frequency, and ¢ the initial phase. The resultant RF electric

field is thus given by
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)

The resultant sinusoidal wave is thus modulated by a periodic function with a frequency Af=f1-
f2. This is illustrated in FIG. 4a, which shows the calculated modulation effects for two waves
of 13.56 MHz that differ in operating frequency by 5 Hz. Curve 402 indicates the envelope of

the modulated resultant wave and area 404 indicates the 13.56 MHz wave (not clearly

discernible on such long temporal scale).

[0032] Referring to FIG. 4b, measured beam profiles are shown for first and second
independent RF sources, wherein both sources are operated at 13.56 MHz and deliver 800W (for
the clarity of the figure simultaneous operation of only two RF sources is shown). The profiles
are measured by a traveling Faraday cup that moves in the x-direction to acquire an ion beam
current measurement along the entire length of the beam. Curve 414 represents the beam profile
generated by operation of only the first RF source, and curve 416 represents the beam profile
generated by operation of only the second RF source. Curve 412 represents the beam profile
generated by simultancous operation of both the first and second RF sources and illustrates the
characteristic, and undesirable, modulation effect. In the example of FIG. 4b, the current
fluctuates along the x-direction every 20-25 mm. In particular, the current fluctuates by up to
about 75% in some regions over distances of about 20-25 mm. This is not a periodical spatial
fluctuation but a periodical temporal fluctuation (the “wave beating effect””) because the beam
profile is acquired with a Faraday cup that moves at a constant speed across the beam. Taking
another beam profile, the fluctuations show the same spatial periodicity but the peaks and valleys
are located at different x positions. Accordingly, the very small differences in operating
frequency between different RF sources that are used to power a multiple-RF-source ion source,
which may be unavoidable in even the most carefully designed systems, may result in
unacceptable variations of plasma density as function of time and consequently in ion beam
current variation as a function time and implicitly as function of position at the target surface in

such an ion source.

[0033] Advantageously, the inventors have found that, rather than seeking to eliminate the
very small difference in RF frequency between different RF sources, increasing the difference in

frequency between different RF sources can eliminate the aforementioned problem. Specifically,

10
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the inventors have identified a range of RF frequency differences between different RF sources
that is effective in reducing or eliminating current variations in an ion source powered by the
different RF sources. More particularly, the present inventors have found that if the RF sources
are set to run at different frequencies that differ, for example, by 10’s to 100’°s of kHz, then the
RF modulation effect may be observed, but is very fast, such as 10 us, and no plasma density

modulation effects can be observed in the resultant beam profile.

[0034] FIG. 4c is a graph illustrating the calculated modulation effects for two waves of
13.56 MHz that differ in operating frequency by 100 KHz, illustrated over 100 microseconds.
Curve 422 is an envelope of the modulated resultant wave. Within curve 422 is the 13.56 MHz
wave, which is not clearly discernable on such a long temporal scale, but is suggested by the
shaded region 424. Due to the small period of curve 422 (approximately 10 microseconds), there
18 no significant macroscopic effect on plasma density nor implicitly on the ion beam current

uniformity.

[0035] FIG. 4d is a graph illustrating the graph of FIG. 4c at a greater level of magnification.
Curve 432 is an envelope that corresponds to curve 422, and curve 434 is the 13.56 MHz wave.

The period of curve 434 is approximately 73.75 ns, as marked in FIG. 4d.

[0036] Operating a 13.56 MHz generator at a frequency that is shifted by at least 0.5% and
less than 1% with respect to the nominal RF frequency and with respect to a generator coupled to
a physically adjacent antenna does not prevent the generator from operating properly. For
instance, the amount of reflected power is ~100 W for 1.5 kW of forward power.
Furthermore, once the running frequency is chosen, the matching network unit may be
calibrated for that frequency so the plasma impedance will be matched for zero reflected

power.

[0037] In the case of multiple RF systems running at different power levels (i.c., different

wave amplitudes) and different frequencies, the resultant wave amplitude is given by Equation 3.

: : 0, -0, §-b
A;ZZ”AZ-ZJFZ]-N-Z“AZ-AJ-COS( ]2 t+ ]2 ] (3)

11
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[0038] For large values of “n”, the second term in the right-hand side of Equation (3) is
negligible, and the square of resultant amplitude is approximately a sum of the square of each
wave amplitude 4;. No interference effects are produced because the independent waves 4; are
essentially incoherent. In a practical case of running with only few RF generators at slightly
different frequencies (e.g., 10-100 kHz) the effect of frequency modulation is negligible because
random distribution of different modulation patterns reduces non-uniformity arising from non-

coherence of the waves.

[0039] FIG. 5 shows a measured beam profile obtained for an ICP ion source having three
RF sources operating simultaneously and dissipating power in a common plasma chamber
(similar to the exemplary embodiment of the present disclosure described above). In this
example, the center RF source was set to operate at a frequency of 13.56 MHz and the adjacent
RF sources were offset relative thereto by 0.1 MHz to operate at 13.46 MHz and 13.66 MHz,
respectively. As can be seen, no modulation pattern could be observed and the beam uniformity

was about 8%.

[0040] In summary, RF sources such as the RF ion source 10 of the present disclosure
facilitate the operation of multiple, spatially-overlapping plasmas to produce a very wide ion
beam without requiring continuous monitoring and adjustment of the RF signal phases. In
addition, the operation of the RF sources at similar, though slightly different (RF frequency
difference <2%), RF frequencies ensures that plasma characteristics generated by each RF source
are the same (e.g. the RF sources 14, 16 and 18 generate plasmas that exhibit no differences in
plasma density, plasma potential and electron temperature between adjacent plasmas) and thus

display good overall uniformity.

[0041] As used herein, an element or step recited in the singular and proceeded with the
word “a” or “an” should be understood as not excluding plural elements or steps, unless such
exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present
disclosure are not intended to be interpreted as excluding the existence of additional

embodiments that also incorporate the recited features.

[0042] While certain embodiments of the disclosure have been described herein, it is not

intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in

12
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scope as the art will allow and that the specification be read likewise. Therefore, the above
description should not be construed as limiting, but merely as exemplifications of particular
embodiments. Those skilled in the art will envision other modifications within the scope and

spirit of the claims appended hereto.

13
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CLAIMS

1. A wide ion beam source comprising:

a plurality of RF windows arranged in a predetermined relationship;

a single plasma chamber disposed on a first side of the plurality of RF windows;

a plurality of RF antennas, cach RF antenna of the plurality of RF antennas disposed on a
second side of a respective RF window of the plurality of RF windows, the second side being
opposite the first side; and

a plurality of RF sources, each RF source coupled to a respective RF antenna of the
plurality of RF antennas, wherein a difference in frequency of a first RF signal produced by a
first RF source coupled to a first RF antenna from that of a second RF signal produced by a
second RF source coupled to an RF antenna adjacent to the first RF antenna is greater than 10

kHz.

2. The wide ion beam source of claim 1, wherein the difference in frequency is less than
100 kHz.
3. The wide ion beam source of claim 1, wherein the difference in frequency of the first RF

signal produced by the first RF source from that of the second RF signal produced by the second

RF source is at least 5% and less than 1.0%.

4. The wide ion beam source of claim 1, wherein an end-to-end dimension of the plurality

of RF windows is at least two meters.

5. The wide ion beam source of claim 1, wherein the plurality of RF sources operate

independently of each other.

6. The wide ion beam source of claim 1, wherein each RF source of the plurality of RF
sources further comprises a respective matching network and a respective RF voltage

equilibrium capacitor.

14
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7. The wide ion beam source of claim 6, wherein the respective matching network is

calibrated to the frequency of its respective RF source.

8. The wide ion beam source of claim 1, wherein the predetermined relationship of the

plurality of RF windows comprises a coplanar relationship.

9. The wide ion beam source of claim 1, wherein the plurality of RF sources comprises:

a first source configured to produce a first RF signal at a frequency of 13.46 MHz;

a second source configured to produce a second RF signal at a frequency of 13.56 MHz;
and

a third source configured to produce a third RF signal at a frequency of 13.66 MHz.

10.  The wide ion beam source of claim 1, further comprising;:

an extraction aperture situated on a periphery of the single plasma chamber opposite from
the plurality of RF windows, the extraction aperture configured to extract ions from the single
plasma chamber,

wherein the wide ion beam source is configured to generate an ion beam after extraction

through the extraction aperture having a uniformity of 8% or less.

11. A system for producing a wide ion beam comprising:

a plurality of RF windows arranged in a predetermined relationship;

a single plasma chamber disposed on a first side of the plurality of RF windows;

a plurality of RF antennas, wherein each RF antenna of the plurality of RF antennas is
disposed on a second side of a respective RF window of the plurality of RF windows, the second
side being opposite the first side; and

a plurality of RF sources each configured to operate at a frequency within 2% of 13.56
MHz, wherein each RF source is coupled to a respective RF antenna of the plurality of RF
antennas, wherein a difference in frequency of a first RF signal produced by a first RF source
coupled to a first RF antenna from that of a second RF signal produced by a second RF source

coupled to an RF antenna adjacent to the first RF antenna is greater than 10 kHz.

15
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12.  The system of claim 11, wherein the difference in frequency of the first RF signal
produced by the first RF source from that of the second RF signal produced by the second RF

source 1s at least 5% and less than 1.0%.

13.  The system of claim 11, wherein the plurality of RF sources operate independently of

each other.

14.  The system of claim 11, comprising at least three RF windows, at least three RF
antennas, each RF antenna being coupled to a respective RF window, and at least three RF

sources, each RF source being coupled to a respective RF antenna.

16
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