Abstract:

Feminine hygiene absorbent articles comprising water-absorbing polymeric foams

Title: FEMININE HYGIENE ABSORBENT ARTICLES COMPRISING WATER-ABSORBING POLYMERIC FOAMS

A feminine hygiene absorbent article comprising water-absorbing polymeric foams obtainable by polymerization of a foamed aqueous monomer solution or suspension, comprising an ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized, a crosslinker, a photoinitiator and a surfactant.
FIELD OF THE INVENTION

The present invention relates to feminine hygiene absorbent articles comprising water-absorbing polymeric foams obtainable by polymerization of a foamed aqueous monomer solution or suspension comprising an ethylenically unsaturated monomer which bears acid groups and maybe at least partly neutralized, a crosslinker, a photoinitiator and a surfactant.

BACKGROUND OF THE INVENTION

Being products which absorb aqueous solutions, water-absorbing polymers are used to produce diapers, tampons, sanitary napkins, panty liners, wound dressings and other hygiene articles, but also as water-retaining agents in market gardening. The water-absorbing polymers are also referred to as superabsorbents.

Water-absorbing polymeric foams based on crosslinked monomers comprising acid groups are known, for example from EP 0 858 478 Bl, WO 97/31971 Al, WO 99/44648 Al and WO 00/52087 Al. They are produced, for example, by foaming a polymerizable aqueous mixture which comprises at least 50 mol% of neutralized, ethylenically unsaturated monomers comprising acid groups, crosslinker and at least one surfactant, and then polymerizing the foamed mixture. The polymerizable mixture can be foamed by dispersing fine bubbles of a gas which is inert toward free radicals, or by dissolving such a gas under elevated pressure in the polymerizable mixture and decompressing the mixture. The foams are used, for example, in hygiene articles for acquisition, distribution and storage of body fluids.

It was an object of the present invention to provide water-absorbing polymeric foams with an improved profile of properties, such as a high centrifuge retention capacity (CRC) and a low extractables content. In addition, the water-absorbing foams should comprise a low level of
residual monomers and a low level of residual crosslinkers, and be very substantially white and not release any odors.

SUMMARY OF THE INVENTION

The object was achieved by a feminine hygiene article comprising a water-absorbing polymeric foam obtainable by polymerizing a foamed aqueous monomer solution or suspension comprising

a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,

b) at least one crosslinker,

c) at least one photoinitiator and
d) at least one surfactant,
e) optionally one or more ethylenically unsaturated monomers copolymerizable with the monomers mentioned under a),
f) optionally a solubilizer and
g) optionally thickeners, foam stabilizers, polymerization regulators, fillers, fibers and/or cell nucleators,

the monomer solution or suspension being polymerized to a polymeric foam, wherein the at least one photoinitiator is a compound of the general formula 1

\[
\begin{align*}
\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4 \text{ and } \text{R}^5 \text{ are each independently hydrogen or Ci-Cs-alkyl, preferably each independently hydrogen or Ci-C4-alkyl, more preferably each independently hydrogen or Ci-C2-alkyl, where C}3\text{-Cs-alkyl may be branched or unbranched,}
\end{align*}
\]

in which

\[
\text{X is hydrogen, OR}^6 \text{ or Ci-C}8\text{-alkyl, preferably OR}^6 \text{ or Ci-C4-}
\]
alkyl, more preferably OR\(^6\) or Ci-C2-alkyl, where C\(_3\)-Cs-alkyl may be branched or unbranched,

\[
R^6
\]

is Ci-Cs-alkyl or Ci-Cs-hydroxyalkyl, preferably Ci-C4-alkyl or Ci-C\(_4\)-hydroxyalkyl, more preferably Ci-C2-alkyl or Ci-C\(_2\)-hydroxyalkyl, where C\(_3\)-Cs-alkyl or C\(_3\)-Cs-hydroxyalkyl may be branched or unbranched,

\[
Y
\]

\[
R^7\text{ and } R^8
\]

are each independently Ci-Cs-alkyl or C\(_6\)-Ci\(_2\)-aryl, preferably each independently Ci-C4-alkyl or C\(_6\)-Ci\(_2\)-aryl, more preferably each independently Ci-C\(_2\)-alkyl or C\(_6\)-Cs-aryl, where C\(_3\)-Cs-alkyl or C\(_9\). Ci\(_2\)-aryl may be branched or unbranched,

wherein the water-absorbing polymeric foam is provided in an amount of 0.1 g to 20 g, or of 0.15 g to 15 g, or of 0.2 g to 10 g, or also of 0.3 g to 5 g.

15

DETAILED DESCRIPTION OF THE INVENTION

The term "feminine hygiene absorbent article" is used herein in a broad sense including any article able to receive and/or absorb and/or contain and/or retain body fluids/bodily exudates such as menses, vaginal secretions, and urine. Exemplary feminine hygiene absorbent articles in the context of the present invention are disposable feminine hygiene absorbent articles. The term "disposable" is used herein to describe articles, which are not intended to be laundered or otherwise restored or reused as an article (i.e. they are intended to be discarded after a single use and preferably to be recycled, composted or otherwise disposed of in an environmentally compatible manner). Typical disposable feminine hygiene absorbent articles according to the present invention are sanitary napkins, panty liners, tampons, absorbent articles for low or moderate incontinence or the like. Absorbent articles suitable for use in the present invention include any type of structures, from a single absorbent layer to more complex multi layer structures. Certain absorbent articles typically include a fluid pervious topsheet, a backsheet, which may be fluid impervious and/or may be water vapour and/or gas pervious, and an absorbent element often called "core" comprised there between.

Absorbent articles according to the present invention can typically comprise a topsheet, a backsheet and an absorbent core.
The topsheet may be manufactured from a wide range of materials such as woven and nonwoven materials; polymeric materials such as apertured formed thermoplastic films, apertured plastic films, and hydroformed thermoplastic films; porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Suitable woven and nonwoven materials can be included of natural fibers (e.g., wood or cotton fibers), synthetic fibers (e.g., polymeric fibers such as polyester, polypropylene, or polyethylene fibers) or from a combination of natural and synthetic fibers. In one embodiment, the topsheet may be made of a hydrophobic material to isolate the wearer's skin from liquids which have passed through the topsheet. If the topsheet is made of a hydrophobic material, at least the upper surface of the topsheet is treated to be hydrophilic so that liquids will transfer through the topsheet more rapidly. This diminishes the likelihood that body exudates will flow off the topsheet rather than being drawn through the topsheet and being absorbed by the absorbent core. In one embodiment, the topsheet can be rendered hydrophilic by treating it with a surfactant. Suitable methods for treating the topsheet with a surfactant include spraying the topsheet material with the surfactant and immersing the material into the surfactant.

For example, the topsheet can be a nonwoven web that can provide reduced tendency for surface wetness; and consequently facilitate maintaining body fluids absorbed by the core away from the user's skin, after wetting. One suitable topsheet material can be a thermobonded carded web which is available as Code No. P-8 from Fiberweb North America, Inc. (Simpsonville, S.C., U.S.A.). Another suitable topsheet material is available as Code No. S-2355 from Havix Co., Japan. Yet another suitable topsheet material can be a thermobonded carded web which is available as Code No. Profleece Style 040018007 from Amoco Fabrics, Inc. (Gronau, Germany).

The topsheet can include an apertured formed film. Apertured formed films can be used for the topsheet because they are pervious to body exudates and yet non-absorbent and have a reduced tendency to allow liquids to pass back through and rewet the wearer's skin. Thus, the surface of the formed film which is in contact with the body remains dry, thereby reducing body soiling and creating a more comfortable feel for the wearer. Suitable formed films are described in U.S. Pat. No. 3,929,135, entitled "Absorptive Structures Having Tapered Capillaries", issued to Thompson on Dec. 30, 1975; U.S. Pat. No. 4,324,246 entitled "Disposable Absorbent Article Having A Stain Resistant Topsheet", issued to Mullane, et al. on Apr. 13, 1982; U.S. Pat. No. 4,342,314 entitled "Resilient Plastic Web Exhibiting Fiber-Like Properties", issued to Radel, et al. on Aug.
The absorbent core can be any absorbent member which is generally compressible, conformable, non-irritating to the wearer's skin, and capable of absorbing and retaining body fluids. The absorbent core may be manufactured in a wide variety of sizes and shapes (e.g., rectangular, hourglass, "T"-shaped, asymmetric, etc.) and from a wide variety of liquid-absorbent materials commonly used in disposable pull-on garments and other absorbent articles such as comminuted wood pulp which is generally referred to as airfelt. Examples of other suitable absorbent materials include creped cellulose wadding; meltblown polymers including coform; chemically stiffened, modified or cross-linked cellulosic fibers; tissue including tissue wraps and tissue laminates; absorbent foams; absorbent sponges; superabsorbent polymers; absorbent gelling materials; or any equivalent material or combinations of materials.

The configuration and construction of the absorbent core may vary (e.g., the absorbent core may have varying caliper zones, a hydrophilic gradient, a superabsorbent gradient, or lower average density and lower average basis weight acquisition zones; or may include one or more layers or structures). Further, the size and absorbent capacity of the absorbent core may also be varied to accommodate wearers ranging from infants through adults. However, the total absorbent capacity of the absorbent core should be compatible with the design loading and the intended use of the absorbent article.

The absorbent core may include other optional components. One such optional component is the core wrap, i.e., a material, typically but not always a nonwoven material, which either partially or totally surrounds the core. Suitable core wrap materials include, but are not limited to, cellulose, hydrophilically modified nonwoven materials, perforated films and combinations thereof.

The backsheet can comprise a liquid impervious film. The backsheet can be impervious to liquids (e.g., body fluids) and can be typically manufactured from a thin plastic film. However, typically the backsheet can permit vapours to escape from the disposable article. In an embodiment, a microporous polyethylene film can be used for the backsheet. A suitable microporous
polyethylene film is manufactured by Mitsui Toatsu Chemicals, Inc., Nagoya, Japan and marketed in the trade as PG-P.

One suitable material for the backsheet can be a liquid impervious thermoplastic film having a thickness of from about 0.012 mm (0.50 mil) to about 0.051 mm (2.0 mils), for example including polyethylene or polypropylene. Typically, the backsheet can have a basis weight of from about 5 g/m² to about 35 g/m². However, it should be noted that other flexible liquid impervious materials may be used as the backsheet. Herein, “flexible” refers to materials which are compliant and which will readily conform to the general shape and contours of the wearer's body.

The backsheet can be typically positioned adjacent the outer-facing surface of the absorbent core and can be joined thereto by any suitable attachment means known in the art. For example, the backsheet may be secured to the absorbent core by a uniform continuous layer of adhesive, a patterned layer of adhesive, or an array of separate lines, spirals, or spots of adhesive. Illustrative, but nonlimiting adhesives, include adhesives manufactured by H. B. Fuller Company of St. Paul, Minn., U.S.A., and marketed as HL-1358J. An example of a suitable attachment means including an open pattern network of filaments of adhesive is disclosed in U.S. Pat. No. 4,573,986 entitled "Disposable Waste-Containment Garment", which issued to Minetola et al. on Mar. 4, 1986. Another suitable attachment means including several lines of adhesive filaments swirled into a spiral pattern is illustrated by the apparatus and methods shown in U.S. Pat. No. 3,911,173 issued to Sprague, Jr. on Oct. 7, 1975; U.S. Pat. No. 4,785,996 issued to Ziecker, et al. on Nov. 22, 1978; and U.S. Pat. No. 4,842,666 issued to Werenicz on Jun. 27, 1989. Alternatively, the attachment means may include heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds, or any other suitable attachment means or combinations of these attachment means as are known in the art.

The backsheet may be additionally secured to the topsheet by any of the above-cited attachment means.

The absorbent article may also include such other features as are known in the art including, but not limited to, re-closable fastening system, lotion, acquisition layers, distribution layers, wetness indicators, sensors, elasticized waist bands and other similar additional elastic elements and the
like, belts and the like, waist cap features, containment and aesthetic characteristics and combinations thereof.

According to the present invention, the feminine hygiene absorbent article can be a sanitary napkin, or a pantiliner, or a tampon, or an article for low or moderate adult incontinence. For example, the feminine hygiene absorbent article of the present invention can be a sanitary napkin or a pantiliner.

The feminine hygiene absorbent article of the present invention typically comprises a water-absorbing polymeric foam obtainable by polymerizing a foamed aqueous monomer solution or suspension comprising

a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,

b) at least one crosslinker,

c) at least one photoinitiator and
d) at least one surfactant,
e) optionally one or more ethylenically unsaturated monomers copolymerizable with the monomers mentioned under a),
f) optionally a solubilizer and
g) optionally thickeners, foam stabilizers, polymerization regulators, fillers, fibers and/or cell nucleators,

the monomer solution or suspension being polymerized to a polymeric foam, wherein the at least one photoinitiator is a compound of the general formula I

\[
\begin{align*}
\text{(I)}
\end{align*}
\]

in which
R¹, R², R³, R⁴ and R⁵ are each independently hydrogen or CI-C⁴-alkyl, preferably each independently hydrogen or CI-C⁴-alkyl, more preferably each independently hydrogen or CI-C²-alkyl, where C³-Cs-alkyl may be branched or unbranched,

X is hydrogen, OR⁶ or CI-C⁸-alkyl, preferably OR⁶ or CI-C⁴-alkyl, more preferably OR⁶ or CI-C²-alkyl, where C³-Cs-alkyl may be branched or unbranched,

R⁶ is CI-Cs-alkyl or CI-Cs-hydroxyalkyl, preferably CI-C⁴-alkyl or CI-C⁴-hydroxyalkyl, more preferably CI-C²-alkyl or CI-C²-hydroxyalkyl, where C³-Cs-alkyl or C³-Cs-hydroxyalkyl may be branched or unbranched,

Y is C⁴-C⁸-cycloalkyl, C(R⁷)R⁸ or P(=0)R⁷

R⁷ and R⁸ are each independently CI-Cs-alkyl or C⁶-C¹₂-aryl, preferably each independently CI-C⁴-alkyl or C⁶-C¹₀-aryl, more preferably each independently CI-C²-alkyl or C⁶-C⁸-aryl, where C³-Cs-alkyl or C⁹-C¹₂-aryl may be branched or unbranched.

Typically, the water-absorbing polymeric foam is comprised in the feminine hygiene absorbent article according to the present invention in an amount of 0.1 g to 20 g, or of 0.15 g to 15 g, or of 0.2 g to 10 g, or also of 0.3 g to 5 g.

Very particular preference is given to photoinitiators c) of the general formula I in which R¹, R², R³, R⁴ and R⁵ are each hydrogen, X is OR⁶, R⁶ is hydroxyethyl, Y is C(R⁷)R⁸, and R⁷ and R⁸ are each methyl (Irgacure® 2959), in which R¹, R², R³, R⁴ and R⁵ are each hydrogen, X is hydrogen, Y is C(R⁷)R⁸, and R⁷ and R⁸ are each methyl (Darocure® 1173), in which R¹, R², R³, R⁴ and R⁵ are each hydrogen, X is hydrogen and Y is cyclohexyl (Irgacure® 184), and in which R¹ and R³ are each hydrogen, R² and R⁴ are each methyl, R⁵ is ethyl, X is methyl, Y is P(=0)R⁷, and R⁷ is phenyl (Lucerin® TPO-L).

The amount of photoinitiator c) is preferably 0.001 to 2% by weight, more preferably 0.01 to 1% by weight, most preferably 0.05 to 0.2% by weight, based in each case on the unneutralized monomer a).
The monomers a) are preferably water-soluble, i.e. the solubility in water at 23°C is typically at least 1 g/100 g of water, preferably at least 5 g/100 g of water, more preferably at least 25 g/100 g of water, most preferably at least 35 g/100 g of water.

Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.

Further suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).

Impurities can have a considerable influence on the polymerization. The raw materials used should therefore have a maximum purity. It is therefore often advantageous to specially purify the monomers a). Suitable purification processes are described, for example, in WO 2002/055469 Al, WO 2003/078378 A1 and WO 2004/035514 A1. A suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 comprising 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight of propionic acid, 0.0001% by weight of furfurals, 0.0001% by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.

The amount of monomer a) is preferably 20 to 90% by weight, more preferably 30 to 85% by weight, most preferably 35 to 75% by weight, based in each case on the unneutralized monomer a) and on the monomer solution or suspension. Based on the unneutralized monomer a) means in the context of this invention that the proportion of the monomer a) before the neutralization is used for the calculation, i.e. the contribution of the neutralization is not taken into account.

The acid groups of the monomers a) have typically been neutralized to an extent of 25 to 95 mol%, preferably to an extent of 40 to 85 mol%, more preferably to an extent of 50 to 80 mol%, especially preferably to an extent of 55 to 75 mol%, for which the customary neutralizing agents can be used, for example alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates, and mixtures thereof. The neutralization can, however, also be undertaken with ammonia, amines or alkanolamines, such as ethanolamine, diethanolamine or triethanolamine.
In a preferred embodiment of the present invention, 10 to 90 mol%, preferably 20 to 80 mol%, more preferably 30 to 70 mol%, most preferably 40 to 60 mol%, of the neutralized monomers a) have been neutralized by means of an alkanolamine.

With a rising proportion of alkanolamine, both the flexibility of the polymeric foams and the extractables content increase.

The proportion of acrylic acid and/or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, more preferably at least 90 mol%, most preferably at least 95 mol%.

The monomers a) typically comprise polymerization inhibitors, preferably hydroquinone monoethers, as storage stabilizers.

The monomer solution comprises preferably up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, especially around 50 ppm by weight, of hydroquinone monoether, based in each case on the unneutralized monomer a). For example, the monomer solution can be prepared by using an ethylenically unsaturated monomer bearing acid groups with an appropriate content of hydroquinone monoether.

Preferred hydroquinone monoethers are hydroquinone monomethyl ether (MEHQ) and/or alphatocopherol (vitamin E).

Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be polymerized free-radically into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). In addition, polyvalent metal salts which can form coordinate bonds with at least two acid groups of the monomer a) are also suitable as crosslinkers b).

Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be polymerized free-radically into the polymer network. Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride,
tetraallyloxyethane, as described in EP 0 530 438 Al, di- and triacrylates, as described in EP 0 547 847 Al, EP 0 559 476 Al, EP 0 632 068 Al, WO 93/21237 Al, WO 2003/104299 Al, WO 2003/104300 Al, WO 2003/104301 Al and DE 103 31 450 Al, mixed acrylates which, as well as acrylate groups, comprise further ethylenically unsaturated groups, as described in DE 103 31 456 Al and DE 103 55 401 Al, or crosslinker mixtures, as described, for example, in DE 195 43 368 Al, DE 196 46 484 Al, WO 90/15830 Al and WO 2002/032962 A2.

Preferred crosslinkers b) are pentaerythrityl triallyl ether, tetraallyloxyethane, methylenebis(methacrylamide), 15-tuply ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.

Very particularly preferred crosslinkers b) are the polyethoxylated and/or -propoxylated glycerols which have been esterified with acrylic acid or methacrylic acid to give di- or triacrylates, as described, for example, in WO 2003/104301 Al. Di- and/or triacrylates of 3- to 10-tuply ethoxylated glycerol are particularly advantageous. Very particular preference is given to di- or triacrylates of 1- to 5-tuply ethoxylated and/or propoxylated glycerol. Most preferred are the triacrylates of 3- to 5-tuply ethoxylated and/or propoxylated glycerol, especially the triacrylate of 3-tuply ethoxylated glycerol.

The amount of crosslinker b) is preferably 0.5 to 15% by weight, more preferably 2 to 10% by weight and most preferably 3 to 8% by weight, based in each case on the unneutralized monomer a). With rising crosslinker content, the centrifuge retention capacity (CRC) falls and the absorption under a pressure of 21.0 g/cm² (AUL 0.3 psi) passes through a maximum.

In addition to the photoinitiators c), the monomer solution or suspension may comprise further initiators. These initiators may be all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators.

Thermal initiators are, for example, peroxides, hydroperoxides, hydrogen peroxide, persulfates and azo initiators. Suitable azo initiators are, for example, 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2′-azobis(N,N-dimethylene)isobutryramidine dihydrochloride, 2-(carbamoylazo)isobutyronitrile, 2,2′-azobis[2-(2′-imidazolin-2-yl)propane] dihydrochloride and 4,4′-azobis(4-cyanovaleric acid).
In a preferred embodiment of the present invention, combinations of photoinitiator c) and azo initiator are used. This allows particularly white water-absorbing polymeric foams with a particularly low level of residual monomers to be obtained.

The surfactants d) are of significance for the preparation and the stabilization of the foamed monomer solution or suspension. It is possible to use anionic, cationic or nonionic surfactants or surfactant mixtures which are compatible with one another. It is possible to use low molecular weight or else polymeric surfactants, combinations of different types or else the same type of surfactants having been found to be advantageous. Usable nonionic surfactants are, for example, addition products of alkylene oxides, especially ethylene oxide, propylene oxide and/or butylene oxide, onto alcohols, amines, phenols, naphthols or carboxylic acids. The surfactants used are advantageously addition products of ethylene oxide and/or propylene oxide onto alcohols comprising at least 10 carbon atoms, where the addition products comprise 3 to 200 mol of ethylene oxide and/or propylene oxide added on per mole of alcohol. The addition products comprise the alkylene oxide units in the form of blocks or in random distribution. Examples of usable nonionic surfactants are the addition products of 7 mol of ethylene oxide onto 1 mol of tallow fat alcohol, reaction products of 9 mol of ethylene oxide with 1 mol of tallow fat alcohol, and addition products of 80 mol of ethylene oxide onto 1 mol of tallow fat alcohol. Further usable commercial nonionic surfactants consist of reaction products of oxo alcohols or Ziegler alcohols with 5 to 12 mol of ethylene oxide per mole of alcohol, especially with 7 mol of ethylene oxide. Further usable commercial nonionic surfactants are obtained by ethoxylation of castor oil. For example, 12 to 80 mol of ethylene oxide are added on per mole of castor oil. Further usable commercial products are, for example, the reaction products of 18 mol of ethylene oxide with 1 mol of tallow fat alcohol, the addition products of 10 mol of ethylene oxide onto 1 mol of a C_{12}/C_{15} oxo alcohol, or the reaction products of 7 to 8 mol of ethylene oxide onto 1 mol of a C_{12}/C_{15} oxo alcohol. Further suitable nonionic surfactants are phenol alkoxylates, for example p-tert-butylphenol which has been reacted with 9 mol of ethylene oxide, or methyl ethers of reaction products of 1 mol of a C_{12}-to-C_{15}-alcohol and 7.5 mol of ethylene oxide.

The above-described nonionic surfactants can be converted to the corresponding sulfuric monoesters, for example, by esterification with sulfuric acid. The sulfuric monoesters are used as anionic surfactants in the form of the alkali metal or ammonium salts. Suitable anionic surfactants are, for example, alkali metal or ammonium salts of sulfuric monoesters of addition
products of ethylene oxide and/or propylene oxide onto fatty alcohols, alkali metal or ammonium salts of alkylbenzenesulfonic acid or of alkylphenol ether sulfates. Products of the type mentioned are commercially available. For example, the sodium salt of a sulfuric monoester of a C\textsubscript{13}/C\textsubscript{15} oxo alcohol reacted with 106 mol of ethylene oxide, the triethanolamine salt of dodecylbenzenesulfonic acid, the sodium salt of alkylphenol ether sulfates and the sodium salt of the sulfuric monoester of a reaction product of 106 mol of ethylene oxide with 1 mol of tallow fat alcohol are commercial usable anionic surfactants. Further suitable anionic surfactants are sulfuric monoesters of C\textsubscript{13}/C\textsubscript{15} oxo alcohols, paraffinsulfonic acids such as C\textsubscript{15} alkylsulfonate, alkyl-substituted benzenesulfonic acids and alkyl-substituted naphthalenesulfonic acids such as dodecylbenzenesulfonic acid and di-n-butylnaphthalenesulfonic acid, and also fatty alcohol phosphates such as C\textsubscript{15}/C\textsubscript{18} fatty alcohol phosphate. The polymerizable aqueous mixture may comprise combinations of a nonionic surfactant and an anionic surfactant, or combinations of nonionic surfactants or combinations of anionic surfactants. Cationic surfactants are also suitable. Examples thereof are the dimethyl sulfate-quaternized reaction products of 6.5 mol of ethylene oxide with 1 mol of oleylamine, distearyltrimethylammonium chloride, lauryltrimethylammonium chloride, cetylpyridinium bromide, and dimethyl sulfate-quaternized stearic acid triethanolamine ester, which is preferably used as a cationic surfactant.

The amount of surfactant, based on the unneutralized monomer a) is preferably 0.01 to 10% by weight, more preferably 0.1 to 6% by weight, most preferably 0.8 to 3% by weight.

Ethylenically unsaturated monomers e) copolymerizable with the ethylenically unsaturated monomers a) bearing acid groups are, for example, acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate.

Solubilizers f) are water-miscible organic solvents, for example dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, monohydric alcohols, glycols, polyethylene glycols or monoethers derived therefrom, where the monoethers comprise no double bonds in the molecule. Suitable ethers are methylglycol, butylglycol, butyldiglycol, methylidiglycol, butytriglycol, 3-ethoxy-1-propanol and glyceryl monomethyl ether.
If solubilizers f) are used, the content thereof in the monomer solution or suspension is preferably up to 50% by weight, more preferably 1 to 25% by weight, most preferably 5 to 10% by weight.

The monomer solution or suspension may comprise thickeners, foam stabilizers, fillers, fibers and/or cell nucleators g). Thickeners are used, for example, to optimize the foam structure and to improve the foam stability. This achieves the effect that the foam shrinks only slightly during the polymerization. Useful thickeners include all natural and synthetic polymers which are known for this purpose and increase the viscosity of an aqueous system significantly. These may be water-swellable or water-soluble synthetic and natural polymers. A detailed overview of thickeners can be found, for example, in the publications by R.Y. Lochhead and W.R. Fron, Cosmetics & Toiletries, 108, 95-135 (May 1993) and M.T. Clarke, "Rheological Additives" in D. Laba (ed.) "Rheological Properties of Cosmetics and Toiletries", Cosmetic Science and Technology Series, Vol. 13, Marcel Dekker Inc., New York 1993.

Water-swellable or water-soluble synthetic polymers useful as thickeners are, for example, high molecular weight polyethylene glycols or copolymers of ethylene glycol and propylene glycol, and high molecular weight polysaccharides such as starch, guar flour, carob flour, or derivatives of natural substances, such as carboxymethylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose and cellulose mixed ethers. A further group of thickeners is that of water-insoluble products such as fine silica, zeolites, bentonite, cellulose powder or other fine powders of crosslinked polymers. The monomer solution or suspension may comprise the thickeners in amounts up to 30% by weight. If such thickeners are used at all, they are present in the monomer solution or suspension in amounts of 0.1 to 10% by weight, preferably 0.5 to 20% by weight.

In order to optimize the foam structure, it is optionally possible to add hydrocarbons having at least 5 carbon atoms in the molecule to the aqueous reaction mixture. Suitable hydrocarbons are, for example, pentane, cyclopentane, hexane, cyclohexane, heptane, octane, isoctane, decane and dodecane. The useful aliphatic hydrocarbons may be straight-chain, branched or cyclic and have a boiling temperature above the temperature of the aqueous mixture during the foaming. The aliphatic hydrocarbons increase the shelf life of the as yet unpolymerized foamed aqueous reaction mixture. This eases the handling of the as yet unpolymerized foams and increases process reliability. The hydrocarbons act, for example, as cell nucleators and simultaneously
stabilize the foam already formed. In addition, they can bring about further foaming in the course of polymerization of the monomer solution or suspension. They may then also have the function of a blowing agent. Instead of hydrocarbons or in a mixture therewith, it is optionally also possible to use chlorinated or fluorinated hydrocarbons as a cell nucleator and/or foam stabilizer, such as dichloromethane, trichloromethane, 1,2-dichloroethane, trichlorofluoromethane or 1,1,2-trichlorotrifluoroethane. If hydrocarbons are used, they are used, for example, in amounts of 0.1 to 20% by weight, preferably 0.1 to 10% by weight, based on the monomer solution or suspension.

In order to modify the properties of the foams, it is possible to add one or more fillers, for example chalk, talc, clay, titanium dioxide, magnesium oxide, aluminum oxide, precipitated silicas in hydrophilic or hydrophobic polymorphs, dolomite and/or calcium sulfate. The fillers may be present in the monomer solution or suspension in amounts of up to 30% by weight.

The above-described aqueous monomer solutions or suspensions are first foamed. It is possible, for example, to dissolve an inert gas, such as nitrogen, carbon dioxide or air, in the aqueous monomer solution or suspension under a pressure of, for example, 2 to 400 bar, and then to decompress it to standard pressure. In the course of decompression from at least one nozzle, a free-flowing monomer foam forms. Since gas solubility increases with falling temperature, the gas saturation and the subsequent foaming should be performed at minimum temperature, though undesired precipitations should be avoided. It is also possible to foam the aqueous monomer solutions or suspensions by another method, by dispersing fine bubbles of an inert gas therein. In the laboratory, the aqueous monomer solutions or suspensions can be foamed, for example, by foaming the aqueous monomer solution or suspension in a food processor equipped with egg beaters. In addition, it is possible to foam the aqueous monomer solutions or suspensions with carbon dioxide, by adding carbonates or hydrogencarbonates for neutralization.

The foam generation is preferably performed in an inert gas atmosphere and with inert gases, for example by admixing with nitrogen or noble gases under standard pressure or elevated pressure, for example up to 25 bar, and then decompressing. The consistency of the monomer foams, the size of the gas bubbles and the distribution of the gas bubbles in the monomer foam can be varied within a wide range, for example, through the selection of the surfactants d), solubilizers f), foam stabilizers, cell nucleators, thickeners and fillers g). This allows the density, the open-cell content
and the wall thickness of the monomer foam to be adjusted easily. The aqueous monomer solution or suspension is preferably foamed at temperatures which below the boiling point of the constituents thereof, for example at ambient temperature up to 100°C, preferably at 0 to 50°C, more preferably at 5 to 20°C. However, it is also possible to work at temperatures above the boiling point of the component with the lowest boiling point, by foaming the aqueous monomer solution or suspension in a vessel sealed pressure-tight. This gives monomer foams which are free-flowing and stable over a prolonged period. The density of the monomer foams is, at a temperature of 20°C, for example, 0.01 to 0.9 g/cm³.

The resulting monomer foam can be polymerized on a suitable substrate. The polymerization is performed in the presence of the photoinitiators c). The free radicals can be generated, for example, by heating (thermal polymerization) or by irradiation with light of a suitable wavelength (UV polymerization).

Polymeric foams with a layer thickness of up to about 5 millimeters are produced, for example, by heating on one side or both sides, or more particularly by irradiating the monomer foams on one side or both sides. If relatively thick polymeric foams are to be produced, for example polymeric foams with thicknesses of several centimeters, heating of the monomer foam with the aid of microwaves is particularly advantageous, because relatively homogeneous heating can be achieved in this way. With increasing layer thickness, however, the proportion of unconverted monomer a) and crosslinker b) in the resulting polymeric foam increases. The thermal polymerization is effected, for example, at temperatures of 20 to 180°C, preferably in the range from 40°C to 160°C, especially at temperatures from 65 to 140°C. In the case of relatively thick polymeric foams, the monomer foam can be heated and/or irradiated on both sides, for example with the aid of contact heating or by irradiation or in a drying cabinet. The resulting polymeric foams are open-cell. The proportion of open cells is, for example, at least 80%, preferably above 90%. Particular preference is given to polymeric foams with an open-cell content of 100%. The proportion of open cells in the polymeric foam is determined, for example, with the aid of scanning electron microscopy.

After the polymerization of the monomer foam or during the polymerization, the polymeric foam is dried. In the course of this, water and other volatile constituents are removed. Examples of suitable drying processes are thermal convection drying such as forced air drying, thermal
contact drying such as roller drying, radiative drying such as infrared drying, dielectric drying such as microwave drying, and freeze drying.

The drying temperatures are typically in the range of 50 to 200°C, preferably 60 to 150°C, more preferably 80 to 120°C, most preferably 90 to 110°C. The preferred residence time at this temperature in the drier is preferably at least 1 minute, more preferably at least 2 minutes, most preferably at least 5 minutes, and typically at most 20 minutes.

In order to avoid undesired decomposition and crosslinking reactions, it may be advantageous to perform the drying under reduced pressure, under a protective gas atmosphere and/or under gentle thermal conditions, under which the product temperature does not exceed 120°C, preferably 100°C. A particularly suitable drying process is (vacuum) belt drying.

After the drying step, the polymeric foam usually comprises less than 15% by weight of water. The water content of the polymeric foam can, however, be adjusted as desired by moistening with water or water vapor.

To further improve the properties, the water-absorbing polymeric foams can be surface postcrosslinked. Suitable surface postcrosslinkers are compounds which comprise groups which can form covalent bonds with at least two carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amido amines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 Al, DE 35 23 617 A1 and EP 0 450 922 A2, or β-hydroxyalkylamides, as described in DE 102 04 938 A1 and US 6,239,230.

Additionally described as suitable surface postcrosslinkers are cyclic carbonates in DE 40 20 780 CI, 2-oxazolidone and its derivatives, such as 2-hydroxyethyl-2-oxazolidone in DE 198 07 502 Al, bis- and poly-2-oxazolidinones in DE 198 07 992 CI, 2-oxotetrahydro-1,3-oxazine and its derivatives in DE 198 54 573 Al, N-acyl-2-oxazolidones in DE 198 54 574 Al, cyclic ureas in DE 102 04 937 Al, bicyclic amide acetals in DE 103 34 584 Al, oxetanes and cyclic ureas in EP 1 199 327 A2 and morpholine-2,3-dione and its derivatives in WO 2003/31482 Al.
Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.

Very particularly preferred surface postcrosslinkers are 2-hydroxyethyl oxazolidin-2-one, oxazolidin-2-one and 1,3-propanediol.

In addition, it is also possible to use surface postcrosslinkers which comprise additional polymerizable ethylenically unsaturated groups, as described in DE 37 13 601 Al.

The amount of surface postcrosslinker is preferably 0.001 to 2% by weight, more preferably 0.02 to 1% by weight and most preferably 0.05 to 0.2% by weight, based in each case on the water-absorbing polymeric foam.

In a preferred embodiment of the present invention, polyvalent cations are applied to the water-absorbing polymeric foam in addition to the surface postcrosslinkers before, during or after the surface postcrosslinking.

The polyvalent cations usable in the process according to the invention are, for example, divalent cations such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations such as the cations of titanium and zirconium. Possible counterions are chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogencarbonate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate and lactate. Aluminum sulfate is preferred.

Apart from metal salts, it is also possible to use polyamines as polyvalent cations.

The amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight and more preferably 0.02 to 0.8% by weight, based in each case on the water-absorbing polymeric foam.

The surface postcrosslinking is typically performed in such a way that a solution of the surface postcrosslinker is sprayed onto the water-absorbing polymeric foams. After the spraying, the polymeric foams coated with the surface postcrosslinker are dried thermally, and the surface
postcrosslinking reaction can take place either before or during the drying.

Preferred drying temperatures are in the range of 50 to 250°C, preferably 70 to 150°C, more preferably 850 to 120°C and most preferably 90 to 110°C. The preferred residence time at this temperature in the drier is preferably at least 1 minute, more preferably at least 2 minutes, most preferably at least 5 minutes, and typically at most 20 minutes.

To improve the properties, the polymeric foams can additionally be coated or remoisturized.

Suitable coatings for improving the free swell rate (FSR) and the saline flow conductivity (SFC) are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations, such as aluminum sulfate and aluminum lactate. Suitable coatings for counteracting the undesired caking tendency are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20. Suitable coatings for reducing the content of unconverted monomers (residual monomers) are, for example, reducing agents such as the salts of sulfuric acid, of hypophosphorous acid and/or of organic sulfinic acid. However, the reducing agent used is preferably a mixture of the sodium salt of 2-hydroxy-2-sulfonatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium hydrogen sulfite. Such mixtures are available as Briiggolite® FF6 and Briiggolite® FF7 (Briiggemann Chemicals; Heilbronn; Germany).

By the process according to the invention, it is possible to produce water-absorbing polymeric foams with a high centrifuge retention capacity (CRC) and a low extractables content.

The present invention further provides the water-absorbing polymeric foams obtainable by the process according to the invention and water-absorbing polymeric foams with a centrifuge retention capacity (CRC) of at least 5 g/g and a residual monomer content of less than 0.15% by weight.

The water-absorbing polymeric foams according to the invention have a centrifuge retention capacity (CRC) of typically at least 5 g/g, preferably at least 6 g/g, more preferably at least 7 g/g, especially preferably at least 8 g/g, very especially preferably at least 9 g/g. The centrifuge retention capacity (CRC) of the water-absorbing polymeric foams is typically less than 20 g/g.
The water-absorbing polymeric foams have a residual monomer content of typically less than 0.15% by weight, preferably less than 0.12% by weight, more preferably less than 0.1% by weight, especially preferably less than 0.075% by weight, most preferably less than 0.05% by weight.

The water-absorbing polymeric foams have a residual crosslinker content of typically less than 0.002% by weight, preferably less than 0.001% by weight, more preferably less than 0.0005% by weight, especially preferably less than 0.0002% by weight, most preferably less than 0.0001% by weight.

According to the present invention, the feminine hygiene absorbent article can comprise the water-absorbing polymeric foam typically in the absorbent core as it is known in the art, for example as a layer of desired shape and thickness, or also as a composite structure comprising a layer of the water-absorbing polymeric foam and other layers, e.g. fibrous layers. The water-absorbing polymeric foam can be comprised in a feminine hygiene absorbent article according to the present invention in addition or as an alternative to traditional superabsorbent polymers or absorbent gelling materials.

For example, the water-absorbing polymeric foam can be comprised as a layer or combination of layers in the overall amount of 0.1 g to 20 g, or of 0.15 g to 15 g, or of 0.2 g to 10 g, or also of 0.3 g to 5 g, as specified above.

The water-absorbing polymeric foam can be also provided in the selected amount, typically for example in the core of a feminine hygiene absorbent article of the present invention, in the form of a plurality of pieces of selected size, for example particles, which can be obtained with means known in the art, for example cutting or comminuting larger foam pieces in order to obtain the smaller pieces having the desired size. Said smaller pieces of water-absorbing polymeric foam, for example particles, can be provided in a feminine hygiene absorbent article according to the present invention, for example typically in the absorbent core, in the selected amount as specified above. They can be for example distributed within a fibrous material, such as fluff pulp, or comprised in a layer between containing, e.g. fibrous, sheets, thus forming a laminate structure. The pieces, for example particles, can typically have a mean particle size from 100 to 1000 μη, or from 250 to 600 μη, or also from 300 to 500 μη. The mean particle size of the particles may
be determined by means of EDANA recommended test method No. WSP 220.2-05 "Particle size
distribution", where the proportions by mass of the screen fractions are plotted in cumulated form
and the mean particle size is determined graphically. The mean particle size here is the value of
the mesh size which gives rise to a cumulative 50% by weight.

The amount of the water-absorbing polymeric foam can be evaluated, typically in a feminine
hygiene absorbent product containing it, and particularly when it is comprised in particle form,
with any suitable method, such as for example by means of a superabsorbent polymer titration
method, as it is known to the skilled person.

In the feminine hygiene absorbent article according to the present invention the core may be
generally selected from any of the absorbent cores or core systems known in the art. As used
herein the term absorbent core refers to any material or multiple material layers whose primary
function is to absorb, store and distribute fluid.

For example, the absorbent core can include the following components: (a) an optional fluid
distribution layer for example comprising a primary fluid distribution layer together with a
secondary fluid distribution layer; (b) a fluid storage layer; (c) an optional fibrous ("dusting")
layer underlying the storage layer; and (d) other optional components. According to the present
invention, the water-absorbing polymeric foam can be provided in at least one of said layers, for
example in the fluid storage layer. For example, the water-absorbing polymeric foam can be
comprised in the storage layer of such a composite core construction, comprised between a
fibrous primary fluid distribution layer and a fibrous dusting layer. The water-absorbing
polymeric foam can for example be comprised as a layer entirely constituting the storage layer in
such a composite core structure. In an alternative embodiment similar to that described above the
water-absorbing polymeric foam can be incorporated in form of a plurality of pieces, for example
in particle form, typically with the selected particle size, between suitable fibrous layers which in
turn can constitute the fluid distribution layer and the dusting layer. In all embodiments of the
present invention, such as those described above, the water-absorbing polymeric foam can be
typically incorporated in the selected amount specified above.
The water-absorbing polymeric foams for use in accordance with the invention have a high absorption capacity for blood and a high free swell rate, and are therefore particularly suitable for use in feminine hygiene articles for absorption of menses, vaginal secretions, as well as urine.

This is particularly desirable as traditional superabsorbent materials may in comparison have less than optimal absorption and retention capacity towards body fluids such as menses and vaginal secretions due to the viscosity and/or complex nature of these fluids. Menses and vaginal secretions are in fact water based fluids comprising components having molecular weights higher than water and also corpuscular components, including red cells, white cells, soluble proteins, cellular debris and mucus, which slow down the absorption of these fluids by superabsorbsents. Menses and vaginal secretions are rather thick, and more difficult to absorb in absorbent structures with conventional absorbent gelling materials; moreover, corpuscular components like red cells may decrease the absorption capacity of certain superabsorbent particles. This translates into a slower initial uptake rate of the fluid into the superabsorbent material, and in turn in the absorbent article comprising the superabsorbent material, which can result in a lower final absorption and retention capacity.

Feminine hygiene absorbent articles of the present invention have hence an improved absorption and retention of menses, vaginal secretions or urine.

Further, the present invention also relates to the use of water-absorbing polymer particles as described above for absorbing menses and/or vaginal secretions and or urine, typically in a feminine hygiene absorbent article.

Methods:

The measurements should, unless stated otherwise, be carried out at an ambient temperature of $23 \pm 2^\circ$C and a relative air humidity of $50 \pm 10\%$. The water-absorbing polymer particles are mixed thoroughly before the measurement.

Residual monomers

The residual monomers of the water-absorbing polymeric foam are determined analogously to
the EDANA recommended test method No. WSP 210.2-05 "Residual Monomers".

Residual crosslinkers

The residual crosslinker content of the water-absorbing polymeric foam polymer particle is determined by means of HPLC using a ZORBAX® Eclipse XDB C18 reverse-phase column (Agilent Technologies, US) with subsequent UV/VIS detection and calibration with an external standard. The mobile phase used is acetonitrile/water with a gradient.

Centrifuge retention capacity

The centrifuge retention capacity (CRC) of the water-absorbing polymeric foam is determined analogously to EDANA recommended test method No. WSP 241.2-05 "Centrifuge Retention Capacity".

Extractables content

The extractables content of the water-absorbing polymeric foam is determined analogously to the EDANA recommended test method No. WSP 270.2-05 "Extractables", using the mean molar mass of the optionally partly neutralized monomer a) for the molar mass M^*. The EDANA test methods are obtainable, for example, from EDANA, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.

Examples

The following examples describe exemplary water-absorbing polymeric foams which can be comprised in the selected amount, for example as a layer, in feminine hygiene absorbent articles of the present invention, typically for example in the absorbent core.

Example 1

209.1 g of acrylic acid, 81.3 g of a 37.3% by weight aqueous sodium acrylate solution, 16.8 g of
Sartomer® SR-344 (diacrylate of a polyethylene glycol having a molar mass of approx. 400 g/mol), 25.6 g of a 15% by weight aqueous solution of Lutensol® AT80 (addition product of 80 mol of ethylene oxide onto 1 mol of a linear saturated C_{16-18} fatty alcohol; BASF SE; Ludwigshafen; Germany) and 26.6 g of water were mixed in a beaker. Subsequently, 240.5 g of triethanolamine were added dropwise while cooling, in the course of which the temperature remained below 15°C.

The resulting homogeneous solution was transferred to a pressure vessel and saturated there with carbon dioxide at a pressure of 12 bar for 25 minutes. Under pressure, 8.0 g of a 3% by weight aqueous solution of Wako® V-50 (2,2'-azobis(2-amidinopropane) dihydrochloride) and 0.24 g of Irgacure® 2959 (1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methylpropan-1-one) were added and admixed with a strong carbon dioxide stream. Subsequently, carbon dioxide was passed through the reaction mixture for a further 5 minutes. The carbon dioxide-saturated reaction mixture was then extruded at a pressure of 12 bar through a die with a diameter of 1.0 mm, which formed a fine-cell, free-flowing foam.

The base of a glass plate of DIN A3 size with edges of height 3 mm was covered with a transparent polyester film. The monomer foam obtained was applied to the glass plate and covered with a second transparent polyester film and a second glass plate. The foam sample was irradiated with UV light synchronously from both sides over 4 minutes, from above with a UVASPOT 1000/T UV/VIS radiator (Dr. Honle AG; Grafelfing; Germany), and from below with 2 UVASPOT 400/T UV/VIS radiators (Dr. Honle AG; Grafelfing; Germany). The distance of the upper lamp from the monomer foam was 39 cm and the distance of the lower lamps from the monomer foam was 13 cm.

The polymeric foam obtained was dried at 100°C for 10 minutes in a forced-air drying cabinet and analyzed. The foam had a residual monomer content of 0.13% by weight, a residual crosslinker content of 0.0003% by weight, and a centrifuge retention capacity (CRC) of 8.4 g/g, and the extractables content was 55% by weight.

Example 2 (comparative example)
The procedure was as in example 1. The initiator used was 16.0 g of a 3% by weight aqueous solution of Wako® V-50 (2,2'-azobis-(2-amidinopropane) dihydrochloride). The foam had a residual monomer content of 0.72% by weight, a residual crosslinker content of 0.14% by weight and a centrifuge retention capacity (CRC) of 9.6 g/g, and the extractables content was 42% by weight.

Example 3

The procedure was as in example 1. The initiator used was 0.48 g of Irgacure® 2959 (l-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methylpropan-l-one). The polymeric foam obtained was removable from the lower polyester film only with difficulty. The foam had a residual monomer content of 0.068% by weight, a residual crosslinker content of less than 0.0001% by weight and a centrifuge retention capacity (CRC) of 8.8 g/g, and the extractables content was 52% by weight.

Example 4

The procedure was as in example 1. The initiator used was 0.48 g of Lucirin® TPO-L (ethyl 2,4,6-trimethylbenzoylphenylphosphinate). The polymeric foam obtained was removable from the lower polyester film only with difficulty. The foam had a residual monomer content of 0.37% by weight, a residual crosslinker content of less than 0.0001% by weight and a centrifuge retention capacity (CRC) of 10.1 g/g, and the extractables content was 59% by weight.

Example 5

The procedure was as in example 1. The initiator used was 0.48 g of Irgacure® 184 (1-hydroxycyclohexyl phenyl ketone). The foam had a residual monomer content of 0.094% by weight, a residual crosslinker content of 0.0002% by weight and a centrifuge retention capacity (CRC) of 9.2 g/g, and the extractables content was 53% by weight.

Example 6 (comparative example)

The procedure was as in example 1. The initiator used was 0.48 g of Irgacure® 250 ((4-methylphenyl)[4-(2-methylpropyl)phenyl]iodonium hexafluorophosphate). The polymeric foam
obtained has an unpleasant smell and was not removable from the polyester films. The foam had a residual monomer content of 1.6% by weight, a residual crosslinker content of 0.074% by weight and a centrifuge retention capacity (CRC) of 7.7 g/g, and the extractables content was 62% by weight.

Example 7 (comparative example)

The procedure was as in example 1. The initiator used was 0.48 g of 2-amino-9-fluorenone. The foam had a residual monomer content of 3.1% by weight, a residual crosslinker content of 1.1% by weight and a centrifuge retention capacity (CRC) of 8.8 g/g, and the extractables content was 80% by weight.

Example 8

The procedure was as in example 1. The initiator used was 0.48 g of Darocur® 1173 (2-hydroxy-2-methyl-1-phenylpropan-1-one). The foam had a residual monomer content of 0.045% by weight, a residual crosslinker content of less than 0.0001% by weight and a centrifuge retention capacity (CRC) of 9.0 g/g, and the extractables content was 63% by weight.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".

Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
What is claimed is:

1. A feminine hygiene absorbent article comprising a water-absorbing polymeric foam obtainable by polymerizing a foamed aqueous monomer solution or suspension comprising

 a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,
 b) at least one crosslinker,
 c) at least one photoinitiator and
 d) at least one surfactant,

 the monomer solution or suspension being polymerized to a polymeric foam, wherein the at least one photoinitiator is a compound of the general formula I

 \[
 \begin{array}{c}
 \text{R}^1 \text{R}^2 \\
 \text{X} \\
 \text{R}^3 \text{R}^4 \text{R}^5 \\
 \end{array}
 \]

 in which

 \(\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4 \) and \(\text{R}^5 \) are each independently hydrogen or Ci-Cs-alkyl, where Ci-Cs-alkyl may be branched or unbranched,

 \(\text{X} \) is hydrogen, OR\(^6\) or Ci-Cs-alkyl, where Ci-Cs-alkyl may be branched or unbranched,

 \(\text{R}^6 \) is Ci-Cs-alkyl or Ci-C\(_3\)-hydroxyalkyl, where C\(_3\)-Cs-alkyl or C\(_3\)-C\(_8\)-hydroxyalkyl may be branched or unbranched,

 \(\text{Y} \) is C\(_4\)-C\(_8\)-cycloalkyl, C(R\(^7\)) R\(^8\) or P(=0) R\(^7\)

 \(\text{R}^7 \) and \(\text{R}^8 \) are each independently Ci-Cs-alkyl or C6-C\(_2\)-aryl, where C\(_3\)-C\(_8\)-alkyl or C\(_9\)-Cl\(_2\)-aryl may be branched or unbranched,
wherein said water-absorbing polymeric foam is provided in an amount of 0.1 g to 20 g, preferably of 0.15 g to 15 g, more preferably of 0.2 g to 10 g, most preferably of 0.3 g to 5 g.

2. The feminine hygiene absorbent article according to claim 1, wherein the at least one photoinitiator c) is a compound of the general formula I in which R₁, R², R³ and R⁴ and R⁵ are each hydrogen, X is OR⁶, R⁶ is hydroxyethyl, Y is C(R⁷) R⁸, and R⁷ and R⁸ are each methyl.

3. The feminine hygiene absorbent article according to claim 1, wherein the at least one photoinitiator c) is a compound of the general formula I in which R₁, R², R³ and R⁴ and R⁵ are each hydrogen, X is hydrogen, Y is C(R⁷) R⁸, and R⁷ and R⁸ are each methyl.

4. The feminine hygiene absorbent article according to claim 1, wherein the at least one photoinitiator c) is a compound of the general formula I in which R₁ and R³ are each hydrogen, R² and R⁴ are each methyl, R⁵ is ethyl, X is methyl, Y is P(=0) R⁷, and R⁷ is phenyl.

5. The feminine hygiene absorbent article according to claim 1, wherein the at least one photoinitiator c) is a compound of the general formula I in which R₁, R², R³ and R⁴ and R⁵ are each hydrogen, X is hydrogen and Y is cyclohexyl.

6. The feminine hygiene absorbent article according to any of claims 1 to 5, wherein an azo initiator is additionally used.

7. The feminine hygiene absorbent article according to any of claims 1 to 6, wherein the acid groups of the monomer a) have been neutralized to an extent of 25 to 95 mol%.

8. The feminine hygiene absorbent article according to any of claims 1 to 7, wherein the neutralized acid groups of the monomer a) have been neutralized with an alkanolamine to an extent of 10 to 95 mol%.

9. The feminine hygiene absorbent article according to any of claims 1 to 8, wherein the monomer solution or suspension, based on the unneutralized monomer a), comprises from
1 to 4% by weight of crosslinker b).

10. The feminine hygiene absorbent article according to any of claims 1 to 9, wherein the monomer solution or suspension, based on the unneutralized monomer a), comprises from 0.05 to 0.2% by weight of photoinitiator c).

11. The feminine hygiene absorbent article according to any of claims 1 to 10, wherein the monomer solution or suspension, based on the unneutralized monomer a) comprises from 0.05 to 0.1% by weight of surfactant d).

12. The feminine hygiene absorbent article according to any of claims 1 to 11, wherein the monomer solution or suspension is foamed by dissolving an inert gas under pressure and subsequently decompressing.

13. The feminine hygiene absorbent article according to any of claims 1 to 12, wherein said feminine hygiene absorbent article comprises a topsheet, a backsheet and an absorbent core comprised therebetween, wherein said absorbent core comprises said water-absorbing polymeric foam.

14. The feminine hygiene absorbent article according to any of claims 1 to 9, wherein said feminine hygiene absorbent article is a sanitary napkin or a pantiliner.
A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

- INV. A61L15/24
- A61L15/42
- A61L15/60

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- A61L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

 - EPO-Internal
 - COMPENDEX
 - EMBASE
 - WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>wo 99/44648 AL BASF AG [DE]; HAEHNL HANS JOACHIM [DE]; SCHROEDER ULRICH [DE]; BECK M 10 September 1999 (1999-09-10) page 4, line 41 - page 5, line 30 page 13, lines 8-27 page 21, lines 29-36 page 27, line 44 - page 28, line 4</td>
<td>1-14</td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C.

- See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is used alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "Z" document member of the same patent family

Date of the actual completion of the international search: 5 July 2012

Date of mailing of the international search report: 12/07/2012

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Zal fen, Alina
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 9944648</td>
<td>10-09-1999</td>
<td>DE 19809540 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1059947 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2228027 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4204196 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002505348 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6455600 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9944648 AI</td>
</tr>
<tr>
<td>US 2004068093</td>
<td>08-04-2004</td>
<td>AU 2003247669 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004068093 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004003024 AI</td>
</tr>
<tr>
<td>US 7504551</td>
<td>17-03-2009</td>
<td>AT 337801 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 160408243 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1761492 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 602004002202 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1610831 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4903038 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006521431 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 195009238 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006089611 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004084962 AI</td>
</tr>
<tr>
<td>US 2006015083</td>
<td>19-01-2006</td>
<td>AU 2003209479 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2476777 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1482994 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005526879 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006015083 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03077964 AI</td>
</tr>
<tr>
<td>WO 2011061282</td>
<td>26-05-2011</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2002040095</td>
<td>04-04-2002</td>
<td>BR 0103235 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1338486 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1667003 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1178059 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1903062 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2206733 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011068897 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 348989 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 527365 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002040095 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005054788 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006229370 AI</td>
</tr>
</tbody>
</table>