This invention relates to methods and means for fighting fire aboard ship.

Fires aboard ship have heretofore been fought, whenever possible, from within the ship or from the deck thereof. However, in the case of serious conflagration, and particularly where it is necessary to abandon ship, or while the ship is at a dock, there has heretofore been no satisfactory means for combating ships' fires. Hoses from docks or other ships or fire boats have been used to throw water upon the ship, but this has been of little avail for the water which thus comes aboard generally flows down companion ways, ventilators, and other openings without actually reaching the zone of the fire. In any event the pouring of large quantities of water into a ship may seriously disturb the stability thereof and cause capsizing of the ship. Such was the case in the fire aboard the Lafayette (Normandy) and again in the case of the Paris.

The primary object of the present invention is to provide an efficient method and system for fighting fires on ships entirely from the outside of the ship and even from another ship, warf or fire boat. The present invention provides, among other features, for the division of the interior of the ship into compartments, so that if a fire in any particular locality therein may be confined to that locality and within which these compartments are spray pipes which lead to inlets in the side plating of the hull. Also leading to the inlets in the side plating of the hull are pipes which pass down to pumps in the hold. The inlets in the side plating of the hull have closures which normally seal them against the entrance of sea water, but these closures may be individually removed or opened to permit the coupling thereof to hoses from another ship, fire boat, warf, or the like, so that water may be introduced through selected inlets to the spray pipes of the particular compartment in which the fire has been localized, while other hoses may be connected to one or more additional inlets to communicate with the pipes leading to the pumps in the hold for the purpose of withdrawing water which has been pumped into the hold through the other inlets, in order to maintain the stability of the ship.

Features of the invention, other than those advented to, are more fully shown in the drawings and claims, and in conjunction with the accompanying drawings. The accompanying drawings illustrate one practical embodiment of the invention, but the construction therein shown is to be understood as illustrative only, and not as defining the limits of the invention.

Fig. 1 shows a transverse section of the hull of a ship equipped with the present invention and, in conjunction therewith, a rescue vessel with hose connections to said ship for pumping water into the latter and for simultaneously pumping water out of the hold of the latter.

Fig. 2 is a diagrammatic showing of a side elevation of the ship shown in Fig. 1, illustrating the usual location of bulkheads which divide the space in the hull and between decks into compartments which may be selectively sealed in the event of fire in any one or more of them. This view also shows a satisfactory arrangement of inlets for the fire extinguishing medium.

Fig. 3 is a diagrammatic view showing a plan view of a compartmental layout of one of the decks, which general layout may be duplicated for the other decks.

Fig. 4 is a section through the hull plate illustrating in section one of the pipe inlets sealed by an appropriate closure plug.

Fig. 5 is an outside end view of the closure plug detached.

Fig. 6 is a view similar to Fig. 4, but illustrates a hose connection adapted to connect with any piping inlet and be locked in place therein when it is desired to pump water into or remove it through the interior piping of the ship.

Fig. 7 is a transverse section taken on the line 7-7 of Fig. 6 with the hose connection removed from the inlet.

Fig. 8 is a sectional view from the right hand end of the hose connection of Fig. 6 with the hose connection removed from the ship.

Fig. 9 is a view similar to Fig. 6, but showing a modified form of hose connection cooperating with the piping inlet of the ship.

Fig. 10 is a sectional view of said hose connection looking from the right hand end of Fig. 9.

In Figs. 1, 2 and 3, I have shown a ship, indicated generally by the reference character S, while the reference character R in Fig. 1 designates a rescue vessel or fireboat, shown conventionally in this figure.

In these several figures of the drawings, the ship S is shown as having hull plating 1 and provided with several decks. Five or six decks are shown for the purpose of illustration, but the number of decks in such ship will of course largely depend upon the type and use of the vessel, for the invention may be incorporated in freighters and passenger ships, as well as various types of vessels of war. In any event, each deck is divided transversely and, if desired, fore and aft, by bulkheads or dividing walls 2 and 3.

As shown in Fig. 1, the decks 4, 5, 6 and 7,
together with transverse partitions divide the ship into compartments 8, 9, 13, 14 and 12. The space 12 at the bottom of the compartment is for ballast and extends transversely of the ship, usually for not quite the full width of the hull, so as to leave along the opposite sides of the hull, bilges or sumps into which water within the hold may flow to be readily pumped therefrom. Water on any deck may flow to the sumps through holes in each deck. Positioned within each of the compartments of the ship including the hold compartments, if desired, are pipes for the introduction of a fluid extinguishing medium into each compartment selectively. These pipes may partake of various forms and may be disposed in any appropriate manner. For the purpose of illustration, I have shown these pipes as perforated sprayer pipes extending along the under side of the deck ceilings and insulated, respectively, 15, 16 and 17 for the compartments 8, 9 and 11, respectively. Each pipe is connected to a fitting 18 at the skin or plating of the ship, so that the extinguishing fluid can be introduced thereto from outside of the ship. These fittings may be either or both in one of the exposed upper decks or in the side plating of the hull. As shown in Fig. 1, each of the pipes 15, 16 and 17 extend to the port and starboard sides of the hull and are there provided with fittings 18, so that the extinguishing medium may be introduced into said pipes from either side of the ship. Likewise the uppermost pipe 17 has branches 19 which extend to fittings 18 in an exposed upper deck.

In addition to the horizontal sprayer pipes 15, 16 and 17, there are provided upright conduit means or draw-off pipes 20, extending upwardly from the sumps 14 through the decks to the uppermost sprayer pipe 17. In the showing made, the pipes 20 are connected, as, for example, by cross connections, to the opposite end portions of the horizontal sprayer pipes near the hull plating, so that the extinguishing fluid which flows down into the hold, may be pumped from the sumps 14 through the same piping as is adapted to deliver water or other extinguishing fluid to the sprayers. In order to permit of this, each of the sprayer pipes and the vertical conduit means or draw-off pipes 20 are provided with control means or check valves 21. These serve to control the piping through which water is being pumped into any particular compartment from the water which is being pumped from the sumps, as will be presently explained.

Branch pipes 28 are also provided with check valves 21, so that water pumped under pressure into the pipe 29 to spray the compartment 14 will not be forced outwardly through the branch pipes 19. Valves 22, shown in Fig. 1, are positioned just inside of the closeable fittings 18 and are preferably manually controlled valves which may be temporarily closed in the event that repair is required in any part of the system.

The arrows shown in Figure 1 are not intended to indicate actual flow of liquid, but rather the direction of flow when such flow is established. The check valves shown automatically shut off various sections of the piping from one another to permit the operations stated. These check valves are all shown open, so that their nature may be clearly perceived, but the direction in which they check the flow is clear from the structure. It will be apparent that by observing the direction in which these valves check the flow, one can readily see how water can be introduced into one pipe or a series of pipes to put out a fire, while water can be drawn from a sump through another pipe or series of pipes.

From the description as thus far advanced, it will be apparent that it is possible, by properly connecting fire hoses to any of the fittings, as hereinafter more fully explained, to pump water or other extinguishing medium from the exterior of the ship into the interior thereof and in such as each compartment has its individual inlet fitting, such water may be conveyed to the will of the operator to the particular compartment or compartments in which the fire may be located. Thus, as shown in Fig. 1, fire hoses 23 and 24 are shown as feeding water to the sprayer pipes 16 and 17 of the compartments 10 and 11, while a hose 25 is connected to the fitting 18 at the compartment 9 for the purpose of pumping out water from the sump 14 at the right of Fig. 1, which may be either the port or starboard sump. The element 27, shown in Fig. 4, is an extension ladder carried by the rescue vessel and by means of which a crewman has connected the upper hoses to the fittings 18.

In Fig. 1, the ship S is shown as somewhat listed, the water being pumped from the lower side, but fittings are provided at both sides of the ship as stated, so that the rescue vessel may operate from either the port or starboard side depending upon the list and the conditions of the wind, sea, smoke, etc.

While the fittings may vary somewhat in structure, there are certain prerequisites which should be observed in their structure. The usual screw connections commonly used in the fighting of fires on land are not satisfactory for the fighting of fires in ships for many reasons. For example, the heat from the fire may be so intense as to tend to warp plates and fittings, so that screw threads become entirely inoperative and expansibility factors under widely different temperatures also make the use of screw threads for connection undesirable. Plug connections with positive locks which are not appreciably affected by heat, distortion or warping of metal are desirable not only from the standpoint of operativeness under all conditions, but in order to provide satisfactory means of attaching and detaching the hose connections under adverse conditions. For example, a crewman working on a ladder or in a "bos'n chair" in the presence of considerable heat and smoke is in no position to secure or release couplings. There should be provision for a quick press fit and in the event of danger to the rescue vessel, there should be provision for a quick "pull away," release of the connections.

For these reasons and others, familiar to those of the sea, I have provided novel forms of connection capable of ready use and proper functioning under the conditions stated. Thus, in Fig. 4, the fitting 18 is illustrated in the form of a casting, bolted, welded or riveted to the hull plating 28 and so as to connect 18 the corresponding end of the sprayer pipe (shown in this figure as the pipe 17) may be threaded, welded or otherwise permanently secured. The fitting 18 is provided with a conical seat 29 which registers with an opening in the hull plating and at the base of this seat may be positioned a gasket 31 of asbestos or any other suitable fireproof material. Within the seat 28 are formed annular grooves 32 and 33 in parallel cross axial planes.

In the normal operation of the ship, it is of
course necessary that all of the fittings 18 be sealed against the entrance of sea water and this sealing is accomplished by means of a conical plug 34 adapted to be thrust into the conical seat 29 and pressed against the gasket 31. The plug 34 is shown as hollow and is drawn as if carrying two diametrically opposite locking bolts 35, normally spring impelled in outward radial directions so that the outer ends of these bolts may project into the annular groove 32 to lock the plug firmly to its seat and produce, with the fitting, a waterproof joint. Any number of these locking bolts may be used, but two are shown for the purpose of illustration. The inner end of each bolt is slotted and through each slot extends an arcuate link 36 which is, in turn, longitudinally slotted and a pin 37 carried by the forked end of the bolt extends through the slot in the link. The outer ends of both links are pivotally secured to the opposite ends of a curved handle or operating yoke 38 by means of studs 39. Both links 36 and the yoke are positioned to operate between flanges 40, cast in the hollow interior of the plug and in these flanges are slots 41 through which the opposite ends of the studs 39 loosely extend, so as to guide the operation of the yoke and links. Also formed in the interior of the plug 34 between flanges 40 are cam surfaces or bosses 42, positioned to engage with the convex edges of the links 39. If the handle yoke 38 is drawn to the right in Fig. 4, the links will engage within the bosses 42 and, as the links are drawn to the right, these bosses will force the links toward one another, so that their free ends will approach each other and in so doing will act upon the pins 37 to withdraw the ends of the bolts 35 from the annular locking channel 32. Thus the plug may be withdrawn from the fitting 18 merely by an outward pull on the yoke 38, either by direct hand engagement or by a boat, hook or other suitable expedient.

To replace the plug, it is only necessary to press the plug into the seat, the tapered wall of which will cause the bolts 35 to be retracted until they come opposite the locking channel 32, at which time they will be sprung by their springs into the channel to lock the plug in place.

It is essential for reasons hereinafter stated, that all of the fittings be normally sealed and it therefore becomes important that if any of these plugs 34 are surreptitiously removed or displaced for any reason, as by accident, that an alarm or signal be given, preferably to the bridge. This may be accomplished in any one of various ways, one example of which is shown in Fig. 4. Here a spring pressed pin 43 extends through the fitting 18 to the base of the conical seat 29 and is provided at its outer end with a head 44. So long as the plug is in proper position, it retracts the pin 43, so that its head is free from contact 45, but if the plug is removed, the spring 46 forces the pin inwardly and moves the contact 45 into engagement with the contact 47, to close an electric circuit 48 leading to the bridge or other appropriate station and there provided with a signal lamp or annunciator 49 to indicate the removal of the plug. If the plug is in such position as to make it necessary to seal its particular fitting against the entrance of sea water, one of the crew may be dispatched to close the corresponding valve 22 and thus preclude flooding until the plug can be replaced, after which said valve 22 should be immediately opened.

Different forms of hose connections adapted to cooperation with a fitting of the kind referred to, are shown in Figs. 6–9 inclusive. Each of these connectors embody, primarily, a nozzle 50 adapted to be passed through the seat of the fitting 16 and extend for a short distance into the pipe 17 or any of the other similar pipes of Figures 1 or 6. This nozzle 50 should be of a highly refractory character well able to stand high temperatures and it is provided at its outer end with a suitable union to which is coupled a conventional hose, such as one of the hoses 23, 24 or 25. Intermediate its ends, there is permanently affixed to the nozzle, by welding or otherwise, a conical bowl for cooperation with the seat 29 of the fitting 16. This head is provided with spring pressed catches 52 adapted to spring into the annular channel 32 of the fitting 18 to preliminarily hold the nozzle in place when it is passed into position and until it can be actually locked to the fitting.

In the hose connection of Figs. 6–8, there is mounted on the nozzle a slidable sleeve 53 having handles 54 by means of which it may be readily grasped and manipulated. The forward end of the sleeve is slotted and in each slot is pivoted to a locking dog 55. A spring 56 is associated with each dog to normally retract the same, so that the outer ends or toes of the dogs is normally drawn toward one another sufficiently to permit them to enter into the conical seat 29. At the rear end of the sleeve 53 is a pivoted pawl 57 adapted to cooperate with ratchet teeth 58 fixed on the nozzle pipe 50. Slid with the pawl 51 is a trip arm 59 to which is connected a wire 60 so that a pull on this wire will release the pawl from the ratchet teeth 58. The sleeve 53 may then be drawn back, so that the toes of opposing locking dogs are withdrawn from the locking channel 32. When in this condition, the connector may be freely moved into and out of the fitting 18. To attach and lock the connector to the fitting 18, the inner end of the nozzle pipe is thrust into the pipe 17 until the spring catches 52 engage with the channel 32. These serve to hold the head 51 temporarily in place until the operator can push the sleeve 53 forwardly. When this is done, the heels 52 of the locking dogs 55 are forced against the outer face of the head 51 and this causes the dogs to be spread apart against tension of the springs 56 until the dogs are forced firmly into engagement with the locking channel 32 of the fitting 18. Meanwhile the dog 57 rides over the ratchet teeth 58, to hold the sleeve 53 against retrograde movement and maintain the parts in locked position until the line 60 is pulled to release the pawl 57. The line 60 may be operated from the rescue vessel, the dock or elsewhere.

The sleeve 33 is shown in Fig. 6 as provided with slots in its inner bearing face and these slots extend longitudinally of the sleeve. In the base of each of these slots is a depression 62 and a leaf spring 63 is positioned in each slot and fixed to the pipe 50 in such position that, when the sleeve 53 is in retracted position, it may be held by these leaf springs and thus maintain the dogs in retracted position, while the connector is being fitted and until the sleeve is manually forced forwardly to lock the connector to the fitting 18.

The modified form of connector shown in Figs. 9 and 10 is the same as the connector shown in Figs. 6–8 except with respect to the locking sleeve. In Figs. 9 and 10, the sleeve is replaced by a shorter sleeve 64 without any locking pawl thereon. In lieu thereof there is mounted on the nozzle pipe 50 a fixed collar 65 on which is pivoted a pair of cams 66 secured to the collar by
the pins 67. These cams are formed at the lower ends of the arms of a U-shaped handle 68 within which is pivoted a pawl 69 adapted to cooperate with teeth 70 on the collar and to be disengaged therefrom by a line 71 corresponding to the line 60.

When it is desired to attach the connector of Figs. 9 and 10 to the fitting 18, the operator grasps one of the handles 64 of the movable sleeve 66 and, after inserting the nozzle into the pipe 17, pushes the sleeve 64 forwardly while he pulls the handle 66 rearwardly, so as to apply the smoke or asphyxiation agent to the end of the sleeve 64 to force the locking dogs 55 apart and into engagement with the locking channel 33 of the fitting 18. To release the hose connector of Fig. 9, the line 71 may be pulled to release the pawl and a pull on the hose will withdraw the connector. The ability to thus release the hose connection is highly advantageous for, in the event of sudden danger to the rescue vessel, it may be essential that it move from proximity to the burning vessel without delay.

In the foregoing description I have referred particularly to the present invention as providing means for fighting fire aboard ship from a rescue vessel or other ship or from a dock. The present invention, however, also provides in addition to the foregoing means which may be effective in many cases for fighting fire inside of a ship from the exterior of the same ship, by the crew while remaining on that ship. For example, if a fire should occur in any particular compartment of the ship and in such a locality that it cannot be satisfactorily fought from passages, companionways, or other approach interiorly of the ship, it is entirely practical to couple fire hoses on an exposed deck of the ship to the fittings 18 which are in proximity to the compartment where the fire is located. This can be readily done with the deck fittings 18 shown in Fig. 1 or by means of suspension ladders or "bos'n chair" equipment to any of the fittings 18 in the side plating of the ship. After connecting such fire hoses the crew from the deck of the ship may supply water from that portion of the ship's pumping system which may remain operative through these hoses to the fire. In this way the crew can often successfully fight a fire without exposing themselves to the danger of asphyxiation and without the necessity of calling for outside help.

In the foregoing detailed description the invention has been set forth in its preferred practical forms, but the invention is to be understood as fully commensurate with the appended claims.

Having thus fully described the invention, what I claim as new and desire to secure by Letters Patent is:

1. Means for fighting fire in a ship which has outer side platings and inner compartments comprising: a sprayer in each compartment for discharging a fire extinguishing medium thereinto, piping leading from the sprayer of each compartment to corresponding inlet fittings provided in at least one of said platings through which fire extinguishing medium may be fed from without said platings to a corresponding sprayer of a compartment, and valve-controlled means connected to said piping and adapted to conduct excess fire extinguishing medium collected in said compartmen from the latter fittings into said compartmen.

2. Means for fighting fire in a ship having a bilge and side platings, which define the interior of the ship divided into compartments comprising: a sprayer in each compartment for discharging a fire extinguishing medium thereinto, a plurality of inlet fittings, piping means leading from the sprayer of each compartment to a corresponding inlet fitting, said inlet fittings being provided in the side platings and being adapted to permit feeding of said fire extinguishing medium from without said platings to a corresponding sprayer, and conduit means including control means therefor leading from each inlet fitting to the bilge of the ship and adapted to establish through said control means communication from said bilge to said inlet fittings to thereby facilitate removal of fire extinguishing medium from said bilge.

3. Means for fighting fire in the interior of a ship and like structure which has a side wall and which is divided into compartments comprising: a closable inlet extending through the side wall in proximity to each of said compartments, a coupling element at each inlet to permit the connection of a hose to one of said inlets to thereby feed fire extinguishing medium to and through said one inlet, substantially horizontally directed piping connected to each inlet to thereby discharge such fire extinguishing medium within the corresponding compartments, and means extending from one of said compartments and connectable with another inlet to facilitate removal of said medium from within the interior of said ship therewithout.

4. Means for fighting fire within a ship having side walls defining compartments and at least one hold comprising: piping means within said compartments for selectively releasing therein a fire extinguishing fluid, said piping means extending through the side walls into said compartments respectively, closable inlets provided at the ends of said piping means in said side walls, additional piping means connecting control means therefor adapted to establish communication only from the hold of the ship to said inlets in said side walls, and coupling means at each of said inlets to permit connection of hoses to said inlets respectively, to feed fire extinguishing fluid to said compartments and to permit withdrawal of fire extinguishing fluid from the hold.

5. Means for fighting fire within a ship having compartments and a hold comprising: piping extending through said compartments for selectively releasing therein fire extinguishing fluid, said piping extending through the side walls into said compartments, respectively, closable inlets provided in said side walls forming the terminals of said piping, additional piping leading from said inlets to said hold from which extinguishing fluid may be withdrawn, respective check valves opening into the piping of said compartments and opening from the additional piping from the hold into said inlets, and respective means connectable with respective predetermined inlet means for fluid supply to and for fluid removal from said predetermined inlet means whereby extinguishing fluid may be withdrawn from the hold through one inlet means without interfering with the supply of extinguishing fluid through another inlet means.

6. A fire fighting system for vessels and like structures having opposite side walls; comprising a series of closable fitting means for the passage of fluid and disposed at predetermined locations thereon, a fluid supply conduit extending from an interior of said vessel, respectively, interconnecting said predetermined fitting means and extending
9. Intermediate said side walls, conduit means connected to said pipe means and extending angularly thereto toward the lowest part of the interior of said vessel, first valve means in communication with said conduit means and adapted to direct fluid flow from within said vessel through said conduit means and thence through said fitting means without the vessel, and second valve means in communication with said pipe means to direct fluid from selected fitting means to predetermined pipe means, all said fitting means being adapted for connection with a hose system for the supply of fluid from without said side walls into said vessel and for withdrawal of fluid from said lowest part within said vessel, respectively.

7. A fire fighting system for vessels and like structures having opposite side walls; comprising a series of closable fitting means for the passage of fire extinguishing fluid therethrough and disposed at predetermined locations in said side walls, pipe means within the interior of said vessel and in communication with predetermined fitting means whereby said pipe means extend intermediate said opposite side walls, conduit means connected to said pipe means and extending angularly thereto, first valve means in communication with said conduit means and adapted to direct fluid flow from within said vessel and through fitting means therewithout, and second valve means in communication with said pipe means to direct fluid flow from said fitting means to predetermined pipe means, selectively, said fitting means being adapted for connection with a hose system for supplying fluid from without said side walls into said vessel and for removing fluid from within said vessel respectively.

8. A fire fighting system according to claim 7, wherein said conduit means extend perpendicularly to said pipe means and in proximity to said fitting means within said vessel, said conduit means reaching toward the lowest part of said vessel.

9. A fire fighting system according to claim 7, including respective compartments within said vessel, and wherein respective fitting means and pipe means are substantially horizontally directed and in alignment with each other and communicating with respective compartments of said vessel.

10. A fire fighting system for vessels and like structures having opposite side walls; comprising a series of closable fitting means for the passage of fire extinguishing fluid therethrough and disposed at predetermined locations and in spaced apart relation to each other in lengthwise direction of said side walls and in a direction perpendicular thereto, pipe means extending within the interior of said vessel and in transverse direction between said side walls and oppositely located fitting means, and valve means joined to said pipe means and positioned adjacent said oppositely located fitting means, said valve means, respectively, opening into said pipe means from either of said fitting means in either of said side walls when said fire extinguishing fluid is supplied through said fitting means into said pipe means, said pipe means being provided with perforations to permit discharge of said fluid into the interior of said vessel.

JEAN C. ROCHET.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>82,767</td>
<td>Talcott</td>
<td>Oct. 6, 1888</td>
</tr>
<tr>
<td>389,025</td>
<td>Stevens</td>
<td>Sept. 4, 1888</td>
</tr>
<tr>
<td>404,386</td>
<td>Patterson</td>
<td>Dec. 1, 1891</td>
</tr>
<tr>
<td>402,322</td>
<td>Tull</td>
<td>Sept. 6, 1892</td>
</tr>
<tr>
<td>514,906</td>
<td>Barrett</td>
<td>Feb. 3, 1894</td>
</tr>
<tr>
<td>770,157</td>
<td>Gronwald</td>
<td>Jan. 3, 1893</td>
</tr>
<tr>
<td>953,061</td>
<td>Rulance</td>
<td>Mar. 29, 1910</td>
</tr>
<tr>
<td>1,483,028</td>
<td>Welsh</td>
<td>Feb. 5, 1924</td>
</tr>
<tr>
<td>1,626,182</td>
<td>Orr</td>
<td>May 10, 1927</td>
</tr>
<tr>
<td>1,830,973</td>
<td>Wheaton</td>
<td>Nov. 10, 1931</td>
</tr>
<tr>
<td>1,838,313</td>
<td>Kohr</td>
<td>Dec. 29, 1931</td>
</tr>
<tr>
<td>2,051,103</td>
<td>Pohlman</td>
<td>Aug. 15, 1936</td>
</tr>
<tr>
<td>2,052,384</td>
<td>Conran</td>
<td>Aug. 25, 1938</td>
</tr>
<tr>
<td>2,245,161</td>
<td>Martinet</td>
<td>June 10, 1941</td>
</tr>
<tr>
<td>2,346,505</td>
<td>Preuss</td>
<td>Apr. 11, 1944</td>
</tr>
<tr>
<td>2,402,202</td>
<td>Winslow</td>
<td>July 18, 1944</td>
</tr>
<tr>
<td>2,409,650</td>
<td>Wiggins</td>
<td>Oct. 22, 1946</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>703,016</td>
<td>France</td>
<td>Apr. 22, 1931</td>
</tr>
</tbody>
</table>