My invention relates in general to devices adapted for mounting various objects in such manner that they can be moved or shifted to different positions while still in a mounted condition and refers in particular to devices of this character adapted for mounting telephone sets, and is an improvement upon existing devices of this kind.

Among the objects of my invention are to provide a strong and sturdy support of the above mentioned character for the weight of an overhanging element, such as a telephone set; convenient in use; easily installed; economical to manufacture; reliable; durable; and having other advantages which will hereinafter appear.

My invention includes various features of construction and combinations of parts, as will appear from the following description. In the case of a telephone set, for instance, a track rail is installed to run along the front edge of a desk, table, or the like. This rail is provided with a double track forming parallel spaced guideways for a carriage to travel thereon, whereby the carriage is supported against movement in any direction transversely of the rail, including rocking movement. A bracket member rigidly extends from the carriage beyond the front of the rail and there supports the telephone set, which overhangs the track rail at the front thereof. Thus the telephone set may be conveniently moved along the rail from the end of the desk to a convenient position of use and later returned to its original position, out of the way.

Automatically acting means are provided having a constant tendency to return the telephone set to its original position of non-use and an automatically operated latch is provided for holding such set at a position of convenient use. This latch is actuated from the movable circuit-controlling element of the telephone set by which the removable part or hand piece of the telephone set is supported. The construction and arrangement are such that when the hand piece is lifted off for use, the holding latch will automatically become engaged to prevent return movement of the set, and when the hand piece is restored to its place on the movable circuit-controlling element of the set, the holding latch will thereby be disengaged so that the telephone set will then be automatically returned or retracted from its position of use to its position of non-use at the end of the desk or the like.

Further particulars relating to the construction and manner of operation of one embodiment of my invention, together with modifications thereof, will be clear from the following description taken in connection with the accompanying drawings, in which similar parts are indicated by similar numerals.

Figure 1 is a plan view showing a conventional form of telephone set as carried by a mounting device embodying my invention, parts being broken out.

Figure 2 is a front elevation, with parts broken out, of what is shown in Figure 1.

Figure 3 is an enlarged broken plan view, turned ninety degrees counter-clockwise as compared with Figure 1.

Figure 4 is a vertical transverse section on the irregular line 4—4 of Figure 3.

Figure 5 is a vertical longitudinal section on the line 5—5 of Figure 3.

Figure 6 is a similar view showing a simplified form of the invention.

Figure 7 is a transverse vertical section on the line 7—7 of Figure 6.

Figure 8 is a similar view of a modification.

Figure 9 is a similar view of another modification.

Reference will first be had to the telephone mounting device of my invention shown in Figures 1 to 5 inclusive of the accompanying drawings. A hollow or tubular rectangular metal track rail 11 is in general of channel shape with similar inturned flanges 12, 12, which provide an open longitudinal slot between them, shown as of about the same width as each of the flanges. A projecting horizontal mounting plate 13 is fixed to one of these flanges, such as by means of the screws shown. The side of the rail 11 from which the mounting plate 13 projects is shown as abutted against the front edge face of a desk top 14, with the mounting plate 13 abutting upwardly against the lower surface of the overhanging forwardly extending portion of the desk top 14, to which it is shown as firmly secured by means of screws, the flat upper face of the rail 11 being flush with the upper surface of the desk top 14.

Within the track rail 11 its flanges 12, 12 are provided with similar upwardly rounded front and rear tracks 15, 15, shown as secured thereon by means of a series of upwardly extending screws. At the rear the same screws serve to secure in place the mounting plate 13 and the rear track 15, while at the front the similar screws for the front track also firmly secure a longitudinally extending rack bar 16 to the lower side of the flange 12. The purpose of this rack
bar, which has rack teeth on its lower side, will be explained later. Similar downwardly rounded front and rear tracks 17, 17 with in the track rail 11, respectively in vertical alignment with the lower tracks 15, 15, are each shown as secured to the upper wall of the track rail by means of a series of screws.

The ends of the track rail 11 are closed by means of similar shouldered plugs 18, 18 fixed therein. The right hand end of the track rail 11 projects beyond the end of the desk top 14 and is braced and further secured to the desk top by means of an angle bracket 16, shown as secured by means of screws to the back of the track rail 11 and end of the desk top 14. The inner ends of the plugs 18, 18 are provided with cushioning buttons 20, 20, of soft rubber or other suitable material, against which respectively the opposite ends of a traveling carriage, yet to be described, may abut.

An elongated carriage body 21 is shown as made up of three vertical plates securely joined together by means of a suitable number of transverse pins, or rivets, 22, 22, this body extending longitudinally within the track rail 11. Adjacent opposite ends of this carriage body 21 have a pair of axles 23, 23 fixed respectively therein and projecting therefrom at the front and rear. Peripherally grooved rollers or carriage wheels 24, 24 are respectively journaled upon the projecting axle ends by means of interposed ball bearings 25, 25. The grooved peripheries of these carriage wheels or rollers engage downwardly over the lower tracks 15, 15 and similarly upwardly around the upper tracks 17, 17, sufficient play or looseness being provided to prevent binding or pinching of the carriage wheels 24, 24 between a lower track 15 and an upper track 17.

The middle plate of the carriage body 21 extends downwards through the longitudinally open slot between the track rail flanges 12, 12, thence extends forwardly below the rack 16, and thence upwardly at the front of the track rail 11 in spaced relation therefrom, thus forming a substantially U-shaped bracket member 26. By means of a suitable number of strong screws 27, 27, the outer arm of the bracket member 26 has secured thereto and is clamped between an upper plate 28, to be fully described later, and one of the arms of an angle plate or bracket 29, the other angle arm of which extends forwardly therefrom at the right hand thereof.

A telephone set 30 is fixedly mounted, by means of a plurality of screws 31, 31, upon the forwardly extending arm of the bracket plate 26, at the left hand side of the latter. This telephone set is shown as being of a usual or commonly used type. It includes a circuit-controlling lever 32 extending out from the top of its left side, as viewed in Figures 1 and 2, for up and down circuit-controlling movement and is understood to be spring-pressed upwardly, as is usual with telephone sets. This lever is shaped to provide a bifurcated hook upon which the handle piece 33 of the telephone set 30 is hung when not in use. The handle piece 33 of the telephone set 30 shown in the drawings is of the French type, in which an intermediate handle carries a transmitting unit on one of its ends and a receiving unit on the other. In the illustrated set 30 the head formed by the body of the lever 32 with its neck between the fork of this hook, the transmitting unit thus hanging down at the lower end of the handle of the hand piece 33.

The bracket 29 supports the telephone set 30 at the front of and conveniently spaced forwardly from the front side of the track rail 11. It will therefore be evident that the load on the outer end of the bracket 29, due to the weight of the telephone set 30, will impart a twisting or rocking strain to the carriage body 21, which will be in a clockwise direction as viewed in Figure 4. This rocking strain, in addition to the direct downward pull of gravity, is directed downwardly at a rearward inclination upon the top of the lower front track 15 by the two peripherally grooved side wheels 24, 24 at the front side of the carriage body 21 and thus transmits an upward strain at a forward inclination against the upper rear track 17.

Thus as the carriage 21 travels along the track rail 11, with the weight of the telephone set 30 borne upon its forwardly extending bracket 29, the two carriage wheels 24, 24 at the front of the carriage body 21 will run, with downward pressure, upon the lower front track 15, while the two carriage wheels 24, 24 at the rear of the carriage body 21 will run along the upper rear track 17, with upward pressure against this track, there being sufficient vertical clearance to provide for this manner of operation. Of course all of the tracks and all of the carriage wheels cooperate in guiding the carriage body 21 in its traveling movements back and forth along the track rail 11. It will now be evident from the foregoing description, together with the drawings, that there will be very little frictional resistance to the travel of the carriage 21, so that thus the telephone set 30 can be very easily shifted along the track rail 11. It is also evident that any other movement of any kind of the telephone set 30 is prevented.

A usual insulated-wire telephone cord 34 connects the hand piece 33 with the set body 30 and a similar insulated-wire telephone cord 35 connects the set body 30 with a usual outlet box 36, shown as fixed upon the right hand end of the desk adjacent the top and front of the latter, and as fully provided with a cord clamp 37. This latter telephone cord 35 is utilized as a part of the above mentioned automatically acting means having a constant tendency to return the telephone set 30 to its normal position of non-use at the right hand end of the track rail 11 and just beyond the right hand edge of the desk top 14. The cord 35 extends rearward from the base portion of the telephone set body 30 and passes towards the right through a positioning eye 38 carried by and projecting from the lower side of the lower portion of the U-shaped bracket member 26. Thence this cord extends to the right below the track rail 11 and its rack bar 16, passing through a guide eye 39 on the lower side of the right hand end plug 18. Between the outlet box 36 and the guide eye 39 a traveling weight 40 is hung upon this cord 35, by means of an anti-friction pulley or roller 41 which closes the top of a guide eye through the top of this weight. Obviously a similar anti-friction pulley could be provided for the guide eye 39 carried by the end plug 18.

It will now be clear that this weight 40 exerts a constant force tending to return the telephone
5 set 30 along the rack rail 11 towards the right, where it will be stopped by the end of the carriageway 21 abutting against the cushioning stop button 20. When the telephone set 30 is drawn to the left to its fullest extent of travel along the track rail 11, it will be stopped by the other end of the carriageway body similarly abutting against the other cushioning button 20. The telephone set may be most conveniently drawn toward the left into a convenient position of use merely by grasping and pulling the handle member of the telephone hand piece 33, while at the same time leaving its receiving unit in engagement with the hook of the circuit-controlling lever 32. The above mentioned means for holding the telephone set 30 at a convenient position of use will now be described.

The rack bar 16, as will be noted from Figure 2, extends the full length of the track rail 11.

A locking tooth or detent 42 extends transversely beneath the rack bar 16, normally spaced below the rack bar teeth, as shown in Figures 4 and 5, and is adapted to be engaged upwardly into locking engagement with the teeth of the rack bar 16. This locking detent 42 is shown as of wedge-shape upwardly, substantially similar to an inverted capital letter V, for easy engagement between the locking teeth of the rack bar 16. This detent 42 extends rearwardly at right angles from and is rigidly carried by the lower end of a vertical stem 43. This stem is vertically slidably through a guideway 44 formed upon the adjacent end of the rear or inner plate 28, which is at the front of the track rail 11.

Rotation of the stem or rod 43 in its tubular guideway 44, with consequent permissible swinging movement of the locking detent tooth 42, is prevented by means of a pin 45 rigidly projecting from the stem 43 through a vertical slot 46 in the front side and lower end portion of the guideway 44. The upper portion of the vertical bore through the guideway or guidehead 44 is enlarged, as shown in Figure 4, and provides an inner abutment shoulder for the lower end of a thrust spring 47 on the stem 43. Above this guideway, the upper end of the stem 43 has a head 48 thereon receiving the upward thrust of the actuating spring 47, which has a constant tendency to move the detent tooth 42 upwardly into locking engagement with the teeth of the rack bar 16. In this upper position and locked condition of the detent 42, the telephone set 30 will be locked against traveling movement in either direction along the track rail 11. In the released position of the locking detent 42, the stem head 48 abuts against the upper end of the guideway 44, as shown in Figure 4.

A lock-releasing arm 49 is rigidly clamped upon the circuit-controlling lever arm 32 of the telephone set 30 and extends rearwardly with its end above the head 48 of the detent-operating stem 43. The weight of the telephone hand piece 33 upon the hook of the telephone set lever 32 is sufficient to depress the spring 47 and force of its spring 47, thereby moving the locking detent 42 down to its disengaged position shown in Figures 4 and 5.

Whenever the hand piece 33 is removed from its hook, the released the spring-pressed telephone lever 32 elevates the lock-controlling arm 49 to an upper position clear of the upper limit of movement of the head 48 of the detent stem 43, whereby the spring 47 then becomes effective to raise the detent 42 into locking engagement with the teeth of the rack bar 16, with the locking detent 42, stem head 49 and detent-controlling arm 45 then occupying the position shown in broken lines in Figure 4. In the drawings, it will be noted that the telephone set 30 is advanced to a position of use, with the hand piece 33 on its hook and with the weight 40 thus free to return the telephone set 30 to its retracted position of non-use, but as yet not having acted to do so.

The operation upon the above described telephone mounting device of my invention is as follows:

When a call comes in, or when it is desired to make a call, the person sitting at the desk simply extends his hand and draws the entire telephone set towards him by means of its hand piece 33. When the set has thus been brought to the most convenient position for use, depending upon his position at the desk, and he is ready to talk, he removes the hand piece 33 from its hook, whereupon the set body 30 begins automatically locked in position, against being retracted by the weight 40 and similarly against accidental displacement in other directions. It has not been advanced to its fullest extent, for example, at the position shown in Figures 1 and 2 of the drawings. When the conversation is concluded, he simply hangs up the hand piece 33 on its hook in the usual way, whereupon the entire set is automatically returned to its normal position of non-use. It is obvious that the telephone set could be similarly mounted at the left side of the occupant of the desk if so desired.

The simpler modified construction shown in Figures 6 and 7, as to its corresponding parts, does not differ materially from the above described construction. Accordingly, the same parts have been given the same reference numbers. Here, the mounting plate 13 has been replaced by an angle plate 50 by means of which the track rail 11 is similarly mounted upon the face of a wall or the like 51 and the U-shaped bracket member 26 has been replaced by a bracket-forming angle plate 52 having a load-carrying arm extending horizontally outward or forwardly beyond the front face of the track rail 11.

The parts relating particularly to the telephone equipment have been omitted. Instead of a telephone set, such as 30, an object 53 is shown as extending down from the forwardly extending arm of the bracket plate 52 and affixed thereto by means of a screw or bolt 54, so as to be supported forwardly from the front of the track rail 11. The object 53 may be anything which it is desired to mount in spaced relation with a wall or the like for lateral traveling or shifting movement. For example, the object 53 may be considered as a door thus mounted and spaced outwardly from the wall 51.

The modification shown in Figure 8 is otherwise similar and differs from that of Figures 6 and 7 only in respect to its reversed position. The track rail 11 is fixed in a lower corner upon a floor 55 and abuts that wall 51 with its flanges 12, 12 and open slot at the top, a loading object 57, which may be a door, is supported upon and fixed to the outer end portion of the bracket plate 52 and extends upwardly therefrom.

In the modification shown in Figure 9 the track rail 11 is embedded in a wall 58 and countersunk therein with its flanges 12, 12 flush with the face of the wall, its open slot thus being at the front. Lower and upper tracks are
provided by means of similar longitudinally grooved track plates 59, 59 fixed respectively to the lower and upper walls of the track rail 11 therein. In this instance the carriage wheels 56, 58 have rounded peripheries or rims which engage in the track grooves in the plates, 59, 59, both below and above. The carriage body 61 is made up of three horizontal plates securely fixed together. In this instance the middle plate of the carriage body 61 extends straight out at the front through the longitudinally open slots, the opposed edges of the track rail flanges 12, 12, thus forming an outwardly or forwardly extended bracket member 62.

An object 63, which may be a door, or something else, is fixed upon and supported by the outer end portion of the bracket member 62. This object 63 is shown as suitably spaced from the face of the wall 58 and extending both above and below the track rail 11, so as thereby to conceal the latter from view. This construction is suitable for guiding a travelling door in such manner that its trolley track and trolley, as the track rail 11 and carriage 61 together with its door-supporting bracket member 62, will be hidden from view by the door, such as 63. Even without a covering there will be nothing more visible other than merely a slot in the wall 58.

It is to be noted of each of the modifications of Figures 6 to 9 inclusive that twisting or rocking strain on the carriage, due to the outwardly or forwardly spaced load on its bracket member, is provided for in the same manner as hereinafter described for the telephone mounting device shown in Figures 1 to 5 inclusive. It is manifest that any one of the modified mounting devices shown in Figures 6 to 9 inclusive may be utilized in a telephone mounting device in a manner substantially similar to that first described with reference to Figures 1 to 5 inclusive. Similarly, the first described mounting device might be utilized for other purposes than as a telephone mounting. The operation of the modified mounting devices is practically the same as described for the telephone mounting device.

The device of my invention, as to all its varied forms, has special utility as a mounting for a telephone set.

Clearly evident examples are to be noted as follows:

The described particular telephone mounting device of Figures 1 to 5 inclusive provides complete convenience in using the telephone. In a simplified form of this device, both the automatically acting telephone-set-returning means and the automatically operated locking means could be simply omitted. Then, in use, the person at the desk would draw the telephone set towards him, as before, and when the conversation is ended, he would push the set back along the track rail 11 to its position of non-use and out of the way. Thus the device would still be a convenience having distinct utility.

It is obvious that the device shown in Figures 1 to 5 inclusive can be mounted upon a wall, as shown in Figure 7. It is equally obvious that any one of the devices shown in Figures 6 to 9 inclusive can be installed upon a desk in the manner shown in Figures 3 and 4.

It is now clear that any one of the four illustrated variant forms of my invention is well adapted to serve as a telephone mounting device, regardless of where it may be installed. It is also clear that any one of these devices may be equipped with automatic controlling means substantially similar to the disclosure in Figures 1 to 5 inclusive, or such automatic means may be omitted, as in any particular instance may be desired.

It is obvious that various modifications may be made in the constructions shown in the drawings and above particularly described, within the principle and scope of my invention as defined in the appended claims. I do not limit myself specifically to size, shape, materials, particular relationship of parts, specific use, nor to specific details which might be more or less varied while still effectively carrying out the idea of the invention, these being given simply as a means for clearly describing the device of my invention.

What I claim is:

1. In a telephone mounting device, in combination, a hollow track rail adapted to be mounted to run along the front of desk or the like and having within it a pair of lower tracks and a pair of upper tracks, said tracks of the pairs of lower and upper tracks being vertically opposed to each other, a carriage within said hollow track rail, track wheels on said carriage at the respective opposite sides thereof between and in engagement with lower and upper vertically opposed tracks at the same time for each of said track wheels, said tracks and track wheels having interengagement adapted to prevent rocking or movement of said carriage transversely of the latter to a normal retracted and out-of-the-way position, automatically acting means having a constant tendency to return said carriage and 55 telephone mounting device, regardless of where it may be installed. It is equipped with automatic controlling means substantially similar to the disclosure in Figures 1 to 5 inclusive, or such automatic means may be omitted, as in any particular instance may be desired.

2. In a telephone mounting device, in combination, a hollow track rail adapted to be mounted to run along the front of desk or the like and having within it a pair of lower tracks and a pair of upper tracks, said tracks of the pairs of lower and upper tracks being vertically opposed to each other, a carriage within said hollow track rail, track wheels on said carriage at the respective opposite sides thereof between and in engagement with lower and upper vertically opposed tracks at the same time for each of said track wheels, said tracks and track wheels having interengagement adapted to prevent rocking or movement of said carriage transversely of the latter to a normal retracted and out-of-the-way position, automatically acting means having a constant tendency to return said carriage and 55 telephone mounting device, regardless of where it may be installed. It is equipped with automatic controlling means substantially similar to the disclosure in Figures 1 to 5 inclusive, or such automatic means may be omitted, as in any particular instance may be desired.

3. In a telephone mounting device, in combination, a hollow track rail adapted to be mounted to run along the front of desk or the like and having within it a pair of lower tracks and a pair of upper tracks, said tracks of the pairs of lower and upper tracks being vertically opposed to each other, a carriage within said hollow track rail, track wheels on said carriage at the respective opposite sides thereof between and in engagement with lower and upper vertically opposed tracks at the same time for each of said track wheels, said tracks and track wheels having interengagement adapted to prevent rocking or movement of said carriage transversely of the latter to a normal retracted and out-of-the-way position, automatically acting means having a constant tendency to return said carriage and 55 telephone mounting device, regardless of where it may be installed. It is equipped with automatic controlling means substantially similar to the disclosure in Figures 1 to 5 inclusive, or such automatic means may be omitted, as in any particular instance may be desired.
telephone set along said track rail from an advanced position of use of the latter to a normal retracted position of use of said track rail, a rack bar movably carried by said bracket member, a normally ineffective restrained spring adapted when released from restraint to urge said rack bar upwardly into locking engagement with the teeth of said rack bar, and means whereby the upward spring-pressed movement of the de-pressible circuit-controlling element of said telephone set releases restraint from said spring thereby enabling the latter to move said rack bar upwardly into lock ing engagement with the teeth of said rack bar and whereby downward movement of said circuit-controlling element will move said detent downwardly out of such lock engagment against the force of said spring.

3. In a telephone mounting device, in combination, a hollow track rail adapted to be mounted to run along the front of a desk or the like and having within it a pair of lower tracks and a pair of upper tracks, said tracks of the pairs of lower and upper tracks being vertically opposite each other, said lower tracks being a rack bar having interengagement adapted to prevent rocking movement of said carriage transversely of said track rail, said hollow track rail having an exposed open slot longitudinally thereof, a bracket member rigidly extending from said carriage out through said slot transversely forward beyond said track rail and there adapted to carry a telephone set of a usual type fixed thereon and having a constant tendency to return said carriage and telephone set along said track rail from an advanced position of use of the latter to a normal retracted position of non-use, a rack bar with locking teeth on its lower side fixed to the lower side of said track rail, a locating detent disposed below said rack bar, an upwardly extending vertical stem rigidly carrying said detent, a vertical guideway on said bracket member through which said stem slidable but non-rotatably extends, a spring act ing upon said stem and adapted to raise said locating detent into locking engagement with said rack bar teeth, and a lock-releasing arm above the upper end of said bracket member and rigidly carried by the upwardly spring-pressed circuit-controlling element of said telephone set.

4. In a telephone mounting device, in combination, a hollow track rail adapted to be mounted to run along the front of a desk or the like and having within it a pair of lower tracks and a pair of upper tracks, said tracks of the pairs of lower and upper tracks being vertically opposite each other, said lower tracks being a rack bar having interengagement adapted to prevent rocking movement of said carriage transversely of said track rail, said hollow track rail having an exposed open slot longitudinally thereof, a bracket member rigidly extending from said carriage down wardly through said slot in said track rail and forwardly beyond said track rail, a telephone set having a movable circuit-controlling element and fixedly mounted upon the forwardly extending portion of said bracket member at the front of and spaced from said track rail, automatically acting means having a constant tendency to return said carriage and telephone set along said track rail from an advanced position of use of the latter to a normal retracted position of non-use, and automatically operated locking means adapted to be actuated from and controlled by the movable circuit-controlling element of said telephone set to lock said carriage at a position of use of said set and to release said carriage for its automatic return to its retracted normal position of non-use of said set.

5. In a telephone mounting device, in combination, a hollow rectangular track rail, means adapted to mount said track rail rigidly on a desk or the like to run along the front thereof, said track rail having an open slot longitudinally thereof, and a guide for the incoming telephone cord on the remote end of said track rail adjacent the end of the desk, means beyond said guide adapted to draw constantly upon said cord for thereby automatically returning said carriage and telephone set along said track rail from a near position of use of the latter to a remote normally retracted position of non-use, and automatically operated locking means adapted to be actuated from and controlled by the movable circuit-controlling element of said telephone set to lock said carriage at a position of use of said set and to release said carriage for its automatic return to its retracted normal position of non-use of said set.

6. In a telephone mounting device, in combination, a hollow rectangular track rail, means adapted to mount said track rail rigidly on a desk or the like to run along the front thereof, said track rail having an open slot longitudinally thereof, and a guide for the incoming telephone cord on the remote end of said track rail adjacent the end of the desk, means beyond said guide adapted to draw constantly upon said cord for thereby automatically returning said carriage and telephone set along said track rail from a near position of use of the latter to a remote normally retracted position of non-use, and automatically operated locking means adapted to be actuated from and controlled by the movable circuit-controlling element of said telephone set to lock said carriage at a position of use of said set and to release said carriage for its automatic return to its retracted normal position of non-use of said set.
riage within said hollow track rail, a set of at least four peripherally grooved track wheels on said carriage with two of said wheels disposed at opposite ends and two disposed at the opposite front and rear sides of said carriage with the latter track wheels between and in engagement with both the lower and the upper tracks at the respective front and rear sides of said carriage, a bracket member rigidly extending from said carriage downwardly through said slot in said track rail and forwardly beyond said track rail, a telephone set fixedly mounted upon the forwardly extending portion of said bracket member at the front of and spaced from said track rail, said telephone set including an upwardly spring-pressed circuit-controlling element, cushioning stops at the respective ends of said track rail adapted to be abutted by said carriage, a guide for the incoming telephone cord on the remote end of said track rail adjacent the end of the desk, an anchor for said cord beyond said guide on the adjacent end of the desk, a weight hung upon said cord between said guide and anchor and adapted to draw constantly upon said cord for thereby automatically returning said carriage and telephone set along said track from a near position of use to the latter to a position of non-use with said carriage abutting against and adjacent said stop, a rack bar with locking teeth on its lower side fixed to the lower side of said lower front flange of said track rail, a locking detent disposed below said rack bar, an upwardly extending vertical stem rigidly carrying said detent, a vertical guideway on said bracket member through which said stem slidably but non-rotatably extends, a spring acting upon said stem and adapted to raise said detent into locking engagement with said rack bar teeth, and a lock-releasing arm above the upper end of said stem and rigidly carried by the upwardly spring-pressed circuit-controlling element of said telephone set.

EDWARD F. SIBBERT.