(12) PATENT (11) Application No. AU 199873714 B2
(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 727601

(54) Title
Method for data compression

(51)¢ International Patent Classification(s)

GO6K 009-36 GO6E 009-46
21) Application No: 199873714 (22) Application Date: 1998.05.06
(87) WIPO No: W098.-50886
(30 Priority Data
(31) Number (32) Date (33) Country
60-045915 1997 .05.07 us
(43) Publication Date : 1998.11.27
(43) Publication Journal Date :  1999.01.21
(44) Accepted Journal Date : 2000.12.14
71 Applicant(s)
Landmark Graphics Corporation
(72) Inventor(s)

Ira D. Hale

(74) Agent/Attorney
DAVIES COLLISON CAVE,l Little Collins Street . MELBOURNE VIC 3000

(56) Related Art
Us 5297236
US 4754492




OP1 DATE 27/11/98 APPLN. ID 73714/98 ”"m”“”m”mmm
¢ | ADJP DATE 21/01/99 PCT NUMBER PCT/U$98/09290

MITMAEETL

AUDBT3ITI4

I ) ) o

(51) International Patent Classification © : (11) International Publication Number: WO 98750886
G06T A2 X

{43) International Publication Date: 12 November 1998 (12.11.08)

{21) International Application Number; PCT/US98/09250 | (81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU,

) CZ, EE, GE, HU, IL, IS, JP, KP, KR, LC, LK, LR, LT,

(22) International Filing Date: 6 May 1998 (06.05.98) LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK,

TR, TT, UA, UZ, VN, ARTPO patent (GH, GM, KE, LS,

MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,

{30) Priority Data; KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,
60/045,915 7 May 1997 (07.05.97) Us CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE), OAPI patent (BF, BY, CF, CG, CI, CM, GA, GN,

ML, MR, NE, SN, TD, TG).

(71) Applicant: LANDMARK GRAPHICS CORPORATION
{US/US]; 15150 Memorial Drive, Houston, TX 77079-4304

(US). Published
Without international search report and to be republished
(72) Inventor: HALE, Ira, D.; 8003 Douth Oneida Court, Engle- upon receipt of that reporf,

wood, CO 80112 (US).

(74) Agent: BUSH, Gary, L.; Bush, Riddle & Jackson, L.L.P., Suite
[80, 950 Echo Lane, Houston, TX 77024 (US).
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(57) Abstract

The widely used JPEG standard algerithm for two-dimensional image compression may be adapted for compression of arrays of any
dimension and data type, specifically for arrays of seismic data. Because the JPEG algorithm processes, more or less independently, small
subsets (8 x 8 blocks) of larger images or arrays of data, such adaptations are particularly useful in applications that cannot maintain a
large, uncompressed, multi-dimensional array in computer memery. JPEG-like methods enable compression and decompression of large
atrays by iteration over sub-arrays that are small enough to reside in memory. These algorithms lead to the concept of a compressed
virtual memory. Special care must be taken in JPEG-like algorithms to avoid blocking artifacts, which are discontinuitics between blocks
of data that are compressed and decompressed independently, Fortunately, computationally efficient methods for suppressing these artifacts
are well known. Of these methods, one has been adopted that enables much of the JIPEG method to be reused. ‘The JPEG-like method
of the invention uses the JPEG methods for discrete cosine transform (although the forward and inverse transforms are reversed), and for
Huffman encoding of the quantized transform coefficients, The method differs from JPEGs primarily in additional sieps taken to avoid
blocking artifacts, and in the quantization of transform coefficients.
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METHOD FOR DATA COMPRESSION

BACKGROUND OF THE INVENTION

Field of the invention

The invention relates generally to data compression methods and in
particular to an improvement of the JPEG method for image compression as it is

applied to seismic data.

Description of the prior art

The JPEG standard algorithm for image compression (Pennebaker and
Mitchell, 1993) consists of the following three steps, performed for each 8 x 8
block of pixels in a two-dimensional array:

1. Transform the 8 x B block of pixels, using a discrete cosine

transform.

2. Quantize (scale and round) the transform coefficients into small
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integers.
3. Encode the bits, using few bits to represent the most frequent
integers.

The decompression algorithm inverts each of these steps, in reverse order. Both
algorithmé may be easily extended to compress and decompress arrays of any
dimension.

Figure 1 displays a 2-D array of seismic data that has not been
compressed. The 2-D array of 32-bit floating-point numbers of Figure 1 is a
constant-time slice extracted from a 3-D seismic survey. Figure 2 displays a
zoomed subset of the same array.

Figure 3 shows the same zoomed subset, after compression and
decompression of the entire 2-D array using a JPEG-like algorithm. The
compression ratio for the entire array is approximately 103:1, meaning that the
original array of 32-bit floating-point numbers contained about 103 times as many
bits as the compressed array.

For such large compression ratios, this JPEG-like algorithm produces the
blocking artifacts visible in Figure 3. At lower compression ratios, these
discontinuities between blocks become less visible, but they may siill be
significant, particularly when further processing or interpretation is performed
after decompression.

The artifacts in Figure 3 are the result of each block of 8 x 8 samples being
compressed and decompressed, independently, with no attempt to maintain

-2-
SUBSTITUTE SHEET (RULE 26)




10

20

25

Ploperisst\T3714-98spe. doc-11/ 1004

continuity between the blocks.

In spite of these artifacts, the ability to compress and decompress such
small subsets of data independently is a desirable feature. In particular, it enables
access to some small part of a large compressed array, without decompressing
the entire array. It also enables the compression algorithm to adapt to spatial
variations in data amplitude and spectrum. These features are lacking in
compression methods based on wavelet transforms (eg., Bradley et al, 1993
Wickerhauser, 1994). The problem addressed in this application is to obtain these
features, without the blocking artifacts.

One solution to this problem is to compress data using overlapping blocks,
so that decompressed sample values can be computed without reference to
values adjacent to block boundaries. This solution was used by Yeo and Liu
(1893), in their adaptation of the JPEG algorithm to volume rendering of 3-D
medical images. Unfortunately, the use of overlapping blocks increases the
number of blocks to be compressed, which increases computation times and
decreases compression ratios.

References to prior work cited in this specification
Bradley, J. N., C. M., and Hopper, T., 1993, The FBI wavelet/scalar
quantization standard for gray-scale fingerprint image compression: Visual
Information Processing i, SPIE Proceedings, 293-304.
(ftp:/fftp.c3.1an!.gov/pubMWSQ.)
Jawerth, B., and Sweldens, W., 1995, Biorthogonal smooth local
trigonometric bases: J. Fourier Anal. Appl, 2. (http://cm.bell-

labs.com/who/wim/papers/-papers. html).

Jawerth, B., Liu, Y., and Sweldens, W., 1996, Signal compression with
smooth local trignometric bases; http:/icribell-labs.com/who/wim/papers/-
papers.htmil.
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Malvar, H. S, and Staelin, D. H., 1989, The LOT - transform coding without
blocking effects: |[EEE Transactions on Acoustic, Speech, and Signal
Processing, 37, no, 4,553-559.

Malvar, H. S., 1990, Lapped transforms for efficient transform/subband
coding: IEEE Transactions on Acoustic, Speech, and Signal Processing,
38, no, 6,969-978.

Pennebaker, W. B., and Mitchell, J. L., 1993, JPEG still image data
compression standard: Van Nostrand Reinhold. ‘

Princen, J. P., and Bradley, A. B., 1956, Analysis/synthesis filter bank
design based on time domain aliasing cancellation: IEEE Transaction on
Acoustics, Speech, and Signal Processing, 34, no. 5,1153-1161.
Wickerhauser, M. V., 1994, Adapted wavelet analysis from theory to
software: A. K. Peters.

Yeo, B., and Liu, B., 1995, Volume rendering of DCT-based compressed
3D scalar data; IEEE Transactions on Visualization and Computer
Graphics, 1, no. 1, 29 - 43.

The reference to any prior art in this specification is not, and should not be

taken as, an acknowledgment or any form of suggestion that that prior art forms
part of the common general knowledge in Australia.
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SUMMARY OF THE INVENTION
The present invention provides a method for compressing a one-
dimensional array x of N samples representative of characteristics of the earth,
comprising the steps of:
5 (a) - partitioning said aray x into blocks of M samples, where M<N,
{b} folding the samples x{j) = x{M +)} across each block boundary /,

according to

yA3) = £0) x:G) + £-0) x4-1),

Vi) = £0) () - f () x4,

10 I=1,2, ..,NM-1,

i=1.2 .., M2-1,
ydi) = x{j), otherwise,

where

w_ .| 2j

=sin| ~f 1+=L

=i (-3}

:::::: 15 (¢)  transforming the folded samples in each block of array y according to
N w3 kD))
I k)= b(j),| — cos| ———=|,

K 2(k) ;m (J)J; COS[ o
k=0,1,...,M-1,
20
where
1
—,j=0
\E J
b(j)=
1, otherwise

(d) quantizing the transformed samples in each block of array z to
produce integers, and
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(e) encoding said integers into a stream of bits representing the
compressed array.

A preferred embadiment of the invention relates to a method of data
compression which uses JPEG methods for discrete cosine transform and for
Huffman encoding of the quantized transform coefficients. The method is an
improvement over standard JPEG methods primarily in the additional steps to
avoid blocking artifacts, and in the quantization of transform coefficients.

Embodiments of the invention are described hereinafter in detail, by way of

example only, with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 represents a constant-time slice extracted from a 3-D seismic
survey, where the display is a 2-D array of 32-bit floating-point numbers which has
not been compressed;

Figure 2 is a zoomed subset of the 2-D array of Figure 1;

Figure 3 shows data of Figure 2 after compression and decompression via
a straighforward adaptation of the JPEG algorithm, showing the blocking artifacts,
the discontinuities between the 8 x 8 sample-blocks that were compressed
independently;

Figure 4 shows the data of Figure 2 after compression and decompression
via a straightforward adaptation of the JPEG algorithm that has been designed to
suppress blocking artifacts;

Figure 5 shows a matrix Gy corresponding to an inverse DCT-IHl of length
32 where black pixels correspond to positive values; white pixels borrespond to
negative values;

Figure 6 shows a matrix corresponding to an inverse blocked DCT-IIl with
block length 8;
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Figure 7 shows cotumns 11 and 19 from the inverse blocked DCT-IIl matrix
of Figure 8, where the blocking artifacts in JPEG compression are caused by
discontinuities such as that shown between samples 15 and 16, and the first
sample in each cosine lies off the curve plotted and in this figure because of the
discontinuity in the function b(j) defined by equation (1c) below;

Figure 8 shows smooth tapered cosines obtained by unfolding the
truncated cosines displayed in Figure 7 which are columns 11 and 19 of the
inverse folded-DCT-IIl matrix of Figure 9;

Figure 9 shows a matrix corresponding to an inverse folded-DCT-IIl where
the columns of this matrix overlap from block to block, with values that smoothly
taper to zero such that weighted sum of these columns will not exhibit blocking
artifacts;

Figure 10 shows a matrix corresponding to the operation used to unfold
the inverse blocked DCT-IIl, where the matrix in Figure 9 equals the product of
this matrix and that displayed in Figure 6;

Figure 11 shows an unfolding operation which is a pair-wise combination
and replacement of sample values across DCT block boundaries and where
folding is the inverse of this aperation;

Figure 12 illustrates the steps to decompress the highlighted sample in
block A, which requires that one first decode, dequantize, and inverse DCT-II
blocks A, B, C, and D, and then unfold the four highlighted samples where the
folding and unfolding operations are a pair-wise mixing of samples across DCT

-6-
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block boundaries.

DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION
Embodiments of the invention relate to an improved method of data
5 compression based on blending data in adjacent blocks during compression with a
JPEG-like algorithm. JPEG-like data compression has been described in various
forms by many authors (e.g., Princen and Bradley, 1988; Malvar and Staelin,
1989; Malvar, 1990; Wickerhauser, 1994, Jawerth et al., 1995). The advantage of
JPEG-like data compression is that it tends to increase compression ratios, and
speasi 10 only slightly increases computation times.
Figure 4 displays the same subset from the 2-D array of Figure 1, after
compression and decompression using a second JPEG-like algorithm based on
the method of an embodiment of the invention described below. The compression
ratio for the entire array is approximately 112:1. Blocking artifacts in these
L 15 decompressed data are absent.
The difference between the prior JPEG-like algorithms and the new JPEG-
like algorithm according to the invention lies in a modification of the blocked
discrete cosine transform specified in the JPEG standard. This modification in the
algorithm of this invention attenuates blocking artifacts, while retaining the
20 desirable features of the prior JPEG-like algorithm

DISCRETE COSINE TRANSFORM
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The transform used prior JPEG compression is a discrete cosine

transform, called DCT-Il. According to the invention, a different discrete cosine

transform is used, called DCT-Ill. (For an enumeration of discrete cosine

transforms, see Wickerhauser, 1994, p. 84.)

DCT-Il

The forward DCT-Hll is defined by

M-1 \J?
k) = Nb(f), | —
(k) f\_"é Wb MCOS

2M

k=01,.,M-1,

anhd the corresponding inverse transform is

n(2k + 1y
M

-1
L .‘3
) = kZ 2(k)b(j) 2708

J= 00 M- 1,

El

where
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1
b() = |—, j=0,
() 7

1,  otherwise.

The forward and inverse transforms can be represented as matrix

multiplications, asinz= C,y and y = C,, "z, where the matrix C, has elements

C,!,(kJ)rbU)\J% €os

The inverse transform matrix C,," is illustrated in Figure 5, M = 32. Any

1r(2k+1)j]

M @)

vector of 32 real numbers can be represented as a weighted sum of the columns
5 of this matrix.

In a one-dimensional compression aigorithm, a vector y of sample values
might be approximated with only a few columns from the matrix C,*'. The
weights for each column would be given by transform coefficients in the vector
Z, High compression ratios require that many of the coefficients in z are

10 negligible, nearly zero. Such small coefficients will be quantized to zeros, which
may be efficiently encoded using few bits.

The JPEG standard describes compression of two-dimensional images,
not one-dimensional vectors. The prior DCT-Hl used in JPEG compression is a
2-D transform. However, because the discrete cosine transform of

15 multi-dimensional data may be performed as a cascade of 1-D transforms along
each data dimension, only the 1-D transform is described for simplicity.
-9.
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Blocked DCT-IIl

For long data vectors, such as seismic traces, a single discrete cosine
transform of the entire vector is unlikely to yield many transform coefficients that
are negligible. Therefore, like JPEG, a blocked DCT is used, with transform
length M = 8, and pad data vectors are set to zeros, as necessary, to a length N
that is a multiple of 8. The matrix corresponding to an inverse blocked DCT-Hl is
illustrated in Figure 6, for N= 32 and M = 8. Besides being more appropriate for
compression, the biecked transform is also more efficient, with a computational
cost that grows only linearly with the length N of data vectors.

Like the prior DCT-Il used in JPEG compression, the DCT-HI has several
useful properties. First, a DCT-II} transforms real numbers to real numbers, so
that no complex arithmetic is required. Also, like the prior DCT-Il, DCT-!ll is a
unitary transform: C,,' = C,,”. [This property is implied by equations (1) above.]
The forward blocked DCT-IIl matrix corresponding to Figure 6 is simply the
transpose of the inverse blocked DCT-Ii displayed there.

Another useful property is that an inverse DCT-Ill is equivalent to a
forward DCT-Il: C,;' = C . This relationship between the DCT-III and the
DCT-Il, and a choice of transform length M = 8, enables use of the highly
optimized DCT-|l algorithms used in JPEG compression, by simply swapping the

forward and inverse algorithms.

-10-
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All of the properties cited above are useful, but why not simply use the prior
JPEG's DCT-II? The answer lies in a modification according to the invention of
the DCT-IHl to avoid the blocking artifacts caused by JPEG compression.

Blocking artifacts appear when only a subset of the columns of the matrix
shown in Figure 6 is used in an approximation of a vector. Suppose, for
example, that such a vector is highly compressed by using only two columns with
indices k = 11 and k =19. As illustrated in Figure 7, any non-trivial combination
of these two columns yields a discontinuity between sample indices j = 15 and
J =18 in the approximation. Such discontinuities create the blocking artifacts

visible in images that have been compressed using the JPEG algorithm.

Folded DCT-III

To avoid the artifacts caused by using a blocked DCT-IIl in compression,
the blocked cosines illustrated in Figure 7 is replaced with the smooth tapered
cosines illustrated in Figure 8. Compare the complete inverse transform matrix
displayed in Figure 9 with the inverse blocked DCT-IIl matrix of Figure 6. The
number of samples in each cosine has increased to 16 (except at the ends) so
that cosines in adjacent blocks now overlap, and that each cosine smoothly
tapers to zero. A weighted sum of these cosines will not produce the

discontinuity shown in Figure 7.

The transforms corresponding to these tapered cosines are often called

-11-
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local cosine transforms or lapped orthogonal transforms (Wickerhauser, 1994,
p. 370; there is a similarity between Figure 8 and Wickerhauser's. Figure 11.5).
Here, these transforms are referred to as folded cosine transforms, to reflect the
manner in which they are computed. Specifically, the transform used in the
compression algorithm according to the invention is a folded-DCT-Il. The
inverse transform comresponding to the matrix shown in Figure 9 is called an
inverse folded-DCT-I.

Folding is a way to achieve smooth, tapered, 16-sample cosines using
highly optimized, blocked, M = 8 DCT algorithms. Wickerhauser (1994, p. 103),
describes this method as “a remarkable observation made independently by
several individuals", and goes on to discuss its application to compression. The
folding operation used in compression in this invention is one of many described
by Wickerhauser, but was inspired by the work of Jawerth and Sweldens (1995)
and Jawerth et al. (1996). The latter authors discuss aspects of folding that are
particularly relevant to compression.

The cleverness and efficiency of folding lies in the fact that the inverse
folded-DCT-ill matrix displayed in Figure 9 is the praduct of an unfolding matrix,
shown in Figure 10, and the inverse blocked DCT-IIl matrix displayed in Figure
6. Because each row and column of the unfolding matrix contains no more than
two non-zero elements, the compuftational cost of unfolding is an almost
insignificant addition to the cost of the inverse blocked DCT-III.

In practice, the matrices displayed in Figures 6, 9, or 10 are never actually

-12 -
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constructed. Rather, operations are performed on sample values that have the
same effect as multiptication by these matrices. For the inverse blocked DCT-1II
matrix of Figure 6, this operation is the highly efficient forward blocked DCT-II
algorithm used in JPEG compression. For the unfelding matrix of Figure 10, this
operation is a pair-wise mixing of sample values across the block boundaries at
indices j= 8, 16,...., as illustrated in Figure 11.

The folding operation is simply the inverse of the unfolding operation, a
different pair-wise mixing of the same sample values. Because folding and
unfolding are centered about block boundaries, these operations are most
concisely specified in terms of shifted sample values, which are defined by y ,(j)

= y(IM + j). The symbol/is a block index and jis a sample-within-a-block index.

Then, folding is accomplished via

YA = 1GGY + JCx(D),
YD = FOLD e,
I'=12,., NM -1,
J=h2., M2 -1,
YA = x{), otherwise, (32)

-13 -
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and unfold is accomplished via
N = fGw,G) - Fw (),
x (=) = fGwA=) + fCy D,

1= 12,.., NIM -1,
j=12,., M2 -1,
x() = y(), otherwise, (3b)

where the folding function f(f) is defined by

f(G) = sin

n 2
Ot &

The smooth tapered cosines in Figure 8 and the matrix of such cosines in Figure
9 were computed by applying equations (3b) to the columns of the matrix displayed in
5 Figure 6.
The forward folded-DCT-INl of sampled values x{j) is determined by first
computing y(j) via equations (3a), and then, for each block of 8 samples, computing z(k)
via equation (1a). Likewise, the inverse folded-DCT-Il is determined by first computing
¥(j} via equation (1b) for each block, and then computing x(j} via equations (3b).

i0 As discussed by Wickerhauser (1994, p. 105), Jawerth and Sweldens

-14 -
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(1995) énd Jawerth et al. (1996), many alternative but simitar folding operations
are possible. The folding operation defined by equations (3) is chosen for two
reasons.

First, the folding operation is unitary. The unfolding matrix shown in Figure
101is the transpose of the corresponding folding matrix (not shown). To verify this
property, observe that the folding function of equation (3c) satisfies £ )+ F3-)
= 1, and then express the folding and unfolding operations of equations (3a) and
{3b) as multiplications by 2 x 2 matrices. Analytically invert the 2 x 2 folding
matrix to see that its inverse equals its transpose, which equals the 2 x 2
unfolding matrix. The entire folding operation is therefore unitary, because it
consists of these 2 x 2 mixings of sample values across block boundaries.

Second, the folding operation according to the invention ensures that a
constant function, such as x(j) =1, yields transform coefficients z (k) in each block
that are non-zero for only k=0, thereby enhancing compression of constant {or
slowly varying) data. In the terminclogy of Jawerth et al. (1996), the forward
folded-DCT-Il achieves “resolution of the constants”.

To verify this second property of the folded-DCT-II, analytically apply the
folding operation of equations (3a) to constant samples values x ) =1, and
verify that the resultis y () = ﬁVTé,,,(OJ), where Cy (k) is defined in equation (2).
In other words, the folding function is chosen so that constant sample values are
folded to precisely match (to within scale factor fh-fl) the first (k = 0) cosine of the
DCT-III. Because this cosine is osthogonal to all other cosines of that transform,

-15-
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—————— e = o i

only th.e k = 0 transform coefficient in each block will be non-zero after the
forward folded-DCT-ill. The value of each non-zero coefficient will be z ,(0) =W
More precisely, this property holds for all but the first and last blocks.
Although resolution of the constants for the first and last blocks can be obtained
by modifying the folding and unfolding matrices so that they are not unitary in
their corners, less compression is accepted in these blocks and a strictly unitary

folding and unfolding operation is maintained.

Comparison with DCT-H algorithm used in JPEG compression

The forward DCT-Il used in JPEG compression achieves resolution of the
constants without folding, because the first cosine of DCT-1I (e.g., the first row of
the matrix in Figure 5) is constant. Indeed, this property is the reason why DCT-II,
not DCT-HI, is specified in the JPEG compression standard. Using the folding
trick with DCT-Il, might be considered, because folding before JPEG
compres;ion and unfolding after JPEG decompression might be performed,
without modifying the standard JPEG algorithm.

Unfortunately, the folding and unfolding operations of equations (3) are not
appropriate for DCT-Il. Specifically, equations (3b) would not yield smooth
tapered cosines, like those displayed in Figure 8.

Jawerth et al. (1995) describe alternative folding and unfolding operations
that are appropriate for DCT-II, and that maintain resolution of the constants.
However, these operations are not unitary. They are in fact ill-conditioned,

- 1B -
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tending to amplify discontinuities in sample values that occur near block
boundaries, and thereby reduce the efficiency of compression.

In contrast, the folding and unfolding operations of equations (3) are
unitary, as are the forward and inverse DCT-IIl of equations (1). If F denotes the
folding matrix, then the forward folded-DCT-Ill can be expressed as z=C ,Fx, and

observe that

T, _  TpT T
z'z =x'FC," CFx

= x F1C, -1C)Fx

PESCEDIL) )

In other words, the sum of squared sample values after folded-DCT-IIl equals
that sum before folded-DCT-Il. This property may be used to estimate the

distortion in decompressed data caused by quantizing the transform coefficients.

QUANTIZATION AND ENCODING
As described above, the transform used in the compression algorithm of
the invention is just the inverse of that used in JPEG compression, but with
folding included to reduce blocking artifacts. The quantization and encoding
methods used are also adapted from those used in JPEG compression. The
-17 -
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differences between the JPEG methods and the invention are described below.

Quantization

Because JPEG compression is intended for images, data before
compression are either 8-bit or 12-bit values. (Color images are represented by
red-green-blue triplets of such samples.) After a 2-D transform via DCT-II, B-bit
data may require up to 11 bits per sample, because the largest sample value
after 2-D DCT-I! is up to 8 times greater than that before the transform. In
general, the largest sample value after DCT-Il is up to M ®? times the largest
value before transform, where D is the number of dimensions transformed. In

other words,
|2] e < MP2x) e )

This upper bound is achieved when the data exactly match one of the cosines
used in the DCT-II, such as the constant first cosine C (k=0,)).

The same factor M®? also applies to the folded-DCT-lll used in the
compression algorithm of this invention. Therefore, after transforming 8-bit
integer data with a folded-DCT-IIl, the method of the invention quantizes and
encodes 11-bit integers in 2-D compression, and 13-bit integers in 3-D
compression.

The quantization step in both the JPEG compression algorithm and the
method of the invention is a scaling operation designed to reduce the number of

-18 -
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bits to be encoded, and it is this reduction in the number of bits that is
responsible for the distortion in data that are compressed and then
decompressed. In such lossy compression methods this distortion is accepted
in return for high compression ratios.

In JPEG compression, the transform coefficients within each block are
quantized differently, with high wavenumbers (spatial frequencies) being
represented with fewer bits than low wavenumbers. This wavenumber-dependent
scaling in JPEG compression is usually optimized for human visual perception.

In the compression method of the invention, wavenumbers are all
quantized equally. Errors are not introduced that are wavenumber-dependent.
One reason for that is that for seismic data, there is often high interest in high
wavenumbers. For example, subsurface faults imaged with seismic data
correspond to high wavenumbers. Another reason is that seismic data are often

analyzed by computer algorithms independent of the human visual system.

Local quantization

When compressing 8-bit image data, sample values lie between -128 and
+127; and it may be assumed that low-amplitude blocks of data are insignificant
and may be safely quantized to zero during compression. The JPEG standard,
in particular, makes this assumption, for it permits only one set of quantization
scale factors for an entire image. As discussed above, these scale factors may
vary for different coefficients (different wavenumbers) within a block, but the
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same sét is used for every block. In this sense, JPEG quantization is global.

When compressing 32-bit floating-point data, it is preferred to perform a
focal quantization, with scale factors that vary from block to block., Before
compressing such data, the maximum sampie amplitude |x| ., might not be
known, and reading every sample before compression to determine this value
may be costly. Furthermore, low-amplitudes may not be properly assumed to be
insignificant; seismic data, in particular, often require considerable processing
before this assumption is valid. Therefore, although a single scale factor is used
to quantize all transform coefficients within a block, a scale factor may be
permitted to vary from block to block. Specifically, in equation (5) above, (2| ..
denotes the maximum coefficient within each transformed block, and a different
scale factor s is computed for each block.

Local quantization yields lower compression ratios (produces more
bits-per-sample) than global quantization. An obvious reason is that additional
bits are required to store the quantization scale factors for each biock
compressed. A less obvious reason is that local quantization may quantize fewer
samples to zero than global quantization. Therefore, a choice of either local or
global quantization is permitted in the compression algorithm of the invention.

The local quantization does not handle large dynamic range within a single
block. For example, low-amplitude reflections in unprocessed seismic data may
be hidden beneath high-amplitude surface waves. Within blocks contaminated
with high-amplitude noise, the compression algorithm of the invention, even with
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local quantization, may quantize low-amplitude signal to zero, so that the signal
could not be recovered by processing after decompression. Therefore,

high-amplitude noise should be attenuated before compression.

Compressed virtual memory

Virtual memory presents the illusion of a memory larger than that
physically available. This illusion is most effective for applications that tend to
access data located near other data that were recently accessed. Such
applications have good locality of reference.

Applications working with 2-D or 3-D arrays often exhibit good locality of
reference. For example, a seismic interpretation application may display
consecutive 2-D slices of data from a 3-D array. With a sufficiently fast, local
decompression algorithm, blocks may be decompressed containing the samples
for such slices on demand, without decompressing the entire 3-D array. The
compression algorithm of the invention is especially useful in such applications.

Key to such applications is the ability to compress or decompress a subset
of a large array, without compressing or decompressing the enfire array. For
compression based on a blocked DCT-II, like that used in JPEG compression,
this feature comes easily. Specifically, to decompress a single sample, it is only
necessary to decode, dequantize, and inverse DCT-Il the block containing that
sample. Once decompression for one sample is accomplished, decompression
of all of the samples of its block is accomplished. Assuming locality of reference,
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the computational cost of decompressing the other samples in that block will not
be wasted.

For the compression algerithm of the inventicn, based on a folded-DCT-IiI,
some additional work is required. Consider 2-D compression and the four blocks
of 8 x 8 samples illustrated in Figure (12). In order to decompress the sample
corresponding to the filled circle in block A, it is required to (1) decode,
dequantize, and inverse DCT-Il all four blocks (A, B, C, and D), and (2) unfold
the four samples corresponding to the filled circles. The unfolding across block
boundaries is just as illustrated in Figure 11 and described by equation (3b),
performed first for one dimension and then for the other. Although four blocks are
required, once decompression of the sample in block A is accomplished most
of the work necessary to decompress neighboring samples has been performed.
Again, assuming locality of reference, this additional computation will not be
wasted.

Ancther difference between the quantization step of the invention and
JPEG's stems from our need to quantize 32-bit floating-point data, which have
a much larger dynamic range than 8- or 12-bit image data. To quantize a
floating-point value z into an integer i with B+1 bits (including a sign bit), the

following algoerithm is used
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i={lzxs+l/2l, 220,
zxs - 1/2] 20, (6)

where s is the quantization scale factor. To avoid overflow, |i|<2 & is required.
This restriction and equation (6) lead to the following equation for the scale

factor:

@8- 120 -9,
i . "

where € is float-epsilon, the smallest positive number that can be subtracted from

1, using floating-point arithmetic, to obtain a number not equal to 1.

Huffman encoding

The JPEG compression standard permits two methods for encoding the
integers produced by quantization --- Huffman coding and arithmetic coding -—
and many other encoding methods are possible. The JPEG's Huffman encoding
is used in the compression algorithm of the invention, because it is
computationally fast, is simple to impiement, and is freely available.

With one exception, the Huffman encoding and decoding algorithms follow
the JPEG specification. The JPEG standard specifies special encoding of the DC
(k=0) transform coefficients. JPEG compression exploits the fact that these DC
coefficients are often highly correlated among neighboring blocks. This special
treatment is not used in the method of the invention, for two reasons: (1) it
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introduces block-to-block dependencies that complicate compression and
decompression of single blocks, and (2) seismic data typically have relatively
small DC coefficients. (Although small, the DC coefficients are seldom negligible,
because of the short M=8 transform used.) Therefore, the DC coefficient is

encoded just as the other (AC) coefficients are encoded.

LOCAL COMPRESSICON
The primary advantage of a JPEG-ke algorithm is that part of a
mutti-dimensional array can be compressed or used without processing all of it.
In contrast, compression algorithms based on wavelet transforms (e.g., Bradley
et al., 1993; Wickerhauser, 1994) lack this feature. While the JPEG standard
does not explicitly support this feature, the blocked DCT-Il used in JPEG
compression makes it feasible. This capability is exploited in the compression

algorithm of the invention based on a folded-DCT-II,
Each block of data in an array may be thought of as analogous 1o a page
of virtual memory. For 2-D compression, each page would contain 64 = 8 x 8
samples; for 3-D compression, each page would contain 512 = 8 x 8 x 8
samples. Samples are decompressed as they are paged in, and wavenumber
compressed as they are paged out wavenumber. A working set of
uncompressed pages are kept in memory, while most of the pages remain
compressed and stored either in memory or on disk. (If stored on disk, pages
may be combined to enhance I/O efficiency.) If the working set is large enough,
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and if our application has good locality of reference, the computation cost of
compressing and/or decompressing each page will be amortized over the access
of most of the samples within those pages.

SUMMING UP

The adaptation of the JPEG compression algorithm according to
embodiments of the invention enables much of that algorithm to be reused. The
JPEG methods are reused for length-8 DCTs, by simply swapping the forward and
inverse transfarms. The JPEG quantization method is modified to avoid
preferential treatment of low wavenumbers, and to handle block-to-block variations
in data amplitudes. Sample values are aiso folded across block boundaries,
before a forward DCT, and such values are unfolded after an inverse DCT. This
folding and unfolding suppresses the blocking artifacts visible in images that have
been compressed with the JPEG algorithm.

For comparing the performance of the method of the invention with other
algorithms, two useful measures of performance are computation time and
distortion, for a specified compression ratio. Preliminary benchmarks with an early
implementation of the algorithm of the invention are encouraging. The
computation times are roughly half and distortions almost identical to those for a
wavelet-based algorithm, for a wide range of compression ratios (Diller 1997,
personal communication). The computation times are believed to be lower for the
method of the invention than for wavelet-based methods (due to fewer multiplies
and adds, and more local use of memory).

Throughout this specification and the claims which follow, unless the
context requires otherwise, the word "comprise”, and variations such as
"comprises” and “"comprising", will be understood to imply the inclusion of a stated
integer or step or group of integers or steps but not the exclusion of any other
integer or step or group of integers or steps.

[The next page is page 27]
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WHAT IS CLAIMED IS:
1. A method for compressing a one-dimensional array x of N samples
representative of characteristics of the earth, comprising the steps of:
(a) partitioning said array x into blocks of M samples, where M < N,
{b) folding the samples x(j) = x(M +j) across each block boundary /,
according to
yA-) = 1G) x4) + 1) x (),
i) = £0) ) - £ () %),
/=12, ... NIM-1,
j=12,.. . M2-1,

yii) = xﬁ), otherwise,

where

f() = sin

E 1 + 2;’
4 M|’
(¢) transforming the folded samples in each block of array y according to

M-1 .
2(k) = Zy(f)bo)Pcos "—‘”‘——ﬁ]
=0 M

2M
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where

1, otherwise
(d) quantizing the transformed samples in each block of array z to
produce integers, and
(e) encoding said integers into a stream of bits representing the

compressed array.

2. The method of Claim 1, applied to a multi-dimensional array,
wherein the (a) block, {b) fold, and (c) transform steps are applied as a cascade

of operations along each array dimension.

3 The method of Claim 2, wherein a subset of said multi-dimensional

array is compressed.

4.  The method of Claim 3, wherein said multi-dimensional array

represents seismic signals.

5. The method of Claim 1, further comprising decompressing said
compressed array by inverting steps (a) through (e) in reverse order.
-28-
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6. The method of claim 5, applied to a multi-dimensional array, wherein
the inverse of the (a) block, (b) fold, and (c) transform steps are applied as a
cascade of operations along each array dimension.

5 7. The method of claim 6, wherein a subset of said multi-dimensional
array is decompressed.

8. The method of claim 7, wherein said multi-dimensional array

represents seismic signals.

9. A method of compressing a one-dimensicnal array substantially as
T hereinbefore described with reference to Figures 4 to 12.

15 DATED this 13" day of October 2000
Landmark Graphics Corporation

L] By its Patent Attorneys

: DAVIES COLLISON CAVE
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