Abstract: The present invention relates to the antagonism of the effects of melanin-concentrating hormone (MCH) through the melanin concentrating hormone receptor which is useful for the prevention or treatment of eating disorders, weight gain, obesity, abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping, arousal, anxiety, depression, seizures, neurodegeneration and psychiatric disorders. The present invention is directed to the compounds of formula (I).

Title: ANTAGONIST OF MELANIN CONCENTRATING HORMONE AND THEIR USES
ANTAGONIST OF MELANIN CONCENTRATING HORMONE AND THEIR USES

Technical Field

The present invention relates to the antagonism of the effects of melanin-concentrating hormone (MCH) through the melanin concentrating hormone receptor which is useful for the prevention or treatment of eating disorders, weight gain, obesity, abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping, arousal, anxiety, depression, seizures, neurodegeneration and psychiatric disorders.

Background of the Invention

Obesity is a major cause and contributor to health problems such as type II diabetes, coronary heart disease, increased incidence of certain forms of cancer, and respiratory complications. It is a disease that is increasing at an alarming rate due to increased availability of high-fat diets, genetic susceptibility, and a more sedentary way of life in modern society. Obesity can be defined as weight gain resulting from a mismatch of energy intake and energy expenditure. Food intake and energy metabolism are regulated, in part, by the interaction of neuropeptides and their receptors. Recently, the role that the hormone leptin plays in controlling appetite has been elucidated.

Leptin is a peptide hormone produced by fat cells, regulating both food intake and metabolism by acting on leptin receptors in the hypothalamus. Increased fat stores leads to increased secretion of leptin, resulting in a signal to the hypothalamus to decrease food intake, whereas decreases in adiposity result in lower leptin levels and a stimulation of food intake. Melanin-concentrating hormone (MCH) has been identified as an orexigenic peptide that counterbalances the activity of leptin.

MCH is a cyclic 19 amino acid neuropeptide expressed in the zona incerta and lateral hypothalamus in response to both energy restriction and leptin deficiency. MCH is known to stimulate feeding when injected into the lateral ventricle of rats and the mRNA for MCH is upregulated in the hypothalamus of genetically obese mice (ob/ob) and in fasted control and ob/ob animals. Mice lacking MCH are hypophagic and lean with increased metabolic rate, whereas animals over-expressing MCH gain excess weight on both standard and high fat diets. MCH is thought to have effects on other nervous system functions as well (Nahon JL., The melanin-concentrating hormone: from the peptide to the gene. Crit Rev Neurobiol 8:221-
An orphan G-protein coupled receptor (GPCR) was recently identified as a receptor for MCH.

Although there exists current pharmacologic therapies used to treat obesity, none of the current therapies achieve the U.S. Food and Drug Administration criteria for benefit measured by a 5% difference in mean weight loss, as weight loss efficacy is diminished by reduction of patient adherence to pharmacological therapy due to side effects of the drugs. Some of the side effects associated with current therapies include increased heart rate and blood pressure, and uncontrolled excretion of fat in stools. Thus, there exists a medical need for agents capable of preventing or treating eating disorders, weight gain and obesity, that at the same time, have improved efficacy and safety.

Summary of the Invention

The present invention is directed to compounds of formula (I):

![Chemical Structure](image)

(I),

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₄ and R₅ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇Ncarbonyl, wherein R₆ and R₇ are independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;

R₅ is -(CH₂)₃-Y-A-B;

m is from 0-6;

A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;

B is a member selected from the group consisting of hydrogen, alkyl, aryl, arylC(O)-, arylS(O)₂-, arylalkenyl, aryloxalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)₂-, haloalkyl, R₈R₉N-, R₈R₉NC(O)-, R₈S- and R₉O-;

R₈ and R₉ are each independently a member selected from the group consisting of
hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, aryI(C(O)- and aryI(S(O))_2-;

R_6 is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle;
Y is a member selected from the group consisting of -C(O)-, -S-, -S(O)- and -S(O)_2-, or is absent;
R_6 is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and

R_7, R_8, R_9, and R_{10} are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R_7 and R_8 taken together with the carbon atom that they are attached form oxo;

with the following provisos P_1-P_4:
P_1 if Y is absent, m is 0 and if A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene,
then B is a member selected from the group consisting of hydrogen, alkyl, aryI(C(O)-, aryI(S(O))_2-, aryIalkenyl, aryIoxyalkyl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)_2-, haloalkyl, RsRfN-, RsRfNC(O)-, RsS- and RsO-; or

P_2 if Y is -C(O)-, m is 0 and A is absent,
then B is a member selected from the group consisting of hydrogen, alkyl, arylalkenyl, aryIoxyalkyl, cycloalkyl, heterocycle, haloalkyl, and RsRfNC(O)-; or

P_3 if Y is -C(O)-, A is absent and B is aryl or heterocycle,
then m is 1-6; or

P_4 if Y is -C(O)- and B is a member selected from the group consisting of aryI(C(O)-, aryI(S(O))_2-, heterocycleC(O)-, heterocycleS(O)_2-,
then A is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene.

The present invention also provides a method of treating disorders mediated by MCH through the MCH receptor comprising administering a therapeutically effective amount of a compound of formula (II),

![Chemical Structure](image)
or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₄ and R₅ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇Ncarbonyl, wherein R₆ and R₇ are independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;

R₅ is -(CH₂)ₘ-Y-A-B;

m is from 0-6;

A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;

B is a member selected from the group consisting of hydrogen, alkyl, aryl, arylC(O)-, arylS(O)₂-, arylalkenyl, aryloxyalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)₂-, haloalkyl, R₆R₇N-, R₆R₇NC(O)-, R₆S- and R₆O-;

R₆ and R₇ are each independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and arylS(O)₂-;

R₈ is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle;

Y is a member selected from the group consisting of -C(O)-, -S-, -S(O)- and -S(O)₂-, or is absent;

R₉ is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and

R₇, R₈, R₉, and R₁₀ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

In particular, one such disorder mediated by MCH through the MCH receptor is obesity. Other disorders that are mediated by MCH through the MCH receptor are abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration or psychiatric disorders. Therefore the compounds of the present invention are useful in treating disorder such as obesity, abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration or psychiatric disorders. Accordingly, the present invention provides a method for treating obesity, abnormalities in
reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration and psychiatric disorders comprising administering a therapeutically effective amount of a compound of formula (II).

According to another embodiment, the present invention is directed to a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (II) in combination with a pharmaceutically suitable carrier.

Detailed Description of the Invention

Definitions

As used throughout this specification and the appended claims, the following terms have the following meanings:

The term "alkoxy," as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.

The term "alkoxyalkylene," as used herein, refers to an alkoxy group, as defined herein, appended to the parent molecular moiety through an alkylene atom, as defined herein. Representative examples of alkoxyalkylene include, but are not limited to, methoxypropyl, methoxybutyl, ethoxypropyl, ethoxypentyl, propoxybutyl and propoxypetyl.

The term "alkyl," as used herein, refers to a straight or branched chain hydrocarbon containing from 1 to 10 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, and n-decyl.

The term "alkylcarbonyl," as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of alkylcarbonyl include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.

The term "alkylene," denotes a divalent group derived from a straight or branched chain hydrocarbon of from 1 to 10 carbon atoms. Representative examples of alkylene include, but are not limited to, -CH₂-, -CH₂CH₂-, -CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂-, and -CH₂CH(CH₃)CH₂-.

The term "alkylsulfonyl," as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfonyl group, as defined herein. Representative examples of alkylsulfonyl include, but are not limited to, methylsulfonyl and ethylsulfonyl.
The term "aryl," as used herein, refers to a monocyclic-ring system, or a bicyclic- or a tricyclic- fused ring system wherein one or more of the fused rings are aromatic. Representative examples of aryl include, but are not limited to, anthracenyl, azulenyl, fluorenyl, indanyl, indenyl, naphthyl, phenyl, and tetrahydronaphthyl.

The aryl groups of this invention can be substituted with 0, 1, 2, or 3 substituents independently a member selected from alkenyl, alkoxy, alkoxy carbonyl, alkyl, alkyl carbonyl, alkyl carboxyloxy, alkynyl, aryloxy, arylalkenyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, formyl, halogen, haloalkyl, heterocycle, hydroxy, hydroxy alkylene, nitro, -NR_{A}R_{B}, aryl and heterocycle, wherein aryl of said aryloxy, said aryl and said heterocycle can each be substituted with 0, 1, 2, or 3 substituents selected from the group consisting of alkenyl, alkoxy, alkoxy carbonyl, alkyl, alkyl carbonyl, carboxy, carboxy alkyl, cyano, cyano alkyl, halogen, haloalkyl, hydroxy, hydroxy alkyl and nitro.

The term "arylalkyl," as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of arylalkyl include, but are not limited to, benzyl, 2-phenylethyl, 3-phenylpropyl, and 2-naphth-2-ylethyl.

The term “arylalkenyl” as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through an alkenyl group, as defined herein. Representative examples of arylalkenyl include, but are not limited to, prop-1-enylbenzene, 1-(prop-1-enyl)naphthalene and the like.

The term "arylcarbonyl," as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of arylcarbonyl include, but are not limited to, benzoyl and naphthoyl.

The term “arylcarbonylalkyl” as used herein, refers to an arylcarbonyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of arylcarbonylalkyl include, but are not limited to, propiophenone, 1-(1-naphthyl)propan-1-one and the like.

The term "aryloxy," as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of aryloxy include, but are not limited to, phenoxy, naphthoxy, 3-bromophenoxy, 4-chlorophenoxy, 4-methylphenoxy, and 3,5-dimethoxyphenoxy.

The term "aryloxalkyl," as used herein, refers to an aryloxyl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of aryloxalkyl include, but are not limited to, 2-phenoxyethl, 3-naphth-2-oxypopropyl and 3-bromophenoxy methyl.

The term “arylsulfonyl” as used herein, refers to an aryl group, as defined herein,
appended to the parent molecular moiety through a sulfonyl group, as defined herein.
Representative examples of arylsulfonyl include but are not limited to (ethylsulfonyl)benzene, 1-(ethylsulfonyl)naphthalene and the like.

The term "biarylalkyl" as used herein, refers to two aryl groups, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of biarylalkyl include but are not limited to (1-phenylbutyl)benzene and the like.

The term "carbonyl," as used herein, refers to a -C(O)- group.

The term "cycloalkyl," as used herein, refers to a monocyclic, bicyclic, or tricyclic ring system. Monocyclic ring systems are exemplified by a saturated cyclic hydrocarbon group containing from 3 to 8 carbon atoms. Examples of monocyclic ring systems include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Bicyclic ring systems are exemplified by a bridged monocyclic ring system in which two non-adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of between one and three additional carbon atoms. Representative examples of bicyclic ring systems include, but are not limited to, bicyclo(3.1.1)heptane, bicyclo(2.2.1)heptane, bicyclo(2.2.2)octane, bicyclo(3.2.2)nonane, bicyclo(3.3.1)nonane, and bicyclo(4.2.1)nonane. Tricyclic ring systems are exemplified by a bicyclic ring system in which two non-adjacent carbon atoms of the bicyclic ring are linked by a bond or an alkylene bridge of between one and three carbon atoms. Representative examples of tricyclic-ring systems include, but are not limited to, tricyclo(3.3.1.0^2,7)nonane and tricyclo(3.3.1.1^3,7)decane (adamantane).

The cycloalkyl groups of this invention can be substituted with 0, 1, 2, or 3 substituents independently a member selected from alkenyl, alkoxy, alkoxy carbonyl, alkyl, alkyl carbonyl, alkyl carboxyloxy, alkenyl, aryl, aryloxy, aryalkenyl, carboxy, carboxyalkyl, cyano, cyanoalkyl, formyl, halogen, haloalkyl, heterocycle, hydroxy, hydroxyalkyl, nitro and -NR_A R_B wherein R_A and R_B are each independently a member selected from the group consisting of hydrogen, alkyl, alkylcarbonyl and alkyl formyl.

The term "halo" or "halogen," as used herein, refers to -Cl, -Br, -I or -F.

The term "haloalkoxy," as used herein, refers to at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. Representative examples of haloalkoxy include, but are not limited to, chloromethoxy, 2-fluoroethoxy, trifluoromethoxy, and pentafluoroethoxy.

The term "haloalkyl," as used herein, refers to at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of haloalkyl include, but are not limited to, chloromethyl, 2-fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.

The term "heterocycle" or "heterocyclic," as used herein, refers to a monocyclic,
bicyclic, or tricyclic ring system. Monocyclic ring systems are exemplified by any 3- or 4-
membered ring containing a heteroatom independently a member selected from oxygen,
nitrogen and sulfur; or a 5-, 6- or 7-membered ring containing one, two or three heteroatoms
wherein the heteroatoms are independently a member selected from nitrogen, oxygen and
sulfur. The 5-membered ring has from 0-2 double bonds and the 6- and 7-membered ring
have from 0-3 double bonds. Representative examples of monocyclic ring systems include,
but are not limited to, azetidinyl, azepanyl, aziridinyl, diazepinyl, 1,3-dioxolanyl, dioxanyl,
dithianyl, furyl, imidazolyl, imidazolinyl, imidazolidinyl, isothiazolyl, isothiazolindinyl,
isothiazolidinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, morpholinyl, oxadiazolyl,
oxadiazolinyl, oxadiazolidinyl, oxazolyl, oxazolinyl, oxazolidinyl, piperazinyl, piperidinyl,
pyranyl, pyrazinyl, pyrazolyl, pyrazolinyl, pyridinyl, pyridazinyl, pyrrolinyl, pyrrolidinyl,
pyrrolyl, pyrrolyl, pyrrolinyl, tetrahydrofuranyl, tetrahydrothienyl, tetrazinyl, tetrazolyl,
thiadiazolyl, thiadiazolinyl, thiadiazolidinyl, thiazolyl, thiazolinyl, thiazolidinyl, thienyl,
thiomorpholinyl, 1,1-dioxidothiomorpholinyl (thiomorpholine sulfone), thiopyranyl, triazinyl,
triazolyl, and trithianyl. Bicyclic ring systems are exemplified by any of the above
monocyclic ring systems fused to an aryl group as defined herein, a cycloalkyl group as
defined herein, or another monocyclic ring system. Representative examples of bicyclic ring
systems include but are not limited to, for example, benzimidazolyl, benzodioxinyl,
benzothiazolyl, benzothienyl, benzotiazolyl, benzoazolyl, benzo furan, benzopyranyl,
benzo thiopyranyl, cinnolinyl, indazolyl, indolyl, 2,3-dihydroindolyl, indolizinyl,
naphthyridinyl, isobenzofuranyl, isobenzothienyl, isoindolyl, isoquinolinyl, phthalazinyl, 4H-
pyrido(1,2-a)pyrimidin-4-one, pyranopyridinyl, quinolinyl, quinolizinyl, quinoxalinyln,
quinoxalinyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, and thiopyranopyridinyl.
Tricyclic rings are exemplified by any of the above bicyclic ring systems fused to an
aryl group as defined herein, a cycloalkyl group as defined herein, or a monocyclic ring
system. Representative examples of tricyclic ring systems include, but are not limited to,
acridinyl, carbazolyl, carbolinyl, dibenzo(b,d)furanyl, dibenzo(b,d)thienyl, naphtho(2,3-
b)furan, naphtho(2,3-b)thienyl, phenazinyl, phenothiazinyl, phenoazinyl, thianthrenyl,
thioxanthetyl and xanthenyl.

The heterocycles of this invention can be substituted with 0, 1, 2, or 3 substituents
independently a member selected from alkenyl, alkoxy, alkoxycarbonyl, alkyl, alkylcarbonyl,
alkylcarbonyloxy, alkynyl, aryl, aryloxy, aroylalkenyl, carboxy, carboxyalkyl, cyano,
cyanoalkyl, formyl, halogen, haloalkyl, heterocycle, hydroxy, hydroxyalkyl, nitro and -
NR,R, wherein aryl of said aryloxy, aryl of said aroylalkenyl, said aryl and said heterocycle
can be substituted with 0, 1, 2, or 3 substituents selected from the group consisting of
alkenyl, alkoxy, alkoxycarbonyl, alkyl, alkylcarbonyl, carboxy, carboxyalkyl, cyano,
cyanoalkyl, halogen, haloalkyl, hydroxy, hydroxyalkyl and nitro.
The term "heterocyclealkyl," as used herein, refers to a heterocycle, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of heterocyclealkyl include, but are not limited to, pyridin-3-ylmethyl and 2-pyrimidin-2-ylpropyl.

The term "hydroxy," as used herein, refers to an -OH group.

The term "hydroxyalkylene," as used herein, refers to a hydroxy group, as defined herein, appended to the parent molecular moiety through an alkylene group, as defined herein. Representative examples of hydroxyalkylene include, but are not limited to, hydroxybutyl, hydroxypentyl and hydroxyhexyl.

The term "oxo," as used herein, refers to a =O moiety.

The term "sulfonyl," as used herein, refers to a -SO_2- group.

The present invention is directed to compounds of formula (I), wherein R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_10, R_A, R_B, R_C, R_D, R_E, R_F, A, B, Y and m are defined herein.

The present invention is also directed to a method of treating disorders mediated by MCH through the MCH receptor.

As antagonists of MCH action upon the MCH receptor, therefore, the compounds of the present invention are useful in treating disorders that are mediated by MCH through the MCH receptor. Disorders that are mediated by MCH through the MCH receptor are obesity, abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration or psychiatric disorders. Therefore the compounds of the present invention are useful in treating obesity, abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration or psychiatric disorders.

In the principal embodiment of the present invention there is provided a method of treating disorders mediated by MCH through the MCH receptor comprising administration of a therapeutically effective amount of a compound of formula (I),

(I),

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein
R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₄ and R₅ are selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇NCarbonyl, wherein R₆ and R₇ are independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;

R₅ is -(CH₂)ₙ-Y-A-B;
m is 0-6;

A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;

B is a member selected from the group consisting of hydrogen, alkyl, aryl, arylC(O)-, arylS(O)₂-, arylalkenyl, arylalkoxy, arylalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)₂-, haloalkyl, R₈R₇N-, R₈R₇NC(O)-, R₈S- and R₈O-;

R₈ and R₇ are independently a member selected from the group consisting of hydrogen, alkyl, alkyIC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylIC(O)- and arylS(O)₂-;

R₉ is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle;

Y is a member selected from the group consisting of -C(O)-, -S-, -S(O)- and -S(O)₂-, or is absent;

R₆ is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and

R₇, R₈, R₉, and R₊₀ are independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo;

with the following provisos P₁-P₄:

P₁ if Y is absent, m is 0 and if A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene,

then B is a member selected from the group consisting of hydrogen, alkyl, arylC(O)-, arylS(O)₂-, arylalkenyl, arylalkoxy, arylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)₂-, haloalkyl, R₈R₇N-, R₈R₇NC(O)-, R₈S- and R₈O-; or

P₂ if Y is -C(O)-, m is 0 and A is absent,

then B is a member selected from the group consisting of hydrogen, alkyl, arylalkenyl, arylalkoxy, cycloalkyl, heterocycle, haloalkyl, and R₈R₇NC(O)-; or

P₃ if Y is -C(O)-, A is absent and B is aryl or heterocycle,

then m is 1-6; or

P₄ if Y is -C(O)- and B is a member selected from the group consisting of arylIC(O)-,
arylS(O)\(_2\)\(-\), heterocycleC(O)\(-\), heterocycleS(O)\(_2\)\(-\),

then A is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5\) is B and wherein B is heterocycle; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C, R_D, A\) and m are as defined in formula (I), which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5\) is \(-A-B\), A is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, B is heterocycle; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C, R_D\) and m are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5\) is \(-(CH_2)_m-C(O)-A-B\), m is from 0-6, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, B is a member selected from the group consisting of hydrogen, alkyl, aryl, aryIC(O)\(-\), aryIS(O)\(_2\)\(-\), arylalkenyl, aryloxyalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)\(-\), heterocycleS(O)\(_2\)\(-\), haloalkyl, \(R_ER_2N\)-, \(R_ER_2NC(O)\)-, \(R_ES-\) and \(R_ES-\), \(R_E\) and \(R_E\) are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)\(-\), aryl, arylalkyl, heterocycle, heterocyclealkyl, aryIC(O)\(-\) and aryIS(O)\(_2\)\(-\); and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C, R_D, R_G\) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5\) is \(-(CH_2)_m-C(O)-A-B\), m is from 3-6, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, B is a member selected from the group consisting of hydrogen, alkyl, aryl, aryIC(O)\(-\), aryIS(O)\(_2\)\(-\), arylalkenyl, aryloxyalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)\(-\), heterocycleS(O)\(_2\)\(-\), haloalkyl, \(R_ER_2N\)-, \(R_ER_2NC(O)\)-, \(R_ES-\) and \(R_ES-\), \(R_E\) and \(R_E\) are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)\(-\), aryl, arylalkyl, heterocycle, heterocyclealkyl, aryIC(O)\(-\) and aryIS(O)\(_2\)\(-\); and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C, R_D, R_G\) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5\) is \(-(CH_2)_m-C(O)-A-B\), m is 0, A is absent, B is a member selected from the group consisting of ary1, arylalkenyl, aryloxyalkyl, biaryl and heterocycle; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C, R_D\) are as defined in formula (I) which is useful for the treatment of obesity.
According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is \(-(\text{CH}_2)\text{m-}
C(O)-\text{A-B, m is 0, A is a member selected from the group consisting of alkoxyalkylene, alkyne and hydroxyalkylene, B is a member selected from the group consisting of arylC(O)-, arylNC(O)-, arylS(O)\text{2-}, heterocycleC(O)-
, heterocycleNC(O)- and heterocycleS(O)\text{2-}; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are as defined in formula (I) which is useful for the treatment of obesity.}

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is \(-(\text{CH}_2)\text{m-}
C(O)-\text{A-B, m is from 1-6, A is absent, B is a member selected from the group consisting of aryl and heterocycle; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are as defined in formula (I) which is useful for the treatment of obesity.}

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is \(-(\text{CH}_2)\text{m-}
C(O)-\text{A-B, m is from 3-6, A is absent, B is a member selected from the group consisting of aryl and heterocycle; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are as defined in formula (I) which is useful for the treatment of obesity.}

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is \(-(\text{CH}_2)\text{m-}
C(O)-\text{A-B, m is 0, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkyne and hydroxyalkylene, B is a member selected from the group consisting of aryl and heterocycle and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are as defined in formula (I) which is useful for the treatment of obesity.}

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is \(-(\text{CH}_2)\text{m-}
C(O)-\text{A-B, m is from 0-6, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkyne and hydroxyalkylene, B is R₉R₇N-, R₈ and R₉ are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and aryI(S(O)\text{2-}; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are as defined in formula (I) which is useful for the treatment of obesity.}

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is \(-(\text{CH}_2)\text{m-}
C(O)-\text{A-B, B is R₉R₇N-, R₈ is a member selected from the group consisting of alkylC(O)-, arylC(O)- and aryI(S(O)\text{2-}, m is 0, A is alkyne; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are as defined in formula (I) which is useful for the treatment of obesity.}

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is \(-(\text{CH}_2)\text{m-}
C(O)-\text{A-B, B is R₉R₇N-, R₈ is a member selected from the group consisting of aryl, arylalkyl, heterocycle and heterocyclealkyl, m is 0, A is
A is absent; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, Rₐ, Rₙ, Rₖ, Rₗ, Rₘ are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is -(CH₂)ₘ-C(O)-A-B, m is from 0-6, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, B is R₇R₉NC(O)-, R₇ and R₉ are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and arylS(O)₂; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, Rₐ, Rₙ, Rₖ, Rₗ and Rₘ are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is -(CH₂)ₘ-C(O)-A-B, m is from 3-6, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, B is R₇R₉NC(O)-, R₇ and R₉ are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and arylS(O)₂; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, Rₐ, Rₙ, Rₖ, Rₗ and Rₘ are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is -(CH₂)ₘ-C(O)-A-B, m is 0, A is alkylene, B is R₇R₉NC(O)-, R₇ is a member selected from the group consisting of aryl, arylalkyl, heterocycle and heterocyclealkyl, and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, Rₐ, Rₙ, Rₖ, Rₗ and Rₘ are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is -(CH₂)ₘ-C(O)-A-B, m is from 0-6, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, B is a member selected from the group consisting of R₉S- and R₉O-, R₉ is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, Rₐ, Rₙ, Rₖ, Rₗ and Rₘ are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein R₅ is -(CH₂)ₘ-C(O)-A-B, m is from 3-6, A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, B is a member selected from the group consisting of R₉S- and R₉O-, R₉ is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle; and R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, Rₐ, Rₙ, Rₖ, Rₗ and Rₘ are as defined in formula (I) which is useful for the treatment of obesity.
member selected from the group consisting of \(R_6 S^- \) and \(R_6 O^- \). \(R_6 \) is a member selected from the group consisting of alkyl, aryl, arylalkyl, heterocycle and heterocyclealkyl; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C \) and \(R_D \) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5 = -(CH_2)_m-C(O)-A-B \), \(m \) is 0, \(A \) is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, \(B \) is a member selected from the group consisting of alkyl, cycloalkyl and haloalkyl; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C \) and \(R_D \) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5 = -(CH_2)_m-S(O)_2-A-B \), \(m \) is from 0-6, \(A \) is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, \(B \) is a member selected from the group consisting of alkyl, aryl, arylalkenyl, cycloalkyl and heterocycle; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C \) and \(R_D \) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5 = -(CH_2)_m-S(O)_2-A-B \), \(m \) is from 3-6, \(A \) is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene, \(B \) is a member selected from the group consisting of alkyl, aryl, arylalkenyl, cycloalkyl and heterocycle; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C \) and \(R_D \) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5 = -(CH_2)_m-S(O)_2-A-B \), \(m \) is 0, \(A \) is absent, \(B \) is a member selected from the group consisting of aryl and heterocycle; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C \) and \(R_D \) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5 = -(CH_2)_m-S(O)_2-A-B \), \(m \) is 0, \(A \) is alkylene, \(B \) is a member selected from the group consisting of aryl and heterocycle; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C \) and \(R_D \) are as defined in formula (I) which is useful for the treatment of obesity.

According to a further embodiment of the present invention there is provided a compound of formula (I) wherein \(R_5 = -(CH_2)_m-S(O)_2-A-B \), \(m \) is 0, \(A \) is alkylene, \(B \) is a member selected from the group consisting of alkyl and cycloalkyl; and \(R_1, R_2, R_3, R_4, R_6, R_7, R_8, R_9, R_{10}, R_A, R_B, R_C \) and \(R_D \) are as defined in formula (I) which is useful for the treatment of obesity.
The present invention provides a method of treating disorders mediated by MCH through the MCH receptor comprising administering a therapeutically effective amount of a compound of formula (II),

![Chemical Structure](image)

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are each independently selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₆R₇N- wherein R₆ and R₇ are selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇Ncarbonyl, wherein R₈ and R₉ are independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;

R₅ is \(-(CH₂)_mY-A-B;\)

m is from 0-6;

A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;

B is a member selected from the group consisting of hydrogen, alkyl, aryl, arylC(O)-, arylS(O)₂-, arylalkenyl, aryloxyalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)₂-, haloalkyl, R₆R₇N-, R₆R₇NC(O)-, R₉S- and R₉O-;

R₆ and R₇ are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and arylS(O)₂-;

R₈ is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle;

Y is a member selected from the group consisting of -C(O)-, -S-, -S(O)- and -S(O)₂-, or is absent;

R₉ is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and

R₇, R₈, R₉, and R₁₀ are independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.
In particular, one such disorder mediated by MCH through the MCH receptor is obesity. Accordingly, the present invention provides a method for treating obesity comprising administering a therapeutically effective amount of a compound of formula (II).

Other disorder mediated by MCH through the MCH receptor are abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration and psychiatric disorders. Accordingly, the present invention provides a method for treating abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration and psychiatric disorders by inhibiting the effects of melanin concentrating hormone (MCH) through the melanin concentrating hormone receptor, comprising administering a therapeutically effective amount of a compound of formula (II).

According to another embodiment, the present invention is directed to a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (II) in combination with a pharmaceutically suitable carrier.

The present compounds can exist as therapeutically suitable salts. The term "therapeutically suitable salt," refers to salts or zwitterions of the compounds which are water or oil-soluble or dispersible, suitable for treatment of disorders without undue toxicity, irritation, and allergic response, commensurate with a reasonable benefit/risk ratio, and effective for their intended use. The salts can be prepared during the final isolation and purification of the compounds or separately by reacting an amino group of the compounds with a suitable acid. Representative salts include acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, glycerophosphate, hemisulfate, heptanoate, hexanoate, formate, isethionate, fumarate, lactate, maleate, methanesulfonate, naphthylaminesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, oxalate, maleate, pivalate, propionate, succinate, tartrate, trichloroacetic, trifluoroacetic, glutamate, para-toluencesulfonate, undecanoate, hydrochloric, hydrobromic, sulfuric, phosphoric, and the like. The amino groups of the compounds can also be quaternized with alkyl chlorides, bromides, and iodides such as methyl, ethyl, propyl, isopropyl, butyl, lauryl, myristyl, stearyl, and the like.

Basic addition salts can be prepared during the final isolation and purification of the present compounds by reaction of a carboxyl group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation such as lithium, sodium, potassium, calcium, magnesium, or aluminum, or an organic primary, secondary, or tertiary amine. Quaternary amine salts derived from methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, N,N-dimethylaniline, N-
methylpiperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, N,N-dibenzylphenethylamine, 1-ephenamine, and N,N'-dibenzylethlenediamine, ethylenediamine, ethanolamine, diethanolamine, piperidine, piperazine, and the like, are contemplated as being within the scope of the present invention.

The present compounds can also exist as therapeutically suitable esters and prodrugs. The term "therapeutically suitable esters and prodrug," refers to those esters and prodrugs or zwitterions which are suitable for use in contact with the tissues of patients without undue toxicity, irritation, and allergic response, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use. The term "prodrug," refers to compounds which are rapidly transformed in vivo to the parent compounds of formula (I-II) for example, by hydrolysis in blood. The term "therapeutically suitable ester," refers to compounds which are rapidly transformed in vivo to the parent compounds of formula (I-II) for example, by hydrolysis in blood. The term "therapeutically suitable ester," refers to alkoxyacylonyl groups appended to the parent molecule on an available carbon atom. More specifically, a "therapeutically suitable ester," may exist on one or more available aryl, cycloalkyl and heterocycle group as defined herein.

Asymmetric centers can exist in the present compounds. Individual stereoisomers of the compounds are prepared by synthesis from chiral starting materials or by preparation of racemic mixtures and separation by conversion to a mixture of diastereomers followed by separation or recrystallization, chromatographic techniques, or direct separation of the enantiomers on chiral chromatographic columns. Starting materials of particular stereochemistry are either commercially available or are made by the methods described herein below and resolved by techniques well-known in the art.

Geometric isomers can exist in the present compounds. The invention contemplates the various geometric isomers and mixtures thereof resulting from the disposal of substituents around a carbon-carbon double bond, a cycloalkyl group, or a heterocycloalkyl group. Substituents around a carbon-carbon double bond are designated as being of Z or E configuration and substituents around a cycloalkyl or heterocycloalkyl are designated as being of cis or trans configuration.

Therapeutic compositions of the present compounds comprise an effective amount of the same formulated with one or more therapeutically suitable excipients. The term "therapeutically suitable excipient," as used herein, represents a non-toxic, solid, semi-solid or liquid filler, diluent, encapsulating material, or formulation auxiliary of any type. Examples of therapeutically suitable excipients include sugars; cellulose and derivatives thereof; oils; glycols; solutions; buffering, coloring, releasing, coating, sweetening, flavoring, and perfuming agents; and the like. These therapeutic compositions can be administered parenterally, intracisternally, orally, rectally, or intraperitoneally.
Liquid dosage forms for oral administration of the present compounds comprise formulations of the same as emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to the compounds, the liquid dosage forms can contain diluents and/or solubilizing or emulsifying agents. Besides inert diluents, the oral compositions can include wetting, emulsifying, sweetening, flavoring, and perfuming agents. Injectable preparations of the present compounds comprise sterile, injectable, aqueous and oleaginous solutions, suspensions or emulsions, any of which can be optionally formulated with parenterally suitable diluents, dispersing, wetting, or suspending agents. These injectable preparations can be sterilized by filtration through a bacterial-retaining filter or formulated with sterilizing agents which dissolve or disperse in the injectable media.

Antagonism of the effects of MCH through the MCH receptor by the compounds of the present invention can be delayed by using a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compounds depends upon their rate of dissolution which, in turn, depends on their crystallinity. Delayed absorption of a parenterally administered compound can be accomplished by dissolving or suspending the compound in oil. Injectable depot forms of the compounds can also be prepared by microencapsulating the same in biodegradable polymers. Depending upon the ratio of compound to polymer and the nature of the polymer employed, the rate of release can be controlled. Depot injectable formulations are also prepared by entrapping the compounds in liposomes or microemulsions which are compatible with body tissues.

Solid dosage forms for oral administration of the present compounds include capsules, tablets, pills, powders, and granules. In such forms, the compound is mixed with at least one inert, therapeutically suitable excipient such as a carrier, filler, extender, disintegrating agent, solution retarding agent, wetting agent, absorbent, or lubricant. With capsules, tablets, and pills, the excipient can also contain buffering agents. Suppositories for rectal administration can be prepared by mixing the compounds with a suitable non-irritating excipient which is solid at ordinary temperature but fluid in the rectum.

The present compounds can be micro-encapsulated with one or more of the excipients discussed previously. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric and release-controlling. In these forms, the compounds can be mixed with at least one inert diluent and can optionally comprise tableting lubricants and aids. Capsules can also optionally contain opacifying agents which delay release of the compounds in a desired part of the intestinal tract.

Transdermal patches have the added advantage of providing controlled delivery of the present compounds to the body. Such dosage forms are prepared by dissolving or dispensing the compounds in the proper medium. Absorption enhancers can also be used to increase the flux of the compounds across the skin, and the rate of absorption can be controlled by
providing a rate controlling membrane or by dispersing the compounds in a polymer matrix or gel.

Disorders caused or exacerbated by MCH are treated or prevented in a patient by administering to the patient, a therapeutically effective amount of compound of the present invention in such an amount and for such time as is necessary to achieve the desired result. The term "therapeutically effective amount," refers to a sufficient amount of a compound to effectively emeliorate disorders mediated by MCH, by antagonizing the effect of MCH through the MCH receptor at a reasonable benefit/risk ratio applicable to any medical treatment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the compound employed; the specific composition employed; the age, body weight, general health, sex, and diet of the patient; the time of administration, route of administration, rate of excretion; the duration of the treatment; and drugs used in combination or coincidental therapy.

The total daily dose of the present compounds in single or divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight. In general, treatment regimens comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compounds per day in single or multiple doses.

Specific compounds of formula (I) include, but are not limited to:

\textit{cis-}N,N'-bis(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(4-chlorophenyl)-N'-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl) urea;
\textit{cis-}N-(2,8-bis(trifluoromethyl)quinolin-4-yl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(7-chloroquinolin-4-yl)-N'-(8-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(7-chloroquinolin-4-yl)-N'-(7-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(7-chloroquinolin-4-yl)-N'-(2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(7-chloroquinolin-4-yl)-N'-(2-methylquinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(7-chloroquinolin-4-yl)-N'-(quinolin-3-ylmethyl)cyclohexane-1,4-diamine;
\textit{cis-}N-(4-bromobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(7-chloroquinolin-4-yl)-N'-(3,4-difluorobenzyl)cyclohexane-1,4-diamine;
\textit{cis-}N-(3-bromobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
\textit{cis-}N-(7-chloroquinolin-4-yl)-N'-(4-(dimethylamino)-1-
naphthyl)methyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(4-pyridin-2-ylbenzyl)cyclohexane-1,4-diamine;
cis-4-chloro-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide;
cis-N-(7-chloroquinolin-4-yl)-N’-(2-phenylquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(6-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-
diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(6-methyl-2-(trifluoromethyl)quinolin-4-
yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(6-fluoro-2-(trifluoromethyl)quinolin-4-
yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(8-chloro-2-(trifluoromethyl)quinolin-4-
yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-quinolin-4-ylcyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(5,7-dichloro-2-(trifluoromethyl)quinolin-4-
yl)cyclohexane-1,4-diamine;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-6-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-(3,4-
dichlorophenyl) methanesulfonamide;
cis-N-(7-chloroquinolin-4-yl)-N’-(1H-indol-6-ylmethyl)cyclohexane-1,4-diamine;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-(3,5-
dichlorophenyl) methanesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(3-(methylthio)phenyl)urea;
cis-N-(2-chlorophenyl)-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(2-(trifluoromethyl)phenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(3-(trifluoromethyl)phenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(4-(trifluoromethyl)phenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(4-(trifluoromethoxy)phenyl)urea;
cis-N-1,3-benzodioxol-5-yl-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-{3-((trifluoromethyl)thio)phenyl)urea;
cis-N-(3-bromophenyl)-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-(4-bromophenyl)-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(3,4-dichlorophenyl)urea;
cis-N,N'-bis((4E)-7-chloro-1-methylquinolin-4(1H)-ylidene)cyclohexane-1,4-diamine;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(2,4-dichlorophenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-(3,5-dichlorophenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-1-naphthylurea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N’-2-naphthylurea;
cis-N-benzyl-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}urea;
cis-N-(3-chlorophenyl)-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylbenzamide;
cis-2-amino-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluorobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-fluorobenzamide;
cis-4-chloro-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-2-bromo-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-3-bromo-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-4-bromo-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-cyanobenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(dimethylamino)benzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-cyanobenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(dimethylamino)benzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethyl)benzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethyl)benzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,3-dimethylbenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-dimethylbenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethoxy)benzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethylbenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethylbenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-dimethoxybenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethoxybenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethoxybenzamide;
cis-N’-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-benzodioxole-5-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4,5-trimethoxybenzamide;
cis-2,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-3,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-furamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-furamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethyl-3-furamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}thiophene-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}thiophene-3-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylthiophene-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-pyrrole-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methylthiophene-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethyl-1H-pyrrole-3-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,2,5-trimethyl-1H-pyrrole-3-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-thiazole-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-methyl-1H-pyrrole-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-thiazole-4-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-thiazole-5-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}isoxazole-5-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methyl-3-phenylisoxazole-4-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}pyridine-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxypyridine-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxynicotinamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methylpyrazine-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-3-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-8-methyl-4-oxo-4H-pyrido(1,2-a)pyrimidine-3-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methyl-1-phenyl-1H-pyrazole-4-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-oxo-4,5,6,7-tetrahydro-1-benzofuran-3-carboxamide;
cis-6-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2H-chromene-3-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-ethylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-4-methylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxy-4-methylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2-methylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-4-methylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,3-difluorobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-difluorobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-difluorobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-difluorobenzamide;
cis-2-(N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}glycyl)benzaldehyde;
cis-4-acetyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methoxy-4-methylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-ethoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(methylthio)benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-4-methoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-naphthamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-naphthamide;
cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide;
cis-2-(acetylamino)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-4(acetylamino)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-isopropoxybenzamide;
cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-fluoro-1-naphthamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-diethoxybenzamide;
cis-2-benzy1-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(2-phenylethyl)benzamide;
cis-2-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-methylbenzoyl)benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-iodobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-iodobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-iodobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-fluorophenyl)acetamide;
cis-di-3-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino)-1-(4-
fluorophenyl)propan-1-one;
 cis-5-((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-1-(4-
fluorophenyl)pentan-1-one;
 cis-N-(4,4-bis(4-fluorophenyl)butyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-
diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(4-phenylbutyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(5-phenylpenty1)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-difluorobenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-difluorophenyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3-fluorobenzyl)cyclohexane-1,4-diamine;
 cis-N-(3-chlorobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
 cis-N-(4-chlorobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3-(trifluoromethyl)benzyl)cyclohexane-1,4-
diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(4-(trifluoromethyl)benzyl)cyclohexane-1,4-
diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(4-phenoxybenzyl)cyclohexane-1,4-diamine;
 cis-N-(4-(benzyl oxy)benzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(2,4-dimethylbenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(2,5-dimethylbenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,4-dimethylbenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dimethylbenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dimethoxybenzyl)cyclohexane-1,4-diamine;
 cis-N-(1,3-benzodioxol-5-ylmethyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-
diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,4,5-trimethoxybenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(2,3-dichlorobenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(2,4-dichlorobenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(2,5-dichlorobenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,4-dichlorobenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dichlorobenzyl)cyclohexane-1,4-diamine;
 cis-N-(7-chloroquinolin-4-yl)-N'-phenylcyclohexane-1,4-diamine;
 cis-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}propane-1-sulfonamide;
 cis-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}butane-1-sulfonamide;
 cis-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
 cis-2-chloro-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}4-fluorobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} thiophene-2-sulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-
(trifluoromethoxy)benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylbenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylbenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-fluorobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluorobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-fluorobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyanobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-cyanobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-cyanobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-
dimethylbenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methoxybenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methoxybenzenesulfonamide;
cis-2-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide;
cis-N-(7-chloroquinolin-4-yl)-N’-(3,5-dimethylphenyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(2-fluorophenyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-fluorophenyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-2-naphthylcyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-fluoro-4-methylphenyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-1-naphthylcyclohexane-1,4-diamine;
cis-3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide;
cis-4-(2-chloro-6-nitrophenox)-N-{4-((7-chloroquinolin-4-
yl)amino)cyclohexyl} benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-
difluorobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-
difluorobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-propylbenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-isopropylbenzenesulfonamide;
cis-4-chloro-N-{5-((4-((7-chloroquinolin-4-
yl)amino)cyclohexyl) amino)sulfonyl}thien-2-yl} methylbenzamide;
cis-5-bromo-6-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} pyridine-3-
sulfonamide;
cis-4-tert-butyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide;
cis-3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-
fluorobenzenesulfonamide;

cis-N-{4-(((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)sulfonyl)phenyl}acetamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethoxybenzenesulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethoxybenzenesulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethyl)benzenesulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethyl)benzenesulfonamide;

cis-2,3-dichloro-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

201 cis-2,4-dichloro-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

cis-2,5-dichloro-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

cis-3,4-dichloro-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

cis-3,5-dichloro-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,1'-biphenyl-4-sulfonamide;

cis-2-bromo-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

cis-3-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

cis-4-bromo-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)benzenesulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethoxy)benzenesulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethylisoxazole-4-sulfonamide;

cis-(E)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2-phenylethanesulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-4-vinylbenzenesulfonamide;

cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)thiophene-2-sulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2,1,3-benzoxadiazole-4-sulfonamide;

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-3-nitrobenzenesulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-4-nitrobenzenesulfonamide;
cis-3-chloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-4-
methylbenzenesulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-quinoline-8-sulfonamide;
cis-5-chloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-1,3-dimethyl-1H-
pyrazole-4-sulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-2,1,3-benzothiadiazole-4-
sulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-2-methyl-5-
nitrobenzenesulfonamide;
cis-methyl 3-\{(7-chloroquinolin-4-
ynyl)amino\}cyclohexyl\}-sulfonyl thiophene-2-carboxylate;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-4-(1,1-
dimethylpropyl)benzenesulfonamide;
cis-4-butoxy-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-benzenesulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-5-isoxazol-3-yl thiophene-2-
sulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-1-(1S,4R)-7,7-dimethyl-2-
oxobicyclo(2.2.1)hept-1-yl) methanesulfonamide;
cis-2,5-dichloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-thiophene-3-
sulfonamide;
cis-4,5-dichloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-thiophene-2-
sulfonamide;
cis-7-chloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-2,1,3-benzoxadiazole-
4-sulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-4-
(methylsulfonyl)benzenesulfonamide;
cis-4-chloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-3-
nitrobenzenesulfonamide;
cis-6-chloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-3H-1\lambda\-imidazo(2,1-b)(1,3)thiazole-5-sulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-2-(trifluoroacetetyl)-1,2,3,4-
tetrahydropyridine-7-sulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-5-fluoro-2-
methylbenzenesulfonamide;
cis-4-chloro-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl\}-3-(triflu-
oroethyl)benzenesulfonamide;
cis-2,4,5-trichloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl} benzenesulfonamide;
cis-2,4,6-trichloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl} benzenesulfonamide;
cis-2,3,4-trichloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl} benzenesulfonamide;
cis-5-chloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-3-methyl-1-benzothiophene-2-sulfonamide;
cis-5-bromo-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-methoxybenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-nitro-4-(trifluoromethyl)benzenesulfonamide;
cis-N-{5-(((4-((7-chloroquinolin-4-y1)amino)cyclohexyl)amino)sulfonyl)thien-2-yl}methyl)benzamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-5-(2-(methylthio)pyrimidin-4-y1)thiophene-2-sulfonamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-3,5-bis(trifluoromethyl)benzenesulfonamide;
cis-2,6-dichloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-4-(trifluoromethyl)benzenesulfonamide;
cis-2-butoxy-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-5-(1,1-dimethylpropyl)benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-5-(phenylsulfonyl)thiophene-2-sulfonamide;
cis-4-(3-chloro-2-cyanophenoxy)-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl} benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-4-ethylbenzenesulfonamide;
cis-4-bromo-2,5-dichloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl} thiophene-3-sulfonamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-methoxy-5-methylbenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-nitrobenzenesulfonamide;
cis-2-chloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}isonicotinamide;
cis-2-chloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-6-methylisonicotinamide;
cis-2,6-dichloro-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}isonicotinamide;
cis-N-{4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-5-phenylpentanamide;
cis-N^2-benzoyl-N^1-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} glycaminamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-phenoxybutanamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(3-methyl-1H-indol-1-yl)propanamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(1-methyl-1H-benzimidazol-2-yl)propanamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(6-methoxy-3-oxo-2,3-dihydro-1H-inden-1-yl)acetamide;
cis-1-benzoyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} piperidine-4-carboxamide;
cis-N^1-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N^2-(4-nitrobenzoyl)-β-alaminamide;
cis-N^2-benzoyl-N^1-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-β-alaminamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-{(4-propoxyphenyl)urea};
cis-N-(5-tert-butyl-2-methoxyphenyl)-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-{2-furylmethyl}urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-{3-furylmethyl}urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyclohexylacetamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cycloheptylacetamide;
cis-2-([1R,4S]-bicyclo[2.2.1]hept-2-yl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} acetamide;
cis-2-(1-adamantyl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} acetamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-fluorophenyl)acetamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-(trifluoromethyl)phenyl)acetamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-(trifluoromethyl)phenyl) acetamide;
cis-3,5-difluoro-N-(4-{(6-fluoro-2-(trifluoromethyl)quinolin-4-y1)amino}cyclohexyl) benzamide;
cis-3,5-difluoro-N-(4-{(8-(trifluoromethoxy)-2-(trifluoromethyl)quinolin-4-y1)amino}cyclohexyl) benzamide;
cis-N-(4-{(5,7-dichloro-2-(trifluoromethyl)quinolin-4-yl)amino}cyclohexyl)-3,5-difluorobenzamide;
cis-3,5-difluoro-N-(4-{(6-methyl-2-(trifluoromethyl)quinolin-4-yl)amino}cyclohexyl) benzamide;
cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dichlorophenyl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N’-(3-methylphenyl)cyclohexane-1,4-diamine;
cis-N-(3,5-bis(trifluoromethyl)phenyl)-N’-(7-chloroquinolin-4-yl)cyclohexane-1,4-
diamine;
cis-N-1,1'-biphenyl-3-yl-N’-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-(trifluoromethyl)phenyl)cyclohexane-1,4-
diamine;
cis-4-(((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-2H-chromen-2-one;
cis-N,N’-bis(7-chloro-4-aminoquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-1,1'-biphenyl-3-yl-N’-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinazolin-4-yl)-N’-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-4-(((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-2H-chromen-2-one;
cis-N-4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl)|3,5-difluorobenzamide;
cis-N-4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl)|3,5-
dichlorobenzamide;
cis-N-4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl)|4-phenoxybutanamide;
cis-7-chloro-N-4-(((3-(trifluoromethyl)benzyl)amino)cyclohexyl)quinoline-2,4-
diamine;
cis-7-chloro-N-4-(((3-(trifluoromethoxy)benzyl)amino)cyclohexyl)quinoline-2,4-
diamine;
cis-7-chloro-N-4-(((3,5-dimethylbenzyl)amino)cyclohexyl)quinoline-2,4-
diamine;
cis-7-chloro-N-4-(((3,5-dichlorobenzyl)amino)cyclohexyl)quinoline-2,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-pyridin-2-ylcyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-isoquinolin-4-ylcyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-quinolin-3-ylcyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-((5-(4-nitrophenyl)-2-furyl)methyl)cyclohexane-
1,4-diamine;
cis-2-(((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-1,2-di-2-furylethanone;
cis-N-(7-chloroquinolin-4-yl)-N’-((2R)-1-(4-nitrophenyl)pyrrolidin-2-
yl)methyl)cyclohexane-1,4-diamine;
cis-3,5-difluoro-N-(4-(quinolin-4-yl)amino)cyclohexyl)benzamide;
cis-tert-butyl (2R)-2-(((7-chloroquinolin-4-yl)amino)cyclohexyl)methylpyrrolidine-1-carboxylate;
cis-N-(7-chloroquinolin-4-yl)-N’-1,4-dithiaspiro(4.5)dec-8-ylcyclohexane-1,4-
diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-((6-methylpyridin-2-yl)methyl)cyclohexane-1,4-
diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(2-thien-3-ylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-((2S)-1-(2-methoxybenzoyl)pyrrolidin-2-yl)methyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(thien-3-ylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(2-thien-2-ylethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(thien-2-ylmethyl)cyclohexane-1,4-diamine;
cis-6-((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione;
cis-6-((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)pyrimidine-2,4(1H,3H)-dione;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-(6-methylpyridin-2-yl)propyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-furylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-pyridin-2-ylpropyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-pyridin-3-ylpropyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-{((4R,5S)-2-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-4-yl)methyl} cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(2-(4-methyl-1,3-thiazol-5-yl)ethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(tetrahydrofuran-2-ylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(pyridin-3-ylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-{2-(3-(6-methylpyridin-2-yl)propoxy)ethyl} cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-{((2R)-1-(2-methoxybenzoyl)pyrrolidin-2-yl)methyl} cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(tetrahydrofuran-3-ylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(2-furylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-methylloxitran-3-yl)methyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-pyridin-4-ylpropyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(3-ethylotran-3-yl)methyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N’-(pyridin-2-ylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N'-(1H-imidazol-4-ylmethyl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N'{-((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl}cyclohexane-1,4-diamine;
cis-N-1,3-benzothiazol-2-yl-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-6-{[(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino]-3-methylpyrimidine-2,4(1H,3H)-dione;
(1S,2R,4S,5R)-N,N'-bis(7-chloroquinolin-4-yl)-2,5-dimethylcyclohexane-1,4-diamine;
(1S,2R,4S,5R)-N-(7-chloroquinolin-4-yl)-N'-(3,5-dimethylphenyl)-2,5-dimethylcyclohexane-1,4-diamine;
N-((1S,2R,4S,5R)-4-((7-chloroquinolin-4-yl)amino)-2,5-dimethylcyclohexyl)-3,5-difluorobenzamide;
5-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide;
3-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide;
(1S,2R,4S,5R)-N,N'-bis(7-chloroquinolin-4-yl)-2,5-dimethylcyclohexane-1,4-diamine;
4-((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-6-methyl-2H-chromen-2-one;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methyl-2-phenylpentanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-5-methylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,2-diphenylacetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2-hydroxybenzamide;
N-{(1S,2R,4S,5R)-4-((7-chloroquinolin-4-yl)amino)-2,5-dimethylcyclohexyl}-3,5-difluorobenzamide;
N-(7-chloroquinolin-4-yl)-N'-(2',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-diamine;
3-(5-acetylfuran-2-yl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide;
(2R)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methoxy-2-phenylacetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-5-methoxybenzamide;
(2S)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methoxy-2-phenylacetamide;
4-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}quinoline-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-methylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,6-dimethoxy nicotinamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylpentanamide;
N-(2-((4-((7-chloroquinolin-4-yl)amino)cyclohexyl) amino)-2-oxo-1-ethyl)-2-hydroxybenzamide;
3-chloro-N-((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-5-fluorobenzamide;
N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)pentanamide;
3'-amino-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-5-fluoro-1,1'-biphenyl-3-carboxamide;
 N-2-acetyl-N-1-~{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-L-leucinamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2-(3,5-difluorophenyl)acetamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-((4-methylpyrimidin-2-y1)thio)acetamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-5-fluoro-3'-hydroxy-1,1'-biphenyl-3-carboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-3'-hydroxy-1,1'-biphenyl-3-carboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-5-fluoro-3'-hydroxy-1,1'-biphenyl-3-carboxamide;
 N-{(5-bromopyridin-3-yl)-N-((7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-1H-indole-4-carboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)hexanamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)cyclopentanecarboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2-(3-methoxyphenoxy)acetamide;
 N-1-~{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N-2-~{(4-methylphenyl)sulfonyl)glycinamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)quinoxaline-2-carboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2-(3-methylphenoxy)acetamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2-cyclopentylacetamide;
 (2S)-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2-phenylbutanamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-2-methylenehexanecarboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-N'-phenylpentanediamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-3-phenylpropanamide;
 3-(4-chlorophenyl)-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)propanamide;
 4'-amino-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-5-fluoro-1,1'-biphenyl-3-carboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cycloheptanecarboxamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-4-oxo-4-thien-2-ylbutanamide;
 N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-3-methylcyclohexanecarboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-4-methoxybenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cinnoline-4-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylcyclohexanecarboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(2-methylphenoxy)acetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylbutanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cyclohexanecarboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(2,5-dimethoxyphenyl)propanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylpentanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-6-methoxybenzamide;
3'-acetyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4,4,4-trifluorobutanamide;
5-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-methylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(phenylsulfonyl)propanamide;
N-(7-chloroquinolin-4-yl)-N'-(4-methoxy-3,5-dimethylphenyl)cyclohexane-1,4-diamine;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-phenoxypropanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-thien-2-ylbutanamide;
3-(1,3-benzodioxol-5-yl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3,4-dimethylphenoxy)acetamide;
2-(4-chloro-2-methylphenoxy)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2'-hydroxy-1,1'-biphenyl-3-carboxamide;
4'-acetyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-6-methylnicotinamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-phenylbutanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(4-methoxyphenyl)propanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-5-pyridin-4-ylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}heptanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(4-methoxyphenyl)-4-oxobutanamide;
2-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}nicotinamide;
N-(4-(7-chloroquinolin-4-yl)amino)cyclohexyl)-3-(3-methoxyphenyl)propanamide;
2-(benzyloxy)-N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide;
N-(7-chloroquinolin-4-yl)-N'-(5-methyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-diamine;
6-(2-((4-(7-chloroquinolin-4-yl)amino)cyclohexyl){amino}-1,3-thiazol-4-yl)-3,4-
dihydroquinolin-2(1H)-one;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-hydroxy-5-iodobenzamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}butanamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-(3-phenoxyphenyl)acetamide;
N-(3-bromo-5-methylphenyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-cyclopropylacetamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2,2-dimethylpropanamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-fluoro-6-hydroxybenzamide;
N-(7-chloroquinolin-4-yl)-N'-(3-methyl-5-pyridin-4-ylphenyl)cyclohexane-1,4-
diamine;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}4-oxo-4-phenylbutanamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}3-fluoro-5-thien-3-ylbenzamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}3-fluoro-5-(E)-2-
phenylvinyl)benzamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-ethoxyacetamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-ethylbutanamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}1-phenylcyclopropane-carboxamide;
3-chloro-N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-hydroxybenzamide;
N-(7-chloroquinolin-4-yl)-N'-(4',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-
diamine;
N-(7-chloroquinolin-4-yl)-N'-(3',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-
diamine;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}3-fluoro-5-thien-2-ylbenzamide;
N-(7-chloroquinolin-4-yl)-N'-(4-(3,4-dihydro-2H-1,5-benzodioxepin-7-yl)-1,3-
thiazol-2-y)cyclohexane-1,4-diamine;
N-(7-chloroquinolin-4-yl)-N'-(4-methyl-5-phenyl-1,3-thiazole-2-yl)cyclohexane-1,4-
diamine;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-(4-
methylsulfonyl)phenyl)acetamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}8-hydroxyquinoline-7-carboxamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-(pyrimidin-2-ylthio)acetamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}2-hydroxy-1-naphthamide;
N-{4-(7-chloroquinolin-4-yl)amino)cyclohexyl}3,3-dimethylbutanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} adamantane-1-carboxamide;
N-(7-chloroquinolin-4-yl)-N'-(5-phenylpyridin-3-yl)cyclohexane-1,4-diamine;
(2R)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-4-
phenylbutanamide;
3'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} amino)-5'-methyl-1,1'-biphenyl-4-
ol;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methylpentanamide;
N'-{4-((2-N-methylamino-7-chloroquinolin-4-yl)amino)cyclohexyl}-7-chloro-N-
methylquinoline-2,4-diamine;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-methylcyclohexanecarboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-isopropylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxy-2-naphthamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} tetrahydrofuran-2-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-methylphenoxy)acetamide;
N-(7-chloroquinolin-4-yl)-N'-{(4-(4-methoxyphenyl)-1,3-thiazol-2-yl)cyclohexane-
1,4-diamine;
3'-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl) amino)carbonyl)-5'-fluoro-1,1'-
biphenyl-3-carboxylic acid;
3'-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl) amino)carbonyl)-5'-fluoro-1,1'-
biphenyl-4-carboxylic acid;
N-(7-chloroquinolin-4-yl)-N'-{(4,5-dimethyl-1,3-thiazol-2-yl)cyclohexane-1,4-
diamine; and
7-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} 4-hydroxyquinoline-3-
carboxamide.

Determination of Biological Activity

Assay for release of intracellular calcium:

Activation of the melanin concentrating hormone receptor (MCHR) by MCH induces
the release of Ca\(^{++}\) from intracellular stores. This intracellular calcium release is measured
using a fluorometric imaging plate reader (FLIPR™, Molecular Devices Corp.) in
conjunction with the Ca\(^{++}\)-sensitive dye Fluo-4. Release of Ca\(^{++}\) from intracellular stores
causes an increase in fluorescence of the dye that is proportional to Ca\(^{++}\) concentration.
Briefly, the assays are performed as follows. HEK293 cells expressing the murine MCHR
are plated overnight at 50,000 cells/well in 96-well plates. The following day, culture
medium is removed and replaced with 100 μl/well of D-PBS (+glucose and sodium pyruvate)
containing 2.5 μM Fluo-4AM (Molecular Probes), 0.01% Pluronic F-127 and 2.5 mM
probencid. Cells are loaded with the Fluo-4 dye for at least one hour at room temp. After
loading, the cells are washed gently to remove extracellular dye and 100 µl of D-PBS (+glucose and sodium pyruvate) is added to each well. Test compounds are prepared at 40 µM in 4% DMSO. The cell plate is placed in the FLIPR™ and 50 µl/well of test compound is delivered. The calcium signal is followed for 3 minutes to assay for potential agonist activity by the test compounds. Then 50 µl/well of 12 nM human MCH (in D-PBS containing 0.1% BSA) is added and the ligand-induced calcium signal is followed for an additional 3 minutes. Antagonist activity as determined by the test compounds ability to inhibit MCH induced Ca^{2+} flux is calculated as % inhibition as described by the following formula:

\[
\text{% inhibition} = (1 - ((\text{fTC} - \text{fB}) ÷ (\text{fMCH} - \text{fB}))) \times 100.
\]

\text{fTC} = \text{MCH-induced fluorescence in the presence of test compound;}
\text{fMCH} = \text{MCH-induced fluorescence in the absence of test compound;}
\text{fB} = \text{Baseline fluorescence.}

MCH (3 nM) usually elicits a response of 30,000 – 40,000 relative fluorescence units (RFU) with a baseline of ~1000 RFU. Fluo-4 fluorescence is measured at 488 nm, with an exposure of 0.40 sec. and F-stop = 2.0 and the laser set at 0.40-0.60 W constant light output.

The compounds of the present invention inhibit MCH induced fluorescence at a dose of 10 µM. In a preferred range, compounds of the present invention inhibit MCH induced fluorescence in a range of 75-100% inhibition of MCH at a dose of 10 µM. In a more preferred range, compounds of the present invention inhibit MCH induced fluorescence in a range of 90-100% inhibition of MCH at a dose of 10 µM.

Assay for the inhibition of MCH binding to MCHR:

1 µg per well of cell membrane preparations of CHO-K cells expressing the human MCHR1 is added to a v-bottom micro titer plate (Costar). The well volume is brought up to 89 µl using binding buffer (25mM Heps ph 7.4, 1 mM CaCl₂, 5 mM MgCl₂, 0.5% BSA). 1 µl of test compound, dissolved in 100% DMSO, is next added to the wells for a final concentration of 2 µM followed by 10 µl of ^125^I-MCH (NEN). The final concentration of ^125^I-MCH in each well is 50 pM. The plate is then placed on a titer plate shaker for 1 hour at room temperature. The samples are then transferred to a 0.1% PEI (Polyethylenimine, Sigma) treated glass fiber filter plate (Packard) using a Packard Filtermate Harvestor. The filter plate is washed three times using 200µl wash buffer (Binding buffer without BSA and with 0.5M NaCl). Microscint 20 (Packard) is added to all wells and the plate is sealed with Topseal A (Packard). CPM is measured from the plate using a microplate scintillation counter (Topcount, Packard).

The compounds of the present invention inhibit binding of ^125^I-MCH to human MCHR1 at a dose of 2 µM. In a preferred range, compounds of the present invention inhibit binding of ^125^I-MCH to human MCHR1 in a range of 75-100% inhibition of ^125^I-MCH at a
dose of 2 μM. In a more preferred range, compounds of the present invention inhibit binding of 125I-MCH to human MCHR1 in a range of 90-100% inhibition of 125I-MCH at a dose of 2 μM.

As antagonists of MCH action upon the MCH receptor, therefore, the compounds of the present invention are useful in treating disorders that are mediated by MCH through the MCH receptor. Disorders that are mediated by MCH through the MCH receptor are obesity, abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration or psychiatric disorders. Therefore the compounds of the present invention are useful in treating obesity, abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration or psychiatric disorders.

Therapeutic agents acting through MCH receptor may also be useful in treatment of sensory processing (Miller, C.L., Hruby, V.J., Matsunaga, T.O., Bickford, P.C.; Alpha-MSH

Therapeutic agents acting through MCH receptor may also be useful in treatment of memory (Monzon, M.E., De Barioglio, S.R.; Response to novelty after i.c.v. injection of melanin-concentrating hormone (MCH) in rats. Physiol Behav 67:813-817, 1999).

Therapeutic agents acting through MCH receptor may also be useful in treatment of seizure (Knigge, K.M., Wagner, J.E.; Melanin-concentrating hormone (MCH) involvement in pentylentetrazole (PTZ)-induced seizure in rat and guinea pig. Peptides 18:1095-1097, 1997) and in treatment of neurodegeneration or psychiatric disorders (Nahon, J.L.; The melanin-concentrating hormone: from the peptide to the gene. Crit Rev Neurobiol 8:221-262, 1994).

Synthetic Methods

The compounds and processes of the present invention will be better understood in connection with the following synthetic schemes which together illustrate the methods by which the compounds of the invention may be prepared. The groups R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 are as defined above unless otherwise noted below.
As shown in Scheme 1, compounds of formula (1) (Z is halogen) can be reacted under heated conditions with compounds of formula (2) (P is H or an optionally incorporated nitrogen protecting group such as but not limited to acetyl, tert-butoxycarbamate, benzylcarbamate and allylcarbamate), in the presence of base to form compounds of formula (3). Representative bases include but are not limited to triethylamine, diisopropylethylamine, N-methylmorpholine and sodium hydride. Examples of solvents used in these reactions include N-methylpyrrolidinone, N,N-dimethylformamide and dimethylsulfoxide. The reaction temperatures can range from between 60 °C to 230 °C and depends on the method and substrates chosen. Reaction times are typically between 10 minutes and 18 hours. When present, the optionally incorporated nitrogen protecting group can be removed to provide the amine (4) (Scheme 2), using standard conditions known to those skilled in the art.

As shown in Scheme 2, compounds of formula (4) can be reacted with compounds of formula (5) (wherein B is a member selected from the group consisting of aryl, arylalkenyl, aryloxyalkyl, biarylalkyl, cycloalkyl or heterocycle; A is absent or alkylen; Z is halide) in the presence of base under heated conditions to provide compounds of formula (6). Representative conditions including appropriate bases, solvents, reaction temperatures and reaction times that are used in Scheme 1, also are appropriate for the conversion of compounds of formula (4) to compounds of formula (6) in Scheme 2. Compounds of formula (4) and compounds of formula (5) (wherein A is absent) can also be reacted under heated
conditions in the presence of palladium reagents such as but not limited to
(1,1'-bis(diphenylphosphino)ferrocene)dichloropalladium(II) complex with dichloromethane
and the like in solvents such as tetrahydrofuran, dioxane or N,N-dimethylformamide to
provide compounds of formula (6). In addition, compounds of formula (4) and compounds of
formula (5) (wherein A is alkylene and Z is chloride) can be reacted under heated conditions
in the presence of potassium carbonate and sodium iodide in solvents such as acetonitrile or
N,N-dimethylformamide to provide compounds of formula (6).

![Scheme 3](image)

As shown in Scheme 3, the oxidation of compounds of formula (7) (wherein B is aryl,
arylalkenyl, aryloxalkyl, biarylalkyl, cycloalkyl or heterocycle; A is absent or alkylene)
utilizing reagents such as Dess-Martin periodinane in dichloromethane,
tetrapropylammonium perruthenate, the Swern oxidation or one of the other commonly
utilized oxidation techniques known to those skilled in the art will provide compounds of
formula (8). Compound of formula (8) can be reacted with compound of formula (4) in the
presence of acetic acid and MP-sodium cyanoborohydride to provide compounds of formula
(9). Typical solvents include but are not limited to tetrahydrofuran and dichloromethane.
Alternatively, in the reaction of Scheme 3, reagents such as but not limited to sodium
cyanoborohydride or borane THF complex can be substituted for MP-sodium
cyanoborohydride.
Alternatively, as shown in Scheme 4, the synthesis of a compound of formula (6) can be achieved in a reverse fashion using the same reaction conditions as mentioned in Schemes 1 and 2 by first reacting a compound of formula (2a) (P is an optionally incorporated nitrogen protecting group as described above) with a compound of formula (10) (wherein B is aryl, aryloxyalkyl, biarylalkyl, cycloalkyl or heterocycle; A is alkylene; Z is halide) to provide a compound of formula (11). Conditions required for removal of the amine protecting group (P) of a compound of formula (11) are commonly known by those skilled in the art to provide a compound of formula (12). A compound of formula (12) is reacted with a compound of formula (1) (Z is halogen) to provide the compound of formula (6) using conditions listed previously in Schemes 1 and 2.

As shown in Scheme 5, compounds of formula (4) can be reacted with compounds of formula (13) (wherein B is aryl, aryalkenyl, aryloxyalkyl, biarylalkyl, cycloalkyl or heterocycle; A is absent or alkylene) in the presence of MP-dicyclohexylcarbodiimide, N-
hydroxybenzotriazole and a base in a solvent to provide compounds of formula (14). Typical bases include but are not limited to di-isopropylethylamine or N-methylmorpholine. Examples of solvents used in these reactions include but are not limited to N,N-dimethylformamide and dichloromethane. These reactions are typically done at room temperature and reaction times are typically between 6 and 24 hours. Alternatively, in the reaction of Scheme 5, dicyclohexylcarbodiimide or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride can be substituted for MP-dicyclohexylcarbodiimide.

Scheme 6

Alternatively, compounds of formula (14) can be made by reacting compounds of formula (4) with compounds of formula (15) (wherein B is aryl, arylalkenyl, arlyloxyalkyl, biarylalkyl, cycloalkyl or heterocycle; A is absent or alkylene) in the presence of base in a solvent. Typical bases used in these reactions are the same as in Scheme (5). Typical solvents include but are not limited to tetrahydrofuran and N,N-dimethylformamide and reaction times are typically between 4 and 16 hours.

Alternatively, the synthesis of a compound of formula (14) can be achieved in a reverse fashion by reacting either compounds of formula (13) with compounds of formula (2a) (P is a nitrogen protecting group which is later removed prior to the next step) using the same reaction conditions as mentioned in Scheme 5 or by reacting compounds of formula (15) with compounds of formula (2a) using the same reaction conditions as mentioned in Scheme 6. The products would then be treated with compounds of formula (1) using conditions listed previously in Scheme 1 to provide a compounds of formula (14).
As shown in Scheme 7, compounds of formula (4) can be reacted with compounds of formula (15) (wherein B is aryl, arylalkenyl, aryloxyalkyl, biarylalkyl, cycloalkyl or heterocycle; A is absent or alkylene) in solvents such as but not limited to chloroform, dichloromethane and tetrahydrofuran, to provide compounds of formula (16). These reactions are done at room temperature and reaction times are typically between 6 and 24 hours.

Alternatively, the synthesis of a compound of formula (16) can be achieved in a reverse fashion by reacting compounds of formula (15) with compounds of formula (2a) (P is a nitrogen protecting group which is later removed prior to the second reaction in this sequence) using the same reaction conditions as mentioned in Scheme 7. The product would then be treated with compound of formula (1) to provide a compound of formula (16) using conditions listed previously in Scheme 1.

As shown in Scheme 8, compounds of formula (4) can be reacted with compounds of formula (17) (wherein B is aryl, arylalkenyl, aryloxyalkyl, biarylalkyl, cycloalkyl or heterocycle; A is absent or alkylene) in the presence of a base to provide compounds of formula (18). Typical bases include but are not limited to di-isopropylethylamine or N-methylmorpholine. Typical solvents include but are not limited to tetrahydrofuran and N,N-dimethylformamide and reaction times are between 4 and 16 hours.

Alternatively, the synthesis of a compound of formula (18) can be achieved in a
reverse fashion by reacting compounds of formula (17) with compounds of formula (2a) (P is a nitrogen protecting group which is later removed prior to the next step) using the same reaction conditions as mentioned in Scheme 8. The product would then be treated with compound of formula (1) to provide a compound of formula (18) using conditions listed previously in Scheme 1.

The present invention will now be described in connection with certain preferred embodiments which are not intended to limit its scope. On the contrary, the present invention covers all alternatives, modifications, and equivalents as can be included within the scope of the claims. Thus, the following examples, which include preferred embodiments, will illustrate the preferred practice of the present invention, it being understood that the examples are for the purposes of illustration of certain preferred embodiments and are presented to provide what is believed to be the most useful and readily understood description of its procedures and conceptual aspects.

Compounds of the invention were named by ACD/ChemSketch version 5.01 (developed by Advanced Chemistry Development, Inc., Toronto, ON, Canada) or were given names which appeared to be consistent with ACD nomenclature.

Example 1

cis-N,N'-bis(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

A solution of 4,7-dichloroquinoline (5.4 g, 28.1 mmol), 1,4-diaminocyclohexane (1.4 g, 12.3 mmol, 2:1 cis:trans), and triethylamine (3.6 g, 36.9 mmol) in 1-methyl-2-pyrrolidinone (7 ml) was heated to 150°C for 15 hours, cooled to room temperature, diluted with diethyl ether and water, and filtered. The residue was flash chromatographed through silica gel column with dichloromethane, methanol and triethylamine (8:1:1 ratio by vol) to provide the desired compound as white solid. MS (ESI (+)) Q/MS m/z 437 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.43 (d, 2 H), 8.41 (s, 2 H), 7.79 (d, 2 H), 7.46 (dd, 2 H), 6.92 (d, 2 H), 6.59 (d, 2 H), 3.77 (br.s, 2 H), 1.99 (m, 4 H), 1.83 (m, 4 H).

Example 2

cis-N-(4-chlorophenyl)-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}urea

A solution of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine (20 mg, 0.07 mmol) in chloroform (0.5 mL) at 20°C was treated with 4-chlorophenyl isocyanate (11 mg, 0.07 mmol). The mixture was shaken at room temperature for 18 hours then concentrated under reduced pressure. The compound was purified by reverse phase HPLC to provide the desired compound. MS (ESI (+)) m/e 429 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm
8.55 (s, 1 H), 8.52 (d, 1 H), 8.45 (d, 1 H), 7.83 (s, 1 H), 7.57 (d, 1 H), 7.41 (d, 2 H), 7.26 (d, 2 H), 6.70 (s, 1 H), 6.31 (d, 1 H), 3.78 (s, 1 H), 3.71 (s, 1 H), 1.63-1.93 (m, 8 H).

Example 3

cis-N-(2,8-bis(trifluoromethyl)quinolin-4-yl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

A solution of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine (20 mg, 0.07 mmol) in N-methylpyrrolidinone (0.5 mL) at 150 °C was treated with 4-chloro-2,8-bis(trifluoromethyl)quinoline (21 mg, 0.07 mmol), and triethylamine (10 µl, 0.07 mmol). The mixture was stirred at 150 °C for 18 hours then concentrated under reduced pressure. The compound was purified by reverse phase HPLC to provide the desired compound. MS (ESI(+))Q1MS m/z 539 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.81 (d, 1 H), 8.73 (d, 1 H), 8.20 (d, 1 H), 7.93 (d, 1 H), 7.83 (dd, 1 H), 7.71 (t, 1 H), 7.51 (d, 1 H), 7.05 (d, 1 H), 6.98 (s, 1 H), 4.12-4.02 (m, 2 H), 2.10-2.02 (m, 4 H), 1.93-1.86 (m, 4 H).

Example 4

cis-N-(7-chloroquinolin-4-yl)-N'-(8-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-8-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)quinoline. MS (ESI(+))Q1MS m/z 471 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 13.83-13.76 (br s, 1 H), 8.82 (d, 2 H), 8.75 (d, 1 H), 8.59 (d, 1 H), 8.50 (d, 1 H), 8.20 (br s, 1 H), 7.95 (d, 1 H), 7.81 (dd, 1 H), 7.70 (br s, 1 H), 7.03 (d, 1 H), 6.87 (br s, 1 H), 4.15-4.07 (m, 1 H), 4.06-3.98 (m, 1 H), 2.15-2.02 (m, 4 H), 1.95-1.84 (m, 4 H).

Example 5

cis-N-(7-chloroquinolin-4-yl)-N'-(7-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-7-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)quinoline. MS (ESI(+))Q1MS m/z 471 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.95 (d, 1 H), 8.90 (br s, 1 H), 8.80 (d, 1 H), 8.77 (d, 1 H), 8.73 (d, 1 H), 8.60 (d, 1 H), 8.26 (s, 1 H), 8.06 (d, 1 H), 7.97 (d, 1 H), 7.82 (dd, 1 H), 7.14 (d, 1 H), 7.04 (d, 1 H), 6.87 (br s, 1 H), 4.20-4.10 (m, 2 H), 2.15-2.03 (m, 4 H), 1.95-1.85 (m, 4 H).
Example 6

cis-N-(7-chloroquinolin-4-yl)-N'-((2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-2-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 471 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.75 (d, 1 H), 8.59 (d, 1 H), 8.50 (d, 1 H), 7.95 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.77(dd, 1 H), 7.60 (dd, 1 H), 7.21 (d, 1 H), 7.03 (d, 1 H), 6.82 (s, 1 H), 4.14-4.05 (m, 1 H), 4.02-3.95(m, 1 H), 2.13-2.00 (m, 4 H), 1.93-1.82 (m, 4 H).

Example 7

cis-N-(7-chloroquinolin-4-yl)-N'-((2-methylquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-2-methylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 417 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.72 (d, 1 H), 8.62 (d, 1 H), 8.59 (d, 1 H), 8.45 (d, 1 H), 7.95 (d, 1 H), 7.92 (dd, 1 H), 7.84 (d, 1 H), 7.82-7.78 (m, 1 H), 7.70(s, 1 H), 7.68 (ddd, 1 H), 6.98 (d, 1 H), 6.92 (s, 1 H), 4.15-4.05 (m, 2 H), 2.65 (s, 3 H), 2.13-2.00 (m, 4 H), 1.93-1.82 (m, 4 H).

Example 8

cis-N-(7-chloroquinolin-4-yl)-N'-((quinolin-3-ylmethyl)cyclohexane-1,4-diamine

A solution of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine (40 mg, 0.14 mmol) and 3-quinolinecarboxaldehyde (22 mg, 0.14 mmol) in dichloroethane (0.5 mL) and methanol (0.5 mL) was treated acetic acid (0.018 mg, 0.28 mmol) and MP-cyanoborohydride (100 mg, 0.436 mmol, Argonaut Technologies). The mixture was stirred at 60 °C for 18 hours, filtered, and purified by reverse phase HPLC to provide the desired compound. MS(ESI) m/e 417 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 9.17 (br.s, 1 H), 9.04 (d, 1 H), 8.78 (d, 1 H), 8.70 (d, 1 H), 8.61 (d, 1 H), 8.56 (d, 1 H), 8.10 (d, 1 H), 8.03 (dd, 1 H), 8.00 (d, 1 H), 7.85 (ddd, 1 H), 7.80 (dd, 1 H), 7.70 (ddd, 1 H), 6.98 (d, 1 H), 4.48 (br.s, 2 H), 4.12 (br.s, 1 H), 3.40 (br s, 1 H), 2.08-1.80 (m, 8 H).
Example 9

* cis-N-(7-chloroquinolin-4-yl)-N'-(quinolin-4-ylmethyl)cyclohexane-1,4-diamine *

The titled compound was prepared according to the method described in Example 8 by substituting 4-quinolinecarboxaldehyde for 3-quinolinecarboxaldehyde. MS(ESI) m/e 417 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 9.22 (br.s, 1 H), 9.02 (d, 1 H), 8.78 (d, 1 H), 8.68 (d, 1 H), 8.61 (d, 1 H), 8.26 (d, 1 H), 8.15 (d, 1 H), 7.99 (d, 1 H), 7.88 (dd, 1 H), 7.80 (dd, 1 H), 7.77 (dd, 1 H), 7.76 (d, 1 H), 6.98 (d, 1 H), 4.80 (br.s, 2 H), 4.18 (br.s, 1 H), 3.51 (br s, 1 H), 2.20-1.80 (m, 8 H).

Example 10

* cis-N-(4-bromobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine *

The titled compound was prepared according to the method described in Example 8 by substituting 4-bromobenzaldehyde for 3-quinolinecarboxaldehyde. MS(ESI) m/e 446 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.98 (br.s, 1 H), 8.77 (d, 1 H), 8.60 (d, 1 H), 8.59 (d, 1 H), 7.98 (d, 1 H), 7.78 (dd, 1 H), 7.67(d, 2 H), 7.50 (d, 2 H), 6.95 (d, 1 H), 4.21 (br.s, 2 H), 4.08 (m, 1 H), 3.23 (m, 1 H), 2.12-1.77 (m, 8 H).

Example 11

* cis-N-(7-chloroquinolin-4-yl)-N'-(3,4-difluorobenzyl)cyclohexane-1,4-diamine *

The titled compound was prepared according to the method described in Example 8 by substituting 3,4-difluorobenzaldehyde for 3-quinolinecarboxaldehyde. MS(ESI) m/e 402 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 9.05 (br.s, 1 H), 8.77 (d, 1 H), 8.65 (d, 1 H), 8.60 (d, 1 H), 7.99 (d, 1 H), 7.78 (dd, 1 H), 7.65 (dd, 1 H), 7.55 (dd, 1 H), 7.40 (dd, 1 H), 6.95 (d, 1 H), 4.23 (br.s, 2 H), 4.09 (m, 1 H), 3.25 (m, 1 H), 2.12-1.77 (m, 8 H).

Example 12

* cis-N-(3-bromobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine *

The titled compound was prepared according to the method described in Example 8 by substituting 3-bromobenzaldehyde for 3-quinolinecarboxaldehyde. MS(ESI) m/e 446 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 9.01 (br.s, 1 H), 8.78 (d, 1 H), 8.65 (d, 1 H), 8.60 (d, 1 H), 8.00 (d, 1 H), 7.80 (s, 1 H), 7.77 (dd, 1 H), 7.65 (d, 1 H), 7.55 (d, 1 H), 7.42 (dd, 1 H), 6.95 (d, 1 H), 4.22 (br.s, 2 H), 4.10 (m, 1 H), 3.25 (m, 1 H), 2.12-1.77 (m, 8 H).
Example 13

cis-N-(7-chloroquinolin-4-yl)-N’-{4-(dimethylamino)-1-naphthyl}methyl)cyclohexane-1,4-
diamine

The titled compound was prepared according to the method described in Example 8 by substituting 4-dimethylamino-1-naphthaldehyde for 3-quinolinecarboxaldehyde. MS(ESI) m/e 459 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.82 (br.s, 1 H), 8.78 (d, 1 H), 8.62 (d, 1 H), 8.61 (d, 1 H), 8.26 (dd, 1 H), 8.15 (dd, 1 H), 7.99 (d, 1 H), 7.80 (dd, 1 H), 7.67-7.58 (m, 3 H), 7.18 (d, 1 H), 6.95 (d, 1 H), 4.62 (m, 2 H), 4.15 (m, 1 H), 3.50 (m, 1 H), 2.18-1.80 (m, 8 H).

Example 14

cis-N-(7-chloroquinolin-4-yl)-N’-(4-pyridin-2-ylbenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 8 by substituting 4-(2-pyridine) benzaldehyde for 3-quinolinecarboxaldehyde. MS(ESI) m/e 443 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 9.01 (br.s, 1 H), 8.78 (d, 1 H), 8.70 (m, 1 H), 8.67 (d, 1 H), 8.60 (d, 1 H), 8.19 (d, 2 H), 8.05 (d, 1 H), 8.00 (d, 1 H), 7.95 (ddd, 1 H), 7.80 (dd, 1 H), 7.65 (d, 2 H), 7.40 (m, 1 H), 6.98 (d, 1 H), 4.35 (m, 2 H), 4.12 (m, 1 H), 3.30 (m, 1 H), 2.14-1.78 (m, 8 H).

Example 15

cis-4-chloro-N-{4-((7-chloroquinolin-4-yl) amino)cyclohexyl}benzenesulfonamide

A solution of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine (20 mg, 0.07 mmol) in pyridine (1.0 mL) at 20°C was treated with 4-chlorobenzenesulfonfyl chloride (15 mg, 0.07 mmol). The reaction was shaken at room temperature for 18 hours then concentrated. The crude compound was purified by reverse phase HPLC to provide the desired compound. MS (ESI (+)) m/e 450 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 8.88 (d, 1 H), 8.71 (d, 1 H), 8.53 (d, 1 H), 7.93 (d, 1 H), 7.87 (d, 2 H), 7.81 (dd, 1 H), 7.70 (d, 3 H), 6.95 (d, 1 H), 3.86 (br.s, 1 H), 3.14 (m, 1 H), 1.89 (m, 2 H), 1.74 (m, 4 H), 1.58 (m, 2 H).
Example 16

cis-N-(7-chloroquinolin-4-yl)-N'-(2-phenylquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-2-phenylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 479 (M+H)⁺.

Example 17

cis-N-(7-chloroquinolin-4-yl)-N'-(6-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-6-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 471 (M+H)⁺; ¹H NMR (300 MHz, DMSO) δ ppm 9.20 (br s, 1 H), 9.06 (d, 1 H), 8.80 (d, 1 H), 8.76 (d, 1 H), 8.67 (d, 1 H), 8.60 (d, 1 H), 8.25 (dd, 1 H), 8.10 (d, 1 H), 7.96 (d, 1 H), 7.82 (dd, 1 H), 7.13 (d, 1 H), 7.03 (d, 1 H), 4.20-4.10 (m, 2 H), 2.15-2.04 (m, 4 H), 1.99-1.88 (m, 4 H).

Example 18

cis-N-(7-chloroquinolin-4-yl)-N'-(6-methyl-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-6-methyl-2-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 485 (M+H)⁺; ¹H NMR (300 MHz, DMSO) δ ppm 8.88 (d, 1 H), 8.75 (d, 1 H), 8.59 (d, 1 H), 8.30 (s, 1 H), 7.94 (s, 1 H), 7.84-7.78 (m, 2 H), 7.61 (dd, 1 H), 7.10 (d, 1 H), 7.05 (d, 1 H), 6.79 (s, 1 H), 4.13-4.05 (m, 1 H), 4.00-3.93 (m, 1 H), 2.55 (s, 3 H), 2.17-2.00 (m, 4 H), 1.93-1.80 (m, 4 H).

Example 19

cis-N-(7-chloroquinolin-4-yl)-N'-(6-fluoro-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-6-fluoro-2-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 489 (M+H)⁺; ¹H NMR (300 MHz, DMSO) δ ppm 8.85 (d, 1 H), 8.72 (d, 1 H), 8.58 (d, 1 H), 8.40 (dd, 1 H), 8.00 (dd, 1 H), 7.94
(d, 1 H), 7.81 (dd, 1 H), 7.69 (ddd, 1 H), 7.17 (d, 1 H), 7.04 (d, 1 H), 6.85 (s, 1 H), 4.15-4.04 (m, 1 H), 4.02-3.95 (m, 1 H), 2.12-2.00 (m, 4 H), 1.94-1.83 (m, 4 H).

Example 20

cis-N-(7-chloroquinolin-4-yl)-N'-[(8-chloro-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloro-6-fluoro-2-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 505 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.85 (d, 1 H), 8.74 (d, 1 H), 8.58 (d, 1 H), 8.50 (dd, 1 H), 7.97 (dd, 1 H), 7.95 (d, 1 H), 7.81 (dd, 1 H), 7.57 (dd, 1 H), 7.39 (d, 1 H), 7.04 (d, 1 H), 6.93 (s, 1 H), 4.12-4.05 (m, 1 H), 4.04-3.98 (m, 1 H), 2.12-2.00 (m, 4 H), 1.94-1.83 (m, 4 H).

Example 21

cis-N-(7-chloroquinolin-4-yl)-N'-quinolin-4-ylcyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4-chloroquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 403 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.78 (d, 1 H), 8.72 (d, 1 H), 8.68 (d, 1 H), 8.60 (d, 1 H), 8.59 (d, 1 H), 7.98 (dd, 1 H), 7.98 (d, 1 H), 7.95 (m, 1 H), 7.81 (dd, 1 H), 7.75 (dd, 1 H), 7.03 (d, 1 H), 7.01 (d, 1 H), 4.18-4.10 (m, 2 H), 2.15-2.03 (m, 4 H), 1.96-1.86 (m, 4 H).

Example 22

cis-N-(7-chloroquinolin-4-yl)-N'-(5,7-dichloro-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 4,5,7-trichloro-2-trifluoromethylquinoline for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 540 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.76 (d, 1 H), 8.55 (d, 1 H), 8.00 (d, 1 H), 7.97 (d, 1 H), 7.82 (d, 1 H), 7.78-7.71 (m, 3 H), 7.00 (d, 1 H), 6.95 (s, 1 H), 4.18-4.10 (m, 1 H), 4.05-3.98 (m, 1 H), 2.10-2.01 (m, 4 H), 1.96-1.86 (m, 4 H).

51
Example 23

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-6-carboxamide

Example 23A

cis-N-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

A mixture of 4,7-dichloroquinoline (2g, 10.2 mmol) and 1,4-cyclohexanediamine (2.5g, 21.9 mmol) was heated at 250°C for 15 hours, cooled to room temperature, diluted with ethanol, and filtered. The residue was extracted with chloroform from 50% NaOH solution. The extract was dried with Na₂SO₄ and MgSO₄, filtered and concentrated to give the desired compound. MS (ESI(+)) Q1 MS m/z 276 (M+H)⁺.

Example 23B

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-6-carboxamide

A mixture Example 23A (50mg, 0.18 mmol), indole-6-carboxylic acid (30mg, 0.18 mmol), solid supported dicyclohexanecarbodiimide (0.36 mmol), 1-hydroxy-7-azabenzotriazole (5mg, 0.036 mmol) and diisopropylethylamine (46mg, 0.36 mmol) in 1 ml N,N-dimethylformamide was shaken for 15 hours, filtered. The filtrate was concentrated and the residue was purified by HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+)) Q1 MS m/z 419 (M+H)⁺; ¹H NMR (300 MHz, DMSO) δ ppm 13.71 (s, 1 H), 11.32 (s, 1 H), 8.83 (d, 1 H), 8.72 (d, 1 H), 8.57 (d, 1 H), 7.97 (d, 1 H), 7.95 (s, 1 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 7.58 (s, 2 H), 7.50 (t, 2 H), 7.00 (d, 2 H), 6.49 (m, 1 H), 4.02 (s, 1 H), 1.90-2.15 (m, 3 H), 1.68-1.90 (m, 3 H).

Example 24

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-(3,4-dichlorophenyl) methanesulfonylamide

The titled compound was prepared according to the method described in Example 15 by substituting (3,4-dichlorophenyl)methanesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 499 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.70 (d, 1 H), 8.54 (d, 1 H), 7.94 (d, 1 H), 7.79 (dd, 1 H), 7.67 (m, 2 H), 7.40 (dd, 1 H), 7.12 (d, 1 H), 6.96 (d, 1 H), 4.45 (s, 2 H), 3.90 (br.s, 1 H), 3.50 (m, 1 H), 1.87 (m, 4 H), 1.70 (m, 4 H).
Example 25

cis-N-(7-chloroquinolin-4-yl)-N′-(1H-indol-6-ylmethyl)cyclohexane-1,4-diamine

A mixture of example 23A (30mg, 0.11 mmol), 6-formylindole (19.2mg, 0.132 mmol) and solid supported cyanoborohydride (0.22mmol) was shaken in 1:1 mixture tetrahydrofuran and acetic acid for 15 hours, filtered and concentrated. The residue was purified with a high throughput HPLC system to provide the desired compound as its bis TRIFLUOROACETIC ACID salt. MS (ESI(+))Q1/MS m/z 405 (M+H)^+; ^1^H NMR (300 MHz, DMSO-D6) δ ppm 11.31 (s, 1 H), 8.74 (d, 1 H), 8.49-8.79 (m, 2 H), 7.96 (d, 1 H), 7.85 (dd, 1 H), 7.62 (d, 1 H), 7.56 (s, 1 H), 7.45 (t, 1 H), 7.13 (d, 1 H), 6.94 (d, 1 H), 6.47 (t, 1 H), 4.28 (br.s, 1 H), 4.08 (br.s, 1 H), 2.27 (s, 2 H), 1.73-2.13 (m, 9 H).

Example 26

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-(3,5-
dichlorophenyl)methanesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting (3,5-dichlorophenyl)methanesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 500 (M+H)^+; ^1^H NMR (500 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.70 (d, 1 H), 8.53 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.63 (t, 1 H), 7.46 (d, 2 H), 7.17 (d, 1 H), 6.95 (d, 1 H), 4.47 (s, 2 H), 3.89 (br.s, 1 H), 3.49 (br.s, 1 H), 1.62-1.93 (m, 8 H).

Example 27

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N′-(3-(methylthio)phenyl)urea

The titled compound was prepared according to the method described in Example 2 by substituting 3-(methylthio)phenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 441 (M+H)^+; ^1^H NMR (500 MHz, DMSO) δ ppm 8.77 (d, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 8.50 (s, 1 H), 7.93 (d, 1 H), 7.78 (dd, 1 H), 7.44 (t, 1 H), 7.16 (t, 1 H), 7.05 (m, 1 H), 6.97 (d, 1 H), 6.79 (m, 1 H), 6.36 (d, 1 H), 3.91 (br.s, 1 H), 3.80 (br.s, 1 H), 2.43 (s, 3 H), 1.79 (m, 8 H).
Example 28

cis-N-(2-chlorophenyl)-N’-4-((7-chloroquinolin-4-yl)amino)cyclohexyl]urea

The titled compound was prepared according to the method described in Example 2 by substituting 2-chlorophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/z 429 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.89 (d, 1 H), 8.72 (d, 1 H), 8.55 (d, 1 H), 8.21 (dd, 1 H), 8.09 (s, 1 H), 7.94 (d, 1 H), 7.79 (dd, 1 H), 7.40 (dd, 1 H), 7.22 (m, 2 H), 7.00 (d, 1 H), 6.94 (td, 1 H), 3.93 (br.s, 1 H), 3.82 (m, 1 H), 1.67-1.96 (m, 8 H).

Example 29

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-N’-(3-(trifluoromethyl)phenyl]urea

The titled compound was prepared according to the method described in Example 2 by substituting 2-(trifluoromethyl)phenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/z 463 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.88 (d, 1 H), 8.72 (d, 1 H), 8.55 (d, 1 H), 8.03 (d, 1 H), 7.94 (d, 1 H), 7.83 (s, 1 H), 7.79 (dd, 1 H), 7.61 (d, 1 H), 7.57 (m, 1 H), 7.18 (m, 2 H), 7.00 (d, 1 H), 3.93 (br.s, 1 H), 3.81 (br.s, 1 H), 1.70-1.94 (m, 8 H).

Example 30

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-N’-(3-(trifluoromethyl)phenyl]urea

The titled compound was prepared according to the method described in Example 2 by substituting 3-(trifluoromethyl)phenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/z 463 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.89 (s, 1 H), 8.78 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 8.01 (s, 1 H), 7.93 (d, 1 H), 7.79 (dd, 1 H), 7.46 (d, 2 H), 7.23 (m, 1 H), 6.98 (d, 1 H), 6.52 (d, 1 H), 3.92 (br.s, 1 H), 3.82 (br.s, 1 H), 1.69-1.93 (m, 8 H).

Example 31

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-N’-(4-(trifluoromethyl)phenyl]urea

The titled compound was prepared according to the method described in Example 2 by substituting 4-(trifluoromethyl)phenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/z 463 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.94 (s, 1 H), 8.82 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.94 (d, 1 H), 7.79 (dd, 1 H), 7.58 (dd, 4 H), 6.99 (d, 1 H), 6.55 (d, 1 H), 3.94 (br.s, 1 H), 3.83 (br.s, 1 H), 1.68-1.91 (m, 8 H).
Example 32

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(4-(trifluoromethoxy)phenyl)urea

The titled compound was prepared according to the method described in Example 2 by substituting 4-trifluoromethoxyphenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 479 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.71 (s, 2 H), 8.55 (d, 1 H), 7.94 (d, 1 H), 7.80 (dd, 1 H), 7.49 (d, 2 H), 7.22 (d, 2 H), 7.00 (d, 1 H), 6.44 (d, 1 H), 3.94 (br.s, 1 H), 3.81 (br.s, 1 H), 1.68-1.93 (m, 8 H).

Example 33

cis-N-1,3-benzodioxol-5-yl-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}urea

The titled compound was prepared according to the method described in Example 2 by substituting 3,4-(Methylenedioxy)phenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 439 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 8.79 (d, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 8.30 (s, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.18 (d, 1 H), 6.98 (d, 1 H), 6.77 (d, 1 H), 6.66 (dd, 1 H), 6.22 (d, 1 H), 5.93 (s, 2 H), 3.91 (br.s, 1 H), 3.78 (br.s, 1 H), 1.67-1.89 (m, 8 H).

Example 34

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-{3-(trifluoromethyl)thio)phenyl}urea

The titled compound was prepared according to the method described in Example 2 by substituting 3-trifluoromethylthiophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 496 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 8.81 (m, 2 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.96 (m, 1 H), 7.93 (d, 1 H), 7.79 (dd, 1 H), 7.46 (m, 1 H), 7.39 (t, 1 H), 7.23 (d, 1 H), 6.99 (d, 1 H), 6.48 (d, 1 H), 3.93 (br.s, 1 H), 3.81 (br.s, 1 H), 1.65-1.92 (m, 8 H).

Example 35

cis-N-(3-bromophenyl)-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}urea

The titled compound was prepared according to the method described in Example 2 by substituting 3-bromophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 474 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.71 (m, 2 H), 8.55 (d, 1
H), 7.94 (d, 1 H), 7.84 (m, 1 H), 7.79 (dd, 1 H), 7.19 (m, 2 H), 7.07 (m, 1 H), 6.99 (d, 1 H), 6.48 (d, 1 H), 3.93 (br.s, 1 H), 3.78 (br.s, 1 H), 1.64-1.92 (m, 8 H).

Example 36

cis-N-(4-bromophenyl)-N'-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}urea

The titled compound was prepared according to the method described in Example 2 by substituting 4-bromophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 474 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.71 (d, 1 H), 8.63 (s, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.79 (dd, 1 H), 7.38 (d, 1 H), 7.38 (d, 4 H), 6.41 (d, 1 H), 3.92 (br.s, 1 H), 3.81 (br.s, 1 H), 1.70-1.91 (m, 8 H).

Example 37

cis-N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-N'(3,4-dichlorophenyl)urea

The titled compound was prepared according to the method described in Example 2 by substituting 3,4-dichlorophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 464 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.87 (s, 1 H), 8.76 (d, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.87 (d, 1 H), 7.78 (dd, 1 H), 7.45 (d, 1 H), 7.23 (dd, 1 H), 6.97 (d, 1 H), 6.54 (d, 1 H), 3.92 (br.s, 1 H), 3.80 (br.s, 1 H), 1.68-1.92 (m, 8 H).

Example 38

cis-N,N'-bis[(4E)-7-chloro-1-methylquinolin-4(1H)-ylidene)cyclohexane-1,4-diamine

A mixture of example 1 (200mg, .46mmol), and sodium hydride (110mg, 4.6 mmol) in THF at 0°C was treated with methyl iodide (261 mg, 1.8 mmol), warmed up to room temperature, stirred for 15 hours, cooled down to 0°C, treated with water, treated with methanol, and filtered to provide the titled compound. MS (ESI(+))Q1MS m/z 465 (M+H)+; 1H NMR (300 MHz, DMSO-6D) δ ppm 8.32 (d, 2 H), 7.32 (s, 2 H), 7.11-7.28 (m, 4 H), 5.92 (d, 2 H), 3.49 (s, 6 H), 1.47-1.93 (m, 10 H).

Example 39

cis-N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-N'(2,4-dichlorophenyl)urea

The titled compound was prepared according to the method described in Example 2
by substituting 2,4-dichlorophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 465 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.77 (d, 1 H), 8.70 (d, 1 H), 8.55 (s, 1 H), 8.25 (d, 1 H), 8.18 (s, 1 H), 7.93 (d, 1 H), 7.77 (dd, 1 H), 7.55 (d, 1 H), 7.32 (dd, 1 H), 7.24 (d, 1 H), 6.97 (d, 1 H), 3.91 (br.s, 1 H), 3.81 (br.s, 1 H), 1.66-1.95 (m, 8 H).

Example 40

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(3,5-dichlorophenyl)urea *

The titled compound was prepared according to the method described in Example 2 by substituting 3,5-dichlorophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 464 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.92 (s, 1 H), 8.74 (d, 1 H), 8.70 (d, 1 H), 8.54 (d, 1 H), 7.92 (d, 1 H), 7.78 (dd, Hz, 1 H), 7.47 (d2 H), 7.07 (t, 1 H), 6.97 (d, 1 H), 6.58 (d, 1 H), 3.92 (br.s, 1 H), 3.80 (br.s, 1 H), 1.65-1.91 (m, 8 H).

Example 41

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-1-naphthylurea *

The titled compound was prepared according to the method described in Example 2 by substituting 1-naphthyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 445 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.91 (d, 1 H), 8.74 (d, 1 H), 8.57 (m, 2 H), 8.12 (d, 1 H), 8.08 (dd, 1 H), 7.95 (d, 1 H), 7.90 (d, 1 H), 7.80 (dd, 1 H), 7.54 (m, 3 H), 7.42 (t, 1 H), 7.02 (d, 1 H), 6.86 (d, 1 H), 3.97 (br.s, 1 H), 3.88 (br.s, 1 H), 1.72-1.97 (m, 8 H).

Example 42

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-2-naphthylurea *

The titled compound was prepared according to the method described in Example 2 by substituting 2-naphthyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 445 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.80 (m, 1 H), 8.71 (d, 1 H), 8.66 (s, 1 H), 8.55 (d, 1 H), 8.03 (d, 1 H), 7.93 (d, 1 H), 7.80 (m, 3 H), 7.73 (d, 1 H), 7.43 (m, 2 H), 7.32 (m, 1 H), 6.99 (d, 1 H), 6.42 (d, 1 H), 3.92 (br.s, 1 H), 3.92 (br.s, 1 H), 1.72-1.94 (m, 8 H).
Example 43

cis-N-benzyl-N'-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]urea

The titled compound was prepared according to the method described in Example 2 by substituting benzyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 409 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.75 (m, 1 H), 8.69 (d, 1 H), 8.53 (d, 1 H), 7.92 (d, 1 H), 7.77 (dd, 1 H), 7.28 (m, 5 H), 6.95 (d, 1 H), 6.28 (t, 1 H), 6.03 (d, 1 H), 4.22 (d, 2 H), 3.86 (br.s, 1 H), 3.71 (br.s, 1 H), 1.60-1.86 (m, 8 H).

Example 44

cis-N-(3-chlorophenyl)-N'-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]urea

The titled compound was prepared according to the method described in Example 2 by substituting 3-chlorophenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 429 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.71 (m, 2 H), 8.64 (s, 1 H), 8.54 (d, 1 H), 7.92 (d, 1 H), 7.78 (dd, 1 H), 7.69 (t, 1 H), 7.24 (t, 1 H), 7.15 (d, 1 H), 6.96 (m, 2 H), 6.39 (d, 1 H), 3.91 (br.s, 1 H), 3.80 (br.s, 1 H), 1.67-1.91 (m, 8 H).

Example 45

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-3-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting m-toluic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 394 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.69 (d, 2 H), 8.55 (d, 1 H), 8.03 (d, 1 H), 7.92 (d, 1 H), 7.79 (d, 1 H), 7.69 (s, 1 H), 7.66 (m, 1 H), 7.35 (m, 2 H), 6.97 (d, 1 H), 3.98 (m, 2 H), 2.37 (s, 3 H), 1.99 (m, 4 H), 1.77 (m, 4 H).
Example 46

\[\textit{cis-N-}\{4-\text{(7-chloroquinolin-4-yl)amino)cyclohexyl}\}-4-methylbenzamide \]

![Chemical structure image](image)

The titled compound was prepared according to the methods described in Example 23, substituting p-toluic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 394 (M+H)⁺; \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.80 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 7.98 (d, 1 H), 7.93 (d, 1 H), 7.81 (d, 1 H), 7.79 (d, 2 H), 7.27 (d, 2 H), 6.99 (d, 1 H), 3.99 (m, 2 H), 2.36 (s, 3 H), 1.90-2.06 (m, 4 H), 1.65-1.86 (m, 4 H).

Example 47

\[\textit{cis-2-aminon-}\{4-\text{(7-chloroquinolin-4-yl)amino)cyclohexyl}\}\textit{benzamide} \]

The titled compound was prepared according to the methods described in Example 23, substituting N-Boc-2-aminobenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 395 (M+H)⁺; \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.82 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.94 (s, 1 H), 7.86 (d, 1 H), 7.80 (dd, 1 H), 7.56 (d, 1 H), 7.17 (t, 1 H), 6.99 (d, 1 H), 6.73 (d, 1 H), 6.57 (t, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.99 (br.s, 2 H), 1.91-2.06 (m, 4 H), 1.66-1.85 (m, 4 H).

Example 48

\[\textit{cis-N-}\{4-\text{(7-chloroquinolin-4-yl)amino)cyclohexyl}\}-2-hydroxybenzamide \]

The titled compound was prepared according to the methods described in Example 23, substituting salicylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 396 (M+H)⁺; \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (d, 1 H), 8.63 (d, 1 H), 7.78 (dd, 2 H), 7.73 (d, 1 H), 7.59 (dd, 2 H), 7.48 (t, 1 H), 7.42 (m, 1 H), 6.85-6.94 (m, 2 H), 6.82 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 2.02-2.10 (m, 4 H), 1.85-1.93 (m, 4 H).
Example 49

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-Hydroxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 396 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (d, 1 H), 8.80 (d, 1 H), 8.71 (d, 1 H), 8.62 (d, 1 H), 8.56 (d, 1 H), 7.97 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.59 (dd, 1 H), 7.22-7.32 (m, 3 H), 6.99 (d, 1 H), 6.92 (m, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 1.91-2.04 (m, 3 H), 1.68-1.84 (m, 3 H).

Example 50

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting m-anisic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 410 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.78 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.06 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.46 (d, 1 H), 7.33-7.43 (m, 2 H), 7.11 (ddd, 1 H), 6.99 (d, 1 H), 3.98 (br.s, 2 H), 3.81 (s, 3 H), 1.89-2.12 (m, 4 H), 1.65-1.88 (m, 4 H).

Example 51

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting p-anisic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 410 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.68 (d, 1 H), 8.54 (d, 1 H), 7.91 (d, 2 H), 7.87 (d, 2 H), 7.77 (d, 1 H), 6.99 (d, 2 H), 6.95 (d, 1 H), 3.96 (m, 2 H), 3.81 (s, 3 H), 1.91-2.04 (m, 5 H), 1.76 (m, 4 H).

Example 52

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluorobenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-fluorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 398 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.69 (d, 2 H), 8.55 (d, 1 H), 8.20 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.73 (d, 1 H), 7.69 (dd, 1 H), 7.53 (td, 1 H), 7.39 (m, 1 H), 6.98 (d, 1 H), 3.98 (m, 2 H), 1.91-2.11 (m, 4 H), 1.66-1.86 (m, 4 H).
Example 53

\textit{cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-4-fluorobenzamide}

The titled compound was prepared according to the methods described in Example 23, substituting 4-fluorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)) Q1 MS m/z 398 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 8.12 (d, 1 H), 7.90-7.99 (m, 3 H), 7.79 (dd, 1 H), 7.30 (t, 2 H), 6.98 (d, 1 H), 3.98 (m, 2 H), 1.89-2.11 (m, 4 H), 1.68-1.87 (m, 4 H).

Example 54

\textit{cis-4-chloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} benzamide}

The titled compound was prepared according to the methods described in Example 23, substituting 4-chlorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)) Q1 MS m/z 414 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.69 (d, 1 H), 8.65 (br.s, 1 H), 8.55 (d, 1 H), 8.19 (d, 1 H), 7.92 (m, 3 H), 7.78 (dd, 1 H), 7.56 (t, 2 H), 6.96 (d, 1 H), 3.98 (m, 2 H), 1.90-2.07 (m, 4 H), 1.68-1.84 (m, 4 H).

Example 55

\textit{cis-2-bromo-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} benzamide}

The titled compound was prepared according to the methods described in Example 23, substituting 2-bromobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)) Q1 MS m/z 458 and 460 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.73 (br.s, 1 H), 8.71 (d, 1 H), 8.34 (d, 1 H), 7.91 (d, 1 H), 7.77 (d, 1 H), 7.65 (d, 1 H), 7.30-7.50 (m, 3 H), 6.96 (d, 1 H), 4.00 (m, 1 H), 3.90 (m, 1 H), 1.87-2.12 (m, 4H), 1.58-1.89 (m, 5 H).

Example 56

\textit{cis-3-bromo-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} benzamide}

The titled compound was prepared according to the methods described in Example 23, substituting 3-bromobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)) Q1 MS m/z 458 and 460 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.70 (d, 1 H), 8.55 (d, 1 H), 8.25 (d, 1 H), 8.08 (t, 1 H), 7.92 (d, 1 H), 7.87 (dt, 1 H), 7.79 (dd, 1 H), 7.74 (m, 1 H), 7.46 (m, 1 H), 6.97 (d, 1 H), 6.49 (s, 1 H), 3.98 (m, 2 H), 1.90-2.07 (m, 4 H), 1.69-1.87 (m, 4 H).
Example 57

* cis-4-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide *

The titled compound was prepared according to the methods described in Example 23, substituting 4-bromobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 458 and 460 (M+H)+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.70 (d, 1 H), 8.55 (d, 1 H), 8.19 (d, 1 H), 7.81-7.88 (m, 3 H), 7.79 (dd, 1 H), 7.67-7.73 (m, 3 H), 6.97 (d, 1 H), 3.99 (br.s, 2 H), 1.88-2.06 (m, 4 H), 1.66-1.86 (m, 4 H).

Example 58

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-cyanobenzenamide *

The titled compound was prepared according to the methods described in Example 23, substituting 4-cyanobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 405 (M+H)+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.68 (d, 1 H), 8.55 (d, 1 H), 8.38 (d, 1 H), 8.02 (d, 2 H), 7.98 (d, 2 H), 7.91 (d, 1 H), 7.78 (dd, 1 H), 6.96 (d, 1 H), 6.48 (s, 1 H), 3.96 (m, 2 H), 1.90-2.08 (m, 4 H), 1.69-1.86 (m, 4 H).

Example 59

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(dimethylamino)benzamide *

The titled compound was prepared according to the methods described in Example 23, substituting 3-dimethylaminobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 423 (M+H)+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.80 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 7.91-7.96 (m, 2 H), 7.80 (dd, 1 H), 7.26 (t, 1 H), 7.17 (d, 1 H), 6.99 (d, 1 H), 6.88 (dd, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.94-4.08 (m, 2 H), 2.54 (s, 6 H), 1.88-2.09 (m, 4 H), 1.54-1.89 (m, 4 H).

Example 60

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-cyanobenzyamide *

The titled compound was prepared according to the methods described in Example 23, substituting 3-cyanobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 405 (M+H)+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.72 (br.s, 1 H), 8.69 (d, 1 H), 8.55 (d, 1 H), 8.33 (d, 1 H), 8.17 (d, 1 H), 8.02 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.71 (t, 1 H), 6.98 (d, 1 H), 6.48 (s, 1 H), 3.99 (m, 2 H), 1.91-2.12 (m, 4 H), 1.78 (m, 4 H).
Example 61

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(dimethylamino)benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-dimethylaminobenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 423 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.71 (d, 1 H), 8.63 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.77 (d, 2 H), 7.66 (d, 1 H), 7.59 (dd, 1 H), 6.99 (d, 2 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 2.99 (s, 6 H), 1.88-1.97 (m, 4 H), 1.65-1.86 (m, 4 H).

Example 62

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethyl)benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-(trifluoromethyl)benzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 448 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.40 (d, 1 H), 8.22 (s, 1 H), 8.19 (d, 1 H), 7.93 (d, 1 H), 7.91 (s, 1 H), 7.81 (dd, 1 H), 7.73 (t, 1 H), 7.00 (d, 1 H), 3.94-4.08 (m, 2 H), 1.92-2.07 (m, 4 H), 1.70-1.88 (m, 4 H).

Example 63

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethyl)benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-(trifluoromethyl)benzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 448 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.36 (d, 1 H), 8.06 (d, 2 H), 7.93 (d, 1 H), 7.86 (d, 2 H), 7.81 (dd, 1 H), 7.00 (d, 1 H), 3.90-4.08 (m, 2 H), 1.88-2.12 (m, 4 H), 1.63-1.87 (m, 4 H).

Example 64

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,3-dimethylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,3-dimethylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 408 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.71 (d, 1 H), 8.56 (d, 1 H), 8.12
(d, 1 H), 7.91 (s, 1 H), 7.80 (d, 1 H), 7.22 (t, 1 H), 7.13 (d, 1 H), 7.12 (s, 1 H), 6.99 (d, 1 H), 3.97 (br.s, 2 H), 2.26 (s, 3 H), 2.22 (s, 3 H), 1.94 (m, 5 H), 1.78 (m, 4 H).

Example 65

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-dimethylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,4-dimethylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 408 (M+H)+; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.78 (s, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 8.03 (d, 1 H), 7.92 (s, 1 H), 7.25 (d, 1 H), 7.06 (s, 1 H), 7.04 (d, 1 H), 6.98 (d, 1 H), 6.52 (s, 1 H), 3.96 (m, 2 H), 2.33 (s, 3 H), 2.30 (s, 3 H), 1.76 (m, 4 H), 1.67-1.85 (m, 4 H).

Example 66

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethoxy)benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-(trifluoromethoxy)benzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 464 (M+H)+; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.70 (d, 1 H), 8.56 (d, 1 H), 8.32 (d, 1 H), 7.97 (dd, 1 H), 7.92 (d, 1 H), 7.82 (d, 1 H), 7.66 (t, 1 H), 7.63 (d, 1 H), 7.56 (d, 1 H), 6.98 (d, 1 H), 6.53 (s, 1 H), 4.00 (m, 2 H), 1.88-2.14 (m, 4 H), 1.66-1.88 (m, 4 H).

Example 67

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 25-dimethylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 408 (M+H)+; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.82 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.11 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.13 (br.s, 3 H), 6.99 (d, 1 H), 2.64 (m, 2 H), 2.30 (s, 3 H), 2.29 (s, 3 H), 1.96 (m, 4 H), 1.77 (m, 4 H).

Example 68

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethylbenzamide

The titled compound was prepared according to the methods described in Example
23, substituting 3,4-dimethylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 408 (M+H)+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.72 (d, 1 H), 8.57 (d, 1 H), 7.96 (d, 1 H), 7.93 (d, 1 H), 7.81 (d, 1 H), 7.70 (d, 1 H), 7.66 (d, 1 H), 7.62 (d, 1 H), 7.24 (dd, 1 H), 7.00 (d, 1 H), 3.98 (m, 2 H), 2.28 (s, 3 H), 2.27 (s, 3 H), 1.64-2.10 (m, 8 H).

Example 69

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-dimethoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,4-dimethoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 440 (M+H)+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.88 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.06 (d, 1 H), 7.96 (d, 1 H), 7.87 (d, J = 1 H), 7.80 (dd, 1 H), 7.02 (d, 1 H), 6.71 (d, 1 H), 6.66 (dd, 1 H), 4.13 (br.s, 1 H), 4.01 (s, 3 H), 3.98 (br.s, 1 H), 3.84 (s, 3 H), 1.68-2.01 (m, 8 H).

Example 70

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3,4-dimethoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 440 (M+H)+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.84 (d, 1 H), 8.81 (d, 1 H), 8.72 (d, 1 H), 8.64 (d, 1 H), 8.57 (d, 1 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 7.54 (dd, 1 H), 7.45 (d, 1 H), 7.00 (t, 1 H), 3.99 (br.s, 2 H), 3.82 (br.s, 6 H), 1.67-2.07 (m, 8 H).

Example 71

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3,5-dimethoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 440 (M+H)+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.69 (d, 1 H), 8.56 (d, 1 H), 8.06 (d, 1 H), 7.92 (s, 2 H), 7.79 (dd, 1 H), 7.02 (s, 2 H), 6.97 (d, 1 H), 6.67 (s, 1 H), 3.98 (br.s, 2 H), 3.80 (s, 6 H), 1.87-2.10 (m, 5 H), 1.66-1.88 (m, 4 H).
Example 72

\textit{cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-1,3-benzodioxole-5-carboxamide}

The titled compound was prepared according to the methods described in Example 23, substituting piperonylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 424 (M+H)^+); \textit{1H NMR (500 MHz, DMSO-D6) \delta ppm 8.79 (d, 1 H), 8.71 (d, 1 H), 8.64 (dd, 1 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 7.60 (dd, 1 H), 7.49 (dd, 1 H), 7.44 (d, 1 H), 7.00 (d, 1 H), 6.99 (d, 1 H), 6.10 (s, 2 H), 3.97 (br.s, 2 H), 1.64-2.08 (m, 8 H)}.

Example 73

\textit{cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-3,4,5-trimethoxybenzamide}

The titled compound was prepared according to the methods described in Example 23, substituting 3,4,5-trimethoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 470 (M+H)^+); \textit{1H NMR (500 MHz, DMSO-D6) \delta ppm 8.72 (d, 1 H), 8.64 (d, 1 H), 8.57 (d, 1 H), 8.03 (d, 1 H), 7.93 (d, 1 H), 7.81 (d, 1 H), 7.60 (dd, 1 H), 7.20 (s, 2 H), 6.98 (d, 6 H), 6.98 (d, 1 H), 3.98 (br.s, 1 H), 3.71 (s, 3 H), 1.67-2.06 (m, 8 H)}.

Example 74

\textit{cis-2,4-dichloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}benzamide}

The titled compound was prepared according to the methods described in Example 23, substituting 2,4-dichlorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 448 (M+H)^+); \textit{1H NMR (500 MHz, DMSO-D6) \delta ppm 8.88 (d, 1 H), 8.74 (d, 1 H), 8.55 (d, 1 H), 8.44 (d, 1 H), 7.98 (d, 1 H), 7.77 (dd, 1 H), 7.67 (d, 1 H), 7.49 (d, 1 H), 7.47 (s, 1 H), 6.98 (d, 1 H), 4.03 (br.s, 1 H), 3.93 (br.s, 1 H), 1.69-2.01 (m, 8 H)}.

Example 75

\textit{cis-3,4-dichloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}benzamide}

The titled compound was prepared according to the methods described in Example 23, substituting 3,4-dichlorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 450 (M+H)^+); \textit{1H NMR (500 MHz, DMSO-D6) \delta ppm 8.66 (d, 1 H), 8.54 (d, 1 H), 8.34 (d, 1 H), 8.15 (d, 1 H), 8.07 (s, 1 H), 8.07 (s, 1 H), 7.84-7.91 (m, 2 H), 7.73-7.80 (m, 2 H), 3.87-4.07 (br.s, 2 H), 1.66-2.09 (m, 8 H)}.
Example 76

\textit{cis-N-}\{4-(7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-furamide

The titled compound was prepared according to the methods described in Example 23, substituting furane-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 370 (M+H)^+; 1H NMR (500 MHz, DMSO-D\text{6}) \delta ppm 8.68 (d, 1 H), 8.63 (dd, 1 H), 8.55 (d, 1 H), 7.92 (s, 2 H), 7.92 (d, 1 H), 7.83 (s, 1 H), 7.80 (dd, 1 H), 7.15 (dd, 1 H), 6.98 (d, 1 H), 6.63 (dd, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 1.66-2.04 (m, 8 H).

Example 77

\textit{cis-N-}\{4-(7-chloroquinolin-4-yl)amino)cyclohexyl\} -3-furamide

The titled compound was prepared according to the methods described in Example 23, substituting furane-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 370 (M+H)^+; 1H NMR (500 MHz, DMSO-D\text{6}) \delta ppm 8.83 (dd, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.25 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.77 (d, 1 H), 7.72 (t, 1 H), 6.99 (d, 1 H), 6.92 (dd, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 1.67-2.03 (m, 8 H).

Example 78

\textit{cis-N-}\{4-(7-chloroquinolin-4-yl)amino)cyclohexyl\} -2,5-dimethyl-3-furamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,5-dimethyl-3-furoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 398 (M+H)^+; 1H NMR (500 MHz, DMSO-D\text{6}) \delta ppm 8.79 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.42 (d, 1 H), 6.98 (d, 1 H), 6.55 (s, 1 H), 3.84-4.03 (m, 2 H), 2.46 (s, 3 H), 2.22 (s, 3 H), 1.63-2.01 (m, 8 H).

Example 79

\textit{cis-N-}\{4-(7-chloroquinolin-4-yl)amino)cyclohexyl\} thiophene-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting thiophene-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 386 (M+H)^+; 1H NMR (500 MHz, DMSO-D\text{6}) \delta ppm 8.78 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.09 (d, 1 H), 7.93 (d, 1 H), 7.89 (dd, 1 H), 7.80 (dd, 1 H), 7.15 (dd, 1 H), 6.98 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.93-4.02 (m, 1 H), 1.68-2.08 (m, 8 H).
Example 80

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}thiophene-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting thiophene-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 386 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.78 (d, 1 H), 8.71 (d, 1 H), 8.21 (d, 1 H), 7.93 (d, 1 H), 7.88 (d, 1 H), 7.79 (dd, 1 H), 7.54-7.62 (m, 2 H), 6.98 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.94-4.02 (m, 1 H), 1.67-2.05 (m, 8 H).

Example 81

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylthiophene-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-methylthiophene-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 400 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.73 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.64 (d, 1 H), 7.57 (d, 1 H), 6.97-7.00 (m, 2 H), 3.90-4.04 (m, 2 H), 2.45 (s, 3 H), 1.68-2.03 (m, 8 H).

Example 82

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-pyrrole-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting pyrrole-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 369 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.80 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.79 (dd, 1 H), 7.54 (d, 1 H), 6.98 (d, 1 H), 6.84-6.89 (m, 2 H), 6.09 (dd, 1 H), 4.88 (t, 1 H), 4.88 (t, 1 H), 3.93-4.01 (m, 1 H), 1.62-2.05 (m, 8 H).

Example 83

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3,5-dimethylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 408 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.69 (d, 1 H), 8.55 (d, 1 H), 8.00 (d, 1 H), 7.92 (s, 1 H), 7.79 (d, 1 H), 7.49 (s, 2 H), 7.16 (s, 1 H), 6.97 (d, 1 H), 3.88-4.02 (m, 1 H), 2.32 (s, 6 H), 1.66-2.05 (m, 10 H).
Example 84

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methylthiophene-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-methylthiophene-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 400 (M+H)⁺); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.77 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.94 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.69 (d, 1 H), 6.98 (d, 1 H), 6.84 (d, 1 H), 3.83-4.06 (m, 2 H), 2.46 (s, 3 H), 1.64-2.08 (m, 8 H).

Example 85

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethyl-1H-pyrrole-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,5-dimethylpyrrole-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 397 (M+H)⁺); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (dd, 1 H), 8.78 (d, 1 H), 8.69 (d, 1 H), 8.63 (dd, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.59 (dd, 1 H), 6.98 (d, 1 H), 6.83 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 2.11 (s, 3 H), 2.08 (s, 3 H), 1.61-1.99 (m, 8 H).

Example 86

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,2,5-trimethyl-1H-pyrrole-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 1,2,5-trimethylpyrrole-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 411 (M+H)⁺); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (dd, 1 H), 8.69 (d, 1 H), 8.55 (d, 1 H), 8.55 (d, 1 H), 7.80 (dd, 1 H), 6.98 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.89-4.01 (m, 2 H), 3.35 (s, 3 H), 2.43 (s, 3 H), 2.15 (s, 3 H), 1.60-1.99 (m, 8 H).

Example 87

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-thiazole-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 1,3-thiazole carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 386 (M+H)⁺); ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.76 (d, 1 H), 8.65 (d, 1 H), 8.56 (d, 1 H), 8.21 (d, 1 H), 8.07 (d, 1 H), 8.03 (d, 1 H), 7.95 (d, 1 H), 7.79 (dd, 1 H), 7.00 (d, 1 H), 3.94-4.16 (m, 2 H), 1.70-2.07 (m, 8 H).

69
Example 88
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-methyl-1H-pyrrole-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 1-methylpyrrole-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 383 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.76 (d, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.39 (s, 1 H), 7.33 (dd, 1 H), 7.01 (d, 1 H), 4.54 (t, 1 H), 3.95 (t, 1 H), 1.69-2.04 (m, 8 H).

Example 89
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-thiazole-4-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 1,3-thiazole-4-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 387 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 9.21 (d, 1 H), 8.83 (dd, 1 H), 8.77 (d, 1 H), 8.56 (d, 1 H), 8.36 (d, 1 H), 7.93 (s, 1 H), 7.79 (dd, 1 H), 7.59 (dd, 1 H), 7.01 (d, 1 H), 4.54 (t, 1 H), 3.95 (t, 1 H), 1.69-2.04 (m, 8 H).

Example 90
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-thiazole-5-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 1,3-thiazole-5-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 387 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (dd, 1 H), 8.72 (d, 1 H), 8.59 (d, 1 H), 8.56 (d, 1 H), 8.35 (d, 1 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 6.99 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.91-4.03 (m, 1 H), 1.67-2.07 (m, 8 H).

Example 91
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}isoxazole-5-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting isoxazole-5-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 371 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (dd, 1 H), 8.63 (dd, 1 H),
8.54 (d, 1 H), 7.91 (s, 1 H), 7.77 (d, 1 H), 7.59 (dd, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.96 (m, 2 H), 1.65-2.19 (m, 9 H).

Example 92

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methyl-3-phenylisoxazole-4-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-methyl-3-phenylisoxazole-4-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)) Q1MS m/z 461 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.79 (d, 1 H), 8.72 (d, 1 H), 8.55 (d, 1 H), 8.38 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.67-7.73 (m, 2 H), 7.47-7.52 (s, 3 H), 6.97 (d, 1 H), 3.84-4.08 (m, 2 H), 2.55 (s, 3 H), 1.67-1.95 (m, 8 H).

Example 93

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}pyridine-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting pyridine-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 381 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (d, 1 H), 8.68 (d, 1 H), 8.64 (t, 1 H), 8.56 (d, 1 H), 8.40 (d, 1 H), 8.09 (d, 1 H), 8.04 (td, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.59 (dd, 1 H), 7.01 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 1.58-2.07 (m, 8 H).

Example 94

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxypyridine-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-hydroxy picolinic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 397 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.80 (d, 1 H), 8.66 (d, 1 H), 8.62 (d, 1 H), 8.57 (d, 1 H), 8.19 (dd, 1 H), 7.95 (d, 1 H), 7.81 (dd, 1 H), 7.57 (dd, 1 H), 7.46 (dd, 1 H), 7.02 (d, 1 H), 3.64-4.35 (m, 3 H), 1.71-2.13 (m, 8 H).

Example 96

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methylpyrazine-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-methylpyrazine-2-carboxylic acid for indole-6-carboxylic acid. MS
(ESI(+))Q1MS m/z 396 (M+H)⁺; ¹H NMR (500 MHz, DMSO-D6) δ ppm 9.09 (dd, 1 H), 8.83 (dd, 1 H), 8.56 (d, 1 H), 8.29 (d, 1 H), 7.92 (d, 1 H), 7.80 (d, 1 H), 7.59 (dd, 1 H), 7.01 (d, 1 H), 7.01 (d, 3 H), 4.60 (t, 1 H), 4.15 (m, 1 H), 3.98 (t, 1 H), 1.72-2.11 (m, 8 H).

Example 97

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting indole-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 419 (M+H)⁺; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.84 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.15 (d, 1 H), 8.13 (d, 1 H), 7.94 (d, 1 H), 7.80 (dd, 1 H), 7.47 (d, 1 H), 7.43 (d, 1 H), 7.15 (td, 1 H), 7.10 (td, 1 H), 7.00 (d, 1 H), 4.88 (t, 1 H), 4.04 (d, 1 H), 4.00 (s, 1 H), 1.69-2.08 (m, 8 H).

Example 98

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-8-methyl-4-oxo-4H-pyrido(1,2-a)pyrimidine-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 8-methyl-4-oxo-4H-pyrido(1,2-a)pyrimidine-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 462 (M+H)⁺; ¹H NMR (300 MHz, DMSO-D6) δ ppm 9.35 (d, 1 H), 9.10 (d, 1 H), 9.04 (s, 1 H), 9.01 (d, 1 H), 8.72 (d, 1 H), 8.57 (d, 1 H), 7.93 (d, 1 H), 7.75-7.80 (m, 2 H), 7.50 (dd, 1 H), 7.05 (d, 1 H), 3.50-4.28 (m, 2 H), 2.57 (s, 3 H), 1.68-2.00 (m, 8 H).

Example 99

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methyl-1-phenyl-1H-pyrazole-4-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-methyl-1-phenyl-1H-pyrazole-4-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 460 (M+H)⁺; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.80 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.22 (s, 1 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 7.70 (d, 1 H), 7.46-7.62 (m, 5 H), 6.99 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 2.52 (s, 3 H), 1.68-2.05 (m, 8 H).
Example 100
cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-oxo-4,5,6,7-tetrahydro-1-benzofuran-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-oxo-4,5,6,7-tetrahydro-1-benzofuran-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 460 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 9.93 (d, 1 H), 8.88 (s, 1 H), 8.74 (d, 1 H), 8.54 (d, 1 H), 8.26 (s, 1 H), 7.91 (s, 1 H), 7.78 (dd, 1 H), 7.00 (d, 1 H), 4.08 (br,s, 1 H), 3.92 (br,s, 1 H), 2.98 (t, 2 H), 2.62 (t, 2 H), 2.14 (t, 2 H), 1.73-2.00 (m, 8 H).

Example 101
cis-6-chloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2H-chromene-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 2H-chromene-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 468 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.73 (s, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.25-7.30 (m, 3 H), 6.96 (d, 1 H), 6.89 (d, 1 H), 4.95 (s, 2 H), 4.93 (s, 1 H), 3.94 (m, 2 H), 1.66-2.02 (m, 8 H).

Example 102
cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-ethylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-ethylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 408 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.82 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.02 (d, 1 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 7.80 (d, 2 H), 7.80 (d, 2 H), 7.00 (d, 1 H), 3.94-4.04 (br.s, 2 H), 2.66 (q, 2 H), 1.66-2.06 (m, 8 H), 1.20 (t, 3 H).

Example 103
cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2-hydroxy-4-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-hydroxy-4-methylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 410 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.79 (d, 1 H), 8.70 (d, 1 H), 8.57 (d, 1 H), 8.42 (d, 1 H), 7.93 (d, 1 H), 7.86 (d, 1 H), 7.80 (dd, 1 H), 7.66 (d,
1 H), 7.00 (d, 1 H), 6.76 (d, 1 H), 6.73 (s, 1 H), 3.97-4.09 (m, 2 H), 2.30 (s, 3 H), 1.72-2.03 (m, 8 H).

Example 104

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxy-4-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-hydroxy-4-methylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 410 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.84 (d, 1 H), 8.72 (br.s, 1 H), 8.70 (d, 1 H), 8.63 (d, 1 H), 8.56 (d, 1 H), 7.92 (d, 1 H), 7.90 (d, 1 H), 7.80 (dd, 1 H), 7.26 (d, 1 H), 6.97 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 3.91-4.01 (br.s, 1 H), 2.16 (s, 3 H), 1.62-2.05 (m, 8 H).

Example 105

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-fluoro-2-methylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 412 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.82 (d, 1 H), 8.70 (d, 1 H), 8.56 (d, 1 H), 8.25 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.29 (dd, 1 H), 7.19 (dd, 1 H), 7.15 (d, 1 H), 6.99 (d, 1 H), 3.88-4.04 (m, 2 H), 2.32 (s, 3 H), 1.68-2.04 (m, 8 H).

Example 106

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-4-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-fluoro-4-methylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 412 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.78 (d, 1 H), 8.70 (d, 1 H), 8.56 (d, 1 H), 8.13 (d, 1 H), 7.92 (s, 1 H), 7.81 (dd, 1 H), 7.66 (d, 1 H), 7.65 (s, 1 H), 7.40 (d, 1 H), 6.99 (d, 1 H), 3.88-4.02 (br.s, 2 H), 2.29 (s, 3 H), 1.65-2.06 (m, 8 H).

Example 107

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,3-difluorobenzamide

The titled compound was prepared according to the methods described in Example
23, substituting 2,3-difluorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 416 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.84 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.17 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.67 (d, 1 H), 7.37 (d, 1 H), 7.18 (t, 1 H), 6.99 (d, 1 H), 4.02 (br, s, 1 H), 3.94 (br, s, 1 H), 1.70-2.02 (m, 8 H).

Example 108

cis-N-{4-(7-chloroquinolin-4-yl)amino}cyclohexyl}-2,4-difluorobenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,4-difluorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 416 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.86 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.18 (d, 1 H), 7.93 (s, 1 H), 7.80 (d, 1 H), 7.67 (dd, 1 H), 7.36 (t, 1 H), 7.18 (t, 1 H), 6.99 (d, 1 H), 4.02 (br, s, 1 H), 3.94 (br, s, 1 H), 1.68-2.02 (m, 8 H).

Example 109

cis-N-{4-(7-chloroquinolin-4-yl)amino}cyclohexyl}-2,5-difluorobenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,5-difluorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 416 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.82 (br, s, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.29 (d, 1 H), 7.92 (s, 1 H), 7.80 (dd, 1 H), 7.32-7.43 (m, 3 H), 6.99 (d, 1 H), 3.85-4.09 (m, 2 H), 1.69-2.04 (m, 8 H).

Example 110

cis-N-{4-(7-chloroquinolin-4-yl)amino}cyclohexyl}-3,5-difluorobenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3,5-difluorobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 416 (M+H)^+); 1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.70 (d, 1 H), 8.57 (d, 1 H), 8.30 (d, 1 H), 7.93 (d, 1 H), 7.82 (dd, 1 H), 7.60 (d, 1 H), 7.56 (d, 1 H), 7.48 (t, 1 H), 7.00 (d, 1 H), 3.98 (br, s, 2 H), 1.68-2.07 (m, 8 H).
Example 111

cis-2-(N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}glycyl)benzaldehyde

The titled compound was prepared according to the methods described in Example 23, substituting 2-acetylenzoic acid for indole-6-carboxylic acid. 1H NMR (500 MHz, DMSO-D$_6$) δ ppm 8.90 (d, 1 H), 8.84 (d, 1 H), 8.64 (d, 1 H), 8.61 (t, 1 H), 8.56 (d, 1 H), 8.01 (dd, 1 H), 7.95 (d, 1 H), 7.71 (d, 1 H), 7.68 (t, 1 H), 7.60 (s, 1 H), 7.57 (d, 1 H), 4.11-4.32 (m, 2 H), 1.74-2.29 (m, 8 H), 1.63 (s, 3 H).

Example 112

cis-4-acetyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-acetylenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 422 (M+H)$^+$; 1H NMR (500 MHz, DMSO-D$_6$) δ ppm 8.79 (d, 1 H), 8.71 (d, 1 H), 8.57 (d, 1 H), 8.32 (d, 2 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 6.99 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 4.00 (br.s, 2 H), 2.63 (s, 3 H), 1.68-2.08 (m, 8 H).

Example 113

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methoxy-4-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-methoxy-4methylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 424 (M+H)$^+$; 1H NMR (500 MHz, DMSO-D$_6$) δ ppm 8.82 (d, 1 H), 8.72 (d, 1 H), 8.57 (d, 1 H), 8.02 (d, 1 H), 7.94 (d, 1 H), 7.81 (dd, 1 H), 7.41 (br.d, 2 H), 7.22 (d, 1 H), 7.00 (d, 1 H), 3.94-4.05 (br.s, 2 H), 3.85 (s, 3 H), 2.19 (s, 3 H), 1.69-2.06 (m, 8 H).

Example 114

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-ethoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-ethoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 424 (M+H)$^+$; 1H NMR (500 MHz, DMSO-D$_6$) δ ppm 8.83 (d, 1 H), 8.66 (d, 1 H), 8.57 (d, 1 H), 8.24 (d, 1 H), 7.92 (s, 1 H), 7.89 (d, 1 H), 7.81 (dd, 1 H), 7.50 (t, 1 H), 7.18 (d, 1 H), 7.07 (t, 1 H), 7.03 (d, 1 H), 4.23 (dd, 2 H), 4.06-1.16 (br.s, 1 H), 3.92-4.02 (br.s, 1 H), 1.71-2.05 (m, 8 H), 1.47 (t, 3 H).
Example 115

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(methylthio)benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-methylthiobenoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 426 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.79 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.06 (d, 1 H), 7.93 (d, 1 H), 7.77-7.87 (m, 3 H), 7.30-7.36 (m, 3 H), 6.99 (d, 1 H), 3.90-4.00 (br,s, 1 H), 2.52 (s, 3 H), 1.68-2.06 (m, 8 H).

Example 116

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-4-methoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-fluoro-4-methoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 428 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.72-8.78 (br,s, 1 H), 8.70 (d, 1 H), 8.56 (d, 1 H), 8.04 (d, 1 H), 7.92 (s, 1 H), 7.72-7.83 (m, 3 H), 7.25 (t, 1 H), 6.98 (d, 1 H), 3.93-4.02 (br,s, 2 H), 3.90 (s, 3 H), 1.68-2.06 (m, 8 H).

Example 117

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-napthamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-naphtoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 430 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.80-8.85 (s, 1 H), 8.72 (d, 1 H), 8.61 (s, 1 H), 8.57 (d, 1 H), 8.49 (s, 1 H), 8.29 (d, 1 H), 8.12 (d, 1 H), 8.01 (m, 2 H), 7.93 (d, 1 H), 7.81 (dd, 1 H), 7.63 (m, 2 H), 7.01 (d, 1 H), 4.03 (m, 2 H), 1.67-2.16 (m, 8 H).

Example 118

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-napthamide

The titled compound was prepared according to the methods described in Example 23, substituting 1-naphtoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 430 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.73-8.79 (br,s, 1 H), 8.68 (d, 1 H), 8.56 (d, 1 H), 8.42 (d, 1 H), 8.16 (d, 1 H), 8.02 (d, 1 H), 7.99 (d, 1 H), 7.91 (d, 1 H), 7.77 (dd, 1 H), 7.52-7.66 (m, 4 H), 6.99 (d, 1 H), 4.14 (br.s, 1 H), 3.97 (br.s, 1 H), 3.97 (m, 8 H).
Example 119

cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-chloro-2-hydroxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 430 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 12.40 (s, 1 H), 8.68 (m, 2 H), 8.56 (d, 1 H), 8.03 (d, 1 H), 7.91 (d, 1 H), 7.79 (d, 1 H), 7.45 (d, 1 H), 6.98 (m, 2 H), 3.90-4.14 (m, 2 H), 1.66-2.07 (m, 8 H).

Example 121

cis-4-(acetylamino)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-acetylaminobenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 437 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 10.15 (s, 1 H), 8.81 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 7.96 (d, 1 H), 7.93 (d, 1 H), 7.77-7.82 (m, 3 H), 7.64-7.66 (m, 2 H), 7.00 (d, 1 H), 4.88 (t, 1 H), 4.05 (t, 1 H), 2.07 (s, 3 H), 1.64-2.07 (m, 8 H).

Example 122

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-isopropoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-isopropoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 438 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.80 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 7.92-7.94 (m, 2 H), 7.80-7.89 (m, 3 H), 6.93-7.02 (m, 4 H), 4.69 (m, 1 H), 3.99 (br.s, 1 H), 1.64-2.06 (m, 8 H), 1.28 (d, 6 H).

Example 123

cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-chloro-2-methoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 444 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.87 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.19 (d, 1 H), 7.95 (d, 1 H), 7.80 (dd, 1 H), 7.70 (d, 1 H), 7.54
(dd, 1 H), 7.23 (d, 1 H), 7.01 (d, 1 H), 4.09 (br.s, 1 H), 3.96 (s, 3 H), 3.96 (br.s, 1 H), 1.73-2.02 (m, 8 H).

Example 124

cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-4-fluoro-1-naphthamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-fluoro-1-napthoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 448 (M+H)+; \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.71 (br.s, 1 H), 8.67 (d, 1 H), 8.55 (d, 1 H), 8.44 (d, 1 H), 8.25 (m, 1 H), 8.13 (m, 1 H), 7.91 (d, 1 H), 7.77 (dd, 1 H), 7.70 (m, 2 H), 7.64 (dd, 1 H), 7.41 (t, 1 H), 6.98 (d, 1 H), 4.13 (br.s, 1 H), 3.96 (br.s, 1 H), 1.75-2.12 (m, 8 H).

Example 125

cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-3,4-diethoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3,4-diethoxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 468 (M+H)+; \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 7.93 (s, 1 H), 7.91 (s, 1 H), 7.81 (dd, 1 H), 7.48-7.55 (m, 2 H), 7.40-7.46 (m, 2 H), 6.96-7.05 (m, 2 H), 4.02-4.12 (m, 4 H), 1.64-2.06 (m, 8 H), 1.28-1.39 (m, 6 H).

Example 126

cis-2-benzyl-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}benzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-benzylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 470 (M+H)+; \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.80 (d, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 8.19 (d, 1 H), 7.92 (s, 1 H), 7.80 (d, 1 H), 7.37 (m, 3 H), 7.24 (m, 6 H), 6.98 (d, 1 H), 4.12 (s, 2 H), 3.97 (m, 2 H), 1.65-1.96 (m, 8 H).

Example 127

cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-(2-phenylethyl)benzamide

The titled compound was prepared according to the methods described in Example
23, substituting 2-bibenzylcarboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 484 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.70 (d, 1 H), 8.55 (d, 1 H), 8.22 (d, 1 H), 7.97 (d, 1 H), 7.77 (dd, 1 H), 7.33-7.40 (m, 2 H), 7.24-7.30 (m, 4 H), 7.20-7.23 (m, 2 H), 7.16 (t, 1 H), 6.98 (d, 1 H), 4.06 (br.s, 1 H), 3.94 (br.s, 1 H), 2.99 (m, 2 H), 2.84 (m, 2 H), 1.72-2.05 (m, 8 H).

Example 128

* cis-2-bromo-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-5-methoxybenzamide *

The titled compound was prepared according to the methods described in Example 23, substituting 2-bromo-5-methoxybenzolic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 490 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.70 (d, 1 H), 8.54 (d, 1 H), 8.33 (d, 1 H), 7.91 (d, 1 H), 7.77 (dd, 1 H), 7.59 (d, 1 H), 7.53 (d, 1 H), 7.26 (d, 1 H), 7.03 (dd, 1 H), 6.96 (d, 1 H), 3.85-4.05 (m, 2 H), 3.79 (s, 3 H), 1.70-2.03 (m, 8 H).

Example 129

* cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-(4-methylbenzoyl)benzamide *

The titled compound was prepared according to the methods described in Example 23, substituting 2-(4-methylbenzoyl)benzoic acid for indole-6-carboxylic acid. ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.78 (d, 1 H), 8.73 (d, 1 H), 8.55 (dd, 2 H), 8.49 (d, 1 H), 8.31 (d, 1 H), 7.95 (d, 1 H), 7.92 (dd, 1 H), 7.68-7.75 (m, 4 H), 7.38 (d, 1 H), 6.85 (d, 1 H), 3.20-3.56 (br.s, 2 H), 2.36 (s, 3 H), 1.40-2.14 (m, 8 H).

Example 130

* cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-iodobenzamide *

The titled compound was prepared according to the methods described in Example 23, substituting 2-iodobenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 506 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.70 (d, 1 H), 8.54 (d, 1 H), 8.32 (d, 1 H), 7.91 (d, 1 H), 7.88 (d, 1 H), 7.77 (dd, 1 H), 7.39-7.52 (m, 2 H), 7.33 (dd, 1 H), 7.17 (td, 1 H), 6.95 (d, 1 H), 4.00 (br.s, 1 H), 3.91 (br.s, 1 H), 1.68-2.03 (m, 8 H).
Example 131

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-iodobenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-iodobenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 506 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.21-8.27 (m, 2 H), 7.99 (d, 1 H), 7.89 (t, 1 H), 7.81 (dd, 1 H), 7.24-7.36 (m, 2 H), 6.99 (d, 1 H), 3.93-4.03 (br.s, 2 H), 1.67-2.07 (m, 8 H).

Example 132

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-iodobenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-iodobenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 506 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.83 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.20 (d, 1 H), 7.93 (d, 1 H), 7.86 (d, 2 H), 7.81 (dd, 1 H), 7.67 (d, 2 H), 7.00 (d, 1 H), 3.89-4.04 (br.s, 2 H), 1.68-2.05 (m, 8 H).

Example 133

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-fluorophenyl)acetamide

A solution of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine (20 mg, 0.07 mmol) in dichloromethane (1.0 mL) and triethylamine (0.01 mL) at 20°C was treated with (4-fluoro-phenyl)-acetyl chloride (12mg, 0.07 mmol). The reaction was shaken at room temperature for 18 hours then concentrated. The crude compound was purified by reverse phase HPLC to provide the desired compound. MS (ESI (+)) m/e 412 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.87 (d, 1 H), 8.74 (d, 1 H), 8.54 (d, 1 H), 8.01 (d, 1 H), 7.95 (m, 1 H), 7.80 (dd, 1 H), 7.31 (m, 2 H), 7.12 (m, 2 H), 6.97 (d, 1 H), 3.91 (br.s, 1 H), 3.80 (br.s, 1 H), 3.47 (s, 2 H), 1.57-1.98 (m, 8 H).

Example 134

cis-bis-3-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino)-1-(4-fluorophenyl)propan-1-one

3-Chloro-4-fluoropropiophenone (13 mg, 0.07 mmol) was treated with a solution of
sodium iodide (0.07 mmol) in acetonitrile (0.5mL). A solution of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine (20 mg, 0.07 mmol) in acetonitrile (0.5 mL) was added followed by potassium carbonate (20 mg, 0.14 mmol). The reaction was heated to 75°C for 18 hours then filtered and concentrated. The crude compound was purified by reverse phase HPLC to provide the desired compound. MS (ESI (+)) m/e 576 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 9.96 (br.s, 1 H), 8.78 (d, 1 H), 8.62 (d, 1 H), 8.54 (m, 1 H), 7.97 (d, 1 H), 7.79 (dd, 1 H), 7.49 (m, 2 H), 7.34 (m, 2 H), 7.07 (t, 2 H), 6.94 (m, 3 H), 5.66 (br.s, 1 H), 4.54 (m, 1 H), 4.19 (br.s, 1 H), 3.47-3.72 (m, 5 H), 1.79-2.23 (m, 10 H).

Example 135
cis-5-{(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino}-1-(4-fluorophenyl)pentan-1-one

The titled compound was prepared according to the method described in Example 134 by substituting 4-(fluorophenyl)-5-chloro-1-oxopentane for 3-Chloro-4-fluoropropiophenone. MS (ESI (+)) m/e 454 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.74 (d, 1 H), 8.58 (m, 2 H), 8.45 (br.s, 2 H), 8.07 (m, 2 H), 7.97 (d, 1 H), 7.79 (dd, 1 H), 7.36 (t, 2 H), 6.94 (d, 1 H), 4.07 (br.s, 1 H), 3.23 (m, 2 H), 3.10 (m, 2 H), 2.99 (br.s, 2 H), 2.03 (m, 2 H), 1.74-1.96 (m, 5 H), 1.69 (m, 4 H).

Example 136
cis-N-(4,4-bis(4-fluorophenyl)butyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 134 by substituting 1,1'-(4-chlorobutylidene) bis(4-fluorobenzene) for 3-Chloro-4-fluoropropiophenone. MS (ESI (+)) m/e 520 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.72 (d, 1 H), 8.59 (d, 1 H), 8.51 (br.s, 1 H), 8.37 (br.s, 2 H), 7.96 (d, 1 H), 7.77 (dd, 1 H), 7.35 (m, 4 H), 7.14 (m, 4 H), 6.92 (d, 1 H), 4.04 (m, 2 H), 3.17 (br.s, 1 H), 2.97 (m, 2 H), 2.05 (m, 4 H), 1.71-1.92 (m, 5 H), 1.50 (m, 2 H).

Example 137
cis-N-(7-chloroquinolin-4-yl)-N'-(4-phenylbutyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 134 by substituting 1-chloro-4-phenyl butane for 3-Chloro-4-fluoropropiophenone. MS (ESI (+)) m/e 408 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.74 (d, 1 H), 8.59 (d, 1 H), 8.56 (m, 1 H), 8.44 (br.s, 2 H), 7.97 (d, 1 H), 7.78 (dd, 1 H), 7.30 (m, 2 H), 7.20 (m, 3 H), 6.93 (d, 1
Example 138

\textit{cis-N-((7-chloroquinolin-4-yl)-N'-(5-phenylpentyl)cyclohexane-1,4-diamine}

The titled compound was prepared according to the method described in Example 134 by substituting 1-chloro-5-phenyl pentane for 3-Chloro-4-fluoropropiophenone. MS (ESI (+)) m/e 422 (M+H)^{+}; 1H NMR (500 MHz, DMSO) δ ppm 8.74 (d, 1 H), 8.60 (d, 2 H), 8.46 (br.s, 2 H), 7.97 (d, 1 H), 7.78 (dd, 1 H), 7.28 (m, 2 H), 7.19 (m, 3 H), 6.94 (d, 1 H), 4.08 (m, 1 H), 3.23 (br.s, 1 H), 2.95 (br.s, 1 H), 2.59 (t, 2 H), 2.04 (m, 2 H), 1.72-1.95 (m, 6 H), 1.63 (m, 4 H), 1.36 (m, 2 H).

Example 139

\textit{cis-N-((7-chloroquinolin-4-yl)-N'-(3,5-difluorobenzyl)cyclohexane-1,4-diamine}

The titled compound was prepared according to the methods described in Example 23, substituting 3,5-difluorobenzaldehyde for 6-formylindole. MS (ESI(+)Q1MS m/z 402 (M+H)^{+}; 1H NMR (300 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.67 (d, 1 H), 8.61 (d, 1 H), 7.98 (d, 1 H), 7.80 (dd, 1 H), 7.24-7.42 (m, 4 H), 6.96 (d, 1 H), 4.26 (br.s, 1 H), 4.08 (br.s, 1 H), 2.07 (s, 2 H), 1.73-2.16 (m, 8 H).

Example 140

\textit{cis-N-((7-chloroquinolin-4-yl)-N'-(3,5-difluorophenyl)cyclohexane-1,4-diamine}

A mixture of example 23A (30mg, 0.11mmol), 1-bromo-3,5-difluorobenzene (25mg,0.132mmol), Pd$_2$(dba)$_3$ (1mg, .001 mmol), 2,2'-bis(diphenylphosphino)-1,1'-binaphtyl (1.6mg, .002mmol) and sodium-tert-butoxide (14mg, 0.132 mmol) was heated for 15 hours in ethylene glycol dimethylether, concentrated and the residue was purified with high throughput HPLC system to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+)Q1MS m/z 388 (M+H)^{+}; 1H NMR (300 MHz, DMSO-D6) δ ppm 8.91 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.01 (d, 1 H), 6.25 (m, 4 H), 3.86-4.10 (br.s, 1 H), 3.54 (br.s, 1 H), 3.54 (m, 8 H).
Example 141

cis-N-(7-chloroquinolin-4-yl)-N'-(3-fluorobenzyl)cyclohexane-1,4-diamine

To 4-fluorobenzyl alcohol (9.2 mg, 0.073 mmol) was added Dess-Martin periodinane (31.0 mg, 0.073 mmol) in dichloromethane (2mL). The mixture was stirred at room temperature for 0.5 hour and was added to a mixture of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine (20 mg, 0.073 mmol), acetic acid (0.008 mg, 0.13 mmol) and MP-cyanoborohydride (51 mg, 0.219 mmol, Argonaut Technologies) in dichloromethane (5 mL). The mixture was stirred at room temperature for 18 hours, filtered and concentrated under reduced pressure to provide the πττλεδ compound. MS(ESI) m/e 384 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.91 (br.s, 2 H), 8.75 (d, 1 H), 8.61 (d, 1 H), 7.97 (d, 1 H), 7.81 (dd, 1 H), 7.52 (dd, 1 H), 7.42 (d, 1 H), 7.37 (d, 1 H), 7.29 (td, 1 H), 4.25 (br.s, 2 H), 4.09 (br.s, 2 H), 1.76-2.13 (m, 8 H).

Example 142

cis-N-(3-chlorobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3-chlorobenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 394 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.85 (br.s, 2 H), 8.73 (d, 1 H), 8.60 (d, 1 H), 7.96 (d, 1 H), 7.82 (dd, 1 H), 7.65 (s, 1 H), 7.51 (m, 3 H), 6.93 (d, 1 H), 4.24 (s, 2 H), 4.07 (s, 2 H), 1.71-2.15 (m, 8 H).

Example 143

cis-N-(4-chlorobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 4-chlorobenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 399 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.86 (br. s, 2 H), 8.73 (d, 1 H), 8.60 (d, 1 H), 7.96 (d, 1 H), 7.80 (d, 1 H), 7.42-7.67 (m, 4 H), 6.93 (d, 1 H), 4.22 (s, 2 H), 4.07 (s, 2 H), 1.71-2.15 (m, 8 H).

Example 144

cis-N-(7-chloroquinolin-4-yl)-N'-(3-(trifluoromethyl)benzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3-(trifluoromethyl)benzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 434
(M+H)^+; ^1\text{H} \text{NMR} (500 \text{MHz, DMSO-D6}) \delta \text{ ppm} \ 8.81-9.05 \text{ (br.s, 2 H), 8.75 (d, 1 H), 8.61 (d, 1 H), 7.96 (d, 1 H), 7.82 (m, 4 H), 7.71 (d, 1 H), 6.95 (d, 1 H), 4.20-4.44 (br.s, 2 H), 4.09 (br.s, 2 H), 1.71-2.33 (m, 8 H).

Example 145

cis-N-(7-chloroquinolin-4-yl)-N'-(4-(trifluoromethyl)benzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 4-(trifluoromethyl)benzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 434 (M+H)^+; ^1\text{H} \text{NMR} (500 \text{MHz, DMSO-D6}) \delta \text{ ppm} \ 8.84-9.06 \text{ (br.s, 2 H), 8.73 (d, 1 H), 8.60 (d, 1 H), 7.96 (d, 1 H), 7.87 (m, 2 H), 7.73 (m, 3 H), 6.93 (d, 1 H), 4.32 (d, 2 H), 4.07 (s, 2 H), 1.60-2.18 (m, 8 H).

Example 146

cis-N-(7-chloroquinolin-4-yl)-N'-(4-phenoxybenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 4-phenoxybenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 458 (M+H)^+; ^1\text{H} \text{NMR} (500 \text{MHz, DMSO-D6}) \delta \text{ ppm} \ 8.89 (br.s, 2 H), 8.73 (d, 1 H), 8.60 (d, 1 H), 8.54 (br.s, 1 H), 7.96 (d, 1 H), 7.81 (dd, 1 H), 7.48 (t, 1 H), 7.42 (t, 2 H), 7.29 (d, 1 H), 7.24 (s, 1 H), 7.18 (t, 1 H), 7.06 (m, 3 H), 6.93 (d, 1 H), 4.21 (br.s, 2 H), 4.07 (s, 2 H), 1.73-2.14 (m, 8 H).

Example 147

cis-N-(4-(benzyloxy)benzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 4-benzyloxybenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 472 (M+H)^+; ^1\text{H} \text{NMR} (500 \text{MHz, DMSO-D6}) \delta \text{ ppm} \ 8.72 (m, 2 H), 8.60 (d, 1 H), 7.96 (d, 1 H), 7.80 (dd, 1 H), 7.39 (m, 6 H), 7.09 (d, 2 H), 6.91 (d, 1 H), 5.15 (s, 2 H), 3.97-4.25 (m, 2 H), 3.08-3.43 (m, 3 H), 1.70-2.16 (m, 8 H).
Example 148

cis-N-(7-chloroquinolin-4-yl)-N'-(2,4-dimethylbenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2,4-dimethylbenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 394 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, 1 H), 8.61 (d, 1 H), 7.96 (d, 1 H), 7.82 (dd, 1 H), 7.33 (br.s, 2 H), 7.33 (m, 1 H), 7.08 (m, 2 H), 6.94 (d, 1 H), 3.92-4.34 (m, 4 H), 2.35 (s, 3 H), 2.29 (s, 3 H), 1.72-2.18 (m, 8 H).

Example 149

cis-N-(7-chloroquinolin-4-yl)-N'-(2,5-dimethylbenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2,5-dimethylbenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 394 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, 1 H), 8.74 (br.s, 2 H), 8.61 (d, 1 H), 8.53 (br.s, 1 H), 7.97 (d, 1 H), 7.80 (dd, 1 H), 7.28 (m, 1 H), 7.18 (m, 2 H), 6.93 (d, 1 H), 4.03-4.27 (m, 2 H), 2.33 (s, 3 H), 2.30 (s, 3 H), 1.73-2.22 (m, 8 H).

Example 150

cis-N-(7-chloroquinolin-4-yl)-N'-(3,4-dimethylbenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3,4-dimethylbenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 394 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.79 (br.s, 2 H), 8.74 (d, 1 H), 8.60 (d, 1 H), 8.58 (br.s, 1 H), 8.58 (m, 10 H), 7.97 (s, 1 H), 7.80 (d, 1 H), 7.25 (m, 3 H), 6.93 (d, 1 H), 3.98-4.24 (m, 4 H), 2.24 (s, 3 H), 2.24 (s, 3 H), 1.73-2.22 (m, 8 H).

Example 151

cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dimethylbenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3,5-dimethylbenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 394 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (br.s, 2 H), 8.73 (d, 1 H), 8.60 (d, 1 H), 8.55 (br.s, 1 H), 7.96 (d, 1 H), 7.81 (dd, 1 H), 7.12 (s, 1 H), 7.08 (d, 2 H), 6.93 (d, 1 H), 3.98-4.19 (m, 4 H), 2.49 (s, 3 H), 2.30 (s, 3 H), 1.69-2.16 (m, 8 H).
Example 152

cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dimethoxybenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3,5-dimethoxybenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 426 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.85 (br.s, 2 H), 8.73 (d, 1 H), 8.60 (d, 1 H), 8.51 (br.s, 1 H), 7.96 (s, 1 H), 7.80 (dd, 1 H), 6.92 (d, 1 H), 6.72 (d, 2 H), 6.57 (m, 1 H), 4.01-4.29 (m, 2 H), 3.77 (s, 6 H), 1.70-2.15 (m, 8 H).

Example 153

cis-N-(1,3-benzodioxol-5-ylmethyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3,4-methylenedioxybenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 410 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.73 (d, 1 H), 8.73 (br.s, 2 H), 8.60 (d, 1 H), 8.51 (br.s, 1 H), 7.96 (d, 1 H), 7.81 (d, 1 H), 7.10 (s, 1 H), 7.00 (s, 2 H), 6.92 (d, 1 H), 6.06 (s, 2 H), 3.96-4.24 (m, 4 H), 1.72-2.14 (m, 8 H).

Example 154

cis-N-(7-chloroquinolin-4-yl)-N'-(3,4,5-trimethoxybenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3,4,5-trimethoxybenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 456 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.87 (br.s, 2 H), 8.75 (d, 1 H), 8.61 (d, 1 H), 8.60 (br.s, 1 H), 7.97 (d, 1 H), 7.81 (dd, 1 H), 6.95 (d, 1 H), 6.87 (m, 2 H), 3.99-4.26 (m, 2 H), 3.80 (s, 6 H), 3.67 (s, 3 H), 1.70-2.15 (m, 8 H).

Example 155

cis-N-(7-chloroquinolin-4-yl)-N'-(2,3-dichlorobenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2,3-dichlorobenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 436 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.84-9.08 (br.s, 2 H), 8.75 (d, 1 H), 8.61 (d, 1 H), 8.60 (br.s, 1 H), 7.97 (d, 1 H), 7.81 (d, 1 H), 7.76 (d, 1 H), 7.63 (m, 1 H), 7.50 (m, 1 H), 6.95 (d, 1 H), 4.37 (s, 2 H), 1.72-2.22 (m, 8 H).

87
Example 156

cis-N-(7-chloroquinolin-4-yl)-N'-((2,4-dichlorobenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2,4-dichlorobenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 436 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.73 (d, 1 H), 8.60 (d, 1 H), 8.56 (br.s, 1 H), 7.95 (s, 1 H), 7.80 (m, 1 H), 7.68 (m, 2 H), 7.59 (m, 1 H), 6.93 (d, 1 H), 4.03-4.50 (br.s, 2 H), 4.03-4.50 (m, 2 H), 1.70-2.32 (m, 8 H).

Example 157

cis-N-(7-chloroquinolin-4-yl)-N'-((2,5-dichlorobenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2,5-dichlorobenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 434 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.78-9.11 (br.s, 2 H), 8.74 (d, 1 H), 8.60 (d, 1 H), 8.59 (br.s, 1 H), 7.96 (d, 1 H), 7.80 (m, 2 H), 7.60 (m, 2 H), 6.94 (d, 1 H), 3.99-4.47 (m, 2 H), 1.73-2.31 (m, 8 H).

Example 158

cis-N-(7-chloroquinolin-4-yl)-N'-((3,4-dichlorobenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3,4-dichlorobenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 434 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.81 (br.s, 2 H), 8.69 (br.s, 1 H), 8.58 (d, 1 H), 7.98 (d, 1 H), 7.94 (s, 1 H), 7.68-7.88 (m, 3 H), 7.49 (m, 2 H), 3.86-4.41 (m, 2 H), 1.62-2.24 (m, 8 H).

Example 159

cis-N-(7-chloroquinolin-4-yl)-N'-((3,5-dichlorobenzyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3,5-dichlorobenzyl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 434 (M+H)^+; ^1H NMR (500 MHz, DMSO-D6) δ ppm 8.85 (br.s, 2 H), 8.73 (d, 1 H), 8.61 (d, 1
H), 8.60 (br.s, 1 H), 7.96 (d, 1 H), 7.82 (dd, 1 H), 7.72 (s, 1 H), 7.62 (d, 2 H), 6.94 (d, 1 H), 4.01-4.41 (m, 2 H), 1.73-2.28 (m, 8 H).

Example 160

cis-N-(7-chloroquinolin-4-yl)-N'phenylecyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting bromobenzene for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 352 (M+H)^+; ^1^H NMR (300 MHz, DMSO-D6) δ ppm 8.90 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.91 (s, 1 H), 7.80 (dd, 1 H), 7.08 (t, 2 H), 7.00 (d, 1 H), 6.63 (d, 1 H), 6.52 (t, 1 H), 3.87-4.08 (br.s, 2 H), 1.66-2.16 (m, 8 H).

Example 161

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}propane-1-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 1-propanesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 382 (M+H)^+; ^1^H NMR (500 MHz, DMSO) δ ppm 8.73 (m, 2 H), 8.52 (d, 1 H), 7.91 (d, 1 H), 7.78 (dd, 1 H), 6.93 (m, 2 H), 3.89 (br.s, 1 H), 3.49 (m, 1 H), 3.02 (m, 2 H), 1.89 (m, 4 H), 1.71 (m, 6 H), 1.00 (t, 3 H).

Example 162

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}butane-1-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 1-butanesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 396 (M+H)^+; ^1^H NMR (500 MHz, DMSO) δ ppm 8.79 (m, 1 H), 8.70 (d, 1 H), 8.53 (d, 1 H), 7.91 (d, 1 H), 7.79 (dd, 1 H), 6.95 (d, 1 H), 6.91 (d, 1 H), 3.90 (m, 1 H), 3.49 (m, 1 H), 3.04 (m, 2 H), 1.89 (m, 4 H), 1.59-1.80 (m, 6 H), 1.42 (m, 2 H), 0.90 (t, 3 H).

Example 163

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting benzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI
(+)) m/e 416 (M+H)^+; ¹H NMR (500 MHz, DMSO) δ ppm 8.83 (m, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.87 (m, 2 H), 7.79 (dd, 1 H), 7.64 (m, 3 H), 7.56 (d, 1 H), 6.93 (d, 1 H), 3.86 (m, 1 H), 3.12 (m, 1 H), 1.89 (m, 2 H), 1.74 (m, 4 H), 1.57 (m, 2 H).

Example 164

cis-2-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-fluorobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-chloro-4-fluorobenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 468 (M+H)^+; ¹H NMR (500 MHz, DMSO) δ ppm 8.76 (m, 1 H), 8.72 (d, 1 H), 8.52 (d, 1 H), 8.07 (m, 1 H), 7.92 (d, 1 H), 7.87 (d, 1 H), 7.80 (dd, 1 H), 7.72 (dd, 1 H), 7.44 (td, 1 H), 6.91 (d, 1 H), 3.85 (m, 1 H), 1.90 (m, 2 H), 1.75 (m, 4 H), 1.58 (m, 2 H).

Example 165

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}thiophene-2-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-thiophenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 422 (M+H)^+; ¹H NMR (500 MHz, DMSO) δ ppm 8.82 (m, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.94 (dd, 1 H), 7.91 (d, 1 H), 7.78 (m, 2 H), 7.63 (dd, 1 H), 7.21 (m, 1 H), 6.93 (d, 1 H), 3.87 (m, 1 H), 1.87 (m, 4 H), 1.73 (m, 2 H), 1.62 (m, 2 H).

Example 166

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(trifluoromethoxy)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-(trifluoromethoxy)benzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 500 (M+H)^+; ¹H NMR (500 MHz, DMSO) δ ppm 8.78 (d, 1 H), 8.71 (d, 1 H), 8.52 (d, 1 H), 7.97 (dd, 1 H), 7.92 (d, 1 H), 7.79 (m, 3 H), 7.59 (t, 2 H), 6.92 (d, 1 H), 3.87 (m, 1 H), 1.87 (m, 4 H), 1.73 (m, 2 H), 1.62 (m, 2 H).
Example 167

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-3-methylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting m-tolylsulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 430 (M+H)^+; \(^1^H\) NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.71 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.68 (m, 2 H), 7.47 (m, 3 H), 6.94 (d, 1 H), 3.86 (m, 1 H), 3.13 (m, 1 H), 2.41 (s, 3 H), 1.90 (m, 2 H), 1.75 (m, 4 H), 1.57 (m, 2 H).

Example 168

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-methylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting p-tolylsulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 430 (M+H)^+; \(^1^H\) NMR (500 MHz, DMSO) δ ppm 8.85 (d, 1 H), 8.71 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.74 (d, 2 H), 7.46 (d, 1 H), 7.41 (d, 2 H), 6.93 (d, 1 H), 3.85 (m, 1 H), 3.10 (m, 1 H), 2.39 (s, 3 H), 1.89 (m, 2 H), 1.75 (m, 4 H), 1.56 (m, 2 H).

Example 169

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2-fluorobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-fluorobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 434 (M+H)^+; \(^1^H\) NMR (500 MHz, DMSO) δ ppm 8.79 (m, 1 H), 8.71 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.87 (m, 2 H), 7.79 (dd, 1 H), 7.72 (m, 1 H), 7.44 (m, 2 H), 6.92 (d, 1 H), 3.85 (m, 1 H), 1.91 (m, 2 H), 1.76 (m, 4 H), 1.60 (m, 2 H).

Example 170

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-3-fluorobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-fluorobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 434 (M+H)^+; \(^1^H\) NMR (500 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.68 (m, 4 H), 7.54 (m, 1 H), 6.94 (d, 1 H), 3.86 (m, 1 H), 3.19 (m, 1 H), 1.88 (m, 2 H), 1.75 (m, 4 H), 1.58 (m, 2 H).
Example 171

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-fluorobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-fluorobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 434 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.93 (m, 3 H), 7.79 (dd, 1 H), 7.60 (d, 1 H), 7.46 (t, 2 H), 6.93 (d, 1 H), 3.86 (m, 1 H), 3.14 (m, 1 H), 1.88 (m, 2 H), 1.75 (m, 4 H), 1.58 (m, 2 H).

Example 172

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyanobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-cyanobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 441 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.79 (d, 1 H), 8.71 (d, 1 H), 8.52 (d, 1 H), 8.09 (m, 3 H), 7.94 (m, 2 H), 7.84 (td, 1 H), 7.80 (dd, 1 H), 6.93 (d, 1 H), 3.88 (m, 1 H), 3.41 (m, 1 H), 1.87 (m, 4 H), 1.73 (m, 2 H), 1.65 (m, 2 H).

Example 173

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-cyanobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-cyanobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 441 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 8.27 (t, 1 H), 7.92 (d, 1 H), 7.82 (m, 3 H), 6.94 (d, 1 H), 3.88 (m, 1 H), 3.21 (m, 1 H), 8.88 (m, 2 H), 1.75 (m, 4 H), 1.65 (m, 2 H), 1.59 (m, 2 H).

Example 174

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-cyanobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-cyanobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 441 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.78 (d, 1 H), 8.69 (d, 1 H), 8.51 (d, 1 H), 8.11 (d, 2 H), 8.03 (d, 2 H), 7.91 (d, 1 H), 7.88 (d, 1 H), 7.79 (dd, 1 H), 6.93 (d, 1 H), 3.87 (m, 1 H), 3.20 (m, 1 H), 1.87 (m, 2 H), 1.74 (m, 4 H), 1.59 (m, 2 H).
Example 175

cis-N-[4-((7-chlorquinolin-4-yl)amino)cyclohexyl]-2,5-dimethylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting p-xylene-2-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 444 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.76 (d, 1 H), 8.71 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.79 (dd, 1 H), 7.68 (s, 1 H), 7.54 (d, 1 H), 7.31 (m, 2 H), 6.90 (d, 1 H), 3.83 (m, 1 H), 3.20 (m, 1 H), 2.57 (s, 3 H), 2.34 (s, 3 H), 1.88 (m, 2 H), 1.73 (m, 4 H), 1.54 (m, 2 H).

Example 176

cis-N-[4-((7-chlorquinolin-4-yl)amino)cyclohexyl]-3-methoxybenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-methoxybenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 446 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.54 (m, 2 H), 7.44 (m, 1 H), 7.39 (m, 1 H), 7.22 (m, 1 H), 6.93 (d, 1 H), 3.86 (m, 4 H), 3.13 (m, 1 H), 1.90 (m, 2 H), 1.75 (m, 4 H), 1.57 (m, 2 H).

Example 177

cis-N-[4-((7-chlorquinolin-4-yl)amino)cyclohexyl]-4-methoxybenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-methoxybenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 446 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.79 (m, 3 H), 7.38 (d, 1 H), 7.13 (d, 2 H), 6.93 (d, 1 H), 3.86 (m, 4 H), 3.08 (m, 1 H), 1.89 (m, 2 H), 1.75 (m, 4 H), 1.56 (m, 2 H).

Example 178

cis-2-chloro-N-[4-((7-chlorquinolin-4-yl)amino)cyclohexyl]benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-chlorobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS
(ESI (+)) m/e 451 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.79 (d, 1 H), 8.72 (d, 1 H), 8.52 (d, 1 H), 8.01 (d, 1 H), 7.92 (d, 1 H), 7.80 (m, 2 H), 7.67 (m, 2 H), 7.57 (m, 1 H), 6.92 (d, 1 H), 3.85 (m, 1 H), 1.91 (m, 2 H), 1.75 (m, 4 H), 1.59 (m, 2 H).

Example 179

cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dimethylphenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 5-bromo-m-xylene for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 380 (M+H)⁺; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.87 (d, 1 H), 8.71 (d, 1 H), 8.54 (d, 1 H), 7.93 (d, 1 H), 7.79 (dd, 1 H), 6.99 (d, 1 H), 6.27 (s, 2 H), 6.20 (s, 1 H), 3.86-4.23 (m, 2 H), 2.15 (s, 6 H), 1.67-2.01 (m, 8 H).

Example 180

cis-N-(7-chloroquinolin-4-yl)-N'-(2-fluorophenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 1-bromo-2-fluorobenzene for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 370 (M+H)⁺; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.84 (d, 1 H), 8.67 (d, 1 H), 8.55 (d, 1 H), 7.93 (s, 1 H), 7.80 (dd, 1 H), 6.97-7.08 (m, 3 H), 6.81 (t, 1 H), 6.58 (dd, 1 H), 4.68-4.92 (br.s, 1 H), 4.01 (br.s, 1 H), 3.66 (s, 1 H), 1.68-2.02 (m, 8 H).

Example 181

cis-N-(7-chloroquinolin-4-yl)-N'-(3-fluorophenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 1-bromo-3-fluorobenzene for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 370 (M+H)⁺; ¹H NMR (500 MHz, DMSO-D6) δ ppm 8.91 (d, 1 H), 8.72 (d, 1 H), 8.54 (d, 1 H), 7.93 (d, 1 H), 7.79 (dd, 1 H), 6.97-7.07 (m, 3 H), 6.47 (d, 1 H), 6.40 (d, 1 H), 6.28 (t, 1 H), 3.96 (m, 2 H), 1.70-1.98 (m, 8 H).

Example 182

cis-N-(7-chloroquinolin-4-yl)-N'-2-naphthyclclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example
140, substituting 2-bromonaphtalene for 1-bromo-3,5-difluorobenzene. MS (ESI(+)Q1MS m/z 402 (M+H)^+); \[^1\text{H}\text{NMR (500 MHz, DMSO-D6)}\delta \text{ppm}\ 8.93 \text{ (d, 1 H)}, 8.73 \text{ (d, 1 H)}, 8.55 \text{ (d, 1 H)}, 7.94 \text{ (d, 1 H)}, 7.79 \text{ (dd, 1 H)}, 7.54-7.65 \text{ (m, 3 H)}, 7.30 \text{ (t, 1 H)}, 7.06-7.13 \text{ (m, 2 H)}, 7.02 \text{ (d, 1 H)}, 6.77 \text{ (d, 1 H)}, 5.75-5.95 \text{ (br.s., 1 H)}, 4.01 \text{ (s, 1 H)}, 3.69 \text{ (s, 1 H)}, 1.72-2.12 \text{ (m, 8 H)}.

Example 183

cis-N-(7-chloroquinolin-4-yl)-N'-(3-fluoro-4-methylphenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 4-bromo-2-fluorotoluene for 1-bromo-3,5-difluorobenzene. MS (ESI(+)Q1MS m/z 384 (M+H)^+); \[^1\text{H}\text{NMR (500 MHz, DMSO-D6)}\delta \text{ppm}\ 8.89 \text{ (d, 1 H)}, 8.71 \text{ (d, 1 H)}, 8.54 \text{ (d, 1 H)}, 7.93 \text{ (d, 1 H)}, 7.79 \text{ (dd, 1 H)}, 7.00 \text{ (d, 1 H)}, 6.94 \text{ (t, 1 H)}, 6.35-6.41 \text{ (m, 2 H)}, 5.50-5.70 \text{ (br.s., 1 H)}, 3.96 \text{ (s, 1 H)}, 3.50 \text{ (s, 1 H)}, 2.06 \text{ (s, 3 H)}, 1.67-1.97 \text{ (m, 8 H)}.

Example 184

cis-N-(7-chloroquinolin-4-yl)-N'1-naphthylcyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 1-bromotoluene for 1-bromo-3,5-difluorobenzene. MS (ESI(+)Q1MS m/z 402 (M+H)^+); \[^1\text{H}\text{NMR (500 MHz, DMSO-D6)}\delta \text{ppm}\ 8.90 \text{ (d, 1 H)}, 8.72 \text{ (d, 1 H)}, 8.56 \text{ (d, 1 H)}, 8.27 \text{ (d, 1 H)}, 7.94 \text{ (d, 1 H)}, 7.73-7.83 \text{ (m, 2 H)}, 7.44 \text{ (m, 1 H)}, 7.31 \text{ (t, 1 H)}, 7.14 \text{ (d, 1 H)}, 7.03 \text{ (d, 1 H)}, 6.62 \text{ (d, 1 H)}, 5.61 \text{ (s, 1 H)}, 5.41-5.76 \text{ (br.s., 1 H)}, 4.03 \text{ (s, 1 H)}, 3.80 \text{ (s, 1 H)}, 1.69-2.26 \text{ (m, 8 H)}.

Example 185

cis-3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-chlorobenzene sulfonfyl chloride for 4-chlorobenzene sulfonfyl chloride. MS (ESI (+)) m/e 451 (M+H)^+; \[^1\text{H}\text{NMR (500 MHz, DMSO)}\delta \text{ppm}\ 8.84 \text{ (d, 1 H)}, 8.70 \text{ (d, 1 H)}, 8.52 \text{ (d, 1 H)}, 7.92 \text{ (d, 1 H)}, 7.89 \text{ (t, 1 H)}, 7.75 \text{ (m, 1 H)}, 7.71 \text{ (d, 1 H)}, 7.66 \text{ (t, 1 H)}, 6.94 \text{ (d, 1 H)}, 3.85 \text{ (m, 1 H)}, 3.85 \text{ (m, 2 H)}, 3.17 \text{ (m, 1 H)}, 1.88 \text{ (m, 2 H)}, 1.75 \text{ (m, 4 H)}, 1.58 \text{ (m, 2 H)}.
Example 186

cis-4-(2-chloro-6-nitrophenox)-N-{4-((7-chloroquinolin-4-y)l)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2'-chloro-6'-nitro-4-phenoxynitrobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 589 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 8.18 (dd, 1 H), 8.08 (dd, 1 H), 7.92 (d, 1 H), 7.85 (d, 2 H), 7.79 (dd, 1 H), 7.65 (t, 1 H), 7.55 (d, 1 H), 7.12 (d, 2 H), 6.94 (d, 1 H), 3.83 (m, 1 H), 3.15 (m, 1 H), 1.89 (m, 2 H), 1.75 (m, 4 H), 1.56 (m, 2 H).

Example 187

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-difluorobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,4-difluorobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 452 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.79 (d, 1 H), 8.71 (d, 1 H), 8.52 (d, 1 H), 7.92 (m, 3 H), 7.79 (dd, 1 H), 7.55 (m, 1 H), 7.31 (m, 1 H), 6.92 (d, 1 H), 3.87 (m, 1 H), 1.90 (m, 2 H), 1.76 (m, 4 H), 1.61 (m, 2 H).

Example 188

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-difluorobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3,4-difluorobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 452 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.81 (m, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 7.92 (m, 2 H), 7.79 (d, 1 H), 7.72 (m, 3 H), 6.94 (d, 1 H), 3.86 (m, 1 H), 3.18 (m, 1 H), 1.66-1.94 (m, 6 H), 1.57 (m, 2 H).

Example 189

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-propylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-n-propylbenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 458 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.77 (m, 3 H), 7.47 (d, 1 H), 7.42 (d, 2 H), 6.92 (d, 1 H),...
3.84 (m, 1 H), 3.12 (m, 1 H), 2.65 (m, 2 H), 1.89 (m, 2 H), 1.75 (m, 4 H), 1.58 (m, 4 H), 0.89 (t, 3 H).

Example 190

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-isopropylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-isopropylbenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (±)) m/z 458 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.81 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.77 (m, 3 H), 7.48 (m, 3 H), 6.93 (d, 1 H), 3.85 (m, 1 H), 3.11 (m, 1 H), 3.00 (m, 1 H), 1.90 (m, 2 H), 1.64-1.84 (m, 4 H), 1.57 (m, 2 H), 1.23 (d, 6 H).

Example 191

cis-4-chloro-N-{5-((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)sulfonylthien-2-yl)methyl}benzamide

The titled compound was prepared according to the method described in Example 15 by substituting 5-((4-chloro-benzoyl)amino)-methyl)-thiophene-2-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (±)) m/z 591 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 9.34 (t, 1 H), 8.87 (d, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 7.90 (m, 3 H), 7.79 (dd, 1 H), 7.70 (d, 1 H), 7.56 (m, 2 H), 7.47 (d, 1 H), 7.09 (d, 1 H), 6.94 (d, 1 H), 4.65 (m, 2 H), 3.87 (m, 1 H), 3.25 (m, 1 H), 1.85 (m, 4 H), 1.72 (m, 2 H), 1.61 (m, 2 H).

Example 192

cis-5-bromo-6-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}pyridine-3-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 5-bromo-6-chloro-pyridine-3-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (±)) m/z 531 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.83 (d, 1 H), 8.70 (d, 1 H), 8.59 (d, 1 H), 8.53 (d, 1 H), 7.92 (m, 2 H), 7.81 (dd, 1 H), 6.97 (d, 1 H), 3.91 (m, 1 H), 1.71-1.93 (m, 6 H), 1.63 (m, 2 H).

Example 193
cis-4-tert-butyl-N-{4-\((7\text{-chloroquinolin}-4\text{-yl})\text{amino}\)cyclohexyl}\}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-t-butylphenyl sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 474 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.78 (d, 1 H), 8.70 (d, 1 H), 8.50 (d, 1 H), 7.91 (d, 1 H), 7.79 (m, 3 H), 7.63 (d, 2 H), 7.48 (d, 1 H), 6.92 (d, 1 H), 3.73-3.93 (m, 1 H), 3.09 (m, 1 H), 1.84-2.05 (m, 2 H), 1.64-1.84 (m, 4 H), 1.55 (m, 2 H), 1.31 (s, 9 H).

Example 194

cis-3-chloro-N-{4-\((7\text{-chloroquinolin}-4\text{-yl})\text{amino}\)cyclohexyl}-4-fluorobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-chloro-4-fluorobenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 469 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.81 (d, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 8.05 (dd, 1 H), 7.92 (d, 1 H), 7.88 (m, 1 H), 7.79 (dd, 1 H), 7.68 (m, 2 H), 6.94 (d, 1 H), 3.86 (m, 1 H), 3.18 (m, 1 H), 1.67-1.94 (m, 6 H), 1.59 (m, 2 H).

Example 195

cis-N-{4-\((7\text{-chloroquinolin}-4\text{-yl})\text{amino}\)cyclohexylamino\)sulfonylphenyl}\}acetamide

The titled compound was prepared according to the method described in Example 15 by substituting N-acetyl sulfanilyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 473 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 10.30 (s, 1 H), 8.84 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.78 (m, 5 H), 7.42 (d, 1 H), 6.93 (d, 1 H), 3.84 (m, 1 H), 3.10 (m, 1 H), 2.09 (s, 3 H), 1.89 (m, 2 H), 1.73 (m, 4 H), 1.55 (m, 2 H).

Example 196

cis-N-{4-\((7\text{-chloroquinolin}-4\text{-yl})\text{amino}\)cyclohexyl}-2,5-dimethoxybenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,5-dimethoxybenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 476 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.74 (d, J = 6.6 Hz, 1 H), 8.69 (d, J = 9.4 Hz, 1 H), 8.51 (d, J = 7.2 Hz, 1 H), 7.91 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 1.9 Hz, 1 H), 7.29 (m, 1 H), 7.20 (m, 2 H), 7.02 (d, J = 5.0 Hz, 1 H), 6.91 (d, J = 7.2 Hz, 1 H), 3.86 (m, 4 H), 3.76 (s, 3 H), 3.19 (m, 1 H), 1.92 (m, 2 H), 1.74 (m, 4 H), 1.55 (m, 2 H).
Example 197

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethoxybenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3,4-dimethoxybenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 476 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.71 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.42 (dd, 1 H), 7.39 (d, 1 H), 7.36 (d, 1 H), 7.20 (m, 1 H), 7.13 (d, 1 H), 6.94 (d, 1 H), 3.84 (m, 7 H), 3.06 (m, 1 H), 1.91 (m, 2 H), 1.76 (m, 4 H), 1.55 (m, 2 H).

Example 198

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-trifluoromethylbenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 484 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.87 (d, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 8.18 (m, 2 H), 8.06 (d, 1 H), 7.90 (m, 2 H), 7.81 (m, 2 H), 6.95 (d, 1 H), 3.88 (m, 1 H), 3.18 (m, 1 H), 1.88 (m, 2 H), 1.76 (m, 4 H), 1.59 (m, 2 H).

Example 199

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-trifluoromethylbenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 484 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.71 (d, 1 H), 8.52 (d, 1 H), 8.08 (d, 2 H), 8.02 (d, 2 H), 7.92 (d, 1 H), 7.84 (d, 1 H), 7.80 (dd, 1 H), 6.95 (d, 1 H), 3.84 (m, 1 H), 3.16 (m, 1 H), 1.91 (m, 2 H), 1.75 (m, 4 H), 1.48-1.69 (m, 2 H).
Example 200

cis-2,3-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,3-dichlorobenzensulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 486 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.78 (d, 1 H), 8.72 (d, 1 H), 8.52 (d, 1 H), 8.02 (m, 2 H), 7.95 (dd, 1 H), 7.92 (d, 1 H), 7.81 (dd, 1 H), 7.59 (t, 1 H), 6.92 (d, 1 H), 3.84 (m, 1 H), 1.92 (m, 2 H), 1.76 (m, 4 H), 1.60 (m, 2 H).

Example 201

cis-2,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,4-dichlorobenzensulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 486 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.78 (d, 1 H), 8.72 (d, 1 H), 8.52 (d, 1 H), 8.00 (d, 1 H), 7.94 (m, 2 H), 7.89 (d, 1 H), 7.80 (dd, 1 H), 7.66 (dd, 1 H), 6.92 (d, 1 H), 3.84 (m, 1 H), 1.91 (m, 2 H), 1.74 (m, 4 H), 1.59 (m, 2 H).

Example 202

cis-2,5-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,5-dichlorobenzensulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 486 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.78 (d, 1 H), 8.72 (d, 1 H), 8.52 (d, 1 H), 8.02 (d, 1 H), 7.97 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.74 (m, 2 H), 6.92 (d, 1 H), 3.86 (m, 1 H), 1.90 (m, 2 H), 1.76 (m, 4 H), 1.61 (m, 2 H).

Example 203

cis-3,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3,4-dichlorobenzensulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 486 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 8.06 (d, 1 H), 7.92 (m, 2 H), 7.80 (m, 3 H), 6.95 (d, 1 H), 3.88 (m, 1 H), 3.21 (m, 1 H), 1.68-1.93 (m, 6 H), 1.60 (m, 2 H).
Example 204

cis-3,5-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3,5-dichlorobenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 486 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.87 (d, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 7.92 (d, 1 H), 7.86 (d, 1 H), 7.86 (d, 2 H), 7.81 (m, 2 H), 6.96 (d, 1 H), 3.90 (m, 1 H), 3.23 (m, 1 H), 1.69-1.94 (m, 6 H), 1.61 (m, 2 H).

Example 205

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,1'-biphenyl-4-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-biphenyl sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 492 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.85 (d, 1 H), 8.71 (d, 1 H), 8.51 (d, 1 H), 7.93 (m, 5 H), 7.80 (dd, 1 H), 7.75 (m, 2 H), 7.61 (d, 1 H), 7.52 (m, 2 H), 7.45 (m, 1 H), 6.94 (d, 1 H), 3.87 (m, 1 H), 3.18 (m, 1 H), 1.68-1.96 (m, 6 H), 1.60 (m, 2 H).

Example 206

cis-2-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-bromobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 496 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.73 (m, 2 H), 8.51 (d, 1 H), 8.04 (dd, 1 H), 7.92 (d, 1 H), 7.87 (dd, 1 H), 7.79 (dd, 1 H), 7.73 (d, 1 H), 7.58 (m, 2 H), 6.91 (d, 1 H), 3.83 (m, 1 H), 1.93 (m, 2 H), 1.75 (m, 4 H), 1.61 (m, 2 H).

Example 207

cis-3-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-bromobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 496 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 8.02 (t, 1 H), 7.92 (d, 1 H), 7.88 (m, 2 H), 7.80 (dd, 1 H), 7.70 (d, 1 H),
7.59 (t, 1 H), 6.95 (d, 1 H), 3.89 (m, 1 H), 3.18 (m, 1 H), 1.90 (m, 2 H), 1.76 (m, 4 H), 1.60 (m, 2 H).

Example 208

cis-4-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-bromobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 496 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.71 (d, 1 H), 8.52 (d, 1 H), 7.92 (d, 1 H), 7.85 (m, 2 H), 7.79 (m, 3 H), 7.67 (d, 1 H), 6.94 (d, 1 H), 3.86 (m, 1 H), 3.15 (m, 1 H), 1.89 (m, 2 H), 1.74 (m, 4 H), 1.58 (m, 2 H).

Example 209

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethoxy)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-trifluoromethoxyphenyl sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 500 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.87 (d, 1 H), 8.71 (d, 1 H), 8.52 (d, 1 H), 8.00 (m, 2 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.71 (d, 1 H), 7.62 (d, 2 H), 6.95 (d, 1 H), 3.88 (m, 1 H), 3.18 (m, 1 H), 1.67-1.94 (m, 6 H), 1.59 (m, 2 H).

Example 210

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethylisoxazole-4-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3,5-dimethyl-isoxalzole-4-sulfonyl chloride sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 435 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.71 (m, 2 H), 8.51 (d, 1 H), 7.90 (d, 1 H), 7.83 (d, 1 H), 7.77 (dd, 1 H), 6.91 (d, 1 H), 3.84 (m, 1 H), 2.60 (s, 3 H), 2.36 (s, 3 H), 2.69-1.92 (m, 6 H), 1.63 (m, 2 H).

Example 211

cis- (E)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-phenylethynesulfonamide

The titled compound was prepared according to the method described in Example 15
by substituting trans-beta-styrenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 442 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.81 (m, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 7.91 (d, 1 H), 7.78 (dd, 1 H), 7.71 (m, 2 H), 7.46 (m, 3 H), 7.38 (d, 1 H), 7.21 (d, 1 H), 7.18 (d, 1 H), 6.95 (d, 1 H), 3.89 (m, 1 H), 3.42 (m, 1 H), 1.91 (m, 4 H), 1.72 (m, 4 H).

Example 212

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-vinylbenzenesulfonamide *

The titled compound was prepared according to the method described in Example 15 by substituting p-styrenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 442 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.82 (m, 3 H), 7.70 (d, 2 H), 7.55 (d, 1 H), 6.93 (d, 1 H), 6.82 (m, 1 H), 6.01 (d, 1 H), 5.45 (d, 1 H), 3.86 (m, 1 H), 3.13 (m, 1 H), 1.89 (m, 2 H), 1.75 (m, 4 H), 1.57 (m, 2 H).

Example 213

* cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}thiophene-2-sulfonamide *

The titled compound was prepared according to the method described in Example 15 by substituting 5-chlorothiophene-2-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 458 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.78 (m, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 7.94 (d, 1 H), 7.91 (d, 1 H), 7.78 (dd, 1 H), 7.52 (d, 1 H), 7.27 (d, 1 H), 6.94 (d, 1 H), 3.89 (m, 1 H), 1.79-2.00 (m, 4 H), 1.74 (m, 2 H), 1.63 (m, 2 H).

Example 214

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,1,3-benzoazadiazole-4-sulfonamide *

The titled compound was prepared according to the method described in Example 15 by substituting benzo(1,2,5)oxadiazole-4-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 458 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.69 (m, 2 H), 8.50 (d, 1 H), 8.37 (d, 1 H), 8.16 (d, 1 H), 8.12 (d, 1 H), 7.91 (d, 1 H), 7.79 (m, 2 H), 6.89 (d, 1 H), 3.84 (m, 1 H), 3.54 (m, 1 H), 1.88 (m, 2 H), 1.75 (m, 4 H), 1.59 (m, 2 H).
Example 215

\textit{cis}-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-3-nitrobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-nitrobenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 461 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 8.81 (m, 1 H), 8.69 (d, 1 H), 8.63 (t, 1 H), 8.51 (m, 2 H), 8.28 (d, 1 H), 7.93 (m, 3 H), 7.79 (dd, 1 H), 6.93 (d, 1 H), 3.88 (m, 1 H), 3.20 (m, 1 H), 1.67-1.93 (m, 6 H), 1.60 (m, 2 H).

Example 216

\textit{cis}-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-4-nitrobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-nitrobenzene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 461 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 8.79 (d, 1 H), 8.69 (d, 1 H), 8.51 (d, 1 H), 8.44 (d, 2 H), 8.12 (d, 2 H), 7.95 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 6.93 (d, 1 H), 3.86 (m, 1 H), 3.23 (m, 1 H), 1.67-1.93 (m, 6 H), 1.60 (m, 2 H).

Example 217

\textit{cis}-3-chloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-4-methylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3-chloro-4-methyl-benzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 465 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 8.81 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.86 (d, 1 H), 7.79 (dd, 1 H), 7.72 (dd, 1 H), 7.61 (m, 2 H), 6.93 (d, 1 H), 3.86 (m, 1 H), 3.14 (m, 1 H), 2.42 (s, 3 H), 1.64-1.94 (m, 6 H), 1.58 (m, 2 H).

Example 218

\textit{cis}-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} quinoline-8-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 8-quinolinesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 467 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 9.12 (dd, 1 H), 8.80 (d, 1 H), 8.66 (d, 1 H), 8.60 (dd, 1 H), 8.50 (d, 1 H), 8.36 (m, 2 H), 7.91 (d, 1 H), 7.81 (m, 2 H), 7.75 (m, 1 H), 6.95 (d, 1 H), 6.91 (d, 1 H), 3.85 (m, 1 H), 1.91 (m, 2 H), 1.63 (m, 4 H), 1.49 (m, 2 H).
Example 219

cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-dimethyl-1H-pyrazole-4-
sulfonamide

The titled compound was prepared according to the method described in Example 15
by substituting 5-chloro-1,3-dimethyl-1H-pyrazole-4-sulfonyl chloride for 4-chlorobenzene
sulfonyl chloride. MS (ESI (+)) m/e 469 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.77
(m, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 7.91 (d, 1 H), 7.79 (dd, 1 H), 7.57 (d, 1 H), 6.92 (d, 1
H), 3.85 (m, 1 H), 3.78 (s, 3 H), 3.22 (m, 1 H), 2.33 (s, 3 H), 1.89 (m, 4 H), 1.71 (m, 2 H),
1.58 (m, 2 H).

Example 220

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,1,3-benzothiadiazole-4-sulfonamide

The titled compound was prepared according to the method described in Example 15
by substituting benzo(1,2,5)thiadiazole-4-sulfonyl chloride for 4-chlorobenzene sulfonyl
chloride. MS (ESI (+)) m/e 474 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.71 (m, 2
H), 8.50 (d, 1 H), 8.41 (d, 1 H), 8.25 (d, 1 H), 7.90 (m, 2 H), 7.79 (dd, 1 H), 7.73 (d, 1 H),
6.89 (d, 1 H), 3.82 (m, 1 H), 3.50 (m, 1 H), 1.89 (m, 2 H), 1.60-1.81 (m, 4 H), 1.55 (m, 2 H).

Example 221

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methyl-5-nitrobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15
by substituting 2-methyl-5-nitrobenzenesulfonyl chloride for 4-chlorobenzene sulfonyl
chloride. MS (ESI (+)) m/e 475 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.74 (m, 2
H), 8.60 (d, 1 H), 8.51 (d, 1 H), 8.37 (dd, 1 H), 8.09 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H),
7.74 (d, 1 H), 6.91 (d, 1 H), 4.07 (m, 1 H), 3.84 (m, 1 H), 2.75 (s, 3 H), 1.66-1.95 (m, 6 H),
1.60 (m, 2 H).

Example 222

cis-methyl 3-(((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)sulfonyl)thiophene-2-
carboxylate

The titled compound was prepared according to the method described in Example 15
by substituting 3-chlorosulfonyl-thiophene-2-carboxylic acid methyl ester for 4-
chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 480 (M+H)+; 1H NMR (500 MHz,
DMSO δ ppm 8.77 (m, 1 H), 8.66 (d, 1 H), 8.52 (d, 1 H), 8.04 (d, 1 H), 7.91 (d, 1 H), 7.80 (dd, 1 H), 7.52 (d, 1 H), 7.01 (d, 1 H), 6.94 (d, 1 H), 3.90 (m, 4 H), 3.40 (m, 1 H), 1.69-1.92 (m, 6 H), 1.62 (m, 2 H).

Example 223

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(1,1-dimethylpropyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-n-amylenzenesulfonyle chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 486 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 8.80 (m, 1 H), 8.50 (d, 1 H), 8.50 (d, 1 H), 7.91 (d, 1 H), 7.79 (m, 3 H), 7.56 (d, 2 H), 7.48 (d, 1 H), 6.92 (d, 1 H), 3.83 (m, 1 H), 3.11 (m, 1 H), 1.89 (m, 2 H), 1.49-1.83 (m, 8 H), 1.28 (s, 6 H), 0.61 (t, 3 H).

Example 224

cis-4-butoxy-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-butoxybenzenesulfonyle chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 488 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.77 (m, 3 H), 7.37 (d, 1 H), 7.11 (d, 2 H), 6.92 (d, 1 H), 4.06 (t, 2 H), 3.85 (m, 1 H), 3.08 (m, 1 H), 1.65-1.97 (m, 8 H), 1.55 (m, 2 H), 1.44 (m, 2 H), 0.94 (t, 3 H).

Example 225

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-isoxazol-3-ylthiophene-2-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 5-isoxazol-3-yl-thiophene-2-sulfonyle chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 490 (M+H)^+; 1H NMR (500 MHz, DMSO) δ ppm 8.81 (d, 1 H), 8.73 (d, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 8.04 (d, 1 H), 7.91 (d, 1 H), 7.78 (m, 2 H), 7.72 (d, 1 H), 7.10 (d, 1 H), 6.94 (d, 1 H), 3.88 (m, 1 H), 3.37 (m, 1 H), 1.89 (m, 4 H), 1.77 (m, 2 H), 1.65 (m, 2 H).
Example 226

cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-1-((1S,4R)-7,7-dimethyl-2-oxobicyclo(2.2.1)hept-1-yl)methanesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting (+)-10-camphorsulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 491 (M+H)^+; 1H NMR (500 MHz, DMSO) \delta ppm 8.85 (d, 1 H), 8.70 (d, 1 H), 8.53 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 6.97 (m, 2 H), 3.92 (m, 1 H), 3.60 (m, 1 H), 3.39 (m, 1 H), 2.97 (d, 1 H), 2.38 (m, 2 H), 2.07 (m, 1 H), 1.91 (m, 6 H), 1.74 (m, 4 H), 1.54 (m, 1 H), 1.40 (m, 1 H), 1.05 (s, 3 H), 0.83 (s, 3 H).

Example 227

cis-2,5-dichloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]thiophene-3-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,5-dichlorothiophene-3-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 491 (M+H)^+; 1H NMR (500 MHz, DMSO) \delta ppm 8.77 (m, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 7.98 (d, 1 H), 7.91 (d, 1 H), 7.79 (dd, 1 H), 7.34 (s, 1 H), 6.94 (d, 1 H), 3.87 (m, 1 H), 3.40 (m, 1 H), 1.87 (m, 4 H), 1.76 (m, 2 H), 1.65 (m, 2 H).

Example 228

cis-4,5-dichloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]thiophene-2-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,3-dichlorothiophene-5-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 491 (M+H)^+; 1H NMR (500 MHz, DMSO) \delta ppm 8.77 (d, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 8.09 (d, 1 H), 7.91 (d, 1 H), 7.79 (dd, 1 H), 7.73 (s, 1 H), 6.95 (d, 1 H), 3.89 (m, 1 H), 3.40 (m, 1 H), 1.85 (m, 4 H), 1.77 (m, 2 H), 1.66 (m, 2 H).

Example 229

cis-7-chloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2,1,3-benzoxadiazole-4-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 7-chloro-benzo(1,2,5)oxadiazole-4-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 493 (M+H)^+; 1H NMR (500 MHz, DMSO) \delta ppm 8.71
Example 230

\textit{cis-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-4-(methylsulfonyl)benzenesulfonamide}

The titled compound was prepared according to the method described in Example 15 by substituting 4-methylsulfonylbenzenesulfonfyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 494 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.77 (m, 1 H), 8.69 (d, 1 H), 8.51 (d, 1 H), 8.17 (d, 2 H), 8.11 (d, 2 H), 7.91 (d, 1 H), 7.87 (d, 1 H), 7.79 (dd, 1 H), 6.93 (d, 1 H), 3.86 (m, 1 H), 3.21 (m, 1 H), 1.68-1.95 (m, 6 H), 1.60 (m, 2 H).

Example 231

\textit{cis-4-chloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-3-nitrobenzenesulfonamide}

The titled compound was prepared according to the method described in Example 15 by substituting 4-chloro-3-nitrobenzenesulfonfyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 495 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.81 (d, 1 H), 8.69 (d, 1 H), 8.52 (m, 2 H), 8.13 (dd, 1 H), 8.05 (d, 1 H), 7.92 (m, 2 H), 7.80 (dd, 1 H), 6.94 (d, 1 H), 3.89 (m, 1 H), 3.27 (m, 1 H), 1.69-1.95 (m, 6 H), 1.61 (m, 2 H).

Example 232

\textit{cis-6-chloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-3H-1\lambda_4-imidazo(2,1-b)(1,3)thiazole-5-sulfonamide}

The titled compound was prepared according to the method described in Example 15 by substituting 6-chloro-3H-1\lambda_4-imidazo(2,1-b)thiazole-5-sulfonfyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 498 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.76 (m, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 8.23 (d, 1 H), 8.05 (d, 1 H), 7.91 (d, 1 H), 7.79 (dd, 1 H), 7.64 (d, 1 H), 6.92 (d, 1 H), 3.86 (m, 1 H), 2.54 (m, 1 H), 1.70-1.93 (m, 6 H), 1.64 (m, 2 H).
Example 233

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline-7-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-(2,2,2-trifluoro-acetyl)-1,2,3,4-tetrahydro-isoquinoline-7-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 567 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.86 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.76 (m, 3 H), 7.51 (m, 1 H), 7.45 (m, 1 H), 6.94 (d, 1 H), 4.86 (d, 2 H), 3.85 (m, 3 H), 3.14 (m, 1 H), 2.98 (m, 2 H), 1.75-2.02 (m, 4 H), 1.70 (m, 2 H), 1.56 (m, 2 H).

Example 234

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2-methylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 5-fluoro2-methylbenzenesulfonfyl chloride for 4-chlorobenzene sulfonfyl chloride. MS (ESI (+)) m/e 448 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.78 (d, 1 H), 8.71 (d, 1 H), 8.52 (d, 1 H), 7.92 (d, 1 H), 7.80 (m, 2 H), 7.62 (dd, 1 H), 7.44 (m, 2 H), 6.92 (d, 1 H), 3.85 (m, 1 H), 3.85 (m, 1 H), 2.59 (s, 3 H), 1.87 (m, 2 H), 1.73 (m, 4 H), 1.60 (m, 2 H).

Example 235

cis-4-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-chloro3-(trifluoromethyl)benzene)sulfonfyl chloride for 4-chlorobenzene sulfonfyl chloride. MS (ESI (+)) m/e 518 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 8.25 (d, 1 H), 8.15 (dd, 1 H), 8.01 (d, 1 H), 7.91 (d, 1 H), 7.87 (d, 1 H), 7.80 (dd, 1 H), 6.95 (d, 1 H), 3.87 (m, 1 H), 3.21 (m, 1 H), 1.89 (m, 2 H), 1.75 (m, 4 H), 1.61 (m, 2 H).

Example 236

cis-2,4,5-trichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,4,5-trichlorobenzenesulfonfyl chloride for 4-chlorobenzene sulfonfyl.
chloride. MS (ESI (+)) m/e 520 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.70 (m, 2 H), 8.52 (d, 1 H), 8.11 (m, 3 H), 7.91 (d, 1 H), 7.79 (dd, 1 H), 6.91 (d, 1 H), 3.86 (m, 1 H), 3.38 (m, 1 H), 1.91 (m, 2 H), 1.76 (m, 4 H), 1.61 (m, 2 H).

Example 237

cis-2,4,6-trichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,4,6-trichlorobenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 520 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.68 (m, 2 H), 8.51 (d, 1 H), 8.12 (d, 1 H), 7.91 (d, 1 H), 7.89 (s, 1 H), 7.79 (dd, 1 H), 6.89 (d, 1 H), 3.84 (m, 1 H), 3.39 (m, 1 H), 1.88 (m, 2 H), 1.76 (m, 4 H), 1.62 (m, 2 H).

Example 238

cis-2,3,4-trichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,3,4-trichlorobenzenesulfonfyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 520 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.72 (m, 2 H), 8.52 (d, 1 H), 8.11 (d, 1 H), 7.99 (d, 1 H), 7.92 (d, 1 H), 7.89 (d, 1 H), 7.80 (dd, 1 H), 6.91 (d, 1 H), 3.85 (m, 1 H), 3.36 (m, 1 H), 1.90 (m, 2 H), 1.75 (m, 4 H), 1.61 (m, 2 H).

Example 239

cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methyl-1-benzothiophene-2-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 5-chloro-3-methyl-benzo(b)thiophene-2-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 521 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.71 (d, 1 H), 8.51 (d, 1 H), 8.15 (d, 1 H), 8.10 (d, 1 H), 8.05 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 7.59 (dd, 1 H), 6.93 (d, 1 H), 3.85 (m, 1 H), 3.38 (m, 1 H), 2.66 (s, 3 H), 1.68-1.96 (m, 6 H), 1.62 (m, 2 H).
Example 240

cis-5-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methoxybenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 5-bromo-2-methoxybenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 529 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.73 (m, 2 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.80 (m, 3 H), 7.30 (d, 1 H), 7.24 (d, 1 H), 6.92 (d, 1 H), 3.93 (s, 3 H), 3.83 (m, 1 H), 3.23 (m, 1 H), 1.90 (m, 2 H), 1.74 (m, 4 H), 1.58 (m, 2 H).

Example 241

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-nitro-4-(trifluoromethyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-nitro-4-(trifluoromethyl)benzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 529 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 8.79 (d, 1 H), 8.70 (d, 1 H), 8.57 (d, 1 H), 8.53 (d, 1 H), 8.32 (m, 3 H), 7.92 (d, 1 H), 7.81 (dd, 1 H), 6.95 (d, 1 H), 3.90 (m, 1 H), 3.39 (m, 1 H), 1.72-1.96 (m, 6 H), 1.66 (m, 2 H).

Example 242

cis-N-{5-(((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)sulfonyl)thien-2-yl}methyl)benzamide

The titled compound was prepared according to the method described in Example 15 by substituting 5-(benzoylamino-methyl)-thiophene-2-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 557 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 9.26 (t, 1 H), 8.84 (d, 1 H), 8.69 (d, 1 H), 8.51 (d, 1 H), 7.91 (d, 1 H), 7.88 (m, 2 H), 7.79 (dd, 1 H), 7.69 (d, 1 H), 7.55 (m, 1 H), 7.47 (m, 3 H), 7.09 (d, 1 H), 6.93 (d, 1 H), 4.66 (d, 2 H), 3.86 (m, 1 H), 3.25 (m, 1 H), 1.85 (m, 4 H), 1.71 (m, 2 H), 1.61 (m, 2 H).

Example 243

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-(2-(methylthio)pyrimidin-4-yl)thiophene-2-sulfonamide

The titled compound was prepared according to the method described in Example 15
by substituting 5-(2-methylsulfanyl-pyrimidin-4-yl)-thiophene-2-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 546 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.87 (d, 1 H), 8.71 (m, 2 H), 8.52 (d, 1 H), 8.11 (d, 1 H), 7.97 (d, 1 H), 7.92 (d, 1 H), 7.80 (m, 2 H), 7.72 (d, 1 H), 6.95 (d, 1 H), 3.88 (m, 1 H), 3.88 (m, 1 H), 2.57 (s, 3 H), 1.89 (m, 4 H), 1.76 (m, 2 H), 1.65 (m, 2 H).

Example 244

cis-N-{4-((7-chlorquinolin-4-yl)amino)cyclohexyl}-3,5-bis(trifluoromethyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 3,5-bis(trifluoromethyl)benzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 552 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.81 (m, 1 H), 8.68 (d, 1 H), 8.52 (m, 2 H), 8.47 (s, 2 H), 7.98 (d, 1 H), 7.91 (d, 1 H), 7.80 (dd, 1 H), 6.94 (d, 1 H), 3.88 (m, 1 H), 1.87 (m, 2 H), 1.75 (m, 4 H), 1.60 (m, 2 H).

Example 245

cis-2,6-dichloro-N-{4-((7-chlorquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2,6-dichloro-4-trifluoromethyl-phenyl-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 553 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.73 (m, 2 H), 8.52 (d, 1 H), 8.31 (d, 1 H), 8.11 (s, 2 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 6.91 (d, 1 H), 3.86 (m, 1 H), 3.43 (m, 1 H), 1.90 (m, 2 H), 1.76 (m, 4 H), 1.62 (m, 2 H).

Example 246

cis-2-butoxy-N-{4-((7-chlorquinolin-4-yl)amino)cyclohexyl}-5-(1,1-dimethylpropyl)benzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-butoxy-5-tert-pentylbenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 558 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.67 (d, 2 H), 8.51 (d, 1 H), 7.90 (d, 1 H), 7.78 (dd, 1 H), 7.68 (d, 1 H), 7.54 (dd, 1 H), 7.17 (d, 1 H), 6.90 (d, 1 H), 6.66 (d, 1 H), 4.13 (t, 2 H), 3.84 (m, 1 H), 1.90 (m, 2 H), 1.75 (m, 6 H), 1.60 (m, 4 H), 1.48 (m, 2 H), 1.24 (s, 6 H), 0.94 (t, 3 H), 0.62 (t, 3 H).
Example 247

\textit{cis-N\{-4-((7-chloroquinolin-4-y1)amino)cyclohexyl\}-5\{-phenylsulfonyl\}thiophene-2-sulfonamide}

The titled compound was prepared according to the method described in Example 15 by substituting 5-benzenesulfonyl-thiophene-2-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (-)) m/e 560(M-1); 1H NMR (500 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.69 (d, 1 H), 8.52 (d, 1 H), 8.18 (d, 1 H), 8.05 (m, 2 H), 7.91 (d, 2 H), 7.79 (m, 2 H), 7.67 (m, 3 H), 6.95 (d, 1 H), 3.88 (m, 1 H), 3.23 (m, 1 H), 1.55-1.91 (m, 8 H).

Example 248

\textit{cis-4-(3-chloro-2-cyanophenoxy)-N\{-4-((7-chloroquinolin-4-y1)amino)cyclohexyl\}benzenesulfonamide}

The titled compound was prepared according to the method described in Example 15 by substituting 4-(3-chloro-2-cyano-phenoxy)-benzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 568 (M+H)$^+$; 1H NMR (500 MHz, DMSO) δ ppm 8.77 (m, 1 H), 8.69 (d, 1 H), 8.51 (d, 1 H), 7.92 (m, 3 H), 7.77 (m, 2 H), 7.59 (m, 2 H), 7.39 (d, 2 H), 7.17 (d, 1 H), 6.92 (d, 1 H), 3.85 (m, 1 H), 3.17 (m, 1 H), 1.68-1.95 (m, 6 H), 1.59 (m, 2 H).

Example 249

\textit{cis-N\{-4-((7-chloroquinolin-4-y1)amino)cyclohexyl\}-4-ethylbenzenesulfonamide}

The titled compound was prepared according to the method described in Example 15 by substituting 4-ethylbenzenesulfonfyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 444 (M+H)$^+$; 1H NMR (500 MHz, DMSO) δ ppm 8.87 (d, 1 H), 8.71 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.78 (m, 3 H), 7.45 (m, 3 H), 6.94 (d, 1 H), 3.86 (m, 1 H), 3.10 (m, 1 H), 2.70 (q, 2 H), 1.90 (m, 2 H), 1.76 (m, 4 H), 1.57 (m, 2 H), 1.21 (t, 3 H).
Example 250

\(cis\)-4-bromo-2,5-dichloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}thiophene-3-sulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 4-bromo-2,5-dichlorothiophene-3-sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 8.73 (m, 2 H), 8.53 (d, 1 H), 8.17 (d, 1 H), 7.92 (d, 1 H), 7.80 (dd, 1 H), 6.92 (d, 1 H), 3.87 (m, 1 H), 3.42 (m, 1 H), 1.56-2.04 (m, 8 H).

Example 251

\(cis\)-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-methoxy-5-methylbenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 6-methoxy-m-toluene sulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 460 (M+H)\(^+\); \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 8.82 (d, 1 H), 8.70 (d, 1 H), 8.51 (d, 1 H), 7.92 (d, 1 H), 7.81 (dd, 1 H), 7.57 (d, 1 H), 7.42 (dd, 1 H), 7.14 (d, 1 H), 6.92 (m, 2 H), 3.87 (m, 4 H), 3.15 (m, 1 H), 2.30 (s, 3 H), 1.92 (m, 2 H), 1.73 (m, 4 H), 1.42-1.66 (m, 2 H).

Example 252

\(cis\)-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-nitrobenzenesulfonamide

The titled compound was prepared according to the method described in Example 15 by substituting 2-nitrobenzenesulfonyl chloride for 4-chlorobenzene sulfonyl chloride. MS (ESI (+)) m/e 461 (M+H)\(^+\); \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 8.76 (d, 1 H), 8.70 (d, 1 H), 8.52 (d, 1 H), 8.07 (m, 1 H), 8.02 (d, 1 H), 7.96 (m, 1 H), 7.92 (d, 1 H), 7.88 (m, 2 H), 7.80 (dd, 1 H), 6.93 (d, 1 H), 3.87 (m, 1 H), 1.67-2.00 (m, 6 H), 1.63 (m, 2 H).

Example 253

\(cis\)-2-chloro-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}isonicotinamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-chloro isonicotinic acid for indole-6-carboxylic acid. MS (ESI(+)) Q1 MS m/z 415 (M+H)\(^+\); \(^1\)H NMR (300 MHz, DMSO-D6) \(\delta\) ppm 8.56 (d, 2 H), 8.41 (s, 1 H), 8.39
(d, 1 H), 7.90 (s, 1 H), 7.78 (m, 2 H), 7.45 (dd, 1 H), 6.82 (d, 1 H), 6.54 (d, 1 H), 3.98 (br.s, 1 H), 3.67 (br.s, 1 H), 1.61-2.04 (m, 8 H).

Example 254

* cis-2-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-6-methylisonicotinamid

The titled compound was prepared according to the methods described in Example 23, substituting 2-chloro-6-methylisonicotinic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 429 (M+H)+); 1H NMR (300 MHz, DMSO-D6) δ ppm 8.62 (d, 1 H), 8.42 (s, 1 H), 8.39 (d, 1 H), 7.92 (s, 2 H), 7.79 (d, 1 H), 7.46 (dd, 1 H), 6.84 (d, 1 H), 6.55 (d, 1 H), 3.96 (br.s, 1 H), 3.69 (br.s, 1 H), 2.51 (s, 3 H), 1.62-1.99 (m, 8 H).

Example 255

* cis-2,6-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}isonicotinamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,6-dichloroisonicotinic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 449 (M+H)+); 1H NMR (300 MHz, DMSO-D6) δ ppm 8.48 (d, 1 H), 8.40 (s, 1 H), 8.38 (d, 1 H), 7.78 (d, 1 H), 7.68 (s, 1 H), 7.65 (s, 1 H), 7.44 (dd, 1 H), 6.81 (d, 1 H), 6.53 (d, 1 H), 3.96 (br.s, 1 H), 3.68 (m, 1 H), 1.62-2.02 (m, 8 H).

Example 256

* cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-phenylpentanamide

31 mg (0.16 mmol) of 5-phenylvaleric acid, 112 mg (0.22 mmol) of PS-carbodiimide and 28 mg (0.18 mmol) HOBT in DMF (1 mL) were mixed for 15 min. 30 mg (0.11 mmol) of N-(7-chloroquinolin-4-yl)-cyclohexane-1,4-diamine was added and the reaction was allowed to proceed overnight. 116 mg (0.54 mmol) of PS-trisamine was added and the reaction mixture was filtered after two hours. The solvent was evaporated and the product was purified by reverse phase HPLC to provide the titled compound. MS (ESI(+)) m/e 436 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 13.86 (brs, 1H), 8.82 (d, 1 H), 8.72 (d, 1 H), 8.54 (d, 1 H), 7.94 (d, 1 H), 7.78 (dd, 1 H), 7.69 (d, 1 H), 7.21 (m, 5 H), 6.96 (d, 1 H), 3.89 (m, 1 H), 3.80 (m, 1 H), 2.58 (m, 2 H), 2.50 (m, 2 H), 2.16 (m, 2 H), 1.82 (m, 6 H), 1.47-1.70 (m, 6 H).
Example 257

cis- (N^{4’}-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}glycinamide)benzamide

The titled compound was prepared according to the methods described in Example 256, substituting hippuric acid for 5-phenylvaleric acid. MS (ESI(+)) m/e 437 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 13.74-14.03 (br.s, 1 H), 8.88 (d, 1 H), 8.74 (d, 1 H), 8.65 (t, 1 H), 8.55 (d, 1 H), 7.95 (d, 1 H), 7.87 (m, 3 H), 7.79 (dd, 1 H), 7.55 (m, 1 H), 7.48 (m, 2 H), 6.98 (d, 1 H), 3.94 (d, 2 H), 3.91 (m, 1 H), 3.85 (m, 1 H), 1.63-1.93 (m, 8 H).

Example 258

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-phenoxybutanamide

The titled compound was prepared according to the methods described in Example 256, substituting 4-phenoxybutyric acid for 5-phenylvaleric acid. MS (ESI(+)) m/e 438 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 13.73-13.96 (br.s, 1 H), 8.86 (d, 1 H), 8.72 (d, 1 H), 8.54 (d, 1 H), 7.94 (d, 1 H), 7.78 (m, 2 H), 7.27 (dd, 2 H), 6.97 (d, 1 H), 6.91 (m, 3 H), 3.97 (t, 2 H), 3.90 (m, 1 H), 3.82 (m, 1 H), 2.31 (m, 2 H), 1.95 (m, 2 H), 1.81 (m, 6 H), 1.66 (m, 2 H).

Example 259

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(3-methyl-1H-indol-1-yl)propanamide

The titled compound was prepared according to the methods described in Example 256, substituting 3-(3-methylindol-1-yl)propionic acid for 5-phenylvaleric acid. MS (ESI(+)) m/e 461 (M+H)^+; ^1H NMR (500 MHz, DMSO) δ ppm 13.52-14.11 (br.s, 1 H), 8.82 (d, 1 H), 8.69 (d, 1 H), 8.53 (d, 1 H), 7.93 (d, 1 H), 7.80 (d, 1 H), 7.77 (dd, 1 H), 7.45 (d, 1 H), 7.42 (d, 1 H), 7.11 (m, 1 H), 7.06 (m, 1 H), 6.99 (m, 1 H), 6.94 (d, 1 H), 4.35 (t, 2 H), 3.87 (m, 1 H), 3.80 (m, 1 H), 2.60 (t, 2 H), 2.21 (s, 3 H), 1.57-1.81 (m, 8 H).

Example 260

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(1-methyl-1H-benzimidazol-2-yl)propanamide

The titled compound was prepared according to the methods described in Example 256, substituting 3-(1-methyl-1H-benzo(D)imidazol-2-yl)propanoic acid for 5-phenylvaleric
acid. MS (ESI(+) m/e 462 (M+H)^+; \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 13.56-14.31 (br.s, 1 H), 8.87 (d, 1 H), 8.73 (d, 1 H), 8.54 (d, 1 H), 8.05 (d, 1 H), 7.96 (d, 1 H), 7.85 (d, 1 H), 7.79 (dd, 1 H), 7.75 (d, 1 H), 7.49 (m, 2 H), 6.95 (d, 1 H), 3.96 (s, 3 H), 3.90 (m, 1 H), 3.81 (m, 1 H), 3.32 (t, 2 H), 2.83 (t, 2 H), 1.57-1.94 (m, 8 H).

Example 261

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(6-methoxy-3-oxo-2,3-dihydro-1H-inden-1-yl)acetamide

The titled compound was prepared according to the methods described in Example 256, substituting 5-methoxy-1-indanone-3-acetic acid for 5-phenylvaleric acid. MS (ESI(+) m/e 478 (M+H)^+; \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 13.60-13.80 (br.s, 1 H), 8.76 (br.s, 1 H), 8.69 (d, 1 H), 8.54 (d, 1 H), 7.91 (d, 1 H), 7.84 (d, 1 H), 7.78 (dd, 1 H), 7.56 (d, 1 H), 7.15 (d, 1 H), 6.98 (dd, 1 H), 6.95 (d, 1 H), 3.87 (m, 2 H), 3.85 (s, 3 H), 3.71 (m, 1 H), 2.80 (dd, 1 H), 2.72 (dd, 1 H), 2.36 (m, 2 H), 1.61-1.90 (m, 8 H).

Example 262

cis-1-benzoyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}piperidine-4-carboxamide

The titled compound was prepared according to the methods described in Example 256, substituting 1-benzoypiperidine-4-carboxylic acid for 5-phenylvaleric acid. MS (ESI(+) m/e 491 (M+H)^+; \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 13.87 (br.s, 1 H), 8.86 (d, 1 H), 8.72 (d, 1 H), 8.54 (d, 1 H), 7.95 (d, 1 H), 7.79 (dd, 1 H), 7.72 (d, 1 H), 7.45 (m, 3 H), 7.37 (m, 2 H), 6.97 (d, 1 H), 4.37-4.62 (br.s, 1 H), 3.91 (m, 1 H), 3.80 (m, 1 H), 2.72-3.12 (m, 2 H), 2.54 (m, 2 H), 1.41-1.96 (m, 12 H).

Example 263

cis- N\(^1\)-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-\(\beta\)-alaninamide 4-nitrobenzamide

The titled compound was prepared according to the methods described in Example 256, substituting N-(4-nitrobenzoyl)-beta-alanine for 5-phenylvaleric acid. MS (ESI(+) m/e 496 (M+H)^+; \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 13.66-14.02 (br.s, 1 H), 8.86 (t, 1 H), 8.83 (d, 1 H), 8.70 (d, 1 H), 8.54 (d, 1 H), 8.28 (d, 2 H), 8.05 (d, 2 H), 7.94 (d, 1 H), 7.83 (d, 1 H), 7.78 (dd, 1 H), 6.95 (d, 1 H), 3.88 (m, 2 H), 3.52 (m, 2 H), 2.47 (t, 2 H), 1.59-1.91 (m, 8 H).
Example 264

cis-(N1-4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-β-alaninamide benzamide

The titled compound was prepared according to the methods described in Example 256, substituting N-benzyol-beta-alanine for 5-phenylvaleric acid. MS (ESI(+)) m/e 451 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.71 (d, 1 H), 8.54 (d, 1 H), 8.49 (m, 1 H), 8.49 (br.s, 1 H), 7.93 (d, 1 H), 7.83 (m, 2 H), 7.79 (dd, 1 H), 7.46 (m, 4 H), 6.96 (d, 1 H), 3.90 (m, 1 H), 3.82 (m, 1 H), 3.49 (m, 2 H), 2.45 (t, 2 H), 1.58-1.92 (m, 8 H).

Example 265

cis-N-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-N’-(4-propoxyphenyl)urea

The titled compound was prepared according to the method described in Example 2 by substituting 4-propoxyphenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (-)) m/e 451 (M-1); ¹H NMR (500 MHz, DMSO) δ ppm 8.77 (br.s, 1 H), 8.70 (d, 1 H), 8.54 (d, 1 H), 8.19 (s, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.26 (d, 2 H), 6.97 (d, 1 H), 6.81 (d, 2 H), 6.17 (d, 1 H), 3.91 (m, 1 H), 3.85 (t, 2 H), 3.78 (m, 1 H), 1.62-1.89 (m, 10 H), 0.96 (t, 3 H).

Example 266

cis-N-(5-tert-butyl-2-methoxyphenyl)-N’-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)urea

The titled compound was prepared according to the method described in Example 2 by substituting 4-propoxyphenyl isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 481 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 8.86 (m, 1 H), 8.72 (d, 1 H), 8.55 (d, 1 H), 8.26 (s, 1 H), 7.93 (m, 2 H), 7.80 (m, 1 H), 6.99 (d, 2 H), 6.86 (s, 2 H), 3.90 (m, 1 H), 3.82 (s, 3 H), 3.79 (m, 1 H), 1.67-1.92 (m, 8 H), 1.23 (s, 9 H).

Example 268

cis-N-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-N’-(2-furylmethyl)urea

The titled compound was prepared according to the method described in Example 2 by substituting 2-furan isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 399 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.71 (d, 1 H), 8.54 (d, 1 H), 7.92 (s, 1 H), 7.79 (dd, 1 H), 7.56 (s, 1 H), 6.97 (d, 1 H), 6.39 (m, 1 H), 6.20 (m, 2 H), 6.02 (d, 1 H), 4.21 (d, 2 H), 3.89 (m, 1 H), 3.70 (m, 1 H), 1.56-1.93 (m, 8 H).
Example 269

\textit{cis}-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-N'-(3-furylmethyl)urea

The titled compound was prepared according to the method described in Example 2 by substituting 2-furan isocyanate for 4-chlorophenyl isocyanate. MS (ESI (+)) m/e 399 (M+H)^+; \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 8.84 (d, 1 H), 8.70 (d, 1 H), 8.54 (d, 1 H), 7.92 (d, 1 H), 7.79 (dd, 1 H), 7.58 (m, 1 H), 7.51 (m, 1 H), 6.97 (d, 1 H), 6.41 (m, 1 H), 6.01 (m, 1 H), 4.04 (d, 2 H), 3.88 (m, 1 H), 3.73 (m, 1 H), 1.57-1.88 (m, 8 H).

Example 271

\textit{cis}-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-cyclohexylacetamide

The titled compound was prepared according to the method described in Example 23 by substituting cyclohexylacetic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 400 (M+H)^+; \(^1\)H NMR (300 MHz, DMSO) \(\delta\) ppm 8.82 (d, 1 H), 8.74 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.80 (d, 1 H), 7.65 (d, 1 H), 6.96 (d, 1 H), 3.92-3.78 (m, 2 H), 2.0 (d, 2 H), 1.88-1.75 (m, 6 H), 1.70-1.58 (m, 7 H), 1.25-1.08 (m, 4 H), 0.98-0.88 (m, 2 H).

Example 272

\textit{cis}-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-cycloheptylacetamide

The titled compound was prepared according to the method described in Example 23 by substituting cycloheptylacetic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 414 (M+H)^+; \(^1\)H NMR (300 MHz, DMSO) \(\delta\) ppm 8.82 (d, 1 H), 8.74 (d, 1 H), 8.55 (d, 1 H), 7.95 (d, 1 H), 7.80 (dd, 1 H), 7.52 (d, 1 H), 6.97 (d, 1 H), 3.95-3.85 (m, 1 H), 3.78-3.71 (m, 1 H), 2.40-2.34 (m, 2 H), 1.87-1.36 (m, 21 H).

Example 273

\textit{cis}-2-((1R,4S)-bicyclo(2.2.1)hept-2-yl)-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}acetamide

The titled compound was prepared according to the method described in Example 23 by substituting 2-norbornaneacetic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 412 (M+H)^+; \(^1\)H NMR (300 MHz, DMSO) \(\delta\) ppm 8.82 (d, 1 H), 8.74 (d, 1 H), 8.55 (d, 1 H), 7.95 (d, 1 H), 7.80 (dd, 1 H), 7.63 (m, 1 H), 6.97 (d, 1 H), 3.92-3.83 (m, 1 H), 3.82-3.76 (m, 1 H), 2.20-2.15 (m, 2 H), 2.10-1.03 (m, 19 H).

119
Example 274

cis-2-(1-adamantyl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide

The titled compound was prepared according to the method described in Example 23 by substituting 1-adamantylacetic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 452 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.81 (d, 1 H), 8.74 (d, 1 H), 8.55 (d, 1 H), 7.93 (d, 1 H), 7.79 (dd, 1 H), 7.58 (d, 1 H), 6.96 (d, 1 H), 3.91-3.88 (m, 1 H), 3.82-3.78 (m, 1 H), 1.92 (s, 2 H), 1.90-1.55 (m, 24 H).

Example 275

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-fluorophenyl)acetamide

The titled compound was prepared according to the method described in Example 23 by substituting 3-fluorophenylacetic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 412 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.63 (d, 1 H), 8.50 (d, 1 H), 8.28 (br s, 1 H), 8.02 (d, 1 H), 7.89 (d, 1 H), 7.70 (d, 1 H), 7.38-7.30 (m, 1 H), 7.10-7.03 (m, 3 H), 6.83 (d, 1 H), 3.85-3.78 (m, 2 H), 3.50 (s, 2 H), 1.86-1.62 (m, 8 H).

Example 276

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-(trifluoromethyl)phenyl)acetamide

The titled compound was prepared according to the method described in Example 23 by substituting 3-(trifluoromethyl)phenylacetic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 462 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.74 (d, 1 H), 8.55 (d, 1 H), 8.10 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.62 (s, 1 H), 7.60-7.53 (m, 3 H), 6.98 (d, 1 H), 3.95-3.86 (m, 1 H), 3.83-3.79 (m, 1 H), 3.60 (s, 2 H), 1.90-1.63 (m, 8 H).

Example 277

cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-(trifluoromethyl)phenyl)acetamide

The titled compound was prepared according to the method described in Example 23 by substituting 4-(trifluoromethyl)phenylacetic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 462 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.74 (d, 1 H), 8.55 (d, 1 H), 8.10 (d, 1 H), 7.93 (d, 1 H), 7.80 (dd, 1 H), 7.66 (d, 2 H), 7.50 (d, 2 H), 6.98 (d, 1 H), 3.95-3.86 (m, 1 H), 3.83-3.79 (m, 1 H), 3.60 (s, 2 H), 1.90-1.63 (m, 8 H).
Example 278

cis-3,5-difluoro-N-(4-\{(6-fluoro-2-(trifluoromethyl)quinolin-4-y1)amino\}cyclohexyl)benzamide

A solution of N-(4-Amino-cyclohexyl)-3,5-difluorobenzamide (30 mg, 0.12 mmol) in NMP (1.0 mL) was treated with 4-chloro-6-fluoro-2-trifluoromethyl-quinoline (1 eq) and 3 eq (0.045 mL) TEA. The reaction was heated to 220°C in the microwave for 15 minutes. The crude compound was purified by reverse phase HPLC to provide the desired compound. MS (ESI (+)) m/e 468 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.32 (m, 2 H), 7.98 (m, 1 H), 7.67 (m, 1 H), 7.58 (m, 2 H), 7.44 (m, 1 H), 7.15 (d, 1 H), 6.82 (s, 1 H), 1.95 (m, 4 H), 1.65-1.88 (m, 4 H).

Example 279

cis-3,5-difluoro-N-(4-\{(8-(trifluoromethoxy)-2-(trifluoromethyl)quinolin-4-y1)amino\}cyclohexyl)benzamide

The titled compound was prepared according to the method described in Example 278 by substituting 4-chloro-8-trifluoromethoxy-2-trifluoromethyl quinoline for 4-chloro-6-fluoro-2-trifluoromethyl-quinoline. MS (ESI (+)) m/e 534 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.51 (d, 1 H), 8.30 (d, 1 H), 7.80 (d, 1 H), 7.61 (m, 3 H), 7.43 (m, 2 H), 6.91 (s, 1 H), 1.94 (m, 4 H), 1.75 (m, 4 H).

Example 280

cis-N-(4-\{(5,7-dichloro-2-(trifluoromethyl)quinolin-4-y1)amino\}cyclohexyl)-3,5-difluorobenzamide

The titled compound was prepared according to the method described in Example 278 by substituting 4,5,7-trichloro-2-trifluoromethyl quinoline for 4-chloro-6-fluoro-2-trifluoromethyl-quinoline. MS (ESI (+)) m/e 520 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.41 (d, 1 H), 7.96 (m, 1 H), 7.81 (m, 1 H), 7.69 (d, 1 H), 7.55 (d, 2 H), 7.44 (t, 1 H), 6.91 (s, 1 H), 4.04 (m, 1 H), 3.93 (m, 1 H), 1.96 (m, 2 H), 1.80 (m, 4 H), 1.68 (m, 2 H).
Example 281

cis-3,5-difluoro-N-(4-((6-methyl-2-(trifluoromethyl)quinolin-4-yl)amino)cyclohexyl)benzamide

The titled compound was prepared according to the method described in Example 278 by substituting 4-chloro-6-methyl-2-trifluoromethyl quinoline for 4-chloro-6-fluoro-2-trifluoromethyl-quinoline. MS (ESI (+)) m/e 464 (M+H)⁺; ¹H NMR (500 MHz, DMSO) δ ppm 8.31 (d, 1 H), 8.25 (s, 1 H), 7.80 (d, 1 H), 7.59 (m, 3 H), 7.43 (m, 1 H), 7.08 (m, 1 H), 6.76 (s, 1 H), 3.99 (m, 1 H), 3.83 (m, 1 H), 2.53 (s, 3 H), 1.86-2.13 (m, 3 H), 1.51-1.87 (m, 5 H).

Example 282

cis-N-(7-chloroquinolin-4-yl)-N'-((3,5-dichlorophenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 1-bromo-3,5-dichlorobenzene for 1-bromo-3,5-difluorobenzene. MS (ESI (+))Q1MS m/z 420 (M+H)⁺; ¹H NMR (300 MHz, DMSO-D6) δ ppm 8.84 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.91 (d, 1 H), 7.80 (dd, 2.0 Hz, 1 H), 7.00 (d, 1 H), 6.63 (d, 2 H), 6.60 (t, 1 H), 6.25 (d, 1 H), 3.95 (br.s, 1 H), 3.57 (br.s, 1 H), 1.68-1.95 (m, 8 H).

Example 283

cis-N-(7-chloroquinolin-4-yl)-N'-((3-methylphenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 3-bromotoluene for 1-bromo-3,5-difluorobenzene. MS (ESI (+))Q1MS m/z 366 (M+H)⁺; ¹H NMR (300 MHz, DMSO-D6) δ ppm 8.89 (d, 1 H), 8.71 (d, 1 H), 8.54 (d, 1 H), 8.25 (d, 1 H), 8.19 (d, 1 H), 7.91 (d, 1 H), 7.80 (dd, 1 H), 6.89-7.07 (m, 3 H), 6.38 (d, 1 H), 3.24-3.58 (m, 2 H), 2.19 (s, 3 H), 1.61-2.03 (m, 8 H).

Example 284

cis-N-(3,5-bis(trifluoromethyl)phenyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 3,5-di(trifluoromethyl)benzoic acid for 1-bromo-3,5-difluorobenzene. MS (ESI (+))Q1MS m/z 516 (M+H)⁺; ¹H NMR (300 MHz, DMSO-D6) δ ppm 8.84 (d, 1 H), 8.72
(d, 1 H), 8.67 (d, 1 H), 8.51-8.61 (m, 3 H), 8.33 (s, 1 H), 7.92 (d, 1 H), 7.81 (dd, 1 H), 7.00 (d, 1 H), 4.03 (m, 2 H), 1.70-2.16 (m, 8 H).

Example 285

cis-N-1,1'-biphenyl-3-yl-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 3-bromobiphenyl for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 428 (M+H)+; 1H NMR (300 MHz, DMSO-D6) δ ppm 8.93 (d, 1 H), 8.72 (d, 1 H), 8.55 (d, 1 H), 7.91 (d, 1 H), 7.80 (dd, 1 H), 7.58 (d, 2 H), 7.44 (t, 2 H), 7.34 (t, 1 H), 7.18 (t, 1 H), 7.02 (d, 1 H), 6.89 (s, 1 H), 6.81 (d, 1 H), 6.66 (dd, 1 H), 5.50-5.81 (br.s., 1 H), 3.99 (br.s., 1 H), 3.65 (br.s, 1 H), 1.70-2.02 (m, 8 H).

Example 286

cis-N-(7-chloroquinolin-4-yl)-N'-(3-(trifluoromethyl)phenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 3-trifluoromethylbromobenzene for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 420 (M+H)+; 1H NMR (300 MHz, DMSO-D6) δ ppm 8.90 (d, 1 H), 8.71 (d, 1 H), 8.55 (d, 1 H), 7.91 (d, 1 H), 7.80 (dd, 1 H), 7.29 (t, 1 H), 7.01 (d, 1 H), 6.92 (s, 1 H), 6.88 (d, 1 H), 6.80 (d, 1 H), 6.09 (d, 1 H), 3.97 (br.s, 1 H), 3.62 (br.s, 1 H), 1.72-2.00 (m, 8 H).

Example 287

cis-4-((4-(7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-2H-chromen-2-one

The titled compound was prepared according to the method described in Example 3 by substituting 4-chlorocoumarin for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 420 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.80 (d, 1 H), 8.72 (d, 1 H), 8.58 (d, 1 H), 8.22 (d, 1 H), 7.95 (d, 1 H), 7.82 (dd, 1 H), 7.62 (ddd, 1 H), 7.33-7.29 (m, 2 H), 7.14 (d, 1 H), 7.03 (d, 1 H), 5.30 (s, 1 H), 4.10-4.00 (m, 1 H), 3.85-3.75 (m, 1 H), 2.08-1.75 (m, 8 H).
Example 289

cis-N,N’-bis(7-chloro-4-aminoquinolin-4-yl)cyclohexane-1,4-diamine

Example 289A

4,7-dichloroquinoline 1-oxide

A mixture of 4,7-dichloroquinoline (9.9 g, 50 mmol) and methyltrioxorhenium (80 mg, 0.32 mmol) was stirred in the mixture of hydrogenperoxide (40%, 20mL) and dichloromethane at room temperature for 24 hours. Pale yellow solid was collected by filtration and dried under vacuum. MS (ESI(+))Q1MS m/z 215 (M+H)^+.

Example 289B

N-(4,7-dichloroquinolin-2-yl)benzamide

A mixture of example 289A (10.0 g, 46.7 mmol) and benzoyl chloride (23.5 g, 168 mmol) and benzamide (5.9 g, 49.1 mmol) was heated at 180 °C for 6 hours, cooled to room temperature, filtered. Yellow solid as washed with large quantity of water and ethyl acetate (20 mL) and dried under vacuum. MS (ESI(+))Q1MS m/z 318 (M+H)^+.

Example 289C

4,7-dichloroquinolin-2-amine

A mixture of example 289B (5.0 g, 15.8 mmol) and hydrochloric acid (22%, 150 mL) was heated to reflux for 24 hours, cooled to room temperature, filtered. Filtrate was basified with 50% sodium hydroxide. Pale green solid was collected by filtration, washed with large quantity of water and dried under vacuum. MS (ESI(+))Q1MS m/z 291 (M+H)^+.

Example 289D

cis-N,N’-bis(7-chloro-4-aminoquinolin-4-yl)cyclohexane-1,4-diamine

A mixture of example 289C (500 mg, 2.35 mmol), 1,4-cyclohexanediamine (133 mg, 1.17 mmol), sodium t-butoxide (275 mg, 2.86 mmol), tris(dibenzylideneacetone)-dipalladium(0) (55 mg, 0.06 mmol) and (R)-(+)2,2'-bis(diphenylphosphino)-1,1’-binaphthyl was heated at 90°C in 1,2-dimethoxyethane (5mL) for 6 hours, cooled to room temperature, filtered. The 1,2-dimethoxyethane was removed via vacuum and the residue was purified by high throughput HPLC to provide the desired compound as its TRIFLUOROACETIC ACID salt. MS (ESI(+))Q1MS m/z 467 (M+H)^+. 1H NMR (300 MHz, DMSO) δ ppm 13.05 (s, 1 H), 9.66 (s, 1 H), 8.89 (s, 1 H), 8.57 (d, 1 H), 8.37 (d, 1 H), 7.93 (d, 1 H), 7.85 (s, 2 H), 7.70
(d, 1 H), 7.65 (dd, 1 H), 7.44 (dd, 1 H), 6.81 (s, 1 H), 6.71 (s, 1 H), 3.69 (s, 2 H), 2.06 (m, 2 H), 1.80 (m, 6 H).

Example 291

4-\{(4-[(7-chloroquinolin-4-yl)amino]cyclohexyl)amino\}-2H-chromen-2-one

To a conical microwave vessel (7.5 mL) equipped with a septum cap and a magnetic stirring bar was added a solution of a trifluoro-methanesulfonic acid 6-chloro-2-oxo-2H-chromen-4-yl ester (0.014 g; 0.043 mmol) in dry acetonitrile (1 mL) containing Et$_3$N (0.025 mL). Then, a solution of 4-amino-chromen-2-one (0.0178 g; 1.5 eq.) in 1:1:1 mixture of acetonitrile/dichloromethane/DMF (1 mL) was added to the vessel and the resulting suspension was irradiated in Personal Chemistry Smith Synthesizer (150 °C for 180s; 300 W). The resulting solution was evaporated to dryness. The residue was dissolved in 1.5 mL of a 1:1 mixture of DMSO/MeOH and purified by preparative reverse-phase HPLC. MS (DCI/NH$_3$) m/z 419 [M+H]$^+$.

Example 292

Example 292A

cis-N2-\{(4-amino)cyclohexyl\}-7-chloroquinoline-2,4-diamine

A mixture of 289C (500 mg, 2.35 mmol), 1,4-cyclohexanediamine (540 mg, 4.70 mmol), sodium t-butoxide(275 mg, 2.86 mmol), tris(dibenzylideneacetone)-dipalladium(0) (55 mg, 0.06 mmol) and (R)-(−)-2,2’-bis(diphenylphosphinol)-1,1’-binaphthyl was heated at 90°C in 1,2-dimethoxyethane (5mL) for 6 hours, cooled to room temperature, filtered. The 1,2-dimethoxyethane was removed via vacuum and the residue was purified by high throughput HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+)Q1MS m/z 291 (M+H)$^+)$.

Example 292B

cis-N2-\{(4-amino-7-chloroquinolin-4-yl)amino)cyclohexyl\}-3,5-difluorobenzamide

A mixture of example 292A (40 mg, 0.14 mmol), 3,5-difluorobenzoic acid (26 mg, 0.16 mmol), 1-hydroxybenzotriazole (25 mg, 0.16 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide(31 mg, 0.16 mmol) and N-methyl-morpholine (36 µL, 0.33 mmol) in 2
mL N,N-dimethylformamide was shaken for 18 hours. N,N-Dimethylformamide was removed via vacuum and the residue was purified by high throughput HPLC to provide the desired compound. MS (ESI(+))Q1MS m/z 431 (M+H)^+; ^1^H NMR (300 MHz, DMSO) δ ppm 12.39 (s, 1 H), 8.40 (d, 1 H), 8.32 (d, 1 H), 7.73 (s, 2H), 7.50-7.60 (m, 3H), 7.48 (dd, 1 H), 7.45 (dd, 1H), 5.91 (s, 1 H), 3.99 (s, 1 H), 3.60 (s, 1 H), 1.93-2.15 (m, 4 H), 1.48-1.85 (m, 4 H).

Example 293

cis-N-[4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl]-3,5-dichlorobenzamide

The titled compound was prepared according to the methods described in example 292, substituting 3,5-difluorobenzoic acid for 3,5-dichlorobenzoic acid. (ESI(+))Q1MS m/z 463 (M+H)^+; ^1^H NMR (300 MHz, DMSO) δ ppm 13.60 (s, 1 H), 8.41 (d, 1 H), 8.39 (d, 1 H), 7.87-7.91 (m, 4H), 7.67 (m, 2H), 7.58 (dd, 1 H), 7.50 (dd, 1H), 5.91 (s, 1 H), 3.98 (s, 1 H), 3.60 (s, 1 H), 1.90-2.00 (m, 4 H), 1.64-1.85 (m, 4 H).

Example 294

cis-N-[4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl]-4-phenoxybutanamide

The titled compound was prepared according to the methods described in example 292, substituting 3,5-difluorobenzoic acid for 4-phenoxybutanoic acid. (ESI(+))Q1MS m/z 453 (M+H)^+; ^1^H NMR (300 MHz, DMSO) δ ppm 12.31 (s, 1 H), 8.40 (d, 1 H), 7.76 (d, 1 H), 7.67 (s, 2H), 7.65 (d, 1H), 7.57 (d, 1 H), 7.48 (dd, 1H), 7.27 (m, 2H), 6.92 (m, 3H), 5.88 (s, 1 H), 3.97 (t, 2H), 3.81 (s, 1 H), 3.50 (s, 1H), 2.29 (t, 2H), 1.90-2.00 (m, 4 H), 1.60-1.85 (m, 6 H).

Example 295

cis-7-chloro-N-4-~(4-{{(3-(trifluoromethyl)benzyl)amino}cyclohexyl}quinoline-2,4-diamine

A solution of example 292A (40 mg, 0.14 mmol), 3-trifluoromethylbenzaldehyde (36 mg, 0.21 mmol), sodium cyanoborohydride (1M THF solution, 0.41 mL, 0.41 mmol) in 2 mL tetrahydrofuran (THF) was shaken for 18 hours. THF was removed via vacuum and the residue was purified by high throughput HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+))Q1MS m/z 449 (M+H)^+; ^1^H NMR (300 MHz, DMSO) δ ppm 12.68 (s, 1 H), 8.95 (s, 2H), 8.42 (d, 1 H), 7.95 (d, 1 H), 7.87 (s, 1 H), 7.82 (m, 1H), 7.70 (m, 1H), 7.59 (d, 1 H), 7.49 (dd, 1H), 5.90 (s, 1 H), 4.33 (s, 2H), 3.75 (s, 1 H), 2.05-2.15 (m,
Example 296

cis-7-chloro-N-4-\{(3-(trifluoromethoxy)benzyl)amino\}cyclohexylquinoline-2,4-diamine

The titled compound was prepared according to the methods described in example 295, substituting 3,5-difluorobenzaldehyde for 3-trifluoromethoxybenzaldehyde. MS (ESI(+))Q1MS m/z 465 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 12.78 (s, 1 H), 9.01 (s, 2H), 8.43 (d, 1 H), 7.91 (s, 1H), 7.55-7.65 (m, 3H), 7.40-7.52 (m, 2H), 5.91 (s, 1 H), 4.29 (s, 2H), 3.75 (s, 1 H), 2.05-2.15 (m, 2H), 1.92-2.01 (m, 2H), 1.82-1.92 (m, 2H), 171-1.85 (m, 2H).

Example 297

cis-7-chloro-N-4-\{(3,5-dimethylbenzyl)amino\}cyclohexylquinoline-2,4-diamine

The titled compound was prepared according to the methods described in example 295, substituting 3,5-difluorobenzaldehyde for 3,5-dimethylbenzaldehyde. MS (ESI(+))Q1MS m/z 409 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 12.80 (s, 1 H), 8.88 (s, 1H), 8.82 (s, 1H), 8.42 (d, 1 H), 7.92 (s, 1H), 7.58 (d, 1 H), 7.46 (dd, 1H), 7.45 (d, 1 H), 7.15 (s, 1H), 7.13(s, 1H), 7.06(s, 1H), 5.90 (s, 1 H), 4.11 (s, 2H), 3.75 (s, 1 H), 2.29 (s, 6H), 1.62-2.12 (m, 8H).

Example 298

cis-7-chloro-N-4-\{(3, 5-dichlorobenzyl)amino\}cyclohexylquinoline-2,4-diamine

The titled compound was prepared according to the methods described in example 295, substituting 3,5-difluorobenzaldehyde for 3,5-dichlorobenzaldehyde. MS (ESI(+))Q1MS m/z 409 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 12.73 (s, 1 H), 8.94 (s, 2H), 8.42 (d, 1 H), 7.89 (s, 1H), 7.62-7.67 (m, 3H), 7.59 (d, 1 H), 7.45-7.50 (m, 2H), 5.91 (s, 1 H), 4.24 (s, 2H), 3.75 (s, 1 H), 1.62-2.12 (m, 8H).

Example 299

cis-N-(7-chloroquinolin-4-yl)-N'-pyridin-2-ylcyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example
140, substituting 2-bromopyridine for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 353 (M+H)^+; 1H NMR (300 MHz, DMSO-D6) δ ppm 8.94 (d, 1 H), 8.77 (d, 1 H), 8.59 (d, 1 H), 7.99 (d, 1 H), 7.93 (m, 3 H), 7.82 (dd, 1 H), 7.20 (d, 1 H), 7.00 (d, 1 H), 6.87 (m, 1 H), 3.89-4.11 (br.s, 2 H), 1.69-2.23 (br.s, 8 H).

Example 300

cis-N-(7-chloroquinolin-4-yl)-N'-isoquinolin-4-ylcyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 4-bromoisoquinoline for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 403 (M+H)^+; 1H NMR (300 MHz, DMSO-D6) δ ppm 9.00 (s, 1 H), 8.94 (d, 1 H), 8.78 (d, 1 H), 8.72 (d, 1 H), 8.58 (d, 1 H), 8.37 (d, 1 H), 8.09 (t, 1 H), 8.01 (d, 1 H), 7.96 (t, 1 H), 7.83 (s, 1 H), 7.80 (dd, 1 H), 7.03 (d, 1 H), 6.98 (br.s, 1 H), 3.99-4.20 (br.s, 1 H), 3.88 (br.s, 1 H), 1.96-2.18 (m, 4 H), 1.73-1.96 (m, 4 H).

Example 301

cis-N-(7-chloroquinolin-4-yl)-N'-quinolin-3-ylcyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 3-bromoquinoline for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 403 (M+H)^+; 1H NMR (300 MHz, DMSO-D6) δ ppm 8.95 (d, 1 H), 8.73 (d, 1 H), 8.61 (d, 1 H), 8.57 (d, 1 H), 7.92 (d, 1 H), 7.81 (m, 2 H), 7.71 (d, 1 H), 7.41 (m, 2 H), 7.19 (s, 1 H), 7.04 (d, 1 H), 6.35 (br.s, 1 H), 3.89-4.15 (br.s, 2 H), 3.89-4.15 (m, 8 H).

Example 302

cis-N-(7-chloroquinolin-4-yl)-N'-{(5-(4-nitrophenyl)-2-furylmethyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting 5-(4-Nitrophenyl)furfuryl alcohol for 4-fluorobenzyl alcohol. MS(ESI) m/e 477 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (dd, 1 H), 8.60 (dd, 1 H), 8.33 (d, 2 H), 8.01 (d, 2 H), 7.97 (d, 1 H), 7.96 (d, 1 H), 7.82 (dt, 1 H), 7.71 (dd, 1 H), 7.36 (d, 1 H), 6.95 (d, 1 H), 6.86 (d, 1 H), 4.11 (m, 2 H), 1.72-2.15 (m, 10 H).
Example 304

cis-N-(7-chloroquinolin-4-yl)-N\'-[((2R)-1-(4-nitrophenyl)pyrrolidin-2-yl)methyl]cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting (S)-(−)-1-(4-Nitrophenyl)-2-pyrrolidinemethanol for 4-fluorobenzyl alcohol. MS(ESI) m/e 480 (M+H)\(^+\); \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, 1 H), 8.48 (d, 1 H), 8.24 (d, 1 H), 8.10 (m, 2 H), 7.82 (d, 2 H), 6.81 (d, 2 H), 4.11-4.42 (m, 2 H), 3.87-4.12 (m, 2 H), 3.55-3.84 (m, 2 H), 3.51 (m, 1 H), 3.13-3.44 (m, 3 H), 2.98 (m, 1 H), 1.54-2.28 (m, 10 H).

Example 305

cis-3,5-difluoro-N-(4-(quinolin-4-ylamino)cyclohexyl)benzamide

The title compound was prepared according to the method described in Example 278 by substituting 4-chloroquinoline for 4-chloro-6-fluoro-2-trifluoromethyl-quinoline. MS (ESI(+))Q1MS m/z 382 (M+H)\(^+\); \(^1\)H NMR (300 MHz, DMSO) δ ppm 8.71-8.63 (m, 2 H), 8.59-8.53 (m, 1 H), 8.30 (d, 1 H), 8.00-7.87 (m, 3 H), 7.78-7.70 (ddd, 1 H), 7.63-7.55 (m, 2 H), 7.50-7.42 (m, 1 H), 6.98 (d, 1 H), 4.05-3.95 (m, 2 H), 2.05-1.63 (m, 8 H).

Example 306

cis-tert-butyl (2R)-2-(((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)methyl)pyrrolidine-1-carboxylate

The title compound was prepared according to method described in Example 141, substituting Boc-Prolinol for 4-fluorobenzyl alcohol. MS(ESI) m/e 459 (M+H)\(^+\); \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, 1 H), 8.61 (d, 1 H), 7.97 (d, 1 H), 7.78 (dd, 1 H), 6.95 (d, 1 H), 3.95-4.21 (m, 2 H), 3.78 (m, 2 H), 2.95-3.64 (m, 6 H), 1.99-2.25 (m, 4 H), 1.75-1.99 (m, 10 H), 1.56 (m, 1 H), 1.24-1.50 (m, 5 H).

Example 307

cis-N-(7-chloroquinolin-4-yl)-N\'-1,4-dithiaspiro(4.5)dec-8-ylcyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting 1,4-Dithiaspiro(4.5)decan-8-ol for 4-fluorobenzyl alcohol. MS(ESI) m/e 448 (M+H)\(^+\); \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 8.73 (d, 1 H), 8.60 (d, 1 H), 7.96 (d, 1 H), 7.79 (dd, 1 H), 6.93 (d, 1 H), 1.96-2.18 (m, 14 H), 1.84 (m, 8 H), 1.59 (m, 3 H).
Example 308

cis-N-(7-chloroquinolin-4-yl)-N'-(6-methylpyridin-2-yl)methylcyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 6-Methyl-2-pyridinemethanol for 4-fluorobenzyl alcohol. MS(ESI) m/e 381 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, 1 H), 8.61 (d, 1 H), 7.97 (d, 1 H), 7.68-7.88 (m, 3 H), 7.29 (dt, 1 H), 6.95 (d, 1 H), 4.56 (m, 2 H), 4.33 (m, 2 H), 2.50 (s, 3 H), 1.66-2.22 (m, 10 H).

Example 309

 cis-N-(7-chloroquinolin-4-yl)-N'-(2-thien-3-ylethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2-(3-Thienyl)ethanol for 4-fluorobenzyl. MS(ESI) m/e 386 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.61 (d, 1 H), 7.97 (d, 1 H), 7.81 (dd, 1 H), 7.54 (m, 1 H), 7.35 (d, 1 H), 7.09 (dd, 1 H), 6.95 (d, 1 H), 4.09 (s, 1 H), 3.62 (m, 1 H), 2.96 (m, 2 H), 2.73 (m, 2 H), 1.69-2.19 (m, 10 H).

Example 310

 cis-N-(7-chloroquinolin-4-yl)-N'-{((2S)-1-(2-methoxybenzoyl)pyrrolidin-2-yl)methyl}cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting (R)-(+-1-(2-Methoxybenzoyl)-2-pyrrolidinemethanol for 4-fluorobenzyl alcohol. MS(ESI) m/e 493 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.70 (d, 1 H), 8.46 (d, 1 H), 8.22 (d, 1 H), 7.78 (dd, 1 H), 7.43 (m, 1 H), 7.27 (dd, 1 H), 7.11 (d, 1 H), 7.01 (m, 1 H), 6.81 (d, 1 H), 4.21-4.42 (m, 2 H), 3.79 (m, 3 H), 3.79 (s, 3 H), 3.08-3.47 (m, 6 H), 1.51-2.23 (m, 10 H).

Example 311

 cis-N-(7-chloroquinolin-4-yl)-N'-(thien-3-ylmethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3-Thiophenemethanol for 4-fluorobenzylalcohol. MS(ESI) m/e 372 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.61 (d, 1 H), 7.97 (d, 1 H), 7.83 (m, 1
H), 7.73 (m, 1 H), 7.65 (m, 1 H), 7.26 (dd, 1 H), 6.94 (d, 1 H), 3.21 (m, 2 H), 2.07 (m, 2 H), 1.70-2.12 (m, 10 H).

Example 312

cis-N-(7-chloroquinolin-4-yl)-N'-(2-thien-2-ylethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2-(2-Thienyl)ethanol for 4-fluorobenzylalcohol. MS(ESI) m/e 386 (M+H)+; 'H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.60 (d, 1 H), 7.97 (d, 1 H), 7.81 (dd, 1 H), 7.43 (m, 1 H), 7.29 (dd, 1 H), 7.01 (m, 1 H), 6.94 (m, 1 H), 4.08 (s, 1 H), 3.61 (t, 2 H), 3.19 (m, 1 H), 2.92 (t, 2 H), 1.69-2.16 (m, 10 H).

Example 313

cis-N-(7-chloroquinolin-4-yl)-N'-(thien-2-ylmethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting Thiophene-2-methanol for 4-fluorobenzylalcohol. MS(ESI) m/e 372 (M+H)+; 'H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.61 (d, 1 H), 7.98 (d, 1 H), 7.82 (m, 1 H), 7.66 (m, 1 H), 7.32 (d, 1 H), 7.13 (m, 1 H), 6.94 (d, 1 H), 4.47 (s, 1 H), 3.27 (s, 1 H), 2.53 (m, 2 H), 1.70-2.14 (m, 10 H).

Example 314

cis-6-({4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}amino)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione

The titled compound was prepared according to the method described in Example 3 by substituting 6-chloro-1,3-dimethyluracil for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 414 (M+H)+; 'H NMR (300 MHz, DMSO) δ ppm 8.80-8.75 (m, 1 H), 8.70 (d, 1 H), 8.57(dd, 1 H), 7.95 (d, 1 H), 7.80 (dd, 1 H), 7.00 (d, 1 H), 6.02-5.95 (m, 1 H), 4.81 (s, 1 H), 4.06-3.97 (m, 1 H), 3.61-3.51 (m, 1 H), 3.40 (s, 3 H), 3.10 (s, 3 H), 2.02-1.70 (m, 8 H).
Example 315

cis-6-({4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino)pyrimidine-2,4(1H,3H)-dione

The titled compound was prepared according to the method described in Example 3 by substituting 4-chlorouracil for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+))Q1MS m/z 386(M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 10.22 (s, 1 H), 9.75 (s, 1 H), 8.90-8.84 (m, 1 H), 8.71 (d, 1 H), 8.60-8.55 (m, 1 H), 7.94 (d, 1 H), 7.82 (dd, 1 H), 7.00 (d, 1 H), 6.17 (d, 1 H), 4.48 (s, 1 H), 4.00-3.92 (m, 1 H), 3.61-3.51 (m, 1 H), 2.02-1.70 (m, 8 H).

Example 316

cis-N-(7-chloroquinolin-4-yl)-N'-{(3-(6-methylpyridin-2-yl)propyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 6-Methyl-2-pyridinepropanol for 4-fluorobenzylalcohol. MS(ESI) m/e 409 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.63 (d, 1 H), 8.61 (d, 1 H), 8.53 (m, 1 H), 7.97 (d, 1 H), 7.82 (dd, 1 H), 7.25 (m, 1 H), 6.95 (d, 1 H), 4.08 (s, 1 H), 3.03 (s, 1 H), 2.87 (m, 2 H), 2.54 (s, 3 H), 2.35-2.60 (m, 4 H), 1.64-2.21 (m, 10 H).

Example 317

cis-N-(7-chloroquinolin-4-yl)-N'-{(3-furymethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3-Furanmethanol for 4-fluorobenzylalcohol. MS(ESI) m/e 356 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.60 (d, 1 H), 7.97 (m, 1 H), 7.82 (m, 2 H), 7.76 (m, 1 H), 6.95 (d, 1 H), 6.66 (s, 1 H), 4.10 (s, 1 H), 3.22 (s, 1 H), 2.52 (m, 2 H), 1.70-2.15 (m, 10 H).

Example 318

cis-N-(7-chloroquinolin-4-yl)-N'-{(3-pyridin-2-yl)propyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2-Pyridinepropanol for 4-fluorobenzylalcohol. MS(ESI) m/e 395 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.64 (d, 1 H), 8.61 (d, 1 H), 8.56 (d, 1 H), 7.97 (d, 1 H), 7.84 (m, 1 H), 7.36 (m, 2 H), 6.95 (d, 1 H), 3.25 (m, 2 H), 3.03 (m, 2 H), 2.89 (m, 2 H), 2.51 (m, 2 H), 1.68-2.21 (m, 10 H).
Example 319

cis-N-(7-chloroquinolin-4-yl)-N'-(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting Metronidazole for 4-fluorobenzylalcohol. MS(ESI) m/e 429 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.77 (d, 1 H), 8.61 (d, 1 H), 8.08 (s, 1 H), 7.98 (d, 1 H), 7.80 (dd, 1 H), 6.96 (d, 1 H), 4.59 (m, 2 H), 4.09 (s, 1 H), 3.68 (s, 1 H), 3.37 (m, 2 H), 2.54 (s, 3 H), 1.72-2.16 (m, 10 H).

Example 320

cis-N-(7-chloroquinolin-4-yl)-N'-(3-pyridin-3-ylpropyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 3-Pyridinepropanol for 4-fluorobenzylalcohol. MS(ESI) m/e 395 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.61 (d, 1 H), 8.57 (m, 5 H), 7.97 (d, 1 H), 7.80 (dd, 1 H), 6.95 (d, 1 H), 3.25 (s, 1 H), 2.86-3.08 (m, 2 H), 2.72 (m, 2 H), 2.51 (m, 2 H), 1.68-2.21 (m, 10 H).

Example 321

cis-N-(7-chloroquinolin-4-yl)-N'-{((4R,5S)-2-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-4-yl)methyl}cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting (4S,5S)-(-)-2-Methyl-5-phenyl-2-oxazoline-4-methanol for 4-fluorobenzylalcohol. MS(ESI) m/e 349 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.76 (d, 1 H), 8.59 (d, 1 H), 8.36 (d, 1 H), 7.81 (dd, 1 H), 7.81 (m, 1 H), 7.40 (m, 2 H), 7.33 (m, 2 H), 6.93 (d, 1 H), 2.24 (s, 3 H), 2.01 (m, 2 H), 1.70-1.91 (m, 10 H), 1.63 (m, 2 H), 1.47 (m, 2 H).

Example 322

cis-N-(7-chloroquinolin-4-yl)-N'-(2-(4-methyl-1,3-thiazol-5-yl)ethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 4-Methyl-5-thiazoleethanol for 4-fluorobenzylalcohol. MS(ESI) m/e 401
Example 323

cis-N-(7-chloroquinolin-4-yl)-N'-{(tetrahydrofuran-2-ylmethyl)cyclohexane-1,4-diamine}

The titled compound was prepared according to method described in Example 141, substituting Tetrahydrofurfuryl alcohol for 4-fluorobenzylalcohol. MS(ESI) m/e 360 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.72 (d, 1 H), 8.60 (d, 1 H), 7.97 (d, 1 H), 7.81 (dd, 1 H), 6.92 (d, 1 H), 4.09 (m, 2 H), 3.82 (m, 2 H), 3.73 (m, 2 H), 3.11 (m, 2 H), 2.96 (m, 1 H), 1.65-2.15 (m, 10 H), 1.57 (m, 2 H).

Example 324

cis-N-(7-chloroquinolin-4-yl)-N'-{(pyridin-3-ylmethyl)cyclohexane-1,4-diamine}

The titled compound was prepared according to method described in Example 141, substituting Pyridine-3-methanol for 4-fluorobenzylalcohol. MS(ESI) m/e 367 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.61 (d, 1 H), 8.54 (m, 4 H), 7.97 (d, 1 H), 7.80 (dd, 1 H), 6.95 (d, 1 H), 4.08 (s, 1 H), 3.59 (s, 1 H), 2.98 (m, 2 H), 2.74 (m, 2 H), 2.50 (m, 2 H), 1.69-2.22 (m, 10 H).

Example 325

cis-N-(7-chloroquinolin-4-yl)-N'-{2-(3-(6-methylpyridin-2-yl)propoxy)ethyl)cyclohexane-1,4-diamine

The titled compound was prepared according to method described in Example 141, substituting 2-(3-(6-Methyl-2-pyridyl)propoxy)ethanol for 4-fluorobenzylalcohol. MS(ESI) m/e 453 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, 1 H), 8.61 (d, 1 H), 7.97 (m, 1 H), 7.84 (m, 1 H), 7.71 (m, 1 H), 7.48 (td, 1 H), 7.24 (td, 1 H), 6.94 (d, 1 H), 2.74-3.00 (m, 4 H), 2.54 (s, 3 H), 2.44-2.68 (m, 6 H), 2.09 (m, 2 H), 1.67-2.01 (m, 10 H).
Example 326

cis-N-(7-chloroquinolin-4-yl)-N'-{(2R)-1-(2-methoxybenzoyl)pyrrolidin-2-yl}methyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting (S)-(−)-1-(2-methoxybenzoyl)-2-pyrrolidinemethanol for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.73 (d, 1 H), 8.60 (d, 1 H), 7.96 (d, 1 H), 7.80 (dd, 1 H), 7.27 (m, 1 H), 6.99 (m, 5 H), 4.31 (m, 2 H), 4.08 (m, 2 H), 3.78 (s, 3 H), 2.90-3.30 (m, 6 H), 1.56-2.04 (m, 10 H); MS(ESI) m/e 493 (M+H)$^+$.

Example 327

cis-N-(7-chloroquinolin-4-yl)-N'-(tetrahydrofuran-3-ylmethyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting tetrahydro-3-furanmethanol for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.76 (d, 1 H), 8.61 (d, 1 H), 7.98 (d, 1 H), 7.80 (dd, 1 H), 6.95 (d, 1 H), 4.10 (s, 1 H), 3.76 (m, 2 H), 3.66 (m, 2 H), 3.00 (m, 2 H), 2.52 (m, 2 H), 1.69-2.23 (m, 10 H), 1.63 (m, 2 H); MS(ESI) m/e 360 (M+H)$^+$.

Example 328

cis-N-(7-chloroquinolin-4-yl)-N'-(2-furylmethyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting furfuryl alcohol 0 for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.74 (d, $J = 9.1$ Hz, 1 H), 8.60 (d, $J = 7.2$ Hz, 1 H), 7.97 (d, $J = 2.2$ Hz, 1 H), 7.82 (d, 1 H), 7.81 (m, 1 H), 6.94 (d, 1 H), 6.66 (m, 1 H), 6.56 (m, 1 H), 4.31 (s, 1 H), 3.22 (s, 1 H), 2.50 (m, 2 H), 1.68-2.11 (m, 10 H); MS(ESI) m/e 356 (M+H)$^+$.

Example 329

cis-N-(7-chloroquinolin-4-yl)-N'-(3-methyloxetan-3-yl)methyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting 3-Methyl-3-oxetanemethanol for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.72 (d, 1 H), 8.59 (d, 1 H), 7.96 (d, 1 H), 7.71 (d, 1 H), 6.91 (d, 1 H), 5.11 (s, 1 H), 4.39 (m, 2 H), 3.91-4.17 (m, 4 H), 2.99 (s, 1 H), 1.70-2.22 (m, 10 H), 0.91 (s, 3 H); MS(ESI) m/e 360 (M+H)$^+$.

135
Example 330

cis-N-(7-chloroquinolin-4-yl)-N'-(3-pyridin-4-ylpropyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting 4-Pyridinepropanol for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.79 (d, 1 H), 8.74 (d, 1 H), 7.98 (d, 1 H), 7.82 (d, 2 H), 7.76 (d, 1 H), 7.71 (d, 2 H), 6.95 (d, 1 H), 4.16 (s, 1 H), 3.12 (m, 1 H), 2.67-2.91 (m, 6 H), 1.71-2.16 (m, 10 H); MS(ESI) m/e 395 (M+H)$^+$.

Example 331

cis-N-(7-chloroquinolin-4-yl)-N'-(3-ethoxetan-3-ylmethyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting 3-ethyl-3-oxetanemethanol for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.76 (d, 1 H), 8.61 (d, 1 H), 7.97 (d, 1 H), 7.79 (dd, 1 H), 6.92 (d, 1 H), 3.42 (s, 1 H), 3.01 (m, 1 H), 2.13 (m, 2 H), 2.00 (m, 2 H), 1.59-2.05 (m, 10 H), 0.89 (s, 3 H), 0.85-1.06 (m, 4 H); MS(ESI) m/e 374 (M+H)$^+$.

Example 332

cis-N-(7-chloroquinolin-4-yl)-N'-(pyridin-2-ylmethyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting pyridine-2-methanol for 4-fluorobenzyl alcohol. MS(ESI) m/e 367 (M+H)$^+$.

Example 333

cis-N-(7-chloroquinolin-4-yl)-N'-(1H-imidazol-4-ylmethyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting 4-(hydroxymethyl)imidazole hydrochloride for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.75 (d, 1 H), 8.69 (d, 1 H), 8.60 (d, 1 H), 8.59 (d, 1 H), 7.97 (d, 1 H), 7.81 (d, 1 H), 6.96 (d, 1 H), 4.03 (s, 1 H), 4.03 (m, 1 H), 3.29 (m, 1 H), 2.49 (m, 2 H), 1.69-2.18 (m, 10 H); MS(ESI) m/e 356 (M+H)$^+$.

Example 334

cis-N-(7-chloroquinolin-4-yl)-N'-(((4S)-2,2-dimethyl-1,3-dioxolan-4-
yl)methyl)cyclohexane-1,4-diamine

The title compound was prepared according to method described in Example 141, substituting (S)-(+)2,2-Dimethyl-1,3-dioxolane-4-methanol for 4-fluorobenzyl alcohol. 1H NMR (500 MHz, DMSO-D6) δ ppm 8.73 (d, 1 H), 8.61 (d, 1 H), 7.98 (d, 1 H), 7.28 (dd, 1 H), 6.94 (d, 1 H), 3.81 (s, 1 H), 3.26 (s, 1 H), 2.98-3.19 (m, 2 H), 2.15-2.98 (m, 2 H), 2.51 (m, 1 H), 2.50 (s, 6 H), 1.63-2.15 (m, 10 H); MS(ESI) m/e 390 (M+H)$^+$.

Example 335

cis-N-1,3-benzothiazol-2-yl-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 3 by substituting 2-chlorobenzothiazole for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+)Q1MS m/z 409 (M+H)$^+$; 1H NMR (300 MHz, DMSO) δ ppm 8.94-8.89 (m, 1 H), 8.72 (d, 1 H), 8.59-8.54 (m, 1 H), 8.15-8.05 (m, 1 H), 7.91 (d, 1 H), 7.81 (dd, 1 H), 7.71 (d, 1 H), 7.40 (d, 1 H), 7.23 (ddd, 1 H), 7.06-6.98 (m, 2 H), 4.04-3.94 (m, 2 H), 2.17-1.77 (m, 8 H).

Example 336

cis-6-((4-(7-chloroquinolin-4-yl)amino)cyclohexyl)amino)-3-methylpyrimidine-2,4(1H,3H)-dione

The titled compound was prepared according to the method described in Example 3 by substituting 6-chloro-3-methyluracil for 4-chloro-2,8-bis(trifluoromethyl)-quinoline. MS (ESI(+)Q1MS m/z 400(M+H)$^+$; 1H NMR (300 MHz, DMSO) δ ppm 10.03 (br s, 1 H), 8.87 (d, 1 H), 8.72 (d, 1 H), 8.58 (d, 1 H), 7.95 (d, 1 H), 7.82 (dd, 1 H), 7.01 (d, 1 H), 6.15 (d, 1 H), 4.67 (d, 1 H), 4.00-3.57 (m, 2 H), 3.03 (s, 3 H), 1.90-1.70 (m, 8 H).

Example 337

(1S,2R,4S,5R)-N,N'-bis(7-chloroquinolin-4-yl)-2,5-dimethylcyclohexane-1,4-diamine

Example 337 A

(1S,2R,4S,5R)-2,5-dimethylcyclohexane-1,4-diamine

A solution of 1,3-dimethylphenylene-2,4-diamine (5g, 36.7mmol), 5%Ru on Al$_2$O$_3$ in ethanol (100 ml) was shaken under 950 psi hydrogen pressure at 100°C for 72 hours, filtered
and concentrated under reduced pressure to provide the titled compound. MS(CI(+)Q1MS m/z 143 (M+H)+).

Example 337 B

\((1S,2R,4S,5R)-N,N'-\text{bis}(7\text{-chloroquinolin}-4\text{-yl})-2,5\text{-dimethylcyclohexane}-1,4\text{-diamine}\)

The titled compound was prepared according to the methods described in Example 140, substituting 4-bromo-7-chloroquinoline for 1-bromo-3,5-difluorobenzene and \((1S,2R,4S,5R)-2,5\text{-dimethylcyclohexane}-1,4\text{-diamine}\) for Example 23A. MS(ESI(+)Q1MS m/z 465 (M+H)+); 1H NMR (300 MHz, DMSO) δ ppm 8.87 (d, 2 H), 8.60 (d, 2 H), 8.32 (br.s, 2 H), 7.95 (d, 2 H), 7.85 (dd, 2 H), 7.05 (d, 2 H), 4.03-4.37 (br.s, 2 H), 2.27 (m, 4 H), 1.90 (m, 2 H), 1.02 (d, 6 H).

Example 338

\((1S,2R,4S,5R)-N-(7\text{-chloroquinolin}-4\text{-yl})-N'-(3,5\text{-dimethylphenyl})-2,5\text{-dimethylcyclohexane}-1,4\text{-diamine}\)

Example 338 A

\((1S,2R,4S,5R)-N-(7\text{-chloroquinolin}-4\text{-yl})-2,5\text{-dimethylcyclohexane}-1,4\text{-diamine}\)

A mixture of 4,7-dichloroquinoline (500mg, 2.5mmol) and \((1S,2R,4S,5R)-2,5\text{-dimethylcyclohexane}-1,4\text{-diamine}\) (750mg, 5.2 mmol) was heated at 150°C for 5 hours, cooled to room temperature, and flash chromatographed through silica gel column with dichloromethane and methanol (3:1 ratio by vol) to provide the titled compound. MS(ESI(+)Q1MS m/z 304 (M+H)+).

Example 338 B

\((1S,2R,4S,5R)-N-(7\text{-chloroquinolin}-4\text{-yl})-N'-(3,5\text{-dimethylphenyl})-2,5\text{-dimethylcyclohexane}-1,4\text{-diamine}\)

The titled compound was prepared according to the methods described in Example 140, substituting 5-bromo-m-xylene for 1-bromo-3,5-difluorobenzene and \((1S,2R,4S,5R)-N-(7\text{-chloroquinolin}-4\text{-yl})-2,5\text{-dimethylcyclohexane}-1,4\text{-diamine}\) for \(N-(7\text{-chloroquinolin}-4\text{-yl})\text{cyclohexane}-1,4\text{-diamine}\). 1H NMR (300 MHz, DMSO) δ ppm 8.89 (d, 1 H), 8.56 (m, 2 H), 7.92 (d, 1 H), 7.82 (dd, 1 H), 6.99 (d, 1 H), 6.31 (s, 2 H), 6.17 (s, 1 H), 4.10 (br.s, 2 H), 2.14 (s, 6 H), 2.03-2.33 (m, 4 H), 1.69 (m, 2 H), 0.97 (br.d, 6 H). MS(ESI(+)Q1MS m/z 408 (M+H)+).
Example 339

\[N-((1S,2R,4S,5R)-4-((7\text{-chloroquinolin-4-yl}amino)-2,5\text{-dimethylcyclohexyl})-3,5\text{-difluorobenzamide}) \]

The titled compound was prepared according to the method described in Example 23 substituting (1S,2R,4S,5R)-N-(7-chloroquinolin-4-yl)-2,5-dimethylcyclohexane-1,4-diamine for (7-chloroquinolin-4-yl)cyclohexane-1,4-diamine and 3,5-difluorobenzoic acid for indole-6-carboxylic acid. \(^1\)H NMR (300 MHz, DMSO) \(\delta\) ppm 8.87 (d, 1 H), 8.55 (t, 1 H), 8.07 (d, 1 H), 7.93 (d, 1 H), 7.83 (dd, 1 H), 7.42-7.64 (m, 4 H), 7.00 (d, 1 H), 4.00-4.20 (m, 2 H), 1.63-2.34 (m, 6 H), 1.03 (d, 3 H), 1.00 (d, 3 H). MS(ESI(+)Q1MS m/z 444 (M+H))\(^{+}\).

Example 340

5-bromo-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-2-hydroxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-bromosalicylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 474 and 476 (M+H))\(^{+}\); \(^1\)H NMR (500 MHz, DMSO-D6) \(\delta\) ppm 1.76-1.90 (m, 5 H) 1.97-2.05 (m, 2 H) 2.07 (s, 1 H) 4.00 (m, 1 H) 4.08 (m, 1 H) 6.93 (d, \(J=8.73\) Hz, 1 H) 7.01 (d, \(J=7.18\) Hz, 1 H) 7.56 (dd, \(J=8.74,2.50\) Hz, 1 H) 7.80 (dd, \(J=9.20,2.03\) Hz, 1 H) 7.94 (d, \(J=2.18\) Hz, 1 H) 8.15 (d, \(J=2.50\) Hz, 1 H) 8.56 (d, \(J=7.17\) Hz, 1 H) 8.60 (d, \(J=5.93\) Hz, 1 H) 8.71 (d, \(J=9.36\) Hz, 1 H) 8.83 (d, \(J=7.17\) Hz, 1 H).

Example 341

3-bromo-N-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-5-fluorobenzamide

A mixture of 23A cis-N,N'-bis(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine (500 mg, 3.6 mmol), 3-bromo-5-fluorobenzoic acid (600 mg, 5.4 mmol), 1-hydroxybenzotriazole (245 mg, 3.6 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (348 mg, 3.6 mmol) in 30 mL dichloromethane was stirred for 3 hours. The reaction was incomplete. 3-bromo-5-fluorobenzoic acid (160 mg, 0.9 mmol), 1-hydroxybenzotriazole (61 mg, 0.9 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (87 mg, 0.9 mmol) was added and the solution was allowed to stir overnight. The solution was then washed with 1N NaOH, dried (Na\(_2\)SO\(_4\)), and concentrated. The residue was purified by flash chromatography (10% methanol in dichloromethane) to provide 700 mg of pure compound, an 81% yield. MS (ESI(+)Q1MS m/z 477 (M+2H))\(^{+}\); \(^1\)H NMR (300 MHz, MeOH) \(\delta\) ppm 8.36-8.42 (m, 3 H), 7.95 (t, 1 H), 7.69-7.79 (m, 3 H), 7.45 (dd, 1 H), 6.83 (d, 1 H), 6.54 (d, 1 H), 3.95 (m, 1 H), 3.68 (m, 1 H), 1.64-1.98 (m, 8 H).

139
Example 342

(1S,2R,4S,5R)-N,N'-bis(7-chloroquinolin-4-yl)-2,5-dimethylcyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 1, substituting 1,4-diamo-no-2,5-dimethylcyclohexane for 1,4-diaminocyclohexane. MS (ESI(+))Q1MS m/z 465 (M+H)+; 1H NMR (300 MHz, DMSO-D6) δ ppm 1.02 (d, J=6.44 Hz, 6 H) 1.86-1.94 (m, 2 H) 2.22-2.37 (m, 4 H) 4.17-4.25 (br.s, 2 H) 7.05 (d, J=7.46 Hz, 2 H) 7.85 (dd, J=9.15, 2.03 Hz, 2 H) 7.96 (d, J=2.37 Hz, 2 H) 8.38 (d, J=7.12 Hz, 2 H) 8.60 (d, J=7.12 Hz, 2 H) 8.89 (d, J=9.15 Hz, 2 H).

Example 343

4-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino)-6-methyl-2H-chromen-2-one

To a conical microwave vessel (7.5 mL) equipped with a septum cap and a magnetic stirring bar was added a solution of a trifluoro-methanesulfonic acid 6-chloro-2-oxo-2H-chromen-4-yl ester (0.014 g; 0.043 mmol) in dry acetonitrile (1 mL) containing Et3N (0.025 mL). Then, a solution of N-(7-chloro-quinolin-4-yl)-cyclohexane-1,4-diamine (0.0178 g; 1.5 eq.) in 1:1:1 mixture of acetonitrile/dichloromethane/DMF (1 mL) was added to the vessel and the resulting suspension was irradiated in Personal Chemistry Smith Synthesizer (150 °C for 180 s; 300 W). The resulting solution was evaporated to dryness. The residue was dissolved in 1.5 mL of a 1:1 mixture of DMSO/MeOH and purified by preparative reverse-phase HPLC. MS (DCI/NH3) m/z 433 [M+H]+.

Example 344

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methyl-2-phenylpentanamide

General procedure: Synthesizes were performed using a PE Biosystems (Applied Biosystems) Solaris 530 organic synthesizer. Each of the 48 round bottom flasks was charged with 3 equivalents of PS-dicyclohexane carbodiimide resin (PS-DCC) supplied by Argonaut Technologies. The reaction block was then assembled and placed on the Solaris 530. The acid monomers (0.6 mmol) were each dissolved N,N-dimethylacetamide (DMA) (3 mL). The amine core was dissolved in N,N-dimethylacetamide. Solutions of N-hydroxybenzotriazole in N,N-dimethylacetamide and diisopropylethylamine (DIEA) in DMA were placed on the instrument. The Solaris was primed with DMA then into each of the 48 vials containing PS-DCC resin was added 1.25 equivalents of each monomer solution, HOBt solution (0.75 mL, 1 eq.), core solution (0.75 mL, 1 eq) and DIEA solution (0.75 mL, 3 eq). The reactions were heated to 55 C overnight, checked by LC/MS, and transferred with
methanol to 20 mL vials containing 3 eq MP-Carbonate resin supplied by Argonaut Technologies. The MP-Carbonate resin was filtered and the reactions were concentrated to dryness under reduced pressure. The residues were dissolved in 1:1 dimethylsulfoxide/methanol and purified by reverse phase HPLC.

The titled compound was prepared using the procedure described above using \(N\)-(7-chloro-quinolinin-4-yl)-cyclohexane-1,4-diamine and 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 450 (M\(^+\)). \(^1\)H NMR (500 MHz, DMSO) \(\delta \) ppm 8.86 (t, \(J = 8.0 \) Hz, 1 H), 8.75 (d, \(J = 9.0 \) Hz, 1 H), 8.54 (d, \(J = 7.2 \) Hz, 1 H), 7.93 (m, 2 H), 7.80 (dd, \(J = 9.0, 1.9 \) Hz, 1 H), 7.37 (m, 2 H), 7.28 (t, \(J = 7.5 \) Hz, 2 H), 7.20 (t, \(J = 7.3 \) Hz, 1 H), 6.95 (dd, \(J = 7.2, 3.7 \) Hz, 1 H), 3.27 (dd, \(J = 19.2, 10.8 \) Hz, 1 H), 2.07 (m, 1 H), 1.74 (m, 8 H), 1.14 (m, 1 H), 0.94 (d, \(J = 6.6 \) Hz, 1 H), 0.90 (t, \(J = 7.3 \) Hz, 2 H), 0.84 (m, 1 H), 0.73 (t, \(J = 7.3 \) Hz, 1 H), 0.58 (d, \(J = 6.6 \) Hz, 2H).

Example 345

\(N\)-(4-((7-chloroquinolinin-4-yl)amino)cyclohexyl)-2-hydroxy-5-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-methyalsalicylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 410 (M+H)**; \(^1\)H NMR (500 MHz, DMSO-D6) \(\delta \) ppm 1.75-2.02 (m, 8 H) 2.27 (s, 3 H) 3.94-4.02 (m, 1 H) 4.02-4.10 (m, 1 H) 6.83 (d, \(J = 8.11 \) Hz, 1 H) 6.99 (d, \(J = 7.18 \) Hz, 1 H) 7.21 (dd, \(J = 8.42, 1.87 \) Hz, 1 H) 7.79 (m, 2 H) 7.92 (d, \(J = 2.18 \) Hz, 1 H) 8.45 (d, \(J = 6.24 \) Hz, 1 H) 8.56 (d, \(J = 7.18 \) Hz, 1 H) 8.69 (d, \(J = 9.05 \) Hz, 1 H) 8.74 (br.s, 1 H).

Example 346

\(N\)-(4-((7-chloroquinolinin-4-yl)amino)cyclohexyl)-2,2-diphenylacetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting diphenylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 470 (M\(^+\)). \(^1\)H NMR (500 MHz, DMSO) \(\delta \) ppm 8.87 (d, \(J = 6.9 \) Hz, 1 H), 8.71 (d, \(J = 9.4 \) Hz, 1 H), 8.54 (d, \(J = 7.2 \) Hz, 1 H), 8.25 (d, \(J = 5.9 \) Hz, 1 H), 7.93 (d, \(J = 2.2 \) Hz, 1 H), 7.78 (dd, \(J = 9.0, 2.2 \) Hz, 1 H), 7.31 (m, 9 H), 7.23 (m, 2 H), 6.97 (d, \(J = 7.2 \) Hz, 1 H), 5.10 (s, 1 H), 1.83 (m, 6 H), 1.69 (m, 2 H).

Example 347

\(N\)-(4-((7-chloroquinolinin-4-yl)amino)cyclohexyl)-5-fluoro-2-hydroxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-fluorosalicylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 414 (M+H)**; \(^1\)H NMR (500 MHz, DMSO-D6) \(\delta \) ppm 1.75-2.02 (m, 8 H) 3.95-4.03 (m, 1 H)
4.05-4.10 (m, 1 H) 6.94-7.00 (m, 2 H) 7.24-7.30 (m, 1 H) 7.78 (d, J=2.18 Hz, 1 H) 7.80 (d, J=2.50 Hz, 1 H) 7.92 (d, J=1.87 Hz, 1 H) 8.55 (m, 2 H) 8.68 (d, J=9.05 Hz, 1 H) 8.71-8.74 (br.s, 1 H).

Example 348

N-[(1S,2R,4S,5R)-4-((7-chloroquinolin-4-yl)amino)-2,5-dimethylcyclohexyl]-3,5-difluorobenzamide

Example 348 A

N-(7-chloroquinolin-4-yl)-2,5-dimethyl-cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 23A, substituting 2,5-Dimethyl-cyclohexane-1,4-cis-diamine for 1,4-cyclohexanediamine. MS (ESI(+))Q1MS m/z 304 (M+H)^+.

Example 348 B

N-[(1S,2R,4S,5R)-4-((7-chloroquinolin-4-yl)amino)-2,5-dimethylcyclohexyl]-3,5-difluorobenzamide

The titled compound was prepared according to the methods described in Example 112, substituting Example 348A for Example 23A. MS (ESI(+))Q1MS m/z 444 (M+H)^+; ^1^H NMR (300 MHz, DMSO-D6) δ ppm 0.93-1.04 (m, 6 H) 1.66-2.30 (m, 6 H) 4.03-4.17 (m, 2 H) 7.00 (d, J=7.46 Hz, 1 H) 7.45-7.61 (m, 2 H) 7.83 (dd, J=9.16, 2.03 Hz, 1 H) 7.93 (m, 1 H) 8.07 (d, J=6.78 Hz, 1 H) 8.55 (t, J=7.29 Hz, 2 H) 8.87 (d, J=9.16 Hz, 1 H).

Example 349

N-(7-chloroquinolin-4-yl)-N’-(2’,5-dimethyl-1’,1’-biphenyl-3-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 418 by substituting 2-methylboronic acid for phenylboronic acid. MS (ESI(+))Q1MS m/z 456 (M+H)^+; ^1^H NMR (300 MHz, DMSO) δ ppm 8.92 (m, 1 H), 8.69 (d, 1 H), 8.54 (m, 1 H), 7.94 (m, 1 H), 7.80 (dd, 1 H), 7.71-7.83 (m, 3H), 7.21-7.26 (m, 1H), 6.93-7.01 (m, 1H), 6.62 (dd, 1H), 6.48 (s, 1H), 6.40 (s, 1H), 6.32 (s, 1H), 3.7 (m, 1H), 3.54 (d, 1H), 2.29 (s, 3H), 2.25(s, 3H), 1.66-1.99 (m, 8H).

Example 350

3-(5-acetylthien-2-yl)-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-5-fluorobenzamide

To a solution of 5-acetyl-2-thiophene boronic acid (7.14 mg, 0.042 mmol), Pd(PPh3)4Cl2 (~1 mol %), and cesium carbonate (16.4 mg, 0.05 mmol) in dimethoxyethane/water/ethanol (7/3/2) was added 3-bromo-N-4-((7-chloroquinolin-4-
(yl)amino)cyclohexyl]-5-fluorobenzamide (20 mg, 0.042 mmol). The solution was heated in the microwave at 160 °C for 5 minutes, concentrated, and purified by high throughput HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+))Q1MS m/z 522 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.73 (d, 1 H), 8.57 (d, 1 H), 8.39 (s, 1H), 8.05 (s, 1H), 8.01 (d, 1 H), 7.95 (d, 1H), 7.87 (dt, 1 H), 7.82 (d, 1H), 7.80 (d, 1H), 7.74 (d, 1H), 4.03 (m, 2H), 2.57 (s, 3H), 1.96-2.06 (m, 4H), 1.75-1.85 (m, 4H).

Example 351

(2R)-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2-methoxy-2-phenylacetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting (R)-(−)-alpha-methoxyphenylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 424 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.79 (d, J=7.2 Hz, 1 H), 8.70 (d, J=9.4 Hz, 1 H), 8.55 (d, J=7.2 Hz, 1 H), 7.94 (d, J=2.2 Hz, 1 H), 7.82 (dd, J=9.2, 2.0 Hz, 1 H), 7.70 (d, J=6.9 Hz, 1 H), 7.37 (m, 5 H), 6.98 (d, J=7.2 Hz, 1 H), 4.72 (s, 1 H), 3.96 (m, 1 H), 3.87 (m, 1 H), 3.30 (s, 3 H), 1.82 (m, 6 H), 1.68 (m, 2 H).

Example 352

N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2-hydroxy-5-methoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-methoxysalicylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 426 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 7.92-3.97 (m, 1 H) 4.05-4.13 (m, 1 H) 6.88 (d, J=9.05 Hz, 1 H) 6.94 (d, J=7.49 Hz, 1 H) 7.03 (dd, J=8.89, 2.96 Hz, 1 H) 7.49 (d, J=3.12 Hz, 1 H) 7.76 (d, J=8.73 Hz, 1 H) 7.90 (d, J=1.87 Hz, 1 H) 8.55 (m, 2 H) 8.66 (d, J=9.05 Hz, 1 H) 11.60 (s, 1 H).

Example 353

(2S)-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2-methoxy-2-phenylacetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting (S)-(−)-alpha-methoxyphenylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 424 (M+H)+; 1H NMR (500 MHz, DMSO) δ ppm 8.79 (d, J=7.2 Hz, 1 H), 8.70 (d, J=9.4 Hz, 1 H), 8.55 (d, J=7.2 Hz, 1 H), 7.94 (d, J=2.2 Hz, 1 H), 7.82 (dd, J=9.2, 2.0 Hz, 1 H), 7.70 (d, J=6.9 Hz, 1 H), 7.37 (m, 5 H), 6.98 (d, J=7.2 Hz, 1 H), 4.72 (s, 1 H), 3.96 (m, 1 H), 3.87 (m, 1 H), 3.30 (s, 3 H), 1.82 (m, 6 H), 1.68 (m, 2 H).

143
Example 354
4-chloro-N-{4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]-2-hydroxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-chlorosalicylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 430 (M+H)^+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 1.75-2.00 (m, 8 H) 3.98-4.01 (m, 1 H) 4.07 (m, 1 H) 6.97-7.01 (m, 3 H) 7.78 (dd, J=9.20, 2.03 Hz, 1 H) 7.93 (d, J=1.87 Hz, 1 H) 7.98 (d, J=8.42 Hz, 1 H) 8.52 (d, J=6.24 Hz, 1 H) 8.55 (d, J=7.18 Hz, 1 H) 8.69 (d, J=9.05 Hz, 1 H) 8.79 (d, J=6.86 Hz, 1 H).

Example 355
N-4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]quinoline-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting quinoline-3-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 431 (M+H)^+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 1.78-2.08 (m, 8 H) 4.01-4.11 (m, 2 H) 7.02 (d, J=7.18 Hz, 1 H) 7.71 (t, J=8.11 Hz, 1 H) 7.82 (dd, J=9.05, 2.18 Hz, 1 H) 7.88 (m, 1 H) 7.93 (d, J=2.18 Hz, 1 H) 8.10 (d, J=9.36 Hz, 2 H) 8.54 (dd, J=31.35, 6.40 Hz, 2 H) 8.73 (d, J=9.05 Hz, 1 H) 8.86 (m, 2 H) 9.31 (d, J=2.18 Hz, 1 H).

Example 356
N-4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]-2-hydroxy-3-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-methylsalicylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 410 (M+H)^+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 1.73-2.06 (m, 8 H) 2.15 (s, 3 H) 3.95-4.11 (m, 2 H) 6.79 (t, J=7.64 Hz, 1 H) 6.98 (d, J=7.49 Hz, 1 H) 7.30 (d, J=7.49 Hz, 1 H) 7.80 (m, 2 H) 7.92 (d, J=1.87 Hz, 1 H) 8.41 (d, J=5.93 Hz, 1 H) 8.55 (d, J=7.18 Hz, 1 H) 8.70 (d, J=9.05 Hz, 1 H) 8.75 (d, J=6.24 Hz, 1 H).

Example 357
N-4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]-2,6-dimethoxynicotinamide

The titled compound was prepared according to the methods described in Example 23, substituting 2,6-dimethoxynicotinic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 441 (M+H)^+); ¹H NMR (500 MHz, DMSO-D6) δ ppm 1.74-2.01 (s, 8 H) 3.94 (s, 3 H) 3.94 (m, 2 H) 4.10 (s, 3 H) 6.54 (d, J=8.11 Hz, 1 H) 7.02 (d, J=7.49 Hz, 1 H) 7.82 (dd, J=9.05, 2.18 Hz, 1 H) 7.93 (d, J=1.87 Hz, 1 H) 7.97 (d, J=6.55 Hz, 1 H) 8.20 (d, J=8.11 Hz, 1 H) 8.56 (d, J=7.18 Hz, 1 H) 8.71 (d, J=9.05 Hz, 1 H) 8.84 (d, J=6.86 Hz, 1 H) 13.71 (s, 1 H).
Example 358

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylpentanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4-methylpentanoic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 374 (M+H)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 8.89 (d, J = 6.9 Hz, 1 H), 8.73 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.69 (d, J = 6.2 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.91 (m, 1 H), 3.80 (m, 1 H), 2.13 (t, J = 7.8 Hz, 2 H), 1.84 (m, 6 H), 1.65 (m, 2 H), 1.51 (m, 1 H), 1.42 (m, 2 H), 0.87 (d, J = 6.6 Hz, 6 H).

Example 359

N-(2-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino)-2-oxo-1-ethyl)-2-hydroxybenzamide

The titled compound was prepared according to the procedure described in Example 344 by substituting o-hydroxyhippuric acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 453 (M+H)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 12.15 (s, 1 H), 9.00 (t, J = 5.6 Hz, 1 H), 8.87 (d, J = 7.2 Hz, 1 H), 8.73 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 6.9 Hz, 1 H), 7.95 (d, J = 5.6 Hz, 1 H), 7.93 (d, J = 1.9 Hz, 1 H), 7.88 (dd, J = 7.8, 1.6 Hz, 1 H), 7.81 (dd, J = 9.2, 2.0 Hz, 1 H), 7.40 (m, 1 H), 6.98 (d, J = 7.5 Hz, 1 H), 6.91 (m, 2 H), 3.98 (d, J = 5.3 Hz, 2 H), 3.92 (m, 1 H), 3.84 (m, 1 H), 1.85 (m, 6 H), 1.70 (m, 2 H).

Example 360

3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide

A mixture of Example 23A (15mg, 0.055 mmol), 3-chloro-5-fluorobenzoic acid (14mg, 0.083 mmol), solid supported dicyclohexanecarbodiimide(0.110 mmol), 1-hydroxy-7-azabenotriazole (11.3 mg, .094mmol) 2.5 ml dimethylacetamide/dichloromethane (2/3) was shaken for 2 hours, and filtered. The filtrate was the concentrated and the residue was purified by HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+))Q1MS m/z 432 (M+H)⁺; ¹H NMR (300 MHz, DMSO) δ ppm 8.84 (d, 1 H), 8.71 (d, 1 H), 8.56 (d, 1 H), 8.35 (d, 1 H), 7.95 (d, 1 H), 7.83 (m, 1 H), 7.81 (dd, 1H), 7.69 (m, 1 H), 7.65 (dt, 1 H), 7.00 (d, 1 H), 3.99 (m, 2H), 1.98-2.03 (m, 4H), 1.73-1.83 (m, 4H).

Example 361

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}pentanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting valeric acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 360 (M+H)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 8.88 (d, J = 7.2 Hz, 1 H), 8.73 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.67
Example 362

3'-amino-N-{4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]-5-fluoro-1,1'-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 3-aminobenzeneboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 522 (M+H)+. 1H NMR (300 MHz, DMSO) δ ppm 8.85 (d, J = 7.8 Hz, 1 H), 8.75 (d, J = 7.8 Hz, 1 H), 8.65 (s, 1H), 7.95 (m, 1 H), 7.80 (dd, 1H), 7.70 (d, J = 7.8 Hz, 1 H), 7.60 (d, J = 7.8 Hz, 1 H), 7.59 (t, J = 7.8 Hz, 1 H), 7.31 (m, 2H), 7.00 (d, J = 7.8 Hz, 1 H), 6.91 (d, J = 7.8 Hz, 1 H), 4.03 (m, 2H), 3.97 (s, 1H), 3.17 (s, 1H), 1.97-2.05 (m, 4H), 1.75-1.84 (m, 4H).

Example 363

N-2-acetyl-N-1-{4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]-1-L-leucinamide

The titled compound was prepared according to the procedure described in Example 344 by substituting N-acetyl-L-leucine for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 431 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.87 (d, J = 6.9 Hz, 1 H), 8.75 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.8 Hz, 1 H), 7.93 (m, 2 H), 7.86 (d, J = 6.2 Hz, 1 H), 7.80 (dd, J = 9.2, 2.0 Hz, 1 H), 6.96 (d, J = 7.8 Hz, 1 H), 4.39 (m, 1 H), 3.89 (m, 1 H), 3.79 (m, 1 H), 1.84 (m, 1 H), 1.63 (m, 3 H), 1.43 (m, 2 H), 0.88 (dd, J = 18.1, 6.6 Hz, 6 H).

Example 364

N-{4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]-2-(3,5-difluorophenyl)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3,5-difluorophenylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 430 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.87 (d, J = 6.9 Hz, 1 H), 8.75 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 8.07 (d, J = 5.9 Hz, 1 H), 7.93 (d, J = 1.9 Hz, 1 H), 7.81 (dd, J = 9.2, 2.0 Hz, 1 H), 7.09 (t, J = 2.3 Hz, 1 H), 6.98 (m, 3 H), 3.91 (m, 1 H), 3.81 (m, 1 H), 3.53 (s, 2 H), 1.82 (m, 6 H), 1.69 (m, 2 H).

Example 365

N-{4-[(7-chloroquinolin-4-yl)amino)cyclohexyl]-2-[(4-methylpyrimidin-2-yl)thio]acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 2-(carboxymethylthio)-4-pyrimidine for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 442 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.87 (d, J = 6.9 Hz, 1 H), 8.75 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 8.07 (d, J = 5.9 Hz, 1 H), 7.93 (d, J = 1.9 Hz, 1 H), 7.81 (dd, J = 9.2, 2.0 Hz, 1 H), 7.09 (t, J = 2.3 Hz, 1 H), 6.98 (m, 3 H), 3.91 (m, 1 H), 3.81 (m, 1 H), 3.53 (s, 2 H), 1.82 (m, 6 H), 1.69 (m, 2 H).
Example 366

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-3'-hydroxy-1,1'-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 3- (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 490 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 9.80 (s, 1H), 8.85 (d, 1 H), 8.72 (d, 1 H), 8.56 (d, 1 H), 8.27 (d, 1H), 7.98 (d, 1H), 7.89 (m, 1H), 7.78 (dd, 1H), 7.63 (d, 1H), 7.55 (d, 1H), 7.38 (dd, 1H), 7.23 (t, 1H), 6.69-7.01 (m, 2H), 6.92 (t, 1H), 3.99-4.04 (m, 2H), 1.96-2.05 (m, 4H), 1.74-1.83 (m, 4H).

Example 367

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-3'-(hydroxymethyl)-1,1'-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 3- hydroxymethylbenzeneboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 504 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.86 (d, 1H), 8.73 (d, 1H), 8.37 (d, 1H), 8.01 (s, 1H), 7.98 (d, 1H), 7.79 (dd, 1H), 7.60-7.74 (m, 4H), 7.47 (t, 1H), 7.40 (d, 1H), 7.00(d, 1H), 4.60 (s, 2H), 4.97-4.05 (m, 3H), 1.98-2.07 (m, 4H), 1.75-1.84 (m, 4H).

Example 368

3-(2-chlorophenyl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}propanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(2-chlorophenyl)propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 442 (M)+. 1H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.78 (m, 2H), 7.41 (dd, J = 7.6, 1.4 Hz, 1 H), 7.33 (dd, J = 7.5, 1.9 Hz, 1 H), 7.25 (m, 2H), 6.96 (d, J = 7.2 Hz, 1 H), 3.89 (m, 1H), 3.81 (m, 1H), 2.94 (m, 2H), 2.46 (t, J = 7.6 Hz, 2 H), 1.80 (m, 6H), 1.65 (m, 2H).
Example 369

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-4'-hydroxy-1,1'-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 4- (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 490 (M+H)^+; 1H NMR (300 MHz, DMSO-D6) δ ppm 9.72 (s, 1H), 8.84 (d, 1 H), 8.73 (d, 1 H), 8.57 (d, 1 H), 8.31 (d, 1 H), 7.96 (d, 1 H), 7.93 (m, 1 H), 7.80 (dd, 1H), 7.57-7.62 (m, 4 H), 7.00 (d, 1H), 6.89 (d, 2H), (m, 2H), 1.96-2.06 (m, 4H), 1.74-1.84 (m, 4H).

Example 370

N-(5-bromopyridin-3-yl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 3,5-dibromopyridine for 1-bromo-3,5-difluorobenzene. MS (ESI(+))Q1MS m/z 431 and 433 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 1.64-1.93 (m, 8 H) 3.60 (m, 1 H) 3.98 (m, 1 H) 7.01 (d, J=7.49 Hz, 1 H) 7.19 (t, J=2.34 Hz, 1 H) 7.81 (m, 2 H) 7.92 (d, J=2.18 Hz, 1 H) 8.03 (d, J=2.50 Hz, 1 H) 8.55 (d, J=7.18 Hz, 1 H) 8.71 (d, J=9.36 Hz, 1 H) 8.89 (d, J=7.49 Hz, 1 H).

Example 371

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-4-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting indole-4-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 419 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 1.92 (m, 8 H) 4.00 (m, 1 H) 4.11 (m, 1 H) 6.82 (d, J=2.18 Hz, 1 H) 7.01 (d, J=7.49 Hz, 1 H) 7.15 (m, 1 H) 7.45 (m, 2 H) 7.55 (d, J=8.11 Hz, 1 H) 7.80 (m, 2 H) 7.94 (d, J=2.18 Hz, 1 H) 8.56 (d, J=7.17 Hz, 1 H) 8.71 (d, J=9.05 Hz, 1 H) 8.84 (d, J=7.17 Hz, 1 H).

Example 372

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}hexanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting hexanoic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 374 (M+H)^+; 1H NMR (500 MHz, DMSO-D6) δ ppm 8.88 (d, J = 6.9 Hz, 1 H), 8.73 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.66 (d, J = 6.2 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.91 (m, 1 H), 3.80 (m, 1 H), 2.12 (t, J = 7.3 Hz, 2 H), 1.81 (m, 6 H), 1.65 (m, 2 H), 1.51 (m, 2 H), 1.27 (m, 4 H), 0.86 (t, J = 7.0 Hz, 3 H).

148
Example 373

N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cyclopentanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting cyclopentanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 372 (M+H)^+. \(^1\)H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 7.2 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 1.9 Hz, 1 H), 7.80 (dd, J = 9.0, 2.2 Hz, 1 H), 7.60 (d, J = 5.9 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 3.91 (m, 1 H), 3.77 (m, 1 H), 2.66 (m, 1 H), 1.84 (m, 3 H), 1.76 (m, 3 H), 1.64 (m, 4 H), 1.50 (m, 1 H).

Example 374

N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}2-(3-methoxyphenoxy)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-methoxyphenoxyacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 440 (M+H)^+. \(^1\)H NMR (500 MHz, DMSO) δ ppm 8.82 (d, J = 7.2 Hz, 1 H), 8.71 (d, J = 9.0 Hz, 1 H), 8.56 (d, J = 6.9 Hz, 1 H), 7.94 (d, J = 2.2 Hz, 1 H), 7.80 (m, 2 H), 7.19 (m, 1 H), 6.98 (d, J = 7.2 Hz, 1 H), 6.56 (m, 1 H), 6.54 (m, 2 H), 4.51 (s, 2 H), 3.96 (m, 1 H), 3.91 (m, 1 H), 3.73 (s, 3 H), 1.83 (m, 6 H), 1.70 (m, 2 H).

Example 375

N-1-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}N-2-4-(4-methylphenyl)sulfonylglycinamide

The titled compound was prepared according to the procedure described in Example 344 by substituting N-p-tosylglycine for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 487 (M)^+\(^{+}\). \(^1\)H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 1.9 Hz, 1 H), 7.80 (m, 2 H), 7.68 (m, 3 H), 7.38 (d, J = 7.8 Hz, 2 H), 6.96 (d, J = 7.5 Hz, 1 H), 3.88 (m, 1 H), 3.73 (m, 1 H), 2.37 (s, 3 H), 1.76 (m, 6 H), 1.63 (m, 2 H).

Example 376

N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}quinoxaline-2-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting quinoxaline-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 432 (M+H)^+; \(^1\)H NMR (500 MHz, DMSO-D6) δ ppm 1.82-2.13 (m, 8 H) 4.07 (m, 1 H) 4.19 (m, 1 H) 7.03 (d, J=7.49 Hz, 1 H) 7.81 (dd, J=9.05, 2.18 Hz, 1 H) 7.96 (d, J=2.18 Hz, 1 H) 8.01 (m, 2 H) 8.23 (m, 2 H) 8.55 (d, J=6.86 Hz, 1 H) 8.58 (d, J=7.18 Hz, 1 H) 8.71 (d, J=9.05 Hz, 1 H) 8.85 (d, J=7.17 Hz, 1 H).
Example 377

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-methylphenoxy)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-methylphenoxyacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 424 (M+H)^+. 1H NMR (500 MHz, DMSO) δ ppm 8.81 (d, J = 6.9 Hz, 1 H), 8.71 (d, J = 9.4 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.81 (dd, J = 9.0, 2.2 Hz, 1 H), 7.77 (d, J = 6.2 Hz, 1 H), 7.18 (t, J = 7.8 Hz, 1 H), 6.98 (d, J = 7.2 Hz, 1 H), 6.78 (m, 3 H), 4.50 (s, 2 H), 3.93 (m, 2 H), 2.27 (s, 3 H), 1.84 (m, 6 H), 1.70 (m, 2 H).

Example 378

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyclopentylacetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting cyclopentylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 386 (M+H)^+. 1H NMR (500 MHz, DMSO) δ ppm 8.88 (d, J = 7.2 Hz, 1 H), 8.74 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.66 (d, J = 6.2 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.89 (m, 1 H), 3.81 (m, 1 H), 2.13 (m, 3 H), 1.68 (m, 14 H), 1.15 (m, 2 H).

Example 379

(2S)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-phenylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting (S)-(+)2-phenylbutyric acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 422 (M+H)^+. 1H NMR (500 MHz, DMSO) δ ppm 8.86 (d, J = 6.9 Hz, 1 H), 8.73 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 2 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.35 (d, J = 7.2 Hz, 2 H), 7.29 (t, J = 7.6 Hz, 2 H), 7.20 (t, J = 7.3 Hz, 1 H), 6.96 (d, J = 7.5 Hz, 1 H), 3.88 (m, 1 H), 3.79 (m, 1 H), 3.48 (dd, J = 9.0, 6.2 Hz, 2 H), 1.79 (m, 9 H), 0.84 (t, J = 7.3 Hz, 3 H).

Example 380

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methylcyclohexanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 2-methyl-1-cyclohexanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 400 (M+H)^+. 1H NMR (500 MHz, DMSO) δ ppm 8.86 (d, J = 7.2 Hz, 1 H), 8.73 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.47 (d, J = 5.9 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 3.89 (m, 1 H), 3.81 (m, 1 H), 2.41 (m, 1 H), 2.02 (m, 1 H), 1.72 (m, 11 H), 1.39 (m, 4 H), 1.23 (m, 1 H), 0.85 (d, J = 7.2 Hz, 3 H).
Example 381

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N′-phenylpentanediamide

The titled compound was prepared according to the procedure described in Example 344 by substituting glutaranilic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 465 (M+)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 9.86 (s, 1 H), 8.84 (d, J = 7.2 Hz, 1 H), 8.71 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.71 (d, J = 5.9 Hz, 1 H), 7.59 (d, J = 7.5 Hz, 2 H), 7.27 (t, J = 8.0 Hz, 2 H), 7.01 (t, J = 7.5 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 3.90 (m, 1 H), 3.80 (m, 1 H), 2.33 (t, J = 7.3 Hz, 2 H), 2.19 (t, J = 7.5 Hz, 2 H), 1.82 (m, 8 H), 1.65 (m, 2 H).

Example 382

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-phenylpropanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting hydroxamic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 408 (M+H)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.72 (d, J = 5.9 Hz, 1 H), 7.27 (t, J = 7.5 Hz, 2 H), 7.21 (d, J = 6.9 Hz, 2 H), 7.17 (t, J = 7.2 Hz, 1 H), 6.96 (d, J = 7.2 Hz, 1 H), 3.90 (m, 1 H), 3.81 (m, 1 H), 2.83 (t, J = 7.8 Hz, 2 H), 2.44 (t, J = 7.8 Hz, 2 H), 1.79 (m, 6 H), 1.64 (m, 2 H).

Example 383

3-(4-chlorophenyl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}propanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(4-chlorophenyl)propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 442 (M⁺). ¹H NMR (500 MHz, DMSO) δ ppm 8.84 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.80 (dd, J = 9.0, 2.2 Hz, 1 H), 7.72 (d, J = 5.9 Hz, 1 H), 7.32 (d, J = 8.4 Hz, 2 H), 7.24 (d, J = 8.4 Hz, 2 H), 6.96 (d, J = 7.2 Hz, 1 H), 3.89 (m, 1 H), 3.79 (m, 1 H), 2.83 (t, J = 7.6 Hz, 2 H), 2.43 (t, J = 7.6 Hz, 2 H), 1.77 (m, 6 H), 1.64 (m, 2 H).

Example 384

4′-amino-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1′-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)aniline for 5-acetylated thiophene boronic acid. MS ESI(+)Q1MS m/z 489 (M+H)⁺; ¹H NMR (300 MHz, DMSO) δ
Example 385

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cycloheptanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting cycloheptanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 400 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 6.9 Hz, 1 H), 8.74 (d, 1 H), 8.57 (d, 1 H), 8.32 (d, 1H), 7.97 (d, 1H), 7.94 (m, 1 H), 7.79 (dd, 1H), 7.57-7.63 (m, 4 H), 7.00 (d, 1H), 6.93 (d, 2H), 4.02 (m, 2H), 3.97 (s, 1H), 3.18 (s, 1H), 1.99-2.06 (m, 4H), 1.75-1.85 (m, 4H).

Example 386

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-oxo-4-thien-2-ylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(2-thienyl)-propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 442 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.88 (d, J = 6.9 Hz, 1 H), 8.74 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.97 (m, 2 H), 7.93 (d, J = 1.9 Hz, 1 H), 7.80 (dd, J = 9.2, 2.0 Hz, 2 H), 7.24 (dd, J = 4.8, 3.9 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.90 (m, 1 H), 3.79 (m, 1 H), 3.19 (t, J = 6.9 Hz, 2 H), 2.54 (m, 2 H), 1.83 (m, 6 H), 1.65 (m, 2 H).

Example 387

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylcyclohexanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-methyl-1-cyclohexanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 400 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.87 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.94 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.55 (d, J = 6.2 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.90 (m, 1 H), 3.77 (m, 1 H), 2.25 (m, 1 H), 1.75 (m, 11 H), 1.35 (m, 4 H), 1.03 (m, 1 H), 0.88 (d, J = 6.6 Hz, 3 H).

Example 388

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-4-methoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-hydroxy-4-methoxybenzoic acid for indole-6-carboxylic acid. MS
(ESI(+))Q1MS m/z 426 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 1.73-2.02 (m, 8 H) 3.77 (s, 3 H) 3.94-4.08 (m, 2 H) 6.44 (d, J=2.50 Hz, 1 H) 6.49 (dd, J=8.89, 2.34 Hz, 1 H) 6.98 (d, J=6.86 Hz, 1 H) 7.79 (dd, J=9.05, 2.18 Hz, 1 H) 7.92 (m, 2 H) 8.27 (d, J=5.62 Hz, 1 H) 8.55 (d, J=7.18 Hz, 1 H) 8.69 (d, J=9.05 Hz, 1 H) 8.75 (br. s., 1 H).

Example 389

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}cinnoline-4-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting cinnoline-4-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 432 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 1.82-2.11 (m, 8 H) 3.98 (m, 1 H) 4.19 (m, 1 H) 7.01 (d, J=7.49 Hz, 1 H) 7.79 (dd, J=9.05, 2.18 Hz, 1 H) 7.93 (d, J=2.18 Hz, 1 H) 7.96-8.05 (m, 2 H) 8.20 (d, J=8.42 Hz, 1 H) 8.57 (m, 2 H) 8.69 (d, J=9.05 Hz, 1 H) 8.86 (dd, J=13.73, 6.55 Hz, 2 H).

Example 390

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-4-methylcyclohexanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4-methyl-1-cyclohexanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 400 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J=7.2 Hz, 1 H), 8.72 (d, J=9.0 Hz, 1 H), 8.54 (d, J=7.2 Hz, 1 H), 7.94 (d, J=1.9 Hz, 1 H), 7.79 (dd, J=9.2, 2.0 Hz, 1 H), 7.48 (d, J=5.9 Hz, 1 H), 6.97 (d, J=7.2 Hz, 1 H), 3.89 (m, 1 H), 3.78 (m, 1 H), 2.30 (m, 1 H), 1.75 (m, 11 H), 1.42 (m, 6 H), 0.91 (d, J=6.9 Hz, 3 H).

Example 391

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-2-(2-methylphenoxy)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting (2-methylphenoxy)acetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 424 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.82 (d, J=6.9 Hz, 1 H), 8.70 (d, J=9.4 Hz, 1 H), 8.56 (d, J=6.9 Hz, 1 H), 7.93 (d, J=2.2 Hz, 1 H), 7.81 (dd, J=9.0, 2.2 Hz, 1 H), 7.72 (d, J=6.6 Hz, 1 H), 7.16 (m, 2 H), 6.99 (d, J=7.2 Hz, 1 H), 6.87 (m, 2 H), 4.54 (s, 2 H), 3.92 (m, 2 H), 2.24 (s, 3 H), 1.83 (m, 6 H), 1.73 (m, 2 H).

Example 392

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-3-methylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting isovaleric acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e
360 (M+H)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 8.89 (d, J = 6.9 Hz, 1 H), 8.74 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.67 (d, J = 6.2 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.90 (m, 1 H), 3.82 (m, 1 H), 2.01 (m, 3 H), 1.81 (m, 6 H), 1.66 (m, 2 H), 0.89 (d, J = 6.6 Hz, 6 H).

Example 393
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cyclohexanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting cyclohexanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 386 (M+H)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 8.86 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.94 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.53 (d, J = 5.9 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.90 (m, 1 H), 3.77 (m, 1 H), 2.22 (m, 1 H), 1.84 (m, 4 H), 1.70 (m, 9 H), 1.36 (m, 2 H), 1.21 (m, 3 H).

Example 394
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(2,5-dimethoxyphenyl)propanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(2,5-dimethoxyphenyl)propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 468 (M⁺). ¹H NMR (500 MHz, DMSO) δ ppm 8.84 (d, J = 7.2 Hz, 1 H), 8.71 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 1.9 Hz, 1 H), 7.69 (d, J = 6.2 Hz, 1 H), 6.96 (d, J = 7.5 Hz, 1 H), 6.86 (d, J = 8.4 Hz, 1 H), 6.73 (m, 2 H), 3.90 (m, 1 H), 3.81 (m, 1 H), 3.73 (s, 3 H), 3.66 (s, 3 H), 2.76 (t, J = 7.8 Hz, 2 H), 2.38 (t, J = 7.8 Hz, 2 H), 1.81 (m, 6 H), 1.81 (m, 2 H).

Example 395
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylpentanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-methylpentan-1-ium acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 374 (M+H)⁺. ¹H NMR (500 MHz, DMSO) δ ppm 8.89 (d, J = 7.2 Hz, 1 H), 8.74 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.69 (d, J = 6.2 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 3.90 (m, 1 H), 3.83 (m, 1 H), 2.12 (m, 1 H), 1.95 (m, 1 H), 1.83 (m, 7 H), 1.66 (m, 2 H), 1.32 (m, 1 H), 1.16 (m, 1 H), 0.86 (m, 6 H).
Example 396

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-6-methoxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-hydroxy-6-methoxycarboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 426 (M+H)+); 1H NMR (500 MHz, DMSO-D6) δ ppm 1.72-2.00 (m, 8 H) 3.88 (m, 1 H) 4.00 (s, 3 H) 4.20 (m, 1 H) 6.54 (d, J=8.73 Hz, 1 H) 6.64 (d, J=8.74 Hz, 1 H) 6.94 (m, 1 H) 7.35 (t, J=8.42 Hz, 1 H) 7.75 (m, 1 H) 7.89 (s, 1 H) 8.53 (d, J=7.49 Hz, 1 H) 8.61-8.67 (m, 2 H).

Example 397

3’-acetyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1’-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 3-acetylphenylboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 516 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.85 (d, 1 H), 8.73 (d, 1 H), 8.57 (d, 1 H), 8.37 (d, 1H), 8.27 (s, 1H), 8.01-8.06 (m, 3 H), 7.97 (d, 1H), 7.78-7.83 (m, 2 H), 7.74 (d, 1H), 7.68 (t, 1H), 7.01 (d, 1H), 4.01-4.05 (m, 2H), 2.68 (s, 3H), 1.98-2.07 (m, 4H), 1.76-1.85 (m, 4H).

Example 398

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4,4,4-trifluorobutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4,4,4-trifluorobutyric acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 400 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.90 (d, J= 7.2 Hz, 1 H), 8.73 (d, J= 9.0 Hz, 1 H), 8.54 (d, J= 7.2 Hz, 1 H), 7.95 (d, J= 1.9 Hz, 2 H), 7.79 (dd, J= 9.2, 2.0 Hz, 1 H), 6.98 (d, J= 7.5 Hz, 1 H), 3.90 (m, 1 H), 3.82 (m, 1 H), 2.44 (m, 4 H), 1.84 (m, 6 H), 1.67 (m, 2 H).

Example 399

5-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-methylbenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 5-bromo2-hydroxy-3-methylcarboxylic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 488 and 490 (M+H)+); 1H NMR (500 MHz, DMSO-D6) δ ppm 1.74-2.04 (m, 8 H) 2.16 (s, 3 H) 3.97-4.04 (m, 2 H) 6.97 (d, J=7.17 Hz, 1 H) 7.51 (d, J=1.56 Hz, 1 H) 7.79 (dd, J=9.20, 2.03 Hz, 1 H) 7.92 (d, J=1.87 Hz, 1 H) 8.10 (d, J=2.18 Hz, 1 H) 8.55-8.59 (m, 2 H) 8.70 (d, J=9.05 Hz, 2 H).
Example 400
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(phenylsulfonyl)propanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(phenylsulfonyl)propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 472 (M)+. 1H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 7.2 Hz, 1 H), 8.71 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.91 (m, 4 H), 7.78 (m, 2 H), 7.67 (m, 2 H), 6.96 (d, J = 7.2 Hz, 1 H), 3.87 (m, 1 H), 3.71 (m, 1 H), 3.51 (t, J = 7.6 Hz, 4 H), 1.76 (m, 6 H), 1.62 (m, 2 H).

Example 401
N-(7-chloroquinolin-4-yl)-N'-(4-methoxy-3,5-dimethylphenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the methods described in Example 140, substituting 1-bromo-4-methoxy-3,5-dimethylbenzene for 1-bromo-3,5-difluorobenzene. MS (ESI(+))QIMS m/z 410 (M+H)+; 1H NMR (300 MHz, DMSO-D6) δ ppm 1.72-2.00 (m, 8 H) 2.15 (s, 6 H) 2.18 (s, 3 H) 6.32-6.52 (m, 2 H) 6.99 (d, J=7.46 Hz, 1 H) 7.79-7.95 (m, 3 H) 8.56 (d, J=6.78 Hz, 1 H) 8.72 (d, J=9.16 Hz, 1 H) 8.85 (d, J=9.83 Hz, 1 H).

Example 402
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-phenoxypropanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-phenoxypropionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 424 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.89 (d, J = 6.9 Hz, 1 H), 8.73 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.94 (d, J = 2.2 Hz, 1 H), 7.89 (d, J = 5.9 Hz, 1 H), 7.80 (dd, J = 9.0, 2.2 Hz, 1 H), 7.27 (t, J = 8.1 Hz, 2 H), 6.98 (d, J = 7.5 Hz, 1 H), 6.92 (m, 3 H), 4.19 (t, J = 6.2 Hz, 2 H), 3.91 (m, 1 H), 3.84 (m, 1 H), 2.61 (t, J = 6.2 Hz, 2 H), 1.84 (m, 6 H), 1.68 (m, 2 H).

Example 403
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-thien-2-ylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4-(2-thienyl)butyric acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 428 (M)+. 1H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 7.2 Hz, 1 H), 8.72 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.72 (d, J = 5.9 Hz, 1 H), 7.31 (dd, J = 5.0, 0.9 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 6.94 (dd, J = 5.0, 3.4 Hz, 1 H), 6.85 (d, J = 3.4 Hz, 1 H), 3.91 (m, 1 H), 3.80 (m, 1 H), 2.80 (t, J = 7.6 Hz, 2 H), 2.20 (t, J = 7.5 Hz, 2 H), 1.82 (m, 8 H), 1.65 (m, 2 H).
Example 404
3-(1,3-benzodioxol-5-yl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide

The titled compound was prepared according to the method described in Example 350 by substituting 3, 4 methylenedioxybenzeneboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+) Q1 MS m/z 516 (M+H)+. 1H NMR (300 MHz, DMSO) δ ppm 8.83 (d, 1 H), 8.72 (d, 1 H), 8.57 (d, 1 H), 8.31 (d, 1 H), 7.95 (m, 2H), 7.80 (dd, 1 H), 7.60-7.66 (m, 2H), 7.41 (d, 1 H), 7.29 (dd, 1H), 7.05 (d, 1H), 7.00 (d, 1H), 6.09 (s, 2H), 4.01-4.03 (m, 2H), 1.96-2.06 (m, 4H), 1.75-1.85 (m, 4H).

Example 405
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3,4-dimethylphenoxy)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3,4-dimethylphenoxyacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 438 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.81 (d, J = 7.2 Hz, 1 H), 8.70 (d, J = 9.4 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 7.2 Hz, 1H), 7.81 (dd, J = 9.0, 2.2 Hz, 1 H), 7.74 (d, J = 6.6 Hz, 1 H), 7.04 (d, J = 8.1 Hz, 1 H), 6.98 (d, J = 7.5 Hz, 1 H), 6.78 (m, 1 H), 6.68 (dd, J = 8.3, 2.7 Hz, 1 H), 4.46 (s, 2 H), 3.95 (m, 1 H), 3.91 (m, 1 H), 2.18 (s, 3 H), 2.13 (s, 3 H), 1.86 (m, 6 H), 1.70 (m, 2 H).

Example 406
2-(4-chloro-2-methylphenoxy)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4-chloro-O-tolylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 458 (M)+. 1H NMR (500 MHz, DMSO) δ ppm 8.82 (d, J = 6.9 Hz, 1 H), 8.71 (d, J = 9.4 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 1.9 Hz, 1 H), 7.81 (dd, J = 9.0, 2.2 Hz, 1 H), 7.78 (d, J = 6.6 Hz, 1 H), 7.24 (d, J = 2.2 Hz, 1 H), 7.19 (dd, J = 8.7, 2.5 Hz, 1 H), 6.98 (d, J = 7.2 Hz, 1 H), 6.87 (d, J = 8.7 Hz, 1 H), 4.56 (s, 2 H), 3.91 (m, 2 H), 2.22 (s, 3 H), 1.84 (m, 6 H), 1.71 (m, 2 H).

Example 407
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2'-hydroxy-1,1'-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 2- (4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenol for 5-acetyl-2-
thiophene boronic acid. MS ESI(+)Q1MS m/z 490 (M+H)^+; \(^1\)H NMR (300 MHz, DMSO) \(\delta\) ppm 9.80 (s, 1H), 8.85 (d, 1H), 8.72 (d, 1H), 8.56 (d, 1H), 8.28 (d, 1H), 7.98 (d, 1H), 7.69 (s, 1H), 7.78 (dd, 1H), 7.63 (d, 1H), 7.55 (d, 1H), 7.38 (dd, 1H), 7.23 (t, 1H), 7.01-6.99 (m, 2H), 6.92 (t, 1H), 3.97-4.04 (m, 2H), 1.96-2.05 (m, 4H), 1.74-1.83 (m, 4H).

Example 408

4'-acetyl-\(N\)-{(7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1'-biphenyl-3-carboxamide

The titled compound was prepared according to the method described in Example 350 by substituting 4-acetylphenylboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 516 (M+H)^+; \(^1\)H NMR (300 MHz, DMSO) \(\delta\) ppm 8.83 (d, 1H), 8.72 (d, 1H), 8.57 (d, 1H), 8.37 (d, 1H), 8.07-8.09 (m, 3H), 7.94-7.96 (m, 3H), 7.79-7.83 (m, 2H), 7.75 (d, 1H) 7.01 (d, 1H), 4.01-4.05 (m, 2H), 2.64 (s, 3H), 1.97-2.06 (m, 4H), 1.76-1.85 (m, 4H).

Example 409

\(N\)-{(7-chloroquinolin-4-yl)amino)cyclohexyl}-6-methylnicotinamide

The titled compound was prepared according to the methods described in Example 23, substituting 6-methylnicotinic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 395 (M+H)^+; \(^1\)H NMR (500 MHz, DMSO-D6) \(\delta\) ppm 1.73-2.02 (m, 8 H) 2.69 (s, 3 H) 3.65-4.08 (br. s., 2 H) 7.00 (d, \(J=7.17\) Hz, 1 H) 7.43 (d, \(J=8.11\) Hz, 1 H) 7.81 (dd, \(J=9.05, 2.18\) Hz, 1 H) 7.94 (d, \(J=1.87\) Hz, 1 H) 8.19 (dd, \(J=8.11, 2.18\) Hz, 1 H) 8.29 (d, \(J=5.62\) Hz, 1 H) 8.56 (d, \(J=7.17\) Hz, 1 H) 8.71 (d, \(J=9.36\) Hz, 1 H) 8.82 (d, \(J=6.86\) Hz, 1 H) 8.95 (d, \(J=1.87\) Hz, 1 H).

Example 410

\(N\)-{(7-chloroquinolin-4-yl)amino)cyclohexyl}-4-phenylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4-phenylbutyric acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 422 (M+H)^+ . \(^1\)H NMR (500 MHz, DMSO) \(\delta\) ppm 8.85 (d, \(J=7.2\) Hz, 1 H), 8.71 (d, \(J=9.4\) Hz, 1 H), 8.54 (d, \(J=7.2\) Hz, 1 H), 7.93 (d, \(J=2.2\) Hz, 1 H), 7.79 (dd, \(J=9.0, 2.2\) Hz, 1 H), 7.69 (d, \(J=6.2\) Hz, 1 H), 7.28 (t, \(J=7.5\) Hz, 2 H), 7.18 (m, 3 H), 6.97 (d, \(J=7.2\) Hz, 1 H), 3.90 (m, 1 H), 3.81 (m, 1 H), 2.58 (t, \(J=7.5\) Hz, 2 H), 2.15 (t, \(J=7.5\) Hz, 2 H), 1.81 (m, 8 H), 1.65 (m, 2 H).
Example 411
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(4-methoxyphenyl)propanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(4-methoxyphenyl)propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 438 (M+H)^+. ^1H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 6.9 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 1.9 Hz, 1 H), 7.69 (d, J = 5.9 Hz, 1 H), 7.12 (d, J = 8.7 Hz, 2 H), 6.96 (d, J = 7.2 Hz, 1 H), 6.83 (d, J = 8.7 Hz, 2 H), 3.88 (m, 1 H), 3.80 (m, 1 H), 3.69 (s, 3 H), 2.76 (t, J = 7.6 Hz, 2 H), 2.39 (t, J = 7.8 Hz, 2 H), 1.79 (m, 6 H), 1.64 (m, 2 H).

Example 412
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-5-pyridin-4-ylbenzamide

The titled compound was prepared according to the method described in Example 350 by substituting 4-pyridylboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 475 (M+H)^+. ^1H NMR (300 MHz, DMSO) δ ppm 8.86 (m, 3H), 8.74 (d, 1 H), 8.57 (d, 1 H), 8.42 (d, 1H), 8.18 (s, 1H), 8.05 (d, 2H), 7.95-7.97 (m, 2H), 7.85 (d, 1H), 7.80 (dd, 1H), 7.00 (d, 1H), 4.01-4.06 (m, 2H), 1.96-2.06 (m, 4H), 1.76-1.85 (m, 4H).

Example 413
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}heptanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting heptanionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 452 (M)^+. ^1H NMR (500 MHz, DMSO) δ ppm 8.88 (d, J = 6.9 Hz, 1 H), 8.75 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.79 (dd, J = 9.0, 1.9 Hz, 1 H), 7.59 (d, J = 6.6 Hz, 1 H), 6.96 (d, J = 7.5 Hz, 1 H), 3.89 (m, 1 H), 3.83 (m, 1 H), 1.90 (m, 6 H), 1.78 (m, 4 H), 1.65 (m, 5 H), 1.59 (m, 10 H).

Example 414
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(4-methoxyphenyl)-4-oxobutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(4-methoxybenzoyl)propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 466 (M+H)^+. ^1H NMR (500 MHz, DMSO) δ ppm 8.89 (d, J = 6.9 Hz, 1 H), 8.74 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (m, 3 H), 7.79 (m, 2 H), 7.04 (d, J = 9.0 Hz, 2 H), 6.97 (d, J = 7.5 Hz, 1 H), 3.90 (m, 1 H), 3.84 (s, 3 H), 3.79 (m, 1 H), 3.19 (t, J = 6.7 Hz, 2 H), 2.54 (m, 2 H), 1.85 (m, 6 H), 1.66 (m, 2 H).
Example 415

2-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} nicotinamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-chloronicotinic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 415 (M+H)+); 1H NMR (500 MHz, DMSO-D6) δ ppm 1.75-1.99 (m, 8 H) 3.93 (m, 1 H) 4.03 (m, 1 H) 6.99 (d, J=7.49 Hz, 1 H) 7.50 (dd, J=7.49, 4.99 Hz, 1 H) 7.79 (dd, J=9.05, 2.18 Hz, 1 H) 7.88 (dd, J=7.33, 1.72 Hz, 1 H) 7.92 (d, J=2.18 Hz, 1 H) 8.47 (dd, J=4.84, 2.03 Hz, 1 H) 8.54 (t, J=7.18 Hz, 2 H) 8.73 (d, J=9.05 Hz, 1 H) 8.84 (d, J=7.17 Hz, 1 H).

Example 416

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(3-methoxyphenyl)propanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-(3-methoxyphenyl)propionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 438 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J = 7.2 Hz, 1 H), 8.71 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.72 (d, J = 5.9 Hz, 1 H), 7.18 (t, J = 8.1 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 6.78 (m, 2 H), 6.73 (m, 1 H), 3.89 (m, 1 H), 3.81 (m, 1 H), 3.72 (s, 3 H), 2.80 (t, J = 7.8 Hz, 2 H), 2.43 (t, J = 7.8 Hz, 2 H), 1.80 (m, 6 H), 1.65 (m, 2 H).

Example 417

2-(benzyloxy)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting benzylxoyacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 424 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.79 (d, J = 7.2 Hz, 1 H), 8.68 (d, J = 9.4 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.93 (d, J = 2.2 Hz, 1 H), 7.80 (dd, J = 9.0, 2.2 Hz, 1 H), 7.41 (d, J = 6.9 Hz, 1 H), 7.38 (d, J = 4.4 Hz, 3 H), 7.32 (m, 1 H), 6.98 (d, J = 7.2 Hz, 1 H), 4.58 (s, 2 H), 3.94 (m, 4 H), 1.82 (m, 6 H), 1.69 (m, 2 H).

Example 418

N-(7-chloroquinolin-4-yl)-N′-(5-methyl-1,1′-biphenyl-3-yl)cyclohexane-1,4-diamine

To a solution of phenyl boronic acid (6.10 mg, 0.050 mmol), Pd(PPh3)2Cl2 (~1 mol %), and cesium carbonate (19.5 mg, 0.060 mmol) in dimethoxyethane/water/ethanol (7/3/2) was added N-(3-bromo-5-methylphenyl)-N′-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine (20 mg, 0.050 mmol). The solution was heated in the microwave at 160 °C for 3 minutes, concentrated, and purified by high throughput HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+))Q1MS m/z 442 (M+H)+; 1H NMR (300 MHz, DMSO) δ
ppm MS (ESI(+))Q1MS m/z 443 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.92 (d, 1 H), 8.76 (d, 2 H), 8.73 (d, 1 H), 8.56 (d, 1H), 7.92-7.96 (m, 4H), 7.81 (dd, 1 H), 7.02 (d, 1H), 6.89 (m, 2 H), 6.67 (s, 1H), 3.89 (m, 2H), 2.30 (s, 3H), 1.78-1.96 (m, 8H).

Example 419

6-(2-{4-{(7-chloroquinolin-4-yl)amino)cyclohexyl}amino)-1,3-thiazol-4-yl)-3,4-dihydroquinolin-2(1H)-one

To a solution of phenyl boronic acid (6.10 mg, 0.050 mmol), Pd(PPh₃)₂Cl₂ (~1 mol %), and cesium carbonate (19.5 mg, 0.060 mmol) in dimethoxyethane/water/ethanol (7/3/2) was added N-(3-bromo-5-methylphenyl)-N'(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine (20 mg, 0.050 mmol). The solution was heated in the microwave at 160 °C for 3 minutes, concentrated, and purified by high throughput HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+))Q1MS m/z 442 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.91 (m, 1 H), 8.69 (m, 1 H), 8.54 (m, 1 H), 7.95 (m, 2H), 7.71-7.83 (m, 5H), 7.57 (d, 1 H), 7.43 (t, 1H), 6.93-7.02 (m, 2 H), 6.67 (m, 1H), 3.95 (s, 1H), 3.57 (d, 1H), 3.62 (d, 3H), 1.67-2.00 (m, 8H).

Example 419A

N-{4-{(7-chloroquinolin-4-yl)amino)cyclohexyl}thiourea

Ammonium thiocyanate (320 mg, 4.2 mmol) was dissolved in 85 mL dry acetone. A solution of benzoyl chloride (590 mg, 4.2 mmol) in 10 mL dry acetone was added dropwise and heated at reflux for 30 minutes. A solution of 23A cis-N,N'-bis(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine (1 g, 3.6 mmol) in 10 mL dry acetone was added dropwise to the refluxing solution. After the addition, the solution was poured into 100 mL of water. The resulting solid was filtered and heated in 30 mL of 10% sodium hydroxide until dissolved. The solution was then allowed to cool and was placed in the freezer overnight. The white solid was filtered and dried under vacumn to give 565 mg, 47 % yield. MS ESI(+)Q1MS m/z 334 (M+H)^+; ^1H NMR (300 MHz, DMSO) δ ppm 8.38-8.42 (m, 2H), 8.78 (d, 1 H), 7.44 (dd, 1 H), 6.66-6.69 (m, 2 H), 6.53 (d, 1H), 4.17 (m, 1H), 3.61 (m, 1H), 1.96-2.06 (m, 4H), 1.65-1.84 (m, 8H).

Example 419B

6-(2-{4-{(7-chloroquinolin-4-yl)amino)cyclohexyl}amino)-1,3-thiazol-4-yl)-3,4-dihydroquinolin-2(1H)-one

Example 419A (20 mg, 0.06 mmol) was dissolved in .5 mL ethanol, followed by the addition of 6-(bromoacetyl)-2-oxo-1,2,3,4-tetrahydroquinoline (16.09 mg, 0.06 mmol). After two hours, the solution was concentrated and purified by high throughput HPLC to provide the desired compound as its trifluoroacetic acid salt. MS (ESI(+))Q1MS m/z 504 (M+H)^+; ^1H
NMR (300 MHz, MeOH) δ ppm 10.11 (s, 1 H), 8.94 (d, 1 H), 8.73 (d, 1 H), 8.55 (d, 1H), 7.96 (d, 1H), 7.83 (m, 1 H), 7.79 (dd, 1H), 7.62 (s, 1 H), 7.60 (m, 1H), 7.01 (d, 1H), 6.91 (s, 1H), 6.86 (d, 1H), 3.97 (m, 1H), 3.88 (m, 1H), 2.91 (t, 2H), 2.47 (t, 2H), 2.14 (m, 2H), 1.77-1.97 (m, 6H).

Example 420

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-5-iodobenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-hydroxy-iodobenzoic acid for indole-6-carboxylic acid. MS (ESI(+)Q1MS m/z 522 (M+H)+; ¹H NMR (500 MHz, DMSO-D6) δ ppm 1.76-2.02 (m, 8 H) 4.00 (m, 1 H) 4.08 (m, 1 H) 6.79 (d, J=8.7 Hz, 1 H) 7.01 (d, J=7.17 Hz, 1 H) 7.69 (dd, J=8.58, 2.34 Hz, 1 H) 7.80 (dd, J=9.05, 1.87 Hz, 1 H) 7.95 (d, J=2.18 Hz, 1 H) 8.28 (d, J=2.18 Hz, 1 H) 8.57 (m, 2 H) 8.72 (d, J=9.05 Hz, 1 H) 8.86 (d, J=7.18 Hz, 1 H).

Example 421

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}butanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting butyric acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 346 (M+H)+. ¹H NMR (500 MHz, DMSO) δ ppm 8.88 (d, J = 7.2 Hz, 1 H), 8.73 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.66 (d, J = 5.9 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 3.90 (m, 1 H), 3.80 (m, 1 H), 2.11 (t, J = 7.3 Hz, 2 H), 1.82 (m, 6 H), 1.65 (m, 2 H), 1.53 (m, 2 H), 0.87 (t, J = 7.5 Hz, 3 H).

Example 422

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-phenoxyphenyl)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-phenoxyphenylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 486 (M)+. ¹H NMR (500 MHz, DMSO) δ ppm 8.86 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.99 (d, J = 5.9 Hz, 1 H), 7.94 (d, J = 1.9 Hz, 1 H), 7.80 (dd, J = 9.2, 2.0 Hz, 1 H), 7.36 (t, J = 8.0 Hz, 2 H), 7.31 (t, J = 7.8 Hz, 1 H), 7.09 (t, J = 7.3 Hz, 1 H), 7.04 (d, J = 7.8 Hz, 1 H), 6.98 (m, 3 H), 6.94 (m, 1 H), 6.86 (dd, J = 7.8, 1.9 Hz, 1 H), 3.90 (m, 1 H), 3.79 (m, 1 H), 3.47 (s, 2 H), 1.79 (m, 6 H), 1.66 (m, 2 H).

Example 423

N-(3-bromo-5-methylphenyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine

A dry 250 mL 3-necked flask was charged with Pd₂dba₃ (266 mg, 2 mol %),
BINAP, 384 mg, 4 mol%), and sodium t-butoxide (2.2g, 0.023 mol) in 50 mL dry toluene. After 5 minutes, 23A cis,N,N'-bis(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine (4.00 g, 0.0145 mol) was added in one portion followed by dibromotoluene (3.6g, 0.0145 mol). The solution was heated at 70 °C under nitrogen overnight. The contents were filtered, concentrated and the residue was purified by flash chromatography (5% methanol in dichloromethane) to provide 1.03 g, a 16% yield. MS (ESI(+))Q1MS m/z 445 (M+2H)^+; ^1H NMR (300 MHz, MeOH) δ ppm 8.51 (d, 1 H), 8.37 (d, 1 H), 7.86 (d, 1 H), 7.69 (dd, 1H), 6.96 (d, 1H), 6.66 (s, 1 H), 6.61 (s, 1H), 6.49 (s, 1H), 3.98 (m, 1H), 3.63 (m, 1 H), 2.22 (s, 3H), 1.85-2.01 (m, 8 H).

Example 424

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyclopropylacetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting cyclopropylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 358 (M+H)^+. ^1H NMR (500 MHz, DMSO) δ ppm 8.80 (d, J = 7.2 Hz, 1 H), 8.72 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.92 (d, J = 2.2 Hz, 1 H), 7.79 (dd, J = 9.2, 2.0 Hz, 1 H), 7.57 (d, J = 5.9 Hz, 1 H), 6.96 (d, J = 7.5 Hz, 1 H), 3.89 (m, 1 H), 3.80 (m, 1 H), 2.04 (d, J = 7.2 Hz, 2 H), 1.82 (m, 6 H), 1.66 (m, 2 H), 0.98 (m, 1 H), 0.43 (m, 2 H), 0.14 (m, 2 H).

Example 425

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,2-dimethylpropanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting pivalic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 360 (M+H)^+. ^1H NMR (500 MHz, DMSO) δ ppm 8.80 (d, J = 7.2 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.96 (d, J = 2.2 Hz, 1 H), 7.79 (d, J = 10.9 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 6.89 (d, J = 6.2 Hz, 1 H), 3.94 (m, 1 H), 3.79 (m, 1 H), 1.86 (m, 4 H), 1.77 (m, 2 H), 1.63 (m, 2 H), 1.14 (s, 9 H).

Example 426

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-fluoro-6-hydroxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-fluoro-6-hydroxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 414 (M+H)^+. ^1H NMR (500 MHz, DMSO-D6) δ ppm 1.73-1.98 (m, 8 H) 3.95 (m, 1 H) 4.06 (m, 1 H) 6.71 (m, 2 H) 6.98 (d, J=7.49 Hz, 1 H) 7.28 (m, 1 H) 7.78 (dd,
J=9.05, 2.18 Hz, 1 H) 7.92 (d, J=2.18 Hz, 1 H) 8.08 (m, 1 H) 8.55 (d, J=6.86 Hz, 1 H) 8.71 (d, J=9.05 Hz, 1 H) 8.82 (d, J=6.55 Hz, 1 H).

Example 427

N-(7-chloroquinolin-4-yl)-N’-(3-methyl-5-pyridin-4-ylphenyl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 418 by substituting 4-pyridylboronic acid for phenylboronic acid. MS (ESI(+))Q1MS m/z 443 (M+H)$^+$; 1H NMR (300 MHz, DMSO) δ ppm 8.92 (d, 1 H), 8.76 (d, 2 H), 8.73 (d, 1 H), 8.56 (d, 1H), 7.92-7.96 (m, 4H), 7.81 (dd, 1 H), 7.02 (d, 1H), 6.89 (m, 2 H), 6.67 (s, 1H), 3.89 (m, 2H), 2.30 (s, 3H), 1.78-1.96 (m, 8H).

Example 428

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-4-oxo-4-phenylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 3-benzoylethionic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 436 (M+H)$^+$; 1H NMR (500 MHz, DMSO) δ ppm 8.89 (d, J= 6.9 Hz, 1 H), 8.74 (d, J= 9.0 Hz, 1 H), 8.54 (d, J= 7.2 Hz, 1 H), 7.98 (d, J= 7.2 Hz, 2 H), 7.94 (d, J= 2.2 Hz, 1 H), 7.80 (m, 2 H), 7.64 (t, J= 7.3 Hz, 1 H), 7.53 (t, J= 7.8 Hz, 2 H), 6.98 (d, J= 7.2 Hz, 1 H), 3.90 (m, 1 H), 3.80 (m, 1 H), 3.25 (t, J= 6.7 Hz, 2 H), 2.55 (m, 2 H), 1.85 (m, 6 H), 1.66 (m, 2 H).

Example 429

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-3-fluoro-5-thien-3-ylbenzamide

The titled compound was prepared according to the method described in Example 350 by substituting 3-thiopheneboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+))Q1MS m/z 480 (M+H)$^+$; 1H NMR (300 MHz, DMSO) δ ppm 8.85 (d, 1 H), 8.74 (d, 1 H), 8.57 (d, 1 H), 8.31 (d, 1H), 8.08 (m, 1H), 8.06 (s, 1H), 7.98 (d, 1H), 7.76-7.80 (m, 2H), 7.68-7.17 (m, 2H), 7.62 (d, 1H), 7.01 (d, 1H), 4.01-4.05 (m, 2H), 1.98-2.07 (m, 4H), 1.75-1.85 (m, 4H).

Example 430

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-3-fluoro-5-((E)-2-phenylvinyl)benzamide

The titled compound was prepared according to the method described in Example 350 by substituting trans-2-phenylvinylboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+))Q1MS m/z 500 (M+H)$^+$; 1H NMR (300 MHz, DMSO) δ ppm 8.85 (d, 1 H), 8.73 (d, 1 H), 8.57 (d, 1 H), 8.26 (d, 1H), 7.96 (d, 1H), 7.94 (s, 1H), 7.80 (dd, 1H), 7.59-7.68 (m, 4H),
7.44-7.40 (m, 3H), 7.31-7.34 (m, 2H), 7.01 (d, 1H), 4.01-4.04 (m, 2H), 1.97-2.05 (m, 4H), 1.75-1.84 (m, 4H).

Example 431

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-ethoxyacetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting ethoxyacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 362 (M+H)^+ . ^1^H NMR (500 MHz, DMSO) δ ppm: 8.81 (d, J = 7.2 Hz, 1 H), 8.69 (d, J = 9.4 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 2.2 Hz, 1 H), 7.80 (dd, J = 9.0, 2.2 Hz, 1 H), 7.32 (d, J = 6.9 Hz, 1 H), 6.99 (d, J = 7.5 Hz, 1 H), 3.96 (m, 1 H), 3.90 (m, 1 H), 3.87 (s, 2 H), 3.54 (q, J = 7.0 Hz, 2 H), 1.81 (m, 6 H), 1.70 (m, 2 H), 1.17 (t, J = 6.9 Hz, 3 H).

Example 432

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-ethylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 2-ethylbutyric acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 374 (M+H)^+ . ^1^H NMR (500 MHz, DMSO) δ ppm: 8.89 (d, J = 7.2 Hz, 1 H), 8.75 (d, J = 9.0 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.79 (dd, J = 9.0, 1.9 Hz, 1 H), 7.68 (d, J = 6.6 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.88 (m, 2 H), 2.10 (m, 1 H), 1.82 (m, 6 H), 1.67 (m, 2 H), 1.45 (m, 2 H), 1.35 (m, 2 H), 0.82 (t, J = 7.3 Hz, 6 H).

Example 433

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-phenylcyclopropanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 1-phenyl-1-cyclopropanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 420 (M+H)^+ . ^1^H NMR (500 MHz, DMSO) δ ppm: 8.68 (m, 2 H), 8.53 (d, J = 7.2 Hz, 1 H), 7.92 (d, J = 1.9 Hz, 1 H), 7.80 (dd, J = 9.0, 2.2 Hz, 1 H), 7.40 (m, 4 H), 7.33 (m, 1 H), 6.93 (d, J = 7.2 Hz, 1 H), 6.15 (d, J = 6.9 Hz, 1 H), 3.88 (m, 1 H), 3.82 (m, 1 H), 1.73 (m, 4 H), 1.63 (m, 2 H), 1.53 (m, 2 H), 1.37 (dd, J = 6.7, 3.9 Hz, 2 H), 1.02 (dd, J = 6.7, 3.9 Hz, 2 H).

Example 434

3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-chloro-2-hydroxybenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 430 (M+H)^+ ; ^1^H NMR (500 MHz, DMSO-D6) δ ppm: 1.74-2.07 (m, 8 H)
Example 435

N-(7-chloroquinolin-4-yl)-N'-(4',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 418 by substituting 4-methylboronic acid for phenylboronic acid. MS (ESI(+))Q1MS m/z 456 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.92 (d, 1 H), 8.73 (d, 1 H), 8.57 (d, 1 H), 7.93 (d, 1H), 7.81 (dd, 1 H), 7.69-7.74 (m, 1H), 7.45 (d, 2H), 7.24 (m, 2H), 7.01 (m, 1H), 6.70 (s, 1H), 6.63 (s, 1H), 6.46 (s, 1H), 3.64 (m, 1H), 3.47 (m, 1H), 2.33 (s, 3H), 2.26 (s, 3H), 1.72-1.99 (m, 8H).

Example 436

N-(7-chloroquinolin-4-yl)-N'-(3',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 418 by substituting 3-methylboronic acid for phenylboronic acid. MS (ESI(+))Q1MS m/z 456 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.92 (d, 1 H), 8.73 (d, 1 H), 8.56 (d, 1 H), 7.92 (d, 1H), 7.80 (dd, 1 H), 7.56-7.62 (m, 1H), 7.13-7.38 (m, 3H), 7.14 (d, 1H), 7.02 (d, 1H), 6.72 (s, 1H), 6.64 (s, 1H), 6.48 (s, 1H), 3.96-4.00 (m, 1H), 3.64 (m, 1H), 2.36 (s, 3H), 2.26 (s, 3H), 1.77-1.98 (m, 8H).

Example 437

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-3-fluoro-5-thien-2-ylbenzamide

The titled compound was prepared according to the method described in Example 350 by substituting 2-thiopheneboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+))Q1MS m/z 480 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 8.82 (d, 1 H), 8.73 (d, 1 H), 8.57 (d, 1 H), 8.34 (d, 1H), 7.95 (m, 2H), 7.80 (dd, 1H), 7.54-7.73 (m, 4H), 7.20 (dd, 1H), 7.00 (d, 1H), 4.00-4.03 (m, 2H), 1.97-2.05 (m, 4H), 1.75-1.85 (m, 4H).

Example 438

N-(7-chloroquinolin-4-yl)-N'-(4-(3,4-dihydro-2H-1,5-benzodioxepin-7-yl)-1,3-thiazol-2-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 419 by substituting 3,4-(trimethylenedioxy)phenacyl bromide for 6-(bromoacetyl)-2-oxo-1,2,3,4-
tetrahydroquinoline. MS (ESI(+))Q1MS m/z 507 (M+H)⁺, ¹H NMR (300 MHz, MeOH) δ ppm 8.93 (d, 1 H), 8.72 (d, 1 H), 8.55 (d, 1 H), 7.94 (d, 1 H), 7.80 (dd, 1 H), 7.68 (br s, 1 H), 7.43 (d, 1 H), 7.40 (dd, 1 H), 7.01 (d, 1 H), 6.95 (t, 2H), 4.13 (m, 4H), 3.97 (m, 1H), 3.89 (m, 1H), 2.09-2.15 (m, 4H), 1.88-1.93 (m, 2H), 1.76-1.82 (m, 4H).

Example 439

N-(7-chloroquinolin-4-yl)-N'-(4-methyl-5-phenyl-1,3-thiazol-2-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 419 by substituting 2-bromopropiophenone for 6-(bromoacetyl)-2-oxo-1,2,3,4-tetrahydroquinoline. MS (ESI(+))Q1MS m/z 449 (M+H)⁺, ¹H NMR (300 MHz, MeOH) δ ppm 8.54 (d, 1 H), 8.40 (d, 1 H), 7.88 (d, 1H), 7.71 (dd, 1H), 7.52 (m, 5H), 6.98 (d, 1H), 4.03 (m, 1H), 3.92 (m, 1H), 2.32 (s, 3H), 1.95-2.14 (m, 8H).

Example 440

N-{4-{(7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-(methylsulfonyl)phenyl)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4-methylsulfonylphenylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 472 (M⁺). ¹H NMR (500 MHz, DMSO) δ ppm 8.88 (d, J = 7.2 Hz, 1 H), 8.74 (d, J = 9.4 Hz, 1 H), 8.55 (d, J = 6.9 Hz, 1 H), 8.12 (d, J = 5.9 Hz, 1 H), 7.94 (d, J = 1.9 Hz, 1 H), 7.87 (d, J = 8.1 Hz, 2H), 7.81 (dd, J = 9.2, 2.0 Hz, 1 H), 7.54 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 7.2 Hz, 1 H), 3.91 (m, 1 H), 3.81 (m, 1 H), 3.63 (s, 2 H), 3.19 (s, 3 H), 1.83 (m, 6 H), 1.68 (m, 2 H).

Example 441

N-{4-{(7-chloroquinolin-4-yl)amino)cyclohexyl}-8-hydroxyquinoline-7-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 8-hydroxyquinoline-7-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 447 (M+H)⁺, ¹H NMR (500 MHz, DMSO-D6) δ ppm 1.81-2.07 (m, 8 H) 4.03 (m, 1 H) 4.18 (m, 1 H) 7.46 (m, 2 H) 7.70 (dd, J= 8.42, 4.37 Hz, 1 H) 7.80 (dd, J= 9.05, 2.18 Hz, 1 H) 7.94 (d, J= 1.87 Hz, 1 H) 8.11 (d, J= 8.73 Hz, 1 H) 8.42 (m, 1 H) 8.57 (d, J= 7.17 Hz, 1 H) 8.72 (d, J= 9.05 Hz, 1 H) 8.76 (d, J= 5.93 Hz, 1 H) 8.87 (d, J= 7.18 Hz, 1 H) 8.94 (dd, J= 4.06, 1.56 Hz, 1 H).
Example 442

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(pyrimidin-2-ylthio)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 2-(carboxymethylthio)pyrimidine for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 428 (M+H)^+. ^1^H NMR (500 MHz, DMSO) δ ppm 8.87 (d, J = 6.9 Hz, 1 H), 8.73 (d, J = 9.0 Hz, 1 H), 8.63 (d, J = 5.0 Hz, 2 H), 8.55 (d, J = 7.2 Hz, 1 H), 8.06 (d, J = 6.2 Hz, 1 H), 7.94 (d, J = 1.9 Hz, 1 H), 7.81 (dd, J = 9.2, 2.0 Hz, 1 H), 7.23 (t, J = 4.8 Hz, 1 H), 6.98 (d, J = 7.5 Hz, 1 H), 3.93 (s, 2 H), 3.83 (m, 2 H), 1.82 (m, 6 H), 1.68 (m, 2 H).

Example 443

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-1-naphthamide

The titled compound was prepared according to the methods described in Example 23, substituting 2-hydroxy-1-naphtoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 446 (M+H)^+. ^1^H NMR (500 MHz, DMSO-D6) δ ppm 7.79-2.04 (m, 8 H) 3.95 (m, 1 H) 4.15 (m, 1 H) 6.98 (d, J=7.17 Hz, 1 H) 7.19 (d, J=9.05 Hz, 1 H) 7.30 (t, J=7.49 Hz, 1 H) 7.44 (t, J=7.64 Hz, 1 H) 7.70 (dd, J=9.05, 2.18 Hz, 1 H) 7.80 (t, J=8.27 Hz, 2 H) 7.91 (d, J=1.87 Hz, 1 H) 8.14 (d, J=6.55 Hz, 1 H) 8.55 (d, J=7.18 Hz, 1 H) 8.68 (d, J=9.36 Hz, 1 H) 8.82 (d, J=6.55 Hz, 1 H).

Example 444

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,3-dimethylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting tert-butylacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 374 (M+H)^+. ^1^H NMR (500 MHz, DMSO) δ ppm 8.87 (d, J = 6.9 Hz, 1 H), 8.74 (d, J = 9.4 Hz, 1 H), 8.54 (d, J = 7.2 Hz, 1 H), 7.94 (d, J = 1.9 Hz, 1 H), 7.79 (dd, J = 9.0, 2.2 Hz, 1 H), 7.61 (d, J = 6.2 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 3.90 (m, 1 H), 3.83 (m, 1 H), 2.03 (s, 2 H), 1.82 (m, 6 H), 1.66 (m, 2 H), 0.98 (s, 9 H).

Example 445

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}adamantane-1-carboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 1- adamantane-carboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 438 (M)^+. ^1^H NMR (500 MHz, DMSO) δ ppm 8.79 (d, J = 7.2 Hz, 1 H), 8.71 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.94 (d, J = 2.2 Hz, 1 H), 7.80 (dd, J = 9.2, 2.0 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 6.77 (d, J = 6.2 Hz, 1 H), 3.94 (m, 1 H), 3.79 (m, 1 H), 1.82 (m, 23 H).

168
Example 446

N-(7-chloroquinolin-4-yl)-N’-(5-phenylpyridin-3-yl)cyclohexane-1,4-diamine

A mixture of example 370 (30 mg, 0.07 mmol), Pd(dppf)Cl₂ (3 mg), sodium methoxide (7.5 mg, 0.14 mmol) and phenylboronic acid (9.7 mg, 0.07 mmol) in 1 ml THF was heated for 15 hours at 65°C, concentrated. Residue was purified with high throughput reverse phase HPLC system to provide the desired compound. MS (ESI(+))Q1MS m/z 429 (M+H)+; ¹H NMR (300 MHz, DMSO-D₆) δ ppm 1.75-2.01 (m, 8 H) 3.84 (m, 1 H) 4.04 (m, 1 H) 7.53-7.62 (m, 3 H) 7.74-7.84 (m, 4 H) 7.94 (dd, J=2.03 Hz, 1 H) 8.11 (dd, J=2.37 Hz, 1 H) 8.33 (s, 1 H) 8.58 (dd, J=7.12 Hz, 1 H) 8.73 (d, J=9.15 Hz, 1 H) 8.94 (d, J=6.78 Hz, 1 H).

Example 447

(2R)-N-[(4-(7-chloroquinolin-4-yl)amino)cyclohexyl]-2-hydroxy-4-phenylbutanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting (R)-2-hydroxy-4-phenylbutyric acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 438 (M+H)+. ¹H NMR (500 MHz, DMSO) δ ppm 8.78 (d, J=8.4 Hz, 1 H) 8.63 (d, J=9.0 Hz, 1 H) 8.54 (d, J=7.2 Hz, 1 H) 7.92 (dd, J=2.2 Hz, 1 H) 7.80 (dd, J=9.0, 2.2 Hz, 1 H) 7.41 (d, J=7.8 Hz, 1 H) 7.28 (m, 2 H) 7.18 (m, 2 H) 6.99 (d, J=7.2 Hz, 1 H) 5.74 (m, 1 H) 3.93 (m, 3 H) 3.93 (m, 2 H) 1.94 (m, 1 H) 1.76 (m, 9 H).

Example 448

3’-(4-(7-chloroquinolin-4-yl)amino)cyclohexyl] amino)-5’-methyl-1,1’-biphenyl-4-ol

The titled compound was prepared according to the method described in Example 418 by substituting 4-hydroxyboronic acid for phenylboronic acid. MS (ESI(+))Q1MS m/z 458 (M+H)+; ¹H NMR (500 MHz, DMSO) δ ppm 9.45 (br s, 1H) 8.92 (d, 1 H) 8.73 (d, 1 H) 8.62 (m, 1 H) 7.92 (d, 1 H) 7.81 (dd, 1 H) 7.38 (m, 2H) 7.01 (d, 1H) 6.81 (m, 2H) 6.65 (s, 1H) 6.58 (s, 1H) 6.42 (s, 1H) 3.61-3.96 (m, 2H) 2.24 (s, 3H) 1.72-1.99 (m, 8H).

Example 449

N-4’-(7-chloroquinolin-4-yl)amino)cyclohexyl)-2-methylpentanamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 2-methylvaleric acid for 3-methyl-2-phenyl-pentanoic acid. MS (Cl (+)) m/e 374 (M+H)+. ¹H NMR (500 MHz, DMSO) δ ppm 8.85 (d, J=6.9 Hz, 1 H) 8.73 (d, J=9.0 Hz, 1 H) 8.54 (d, J=7.2 Hz, 1 H) 7.93 (d, J=1.9 Hz, 1 H) 7.80 (dd, J=9.0, 2.2 Hz, 1 H) 7.62 (d, J=5.9 Hz, 1 H) 6.97 (d, J=7.2 Hz, 1 H) 3.90 (m, 1 H) 3.79 (m, 1 H) 2.37 (m, 1 H) 1.81 (m, 6 H) 1.66 (m, 2 H) 1.48 (m, 1 H) 1.23 (m, 3 H) 0.99 (d, J=6.9 Hz, 3 H) 0.86 (t, J=7.0 Hz, 3 H).
Example 451

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-methylcyclohexanecarboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 1-methyl-1-cyclohexanecarboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 400 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.78 (d, J = 6.9 Hz, 1 H), 8.72 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.80 (dd, J = 9.0, 2.2 Hz, 1 H), 6.97 (d, J = 7.2 Hz, 1 H), 6.91 (d, J = 6.2 Hz, 1 H), 3.94 (m, 1 H), 3.83 (m, 1 H), 1.99 (m, 2 H), 1.86 (m, 4 H), 1.78 (m, 2 H), 1.64 (m, 2 H), 1.32 (m, 8 H), 1.08 (s, 3 H).

Example 452

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-isopropylbenzamid

The titled compound was prepared according to the methods described in Example 23, substituting 2-hydroxy-3-isopropylbenzoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 438 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 1.18 (d, J=6.86 Hz, 6 H) 1.73-2.05 (m, 8 H) 4.02 (m, 2 H) 6.86 (t, J=7.64 Hz, 1 H) 6.96 (d, J=7.17 Hz, 1 H) 7.36 (d, J=7.18 Hz, 1 H) 7.78-7.83 (m, 2 H) 7.92 (d, J=2.18 Hz, 1 H) 8.42 (d, J=6.24 Hz, 1 H) 8.64 (m, 1 H) 8.69 (d, J=9.05 Hz, 1 H).

Example 453

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxy-2-naphthamide

The titled compound was prepared according to the methods described in Example 23, substituting 3-hydroxy-2-naphtoic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 446 (M+H)+; 1H NMR (500 MHz, DMSO-D6) δ ppm 1.81-2.07 (m, 8 H) 4.00 (m, 1 H) 4.15 (m, 1 H) 7.01 (d, J=7.49 Hz, 1 H) 7.30 (s, 1 H) 7.36 (t, J=7.64 Hz, 1 H) 7.51 (t, J=7.49 Hz, 1 H) 7.75 (d, J=8.73 Hz, 1 H) 7.80 (dd, J=9.05, 2.18 Hz, 1 H) 7.89 (d, J=8.42 Hz, 1 H) 7.92 (d, J=1.87 Hz, 1 H) 8.57 (d, J=7.17 Hz, 1 H) 8.59 (s, 1 H) 8.70 (d, J=9.05 Hz, 1 H) 8.78 (m, 2 H).

Example 454

N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}tetrahydrofuran-2-carboxamide

The titled compound was prepared according to the procedure described in Example 344 by substituting tetrahydrofuran-2-carboxylic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 374 (M+H)+. 1H NMR (500 MHz, DMSO) δ ppm 8.80 (d, J = 7.5 Hz, 1
H), 8.68 (d, J = 9.0 Hz, 1 H), 8.55 (d, J = 7.2 Hz, 1 H), 7.95 (d, J = 1.9 Hz, 1 H), 7.80 (dd, \(J = 9.2, 2.0 \) Hz, 1 H), 7.32 (d, \(J = 7.2 \) Hz, 1 H), 6.99 (d, \(J = 7.5 \) Hz, 1 H), 4.25 (m, 1 H), 3.94 (m, 3 H), 3.81 (m, 1 H), 2.12 (m, 1 H), 1.82 (m, 9 H), 1.68 (m, 2 H).

Example 455

N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}-2-(4-methylphenoxy)acetamide

The titled compound was prepared according to the procedure described in Example 344 by substituting 4-methylphenoxyacetic acid for 3-methyl-2-phenyl-pentanoic acid. MS (CI (+)) m/e 424 (M+H)+. \(^1\)H NMR (500 MHz, DMSO) \(\delta \) ppm 8.81 (d, \(J = 6.9 \) Hz, 1 H), 8.71 (d, \(J = 9.0 \) Hz, 1 H), 8.55 (d, \(J = 7.2 \) Hz, 1 H), 7.94 (d, \(J = 2.2 \) Hz, 1 H), 7.81 (dd, \(J = 9.0, 2.2 \) Hz, 1 H), 7.76 (d, \(J = 6.6 \) Hz, 1 H), 7.10 (d, \(J = 8.4 \) Hz, 2 H), 6.98 (d, \(J = 7.5 \) Hz, 1 H), 6.86 (d, \(J = 8.7 \) Hz, 2 H), 4.48 (s, 2 H), 3.95 (m, 1 H), 3.90 (m, 1 H), 2.22 (s, 3 H), 1.83 (m, 6 H), 1.69 (m, 2 H).

Example 456

N-(7-chloroquinolin-4-yl)-N'-(4-(4-methoxyphenyl)-1,3-thiazol-2-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 419 by substituting 2-bromo-4’-methoxyacetophenone for 6-(bromoacetyl)-2-oxo-1,2,3,4-tetrahydroquinoline. MS (ESI(+)Q1MS m/z 465 (M+H)+; \(^1\)H NMR (300 MHz, DMSO) \(\delta \) ppm 8.93 (d, 1 H), 8.72 (d, 1 H), 8.55 (d, 1H), 7.94 (m, 1H), 7.80 (dd, 1 H), 7.72 (s, 1H), 7.76 (m, 2H), 7.01 (d, 1H), 6.95 (d, 2H), 6.89 (s, 1H), 3.97 (m, 1H), 3.88 (m, 1H), 3.78 (s, 3H), 1.77-2.16 (m, 8H).

Example 457

3’-{(4-[(7-chloroquinolin-4-yl)amino]cyclohexyl)amino}carbonyl-5’-fluoro-1,1’-biphenyl-3-carboxylic acid

The titled compound was prepared according to the method described in Example 350 by substituting 3-carboxyphenylboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 518 (M+H)+; \(^1\)H NMR (300 MHz, DMSO) \(\delta \) ppm 13.12 (br.s, 1H), 8.84 (d, 1 H), 8.72 (d, 1 H), 8.57 (d, 1 H), 8.39 (d, 1H), 8.27 (m, 1H), 8.00-8.04 (m, 3H), 7.95 (d, 1H), 7.80 (dd, 1 H), 7.72-7.77 (m, 2H), 7.66 (t, 1H), 7.00 (d, 1H), 4.01-4.04 (m, 2H), 1.97-2.06 (m, 4H), 1.76-1.85 (m, 4H).
Example 458

3′-(((4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)carbonyl)-5′-fluoro-1′-biphenyl-4-carboxylic acid

The titled compound was prepared according to the method described in Example 350 by substituting 4-carboxyphenylboronic acid for 5-acetyl-2-thiophene boronic acid. MS ESI(+)Q1MS m/z 518 (M+H)+; 1H NMR (300 MHz, DMSO) δ ppm 13.07 (br.s, 1H), 8.83 (d, 1 H), 8.72 (d, 1 H), 8.57 (d, 1 H), 8.36 (d, 1H), 8.08(d, 2H), 8.06 (s, 1H), 7.91-7.95 (m, 3H), 7.80 (dd, 2 H), 7.74 (d, 1H), 7.00 (d, 1H), 4.03-4.04 (m, 2H), 1.96-2.06 (m, 4H), 1.76-1.83 (m, 4H).

Example 459

N-(7-chloroquinolin-4-yl)-N′-(4,5-dimethyl-1,3-thiazol-2-yl)cyclohexane-1,4-diamine

The titled compound was prepared according to the method described in Example 419 by substituting 3-bromo-2-butanone for 6-(bromoacetyl)-2-oxo-1,2,3,4-tetrahydroquinoline. MS (ESI(+))Q1MS m/z 387 (M+H)+; 1H NMR (300 MHz, MeOH) δ ppm 8.53 (d, 1 H), 8.41 (d, 1 H), 7.88 (d, 1H), 7.71 (dd, 1H), 6.98 (d, 1H), 4.04 (m, 1H), 3.84 (m, 1H), 2.22 (s, 3H), 2.20 (s, 3H), 1.92-2.10 (m, 8H).

Example 460

7-chloro-N-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)-4-hydroxyquinoline-3-carboxamide

The titled compound was prepared according to the methods described in Example 23, substituting 4-hydroxyquinoline-2-carboxylic acid for indole-6-carboxylic acid. MS (ESI(+))Q1MS m/z 481 (M+H)+; 1H NMR (300 MHz, DMSO-D6) δ ppm 1.179-1.97 (m, 8 H) 3.98 (m, 1 H) 4.22 (m, 1 H) 7.05 (d, J=7.46 Hz, 1 H) 7.53 (dd, J=8.81, 2.03 Hz, 1 H) 7.79 (m, 2 H) 7.92 (d, J=2.37 Hz, 1 H) 8.27 (d, J=8.81 Hz, 1 H) 8.56 (d, J=7.12 Hz, 1 H) 8.72 (d, J=9.15 Hz, 1 H) 8.82 (m, 1 H) 9.05 (d, J=8.48 Hz, 1 H) 10.37 (d, J=7.12 Hz, 1 H).
What is claimed is:

1. A compound of formula (I),

\[
\begin{array}{c}
\text{(I),}\\
\end{array}
\]

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

\(R_1, R_2 \) and \(R_3 \) are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and \(R_A R_B N^- \) wherein \(R_A \) and \(R_B \) are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonfyl, arylcarbonyl, arylsulfonfyl and \(R_C R_D N \)-carbonyl, wherein \(R_C \) and \(R_D \) are each independently a member selected from the group consisting of hydrogen, alkyl and aryl;

- \(R_4 \) is a member selected from the group consisting of hydrogen and alkyl;
- \(R_5 \) is \(-(\text{CH}_2)_n\)-Y-A-B;
- \(m \) is from 0-6;
- A is absent or is a member selected from the group consisting of alkoxyalkylene, alkyene and hydroxyalkylene;
- \(B \) is a member selected from the group consisting of hydrogen, alkyl, aryl, arylC(O)-, ary1S(O)2-, ary1alkeny1, ary1oxyalkyl, biaryl, biary1alkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)2-, haloalkyl, \(R_E R_F N^- \), \(R_E R_F N \)-carbonyl, \(R_G S^- \) and \(R_G O^- \);
- \(R_E \) and \(R_F \) are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, ary1alkyl, heterocycle, heterocyclealkyl, ary1C(O)- and ary1S(O)2-;
- \(R_G \) is a member selected from the group consisting of hydrogen, alkyl, aryl, ary1alkyl and heterocycle;
- Y is a member selected from the group consisting of -C(O)-, -S-, -S(O)- and -S(O)2-, or is absent;
- \(R_6 \) is a member selected from the group consisting of hydrogen, alkyl and ary1carbonylalkyl; and
- \(R_7, R_8, R_9 \) and \(R_{10} \) are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or \(R_7 \) and \(R_8 \).
taken together with the carbon atom that they are attached form oxo;

with the following provisos P₁-P₄:

P₁ if Y is absent, m is 0 and if A is absent or is a member selected from the group consisting of alkoxyalkylene, alkyne and hydroxyalkylene,

then B is a member selected from the group consisting of hydrogen, alkyl, arylC(O)-, arylS(O)₂-, arylalkenyl, aryloxyalkyl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)₂-, haloalkyl, R₆R₇N-, R₆R₇NC(O)-, R₆S- and R₆O-; or

P₂ if Y is –C(O)-, m is 0 and A is absent,

then B is a member selected from the group consisting of hydrogen, alkyl, arylalkenyl, aryloxyalkyl, cycloalkyl, heterocycle, haloalkyl, and R₆R₇NC(O)-; or

P₃ if Y is –C(O)-, A is absent and B is aryl or heterocycle,
then m is 1-6; or

P₄ if Y is –C(O)- and B is a member selected from the group consisting of arylC(O)-, arylS(O)₂-, heterocycleC(O)-, heterocycleS(O)₂-,

then A is a member selected from the group consisting of alkoxyalkylene, alkyne and hydroxyalkylene.

2. A compound of formula (Ia),

![Chemical Structure](image)

(Ia),

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₄ and R₅ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇Ncarbonyl, wherein R₆ and R₇ are each independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;

R₅ is B;

B is heterocycle;

R₆ is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and
R₇, R₈, R₉, and R₁₀ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

3. The compound according to claim 2 selected from the group consisting of

cis-N-(2,8-bis(trifluoromethyl)quinolin-4-yl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(8-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(7-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(2-(methyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(2-phenylquinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(6-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(6-methyl-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(6-fluoro-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(8-chloro-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-quinolin-4-ylcyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(5,7-dichloro-2-(trifluoromethyl)quinolin-4-yl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-difluorophenyl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-phenylcyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(2-fluorophenyl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(3-fluorophenyl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(2-naphthylcyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(3-fluoro-4-methylphenyl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-1-naphthylcyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dichlorophenyl)cyclohexane-1,4-diamine;

cis-N-(7-chloroquinolin-4-yl)-N'-(3-methylphenyl)cyclohexane-1,4-diamine;

cis-N-(3,5-bis(trifluoromethyl)phenyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-1,1'-biphenyl-3-yl-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N'-(3-(trifluoromethyl)phenyl)cyclohexane-1,4-
diamine;
cis-4-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino}-2H-chromen-2-one;
cis-N,N'-bis(7-chloro-4-aminquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-(1,1'-biphenyl-3-yl-)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-N-(7-chloroquinazolin-4-yl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
cis-4-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino}-2H-chromen-2-one;
cis-N-(7-chloroquinolin-4-yl)-N'-pyridin-2-ylcyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N'-isoquinolin-4-ylcyclohexane-1,4-diamine;
cis-N-(7-chloroquinolin-4-yl)-N'-quinolin-3-ylcyclohexane-1,4-diamine;
(1S,2R,4S,5R)-N,N'-bis(7-chloroquinolin-4-yl)-2,5-dimethylcyclohexane-1,4-diamine;
(1S,2R,4S,5R)-N-(7-chloroquinolin-4-yl)-N'-3,5-dimethylphenyl)-2,5-
dimethylcyclohexane-1,4-diamine;
N-(1S,2R,4S,5R)-4-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino}-2,5-dimethylcyclohexyl)-3,5-
difluorobenzamide;
5-bromo-N-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}2-hydroxybenzamide;
(1S,2R,4S,5R)-N,N'-bis(7-chloroquinolin-4-yl)-2,5-dimethylcyclohexane-1,4-
diamine;
4-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino}-6-methyl-2H-chromen-2-
one;
N-(7-chloroquinolin-4-yl)-N'-(2',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-
diamine;
N-(5-bromopyridin-3-yl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
N-(7-chloroquinolin-4-yl)-N'-(4-methoxy-3,5-dimethylphenyl)cyclohexane-1,4-
diamine;
N-(7-chloroquinolin-4-yl)-N'-(5-methyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-diamine;
6-2-{{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}amino}-1,3-thiazol-4-yl)-3,4-
dihydroquinolin-2(1H)-one;
N-(3-bromo-5-methylphenyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
N-(7-chloroquinolin-4-yl)-N'-(3-methyl-5-pyridin-4-ylphenyl)cyclohexane-1,4-
diamine;
N-(7-chloroquinolin-4-yl)-N'-(4',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-
diamine;
N-(7-chloroquinolin-4-yl)-N'-(3',5-dimethyl-1,1'-biphenyl-3-yl)cyclohexane-1,4-
diamine;
N-(7-chloroquinolin-4-yl)-N'-(4-(3,4-dihydro-2H-1,5-benzodioxepin-7-yl)-1,3-
thiazol-2-yl)cyclohexane-1,4-diamine;
N-(7-chloroquinolin-4-yl)-N'-(4-methyl-5-phenyl-1,3-thiazol-2-yl)cyclohexane-1,4-diamine;
N-(7-chloroquinolin-4-yl)-N'-(5-phenylpyridin-3-yl)cyclohexane-1,4-diamine;
3'-{(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino}-5'-methyl-1,1'-biphenyl-4-ol;
N'-(4-((2-N-methylamino-7-chloroquinolin-4-yl)amino)cyclohexyl)-7-chloro-N-methylquinoline-2,4-diamine;
N-(7-chloroquinolin-4-yl)-N'-(4-(4-methoxyphenyl)-1,3-thiazol-2-yl)cyclohexane-1,4-diamine; and
N-(7-chloroquinolin-4-yl)-N'-(4,5-dimethyl-1,3-thiazol-2-yl)cyclohexane-1,4-diamine.

4. A compound that is
cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-dimethylphenyl)cyclohexane-1,4-diamine.

5. A compound of formula (Ib),

\[\text{\textbf{(Ib),}} \]

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein
R_1, R_2 and R_3 are each independently a member selected from the group consisting of
hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R_4R_5N- wherein R_A and
R_B are each independently a member selected from the group consisting of hydrogen and
alkyl, alkylcarbonyl, alkylsulfonly, arylcarbonyl, arylsulfonly and R_C R_D N carboxyl, wherein
R_C and R_D are each independently a member selected from the group consisting of hydrogen,
alkyl and aryl;
R_4 is a member selected from the group consisting of hydrogen and alkyl;
R_5 is \(-A-B;\)
A is a member selected from the group consisting of alkoxyalkylene, alkylene and
hydroxyalkylene;
B is heterocycle;
R₆ is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and

R₇, R₈, R₉, and R₁₀ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

6. The compound according to claim 5 selected from the group consisting of

- cis-N-(7-chloroquinolin-4-yl)-N'-(quinolin-3-ylmethyl)cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-(quinolin-4-ylmethyl)cyclohexane-1,4-diamine;
- cis-N-(4-bromobenzyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-{(4-(dimethylamino)-1-naphthyl)methyl}cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-(4-pyridin-2-ylbenzyl)cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-(1H-indol-6-ylmethyl)cyclohexane-1,4-diamine;
- cis-N-(4,4-bis(4-fluorophenyl)butyl)-N'-(7-chloroquinolin-4-yl)cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-(4-phenylbutyl)cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-(5-phenylpentyl)cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-(3,5-difluorobenzyl)cyclohexane-1,4-diamine;
- cis-N-(7-chloroquinolin-4-yl)-N'-(3-fluorobenzyl)cyclohexane-1,4-diamine; and
- cis-7-chloro-N-4-{4-[(3-(trifluoromethyl)benzyl)amino]cyclohexyl}quinoline-2,4-diamine.

7. A compound according to formula (Ic)

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and RₐRₐN- wherein Rₐ and Rₐ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarboxyl, alkylsulfonyle, alkylcarboxyl, alkylnitronyle, and RₐRₐNcarbonyl, wherein Rₐ and Rₐ are each independently a member selected from the group consisting of hydrogen,
alkyl and aryl;

\[R_4 \] is a member selected from the group consisting of hydrogen and alkyl;
\[R_5 \] is \(-\{(CH_2)_m\}C(O)\)-A-B;
\[m \] is from 0-6;
\(A \) is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;
\(B \) is a member selected from the group consisting of hydrogen, alkyl, aryl, arylC(O)-, arylS(O)\(_2 \), arylalkenyl, aryloxyalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)\(_2 \), haloalkyl, \(R_6 R_7 N \), \(R_6 R_7 N C(O) \), \(R_6 S \) and \(R_6 O \); \n\(R_6 \) and \(R_7 \) are each independently a member selected from the group consisting of hydrogen, alkyl, arylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and arylS(O)\(_2 \);
\(R_8 \) is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle;
\(R_9 \) is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and
\(R_7 \), \(R_8 \), \(R_9 \), and \(R_{10} \) are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or \(R_7 \) and \(R_8 \) taken together with the carbon atom that they are attached form oxo.

8. The compound according to claim 7, wherein
\[m \] is 0; and
\(A \) is absent.

9. The compound according to claim 7, wherein
\[m \] is 0;
\(A \) is absent; and
\(B \) is a member selected from the group consisting of aryl, arylalkenyl, aryloxyalkyl, biaryl and heterocycle.

10. The compound according to claim 9 selected from the group consisting of
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-6-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylbenzamide;
cis-2-amino-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluorobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-fluorobenzamide;
cis-4-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzamide;
cis-2-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzamide;
cis-3-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzamide;
cis-4-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-cyanobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(dimethylamino)benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-cyanobenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(dimethylamino)benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethyl)benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethyl)benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,3-dimethylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-dimethylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethoxy)benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,4-dimethoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethoxybenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,3-benzodioxole-5-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4,5-trimethoxybenzamide;
cis-2,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzamide;
cis-3,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} benzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-furamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-furamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethyl-3-furamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} thiophene-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} thiophene-3-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} thiophene-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-pyrrole-2-carboxamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethylbenzamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-methylthiophene-2-
carboxamide;
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-2,5\text{-dimethyl-1H-pyrrole-3-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-1,2,5\text{-trimethyl-1H-pyrrole-3-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-1,3\text{-thiazole-2-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-1\text{-methyl-1H-pyrrole-2-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-1,3\text{-thiazole-4-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-1,3\text{-thiazole-5-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-isoaxazole-5-carboxamide \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-5\text{-methyl-3-phenylisoaxazole-4-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-pyridine-2-carboxamide \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-3\text{-hydroxypyridine-2-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-2\text{-hydroxynicotinamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-5\text{-methylpyrazine-2-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-1\text{-H-indole-3-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-8\text{-methyl-4-oxo-4H-pyrido(1,2-a)pyrimidine-3-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-5\text{-methyl-1-phenyl-1H-pyrazole-4-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-4\text{-oxo-4,5,6,7-tetrahydro-1-benzofuran-3-carboxamide} \);
 \(cis-6\text{-chloro-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-2H-chromene-3-carboxamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-4\text{-ethylbenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-2\text{-hydroxy-4-methylbenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-3\text{-hydroxy-4-methylbenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-5\text{-fluoro-2-methylbenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-3\text{-fluoro-4-methylbenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-2,3\text{-difluorobenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-2,4\text{-difluorobenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-2,5\text{-difluorobenzamide} \);
 \(cis-N\{4-((7\text{-chloroquinolin-4-yl})amino)cyclohexyl\}-3,5\text{-difluorobenzamide} \);
cis-4-acetyl-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} benzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -3-methoxy-4-methylbenzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-ethoxybenzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -4-(methylthio)benzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -3-fluoro-4-methoxybenzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-naphthamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -1-naphthamide;
cis-5-chloro-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-hydroxybenzamide;
cis-2-(acetylamino)-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} benzamide;
cis-4-(acetylamino)-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} benzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -4-isopropoxybenzamide;
cis-5-chloro-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-methoxybenzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -4-fluoro-1-naphthamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -3,4-diethoxycarbamide;
cis-2-benzyl-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} benzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-(2-phenylethyl)benzamide;
cis-2-bromo-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -5-methoxybenzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-(4-methylbenzoyl)benzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -2-iodobenzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -3-iodobenzamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -4-iodobenzamide;
cis-2-chloro-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} isonicotinamide;
cis-2-chloro-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -6-methylisonicotinamide;
cis-2,6-dichloro-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} isonicotinamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -4-phenoxystanamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -3-(3-methyl-1H-indol-1-yl)propanamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} -3-(1-methyl-1H-benzimidazol-2-yl)propanamide;
cis-1-benzoyl-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} piperidine-4-carboxamide;
cis-N- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} N'-\{4-propoxyphenyl\} urea;
cis-N- \{5-tert-butyl-2-methoxyphenyl\}-N'- \{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\} urea;
cis-3,5-difluoro-N- \{4-((6-fluoro-2-(trifluoromethyl)quinolin-4-yl)amino)cyclohexyl\} benzamide;
cis-3,5-difluoro-N-(4-((8-(trifluoromethoxy)-2-(trifluoromethyl)quinolin-4-yl)amino)cyclohexyl)benzamide;
cis-N-(4-((5,7-dichloro-2-(trifluoromethyl)quinolin-4-yl)amino)cyclohexyl)-3,5-difluorobenzamide;
cis-3,5-difluoro-N-(4-((6-methyl-2-(trifluoromethyl)quinolin-4-yl)amino)cyclohexyl)benzamide;
cis-N-{4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-difluorobenzamide;
cis-N-{4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dichlorobenzamide;
cis-N-{4-((2-amino-7-chloroquinolin-4-yl)amino)cyclohexyl}-4-phenoxbutanamide;
3-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-5-methylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,2-diphenylacetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2-hydroxybenzamide;
N-{((1S,2R,4S,5R)-4-((7-chloroquinolin-4-yl)amino)-2,5-dimethylcyclohexyl})-3,5-difluorobenzamide;
3-(5-acetylthien-2-yl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-5-methoxybenzamide;
4-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} quinoline-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-methylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,6-dimethoxynicotinamide;
3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide;
3'-amino-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-3'-hydroxy-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-3'-((hydroxymethyl))-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-4'-hydroxy-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1H-indole-4-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} quinoxaline-2-carboxamide;
4'-amino-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-4-methoxybenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cinnoline-4-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-6-methoxybenzamide;
3'-acetyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1'-biphenyl-3-carboxamide;
5-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-methylbenzamide;
3-(1,3-benzodioxol-5-yl)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluorobenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-2'-hydroxy-1,1'-biphenyl-3-carboxamide;
4'-acetyl-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-5-fluoro-1,1'-biphenyl-3-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-6-methylnicotinamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-5-pyridin-4-ylbenzamide;
2-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}nicotinamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-5-iodobenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-fluoro-6-hydroxybenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-5-thien-3-ylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-5-((E)-2-phenylvinyl)benzamide;
3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxybenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-fluoro-5-thien-2-ylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-8-hydroxyquinoline-7-carboxamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-1-naphthamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-hydroxy-3-isopropylbenzamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-hydroxy-2-naphthamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}tetrahydrofuran-2-carboxamide;
3'-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)carbonyl)-5'-fluoro-1,1'-biphenyl-3-carboxylic acid;
3'-(4-((7-chloroquinolin-4-yl)amino)cyclohexyl)amino)carbonyl)-5'-fluoro-1,1'-biphenyl-4-carboxylic acid; and
7-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-hydroxyquinoline-3-carboxamide.
11. A compound of formula (Id),

\[
\begin{align*}
\text{R}_1, \text{R}_2 \text{ and } \text{R}_3 \text{ are each independently a member selected from the group consisting of } \\
\text{hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and } \text{R}_4 \text{R}_5N- \text{ wherein } \text{R}_6 \text{ and } \\
\text{R}_7 \text{ are each independently a member selected from the group consisting of hydrogen and } \\
alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and } \text{R}_8 \text{R}_9N\text{carbonyl, wherein } \\
\text{R}_C \text{ and } \text{R}_D \text{ are each independently a member selected from the group consisting of hydrogen, } \\
alkyl \text{ and ary1;} \\
\text{R}_4 \text{ is a member selected from the group consisting of hydrogen and alkyl;} \\
\text{R}_5 \text{ is } -(\text{CH}_2)_m\text{C(O)-A-B;} \\
m \text{ is } 0; \\
\text{A is a member selected from the group consisting of alkoxyalkylene, alkylene and } \\
\text{hydroxyalkylene;} \\
\text{B is a member selected from the group consisting of arylC(O)-, arylNC(O)-,} \\
\text{arylS(O)}_2-, \text{heterocycleC(O)-, heterocycleNC(O)- and heterocycleS(O)}_2-; \\
\text{R}_6 \text{ is a member selected from the group consisting of hydrogen, alkyl and } \\
\text{arylcarbonylalkyl;} \text{ and} \\
\text{R}_7, \text{R}_8, \text{R}_9, \text{and } \text{R}_{10} \text{ are each independently a member selected from the group } \\
\text{consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or } \text{R}_7 \text{ and } \text{R}_8 \\
taken together with the carbon atom that they are attached form oxo.}
\end{align*}
\]

12. The compound according to claim 11 selected from the group consisting of
N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-oxo-4-thien-2-ylbutanamide;
N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-3-(phenylsulfonyl)propanamide;
N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-(4-methoxyphenyl)-4-oxobutanamide; and
N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-oxo-4-phenylbutanamide.
13. A compound of formula (Ie),

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₄ and R₅ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfanyl, arylcarbonyl, arylsulfanyl and R₆R₇Ncarbonyl, wherein R₆ and R₇ are each independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;
R₅ is -(CH₂)ₘ-C(O)-A-B;
m is from 1-6;
A is absent;
B is a member selected from the group consisting of aryl and heterocycle;
R₆ is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and

R₇, R₈, R₉, and R₁₀ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

14. The compound according to claim 13 selected from the group consisting of cis-2-(N-{4-[(7-chloroquinolin-4-yl)amino]cyclohexyl}glycyl)benzaldehyde;
cis-di-3-[(4-[(7-chloroquinolin-4-yl)amino]cyclohexyl)amino]-1-(4-fluorophenyl)propan-1-one; and
cis-5-[(4-[(7-chloroquinolin-4-yl)amino]cyclohexyl)amino]-1-(4-fluorophenyl)pentan-1-one.
15. A compound of formula (If),

\[
\begin{align*}
&\text{or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein}\nonumber \\
&R_1, R_2 \text{ and } R_3 \text{ are each independently a member selected from the group consisting of}\nonumber \\
&\text{hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and } R_AR_BN- \text{ wherein } R_A\nonumber \\
&\text{and } R_B \text{ are each independently a member selected from the group consisting of hydrogen and}\nonumber \\
&\text{alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and } R_CR_DN\text{carbonyl, wherein}\nonumber \\
&R_C \text{ and } R_D \text{ are each independently a member selected from the group consisting of hydrogen,}\nonumber \\
&\text{alkyl and aryl;}\nonumber \\
&R_4 \text{ is a member selected from the group consisting of hydrogen and alkyl;}\nonumber \\
&R_5 \text{ is } -(CH_2)_m-C(O)-A-B;\nonumber \\
&m \text{ is 0;}\nonumber \\
&A \text{ is absent or is a member selected from the group consisting of alkoxyalkylene,}\nonumber \\
&\text{alkylene and hydroxyalkylene;}\nonumber \\
&B \text{ is a member selected from the group consisting of aryl and heterocycle;}\nonumber \\
&R_6 \text{ is a member selected from the group consisting of hydrogen, alkyl and}\nonumber \\
&\text{arylcaboxylalkyl; and}\nonumber \\
&R_7, R_8, R_9, \text{ and } R_{10} \text{ are each independently a member selected from the group}\nonumber \\
&\text{consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or } R_7 \text{ and } R_8\nonumber \\
&\text{taken together with the carbon atom that they are attached form oxo.}\nonumber
\end{align*}
\]

16. The compound according to claim 23 selected from the group consisting of
\[
\begin{align*}
&\text{cis-N-}4-((7\text{-chloroquinolin-4-yl})\text{amino)cyclohexyl}-2-\text{(4-fluorophenyl)acetamide;}\nonumber \\
&\text{cis-N-}4-((7\text{-chloroquinolin-4-yl})\text{amino)cyclohexyl}-5\text{-phenylpentanamide;}\nonumber \\
&\text{cis-N-}4-((7\text{-chloroquinolin-4-yl})\text{amino)cyclohexyl}-2-\text{(6-methoxy-3\text{-oxo-2,3-}\nonumber \\
&\text{dihydro-1H\text{-inden-1-yl)acetamide;}\nonumber \\
&\text{cis-N-}4-((7\text{-chloroquinolin-4-yl})\text{amino)cyclohexyl}-2-\text{(3-fluorophenyl)acetamide;}\nonumber \\
&\text{cis-N-}4-((7\text{-chloroquinolin-4-yl})\text{amino)cyclohexyl}-2-\text{(3-}\nonumber \\
&(\text{trifluoromethyl)phenyl})\text{acetamide;}\nonumber \\
&\text{cis-N-}4-((7\text{-chloroquinolin-4-yl})\text{amino)cyclohexyl}-2-\text{(4-}\nonumber \\
\end{align*}
\]
(trifluoromethyl)phenyl)acetamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-3-methyl-2-phenylpentanamide;
(2R)-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-2-methoxy-2-phenylacetamide;
(2S)-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-2-methoxy-2-phenylacetamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-2-(3,5-difluorophenyl)acetamide;
3-(2-chlorophenyl)-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl propanamide;
(2S)-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-2-phenylbutanamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-3-phenylpropanamide;
3-(4-chlorophenyl)-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl propanamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-3-(2,5-dimethoxyphenyl)propanamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-4-thien-2-ylbutanamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-4-phenylbutanamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-3-(4-methoxyphenyl)propanamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-3-(3-methoxyphenyl)propanamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-2-(3-phenoxyphenyl)acetamide;
N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-2-(4-(methylsulfonyl)phenyl)acetamide; and
(2R)-N-4-((7-chloroquinolin-4-yl)amino)cyclohexyl-2-hydroxy-4-phenylbutanamide.

17. A compound of formula (Ig),

\[\text{(Ig)} \]

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein
R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N⁻ wherein R₄ and
R₅ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇Ncarbonyl, wherein
R_C and R_D are each independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R_4 is a member selected from the group consisting of hydrogen and alkyl;
R_5 is -(CH_2)_n C(=O)-A-B;

m is from 0-6;
A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;
B is R_E R_F N-;

R_E and R_F are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(=O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(=O)- and arylS(=O)_{2-};
R_6 is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and
R_7, R_8, R_9, and R_{10} are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R_7 and R_8 taken together with the carbon atom that they are attached form oxo.

18. The compound according to claim 17 wherein

R_E is a member selected from the group consisting of alkylC(=O)-, arylC(=O)- and arylS(=O)_{2-};
m is 0; and
A is alkylene.

19. The compound according to claim 18 selected from the group consisting of

\textit{cis}-N^2-benzoyl-N^1-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}glycinamide
\textit{cis}-N^1-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-N^2-(4-nitrobenzoyl)-\beta-
alaninamide;
\textit{cis}-N^2-benzoyl-N^1-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-\beta-alaninamide;
N-(2-\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}amino)-2-oxo-1-ethyl)-2-
hydroxybenzamide;
N~~2-~~\text{acetyl-N~~1-~~}\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-\text{L-leucinamide;}
and
N~~1-~~\{4-((7-chloroquinolin-4-yl)amino)cyclohexyl\}-N~~2-~~(4-
\text{methylphenyl)sulfonyl)glycinamide.

20. The compound according to claim 17, wherein

B is R_E R_F N-;
R_f is a member selected from the group consisting of aryl, arylalkyl, heterocycle and heterocycloalkyl;

m is 0; and

A is absent.

21. The compound according to claim 20 selected from the group consisting of
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(3-(methylthio)phenyl)urea;
cis-N-(2-chlorophenyl)-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(2-(trifluoromethyl)phenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(3-(trifluoromethyl)phenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(4-(trifluoromethoxy)phenyl)urea;
cis-N-1,3-benzodioxol-5-yl-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(3-(trifluoromethyl)thio)phenyl)urea;
cis-N-(3-bromophenyl)-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-(4-bromophenyl)-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(3,4-dichlorophenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(2,4-dichlorophenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(3,5-dichlorophenyl)urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-1-naphthylurea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-2-naphthylurea;
cis-N-benzyl-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-(3-chlorophenyl)-N'-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl} urea;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(2-furylmethyl)urea; and
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-N'-(3-furylmethyl)urea.
22. A compound of formula (Ih),

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and RₐRₐ⁻N⁻ wherein Rₐ and Rₐ⁻ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and RₕRₕ⁻Ncarbonyl, wherein Rₕ and Rₕ⁻ are each independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;

R₅ is -(CH₂)ₘ-C(O)-A-B;

m is from 0-6;

A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;

B is R₊R₊⁻NC(O)-;

R₊ and R₊⁻ are independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and arylS(O)₂⁻;

R₆ is a member selected from the group consisting of hydrogen, alkyl and arylcarboxyalkyl; and

R₇, R₈, R₉, and R₁₀ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

23. The compound according to claim 22, wherein

R₆ is a member selected from the group consisting of aryl, arylalkyl, heterocycle and heterocyclealkyl;

m is 0; and

A is alkylene.
24. The compound according to claim 23 that is
N-4-(7-chloroquinolin-4-yl)amino)cyclohexyl)-N'-phenylpentanediamide.

25. A compound of formula (Ij),

![Chemical Structure Image]

(Ij),

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein
R₁, R₂ and R₃ are each independently a member selected from the group consisting of
hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₆ and
R₇ are each independently a member selected from the group consisting of hydrogen and
alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇Ncarbonyl, wherein
R₈ and R₉ are each independently a member selected from the group consisting of hydrogen,
alkyl and aryl;
R₄ is a member selected from the group consisting of hydrogen and alkyl;
R₅ is -(CH₂)n-C(O)-A-B;
m is from 0-6;
A is absent or is a member selected from the group consisting of alkoxyalkylene,
alylene and hydroxyalkylene;
B is a member selected from the group consisting of R₆S- and R₆O-;
R₆ is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl,
heterocycle and heterocyclealkyl;
R₇ is a member selected from the group consisting of hydrogen, alkyl and
arylcarboxyalkyl; and
R₈, R₉, and R₁₀ are each independently a member selected from the group
consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈
taken together with the carbon atom that they are attached form oxo.

26. The compound according to claim 25, wherein
R₆ is a member selected from the group consisting of alkyl, aryl, arylalkyl,
heterocycle and heterocyclealkyl;
m is 0; and
A is alkylene.

27. The compound according to claim 26 selected from the group consisting of
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-((4-methylpyrimidin-2-yl)thio)acetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-methoxyphenoxy)acetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3-methylphenoxy)acetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(2-methylphenoxy)acetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-phenoxypropanamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(3,4-dimethylphenoxy)acetamide;
2-(4-chloro-2-methylphenoxy)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide;
2-(benzyloxy)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-ethoxyacetamide;
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(pyrimidin-2-ylthio)acetamide;
and
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-(4-methylphenoxy)acetamide.

28. A compound of formula (Ia),

![Diagram](image_url)

(Ia),
or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein
R₁, R₂ and R₃ are each independently a member selected from the group consisting of
gydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₆ and
R₇ are each independently a member selected from the group consisting of hydrogen and
alkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl and R₆R₇Ncarbonyl, wherein
R₈ and R₉ are each independently a member selected from the group consisting of hydrogen,
alkyl and aryl;
R₄ is a member selected from the group consisting of hydrogen and alkyl;
R₅ is -(CH₂)ₘ-C(O)-A-B;
m is 0;
A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;
B is a member selected from the group consisting of alkyl, cycloalkyl and haloalkyl;
R₆ is a member selected from the group consisting of hydrogen, alkyl and aryloxyalkyl; and
R₇, R₈, R₉, and R₁₀ are independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

29. The compound according to claim 28 selected from the group consisting of
cis-N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyclohexylacetamide;
cis-N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cycloheptylacetamide;
cis-2-{(1R,4S)-bicyclo(2.2.1)hept-2-yl}-N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide;
cis-2-(1-adamantyl)-N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}acetamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylpentanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}pentanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}hexanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cyclopentanecarboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyclopentylacetamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methylcyclohexanecarboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cycloheptanecarboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylcyclohexanecarboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-methylcyclohexanecarboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylbutanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}cyclohexanecarboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-methylpentanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4,4,4-trifluorobutanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}heptanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}butanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-cyclopropylacetamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,2-dimethylpropanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-ethylbutanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-phenylcyclopropanecarboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,3-dimethylbutanamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}adamantane-1-carboxamide;
N-{-4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-methylpentanamide; and
N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1-methylcyclohexanecarboxamide.

30. A compound of formula (Im),

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein

R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R₄R₅N- wherein R₄ and R₅ are each independently a member selected from the group consisting of hydrogen and alkyl, alkylcarbonyl, alkylsulfonyl, arylocarbonyl, arylsulfonyl and RCRCNcarbonyl, wherein R₁, R₂ and R₃ are each independently a member selected from the group consisting of hydrogen, alkyl and aryl;

R₄ is a member selected from the group consisting of hydrogen and alkyl;

R₅ is -(CH₂)m-S(O)₂-A-B;

m is from 0-6;

A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;

B is a member selected from the group consisting of alkyl, aryl, arylalkenyl, cycloalkyl and heterocycle;

R₆ is a member selected from the group consisting of hydrogen, alkyl and arylocarboxyalkyl; and

R₇, R₈, R₉, and R₁₀ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

31. The compound according to claim 30, wherein

m is 0;

A is absent; and

B is a member selected from the group consisting of aryl and heterocycle.

32. The compound according to claim 31 selected from the group consisting of
cis-4-chloro-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\} benzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\} benzenesulfonamide;
cis-2-chloro-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-
fluorobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\} thiophene-2-sulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-2-
(trifluoromethoxy)benzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-3-methylbenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-methylbenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-2-fluorobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-3-fluorobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-fluorobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-2-cyanobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-3-cyanobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-cyanobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-2,5-
dimethylbenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-3-methoxybenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-methoxybenzenesulfonamide;
cis-2-chloro-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\} benzenesulfonamide;
cis-3-chloro-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\} benzenesulfonamide;
cis-4-(2-chloro-6-nitrophenoxy)-N-\{4-\((7\text{-chloroquinolin-4-
yl})\text{amino}\)cyclohexyl\} benzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-2,4-
difluorobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-3,4-
difluorobenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-propylbenzenesulfonamide;
cis-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-isopropylbenzenesulfonamide;
cis-4-chloro-N-\{(5-\{4-\((7\text{-chloroquinolin-4-
yl})\text{amino}\)cyclohexyl\} amino)sulfonyl\}thien-2-yl methylbenzamide;
cis-5-bromo-6-chloro-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}pyridine-3-
sulfonamide;
cis-4-tert-butyl-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\} benzenesulfonamide;
cis-3-chloro-N-\{4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\}-4-
fluorobenzenesulfonamide;
cis-N-\{4-\{(4-\((7\text{-chloroquinolin-4-yl})\text{amino}\)cyclohexyl\} benzenesulfonamide;
yl)amino)cyclohexyl]amino)sulfonylphenyl)acetamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,5-dimethoxybenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,4-dimethoxybenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-(trifluoromethyl)benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethyl)benzenesulfonamide;
cis-2,3-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-2,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-2,5-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-3,4-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-3,5-dichloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-1,1'-biphenyl-4-sulfonamide;
cis-2-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-3-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-4-bromo-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-(trifluoromethoxy)benzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3,5-dimethylisoxazole-4-sulfonamide;
cis-(E)-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2-phenylethylbenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-vinylbenzenesulfonamide;
cis-5-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}thiophene-2-sulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-2,1,3-benzoxadiazole-4-sulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-3-nitrobenzenesulfonamide;
cis-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-nitrobenzenesulfonamide;
cis-3-chloro-N-{4-((7-chloroquinolin-4-yl)amino)cyclohexyl}-4-
methylbenzenesulfonamide;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]quinoline-8-sulfonamide;
 cis-5-chloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-1,3-dimethyl-1H-
 pyrazole-4-sulfonamide;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2,1,3-benzothiadiazone-4-
 sulfonamide;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2-methyl-5-
 nitrobenzenesulfonamide;
 cis-methyl 3-((4-((7-chloroquinolin-4-
 yl)amino)cyclohexyl)amino)sulfonylthiophene-2-carboxylate;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-(1,1-
 dimethylpropyl)benzenesulfonamide;
 cis-4-butoxy-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]benzenesulfonamide;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-5-isoxazol-3-ylthiophene-2-
 sulfonamide;
 cis-2,5-dichloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]thiophene-3-
 sulfonamide;
 cis-4,5-dichloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]thiophene-2-
 sulfonamide;
 cis-7-chloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2,1,3-benzoxadiazone-
 4-sulfonamide;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-4-
 (methylsulfonyl)benzenesulfonamide;
 cis-4-chloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-3-
 nitrobenzenesulfonamide;
 cis-6-chloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-3H-1lambda-4-
 imidazo(2,1-b)(1,3)thiazole-5-sulfonamide;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-2-(trifluoroacetyl)-1,2,3,4-
 tetrahydroisoquinoline-7-sulfonamide;
 cis-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-5-fluoro-2-
 methylbenzenesulfonamide;
 cis-4-chloro-N-[4-((7-chloroquinolin-4-yl)amino)cyclohexyl]-3-(triflu-
 oromethyl)benzenesulfonamide;
 cis-2,4,5-trichloro-N-[4-((7-chloroquinolin-4-
 yl)amino)cyclohexyl]benzenesulfonamide;
 cis-2,4,6-trichloro-N-[4-((7-chloroquinolin-4-
 yl)amino)cyclohexyl]benzenesulfonamide;
cis-2,3,4-trichloro-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl} benzenesulfonamide;
cis-5-chloro-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-3-methyl-1-
benzothiophene-2-sulfonamide;
cis-5-bromo-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-
methoxybenzenesulfonamide;
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-nitro-4-
(trifluoromethyl)benzenesulfonamide;
cis-N-5-(((4-((7-chloroquinolin-4-y1)amino)cyclohexyl)amino)sulfonyl)thien-2-
yl}methyl)benzamide;
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-5-(2-(methylthio)pyrimidin-4-
yl)thiophene-2-sulfonamide;
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-3,5-
bis(trifluoromethyl)benzenesulfonamide;
cis-2,6-dichloro-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-4-
(trifluoromethyl)benzenesulfonamide;
cis-2-butoxy-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-5-(1,1-
dimethylpropyl)benzenesulfonamide;
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-5-(phenylsulfonyl)thiophene-2-
sulfonamide;
cis-4-3-chloro-2-cyanophenoxy)-N-4-((7-chloroquinolin-4-
y1)amino)cyclohexyl} benzenesulfonamide;
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-4-ethylbenzenesulfonamide;
cis-4-bromo-2,5-dichloro-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl} thiophene-
3-sulfonamide;
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-methoxy-5-
methylbenzenesulfonamide; and
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-2-nitrobenzenesulfonamide.

33. The compound according to claim 30 wherein
m is 0;
A is alkylene; and
B is a member selected from the group consisting of aryl and heterocycle.

34. The compound according to claim 33 selected from the group consisting of
cis-N-4-((7-chloroquinolin-4-y1)amino)cyclohexyl}-1-(3,4-
dichlorophenyl)methanesulfonamide; and
cis-N-\{(7-chloroquinolin-4-yl)amino\}cyclohexyl-1-(3,5-dichlorophenyl)methanesulfonamide.

35. The compound according to claim 30, wherein
m is 0;
A is alkylene; and
B is a member selected from the group consisting of alkyl and cycloalkyl.

36. The compound according to claim 35 selected from the group consisting of
cis-N-\{(7-chloroquinolin-4-yl)amino\}propane-1-sulfonamide;
cis-N-\{(7-chloroquinolin-4-yl)amino\}butane-1-sulfonamide; and
cis-N-\{(7-chloroquinolin-4-yl)amino\}heptane-1-(1S,4R)-7,7-dimethyl-2-oxobicyclo(2.2.1)heptan-1-yl)methanesulfonamide.

37. A method of treating disorders by inhibiting the effects of melanin concentrating hormone (MCH) through the melanin concentrating hormone receptor, comprising administering a therapeutically effective amount of a compound of formula (II),

![Chemical Structure](image)

or a therapeutically suitable salts, ester, prodrug or zwitterion thereof, wherein
R_1, R_2 and R_3 are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxy and R_A R_B; wherein R_A and R_B are each independently a member selected from the group consisting of hydrogen and alkyl, alkycarbonyl, alkylsulfonyl, arylcarbonyl, arylosulfonyl and R_C R_D; wherein R_C and R_D are each independently a member selected from the group consisting of hydrogen, alkyl and aryl;
R_4 is a member selected from the group consisting of hydrogen and alkyl;
R_5 is -(CH_2)_m-Y-A-B;
m is from 0-6;
A is absent or is a member selected from the group consisting of alkoxyalkylene, alkylene and hydroxyalkylene;
B is a member selected from the group consisting of hydrogen, alkyl, aryl, arylC(O)-, arylS(O)₂-, arylalkenyl, aryloxyalkyl, biaryl, biarylalkyl, cycloalkyl, heterocycle, heterocycleC(O)-, heterocycleS(O)₂-, haloalkyl, R₉R₉N-₁, R₉R₉NC(O)-, R₉S- and R₉O-;

R₉ and R₉ are each independently a member selected from the group consisting of hydrogen, alkyl, alkylC(O)-, aryl, arylalkyl, heterocycle, heterocyclealkyl, arylC(O)- and arylS(O)₂-;

R₀ is a member selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl and heterocycle;

Y is a member selected from the group consisting of -C(O)-, -S-, -S(O)- and -S(O)₂-, or is absent;

R₆ is a member selected from the group consisting of hydrogen, alkyl and arylearboxyalkyl; and

R₇, R₈, R₉, and R₁₀ are each independently a member selected from the group consisting of hydrogen, alkyl, alkoxy, halo, haloalkyl, haloalkoxy and hydroxy or R₇ and R₈ taken together with the carbon atom that they are attached form oxo.

38. A method of treating obesity by inhibiting the effects of melanin concentrating hormone (MCH) through the melanin concentrating hormone receptor, comprising administering a therapeutically effective amount of a compound of formula (II).

39. A method of treating abnormalities in reproduction and sexual behavior, thyroid hormone secretion, diuresis and water/electrolyte homeostasis, sensory processing, memory, sleeping and arousal, anxiety and depression, seizure and in treatment of neurodegeneration or psychiatric disorders by inhibiting the effects of melanin concentrating hormone (MCH) through the melanin concentrating hormone receptor, comprising administering a therapeutically effective amount of a compound of formula (II).

40. A pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (II) in combination with a pharmaceutically suitable carrier.
A. CLASSIFICATION OF SUBJECT MATTER

A61P25/24 C07D215/46 C07D401/12 C07D407/12 C07D409/12
A61P24/12 C07D413/12 C07D417/12 C07D417/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 97 18193 A (F. HOFFMANN-LA ROCHE AG, SWITZ.) 22 May 1997 (1997-05-22) claims; examples 69-87,123</td>
<td>1,40</td>
</tr>
<tr>
<td>X</td>
<td>WO 95 35287 A (F. HOFFMANN-LA ROCHE AG, SWITZ.) 28 December 1995 (1995-12-28) claims; example 5</td>
<td>1,2,40</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

** Special categories of cited documents:

A Document defining the general state of the art which is not considered to be of particular relevance

E Earlier document but published on or after the international filing date

L Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

C Document referring to an oral disclosure, use, exhibition or other means

P Document published prior to the international filing date but later than the priority date claimed

T Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X Document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

V Document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A Document member of the same patent family

Date of the actual completion of the international search

14 July 2003

Date of mailing of the international search report

29/07/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Schmid, J-C

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
</tbody>
</table>
Continuation of Box I.2

The present claims relate to prodrugs which are compounds which are transformed in vivo to the parent compounds of formula (I-II). The claims cover all products having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such products. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compounds by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to the compounds of formula I or II.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

 Although claims 37–39 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. [X] Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

 see FURTHER INFORMATION sheet PCT/ISA/210

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest.

[] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 718932 B2</td>
<td>04-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7566996 A</td>
<td>05-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9611727 A</td>
<td>25-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2237997 A1</td>
<td>22-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1202155 A</td>
<td>16-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69614149 D1</td>
<td>30-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69614149 T2</td>
<td>14-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 876346 T3</td>
<td>12-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2162110 T3</td>
<td>16-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3037018 T3</td>
<td>31-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11500749 T</td>
<td>19-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 876346 T</td>
<td>30-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 9800854 T2</td>
<td>21-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5948791 A</td>
<td>07-09-1999</td>
</tr>
</tbody>
</table>

		AU 2736995 A	15-01-1996
		CA 2192203 A1	28-12-1995
		WO 9535287 A1	28-12-1995
		EP 0765313 A1	02-04-1997
		IL 114099 A	29-02-2000
		JP 10501540 T	10-02-1998
		NZ 288223 A	24-11-1997
		US 5736557 A	07-04-1998
		ZA 9504796 A	03-01-1996

WO 0206245 A	24-01-2002	AU 7319201 A	30-01-2002
		CA 2384041 A1	24-01-2002
		EP 1299362 A1	09-04-2003
		WO 0206245 A1	24-01-2002