wo 2011/087624 A2 [0K 00 R RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

/25>,) 0 0 OO O
A ())

Wy

(19) World Intellectual Property Organization
International Bureau

i

(43) International Publication Date '_ (10) International Publication Number

21 July 2011 (21.07.2011) WO 2011/087624 A2

(51) International Patent Classification: Not classified (81) Designated States (unless otherwise indicated, for every
. ..) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number.PCT/USzOl0/059282 AO. AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
7 December 2010 (07.12.2010) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
- . KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(25) Filing Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(26) Publication Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(30) Priority Data: TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

12/687,123 13 January 2010 (13.01.2010) UsS

(84) Designated States (unless otherwise indicated, for every
(71) Applicant (for ail designated States except US): MI- kind of regional protection available). ARIPO (BW, GH,
CROSOFT CORPORATION [US/US]; One Microsoft GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
Way, Redmond, Washington 98052-6399 (US). ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,

(72) Inventors: MARGARINT, Radu C.; ¢/o0 Microsoft Cor-
poration, LCA - International Patents, One Microsoft
Way, Redm.ond, Washington 98052.-6399 (US). COX, SM. TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ.
Andrew D.; ¢/o Microsoft Corporation, LCA - Interna- GW, ML, MR, NE, SN, TD, TG)
tional Patents, One Microsoft Way, Redmond, Washing- > > R ’
ton 98052-6399 (US). FLAKE, Gary W.; ¢c/o Microsoft Declarations under Rule 4.17:

Corporation, LCA - International Patents, One Microsott
Way, Redmond, Washington 98052-6399 (US). FAROU-
K1, Karim T.; ¢/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsoft Way, Redmond, Washing- — as to the applicant'’s entitlement fo claim the priority of
ton 98052-6399 (US). WU, Alan K.; c¢/o Microsoft Cor- the earlier application (Rule 4.17(iti))

poration, LCA - International Patents, One Microsoft

Way, Redmond, Washington 98052-6399 (US).

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: EXTENDING VIEW FUNCTIONALITY OF APPLICATION

Pixels 216

Application
instance 202

‘ View adapler 206

T
J Subst. Commands
Control doc. 218 208
L I

108

Control

210

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Lorem ipsum do

110 Maccenas omare velil cu ips di ..

g auaq?ai?:(:;zs;cl;:m;:i?;tm § L _o12 consectetur ad1p1 @V/ 122
pulvinar turpis elementum sed

commodo mauris facilisis. Ut Maecenas ornarc

magna lco, faucibus vitac convallis allquam congue

viverra facilisis imperdiet. Nunc
non, lacinia cu massa, Sed

fermentum volutpat nunc vel @

MIOZ 124

214

FIG. 2

(57) Abstract: The viewing functionality of an application may be extended by use of an adapter. An application is instantiated,
and the application may provide a view box that contains a scrolling feature as part of its interface. The adapter uses the applica-
tion "behind the scenes" to collect information in a way that is not visible to the user. Mouse gestures may be defined to perform
various viewing functions such as zooming. The adapter intercepts these gestures in the window that the user uses to interact with
the application, and interprets the gestures as specific view commands (such as zoom). Based on the commands (or, possibly, in
anticipation of commands that have not yet been issued), the adapter uses the application to collect content. The application then
scales the content appropriately, puts the scaled content in a document, and overlays the document on top of the view box.

WO 2011/087624 A2 0000) A0 T O A0 A A

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

Published:

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

EXTENDING VIEW FUNCTIONALITY OF APPLICATION
BACKGROUND

[0001] Astechnology progresses, users of computers and other devices expect
an increasing amount of flexibility in how they view documents. In early computer
displays, information was presented as lines of text on a screen. When the screen filled
with text, that text was scrolled up the screen to make way for new text. Eventually the
top line would be scrolled off the top of the screen and would become irretrievable. Later
developments allowed user-controlled vertical scrolling, which allowed a user to scroll
text up and down to bring it in and out of view.

[0002] Presently, many user interfaces allow additional flexibility, such as
horizontal scrolling and zooming. However, many existing applications do not support
these additional forms of viewing flexibility. Moreover, some new applications (e.g.,
some Java-based web applications) provide viewing areas that have only simple vertical
scrolling functionality. Users have become accustomed to increased viewing capabilities
such as zooming and vertical and horizontal scrolling, and may want to use these
capabilities even with applications that do not provide these capabilities natively.
SUMMARY

[0003] Various viewing capabilities, such as zooming, may be provided to an
application through the use of an adapter. An application, such as a web application that
is accessible through a browser, may display a view box that has scrolling capability. The
view box may be used to show some underlying content (e.g., text, images, etc.), to a
user. In order to add additional capabilities such as zooming to the user experience, a
view adapter controls the application to collect pixels that are displayed through the view
box. Once the adapter has these pixels, it can scale the pixels to any size, and can place
these pixels in a document, which can be shown to the user as an overlay over the view
box.

[0004] In order to provide the user with the impression that the additional
capabilities, such as zooming, have been added to the user experience, the adapter
intercepts the user’s gestures (e.g., left and right movement of a mouse to indicate
zooming), and uses these gestures to decide what content to show to the user. The
adapter then uses the second instance of the application to collect the appropriate pixels

from that content (or collects the pixels proactively in anticipation of user commands),

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

and places the pixels in the document. The adapter substitutes the document that it has
created in place of the underlying content that the application would otherwise display.
So, for example, if the application would normally show the user a text document, the
adapter overlays an image of the document that the adapter createdover the original
view box, so that the user sees that document instead of the original text document. This
document may contain enlarged or reduced views of various regions of the original
content.

[0005] Since the adapter collects pixels by “driving” the application as if the
adapter were a real user, the adapter attempts to learn the location of the scroll bar in
the application so that it can issue appropriate scrolling commands to collect pixels. In
one example, the adapter learns the location of the scroll bar through metadata exposed
by the application. In another example, the application learns the location of the scroll
bar by observation — e.g., by watching the user’s interaction with the application to see
which actions cause the view box to scroll.

[0006] Additionally, the adapter can use the application to collect and store
pixels in a way that increases the user’s perception of speed and reduces the use of
memory. For example, if the user appears to be panning in a certain direction in the
document, the adapter can proactively collect the appropriate pixels from further along
in that direction in the underlying content, thereby anticipating commands that the user
has not yet issued. By having the appropriate pixels in advance, waiting time for the user
is reduced, thereby increasing the user’s perception of the application’s response time.
Additionally, once pixels have been placed in a document, the application may flush
stored pixels to save space if it appears that the pixels represent regions of the document
that are not likely to be requested by the user.

[0007] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used to limit the scope of the claimed subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] FIG. 1is a block diagram of an example application interface in which

scrolling is available.

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

[0009] FIG. 2 is a block diagram of an example scenario in which support is
provided for extending view functionality.

[0010] FIG. 3 is a block diagram of an example scenario in which original
content is replaced with a substitute document.

[0011] FIG. 4 is a flow diagram of an example process in which certain viewing
functionality may be provided to an application.

[0012] FIG. 5 is a flow diagram of an example process of observational
detection.

[0013] FIG. 6 is a block diagram of example components that may be used in
connection with implementations of the subject matter described herein.

DETAILED DESCRIPTION

[0014] Users often like to have flexibility in how they view documents. As
technology progresses, user interfaces accommodate increasingly more flexibility. In the
early days of computers, text was presented to the user on a screen in a sequence of
lines. When the screen filled, older lines ran off the top of the page and were
irretrievable. In subsequent innovations, vertical scrolling was introduced to allow a user
to move up and down in a document. Horizontal scrolling was also introduced as an
alternative to word wrapping, thereby providing a way to show a line that is too wide to
fit on one screen.

[0015] Typically, an area that is scrollable provides an area in which the user
can specify whether the user wants to move up or down in the document (or left or right,
in the case of horizontal scrolling). That area typically includes a scrollbar or “thumb” that
the user can move up or down (or left or right) to indicate where he or she wants to
move.

[0016] In addition to scrolling, users often like to be able to zoom in and out
when viewing content. However, some applications provided scrolling capability but not
zoom capability. The subject matter herein may be used to implement zoom functionality
in an application that exposes scrolling functionality. In order to augment the viewing
functionality of an existing application, a view adapter intercepts a user’s gestures and
other commands in order to determine what the user is trying to do. For example, the
user might move a mouse right or left a view box, thereby indicating that the user wants

to zoom in or out. Since the zoom functionality might not be implemented in the

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

application itself, the adapter intercepts these gestures, obtains the appropriately-scaled
content, and responds to the commands by displaying the scaled content over the view
box of the application.

[0017] Inorder to obtain the appropriately scaled content, and to provide that
content to the application, the adapter may perform actions as follows. For any given
application that provides a view of an underlying document, the adapter may “drive” the
application by interacting with the application’s scroll capability. The adapter’s
interactions with the application may not be directly visible to the user, but the
application can use these interactions to obtain content to show to the user. For
example, the adapter can use the application’s scroll capabilities to scroll up and down
(or, possibly, left and right) in a document. The reason the view adapter navigates the
document in this manner is to collect various portions of the document. For example,
suppose that only one-tenth of a document can fit in a view box at one time. If a user
indicates (through an appropriate zoom gesture) that he wants to see a de-magnified
view of the document that comprises five view-boxes-worth of the document, the
adapter can use its control of the application to scroll through the document and collect
the five view-boxes-worth of that document. The adapter can then de-magnify the
information that it has collected, so that it fits in one view box. In order to make the de-
magnified version visible to the user, the adapter can put the de-magnified version in a
virtual document that the adapter manages. Thus, the adapter puts the de-magnified
view of the underlying document into the virtual document, and then exposes that
virtual document to the user. For example, the adapter may overlay a view of the virtual
document over the view box of the application so that the user sees the virtual
document in the view box.

[0018] The adapter may use certain techniques to collect and store
information about the document. For example, the adapter may provide many different
zoom levels at which to view the document, but might not want to store the entire
document at all zoom levels. Therefore, the adapter may collect portions of the
document in response to a user’s request for specific zoom levels, or may attempt to
anticipate what areas of the document the user will view next, in advance of the user’s
having actually issued commands to view that area of the document. For example, if the

user is viewing a document at a particular zoom level and appears to be scrolling or

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

panning upward, the adapter may anticipate that the user will continue to scroll upward
and will collect information higher up in the document before the user has actually
requested it. Additionally, the adapter can conserve spaced by discarding portions of the
document that the user has already viewed and has moved out of the viewing area.

[0019] In order to determine how to “drive” the application, the adapter may
attempt to learn where the application’s controls are. One way to learn where the
application’s controls are is to examine metadata exposed by the application. For
example, the application may provide metadata that indicates where a scrollable viewing
area and its scrollbar are located. Or, as another example, the adapter may infer the
location of a scrollable viewing area and a scrollbar by observing user behavior and the
actions taken by the application in response to that behavior. For example, the typical
behavior that indicates the location of a scrollbar is: first the user clicks on the scroll
thumb; then nothing happens; then the user starts to move the thumb up or down; and
then the content in the viewing area moves up or down in the direction of the thumb. By
observing this pattern, the adapter can detect the presence of a scrollable viewing area,
and the location of the scrollbar. In another example, if the user clicks the mouse and
then scrolling is observed, this pattern tends to indicate that the user has clicked the
scroll bar somewhere other than the thumb. (The foregoing describes some techniques
for detecting a vertical scroll bar, but analogous techniques could be used to detect a
horizontal scroll bar.)

[0020] Turning now to the drawings, FIG. 1 shows an example application
interface in which scrolling is available. Window 102 provides the user interface of
program 104. For example, the program 104 whose interface is provided through
window 102 may be a browser that processes information such as Hypertext Markup
Language (HTML) and Java code to display some sort of content. Window 102 may have
the normal controls that windows have, such as controls 106, which allow a user to hide,
resize, and close window 102.

[0021] Within window 102, various types of content may be displayed by
program 104. One example of such content is a view box 108, which allows some
underlying content 110 to be displayed. In this example, the content 110 to be displayed
is the familiar “Lorem ipsum” text content, although any type of content (e.g., text,

images, etc.) could be displayed through view box 108. For example, when a browser is

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

used to access some type of content, the content that is accessed may be a server-side
application that provides the HTML or Java code that causes browser to display view box
108, and that also causes content 110 to be displayed through view box 108. Content 110
might be composed of one or more components, such as a source text file 112, fonts 114,
and images 116. For example, the content 110 shown in view box 108 might be a
newspaper article that contains text and images. The content is shown through pixels
displayed through view box 108. The particular pixels that are shown contain text and
graphics. The pixels that represent the graphics are derived from images 116. The pixels
that represent the text are derived from source text file 112 and fonts 114 —i.e., source
text file 112 indicates which characters are to be drawn, and fonts 114 indicates how
those characters will appear.

[0022] View box 108 provides controls through which the user may scroll
through content 110 vertically and/or horizontally. For example, along the right and
bottom edges of view box 108 are two rectangles 118 and 120 which are used to direct
scrolling of content 110 in view box 108. Rectangles 118 and 120 contain scroll bars, or
thumbs, 122 and 124, which allow the user to scroll up and down (thumb 122) and/or
right and left (thumb 124). This scrolling functionality may be provided by the server-side
application that provides view box 108. (In some examples, view box 108 might provide
only vertical scrolling, or only horizontal scrolling. Techniques described herein may be
used to extend viewing functionality to provide scrolling in a dimension that view box
108 does not provide natively.)

[0023] One viewing function that a user might want to perform is zooming or
scaling. While scrolling capability allows the user to move content 110 up or down within
view box 108, scrolling does not allow a user to make the content bigger (to see a smaller
amount of content at greater detail), or to make the content smaller (to see a larger
amount of content with less detail). There are various ways that the user could indicates
functions such as “zoom in” or “zoom out” using a mouse. For example, a user might
drag the mouse pointer right to indicate zooming in, or left to indicate zooming out.
While such gestures could be made by a user, view box 108 might not provide native
support for these gestures. Techniques provided herein could be used to provide such

support, so that a user could zoom in and out on content (or perform any other

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

appropriate viewing manipulation) even if such support is not provided natively by the
application through which the content is being viewed.

[0024] FIG. 2 shows an example way in which to provide support for extending
view functionality. A server-side application provides a view box 108, which provides
access to some underlying content (e.g., text, fonts, images, etc.), and a program (e.g., a
browser) is opened in a window 102 that provides a view of this view box to a user.
Additionally, view box 108 may provide thumbs 122 and 124 that allow vertical and/or
horizontal scrolling (or, as noted above, view box 108 might provide scrolling only in one
dimension.) These components are like those shown in FIG. 1. Application instance 202 is
an instance of the application with which the user interacts. For example, the system
may open a browser window to allow a user to interact with application instance 202.
However, view adapter 206 may also interact with application instance 202 in a manner
that is not visible to the user, as indicated by the dotted-line drawing of application
instance 202’s interface.

[0025] In particular, while the user interacts with application instance 202
through window 102, view adapter 206 intercepts commands 208 issued by the user. For
example, if the user makes gestures such as the left-and-right gestures described above
(indicating zoom-in and zoom-out functions), these gestures may be interpreted as
commands 208, and view adapter 206 may intercept these commands 208. One way that
view adapter 206 may intercept these commands is to observe keyboard and mouse
interactions in window 102 whenever window 102 has focus. (“Having focus” is generally
understood to mean that the window is active —i.e., that keyboard and mouse input is
understood, at that point in time, as being directed to the window that has focus, as
opposed to some other window.)

[0026] Regardless of the manner in which view adapter 206 intercepts the
commands, once view adapter 206 has the commands 208 it may interpret the
commands to determine what the user is trying to view. For example, a leftward motion
may be interpreted as the user wanting to zoom out, thereby seeing less content, but a
larger image of that content. View adapter 206 may then attempt to obtain the content
that the user wants to see. View adapter 206 obtains this content by manipulating view
box 210 in the application. View box 210 may provide thumbs 212 and 214 which allow

the view of content within view box 210 to be controlled. The content to be displayed in

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

view box 210 is the same content 110 that is displayed in view box 108 of FIG. 1. View
adapter 206 controls the view of content 110 by controlling thumbs 212 and 214. It is
noted that view adapter 206’s manipulation of the view inside view box 210 may take
place “behind the scenes”, in the sense that this manipulation is not actually displayed
directly to the user. For example, the motion of arrows and the scrolling of content in
view box 210 may not appear in any desktop window of the application. Rather, view
adapter 206 simply works the input buffer of the application in such a way that the
application believes it is receiving the same kind of commands that a user might have
provided through a keyboard or mouse.

[0027] By working the controls of the application, view adapter 206 is able to
view different portions of the underlying content 110. View adapter collects the pixels
216 that represent content 110. For example, if content 110 contains text, then pixels
216 are the pixels that represent characters of that text drawn in some font. If content
110 contains images, then pixels 216 are the pixels that represent those images.

[0028] When view adapter 206 has collected pixels 216, view adapter 206 uses
the pixels to create a substitute document 218. Substitute document 218 is a “substitute”
in the sense that it stands in for the original content 110 that a user is trying to view with
application instance 202. It will be recalled that a user instantiated application instance
202 in order to view the underlying content 110. As described above, view adapter 206
interacts with application instance 202 in order to collect the pixels that represent
content 110. View adapter 206 then arranges these pixels in ways that follow the user’s
commands. For example, if the user has indicated that he would like to zoom in on some
portion of text (where the zoom feature is not natively supported by view box 108), then
view adapter 206 creates an enlarged view of that text. In order to create this enlarged
view, view adapter 206 uses application instance 202 to collect pixels that represent the
portion of text on which the user would like to zoom, and then enlarges the view to an
appropriate scale. This enlarged view is then placed in a document. View adapter 206 can
then overlay an image of the document on top of the view box that otherwise would be
visible to the user (i.e., on top of view box 108). Normally, application instance 202 would
present content 110 through view box 108. However, since view adapter 206 overlays
view box 108 with an image of substitute document 218, the user sees substitute

document 218 in the place where the user is expecting to see content 110, thereby

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

creating the illusion that the user has zoomed on content 110 as if the mechanisms to do
so existed in view box 108. As can be seen, the text of content 110 appears larger in view
box 108 (or, more precisely, in the overlay on top of view box 108) than in view box 210,

indicating that substitute document 218 represents a zoomed view of that text, which is

shown to the user.

[0029] FIG. 3 shows how original content 110 is replaced with a substitute
document 218. As discussed above, application instance 202 is normally instantiated to
view content 110, which the application displays to a user through view box 108.
However, when view adapter 206 is used, view adapter overlays an image of substitute
document 218 on top of view box 108, thereby causing substitute document to be seen
instead of content 110 (as indicated by the “XX” marks over the line between content
110 and view box 108). The content of substitute document 218 is controlled by view
adapter 206. View adapter 206 fills substitute document 218 with pixels 216that view
adapter 206 has collected by controlling application instance 202 so as to collect those
pixels from content 110. Thus, when a user sees content in view box 108, the user is
seeing content that view adapter 206 has placed in substitute document 218, rather than
the original content 110. In this way, view adapter 206 can enlarge, reduce, or otherwise
transform the appearance of content 110 to show to a user in accordance with the user’s
commands — as long as view adapter 206 can collect this content in some manner. View
adapter 206 collects the content, as described above, by “driving” the application in such
a manner as to collect the pixels that it wants to place in substitute document 218.

[0030] FIG. 4 shows, in the form of a flow chart, an example process in which
certain viewing functionality (e.g., zooming) may be provided to an application. Before
turning to a description of FIG. 4, it is noted that the flow diagrams contained herein
(both in FIG. 4 and in FIG. 5) are described, by way of example, with reference to
components shown in FIGS. 1-3, although these processes may be carried out in any
system and are not limited to the scenarios shown in FIGS. 1-3. Additionally, each of the
flow diagrams in FIGS. 4 and 5 shows an example in which stages of a process are carried
out in a particular order, as indicated by the lines connecting the blocks, but the various
stages shown in these diagrams can be performed in any order, or in any combination or

sub-combination.

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

[0031] At 402, an application is started. For example, a user may invoke the
browser program described above, and may use the browser to access an application
that provides a view box in the browser window. At 404, the scroll bar in the view box is
detected. For example, the view box may provide only vertical scrolling, in which case the
vertical scroll bar is detected. Or, as noted above, a view box might provide both vertical
and horizontal scroll bars, and both of these may be detected.

[0032] Detection of the scroll bar(s) can be performed in various ways. In one
example, the application that provides the view box may also provide metadata 406
indicating the location of the view box and its scroll bar(s). In another example,
observational detection 408 may be performed on the user interface in which the view
box appears in order to detect the view box and/or its scroll bars. One way that this
observational detection can be performed is as follows, and is shown in FIG. 5. First, it is
detected (at 502) that the user has clicked a mouse button (or a button on some other
type of pointing device, such as a touchpad). Then, it is detected (at 504) that, following
the click of the mouse button, nothing has happened on the screen as a result of that
click. Next, it is detected (at 506) that the user has started to move the mouse. Then, it is
detected (at 508) that scrolling has occurred in response to the movement of the mouse
—i.e., that something on the screen starts to scroll when the user moves the mouse. This
sequence of actions tends to indicate that the user has used the mouse to operate the
thumb of the scroll bar, since the observed actions are consistent with the user having
operated the thumb. Using these observations, the location of the view box and the
thumb are inferred.

[0033] Returning now to FIG. 4, at 412, the application consumes the original
content that the user was using the application to view. For example, if the user is
intending to use the application to view content 110 (shown in FIG. 1), then the
application consumes content 110. The application may consume content 110 under the
direction of view adapter 206 (shown in FIG. 2). While the view adapter is directing the
view of content 110, the view adapter collects pixels from the document (at 414). At 416,
the view adapter puts the pixels in a substitute document. At 418, content from the
substitute document is overlaid on top of the application’s view box, so as to make it
appear that the application is showing the user content from the substitute document.

For example, the view adapter may create an overlay on top of the location of the view

10

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

box in the application, and may display content from the substitute document in that
overlay.

[0034] Itis noted that, when the view adapter uses the application to collect
pixels, it may do so in various ways, and in response to various cues. For example, the
view adapter may collect pixels from the underlying content in response to specific
actions by the user. That is, if the user requests to zoom out, the view adapter may use
the application to manipulate the underlying content and to collect several view boxes-
worth of pixels, so that a zoomed-out view of several boxes worth of content can be
shown to the user. However, in another example, the view adapter attempts to
anticipate what the user will ask for. For example, if the user is panning through content
in a certain direction (e.g., to the right), the view adapter may assume that the user will
continue to pan through the content in that direction and therefore may attempt to
collect portions of the content further in that direction before the user actual pans that
far, based on a prediction that the user will pan further in that direction sometime in the
near future. Additionally, the view adapter may store pixels from the underlying content
at varying levels of detail, in anticipation of the user zooming in or out on the same
location of content. For example, if the user pans to a specific location in a document and
then stops panning, the user might zoom in or out at that location so the view adapter
might construct images of the document at several different zoom levels in anticipation
that the user will actually zoom in or out at that location. The system may store various
different views of the content at different zoom levels for some time, and may also flush
the stored views when it is anticipated that the stored views are not likely to be used in
the near future. By pre-calculating views of the content in anticipation of user commands
that have not yet been issued, it is possible to increase the perception of performance by
being able to provide views quickly after they are requested. Additionally, by flushing
views that the view adapter believes are not likely to be used in the near future, the
amount of space used to store the views is reduced.

[0035] FIG. 6 shows an example environment in which aspects of the subject
matter described herein may be deployed.

[0036] Computer 600 includes one or more processors 602 and one or more
data remembrance components 604. Processor(s) 602 are typically microprocessors,

such as those found in a personal desktop or laptop computer, a server, a handheld

11

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

computer, or another kind of computing device. Data remembrance component(s) 604
are components that are capable of storing data for either the short or long term.
Examples of data remembrance component(s) 604 include hard disks, removable disks
(including optical and magnetic disks), volatile and non-volatile random-access memory
(RAM), read-only memory (ROM), flash memory, magnetic tape, etc. Data remembrance
component(s) are examples of computer-readable storage media. Computer 600 may
comprise, or be associated with, display 612, which may be a cathode ray tube (CRT)
monitor, a liquid crystal display (LCD) monitor, or any other type of monitor.

[0037] Software may be stored in the data remembrance component(s) 604,
and may execute on the one or more processor(s) 602. An example of such software is
view adaptation software 606, which may implement some or all of the functionality
described above in connection with FIGS. 1-5, although any type of software could be
used. Software 606 may be implemented, for example, through one or more
components, which may be components in a distributed system, separate files, separate
functions, separate objects, separate lines of code, etc. A personal computer in which a
program is stored on hard disk, loaded into RAM, and executed on the computer’s
processor(s) typifies the scenario depicted in FIG. 6, although the subject matter
described herein is not limited to this example.

[0038] The subject matter described herein can be implemented as software
that is stored in one or more of the data remembrance component(s) 604 and that
executes on one or more of the processor(s) 602. As another example, the subject matter
can be implemented as instructions that are stored on one or more computer-readable
storage media. (Tangible media, such as an optical disks or magnetic disks, are examples
of storage media.) Such instructions, when executed by a computer or other machine,
may cause the computer or other machine to perform one or more acts of a method. The
instructions to perform the acts could be stored on one medium, or could be spread out
across plural media, so that the instructions might appear collectively on the one or more
computer-readable storage media, regardless of whether all of the instructions happen
to be on the same medium.

[0039] Additionally, any acts described herein (whether or not shown in a
diagram) may be performed by a processor (e.g., one or more of processors 602) as part

of a method. Thus, if the acts A, B, and C are described herein, then a method may be

12

10

WO 2011/087624 PCT/US2010/059282

performed that comprises the acts of A, B, and C. Moreover, if the acts of A, B, and C are
described herein, then a method may be performed that comprises using a processor to
perform the acts of A, B, and C.

[0040] In one example environment, computer 600 may be communicatively
connected to one or more other devices through network 608. Computer 610, which may
be similar in structure to computer 600, is an example of a device that can be connected
to computer 600, although other types of devices may also be so connected.

[0041] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specific features
or acts described above. Rather, the specific features and acts described above are

disclosed as example forms of implementing the claims.

13

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

CLAIMS

1. A method of providing view functionality to an application, the method

comprising:

detecting a first location of a first scroll bar in a view box of an application,
content being displayed through said view box;

using said first location of said first scroll bar to navigate said content
without said navigation being visible to a user of said application, and to collect pixels
that represent said content; and

overlaying information based on said pixels on top of said view box.

2. The method of claim 1, wherein said detecting of said first location comprises
using metadata, provided by said application, which specifies said first location of said
first scroll bar.

3. The method of claim 1, wherein said detecting of said first location comprises:

observing that a user of said application has used a pointing device to click
on a second location in an interface of said application;

observing that said user has indicated, with said pointing device, a move
from said second location to a third location, said second location and said third location
being within said first location; and

observing that, following said move, scrolling of content in said view box
has occurred.

4. The method of claim 1, wherein said acts further comprise:

detecting a fourth location at which said view box is located.

5. The method of claim 1, wherein said view box comprises a second scroll bar,
said first scroll bar being a vertical scroll bar, said second scroll bar being a horizontal
scroll bar, and wherein said acts further comprise:

using said horizontal scroll bar in said application to navigate said content.

6. The method of claim 1, wherein said application is run in a computer system
that displays, to a user, windows of at least some application instances, wherein said
using of said first location of said first scroll bar to navigate said content is not displayed
in a window.

7. The method of claim 1, wherein said overlaying of said information based on

said pixels on top of said view box comprises:

14

10

15

20

25

30

WO 2011/087624 PCT/US2010/059282

putting said pixels in a document;
displaying said document as an overlay on top of said view box.
8. The method of claim 7, wherein said acts further comprise:
removing said pixels from said document based on a prediction that said
pixels are not likely to be requested by a user.
9. The method of claim 1, wherein said acts further comprise:
intercepting commands that a user issues through a window of said
application; and
determining which portions of said content to navigate to, and to collect
pixels from, based on said commands.
10. The method of claim 9, wherein one of said commands indicates a zoom level,
and wherein said acts further comprise:
scaling said content based on said zoom level.
11. The method of claim 1, wherein said acts further comprise:
anticipating, based on portions of said content that have been requested
by a user, a portion of said content to be requested by said user in advance of said user’s
having issued a command to obtain said portion; and
obtaining said portion of said content using said application.
12. The method of claim 1, wherein said acts further comprise:
anticipating, based on zoom levels of said content that have been
requested by said user, a zoom level at which to show said content in advance of said
user’s having issued a command to view said content at said zoom level; and
scaling said content to said zoom level.
13. A computer-readable medium having computer-executable instructions to
perform the method of any of claims 1-12.
14. A system for responding to commands from a user who operates an
application, the system comprising:
a processor on which said application executes;
a data remembrance component in which said application is stored;
a view adapter that is stored in said data remembrance component and
that executes on said processor, said view adapter intercepting commands issued by said

user through a window on which said application executes, said view adapter issuing

15

10

15

WO 2011/087624 PCT/US2010/059282

commands to obtain content through said application, said application being visible to
said user on a display, but interactions between said view adapter and said application
not being visible to said user on said display; and

a document in which said view adapter stores pixels that represent
content that said view adapter obtains through said application, said view adapter
causing said document to be overlaid on top of a view box of said application so as to
appear in place of said content.

15. The system of claim 14, wherein said view adapter detects a location of said

view box and of a scroll bar in said view box either by:

receiving metadata from said application; or

observing motions of a pointing device in said window and actions of said
application that follow said motions, and determining that said motions and said actions
are consistent with said view box and a scroll bar of said view box being in said location;

wherein said view adapter uses said location to navigate said content in said application.

16

PCT/US2010/059282

WO 2011/087624

1/6

I "OIA

701 weidold

.\

174! /

[9A ounu 1edinJoA WNUSULIYJ \}

Pag "esSSewW na BIUIOR] ‘UOU
SI[[EAUOD QB}IA SnqIonej ‘09] euSew
ouny ‘1o1pJoduur SISI[IOR] BIIDAIA

10 "SISI[IOg] SLINRW OPOWo) |

Pas wnjuawd[d sidiny yeuraind
189 s1eW 1) *9nSuod wenbrpe

wnsdr no 1A deI0 SEUoodE I 011

111 Surdosidipe 1n3a103suod
“owe 11s Jo[op wnsdl Walo

801 |\

[T soSew]

O

q.

TT swoy

1T 21y
1X9] 90IN0S

01 |\

PCT/US2010/059282

WO 2011/087624

2/6

¢ OIA

144! /M 01 |/

il \\/%

'*onduod wenbriye
QIBUIO SBUJIIBIA

1dipe Inj9109su0d Nk
\ ¥ N

SI[[RAUOD JBIIA SNQIONEJ ‘09 vuew |
ouny "191pIodur SISI[IOR] BLIOAIA m
1() "SISI[IOR] SLINEW OpOwoo !

pas wnjuawafd sidim JeurAnd

% 189 sijewt 1) *onguod wenbije m

I
1
I
1
|
|
|
! Pas "essew N2 eIurde[‘uou !
|
|
I
|
|
|

I
I
“ 170 Surosidipe 1n3e0esuod |
" ‘Joure J1s Jo[op wnsdr waIo| m
|

[onuo)
|

op wnsdr waro|| -
801 |\
_ _*
30C 81¢C 90p [onuo) —
SpueuIlO)) .Hm@ﬂm _\

70¢ 2oue)sur
uonednddy

00 Jo1depe maiA

r 91T s[ex1d

A wnsdr nd JI[2A d1eUI0 mwgoo@/?_:/ Ol1

PCT/US2010/059282

WO 2011/087624

3/6

& OIAd

011 1U91UO09 [eUISLI()

[2A dunu jedinjoA wnjuawIdy

PaS ‘BSSBW N BIUIOR[‘UOU
SI[[BAUOD JBIIA SNQIONE] ‘09] BUSEW
ouny ‘1o1psoduur SISI[IOR] BIIOAIA
1] "SISI[I9B] SLINBUW OPOWWO)

189 smewW 1) "on3uoo wenbife

[}
[}
“
pas wnuawdd sidiny yeuraind !
“
1

wnsdr N2 JI[9A JBUIO SBUIIIBIA
‘12 Surosidipe 1n39303su09
“Jowe 11s Jojop wnsdr walo

A
801 |\

0¢

J

81¢C
USWNOOP IMNSANS

A

\O
—
o

w2

[ox1d [onuo0))

A 4

90¢ Ja1depe MaIA

WO 2011/087624

Metadata 406

4/6

PCT/US2010/059282

402
/_

Start application

Observational
detection 408

l

404
r

Detect scroll bar

l

412
/_

Application consumes
original content

l

414
r

Collect pixels

l

416
/_

document

Put pixels in substitute

l

418
/_

Overlay content from
substitute document on
top of view box

FIG. 4

WO 2011/087624

5/6

502
/_

Detect that user has
clicked mouse

504
/_

Detect that nothing has
scrolled

506
/_

Detect that user has
moved the mouse

508
/_

Detect that text starts to
scroll when the user
moves the mouse

FIG. 5

PCT/US2010/059282

PCT/US2010/059282

WO 2011/087624

6/6

019 Jomdwo))

809 AIOMISN

719 Aedsiq

9 OIA

B 709
(shusuodwod

QOUBIQUISWIAL
ereq

Ul palo}s

709 (8)10882201g

009 fInduio))

909 dIBMOS
uoneldepe MIIA

UO SAINOIXF

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

