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(57)【要約】
　解剖学的構造の形状の変動に関する対象に固有の統計
モデルを、解剖学的構造の形状に関する一組の幾何学表
現を用いて組み立てる方法および装置が提供される。各
表現は複数の対象の１つと関連しており、各対象は関連
した複数の表現のそれぞれの部分集合を有し、各部分集
合は基準表現を含む複数の表現を含む。複数の表現は解
剖学的構造の物理的動きおよび／または変形から派生す
る種々の形状に対応する。この方法は、その値が任意の
所与の表現の形状を特徴付ける一組の形状パラメータを
規定すること、および各対象に対して、その対象と関連
する表現の部分集合全体にわたる形状パラメータの値の
確率分布を、一組の対象に固有の分布パラメータによっ
て表すことを含む。この方法はさらに、対象に固有の分
布パラメータと、各対象に対するそれぞれの基準表現と
の間の回帰を決定することと、前記決定された回帰を新
規の対象に対する基準表現に当てはめて、新規の対象に
対する対象に固有の分布パラメータを決定することを含
む。対象に固有の分布パラメータをさらに用いて、新規
の対象に対する対象に固有の統計的動きモデルが組み立
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【特許請求の範囲】
【請求項１】
　解剖学的構造の形状の変動に関する対象に固有の統計モデルを、解剖学的構造の形状に
関する一組の幾何学表現を用いて組み立てる方法であって、各表現は複数の対象の１つと
関連しており、各対象は関連した複数の表現のそれぞれの部分集合を有し、各部分集合は
基準表現を含む複数の表現を備え、複数の表現は解剖学的構造の物理的な動きおよび／ま
たは変形から生じる種々の形状に対応しており、
　任意の所与の表現に対し、その値が表現の形状を特徴付ける一組の形状パラメータを規
定することと、
　各対象に対し、その対象と関連する表現の部分集合全体にわたる形状パラメータの値の
確率分布を、一組の対象に固有の分布パラメータによって表すことと、
　対象に固有の分布パラメータと各対象の基準表現との間の回帰を決定することと、
　決定した回帰を新規の対象に対する基準表現に当てはめて、新規の対象に固有の分布パ
ラメータを決定することと、
　対象に固有の分布パラメータを用いて、新規の対象に固有の統計的動きモデルを組み立
てることとを含む方法。
【請求項２】
　一組の形状パラメータは主成分解析を用いて決定されることを特徴とする請求項１に記
載の方法。
【請求項３】
　一組の形状ベクトルｓｇ（ｇ＝１，　２，．．．Ｇ）を提供する（ここで、Ｇは一組の
表現の中の表現の数であり、各表現に対応する形状ベクトルが存在し、主成分解析は各形
状ベクトルをＬ個の主成分によって表す）ことと、
　一組の形状パラメータを規定することは、混合対象の統計形状モデルを式
【数１】

（ここで、
【数２】

は平均形状ベクトル、ｅｌは平均を差し引いた形状ベクトルの共分散行列の固有ベクトル
であり、ｅｌは主成分解析からｌ番目に大きい固有値σｌ

２に対応し、ベクトルｂｇは、
ｇ番目の形状ベクトルを集合的に表現するＬ個の形状パラメータの値を含む）に従って組
み立てることとをさらに含むことを特徴とする請求項２に記載の方法。
【請求項４】
　形状ベクトルｓｇは、一組の表現に対する点対応データを含み、形状が変動中の複数の
点の所定の組の空間座標を、一組の表現全体にわたって追跡することを特徴とする請求項
３に記載の方法。
【請求項５】
　一組の形状パラメータ内の形状パラメータの１つに対する値の確率分布は、一組の形状
パラメータ内の他の形状パラメータから独立しているとみなされることを特徴とする請求
項１乃至４のいずれか１項に記載の方法。
【請求項６】
　一組の形状パラメータにはＬ個の形状パラメータがあり、対象（ｉ）と関連する表現の
部分集合に対する形状パラメータの値の確率分布（
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【数３】

）の表現は、多変量ガウス分布確率密度関数
【数４】

によってパラメータ化されており、分布パラメータμｉおよびσｉ
２はそれぞれ、平均ベ

クトル、およびＬ×Ｌ対角共分散行列の対角要素を表し、共分散行列の対角要素は成分分
散ベクトル
【数５】

を表すことを特徴とする請求項５に記載の方法。
【請求項７】
　所与の対象（ｉ）に対する分布パラメータ、すなわちμｉおよびσｉ

２は、所与の一組
のサンプル｛ｂｉｊ，ｊ＝１，　２，．．．，　Ｊｉ｝に対して、以下の最大確率推定量
【数６】

および
【数７】

を用いて推定され、ここで、Ｊｉは対象ｉに対する部分集合内の表現の数を表し、ベクト
ルｂｉｊは、対象ｉのｊ番目の形状ベクトルを集合的に表現するＬ個の形状パラメータ値
を含むことを特徴とする請求項６に記載の方法。
【請求項８】
　各分布パラメータはカーネルの一次関数で表わされることを特徴とする請求項１乃至７
のいずれか１項に記載の方法。
【請求項９】
　回帰は線形最小二乗法によって決定されることを特徴とする請求項１乃至８のいずれか
１項に記載の方法。
【請求項１０】
　一組の形状パラメータを規定し、その値は、任意の所与の表現の形状を特徴付け、混合
対象の統計形状モデルは式
【数８】

（ここで、
【数９】
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は平均形状ベクトル、ｅｌは平均値を差し引いた形状ベクトルの共分散行列の固有ベクト
ルであり、ｅｌは主成分解析からｌ番目に大きい固有値σｌ

２に対応し、ベクトルｂｇは
ｇ番目の形状ベクトルを集合的に表現するＬ個の形状パラメータ値を含む）に従って組み
立てられ、
　対象に固有のＳＭＭは
【数１０】

（ここで、
【数１１】

は予測された対象に固有のＳＭＭの平均値に等しく、Ｅμｎｅｗは偏りの項であり、μｎ

ｅｗは回帰によって予測された分布パラメータの平均値を表し、ｂｎｅｗは新しい形状パ
ラメータを表す）形をとることを特徴とする請求項１乃至９のいずれか１項に記載の方法
。
【請求項１１】
　解剖学的構造は軟組織の臓器を含み、形状の変動は臓器の変形または動きを含むことを
特徴とする請求項１乃至１０のいずれか１項に記載の方法。
【請求項１２】
　基準表現は、安静状態すなわち未変形状態の臓器を表すことを特徴とする請求項１１に
記載の方法。
【請求項１３】
　基準表現は、特定の生理事象に対応する時刻における臓器を表現することを特徴とする
請求項１１または１２に記載の方法。
【請求項１４】
　表現のうち少なくとも１つは画像を含むことを特徴とする請求項１乃至１３のいずれか
１項に記載の方法。
【請求項１５】
　表現のうち少なくとも１つは生体力学モデルに由来することを特徴とする請求項１乃至
１４のいずれか１項に記載の方法。
【請求項１６】
　解剖学的構造上の解剖学的目印を用いて、一組の表現に対する点対応データを提供し、
点対応データを用いて、形状が変動中の複数の点の所定の組の空間座標を、一組の表現全
体にわたって追跡することをさらに含むことを特徴とする請求項１乃至１５のいずれか１
項に記載の方法。
【請求項１７】
　点対応データは、異なる対象に対する基準表現の間の画像の登録を実施することによっ
て決定されることを特徴とする請求項１６に記載の方法。
【請求項１８】
　画像の登録を目的として、対象に固有の統計的動きモデルを新規の対象に用いることを
さらに含むことを特徴とする請求項１乃至１７のいずれか１項に記載の方法。
【請求項１９】
　画像の分割を目的として、対象に固有の統計的動きモデルを新規の対象に用いることを
さらに含むことを特徴とする請求項１乃至１８のいずれか１項に記載の方法。
【請求項２０】
　画像の登録または画像の分割を用いて、画像により支援される治療を補助することを特
徴とする請求項１８または１９に記載の方法。



(5) JP 2017-512522 A 2017.5.25

10

20

30

40

50

【請求項２１】
　コンピューターシステムの１つ以上の演算素子で実行されるときに、請求項１乃至２０
のいずれか１項に記載の方法の工程の実質的に全てを実行するプログラム命令を含むコン
ピュータープログラム。
【請求項２２】
　読み取り可能な媒体に保存された請求項２１に記載のコンピュータープログラムを備え
るコンピュータープログラム製品。
【請求項２３】
　請求項１乃至２０のいずれか１項に記載の方法の工程の実質的に全てを実行する装置。
【請求項２４】
　実質的に本明細書で添付図面を参照して記載した装置。
【請求項２５】
　実質的に本明細書で添付図面を参照して記載した方法。
 

【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、例えば医用画像を加工する場合に使用することができる対象に固有の統計的
動きモデルを生成かつ使用する方法および装置に関する。
【背景技術】
【０００２】
　統計的形状モデル化は、例えば対象間の解剖学的差異による臓器の物理的な形状変化を
表現し補正するための有力な方法を提供し、さまざまな医用画像解析業務、例えば画像分
割［１］や画像位置合わせ［２］などを目的として研究されてきた。具体的には、クーツ
（Ｃｏｏｔｅｓ）等［３］によって最初に提案され、主成分解析（ＰＣＡ：ｐｒｉｎｃｉ
ｐａｌ　ｃｏｍｐｏｎｅｎｔ　ａｎａｌｙｓｉｓ）を画像に基づく形状訓練データに応用
することによって低次元の線形統計形状モデル（ＳＳＭ：ｓｔａｔｉｓｔｉｃａｌ　ｓｈ
ａｐｅ　ｍｏｄｅｌ）を構築するこの方法は、多数の応用分野に利用され、臓器の形状の
差異に関する学習情報から有用な制約情報あるいは事前情報を得てきた。そのようなモデ
ルは、区画化と位置合わせのアルゴリズムの範囲内で解を求めるときに、物理的に信じ難
い臓器形状を考慮することがないようにする、あるいは少なくともそのような形状の重要
度を下げるようにするのに役立つ。
【０００３】
　臓器形状の差異は、一般に２つの源から発生すると考えることができる。一番目は対象
間の差異と呼ばれるもので、異なる人間間の臓器の形状の差、すなわちある人間と別の人
間の臓器の形状の差を表す。そのような形状間の差異は複数個人の母集団全体で自然に生
じる。二番目は対象内の差異と呼ばれ、１人の人間の臓器の形状の変化を表す。そのよう
な対象内の変動は多くの異なる因子、例えばその人の姿勢の変化、臓器の自然な（例えば
、呼吸や心拍による）動き、医療機器の挿入による組織の変形、疾病の進行または退行な
どにより発生する。
【０００４】
　ＳＳＭが最もよく使われる方法は一般に、ある母集団（対象内の形状の差異が明確に考
慮されておらず、かつ患者内の形状のいかなる差異の影響も最小にするように一貫した方
法で訓練データが得られている母集団）内の対象間の臓器形状の差異を表現する場合であ
る。対象内の臓器の動きを表すＳＳＭを、統計的動きモデル（ＳＭＭ：ｓｔａｔｉｓｔｉ
ｃａｌ　ｍｏｔｉｏｎ　ｍｏｄｅｌ）と呼んで、より一般的なＳＳＭ［６、７］と区別し
てもよい。対象間の差異に着目する１つの理由は、対象に固有の（対象内の）臓器形状の
変動と臓器の動きのモデル化には、１つの対象から十分な訓練データを得て形状の差異の
範囲を統計的に表現する必要があることである。これは現実には困難である。理由は例え
ば、動的な画像データが必要な場合があるからで、特に臓器形状の完全な三次元（３Ｄ）
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の変動を考慮する場合［１］、その入手は困難または不可能である。特に困難な例には、
外科器具の侵入すなわち使用によって非生理的に動く臓器のモデル化がある。そのような
場合に、外科手術の前に臓器形状変化に関するデータを得ることは、普通は現実的でも倫
理的でもない。
【０００５】
　この問題に対処する１つの手法は、生体力学モデル化手法を用いて臓器の動きのシミュ
レーションを行って、ＳＳＭを構築するための合成訓練データを得ることである［４、５
］。しかしこの方法で合成訓練データを生成するのは、複雑で時間を要する作業であり、
関心のある対象の臓器の区画化、および有限要素解析または同等の方法を用いる膨大な計
算によるシミュレーションが必要になる。これらの要因が、このようなモデルを現実に応
用する方法の制約になる。例えば、この手法を用いるＳＭＭの生成は、画像で誘導される
手術の術前工程として、必要な画像解析とシミュレーションを実施する時間があるときの
み現実的である。
【０００６】
　母集団に基づくＳＳＭを、対象間および対象内の臓器の形状の差異または変動に影響を
受ける訓練データを用いて組み立てることは可能である。しかしそのようなモデルは、対
象に固有の形状／動きを近似する対象に固有のＳＭＭと比べて有効性が劣る、すなわち効
果的に機能しないことが非常に多い。具体的には、通常そのようなモデルは、このモデル
を用いて形状例を作り出し、かつ対象間の形状の差異による非現実的すなわち「過度に一
般化された」形状例を作り出さないようにするとき、対象内の差異と対象間の差異を区別
するために追加の制約（弾性モデルによって得られるような制約［８］）を必要とする。
【０００７】
　対象間および対象内の形状の差異を区別することの重要性は、以下のことを考慮するこ
とによって説明される。第１および第２の臓器状態があって、それぞれが対象内の臓器形
状の変動に起因する異なる臓器形状に対応する場合、第１の状態と第２の状態の間に臓器
の何らかの物理的遷移が存在して臓器形状が変化しているはずである。そのような対象内
の変動のモデルをＳＭＭ（統計的動きモデル）と呼ぶことができる。何故なら、物理的遷
移が第１と第２の形状の間の一般的感覚の動き（臓器の変形による形状変化など）の意味
を含むからである。これに対して、第１の臓器形状と第２の臓器形状の差が対象間の差異
に起因する場合は、その差は個人によって異なり、何らかの状態変化に対応した第１と第
２の形状の間に存在するそのような物理的遷移に対して理由はない。したがって、この種
の差異は、より一般的なＳＳＭ（統計的形状モデル）で表される。第１および第２の形状
が動きによって一般に互いに関連していないからである。
【０００８】
　対象間の訓練データの少なくとも一部に基づくＳＳＭを用いて対象に固有の形状の変動
をモデル化する場合、所与の臓器に実際は物理的に妥当でなない変動を許容することがあ
る。一例として人間は一般に、眼線から唇までの距離を（顔の筋肉を使って唇を動かすこ
とによって）変えることができる。しかし、眼と眼の間の距離を変えることは、普通は不
可能である。この距離は頭蓋骨（剛体）で決まっているからである。一方、眼と眼の間の
距離（実際には頭蓋骨の寸法）は個人間で異なる。したがって、対象間の訓練データの少
なくとも一部に基づくＳＳＭでは、この眼の距離の差異を、個々の対象には物理的に妥当
ではないという事実はあっても許容する可能性がある。
【０００９】
　近年、多重線形解析［９］が心臓［１０］や心臓弁［１１］の動きの動的モデル化の方
法として提案されてきた。この手法は、対象間の形状の差異（例えば、異なる個人の心臓
の寸法と形状の患者固有の差による差異）および対象内の形状の変動（例えば、生理学的
な心臓の動きによる変動）を同じ統計モデルで表すことができる。しかしこの方法は、対
象間の動きの亜空間（ｓｕｂｓｐａｃｅ）の間の時間的対応を知る必要があり、言い換え
れば、異なる対象の臓器の状態は、例えば独立した信号によって関連付けられていなけれ
ばならない。そのような信号は例えば心電計（ＥＣＧ：ｅｌｅｃｔｒｏｃａｒｄｉｏｇｒ
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ａｐｈｉｃ）の信号であり、これは心臓の電気的活動度を測定し、したがって心臓の動き
と本質的に関連している。そのような独立した信号を心臓や肺以外の、動きに比例した生
理的信号が得られないあるいは測定が非常に難しい臓器で得ることは非常に困難である。
さらに、［１０、１１］に記述された心臓モデルで実証できたのは、心臓周期の記録を通
して得られる動的データから比較的少ない時点における臓器形状を予測する能力だけであ
る。
【発明の概要】
【発明が解決しようとする課題】
【００１０】
　一般に、臓器の動きに関する対象に固有の動的データ、例えば撮影による動的データは
多くの場合入手が極端に限られるかあるいは入手不可能である。しかし、画像によって誘
導される外科手術に関しては多数の例が存在し、現在の臓器状態を説明する（術中の）空
間的データは少なくかつ雑音が多いとすれば、対象間および対象内の臓器の形状の差異、
変動に関する学習情報を用いて対象に固有の臓器の形状と動きを予測するモデルを提供で
きることは望ましい。
【００１１】
　例えば手術中に、外科医は特定の解剖学的構造または病変組織領域を治療または除去し
ようとする。この病変組織の具体的な位置は術前の撮影、例えば磁気共鳴撮影法（ＭＲＩ
）などによって事前に決定されている。しかし、この構造または領域の位置を特定するこ
とは難しく、あるいは術中に超音波などの術中撮影を用いて見ることができないことがあ
る。そのような術中撮影技術は一般に安価、持ち運び可能、かつ術中の利用が容易である
が、診断品質の術前撮影方法の情報を提供しないことが多い。
【００１２】
　この問題を解決する確立された一つの方法は、術前画像と術中画像の間の（非剛体）位
置合わせ（register）（すなわち空間的整列）を実行し、それによって、術前画像で決定
された構造を術中画像の上に描く（およびそれと一緒に表示する）ことができるようにす
ることである。実際には、これは特殊用途の画像融合ソフトウェアを用いて実現され、外
科的な応用に重要な要求事項は、外科手術との関係で許容される時間内に画像位置合わせ
（image registration）を実施する必要があることである。殆どの臨床使用に十分な高精
度を実現するには、画像位置合わせによって、外科的に関心のある対象の臓器または構造
の動きや変形を補償することもできることが必要で、そのような動きや変形は、例えば、
対象の位置または姿勢の変化、あるいはその外科手術中に使用される器具の直接的な結果
として生じる（例えば、超音波撮影プローブ押圧による臓器の変形）。個々の対象のこの
臓器の動きの物理的性質から、ＳＭＭ手法が適切であることが示唆されるが、動的撮影が
できない場合に、臓器の動きの生体力学シミュレーションを実行して対象に固有のＳＭＭ
を組み立てて訓練データを得ることは、計算的にも臨床作業の流れの範囲で実施するとい
う観点でも、複雑かつ時間を要する作業である。
【課題を解決するための手段】
【００１３】
　本発明は添付された特許請求の範囲で定義される。
【００１４】
　本明細書に記載の本手法により、対象の亜空間の間の対応（correspondence）を知らな
くても対象に固有のＳＭＭを組み立てることが可能になる。言い換えれば、異なる対象の
臓器の形状と状態の間の関係を設定する必要がない。また本手法は、限定された対象に固
有の幾何学データ、例えば１つの静止画像の区画化に基づく基準形状だけを含んで新規（
初見の）対象の臓器の動きを予測する。本手法を、前立腺のＭＲＩおよび経直腸超音波（
ＴＲＵＳ：ｔｒａｎｓｒｅｃｔａｌ　ｕｌｔｒａｓｏｕｎｄ）画像の変形可能な登録に応
用する例を以下に説明する。
【００１５】
　より一般的には、軟組織臓器の変形を含む対象に固有の臓器の動きの統計形状をモデル
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化するための新しい枠組みが本明細書に記述される。採用した手法は、形状モデルパラメ
ータの対象に固有の確率のモデル化をカーネル回帰解析と結合して、初見の対象の臓器の
動きを予測する。本手法は計算の効率が高く、各対象の限られた数の訓練形状サンプルだ
けを使用する。したがって、臓器形状の変動に関する対象に固有の事前情報は役立つもの
の、十分な訓練データを得て新規の個々の対象用の統計的形状／動きモデルを組み立てる
ことは現実的でないあるいは技術的にまたは論理的に困難であるという画像解析の問題に
高度に適している。本明細書に開示された本手法の一研究として、ＭＲＩにより対象に固
有の統計的前立腺動きモデルを組み立て、対象に固有の訓練データ（有限要素シミュレー
ションと、対象間の変動と対象内の前立腺の動きに起因する形状の変動を示す混合対象デ
ータとによって得た）を用いて組み立てられたモデルと比較した。この研究の結果は、２
つの対象に固有のモデルの出力は一般に等価であり、複数の対象の群の訓練データを用い
て組み立てられた混合モデルで得られる特異性よりもずっと大きな特異性が得られること
を示している。さらに、非剛体の位置合わせを行うアルゴリズムの一部として許容可能な
変形を抑制する場合、２つの異なる対象に固有のモデルを用いて計算したＭＲＩと３Ｄ－
ＴＲＵＳの間の対象の位置合わせの誤差に有意差は無かった。これらの知見から、本明細
書に記載の本手法は安定性があり、計算の効率がよく、シミュレーションに基づく臓器の
動きの対象に固有の統計的形状モデルの現実的な代替になり得ること、場合によっては動
的撮影の代替になり得ることがわかった。
【００１６】
　本発明の実施態様では解剖学的構造の形状の一組の幾何的表現を用いて対象に固有の解
剖学的構造の形状の差異の統計モデルを組み立てる方法および装置が提供される。各表現
は複数の対象の１つと関連し、各対象はそれぞれ関連する表現の部分集合（各部分集合は
基準表現を含む複数の表現を含む）を持つ。複数の表現は、解剖学的構造の物理的動きお
よび／または変形から生じる種々の形状に対応する。本方法は、一組の形状パラメータ（
その値は所与の任意の表現を特徴付ける）を規定すること、および各対象に対し、一組の
対象に固有の分布パラメータによってその対象と関連する表現の部分集合全体に渡る形状
パラメータの値の確率分布を表現することを含む。この方法は、さらに対象に固有の分布
パラメータと各対象に対する基準表現との間の回帰を決定すること、および決定した回帰
を新規の対象の基準表現に当てはめて、新規の対象に対する対象に固有の分布パラメータ
を決定することも含む。次にこの対象に固有の分布パラメータを用いて、新規の対象に対
する対象に固有の統計的動きモデルが組み立てられる。
【００１７】
　幾何学表現は例えば画像を含んでもよい。画像は三次元画像、具体的には解剖学的構造
の三次元形状を表す画像でもよい。画像は二次元でもよく、例えば顔認識システムには適
切な場合がある。画像を１種以上の適当な撮影方法で得てもよく、そのような撮影方法に
は例えば、磁気共鳴撮影法（ＭＲＩ）、Ｘ線コンピューター断層撮影（ＣＴ）、陽電子放
出断層撮影（ＰＥＴ）、超音波、光音響撮影（ＰＡＴ）、光学式撮影、Ｘ線またはガンマ
線撮影、光学顕微鏡検査、電子顕微鏡検査などがある（ただしこれらに限定されない）。
【００１８】
　幾何学表現は、例えば生体力学モデル化から導き出してもよい。つまり対象の解剖学的
構造の形状は、先ず測定（画像測定あるいは任意の他の適切な物理的測定技術など）と、
解剖学的構造の素材の既知の特性（例えば弾性）を基にしたこの形状に適合するモデルと
によって決定されてもよい。このモデルによって、解剖学的構造をそれらの既知の特性に
応じて移動または変形し、それによって解剖学的構造の物理的に現実的な他の形状を作り
出すことができる。これらの形状の表現（実際にはモデルのパラメータ空間全体の種々の
位置に対応するモデルの例）を利用して、解剖学的構造の形状の幾何学表現を得ることが
できる。そのような幾何学表現は任意の適切なフォーマットで得ることができ、例えば、
モデルから生成した画像として、あるいはその具体的なモデル例の構成に従う解剖学的構
造表面に関する一組の具体的な特徴または目印の位置として得ることができる。
【００１９】
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　幾何学表現は複数の源、例えば、複数の異なる撮影方法および／または生体力学モデル
化手法の組み合わせから導き出してもよい。
【００２０】
　一部の実施態様では一組の形状パラメータを、主成分解析（ＰＣＡ）を用いて決定して
もよく、幾何学表現の領域すなわち空間の密にまとめられた表現が得られる。しかし他の
実施態様では、異なる形状パラメータを利用してもよい。例えば、表現が生体力学モデル
化から導き出された場合は、形状パラメータは特定モデルのパラメータ値から直接導き出
される（あるいはそれに準じる）場合もある。
【００２１】
　本明細書に記載の本手法を用いて様々な解剖学的構造をモデル化することができる。例
えば、解剖学的構造は、例えば軟組織を含む前立腺、肝臓、腎臓、または心臓などの臓器
を表現してもよい。そのような臓器のモデル化は、典型的には医学的理由で行われる。例
えば、モデル化は非剛体画像位置合わせを支援し、第１の画像を第２の画像に描写（位置
合わせ）することができるようにしてもよい。第１の画像は例えば詳細な術前画像であり
、ＭＲＩなどによって得られ、第２の画像は例えば術中画像であり、超音波などで得られ
る。本明細書に記載のモデル化によって非剛体画像位置合わせを支援して、効率的な計算
方法で臓器の変形または動きに対処することができる。そのような変形または動きは、対
象の姿勢の変化、手術器具の存在、生理学的状態の何らかの変化、および／または任意の
他の変形源から生じるようなものがある。また本明細書に記載のモデル化手法を医用目的
以外の顔認識などに利用することができる。
【図面の簡単な説明】
【００２２】
　本発明の種々の実施態様が、以下の図面を参照して詳細に単なる例示として説明される
。
【図１】本発明の一部の実施態様による対象に固有のＳＭＭを組み立てるために使用され
る本方法の全体模式図である。
【図２】種々の対象の前立腺の形状の模式的表現である。各形状は、種々の条件で物理的
変形を予測する生体力学モデル化ソフトウェアを用いて作り出された。
【図３】本発明の一部の実施態様による方法で決定された、異なる３つの対象の因子別確
率密度Ｐ（Ｂｉｌ）を表すグラフである。
【図４】３つの対象の因子別確率密度を母集団全体と比較した比較図である。
【図５】本発明の一部の実施態様による方法の検証の一部として、抽出した試験対象に対
する主な１個抜き交差検証の全体模式図である。
【図６】本発明の一部の実施態様による方法の検証の一部として、抽出した試験対象に対
する主な１個抜き交差検証の全体模式図である。
【図７】３つの試験対象で、回帰モデルを用いて得たグラフを比較して、対象に固有の予
測確率密度関数（実線）を得、元のデータサンプルを用いて作ってヒストグラム（点線）
と比較した図である。
【図８】無作為形状の例であって、（ｉ）グラウンドトゥルース（グラウントゥルース）
生体力学ＳＭＭと、（ｉｉ）本発明の一部の実施態様による同一対象の前立腺のモデル予
測された対象に固有のＳＭＭと、（ｉｉｉ）混在対象のＳＳＭとを用いて作られ、患者前
立腺３６例の訓練母集団全体の形状の変動を捕らえた図である。
【図９】（ｉ）本発明の一部の実施態様によるモデル予測された対象に固有のＳＭＭ、（
ｉｉ）（グラウンドトゥルース）生体力学シミュレーションを用いて組み立てられた生体
力学対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳＳＭの、それぞれの一般化能力
（対象が持つ規則性への当てはまりの程度）を表すＲＭＳ距離の中央値を試験対象別に示
すグラフである。
【図１０】（ｉ）本発明の一部の実施態様によるモデル予測された対象に固有のＳＭＭ、
（ｉｉ）（グラウンドトゥルース）生体力学シミュレーションを用いて組み立てられた生
体力学対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳＳＭの、それぞれの一般化能
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力を表すＲＭＳ距離の中央値を試験対象別に示すグラフである。
【図１１】（ｉ）本発明の一部の実施態様によるモデル予測された対象に固有のＳＭＭ、
（ｉｉ）（グラウンドトゥルース）生体力学シミュレーションを用いて組み立てられた生
体力学対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳＳＭの、それぞれの一般化能
力を表すＲＭＳ距離の中央値を試験対象別に示すグラフである。
【図１２】３種の線形モデル、すなわち（ｉ）本発明の一部の実施態様によるモデル予測
された対象に固有のＳＭＭ、（ｉｉ）（グラウンドトゥルース）生体力学シミュレーショ
ンを用いて組み立てられた生体力学対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳ
ＳＭの、それぞれの特異性のＲＭＳ距離中央値を試験対象別に示すグラフである。
【図１３】３種の線形モデル、すなわち（ｉ）本発明の一部の実施態様によるモデル予測
された対象に固有のＳＭＭ、（ｉｉ）（グラウンドトゥルース）生体力学シミュレーショ
ンを用いて組み立てられた生体力学対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳ
ＳＭの、それぞれの特異性のＲＭＳ距離中央値を試験対象別に示すグラフである。
【図１４】３種の線形モデル、すなわち（ｉ）本発明の一部の実施態様によるモデル予測
された対象に固有のＳＭＭ、（ｉｉ）（グラウンドトゥルース）生体力学シミュレーショ
ンを用いて組み立てられた生体力学対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳ
ＳＭの、それぞれの特異性のＲＭＳ距離中央値を試験対象別に示すグラフである。
【図１５】前立腺表面および解剖学的目印の位置合わせのペアワイズ（ｐａｉｒ－ｗｉｓ
ｅ＝対データによる相関）例を示す図である。
【発明を実施するための形態】
【００２３】
　本明細書に記載の手法は、動きによる臓器形状の変動を、複数の対象と各対象の複数の
形状から成る訓練データを用いて組み立てられた「混合対象」（すなわち母集団に基づく
）ＳＳＭに関連して表現することができることを認めている。得られるＳＳＭは、対象間
と対象内の両方の形状の変動を捕らえる。次にカーネル回帰解析が、多変量の対象に固有
の確率密度関数（ＳＳＰＤＦ：ｓｕｂｊｅｃｔ－ｓｐｅｃｉｆｉｃ　ｐｒｏｂａｂｉｌｉ
ｔｙ　ｄｅｎｓｉｔｙ　ｆｕｎｃｔｉｏｎ）を表す方法が提供し、対象内の臓器の動きに
比例した形状パラメータ（成分の点数または重みともいう）の分布を、事前抽出した基準
形状のパラメータの関数として表す。この関係が一度設定されると、新規の対象（すなわ
ち初見の対象）の予測される臓器の動きを表現するＳＳＰＤＦを、その対象の新しい基準
形状データから推定することができる。次に、得られたＳＳＰＤＦを用いて、その新規の
対象に固有のＳＭＭを作ることができる。
【００２４】
　対象に固有のＳＭＭを作るために用いる本方法の全体模式図を図１に示す。含まれる工
程は以下である。
１．入手可能な訓練データを全て用いて混合対象のＳＳＭを組み立てる。
２．混合対象のＳＳＭに関連する各訓練データの組の形状パラメータを（例えば、線形モ
デルの例を予測することによって）入手する。
３．各対象の異なる訓練形状に対応する形状パラメータの各組のＳＳＰＤＦを推定する。
ＳＳＰＤＦはパラメータ形式で表現されてもよく、複数の分布パラメータ、例えばガウス
分布に対する平均値と分散で表現されてもよい。
４．各対象の基準形状を特定する。例えば、基準形状は「安静状態」すなわち変形してい
ない状態の臓器を表現してもよく、あるいは具体的な生理事象に対応する時点での臓器を
表現してもよい。基準形状は、この後形状パラメータで表現される。
５．各対象に対し、各ＳＳＰＤＦを特徴付けるパラメータと基準形状を規定する形状パラ
メータの間のカーネル回帰解析を行う。
６．新規の対象の基準形状を所与として、回帰分析を用いて新規の対象のＳＳＰＤＦを予
測する。
７．最後に、予測したＳＳＰＤＦを用いて新規の対象に固有のＳＭＭを組み立てる。
【００２５】
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　上記の主な工程は図１にも説明されている。得られた対象に固有のＳＭＭは、この対象
の入手可能な訓練データ（画像によるあるいはシミュレーションによる訓練データなど）
から直接組み立てられた対象に固有のＳＭＭの代わりとなる。したがって、この方法を用
いて推定された対象に固有のＳＭＭを、従来の方法を用いて組み立てられたＳＭＭと直接
比較することができる。以下の説明では、これらの工程の実行を、前立腺の対象に固有の
ＳＭＭを組み立てる例を用いて説明する。この例では、超音波プローブを直腸内に配置す
ることに起因する変形を捕らえる。
【００２６】
混合対象の統計的形状モデルの構築
　図２は、対象Ｉの前立腺の形状の三角形のメッシュで表された模式的表現を示す。この
例では、有限要素（ＦＥ）モデル化手法を用いて各メッシュの形状をモデル化して、経直
腸超音波（ＴＲＵＳ）プローブの存在に応じた基準形状の種々の物理的変形を予測した。
図２に、それぞれの変形形状の例に対するＴＲＵＳプローブの３Ｄ位置および／または向
きを陰影付きの中空円筒で示す。
【００２７】
　対象ごとの形状の数は等しくないと仮定して、経直腸超音波（ＴＲＵＳ）プローブの姿
勢、およびプローブの周囲の水が充填されたバルーンの直径を各シミュレーションで変え
ると、その結果（対象ｉに対し）予測される変形形状Ｊｉ（ｉ＝１，２，．．．，Ｉ）が
得られる。［５、１２］の記述のように、組織の弾性特性などの他の既知のパラメータを
シミュレーションの変数として含めて、これらの特性の不確かさを反映してもよい。各対
象に対し、ｊ＝０で表された第１の形状は基準形状であり、残りのＪｉ、すなわちｊ＝１
，２，．．．Ｊｉ形状は基準形状の変形例である。この例では、基準形状は「安静状態」
の前立腺を表し、所定位置の直腸内コイル（または他の直腸内挿入物）がない状態で得ら
れたＴ２強調ＭＲ画像を区画化することによって得られた［１２］。通常は、基準形状は
正規化されて一貫した尺度および／または向きになり、異なる画像同士を高い信頼度で比
較できるようになる。
【００２８】
　一般に、複数メッシュの表面をグループワイズ位置合わせして、（ｉ）対象ごとのそれ
ぞれの変形形状と基準形状の間、および（ｉｉ）異なる対象の基準形状の間の点の対応を
設定することができる。ＦＥシミュレーションを実行して訓練データの組を決定する際に
、各変形形状（と基準形状）の間の点対応は暗黙的に分かる。対象同士の（対象間の）点
対応の決定に用いるアルゴリズムを以下に説明する。
【００２９】
　混合対象のＳＳＭは、主成分解析（ＰＣＡ）を、
【数１】

訓練形状ベクトル
【数２】

に当てはめることによって組み立てられる。ここで、訓練形状ベクトルはそれぞれ、ｇ番
目の形状を表現するＮ個の点の３Ｄ座標を含む。形状ベクトルは３Ｄ表面積または体積の
片方を規定してもよい（これらは、例えばＦＥメッシュの結節点で表される）。訓練デー
タの中で変動が少ない成分を除外することによる次数の縮小という利点を活用すると、得
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られる形状モデルは、Ｌ≦Ｇ主成分を用いた一次式で近似される［３］。
【数３】

ここで、
【数４】

は平均形状ベクトル、ｅｉは、ｌ番目に大きい固有値σｌ
２に対応する（平均差分）訓練

形状ベクトルの共分散行列の固有ベクトル、およびｂｇｌはスカラー形状パラメータであ
り、ベクトルｂｇはｇ番目の臓器形状を集合的に表現する形状パラメータを含む。式（１
）により、混合対象の個々および全ての訓練データから学習した動きの変動がモデル化さ
れる。このモデルの中で、全てのデータの組の

【数５】

およびＥを、全てのデータの組に当てはまる分布パラメータの推定値と見なすことができ
、これを用いて所与のサンプルに対する形状特性を、座標系ｓｇ（未加工画像データの座
標系を表す）とｂｇ（ＰＣＡから次元縮小した座標系を表す）の２つの異なる座標系の間
で変換する。この方法で生成されたＳＳＭを混合対象のＳＳＭと呼ぶ。　
【００３０】
対象に固有のＰＤＦの計算
　ｉ番目の対象に固有の確率密度は
【数６】

で表され、ここで、
【数７】

は多変量の無作為変数であり、
【数８】

はｉ番目の対象の亜空間を表す（故に、対象ｉに関するベクトル形状パラメータｂｇは
【数９】

からのサンプルを含む）。式（１）を整理して、次式を得る。
【数１０】

【００３１】
　式（２）において、ｉ番目の対象に属するｊ番目の形状の座標ｓｉｊを推定することに
よって、ｂｉｊは訓練データの形状パラメータを含む。なお、ｓｉｊとｓｇは共に訓練形
状ベクトルであり、異なる添字は、異なるグループに分けられた異なるデータであること
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を示す。
【数１１】

を独立仮定によって単純化して、この多変量確率密度を因子別の同時確率密度として、す
なわち
【数１２】

で表すことができるようにしてもよい。言い換えれば、ｂｉｊの次元を縮小した空間の任
意の所与の軸に沿った確率分布は、残りの軸上の値から独立していると考えられ、したが
って全体の確率は、各軸の別々の（個々の）確率値を掛け合わせることによって導き出す
ことができる。
【００３２】
　（独立仮定および多変量ガウス分布仮定（下記参照）は文献で広く考察されている（例
えば［１３］参照）。しかし、より複雑な分布、例えば非単一モード混合または完全共分
散行列などを、適切なら検討してもよい。現実には、これらの仮定で共分散行列の自由度
が低下するが、交差検証で実証されたようにモデル化を一般的にする能力は維持される。
）
【００３３】
　独立仮定を用いてこの方法の確率を表すことにより、（ｌ番目の主成分に対応する）ｌ
番目の形状パラメータに対するスカラー無作為変数Ｂｉｌの個々の分布ごとに、有益な分
布のグラフを描くことが可能になる。図３に、因子別の確率密度Ｐ（Ｂｊｌ）のグラフを
示すが、これは、データ１、データ２、およびデータ３で示す３つの異なる対象（Ωｉと
しても示されている。ｉ＝１、２、または３）、および（ｘ軸とｙ軸に対応する）混合対
象のＳＳＭの２つの主成分のグラフである。各軸に示された曲線は、それぞれの主成分に
対応する因子別の確率密度を表し、ここで楕円は両主成分に基づくＳＳＰＤＦである
【数１３】

の境界パラメータの値を表す。スカラー形状パラメータｂｉｊｌ，ｊ＝１，　２，．．．
，　Ｊｉは、所与の対象（ｉ）のＪｉ個の変形形状組から導かれた無作為変数ＢｉｌのＪ

ｉ個のサンプルである。
【００３４】
　同様に、混合対象のＳＳＭを組み立てる全訓練データの確率密度は
【数１４】

で表され、ここで、基準空間Ωｇは全ての対象の亜空間の和集合である。これは、
【数１５】

と同じ方法で因子別けすることができる。言い換えれば、これは、独立仮定を（個々の対
象の訓練データだけではなく）訓練データの全ての組全体に当てはめる。
【００３５】
　図４は、これらの因子別確率密度のいくつかの例を、前立腺の形状データからのサンプ
ル｛ｂｉｊ｝のヒストグラムを用いて示す。具体的には、図４は、３つの異なる対象（ｉ
＝１、２、３）の前立腺形状データのヒストグラムで表わされた因子別の推定確率密度Ｐ
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団確率密度Ｐ（Ｂｇｌ）を表す。
【００３６】
　図４のグラフを調べると、明らかにＰ（Ｂｉｌ）は対象間で異なり（すなわち（ｉ）の
値で異なり）、混合対象（母集団）のＳＳＭに対応してＰ（Ｂｇｌ）とも異なる。言い換
えれば、母集団全体を用いてデータの組の主成分を規定しているが、各主成分の分布を見
ると、その分布は極めて対象に固有である。例えば、ｌ＝１および２の分布をよく見ると
、各対象に対しＰ（Ｂｉｌ）は比較的狭い、しかし、Ｐ（Ｂｇｌ）の分布は比較的広い。
これは上記の眼の間隔の例に対応させることができ（主成分は一般に物理的パラメータの
組み合わせを表すが）、言い換えれば、眼の間隔の対象間の変動は比較的広いが、対象内
の（対象に固有の）変動は比較的小さい。したがって、ｌ＝１と２に対するＰ（Ｂｇｌ）
の分布の広がりの殆どは、対象内の変動よりも異なる個々の対象間の変動に依存する。そ
の一方、ｌ＝３と４では、Ｐ（Ｂｉｌ）の分布は各対象に対して比較的広い。このことは
、対象内の変動性がこの主成分に関連した変動性の背後にある重要な因子（おそらく最も
重要な因子）であるということを示唆している。
【００３７】
　全体に、本明細書に記載の本手法は図４から、ＳＳＰＤＦをモデル化することによって
、全体（母集団）の混合対象の空間を動きと対象の亜空間に分解する潜在力がある仕組み
を作り出す。その際、（物理的な）動きの空間は、対象内の変動、すなわち所与の対象の
臓器の物理位置の１つから別の位置への移行に対応する。
【００３８】
　また図４からわかるように、サンプルの分布の形状は一般に鐘状であって、幅および中
央の位置が異なる。独立仮定に従えば、ＳＳＰＤＦを多変量ガウス分布ＰＤＦ
【数１６】

でパラメータ化してもよい。ここで、分布パラメータμｉおよびσｉ
２は、それぞれ平均

ベクトルおよびＬ×Ｌ共分散行列の対角要素を表し、共分散行列の対角要素は要素分散成
分ベクトル

【数１７】

を表す。このＰＤＦはｉ番目の対象に対するＳＳＰＤＦのパラメータの例と考えられ、分
布パラメータμｉおよびσｉ

２によってその特徴が完全に決まる。言い換えれば、任意の
（ｉで規定された）所与の対象に対し、（ｌで規定された）所与の主成分と関連した確率
分布はガウス分布に近く、２つの標準スカラー量、すなわち平均（μ）および分散（σ２

）によってパラメータ化される。
【００３９】
カーネル回帰解析を用いたパラメータの推定
　所与の対象（ｉ）の分布パラメータすなわちμｉおよびσｉ

２は、所与の一組のサンプ
ル｛ｂｉｊ，ｊ＝１，　２，．．．，　Ｊｉ｝によって、以下の最大確率推定量を用いて
推定してもよい。すなわち、

【数１８】

および
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【数１９】

【００４０】
　一般性を失うことなく、所与の対象（ｉ）に対するＳＳＰＤＦ
【数２０】

の分布パラメータ
【数２１】

と、同じ対象に対する基準形状ｂｉ０の形状パラメータの間に（非線形の）関係が存在す
ると仮定する。この仮定により、新規の対象（例えばｉ＝Ｉ＋１）に対する基準形状の形
状パラメータおよび上記関係だけに基づいて、分布パラメータθｉを予測する可能性、ひ
いては新規の対象に対するＳＳＰＤＦ
【数２２】

を予測する可能性が広がる。
【００４１】
　現在の研究では、分布パラメータは下記のカーネルの一次関数で表される。
【数２３】

ただし、制約条件
【数２４】

がある。式（５）において、

【数２５】

はカーネルパラメータｈによるガウス分布カーネル関数、ｃは正のスカラー定数、
【数２６】

は
【数２７】

による無作為雑音項、ｍはθｉ＝［θｍｉ］ｍ＝１，２，．．．，２Ｌなどの各スカラー
分布パラメータの添字、βｍ＝［βｍｉ］Ｔ

ｉ＝０．１，．．．，Ｉはベクトル回帰パラ
メータである。所与のデータの組（例えば図２に説明したデータの組）に対する最適回帰
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パラメータは、［１４］に従って、正規化した残余の二乗の和を最少化する一次最小二乗
法を用いて得てもよい。
【００４２】
　最初に、正規化された推定量
【数２８】

が次式で得られる。
【数２９】

ここで、デザイン行列は次の形になる。

【数３０】

【数３１】

、およびλはリッジ重み付け（ｒｉｄｇｅ　ｗｅｉｇｈｔｉｎｇ）パラメータ、Ｉは強度
行列である。したがってオフセット係数が次式で得られる。
【数３２】

【００４３】
　実際には、過剰な適合を避けるために正規化パラメータλを小さな定数に設定し、許容
可能な残余を維持し、この研究で示した検討ではλ＝１０－８を用いた。カーネルパラメ
ータｈは、以下に述べる交差検証法で決定した。
【００４４】
　当然のことながら上記の解析はガウス分布カーネルを用いたカーネル回帰に基づくが、
任意の他の適切な形態の回帰、例えば非パラメータ回帰、すなわち高次多項式に基づくカ
ーネルを用いることもできる。
【００４５】
対象に固有のＳＭＭの予測
　新規の対象の基準形状データを所与として、先ず、グループワイズ位置合わせの平均形
状に非剛体位置合わせし、［１］、次に剛体要素を除去した後に混合対象のＳＳＭの主成
分に投影することによって、新規の対象の形状パラメータｂｎｅｗ，０を推定することが
できる。すなわち、

【数３３】

ここで、ｓｎｅｗ，０は剛体的に整列した非変形形状である。次に、新しいＳＳＰＤＦの
各分布パラメータを、式（５）の条件期待値を求めることによって計算することができる
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。
【数３４】

ここで、係数
【数３５】

は式（６）および（８）で得られ、Ｅ［・］は統計的期待値を表す。ここで、新規の対象
のＳＳＰＤＦ
【数３６】

を、予測した分布パラメータ
【数３７】

を用いて予測することができる。
【００４６】

【数３８】

を推定したら、予測した対角共分散行列を「センタリング（各要素から全要素の平均値を
差し引くこと）」によって線形モデルを直接得てもよく、したがって予測された対象に固
有のＳＭＭは次の形になる。
【数３９】

ここで、要素の分散はσｎｅｗ
２になり、

【数４０】

は予測される対象に固有のＳＭＭの平均値に等しく、ｂｎｅｗは新しい形状パラメータを
表す。
【００４７】
最適カーネルパラメータ
　ｈ＝１０Ｘで表せる各回帰カーネルパラメータに対し、式（５）のように、回帰残余の
二乗平均平方根として定義された交差検証誤差を最少化することによって、最適値が計算
される。回帰誤差は、１個抜き交差検証の中で各データに対し、（式（３）および（４）
で訓練データから計算された）グラウンドトゥルース分布パラメータと、（式（６）およ
び（８）で試験データから計算された）予測分布パラメータとの差を比較して計算される
。この研究では、この後に黄金探索法を用いて、目的関数として働く交差検証誤差を最少
化して、所定間隔

【数４１】

の範囲内のｘの最適値を見付けた。
【００４８】
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（黄金分割探索ともいう黄金探索は、標準の数値最適化アルゴリズムである。その理論は
キーファー、Ｊ（Ｋｉｅｆｅｒ，Ｊ．）著（１９５３）、「Ｓｅｑｕｅｎｔｉａｌ　ｍｉ
ｎｉｍａｘ　ｓｅａｒｃｈ　ｆｏｒ　ａ　ｍａｘｉｍｕｍ（最大値の連続的ミニマックス
探索）」、Ｐｒｏｃｅｅｄｉｎｇｓ　ｏｆ　ｔｈｅ　Ａｍｅｒｉｃａｎ　Ｍａｔｈｅｍａ
ｔｉｃａｌ　Ｓｏｃｉｅｔｙ（アメリカ数学会会報）４（３）：５０２－５０６，ｄｏｉ
：１０．２３０７／２０３２１６１に記載されており、実施例は、プレス、ＷＨ（Ｐｒｅ
ｓｓ，ＷＨ）、チューコルスキー、ＳＡ（Ｔｅｕｋｏｌｓｋｙ，ＳＡ）、ベッタリング、
ＷＴ（Ｖｅｔｔｅｒｌｉｎｇ，ＷＴ）、フラナリー、ＢＰ（Ｆｌａｎｎｅｒｙ，ＢＰ）等
著（２００７）、「Ｓｅｃｔｉｏｎ　１０.２．Ｇｏｌｄｅｎ　Ｓｅｃｔｉｏｎ　Ｓｅａ
ｒｃｈ　ｉｎ　Ｏｎｅ　Ｄｉｍｅｎｓｉｏｎ，Ｎｕｍｅｒｉｃａｌ　Ｒｅｃｉｐｅｓ：Ｔ
ｈｅ　Ａｒｔ　ｏｆ　Ｓｃｉｅｎｔｉｆｉｃ　Ｃｏｍｐｕｔｉｎｇ（３ｒｄ　ｅｄ．）（
科学計算の技法、第３版：数値的方法、第１０．２章、一次元における黄金分割探索）」
、Ｎｅｗ　Ｙｏｒｋ：Ｃａｍｂｒｉｄｇｅ　Ｕｎｉｖｅｒｓｉｔｙ　Ｐｒｅｓｓ（ケンブ
リッジ大学出版局）、ＩＳＢＮ　９７８－０－５２１－８８０６８－８）に記載されてい
る。
【００４９】
点の対応
　本明細書に記載のモデル化技法の利点の１つは、動きの亜空間の間の時間すなわち位相
（例えば呼吸周期内の位置）の一致を必要としないことである。確率密度だけをモデル化
して対象の動きを表現し、動きのデータを訓練データの組の中で任意の順序にグループ分
けすることができるので、多くの現実的な難しさが解消される。しかしそれでも、対象の
亜空間の間で点の一致が必要である。言い換えれば、一組の所定の特徴（例えば解剖学上
の目印）が（複数の点に対応する）臓器および各画像またはデータの組に対し規定され、
画像内のこれらの特徴（点）の位置が決定される。このようにすることによって点の対応
を決定することができるようになり、すなわちそれぞれの点または特徴に対し、各画像ま
たはデータの組の特徴の（対応する）位置が決まる。この点対応を、例えばグループワイ
ズ表面位置合わせ［１］によって推定してもよい。
【００５０】
　本発明の実施態様による研究では、混合対象のＳＳＭを組み立てるのに必要な訓練形状
の対象間の位置合わせを、目印により案内されるコヒーレント点ドリフト（ＬＧＣＰＤ：
ｌａｎｄｍａｒｋ－ｇｕｉｄｅｄ　ｃｏｈｅｒｅｎｔ　ｐｏｉｎｔ　ｄｒｉｆｔ）法［１
５］に基づく反復グループワイズ位置合わせ方法を用いて行った。その際、前立腺の解剖
学上の頂点および基点が２つの既知の対応点として働くことによって、前立腺の表面の間
の現実の点対応を見付けながら位置合わせすることが容易になる。この方法には、位置合
わせされた区画の平均形状への全ての区画のペアワイズ位置合わせがあり、平均形状は、
集束するまで繰り返し更新される。通常、繰り返しは５回未満である。この例では、変形
した各形状は、基準形状の物理的変形をモデル化することで生成され、ＦＥメッシュで表
されるため各対象に対する異なる動きのデータの間の三次元の点の一致が自動的に得られ
る。言い換えれば、ＦＥシミュレーションから分かる固有の対応を用いて、個々対象内の
対応を実現してもよく、画像による位置合わせを用いて異なる対象の間の対応を設定して
もよい。
【００５１】
　最後に、新しい基準形状データとグループワイズ位置合わせの平均形状の間の点対応を
見付けるために、この同じ方法を用いて一つのペアワイズの位置合わせを実施した。
【００５２】
検証方法
　１）データ収集。上記方法を試験するために、初見の前立腺の対象に固有のＳＭＭを組
み立て、［１２］に記述された生体力学モデル化手法を直接用いて生成したＳＭＭと比較
した。３６人の患者のそれぞれに対し、ＴＲＵＳ－プローブによる前立腺の変形の１００
個の有限要素のシミュレーションを用いて、混合対象のＳＳＭを組み立て、合計３６００
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個の訓練形状を得た。各シミュレーションに対し、種々のプローブ／バルーンの位置と向
き、異なるバルーンの直径、および異なる弾性材料の特性を当てはめた（詳細は［１２］
を参照）。３６人の患者のそれぞれに対し、Ｔ２強調ＭＲ走査（画像）内の被膜を臨床観
察の専門家が手作業で区画分けして得た形状を、前立腺の基準形状として規定した。
【００５３】
　２）交差検証。１個抜き交差検証の枠組みを用いて、３つの線形モデルの一般化能力と
特異性［１６、１７］を評価した。３つの線形モデルは、１）モデル予測された対象に固
有のＳＭＭ（本明細書に記載の方法を用いて混合対象のＳＳＭから予測）、２）対象に固
有のＳＭＭ（生体力学シミュレーションデータを用いて組み立てた）、および３）混合対
象のＳＳＭ（対象間および対象内の両方の臓器形状の変動を表現する訓練データの組を用
いて組み立てた）を用いた。（この３番目のモデルは、対象に固有ではないという定義に
よる。）
【００５４】
　図５および６は、選択した試験対象に対する１個抜き交差検証法を説明しており、３つ
の線形モデルが独立して組み立てられている。各試験対象に対し、それぞれ図５および６
のように、二乗平均平方根（ＲＭＳ）距離によって一般化能力および特異性を計算するこ
とができる。下記の交差検証方法により、モデル化の能力を総合的に評価することができ
る。ＲＭＳ距離が小さければ、線形モデルの一般化能力および特異性が高いことを示す。
【００５５】
　図５に示す線形モデルの一般化能力は、モデルが初見のデータを表現する能力を数値化
しており、したがってそのようなモデルを一般的に当てはめることに密接に関連する。
　すなわち臓器の動きを捕らえて初見のデータに登録するための事前情報を提供すること
に密接に関連する。一般化能力は、別途に組み込まれた１個抜き交差検証法［１７］によ
って測定される。一般化能力の定義は、初見の試験データの組のメッシュの結節点と、試
験データに合わせて例示化されたモデル（すなわち適合モデル）の対応する結節点との間
のＲＭＳユークリッド距離で定義される。具体的には、ＲＭＳ距離による一般化能力は次
式で与えられる。
【数４２】

　ここで、Ｎは各モデルのメッシュの結節点の数、ｓｔｅｓｔとｓｆｉｔｔｅｄはそれぞ
れ、初見の試験データの形状ベクトル（上に定義した）、および例示化されたモデルであ
る。本明細書に記載のとおり、初見の試験データは、組み込まれた１個抜き交差検証法に
おける試験対象の１００個の生体力学シミュレーションの残り（除外された）データであ
った。次に、図５の説明のように、生体力学に基づくＳＭＭを残りの９９個のシミュレー
ションを用いて個別に組み立てた。上記の３つの線形モデル（対象に固有のＳＭＭ、生体
力学によるＳＭＭ、および混合対象のＳＳＭ）の一般化能力を、全て対象レベルの１個抜
き交差検証法に基づいて計算した。
【００５６】
　偏りを避けるため、図５および６に説明した線形モデルを検証する実験に別の１個抜き
交差検証法を採用し、（上記の）最適カーネルパラメータの推定に用いた１個抜き交差検
証法と比較した。検証実験では、３６個あるモデル予測された対象に固有のＳＭＭのそれ
ぞれを、３５個の残りの訓練データの組から生成した混合対象のＳＳＭを用いて試験した
。これらの内、３４個の対象を訓練データとして用いて残りのデータの組に対する回帰誤
差を計算し、回帰用の最適カーネルパラメータを決定した。
【００５７】
　各線形モデルの特異性も同じ交差検証の枠組みを用いて計算した。これは［１７］で採
用された手法に似た方法である。この測定は線形モデルの変形が制限される度合いを示し
、そのことは重要である。というのはそのモデルにとって、例えば画像の不自然な結果す
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なわちノイズによって破損したデータに対する耐性があることが望ましいからである。さ
らに、モデルは紛失データの予測ができるべきである。この研究の目的に対し、図６に説
明するように、この測定値を、無作為に抽出した各モデル例ｓｉｎｓｔａｎｃｅと、訓練
データ（すなわち、１００個の生体力学シミュレーション）にあった一番近いデータｓｎ

ｅａｒｅｓｔとの間のＲＭＳ距離として次式の様に定義した。
【数４３】

【００５８】
　各試験対象に対し、（３つのモデルのそれぞれにおいて）
【数４４】

からｂを無作為に抽出することによって、各線形モデルに対し変形した前立腺を１０００
個生成した。各線形モデルを使って生成した複数の例は組を形成し、それらがそれぞれの
モデル空間を規定する。無作為の例から一番近い訓練データまでの距離は、線形モデルの
特異性を測定している。
【００５９】
　３）ＳＭＭによる位置合わせの検証。本明細書に記載の手法は、合成した訓練データを
用いて対象に固有のＳＭＭを生成する技術を提供する。非剛体画像位置合わせなどの実際
の応用例におけるそのようなモデルの、実際の患者の臓器の動きを再現する能力を試験し
た。具体的には、ＭＲで得た前立腺の形状データに基づく変形可能なモデル予測された対
象に固有のＳＭＭが、３ＤのＴＲＵＳ画像に位置合わせされる精度を検討した。この検討
は、［１２］に記載の方法を用いた位置合わせ後の８組の患者データに対し、手作業で識
別した解剖上の独立した目印を整列させる際の、対象を位置合わせする誤差（ＴＲＥ：ｔ
ａｒｇｅｔ　ｒｅｇｉｓｔｒａｔｉｏｎ　ｅｒｒｏｒ）を数値化することにより行った。
これらの８人の患者に対するデータは、予測モデルを組み立てるのに用いた訓練データと
は独立したデータだった。このＴＲＥによって位置合わせ性能を単独に測定することがで
き、これを、各患者の前立腺の動きの生体力学モデル集を用いて組み立てたＳＭＭを活用
した位置合わせと直接比較することができる。
【００６０】
結果
　図７は、３つの新規の対象に対する第１の４つの予測されたＳＳＰＤＦに対する因子別
のＰ（Ｂｉｌ）のグラフ（下側の実線）の例を、元の｛ｂｉｊ｝を用いて組み立てられた
ヒストグラム（上の点線）と比較して示す。対応する曲線から、この研究に用いられたデ
ータのＰ（Ｂｉｌ）を表す点線と、３人の患者に対する第１の４つの主成分に対する回帰
が推定された対象に固有の確率密度曲線を表す実線との間に、優れた一致があることが分
かる。対応する曲線の間の良い一致がＸ２試験で評価された。結果である平均ｐ＞０．７
８は良い一致を示しており、カーネル回帰解析が有効であることと、この研究においてＰ
ＤＦのモデル化にガウス分布形を選択したことの正当性が得られた。
【００６１】
　図８は、（ｉ）生体力学に基づくＳＭＭ（グラウントゥルース）、（ｉｉ）同じ対象に
対する前立腺のモデル予測された対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳＳ
Ｍ（３６人の患者の前立腺の訓練母集団の形状の変動を捕らえている）を用いて生成され
た無作為形状の例を示す。より具体的には、図８の上の行は、（１個抜き交差検証時のよ
うな）試験対象のグラウントゥルース生体力学によるＳＭＭから無作為に抽出した前立腺
を含み、中央の行は、試験対象以外のデータから組み立てられたモデル予測された対象に
固有のＳＭＭから無作為に抽出した例を含み、下の行は、訓練データの対象内および対象
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。図８の第１列は各モデルの基準形状を示す。
【００６２】
　３つの方法を用いて生成された形状の全体的な形（図８参照）を比較することによって
わかることは、対象に固有のＳＭＭは、混合対象のＳＳＭよりも、物理的に現実的な外観
形状を生成し、その外観形状はグラウントゥルース生体力学によるＳＭＭから得られたも
のに近い。（注意すべきは、図８に示した形状の例は無作為抽出に基づいているため、各
ＳＭＭによって生成された形状を純粋に表しており、したがってこれらの形状はグループ
単位すなわち行の間で比較すべきであって、列内で上下に比較すべきではないということ
である。）
【００６３】
　図９、図１０、および図１１は、各試験対象に対する（ｉ）モデル予測された対象に固
有のＳＭＭ、（ｉｉ）（グラウントゥルース）生体力学シミュレーションを用いて生成さ
れた生体力学による対象に固有のＳＭＭ、および（ｉｉｉ）混合対象のＳＳＭの、一般化
能力に対するＲＭＳ距離の中央値を示すグラフである。誤差の棒は、そのＲＭＳ距離の５
番目／９５番目のパーセンタイル値を示す。これらのグラフをよく見て分かることは、対
象に固有の２つのＳＭＭのＲＭＳ誤差（距離）は、混合対象のＳＳＭと比べて小さいこと
である。信頼限界０．０５のコルモゴルフ・スミルノフ検定（ｐａｉｒｅｄ　Ｋｏｌｇｏ
ｍｏｒｏｖ－Ｓｍｉｒｎｏｖ　ｔｅｓｔｓ）によって、１）混合対象のＳＳＭの一般化能
力はモデル予測ＳＭＭおよび生体力学によるＳＭＭよりも有意に低い（共にｐ＜０．００
０１）、２）モデル予測ＳＭＭと生体力学によるＳＭＭの間の一般化能力の差は０．１ｍ
ｍよりも有意に大きくはない（ｐ＜０．０００１）ということが確認された。したがって
、本提案のモデル予測ＳＭＭは、初見データに対する一般化能力を有し、その一般化能力
は元の生体力学によるＳＭＭに匹敵し、これら対象に固有の２つのモデルは、この点（す
なわち一般化能力）に関して混合対象のＳＳＭより性能が高い。
【００６４】
　図１２、図１３、および図１４は、各試験対象に対する同じ３つの線形モデル、すなわ
ち（ｉ）モデル予測された対象に固有のＳＭＭ、（ｉｉ）（グラウントゥルース）生体力
学シミュレーションを用いて生成された生体力学による対象に固有のＳＭＭ、および（ｉ
ｉｉ）混合対象のＳＳＭの、特異性のＲＭＳ距離の中央値を示すグラフである。ここでも
、誤差の棒はそのＲＭＳ距離の５番目／９５番目のパーセンタイル値を示す。図１２、図
１３、および図１４の比較から、対象に固有のＳＭＭのＲＭＳ距離に基づく特異性は有意
に小さい（良い）ことが分かる。同じコルモゴルフ・スミルノフの統計的試験から、混合
対象のＳＳＭと、他の２つの対象に固有のＳＭＭの片方との間の特異性の差は、１０ｍｍ
より有意に大きいという結論が得られた（ｐ＜０．０００１）。しかし、対象に固有の２
つのＳＭＭの間の差は１ｍｍより大きくない（ｐ＝０．０００５）。これらの結果から、
混合対象のＳＳＭが対象に固有のデータを正確に生成する能力は、対象に固有のＳＭＭに
比べて劣ることが分かる。さらに、本提案のモデル予測ＳＭＭには、対象に固有の例を生
成するという点で、生体力学によるＳＭＭに近いモデル化の能力がある。
【００６５】
　対象に固有のＳＭＭの生成に本明細書に記載の手法を用いたＴＲＥの結果を、生体力学
による対象に固有のＳＭＭを位置合わせすることによって得られた公開済みのＴＲＥデー
タ［１２］と併記して、下の表１にまとめた。信頼原価を０．０５に設定したコルモゴル
フ・スミルノフ試験から、これらの２つの方法を用いて得たＴＲＥの間には有意な差はな
いことが示された（ｐ＜０．０００１）。この結果は、本明細書に記載の対象に固有のＳ
ＭＭを生成する手法が、対象に固有の訓練データを必要とし位置合わせの精度が劣る従来
のモデル化方法に対する実行可能（かつ計算が非常に容易）な代替法を提供するというこ
とを示唆している。
【００６６】
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【表１】

【００６７】
考察
　本明細書に記載の手法は、対象に固有の臓器の動きをモデル化する新しい枠組みを提供
し、初見の患者に対する動的撮影またはコンピューターシミュレーションのどちらか片方
から得たデータではなく訓練母集団からの学習統計値を用いて、対象に固有の訓練データ
を予測する。開示された方法は、異なる個々の対象のデータの組の間の動きの明確な対応
を知らなくても、対象に固有の臓器の動きをモデル化することができることを暗示してい
る。
【００６８】
　本明細書に記載の動きのモデル化の方法を、対象に固有の合成訓練データを（動的撮影
をせずに）生成する手段として、生体力学モデル集と比較した。生体力学シミュレーショ
ンを用いる１つの利点は、特定の対象の臓器の連続した複数の形状の間の点対応が、共通
の基準形状に対し相対的に計算されるため、これらの点対応が暗黙的に分かることである
。一方、本明細書に記載の手法の重要な利点は、この方法がモデル化ＳＳＰＤＦとカーネ
ル回帰解析に基づいているため、臓器が動いている間の形状の変化に関する対象に固有の
限定されたデータしか必要がないことである。その結果、本方法は計算効率がよく、例え
ば手術の実施中など、臓器の動きに関する総合的なデータを得るのが困難または不可能な
応用例に極めて適している。さらに、撮影は可能だが（例えば画面書き換え速度が限られ
ているなど）現実的に大きな制約があり、わずかの訓練形状の例しか得られない可能性が
ある状況にも、本明細書に開示した本手法は役立つ。さらに、初見の対象に対して１つの
基準形状しか使用しないため、基準画像を臨床の現場で広く入手可能な診断画像または計
画画像から得ることができ、したがって臨床の現場で普通に遭遇する現実的な制約が（本
明細書に提示した例のように）解消されている。
【００６９】
　本明細書に記載の本手法は、第１に対象に固有のＳＭＭを用いて前立腺のみの動きを表
現するが、適切なら他の臓器にも、複数の臓器の動きも含めて適用することができる。さ
らに本手法は、任意の確率関数、例えば複合的な分布が観察される場合は混合モデルを用
い、あるいは異なる回帰技法を用いるように容易に適応することができる。そのように適
応させても直ちに単純な線形モデルにはならず、対象に固有の臓器形状の無作為サンプル
を学習したＳＳＰＤＦから、例えばモンテカルロ法によって抽出することができ、それを



(23) JP 2017-512522 A 2017.5.25

10

20

30

40

50

標準のＳＳＭ技法を用いて線形ＳＭＭの組み立てに用いることができる。
【００７０】
　また、本明細書に記載の本手法により、全体的にペアワイズ目印によって案内されるコ
ヒーレント点ドリフト（ＬＧＣＰＤ）アルゴリズムを使用して非剛体の訓練形状の位置合
わせが容易になる。図１５は、そのような位置合わせのペアワイズの例、具体的には前立
腺表面と解剖学上の目印（頂点と基部）の、元のコヒーレント点ドリフト（ＣＰＤ）とＬ
ＧＣＰＤアルゴリズムを用いるペアワイズ位置合わせの例を示す。ＬＧＣＰＤアルゴリズ
ムを使用後の目印の整列は、ＣＰＤアルゴリズム（中央）を使用した場合に比べて良好（
右）であることが分かる。したがって、本明細書に記載の手法は、迅速かつ確実に汎用的
なＣＰＤへの拡張ができる。
【００７１】
　（ＣＰＤに関するさらなる情報については、以下を参照のこと。ミロネンコ、Ａ．（Ｍ
ｙｒｏｎｅｎｋｏ，　Ａ．）、クーボーソン（Ｘｕｂｏ　Ｓｏｎｇ）共著、「Ｐｏｉｎｔ
　Ｓｅｔ　Ｒｅｇｉｓｔｒａｔｉｏｎ：　Ｃｏｈｅｒｅｎｔ　Ｐｏｉｎｔ　Ｄｒｉｆｔ：
　Ｃｏｈｅｒｅｎｔ　Ｐｏｉｎｔ　Ｄｒｉｆｔ，　Ｐａｔｔｅｒｎ　Ａｎａｌｙｓｉｓ　
ａｎｄ　Ｍａｃｈｉｎｅ　Ｉｎｔｅｌｌｉｇｅｎｃｅ，　（点の組の位置合わせ：コヒー
レント点ドリフト、パターン解析と人工知能）、ＩＥＥＥトランザクション、第３２巻、
Ｎｏ．１２、ｐｐ．２２６２，２２７５、２０１０年１２月、ｄｏｉ：１０．１１０９／
ＴＰＡＭＩ．２０１０．４６。また、ＬＧＣＰＤに関するさらなる情報については、以下
を参照のこと。フー、Ｙ．（Ｈｕ，　Ｙ．）、リコースト、Ｅ．Ｊ．（Ｒｉｊｋｈｏｒｓ
ｔ，　Ｅ．　Ｊ．）、マンバー、Ｒ．（Ｍａｎｂｅｒ，　Ｒ．）、ホークス、Ｄ．Ｊ．（
Ｈａｗｋｅｓ，　Ｄ．　Ｊ．）、バラット、Ｄ．Ｃ．（Ｂａｒｒａｔｔ，　Ｄ．　Ｃ．）
共著（２０１０年）、「Ｄｅｆｏｒｍａｂｌｅ　Ｖｅｓｓｅｌ－Ｂａｓｅｄ　Ｒｅｇｉｓ
ｔｒａｔｉｏｎ　Ｕｓｉｎｇ　Ｌａｎｄｍａｒｋ－Ｇｕｉｄｅｄ　Ｃｏｈｅｒｅｎｔ　Ｐ
ｏｉｎｔ　Ｄｒｉｆｔ（目印で誘導されるコヒーレント点ドリフトを用いた変形自在の容
器による位置合わせ）」、ＭＩＡＲ．（第６３２６巻、ｐｐ．６０～６９）、シュプリン
ガーＬＮＣＳ（Ｓｐｒｉｎｇｅｒ　ＬＮＣＳ））。
【００７２】
　式（１）を再度参照すると、Ｌの値を選んで、基準のＳＳＭが訓練データ内の分散の累
積値のある百分率（例えば少なくとも９９％）を占めるようにすることができる。本明細
書に記載の本手法は、分散を低下させる成分が、ガウス行列によって合理的にモデル化さ
れるあるいはカーネル回帰によって捕らえられるノイズを過剰に含んでいる場合、Ｌの最
適値を決定する代わりの方法を提供することができる。
【００７３】
　上記を実施するとき、生体力学モデルを用いて複数の対象に固有の画像を生成して、所
与の対象に対する１枚の基準画像を変形させる。しかし、複数の対象に固有の画像は他の
技法によって得てもよく、そのような技法には、（ｉ）対象の「動画」を得る（すなわち
画像切り替え速度が比較的速い（２Ｄまたは３Ｄの）動画）、あるいは（ｉｉ）対象の複
数の（静止）画像をある時間長さにわたり得ることが含まれる。注意すべきは、後者の技
法では、臓器の形状の時間的変化は、動き／変形以外の過程（例えば、成長または衰退）
を反映してもよいということである。そのような過程をモデルに取り入れることは有益な
場合もそうでない場合もあり、それは望ましい応用例の詳細によって決まる。また、任意
の所与の対象に固有の複数の画像は、（生体力学モデル化と動画データの両方を用いるな
ど）２つ以上の異なる技法から得てもよく、異なる技法（または複数技法の組み合わせ）
を異なる複数の対象に用いてもよい。上記の様に、生体力学モデルを用いて所与の対象に
対する１枚の基準画像を変形させることには利点があり、基準画像に対する点対応が一度
決定したら、この対応を生体力学によるモデル化得られた他の画像に対して自動的に保存
することができる。同様に動画データの場合には、動画の１つの画像（画像のフレーム）
に対して点対応が一度決定したら、この点対応を異なる画像フレーム内に自動的にまたは
半自動的に保存することが一般的に可能であり、例えば、画像の１つのフレームから次の
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フレームへの動きベクトルを決定することによって保存することができる。
【００７４】
　本明細書に記載の本手法は、対象に固有のＳＭＭの組み立てに要する時間を大幅に短縮
する。この時間短縮は、前立腺の動きをモデル化して術前のＭＲ画像を術中のＴＲＵＳ画
像に変形自在に位置合わせすることができるようにするというような多数の応用例におい
て重要である。具体的には、本明細書に記載の本手法は、位置合わせを制限し前立腺内の
組織の変位を予測する演算時間を、表面の変位の場合、ＧＰＵによるＦＥモデル化装置を
用いた数時間からわずか数秒に短縮し、位置合わせの精度は落とさない。本明細書に開示
された本方法の他の潜在的応用例は、対象に固有の任意の測定値（もしあれば）を用いた
従来のＳＳＭを分解して、モデル化する能力を改善することである。
【００７５】
　本明細書に記載の本手法は多数の異なる状況で使用することができる。例えば、特定の
対象（患者）の臓器の基準画像があれば、このモデルを第２の画像の臓器の区画化に用い
てもよく、あるいは第２の画像と基準画像の間の画像の位置合わせを実施してもよい（そ
のようにすると、臓器表面のまたはその内部の特定位置に対する基準画像と第２の画像の
間の対応する位置を決定することができる）。
【００７６】
　他の潜在的な応用例には対象の識別があり、例えば顔認識の関連などが含まれる。この
場合、複数の対象があってそれぞれが基準画像を有し、新しく得られた画像がこれらの基
準画像の１つに一致するか否かを決定する（そして、もし一致すれば、どの画像かを決定
する）。この場合、対象に固有のＳＭＭを用いて各基準画像を新しく得られた画像にマッ
ピング（位置合わせ）し、そのような位置合わせがＳＭＭのパラメータの（統計的に妥当
な）範囲内で成功したら、所与の基準画像に対する一致性を決定してもよい。
【００７７】
　種々のデータ（信号）処理を含む上記の実施態様は、専用のハードウェアで実行しても
よく、適切なコンピューターコードで作動している汎用のハードウェアで実行してもよく
、あるいはその２つを一部組み合わせて実行してもよい。例えば、汎用のハードウェアは
パーソナルコンピューターを備えてもよく、コンピューターワークステーションなどを備
えてもよい。コンピューターコードはコンピュータープログラム命令を含み、それが１つ
以上の演算素子で実行されて所望の動作を実行してもよい。１つ以上の演算素子は、医療
用撮影装置（例えばＭＲＩ、超音波）などの特殊用途の装置の内部に配置すなわち組み込
まれてもよい。１つ以上の演算素子は、デジタル信号演算素子、画像処理部、中央演算部
、または任意の他の適切な装置を備えてもよい。コンピュータープログラムコードは一般
に、光学ディスク、フラッシュメモリー（ＲＯＭ）、またはハードディスクなどの不揮発
性媒体に保存され、ランダムアクセスメモリー（ＲＡＭ）に読み込まれ、その後実行用の
１つ以上の演算素子がそれにアクセスする。
【００７８】
　結論として、当業者には明らかだが、上記の実施態様に種々の変更を加えて任意の所与
の実施の具体的な状況を反映させることができる。さらに当業者には明らかだが、種々の
実施態様の特徴を任意の所与の実施時に適切に組み合わせることができる。したがって、
本発明の範囲は、添付された特許請求の範囲およびその均等物によって規定される。
【００７９】
参考文献
［１］　Ｈｅｉｍａｎｎ，　Ｔ．　＆　Ｍｅｉｎｚｅｒ，　Ｈ．　Ｐ．　２００９，　”
Ｓｔａｔｉｓｔｉｃａｌ　ｓｈａｐｅ　ｍｏｄｅｌｓ　ｆｏｒ　３Ｄ　ｍｅｄｉｃａｌ　
ｉｍａｇｅ　ｓｅｇｍｅｎｔａｔｉｏｎ：　ａ　ｒｅｖｉｅｗ（３Ｄ医用画像の分割のた
めの統計的形状モデル：再検討）”，　Ｍｅｄ．Ｉｍａｇｅ　Ａｎａｌ．，　ｖｏｌ．　
１３，　ｎｏ．　４，　ｐｐ．　５４３－５６３．
［２］　Ｂａｒｒａｔｔ，　Ｄ．　Ｃ．，　Ｃｈａｎ，　Ｃ．　Ｓ．　Ｋ．，　Ｅｄｗａ
ｒｄｓ，　Ｐ．　Ｊ．，　Ｐｅｎｎｅｙ，　Ｇ．　Ｐ．，　Ｓｌｏｍｃｚｙｋｏｗｓｋｉ



(25) JP 2017-512522 A 2017.5.25

10

20

30

40

50

，　Ｍ．，　Ｃａｒｔｅｒ，　Ｔ．　Ｊ．，　＆　Ｈａｗｋｅｓ，　Ｄ．　Ｊ．　２００
８，　”Ｉｎｓｔａｎｔｉａｔｉｏｎ　ａｎｄ　ｒｅｇｉｓｔｒａｔｉｏｎ　ｏｆ　ｓｔ
ａｔｉｓｔｉｃａｌ　ｓｈａｐｅ　ｍｏｄｅｌｓ　ｏｆ　ｔｈｅ　ｆｅｍｕｒ　ａｎｄ　
ｐｅｌｖｉｓ　ｕｓｉｎｇ　３Ｄ　ｕｌｔｒａｓｏｕｎｄ　ｉｍａｇｉｎｇ（３Ｄ超音波
撮影を用いた大腿骨および骨盤の統計的形状モデルの例示化と位置合わせ）”，　Ｍｅｄ
ｉｃａｌ　Ｉｍａｇｅ　Ａｎａｌｙｓｉｓ，　ｖｏｌ．　１２，　ｎｏ．　３，　ｐｐ．
　３５８－３７４．
［３］　Ｃｏｏｔｅｓ，　Ｔ．　Ｆ．，　Ｔａｙｌｏｒ，　Ｃ．　Ｊ．，　Ｃｏｏｐｅｒ
，　Ｄ．　Ｈ．，　＆　Ｇｒａｈａｍ，　Ｊ．　１９９５，　”Ａｃｔｉｖｅ　Ｓｈａｐ
ｅ　Ｍｏｄｅｌｓ　－　ｔｈｅｉｒ　Ｔｒａｉｎｉｎｇ　ａｎｄ　Ａｐｐｌｉｃａｔｉｏ
ｎ（動的形状モデル－その訓練と応用）”，　Ｃｏｍｐｕｔｅｒ　Ｖｉｓｉｏｎ　ａｎｄ
　Ｉｍａｇｅ　Ｕｎｄｅｒｓｔａｎｄｉｎｇ，　ｖｏｌ．　６１，　ｎｏ．　１，　ｐｐ
．　３８－５９．
［４］　Ｍｏｈａｍｅｄ，　Ａ．，　Ｄａｖａｔｚｉｋｏｓ，　Ｃ．，　＆　Ｔａｙｌｏ
ｒ，　Ｒ．　２００２，　”　Ａ　Ｃｏｍｂｉｎｅｄ　Ｓｔａｔｉｓｔｉｃａｌ　ａｎｄ
　Ｂｉｏｍｅｃｈａｎｉｃａｌ　Ｍｏｄｅｌ　ｆｏｒ　Ｅｓｔｉｍａｔｉｏｎ　ｏｆ　Ｉ
ｎｔｒａ－ｏｐｅｒａｔｉｖｅ　Ｐｒｏｓｔａｔｅ　Ｄｅｆｏｒｍａｔｉｏｎ（前立腺の
術中の変形を推定する統計と生体力学を結合したモデル）”　ｉｎ　Ｍｅｄｉｃａｌ　Ｉ
ｍａｇｅ　Ｃｏｍｐｕｔｉｎｇ　ａｎｄ　Ｃｏｍｐｕｔｅｒ－Ａｓｓｉｓｔｅｄ　Ｉｎｔ
ｅｒｖｅｎｔｉｏｎ　-　ＭＩＣＣＡＩ　２００２，　ＬＮＣＳ　２４８９　ｅｄｎ，　
ｐｐ．　４５２－４６０．
［５］　Ｈｕ，　Ｙ．，　Ｃａｒｔｅｒ，　Ｔ．，　Ａｈｍｅｄ，　Ｈ．，　Ｅｍｂｅｒ
ｔｏｎ，　Ｍ．，　Ａｌｌｅｎ，　Ｃ．，　Ｈａｗｋｅｓ，　Ｄ．，　＆　Ｂａｒｒａｔ
ｔ，　Ｄ．　２０１１，　”Ｍｏｄｅｌｌｉｎｇ　Ｐｒｏｓｔａｔｅ　Ｍｏｔｉｏｎ　ｆ
ｏｒ　Ｄａｔａ　Ｆｕｓｉｏｎ　ｄｕｒｉｎｇ　Ｉｍａｇｅ－ｇｕｉｄｅｄ　Ｉｎｔｅｒ
ｖｅｎｔｉｏｎｓ（画像により誘導される手術中のデータ融合のための前立腺の動きのモ
デル化）”，　Ｍｅｄｉｃａｌ　Ｉｍａｇｉｎｇ，　ＩＥＥＥ　Ｔｒａｎｓａｃｔｉｏｎ
ｓ　ｏｎ，　ｖｏｌ．　３０，　ｎｏ．　１１，　ｐｐ．　１８８７－１９００．
［６］　Ｈｕ，　Ｙ．，　Ｍｏｒｇａｎ，　Ｄ．，　Ａｈｍｅｄ，　Ｈ．　Ｕ．，　Ｐｅ
ｎｄｓe，　Ｄ．，　Ｓａｈｕ，　Ｍ．，　Ａｌｌｅｎ，　Ｃ．，　Ｅｍｂｅｒｔｏｎ，
　Ｍ．，　＆　Ｈａｗｋｅｓ，　Ｄ．　＆．　Ｂ．　Ｄ．　２００８ｂ，　”Ａ　Ｓｔａ
ｔｉｓｔｉｃａｌ　Ｍｏｔｉｏｎ　Ｍｏｄｅｌ　ｂａｓｅｄ　ｏｎ　Ｂｉｏｍｅｃｈａｎ
ｉｃａｌ　Ｓｉｍｕｌａｔｉｏｎｓ　ｆｏｒ　Ｄａｔａ　Ｆｕｓｉｏｎ　ｄｕｒｉｎｇ　
Ｉｍａｇｅ－ｇｕｉｄｅｄ　Ｐｒｏｓｔａｔｅ　Ｉｎｔｅｒｖｅｎｔｉｏｎｓ（画像によ
り誘導される手術中のデータ融合のための生体力学シミュレーションに基づく統計的動き
モデル）”　ｉｎ　ＭＩＣＣＡＩ　２００８，　ＬＮＣＳ　５２４１　ｅｄｎ，　Ｓｐｒ
ｉｎｇｅｒ，　ｐｐ．　７３７－７４４．
［７］　Ｅｈｒｈａｒｄｔ，　Ｊ．，　Ｗｅｒｎｅｒ，　Ｒ．，　Ｓｃｈｍｉｄｔ－Ｒｉ
ｃｈｂｅｒｇ　Ａ．，　＆　Ｈａｎｄｅｌｓ，　Ｈ．，　２０１０，　”Ａ　ｓｔａｔｉ
ｓｔｉｃａｌ　ｓｈａｐｅ　ａｎｄ　ｍｏｔｉｏｎ　ｍｏｄｅｌ　ｆｏｒ　ｔｈｅ　ｐｒ
ｅｄｉｃｔｉｏｎ　ｏｆ　ｒｅｓｐｉｒａｔｏｒｙ　ｌｕｎｇ　ｍｏｔｉｏｎ（呼吸肺の
動きを予測する統計的形状と動きモデル）”，　ＳＰＩＥ　Ｍｅｄｉｃａｌ　Ｉｍａｇｉ
ｎｇ　２０１０：　Ｉｍａｇｅ　Ｐｒｏｃｅｓｓｉｎｇ，　ｖｏｌ．　７６２３，　ｐｐ
．　５３１－５３９．
［８］　Ｗａｎｇ，　Ｙ．　＆　Ｓｔａｉｂ，　Ｌ．　Ｈ．　２０００，　”Ｐｈｙｓｉ
ｃａｌ　ｍｏｄｅｌ－ｂａｓｅｄ　ｎｏｎ－ｒｉｇｉｄ　ｒｅｇｉｓｔｒａｔｉｏｎ　ｉ
ｎｃｏｒｐｏｒａｔｉｎｇ　ｓｔａｔｉｓｔｉｃａｌ　ｓｈａｐｅ　ｉｎｆｏｒｍａｔｉ
ｏｎ（形状に関する統計情報を取り入れた物理モデルによる非剛体位置合わせ）”，　Ｍ
ｅｄｉｃａｌ．Ｉｍａｇｅ　Ａｎａｌｙｓｉｓ．，　ｖｏｌ．　４，　ｎｏ．　１，　ｐ
ｐ．　７－２０．



(26) JP 2017-512522 A 2017.5.25

10

20

30

40

50

［９］　Ｖａｓｉｌｅｓｃｕ，　Ｍ．Ａ．Ｏ．　ａｎｄ　Ｔｅｒｚｏｐｏｕｌｏｓ，　Ｄ
．，　２００２，　”Ｍｕｌｔｉｌｉｎｅａｒ　Ａｎａｌｙｓｉｓ　ｏｆ　Ｉｍａｇｅ　
Ｅｎｓｅｍｂｌｅｓ：　ＴｅｎｓｏｒＦａｃｅｓ（画像の集合の多重線形解析：テンソル
フェース（ＴｅｎｓｏｒＦａｃｅｓ）”　ｉｎ　ＥＣＣＶ２００２，　Ｖｏｌ．　ＬＮＣ
Ｓ　２３５０，　ｐｐ．４４７－４６０．
［１０］　Ｚｈｕ，　Ｙ．，　Ｐａｐａｄｅｍｅｔｒｉｓ，　Ｘ．，　Ｓｉｎｕｓａｓ，
　Ａ．Ｊ．　ａｎｄ　Ｄｕｎｃａｎ，　Ｊ．Ｓ．：　”Ｂｉｄｉｒｅｃｔｉｏｎａｌ　Ｓ
ｅｇｍｅｎｔａｔｉｏｎ　ｏｆ　Ｔｈｒｅｅ－Ｄｉｍｅｎｓｉｏｎａｌ　Ｃａｒｄｉａｃ
　ＭＲ　Ｉｍａｇｅｓ　Ｕｓｉｎｇ　ａ　Ｓｕｂｊｅｃｔ－Ｓｐｅｃｉｆｉｃ　Ｄｙｎａ
ｍｉｃａｌ　Ｍｏｄｅｌ（対象に固有の動的モデルを用いた三次元心臓ＭＲ画像の二方向
分割）”　２００８，　ｉｎ　ＭＩＣＣＡＩ２００８，　ＬＮＣＳ　５２４２，　４５０
－４５７．
［１１］　Ｇｒｂｉｃ，　Ｓ．，　Ｉｏｎａｓｅｃ，　Ｒ．，　Ｖｉｔａｎｏｖｓｋｉ，
　Ｄ．，　Ｖｏｉｇｔ，　Ｉ．，　Ｗａｎｇ，　Ｙ．，　Ｇｅｏｒｇｅｓｃｕ，　Ｂ．，
　Ｎａｖａｂ，　Ｎ．　ａｎｄ　Ｃｏｍａｎｉｃｉｕ，　Ｄ．：　”Ｃｏｍｐｌｅｔｅ　
Ｖａｌｖｕｌａｒ　Ｈｅａｒｔ　Ａｐｐａｒａｔｕｓ　Ｍｏｄｅｌ　ｆｒｏｍ　４Ｄ　Ｃ
ａｒｄｉａｃ　ＣＴ．（４Ｄ心臓ＣＴを元にして組み立てた完全な心臓弁装置モデル）”
　２００６，　ｉｎ　ＭＩＣＣＡＩ２０１０，　ＬＮＣＳ　６３６１，　２１８－２２６
．
［１２］　Ｈｕ，　Ｙ．，　Ａｈｍｅｄ，　Ｈ．　Ｕ．，　Ｔａｙｌｏｒ，　Ｚ．，　Ａ
ｌｌｅｎ，　Ｃ．，　Ｅｍｂｅｒｔｏｎ，　Ｍ．，　Ｈａｗｋｅｓ，　Ｄ．，　＆　Ｂａ
ｒｒａｔｔ，　Ｄ．　２０１２，　”ＭＲ　ｔｏ　ｕｌｔｒａｓｏｕｎｄ　ｒｅｇｉｓｔ
ｒａｔｉｏｎ　ｆｏｒ　ｉｍａｇｅ－ｇｕｉｄｅｄ　ｐｒｏｓｔａｔｅ　ｉｎｔｅｒｖｅ
ｎｔｉｏｎｓ（画像により誘導される前立腺手術のためのＭＲから超音波への位置合わせ
）”，　Ｍｅｄｉｃａｌ　Ｉｍａｇｅ　Ａｎａｌｙｓｉｓ，　ｖｏｌ．　１６，　ｎｏ．
　３，　ｐｐ．　６８７－７０３．
［１３］　Ｓｈｌｅｎｓ，　Ｊ．　Ａ　Ｔｕｔｏｒｉａｌ　ｏｎ　Ｐｒｉｎｃｉｐａｌ　
Ｃｏｍｐｏｎｅｎｔ　Ａｎａｌｙｓｉｓ．　　２００９．　ｗｗｗ．ｓｎｌ．ｓａｌｋ．
ｅｄｕ／～ｓｈｌｅｎｓ／ｐｃａ．ｐｄｆ，　Ｖｅｒ．　３．０１
［１４］　Ｈａｓｔｉｅ，　Ｔ．，　Ｔｉｂｓｈｉｒａｎｉ，　Ｒ．，　ａｎｄ　Ｆｒｉ
ｅｄｍａｎ，　Ｊ．，　２００９．　”Ｔｈｅ　Ｅｌｅｍｅｎｔｓ　ｏｆ　Ｓｔａｔｉｓ
ｔｉｃａｌ　Ｌｅａｒｎｉｎｇ：　ｄａｔａ　ｍｉｎｉｎｇ，　ｉｎｆｅｒｅｎｃｅ　ａ
ｎｄ　ｐｒｅｄｉｃｔｉｏｎ（統計学習の基礎：データの検索、推定、および予測）”　
２ｎｄ　ｅｄ．，　Ｓｐｒｉｎｇｅｒ．
［１５］　Ｈｕ，　Ｙ．，　Ｒｉｊｋｈｏｒｓｔ，　Ｅ．－Ｊ．，　Ｍａｎｂｅｒ，　Ｒ
．，　Ｈａｗｋｅｓ，　Ｄ．，　＆　Ｂａｒｒａｔｔ，　Ｄ．　２０１０，　”Ｄｅｆｏ
ｒｍａｂｌｅ　ｖｅｓｓｅｌ－ｂａｓｅｄ　ｒｅｇｉｓｔｒａｔｉｏｎ　ｕｓｉｎｇ　ｌ
ａｎｄｍａｒｋ－ｇｕｉｄｅｄ　ｃｏｈｅｒｅｎｔ　ｐｏｉｎｔ　ｄｒｉｆｔ（目印によ
り誘導されるコヒーレント点ドリフトを用いた変形自在の容器に基づく位置合わせ）”　
ｉｎ　ＭＩＡＲ’１０　Ｐｒｏｃｅｅｄｉｎｇｓ　ｏｆ　前記　５ｔｈ　ｉｎｔｅｒｎａ
ｔｉｏｎａｌ　ｃｏｎｆｅｒｅｎｃｅ　ｏｎ　Ｍｅｄｉｃａｌ　ｉｍａｇｉｎｇ　ａｎｄ
　ａｕｇｍｅｎｔｅｄ　ｒｅａｌｉｔｙ，　ｖｏｌ．　６３２６　Ｓｐｒｉｎｇｅｒ，　
Ｂｅｉｊｉｎｇ，　ｐｐ．　６０－６９．
［１６］　Ｓｔｙｎｅｒ，　Ｍ．，　Ｒａｊａｍａｎｉ，　Ｋ．，　Ｎｏｌｔｅ，　Ｌ．
　Ｐ．，　Ｚｓｅｍｌｙｅ，　Ｇ．，　Ｓｚｅｋｅｌｙ，　Ｇ．　A．，　Ｔａｙｌｏｒ
，　Ｃ．，　＆　Ｄａｖｉｅｓ，　Ｒ．　２００３，　”Ｅｖａｌｕａｔｉｏｎ　ｏｆ　
３Ｄ　Ｃｏｒｒｅｓｐｏｎｄｅｎｃｅ　Ｍｅｔｈｏｄｓ　ｆｏｒ　Ｍｏｄｅｌ　Ｂｕｉｌ
ｄｉｎｇ（モデル構築のための三次元対応法の評価）”，　ｐｐ．　６３－７５．
［１７］　Ｈｕ，　Ｙ．，　ｖａｎ　ｄｅｎ　Ｂｏｏｍ，　Ｒ．，　Ｃａｒｔｅｒ，　Ｔ
．，　Ｔａｙｌｏｒ，　Ｚ．，　Ｈａｗｋｅｓ，　Ｄ．，　Ａｈｍｅｄ，　Ｈ．　Ｕ．，



(27) JP 2017-512522 A 2017.5.25

　Ｅｍｂｅｒｔｏｎ，　Ｍ．，　Ａｌｌｅｎ，　Ｃ．，　＆　Ｂａｒｒａｔｔ，　Ｄ．　
２０１０，　”Ａ　ｃｏｍｐａｒｉｓｏｎ　ｏｆ　ｔｈｅ　ａｃｃｕｒａｃｙ　ｏｆ　ｓ
ｔａｔｉｓｔｉｃａｌ　ｍｏｄｅｌｓ　ｏｆ　ｐｒｏｓｔａｔｅ　ｍｏｔｉｏｎ　ｔｒａ
ｉｎｅｄ　ｕｓｉｎｇ　ｄａｔａ　ｆｒｏｍ　ｂｉｏｍｅｃｈａｎｉｃａｌ　ｓｉｍｕｌ
ａｔｉｏｎｓ（生体力学シミュレーションから得たデータを用いて訓練した前立腺の動き
の統計モデルの精度の比較）”，　Ｐｒｏｇｒｅｓｓ　ｉｎ　Ｂｉｏｐｈｙｓｉｃｓ　ａ
ｎｄ　Ｍｏｌｅｃｕｌａｒ　Ｂｉｏｌｏｇｙ，　ｖｏｌ．　１０３，　ｎｏ．　２－３，
　ｐｐ．　２６２－２７２．
 

【図１】 【図２】

【図３】



(28) JP 2017-512522 A 2017.5.25

【図４】 【図５】

【図６】

【図７】 【図８】



(29) JP 2017-512522 A 2017.5.25

【図９】 【図１０】

【図１１】 【図１２】



(30) JP 2017-512522 A 2017.5.25

【図１３】 【図１４】

【図１５】



(31) JP 2017-512522 A 2017.5.25

10

20

30

40

【国際調査報告】



(32) JP 2017-512522 A 2017.5.25

10

20

30

40



(33) JP 2017-512522 A 2017.5.25

10

20

フロントページの続き

(51)Int.Cl.                             ＦＩ                                    テーマコード（参考）
   　　　　                                Ａ６１Ｂ    8/14     　　　　        　　　　　

(81)指定国　　　　  AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,T
J,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,R
O,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,
BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,H
N,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG
,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,
UA,UG,US

(72)発明者  バラット、ディーン
            イギリス、ロンドン　ダブリュー１ティー　４ティーピー、トッテナム　コート　ロード　９７、
            ザ　ネットワーク　ビルディング、ユーシーエル　ビジネス　ピーエルシー内
(72)発明者  フウ、イーペン
            イギリス、ロンドン　ダブリュー１ティー　４ティーピー、トッテナム　コート　ロード　９７、
            ザ　ネットワーク　ビルディング、ユーシーエル　ビジネス　ピーエルシー内
Ｆターム(参考) 4C096 AA12  AB38  AB41  AC05  AC07  AD14  AD24  DB06  DC14  DC25 
　　　　 　　        DC33  DC35 
　　　　 　　  4C117 XA01  XB09  XD27  XE45  XE46  XK18  XK20  XK24  XR08  XR09 
　　　　 　　  4C601 EE07  EE30  JC40 
　　　　 　　  5B057 AA07  BA02  BA03  BA05  BA07  DA07  DA16  DC09  DC39 
　　　　 　　  5L096 BA13  CA18  DA01  EA23  GA13  KA04 

【要約の続き】
てられる。
【選択図】図１


	biblio-graphic-data
	abstract
	claims
	description
	drawings
	search-report
	overflow

