WO 2005/045592 A2 |0 |00 000 0 000 T 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date

AT O OO A

(10) International Publication Number

19 May 2005 (19.05.2005) PCT WO 2005/045592 A2

(51) International Patent Classification’: GO6F WA 98121 (US). GUZAK, Chris, J.; 8363 N.E. Juanita
. L Drive, Kirkland, WA 98034 (US). MOORE, Jason, Fer-
(21) International Application Number: gus; 77643 139th Place NE, Redmond, WA 98052 (US).
PCT/US2004/025306 KARATAL, Kerem, B.; 11251 SE 30th Street, Bellevue,
. . . WA 98004 (US). SIERRA, Giampiero; 1808-A 14th
(22) International Filing Date: 30 July 2004 (30.07.2004) Avenue, Seattle, WA 98122 (US). PETERSON, Leonard,

(25) Filing Langl.lage: Engllsh J., 19512 NE 129th Way, WOOdlIlV]He, ‘WA 98072 (US)‘
(26) Publication Language: English (74) Agents: LUJIN, Patrick, A. et al.; Shook, Hardy & Bacon
: L.L.P, 2555 Grand Blvd., Kansas City, MO 64108-2613

(30) Priority Data: (US).

10/691,888 23 October 2003 (23.10.2003) US (81) Designated States (unless otherwise indicated, for every

(71) Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: MCKEE, Timothy, P.; 165-35th Avenue
East, Seattle, WA 98112 (US). DE VORCHIK, David,
George; 414 West Newell Street, Seattle, WA 98119 (US).
SHELDON, David, Joel; 2319 First Avenue #302, Seattle,

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP,KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

[Continued on next page]

(54) Title: SYSTEM AND A METHOD FOR PRESENTING RELATED ITEMS TO A USER

ACCESSING DATA STORE

DETERMINING RELATIONSHIP
BETWEEN ITEMS

1204

DISPLAYING RELATED ITEMS

\ 1200

(57) Abstract: A system and method for
presenting related items to a user. A universal
data store is provided which contains a plurality
of items. A portion of the items contain
relational information that allows relationships
between two or more of the plurality of items
to be determined. A shell presents a selected
item to a user and is configured to utilize the
relational information to present one or more
items in the data store which are related to the
selected item.

WO 2005/045592 A2

0000 00O

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/045592 PCT/US2004/025306

SYSTEM AND A METHOD FOR PRESENTING
RELATED ITEMS TO A USER

TECHNICAL FIELD

The present invention relates generally to the field of computer
5 software. More particularly, the present invention relates to a system and method

for displaying items stored on a computer to a user.

BACKGROUND OF THE INVENTION

Providing users of computers with the ability to quickly find and

display a piece of information, no matter what the information’s format or

10 location, is a challenge that the computer industry has struggled with for many
years. Today this problem is more salient then ever as increasing numbers of
individuals utilize computers in their daily routines and as the types of
information stored on a computer continues to diversify.

Traditionally, as in Microsoft Corporation’s WINDOWS® 98TM,

15 this stored information is kept within a data store on the computer in a
hierarchical fashion organized with files of information or media stored within
folders. While this method of data storage has been widely used for many years,
it is limited in that some data resides outside of the file hierarchy and users are
constrained to format and locational limitations when searching for desired pieces

20 of information. Accordingly, providers of computer software are currently
working on data storage alternatives to the traditional file hierarchy.

An example of such a data storage alternative is disclosed in the
commonly owned, co-pending application “SYSTEM AND METHODS FOR
REPRESENTING UNITS OF INFORMATION MANAGEABLE BY A

25 HARDWARE/SOFTWARE INTERFACE SYSTEM BUT INDEPENDENT OF
PHYSICAL REPRESENTATION”, U.S. Patent Application No. (not yet
assigned) (Atty. Docket No. MSFT —~ 1748). This co-pending application was
filed on August 21, 2003 and discloses a data store that unifies storage into a
single database. This database is the one place where all the data is stored; there

30 is only one way to represent data to the database and only one way to query for

data. By replacing antiquated file systems with this modern database technology,

WO 2005/045592 PCT/US2004/025306

the data store will be easily searchable, more reliable, more accessible, and more
resilient.

Once this unified data store is in place, there becomes a need to
provide users with the appropriate tools and capabilities to interact with the

5 stored data. Conventional operating systems, such as Microsoft Corporation’s
WINDOWS® 2000™, include a shell utility that provides a user interface for
viewing various information about the computer. The shell typically includes a
file system browser which enables users to navigate through the file system and
locate and open files and folders. For example, Microsoft Corporation’s

10 WINDOWS® EXPLORER™ is a file system browser utility included with
WINDOWS® 2000™.

The shell also enables users to view non-file items such as printers
or fonts. This navigation is possible because a typical shell is programmed with
the specific functionality to display these special items as if they were located in

15 the file system. For example, in WINDOWS® 2000™, a user may open a
“Printers” folder located within the Settings option on the Start Menu. Because
printers are pieces of hardware and not files, this graphical representation of the
printers is accomplished through utilization of custom code directed at displaying
the printers as if they were files residing in the “Printers” folder. However, the

20 use of custom code and custom drawing exceptions is complex for developers to
implement, can be unreliable, and reduces the resiliency of the shell browser.
Furthermore, if no custom code or custom drawing exceptions are in place for a
type of data, the shell will be unable to display items of that type. Accordingly,
conventional shells are limited in capabilities and in flexibility when displaying

25 certain items to a user.

Another limitation of conventional shell browsers is a restricted
ability to display items in a relational manner. Typically a shell browser is
operable to display items only in the hierarchical fashion in which they are stored
- organized within files stored within folders. For example, if a user desires to

30 view all the picture files stored on a computer, that user must first place all such
picture files in the same folder. Because the shell has limited capacity to
determine relationships between items, it is difficult for a user to view files in a

relationship driven context.

WO 2005/045592 PCT/US2004/025306

Furthermore, conventional shell browsers are limited in their
ability to display sets of items within a contextually tailored environment that
pairs pertinent information and tasks with the set of displayed items. Developers,
by providing such pairings, can provide users with the appropriate information

5 and tools needed to navigate among the items while facilitating the performance
of commons tasks associated with the items. The prior art, however, does mot
allow developers to provide such experiences without the use of custom code.

An example of files presented in an enhanced environment
through the utilization of custom code is the My Pictures folder which is included

10 in Microsoft Corporation’s WINDOWS® XpP™ operating system. When image
files are stored in the My Pictures folder, a user can view images at different
sizes, rotate them, view a slide show, print images, or copy images to a CD. The
shell in WINDOWS ® XP™ has utilized custom code to incorporate these
image-related tasks into this folder’s display so that a user, when choosing to

15 store pictures in this particular folder, will easily be able to navigate among the
pictures and to perform common tasks with respect to the files. However, only
files stored in the My Pictures folder are displayed in this environment, and
custom code is utilized to create this functionality. While the My Pictures folder
is an improvement over traditional presentation of items, developers still have

20 limited ability to define such content-rich environments without utilizing custom
code.

Accordingly, there is a need for an improved shell that is capable
of displaying each item within a universal data store, and further, there is a need
for an improved shell that is configured to present items within a universal data

25 store in a relationship driven context. There is also a need for improved
capabilities within the shell for developers to create custom environments that
display items with appropriate contextual information and related tasks without

needing custom code.

SUMMARY OF THE INVENTION

30 The present invention meets the above needs and overcomes oxie
or more deficiencies in the prior art by providing a system configured to present

related items stored in a data store to a user. In one aspect of the present

WO 2005/045592 PCT/US2004/025306

invention, a system for presenting related items to a user is provided. A universal
data store is included which contains a plurality of items. At least of portion of
the items in the data store contain relational information. A shell utilizes the
relational information to present related items.

5 A further aspect of the invention is a computer-implemented
method for presenting related items to a user. The method accesses data in a
universal data store that contains items including information which allows
relationships between items in the data store to be determined. This relational
information is utilized to determine a relationship between items, and related

10 items are displayed to a user.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present invention is described in detail below with reference
to the attached drawing figures, wherein:

FIG. 1 is a block diagram of a computing system environment

15 suitable for use in implementing the present invention;

FIG. 2A is a block diagram illustrating a computer system divided
into three component groups: the hardware component, the hardware/software
interface system component, and the application programs component;

FIG. 2B illustrates the traditional tree-based hierarchical structure

20 for files grouped in folders in a directory in a file-based operating system;

FIG. 3 is a block diagram illustrating a storage platform in
accordance with the present invention;

FIG. 4 illustrates the structural relationship between Items, Iterm
Folders, and Categories in various embodiments of the present invention;

25 FIG. 5 is a diagram of the data contained within an item according
to one embodiment of the present invention;

FIG. 6 is a flow diagram showing a method for presenting one or
more items to a user in accordance with one embodiment of the present
invention;

30 FIG. 7 is a flow diagram showing a method for presenting one or
more items to a user in accordance with one embodiment of the present

invention;

WO 2005/045592 PCT/US2004/025306

FIG. 8 is a diagram showing a view schema hierarchy in
accordance with one embodiment of the present invention;

FIG. 9 is a diagram showing a view schema hierarchy including an
explorer view schema in accordance with one embodiment of the present

S invention;

FIG. 10 is a flow diagram showing a method for presenting items
to a user in accordance with one embodiment of the present invention; and

FIG. 11 is a flow diagram showing a method for presenting related

items to a user in accordance with one embodiment of the present invention.

10 DETAILED DESCRIPTION OF THE INVENTION

L INTRODUCTION

The subject matter of the present invention is described with
specificity to meet statutory requirements. However, the description itself is not
intended to limit the scope of this patent. Rather, the inventors have

15 contemplated that the claimed subject matter might also be embodied in other
ways, to include different steps or combinations of steps similar to the ones
described in this document, in conjunction with other present or future
technologies. Moreover, although the term “step” may be used herein to connote
different elements of methods employed, the term should not be interpreted as

20 implying any particular order among or between various steps herein disclosed
unless and except when the order of individual steps is explicitly described.

The present invention provides an improved system and method
for displaying items stored on a computer to a user. An exemplary operating

environment for the present invention is described below.

25 A. EXEMPLARY OPERATING ENVIRONMENT

Numerous embodiments of the present invention may execute on a
computer. FIG. 1 and the following discussion is intended to provide a brief
general description of a suitable computing environment in which the invention
may be implemented. Although not required, various aspects of the invention

30 may be described in the general context of computer executable instructions, such

WO 2005/045592 PCT/US2004/025306

as program modules, being executed by a computer, such as a client workstation

or a server. Generally, program modules include routines, programs, objects,

components, data structures and the like that perform particular tasks or

implement particular abstract data types. Moreover, the invention may be

5 practiced with other computer system configurations, including hand held

devices, multi processor systems, microprocessor based or programmable

consumer electronics, network PCs, minicomputers, mainframe computers and

the like. The invention may also be practiced in distributed computing

environments where tasks are performed by remote processing devices that are

10 linked through a communications network. In a distributed computing

environment, program modules may be located in both local and remote memory
storage devices.

As shown in FIG. 1, an exemplary general purpose computing

system includes a conventional personal computer 20 or the like, including a

15 processing unit 21, a system memory 22, and a system bus 23 that couples

various system components including the system memory to the processing unit

21. The system bus 23 may be any of several types of bus structures including a

memory bus or memory controller, a peripheral bus, and a local bus using any of

a variety of bus architectures. The system memory includes read only memory

20 (ROM) 24 and random access memory (RAM) 25. A basic input/output system

26 (BIOS), containing the basic routines that help to transfer information between

elements within the personal computer 20, such as during start up, is stored in

ROM 24. The personal computer 20 may further include a hard disk drive 27 for

reading from and writing to a hard disk, not shown, a magnetic disk drive 28 for

25 reading from or writing to a removable magnetic disk 29, and an optical disk

drive 30 for reading from or writing to a removable optical disk 31 such as a CD

ROM or other optical media. The hard disk drive 27, magnetic disk drive 28, and

optical disk drive 30 are connected to the system bus 23 by a hard disk drive

interface 32, a magnetic disk drive interface 33, and an optical drive interface 34,

30 respectively. The drives and their associated computer readable media provide

non volatile storage of computer readable instructions, data structures, program

modules and other data for the personal computer 20. Although the exemplary

environment described herein employs a hard disk, a removable magnetic disk 29

WO 2005/045592

10

15

20

25

30

and a removable optical disk 31, it should be appreciated by those skilled in the
art that other types of computer readable media which can store data that is
accessible by a computer, such as magnetic cassettes, flash memory cards, digital
video disks, Bernoulli cartridges, random access memories (RAMs), read only
memories (ROMs) and the like may also be used in the exemplary operating
environment. Likewise, the exemplary environment may also include many
types of monitoring devices such as heat sensors and security or fire alarm
systems, and other sources of information.

A number of program modules may be stored on the hard disk,
magnetic disk 29, optical disk 31, ROM 24 or RAM 25, including an operating
system 35, one or more application programs 36, other program modules 37 and
program data 38. A user may enter commands and information into the personal
computer 20 through input devices such as a keyboard 40 and pointing device 42.
Other input devices (not shown) may include a microphone, joystick, game pad,
satellite disk, scanner or the like. These and other input devices are often
connected to the processing unit 21 through a serial port interface 46 that is
coupled to the system bus, but may be connected by other interfaces, such as a
parallel port, game port or universal serial bus (USB). A monitor 47 or other type
of display device is also connected to the system bus 23 via an interface, such as
a video adapter 48. In addition to the monitor 47, personal computers typically
include other peripheral output devices (not shown), such as speakers and
printers. The exemplary system of FIG. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external storage device 62
connected to the SCSI bus 56.

The personal computer 20 may operate in a networked
environment using logical connections to one or more remote computers, such as
a remote computer 49. The remote computer 49 may be another personal
computer, a server, a router, a network PC, a peer device or other common
network node, and typically includes many or all of the elements described above
relative to the personal computer 20, although only a memory storage device 50
has been illustrated in Fig. 1. The logical connections depicted in Fig. 1 include a
local area network (LAN) 51 and a wide area network (WAN) 52. Such

PCT/US2004/025306

WO 2005/045592 PCT/US2004/025306

networking environments are commonplace in offices, enterprise wide computer
networks, intranets and the Internet.

When used in a LAN networking environment, the personal
computer 20 is connected to the LAN 51 through a network interface or adapter

5 53. When used in a WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for establishing communications
over the wide area network 52, such as the Internet. The modem 54, which may
be internal or external, is connected to the system bus 23 via the serial port
interface 46. In a networked environment, program modules depicted relative to

10 the personal computer 20, or portions thereof, may be stored in the remote
memory storage device. It will be appreciated that the network connections
shown are exemplary and other means of establishing a communications link
between the computers may be used.

As illustrated in the block diagram of FIG. 2A, a computer system

15 200 can be roughly divided into three component groups: the hardware
component 202, the hardware/software interface system component 204, and the
applications programs component 206 (also referred to as the “user component”
or “software component” in certain contexts herein).

In various embodiments of a computer system 200, and referring

20 back to Fig. 1, the hardware component 202 may comprise the central processing
unit (CPU) 21, the memory (both ROM 24 and RAM 25), the basic input/output
system (BIOS) 26, and various input/output (I/O) devices such as a keyboard 40,
a mouse 42, a monitor 47, and/or a printer (not shown), among other things. The
hardware component 202 comprises the basic physical infrastructure for the

25 computer system 200.

The applications programs component 206 comprises various
software programs including but not limited to compilers, database systems, word
processors, business programs, videogames, and so forth. Application programs
provide the means by which computer resources are utilized to solve problems,

30 provide solutions, and process data for various users (machines, other computer
systems, and/or end-users).

The hardware/software interface system component 204 comprises

(and, in some embodiments, may solely consist of) an operating system that itself

WO 2005/045592 PCT/US2004/025306

comprises, in most cases, a shell and a kernel. An “operating system” (OS) is a
special program that acts as an intermediary between application programs and
computer hardware. The hardware/software interface system component 204
may also comprise a virtual machine manager (VMM), a Common Language

5 Runtime (CLR) or its functional equivalent, a Java Virtual Machine (JVM) or its
functional equivalent, or other such software components in the place of or in
addition to the operating system in a computer system. The purpose of a
hardware/software interface system is to provide an environment in which a user
can execute application programs. The goal of any hardware/software interface

10 system is to make the computer system convenient to use, as well as utilize the
computer hardware in an efficient manner.

The hardware/software interface system is generally loaded into a
computer system at startup and thereafter manages all of the application programs
in the computer system. The application programs interact with the

15 hardware/software interface system by requesting services via an application
program interface (API). Some application programs enable end-users to interact
with the hardware/software interface system via a user interface such as a
command language or a graphical user interface (GUI).

A hardware/software interface system traditionally performs a

20 variety of services for applications. In a multitasking hardware/software interface
system where multiple programs may be running at the same time, the
hardware/software interface system determines which applications should run in
what order and how much time should be allowed for each application before
switching to another application for a turn. The hardware/software interface

25 system also manages the sharing of internal memory among multiple
applications, and handles input and output to and from attached hardware devices
such as hard disks, printers, and dial-up ports. The hardware/software interface
system also sends messages to each application (and, in certain case, to the end-
user) regarding the status of operations and any errors that may have occurred.

30 The hardware/software interface system can also offload the management of
batch jobs (e.g., printing) so that the initiating application is freed from this work

and can resume other processing and/or operations. On computers that can

WO 2005/045592 PCT/US2004/025306
10

provide parallel processing, a hardware/software interface system also manages
dividing a program so that it runs on more than one processor at a time.

A hardware/software interface system shell (simply referred to
herein as a “shell”) is an interactive end-user interface to a hardware/software

5 interface system. (A shell may also be referred to as a “command interpreter” or,
in an operating system, as an “operating system shell”). A shell is the outer layer
of a hardware/software interface system that is directly accessible by application
programs and/or end-users. A “shell browser” provides a user interface allowing
a user to view and to interact with the hardware/software interface. In contrast to

10 a shell, a kernel is a hardware/software interface system’s innermost layer that
interacts directly with the hardware components.

While it is envisioned that numerous embodiments of the present
invention are particularly well-suited for computerized systems, nothing in this
document is intended to limit the invention to such embodiments. On the

15 contrary, as used herein the term “computer system” is intended to encompass
any and all devices capable of storing and processing information and/or capable
of using the stored information to control the behavior or execution of the device
itself, regardless of whether such devices are electronic, mechanical, logical, or

virtual in nature

20 B. TRADITIONAL FILE BASED STORAGE

In most computer systems today, “files” are units of storable
information that may include the hardware/software interface system as well as
application programs, data sets, and so forth. In all modern hardware/software
interface systems (Windows, Unix, Linux, Mac OS, virtual machine systems, and

25 soforth), files are the basic discrete (storable and retrievable) units of information
(e.g., data, programs, and so forth) that can be manipulated by the
hardware/software interface system. Groups of files are generally organized in
“folders.” In Microsoft Windows, the Macintosh OS, and other
hardware/software interface systems, a folder is a collection of files that can be

30 retrieved, moved, and otherwise manipulated as single units of information.
These folders, in turn, are organized in a tree-based hierarchical arrangement

called a “directory” (discussed in more detail herein below). In certain other

WO 2005/045592 PCT/US2004/025306
11

hardware/software interface systems, such as DOS, z/OS and most Unix-based
operating systems, the terms “directory” and/or “folder” are interchangeable, and
early Apple computer systems (e.g., the Apple Ile) used the term “catalog”
instead of directory; however, as used herein, all of these terms are deemed to be

5 synonymous and interchangeable and are intended to further include all other
equivalent terms for and references to hierarchical information storage structures
and their folder and file components.

Traditionally, a directory (a.k.a. a directory of folders) is a tree-
based hierarchical structure wherein files are grouped into folders and folder, in

10 turn, are arranged according to relative nodal locations that comprise the
directory tree. For example, as illustrated in FIG. 2B, a DOS-based file system
base folder (or “root directory”) 212 may comprise a plurality of folders 214,
each of which may further comprise additional folders (as “subfolders” of that
particular folder) 216, and each of these may also comprise additional folders 218

15 ad infinitum. Each of these folders may have one or more files 220 although, at
the hardware/software interface system level, the individual files in a folder have
nothing in common other than their location in the tree hierarchy. Not
surprisingly, this approach of organizing files into folder hierarchies indirectly
reflects the physical organization of typical storage media used to store these files

20 (e.g., hard disks, floppy disks, CD-ROMs, etc.).

In addition to the foregoing, each folder is a container for its
subfolders and its files—that is, each folder owns its subfolders and files. For
example, when a folder is deleted by the hardware/software interface system, that
folder’s subfolders and files are also deleted (which, in the case of each

25 subfolder, further includes its own subfolders and files recursively). Likewise,
each file is generally owned by only one folder and, although a file can be copied
and the copy located in a different folder, a copy of a file is itself a distinct and
separate unit that has no direct connection to the original (e.g., changes to the
original file are not mirrored in the copy file at the hardware/software interface

30 system level). In this regard, files and folders are therefore characteristically
“physical” in nature because folders are the treated like physical containers, and

files are treated as discrete and separate physical elements inside these containers.

WO 2005/045592 PCT/US2004/025306
12

1L A UNIVERSAL DATA STORE

The storage platform utilized by the present invention extends and
broadens the data platform beyond the kinds of existing file systems discussed
above, and is designed to be a store for all types of data. A data store designed to

5 store all types of data may be referred to as a universal data store. An example of
a universal data store suitable for use with the present invention is described in
the commonly owned, co-pending application “SYSTEM AND METHODS FOR
REPRESENTING UNITS OF INFORMATION MANAGEABLE BY A
HARDWARE/SOFTWARE INTERFACE SYSTEM BUT INDEPENDENT OF

10 PHYSICAL REPRESENTATION”, U.S. Patent Application No. (not yet
assigned) (Atty. Docket No. MSFT — 1748) filed on August 21, 2003, which is

hereby incorporated by reference.

A. OVERVIEW

Referring to FIG. 3, a storage platform 300 in accordance with the

15 present invention comprises a universal data store 302 implemented on a database
engine 314. In one embodiment, the database engine 314 comprises a relational
database engine with object relational extensions. In one embodiment, the
relational database engine 314 comprises the Microsoft SQL Server relational
database engine.

20 The universal data store 302 implements a data model 304 that
supports the organization, searching, sharing, synchronization, and security of
data. Specific types of data are described in schemas, such as schemas 340, and
the storage platform 300 provides tools 346 for deploying those schemas as well
as for extending those schemas, as described more fully below.

25 A change tracking mechanism 306 implemented within the
universal data store 302 provides the ability track changes to the data store. The
universal data store 302 also provides security capabilities 308 and a
promotion/demotion capability 310. The universal data store 302 also provides a
set of application programming interfaces 312 to expose the capabilities of the

30 universal data store 302 to other storage platform components and application
programs (e.g., application programs 350A, 350B, and 350C) that utilize the

storage platform.

WO 2005/045592 PCT/US2004/025306
13

The storage platform of the present invention still further
comprises an application programming interfaces (API) 322, which enables
application programs, such as application programs 350A, 350B, and 350C, to
access all of the foregoing capabilities of the storage platform and to access the

5 data described in the schemas. The storage platform API 322 may be used by
application programs in combination with other APIs, such as the OLE DB API
324 and the Microsoft Windows Win32 API 326.

The storage platform 300 of the present invention may provide a

variety of services 328 to application programs, including a synchronization
10 service 330 that facilitates the sharing of data among users or systems. For

example, the synchronization service 330 may enable interoperability with other

data stores 340 having the same format as data store 302, as well as access to data

stores 342 having other formats. The storage platform 300 also provides file

system capabilities that allow interoperability of the universal data store 302 with
15 existing file systems, such as the Windows NTFS files system 318.

In at least some embodiments, the storage platform 320 may also
provide application programs with additional capabilities for enabling data to be
acted upon and for enabling interaction with other systems. These capabilities
may be embodied in the form of additional services 328, such as an Info Agent

20 service 334 and a notification service 332, as well as in the form of other utilities
336.

In at Jeast some embodiments, the storage platform is embodied
in, or forms an integral part of, the hardware/software interface system of a
computer system. For example, and without limitation, the storage platform of

25 the present invention may be embodied in, or form an integral part of, an
operating system, a virtual machine manager (VMM), a Common Langunage
Runtime (CLR) or its functional equivalent, or a Java Virtual Machine (VM) or
its functional equivalent.

Through its common storage foundation, and schematized data,

30 the storage platform of the present invention enables more efficient application
development for consumers, knowledge workers and enterprises. It offers a rich

and extensible programming surface area that not only makes available the

WO 2005/045592 PCT/US2004/025306
14

capabilities inherent in its data model, but also embraces and extends existing file

system and database access methods.

B. THE DATA MODEL

The universal data store 302 of the storage platform 300 of the
5 present invention implements a data model that supports the organization,
searching, sharing, synchronization, and security of data that resides in the store.
In the data model of the present invention, the fundamental unit of storage
information may be referred to as an item. The data model provides a mechanism
for declaring items and item extensions and for establishing relationships

10 between items and for organizing items in folders and in categories.

In one embodiment of the present invention, the data model relies
on two primitive mechanisms, Types and Relationships. Types are structures that
provide a format which governs the form of an instance of the Type. The format
is expressed as an ordered set of Properties. A Property is a name for a value or

15 set of values of a given Type. For example, a USPostalAddress type might have
the properties Street, City, Zip, State. Properties may be required or optional.

Relationships can be declared and represent a mapping between
the sets of instances of two types. For example, there may be a Relationship
declared between the Person Type and the Location Type called LivesAt which

20 defines which people live at which locations. The Relationship has a name, two
endpoints, namely a source endpoint and a target endpoint. Relationships may
also have an ordered set of properties. Both the Source and Target endpoints have
a Name and a Type. For example the LivesAt Relationship has a Source called
Occupant of Type Person and a Target called Dwelling of Type Location and in

25 addition has properties StartDate and EndDate indicating the period of time for
which the occupant lived at the dwelling. Note that a Person may live at multiple
dwellings over time and a dwelling may have multiple occupants so the most
likely place to put the StartDate and EndDate information is on the relationship
itself.

30 Relationships define a mapping between instances that is

constrained by the types given as the endpoint types. For example the LivesAt

WO 2005/045592 PCT/US2004/025306
15

relationship cannot be a relationship in which an Automobile is the Occupant

because an Automobile is not a Person.

1. ITEMS

As mentioned above, the fundamental unit of storage information

5 in auniversal data store according to the present invention may be referred to as

an item. An item is a unit of storable information that, unlike a simple file, is an

object having a basic set of properties that are commonly supported across all

objects exposed to an end-user or application program by the storage platform.

Those skilled in the art will recognize that the universality of the universal data

10 store is made possible, in part, because each item in the data store includes data

indicating these basic properties stored in accordance a data schema that is

constant for each item.

The universal data schema provides a universal foundation that

establishes a conceptual framework for creating and organizing items and

15 properties. The universal data schema defines certain special types of items and

properties, and the features of these special foundational types from which

subtypes can be further derived. The use of this universal data schema allows a

programmer to conceptually distinguish items (and their respective types) from

properties (and their respective types). Moreover, the universal data schema sets

20 forth the foundational set of properties that all items may possess as all items

(and their corresponding item Types) are derived from this foundational item in

the universal data schema (and its corresponding item Type). By storing each

item according to this universal data schema, a shell browser is able to interpret

and present each item in the data store along with its basic properties to the user.

25 Anexample of a universal data schema suitable for use with the present invention

is described in the commonly owned, co-pending application “SYSTEM AND

METHODS FOR REPRESENTING UNITS OF INFORMATION

MANAGEABLE BY A HARDWARE/SOFTWARE INTERFACE SYSTEM

BUT INDEPENDENT OF PHYSICAL REPRESENTATION”, U.S. Patent

30 Application No. (not yet assigned) (Atty. Docket No. MSFT — 1748) filed on
August 21, 2003, which is hereby incorporated by reference.

WO 2005/045592 PCT/US2004/025306
16

Items also have properties and relationships that are commonly
supported across all item types including features that allow new properties and
relationships to be introduced. Those skilled in the art will recognize that this
property and relationship data may be referred to as metadata associated with an

5 item. As described below, the metadata may be stored in accordance with an
item decoration schema. This item decoration schema may indicate an
appropriate manner which to present the item to a user.

Items are the objects for common operations such as copy, delete,
move, open, print, backup, restore, replicate, and so forth. Items are the units that

10 can be stored and retrieved, and all forms of storable information manipulated by
the storage platform exist as items, properties of items, or relationships between
items, each of which is discussed in greater detail herein below.

Items are intended to represent real-world and readily-
understandable units of data like Contacts, People,‘ Services, Locations,

15 Documents (of all various sorts), and so on.

Items are stand-alone objects; thus, if you delete an item, all of the
item’s properties are also deleted. Similarly, when retrieving an item, what is
received is the item and all of its properties contained in the item’s metadata.
Certain embodiments of the present invention may enable one to request a subset

20 of properties when retrieving a specific item; however, the default for many such
embodiments is to provide the item with all of its immediate and inherited
properties when retrieved. Moreover, the properties of items can also be
extended by adding new properties to the existing properties of that item’s type.
These “extensions™ are thereafter bona fide properties of the item and subtypes of

25 that item type may automatically include the extension properties. The

extensions may also be referred to as metadata associated with a file.

2. ITEM FOLDERS AND CATEGORIES

Groups of items can are organized into special items called item

Folders (which are not to be confused with file folders). Unlike in most file

30 systems, however, an item can belong to more than one item Folder, such that
when an item is accessed in one item Folder and revised, this revised item can

then be accessed directly from another item folder. In essence, although access to

WO 2005/045592 PCT/US2004/025306
17

an item may occur from different item Folders, what is actually being accessed is

in fact the very same item. However, an item Folder does not necessarily own all

of its member items, or may simply co-own items in conjunction with other

folders, such that the deletion of an item Folder does not necessarily result in the
5 deletion of the item.

Items may also belong to Categories based on common described
characteristic such as (a) an item Type (or Types), (b) a specific immediate or
inherited property (or properties), or (c¢) a specific value (or values)
corresponding to an item property. For example, an item comprising ’speciﬁc

10 properties for personal contact information might automatically belong to a
Contact Category, and any item having contact information properties would
likewise automatically belong to this Category. Likewise, any item having a
location property with a value of “New York City” might automatically belong to
a NewYorkCity Category.

15 Categories are conceptually different form item Folders in that,
whereas item Folders may comprise items that are not interrelated (i.e., without a
common described characteristic), each item in a Category has a common type,
property, or value (a “commonality”) that is described for that Category, and it is
this commonality that forms the basis for its relationship to and among the other

20 items in the Category. Moreover, whereas an item’s membership in a particular
Folder is not compulsory based on any particular aspect of that item, for certain
embodiments all items having a commonality categorically related to a Category
might automatically become a member of the Category at the hardware/software
interface system level. Conceptually, Categories can also be thought of as virtual

25 item Folders whose membership is based on the results of a specific query (such
as in the context of a database), and items that meet the conditions of this query
(defined by the commonalities of the Category) would thus comprise the
Category’s membership.

FIG. 4 illustrates the structural relationship between items, item

30 Folders, and Categories in various embodiments of the present invention. A
plurality of items 402, 404, 406, 408, 410, 412, 414, 416, 418, and 420 are
members of various item Folders 422, 424, 426, 428, and 430. Some items may

belong to more than one item Folder, e.g., ittem 402 belong to item Folders 422

WO 2005/045592 PCT/US2004/025306
18

and 424. Some items, e.g., item 402, 404, 406, 408, 410, and 412 are also
members of one or more Categories 432, 434, and 436, while other times, e.g.,
items 414, 416, 418, and 420, may belong to no Categories (although this is
largely unlikely in certain embodiments where the possession of any property
5 automatically implies membership in a Category, and thus an item would have to
be completely featureless in order not to be a member of any category in such an
embodiment). In contrast to the hierarchical structure of folders, both Categories
and item Folders have structures more akin to directed graphs as shown. In any
event, the items, item Folders, and Categories are all items (albeit of different

10 item Types).
In contrast to files, folders, and directories, the items, item
Folders, and Categories of the present invention are not characteristically
“physical” in nature because they do not have conceptual equivalents of physical
containers, and therefore items may exist in more than one such location. The
15 ability for items to exist in more than one item Folder location as well as being
organized into Categories provides an enhanced and enriched degree of data
manipulation and storage structure capabilities at the hardware/software interface

level, beyond that currently available in the art.

3. RELATIONSHIPS

20 Items may also contain relational information which allows
relationships between two or more items to be determined. Relationships are
binary relationships where one item is designated as source and the other item as
target. The source item and the target item are related by the relationship.
Relationships may be classified into: Containment and Reference relationships.

25 The containment relationships control the life-time of the target items, while the
reference relationships do not provide any life-time management semantics.

The Containment relationship types are further classified into
Holding and Embedding relationships. A holding relationship controls the life-
time of the target through a reference counting mechanism. Holding

30 relationships do not contain their targets but control the life-time of the targets.
When all holding relationships to an item are removed, the item is deleted. The

embedding relationships enable modeling of compound items and can be thought

WO 2005/045592 PCT/US2004/025306
19

of as exclusive holding relationships. An item can be a target of one or more
holding relationships, but an item can be target of exactly one embedding
relationship. An item that is a target of an embedding relationship cannot be a
target of any other holding or embedding relationships. Embedded relationships
5 contain their targets and control life-time of the targets. Those skilled in the art
will recognize that a single target can be in at most one embedded relationship,
while a single target can be in multiple holding relationships.
Reference relationships do not control the lifetime of the target
item. They may be dangling — the target item may not exist. Reference
10 relationships can be used to model references to items anywhere in the global
item name space (i.e. including remote data stores).
Fetching an item does not automatically fetch its relationships.
Applications or the shell must explicitly request the relationships of an item. In
addition, modifying a relationship does not modify the source or the target item;
15 similarly, adding a relationship does not affect the source/target item.
Relationships between two items may be declared and stored with an item or the
shell or an application, through utilization of the relational information, may
determine the two items are related.
The Reference relationship does not control life time of the item it
20 references. Even more, the reference relationships do not guarantee the existence
of the target, nor do they guarantee the type of the target as specified in the
relationship declaration. This means that the Reference relationships can be
dangling. Also, the reference relationship can reference items in other data stores.
Reference relationships can be thought of as a concept similar to links in web
25 pages.
In at least one embodiment, the storage platform of the present
invention supports ordering of relationships. The ordering is achieved through a
property named “Order.” There is no uniqueness constraint on the Order field.
The order of the relationships with the same “order” property value is not
30 guaranteed, however it is guaranteed that they may be ordered after relationships
with lower “order” value and before relationships with higher “order” field value.

It should be noted that property “Order” is not in the base relationship definition.

WO 2005/045592 PCT/US2004/025306
20

Rather, this is an extrinsic property which is stored as part of the relationship
between source and target.

As previously mentioned, an item may be a member of an item

Folder. In terms of Relationships, an item may have a relationship with an item

5 Folder. In several embodiments of the present invention, certain relationships are

represented by Relationships existing between the items.

4. EXTENSIBILITY

Referring to FIG. 3, the storage platform is provided with an initial
set of schemas 340, as described above. In addition, however, in at least some
10 embodiments, the storage platform allows customers, including independent

software vendor (ISVs), to create new schemas 344.

C. DATABASE ENGINE

As mentioned above, the data store is implemented on a database

engine. In one embodiment, the database engine comprises a relational database

15 engine that implements the SQL query language, such as the Microsoft SQL
Server engine, with object relational extensions. It is understood, however, that
different database engines may be employed. Indeed, in addition to
implementing the storage platform conceptual data model on a relational database
engine, it can also be implemented on other types of databases, e.g. object-

20 oriented and XML databases.

. PRESENTMENT OF ITEMS TO A USER

Items in the universal data store are presented to a user by a shell
browser. Such browsers are well-known in the art and, as explained above, a
shell browser provides a user interface allowing a user to view and to interact

25 with the hardware/software interface.

A DEFAULT DISPLAY VIEW

As noted above, each item in the universal data store is stored in
accordance with a universal data schema. This schema includes a mechanism for

describing items called type associations. Each type association has a basic

WO 2005/045592 PCT/US2004/025306
21

representation in the shell; by storing an item in accordance with a type
association, the shell is able to display an item according to at least a basic or
default display view.
A type association is a property associated with an item; when
5 placing data into the universal data store one or more properties associated with
the data must be declared so as to determine what type of item it is. These
properties may be included as metadata associated with the data. The shell has a
set of default type associations which represent the most basic and minimal
properties which must be declared for an item.

10 FIG. 5 displays an item 500. The item 500 is stored in accordance
with the universal data schema and includes a set of item data 502 and a set of
metadata 504 including property declarations. The item data 502 may be any set
of data appropriate for inclusion within the data store. For example the item data
502 may be associated with a word processing document. The property

15 declarations metadata 504 includes at least a basic type declaration for the item
500. For example, a default type association may be a Document type and the
metadata 504 may set forth that the item 500 is a Document type item. Because
the shell includes a default display view for each default type association, the
shell may display the item 500 according the default display view for the

20 Document type. The default display view for Documents types may, for
example, include an icon used only with Document type items. By presenting the
word processing item with this icon, a user can quickly recognize that the item
500 is a document. Those skilled in the art will recognize that any variety of
default type associations and default display attributes are acceptable for the

25 present invention.

B. ITEM DECORATION VIEW

Beyond property declarations, metadata associated with an item
may include data indicating how the shell should decorate an item’s presentation.
Decorations, in this case can be though of as “hints” as to how to represent the

30 item to a user. This metadata may be stored in accordance with an item
decoration schema. The item decoration schema defines the item decoration view

that the shell may utilize to present the item. For example, the item decoration

WO 2005/045592 PCT/US2004/025306
22

data may describe the most important declared properties for an item. These
“high value” properties may be the most desirable for presentation in the shell.

Item 500 may optionally include item decoration data 506 stored

in accordance with an item decoration schema. To present the item 500, the item

5 decoration data 506 may indicate a set of view fields appropriate for the

presentation of the item 500. View fields are projections of declared properties,

29 <<

and common view fields may include “title,” “author,” “date of creation’ or “last
edited.” The shell includes a set of standard view fields and independent
software venders (ISVs) may define view fields which are appropriate for
10 presentation of their data. When developing new item types, ISVs can either map
item properties they define to the shell’s view fields or they can provide their
own view fields.
For example, the item data 502 may contain song data. The set of
declared properties 506 may include properties such as song title, artist, date
15 recorded, album, song length, and other declarations appropriate for such a song
item. The item decoration data 506 may indicate that view fields “Title,” “Artist”
and “Album” should be displayed to the user when presenting the item 500 in the
shell.
The item decoration data 506 may describe more truly decorative
20 items regarding the item data 502 such as text presented with a declared property.
For instance, one of the property declarations 504 may indicate a bitrate value to
describe the quality of the recording. This property may be stored an integer
BITRATE. The item decoration data 506 may request that the bitrate be
displayed and also may decorate this field as “[BITRATE] kilobytes per second.”
25 In this method the bitrate field is appropriately decorated so that a user can easily
understand the meaning of the bitrate value in a view field.
Those skilled in the art will recognize that the item decoration data
506 and its corresponding item decoration view may dictate a wide variety of
presentation attributes. Item decorations can be any aspect of the display
30 supported by the shell. Some common other item decorations are, for example,
data formatting, default sort order, and default icon size. Additionally, the item
decoration data 506 may describe common controls to use in displaying a given

item. For example, a Ratings field might use a ratings control that represent the

WO 2005/045592 PCT/US2004/025306
23

rating as a series of stars. The item decoration data 506 may describe tasks or
verbs appropriate for use with an item. Those skilled in the art will recognize
that the terms “task” and “verb” describe some action to be undertaken with
regard to an item and such terms may be used interchangeable. For example,
5 “Edit” or “Preview” may be appropriate tasks/verbs associated with an item. The
shell may be furthered configured to launch applications in support of these tasks

upon a user selection to perform the action with respect to the item.
Those skilled in the art will recognize that item decorations will
change and grow over time. The invention contemplates that, when the new item
10 decorations are implemented, new items can utilized these decorations, while
older items will continue to display properly by utilizing the older display

attributes provided by the shell.

FIG. 6 displays a flow diagram illustrating a method 600 for
presenting items to the user according to the present invention. At 602, the
15 method 600 accesses a universal data store in response to a request to present one
or more items to the user. At 604, the method considers one or more items
selected for presentation. Items containing metadata stored in accordance with an
item decoration schema are presented to the user according to an item decoration
view as indicated at 606. Items which do not contain such metadata are presented
20 according to a default display view as indicated at 608. Those skilled in the art
will recognize that, as discussed above, these schemas and presentation views
may include various display attributes which may be used in the presentation of

each item in the data store.

C. SHELL VIEW

25 As described above, an item decoration view is sufficient to fully
present a given item or a homogeneous set of items, comprised of items having
like item decoration views. To display items with different item decoration
schemas, the shell provides shell view schemas that present items according to
shell decoration views. A shell view schema allows the shell or ISVs to declare

30 appropriate views for given sets of heterogeneous data.

Items chosen for representation within a shell decoration view

may include a common characteristic. Those skilled in the art will recognize that

WO 2005/045592 PCT/US2004/025306
24

a wide variety of common characteristics may be acceptable for a shell decoration

view. For example, a shell view schema could define a “Picture” view used to

display common and appropriate fields and metadata for all known picture types

(e.g., .GIF, JPEG, BMP, .TIFF, etc). The shell view schema overrides

5 conflicting display attributes for a given item decoration view and presents each

picture item according the shell view schema. As another example, the shell

could provide a “Document” shell view that is optimized around appropriate

columns and metadata for the items produced by typical productivity

applications, such a word processing documents, spreadsheets, or databases, even

10 though the item decorations for each of these items may vary greatly from each

other. Such a view has value by providing common properties among each of

these documents. Those skilled in the art will recognize that, when later

document types are installed, the shell view will be able to present these new

items according to the consistent shell view even though the new type may not

15 have been considered when the view was first created.

In addition to shaping the view fields appropriate for a given set of

heterogeneous items, shell view schema may define further display attributes.

For example, the view state, including icons properties, the size of the preview

pane, and default sort order may be defined by the shell view schema. The view

20 schema also contains property decorations, such as data formatting, to apply to
various columns.

In cases where the shell view schema and the item decoration

schema conflict, the shell view schema acts as an override. In cases where a

display element is missing from a shell view schema, the shell view will fall back

25 to the item decoration view for an appropriate display. In this way, the shell view

can craft an appropriate view when displaying data not originally anticipated.

Additionally, in one embodiment of the present invention, the shell view can

defer to the item decoration view to provide a non-conflicting decorative element.

For example, the shell view may make use of the “high value” metadata from the

30 set of items it contains to construct an appropriate set of columns and metadata to
display the items.

Those skilled in the art will recognize that the shell view schemas

may provide a wide variety of display attributes and that ISVs may want to

WO 2005/045592

10

15

20

25

30

25

provide such shell views. The display attributes may include, without limitation:
the size of the preview pane, metadata to display within the preview pane, custom
controls to be used, and tasks and verbs appropriate for the presented items.

FIG. 7 displays a flow diagram illustrating a method 700 for
presenting items to the user according to the present invention. At 702, the
method 700 accesses the data store in response to a request to present one or
more items to a user. At 704, a determination is made whether each item
selected for presentation includes the same item decoration schema. If all items
have such a common schema, the items are presented according to that schema as
indicated at 706. Jf the presented items include items having different or no item
display schemas, at 708 the set of items is presented according to a shell
decoration view. As discussed above, such a shell view may be appropriate for
presentation of a heterogeneous set of items. An optional step of presenting one
or more of the selected items with display elements from an item decoration view
is included at 710. While these display elements may not conflict with the shell
decoration view, the elements may enhance the presentation of items by the shell.

Turning to FIG. 8, a diagram of an exemplary view schema
hierarchy 800 is presented. ~The bottom layer of the hierarchy is the item view
schema 802. The item view schema 802 provides the basic display needed to
represent an item or, if no view schema is supplied, provides a default display.
Schemas that are above the item view schema 802 can defer or fall back upon its
display elements when required.

Shell view schema 804 resides above the item view schema 802.
As discussed above, a shell view schema may be utilized to display a set of items
with diverse item views. The shell view schema defines tasks 806, preview pane
characteristics 808, columns 810 and decorations 812 which are used to display
items according to the shell view 804. The shell view may fall back upon the
item view schema 802 to provide non-conflicting item decorations for use with
the shell view 804. Additionally, user view settings 814 may reside within the
shell view. These setting represent a user’s desired presentation format for the
shell items. Those skilled in the art will recognize that any number is display
attributes may be defined within a display schema and that a user may be

presented with numerous options and controls in relation to display settings.

PCT/US2004/025306

WO 2005/045592 PCT/US2004/025306
26

D. EXPLORER DISPLAY VIEW

The shell may also be configured to present items according to an
explorer display view. An “explorer” may be referred to as a storage application
and may be provide by the shelil or by an ISVs. In one embodiment of the current

5 invention, an explorer may be created to provide a holistic experience that aids
users managing a large set of items. For example, the explorer may enable a user
to view, query, navigate, launch into tasks, or organize selected items in a data
store. The term “explorer” should not imply a location where the displayed items
reside, and terms such as “activity center,” “viewer” and “library” may be used

10 interchangeably with “explorer” to describe a storage application according to the
present invention.

FIG. 9 shows an exemplary explorer schema hierarchy 900. The
bottom layer of the hierarchy is the item view schema 902. The item view
schema 902 provides the basic display needed to represent an item, and the

15 explorer view schema 904 can defer or fall back upon its display elements when
required.

The explorer view schema includes a shell view schema 906 and
explorer decorations 908. The explorer decorations 908 decorate the explorer as
a whole and provide display elements such as distinctive colors and branding

20 elements. These explorer decorations 908 persist among the various views the
explorer provides. Those skilled in the art will recognize that a wide variety of
display attributes may be appropriate for the explorer decorations 908. For
example, data queries or tasks/verbs associated with the explorer items may be
appropriate for display with an explorer. Displayed tasks will preferably be

25 coupled with an application capable of performing the task.

The explorer view schema may optionally include a shell view

| schema 906 or multiple shell view schemas. The shell view schema 906 may be
configured to provide a shell view for a subset of explorer items. For example,
an explorer may be configured to display song items to a user. A first shell view

30 schema may be included to provide a display of albums and a second shell view
schema may be included to provide a display of song tracks. In this manner, both

types of items will have appropriate views within the explorer. As discussed

WO 2005/045592 PCT/US2004/025306
27

above, the utilization of shell view relates to the presentation of a set of items
which, optionally, may share a common characteristic.

The explorer may also rely on shell views included within the
shell. If items selected for presentation within an explorer are not supported by

5 any of the shell views included by the explorer, the shell may provide an
appropriate shell view for use within the explorer. Similarly and as discussed
above, the explorer may also fall back to an item display view or a default display
view provided by the shell. This functionality insures that any item which can be
displayed by the shell is also capable of display within the explorer. The explorer

10 can be configured to defer to these shell provided display schemas or may rely
upon them to, for example, provide a display for unanticipated data.

FIG. 10 presents a method 1000 for presenting items in an
explorer display according to the present invention. At 1002, the method 1000
accesses the data store and, at 1004, selects items to be displayed in the explorer.

15 The selection of explorer items may rely on consideration of item declarations
also referred to as field entries. As discussed above, items in a data store may
contain property information. This information is declared when an item is
placed in the data store and may be updated throughout the life of the item. Such
declarations may be considered field entries corresponding to a set of property

20 fields. For example entries in a property field “author” may contain the
authorship information for a given item.

It may be desirable to present items sharing one or more field
entries. For example, an explorer including each item authored by a particular
person may be desired. By considering the field entries of the author field, the

25 explorer is able select such explorer items authored by that particular person from
the data store. Those skilled in the art will recognize that the mechanics of such a
database query are well known.

At 1006, a determination is made whether the explorer includes a
shell view which is appropriate for the presentation of an explorer item. If no

30 such appropriate shell view is found in the explorer, the method 1008 utilizes a
view contained in the shell as indicated at 1008. If a proper shell view is
included in the explorer, the method 1000, at 1010, utilizes that shell view to

present the item. At 1012, an optional step of utilizing decorative elements from

WO 2005/045592 PCT/US2004/025306
28

an item display schema is performed. As described above, the explorer may use
non-conflicting decorations from an item view schema to enhance the
presentation of an item. At 1014, the explorer item is presented to the user
according to the shell and items views. The explorer decorative properties are
5 presented at 1016. These properties may be a wide variety of display attributes

and may include data queries or task associated with the explorer items.

E. EXPLORER DEVELOPMENT

Explorers may be created for a wide variety of item types. In one

embodiment of the present invention, explorers can be defined with little or no

10 programming. By allowing explorers to be created in a data-driven way, ease of
development is enhanced while providing a consistent look and feel across
explorers.

In certain embodiments, explorers may allow restrictions on what
types (including item extensions and file extensions) of items they can present or

15 explorers can choose to allow items of all types. Also explorers can choose to
allow items types with a specific set of item extensions. For example, a Legal
Item Explorer may display all items with a “LegalltemExtension” attached.
Explorers can choose to allow items of a certain type and any file extension that
maps to that type. For example, a Music Item Explorer can show all music file

20 extensions such as mp3 or wma. Furthermore, explorers can choose to allow
items of a certain set of file extensions only. If an explorer is restricted to a
certain set of types, then items of other types cannot be saved or dropped into this
explorer. Explorers can redefine type associations for the types that they allow,
and explorers may choose to selectively disallow overrides or may choose to

25 disallow addition of new commands. Furthermore explorers can decide whether
they will let end-users override type associations within the explorer.

Considering the foregoing, those skilled in the art will recognize
that by providing data-driven development techniques for creating an explorer for
use within an item-type environment, explorers may be defined a declarative

30 manner and without the use of custom code.

FIG. 11 displays a method 1100 for presenting items according to

an explorer display schema. At 1102, the method 1100 selects a desired field

WO 2005/045592 PCT/US2004/025306
29

entry. As discussed above, this desired field entry may correspond to a declared
property associated with an item. For example, a “photo album” explorer may
have a desired field entry requiring inclusion of items containing picture data.

At 1104, an explorer display schema is defined. This display

5 schema may include a shell view schema and explorer decorations. The explorer
decorations decorate the explorer as a whole and provide display elements such
as distinctive colors and branding elements. These explorer decorations persist
among the various views the explorer provides. A wide variety of display
attributes may be appropriate for the explorer decorations. For example, data

10 queries or tasks/verbs associated with the explorer items may be appropriate for
display with an explorer. Displayed tasks will preferably be coupled with an
application capable of performing the task. The explorer view schema may
include a shell view schema or multiple shell view schemas. The shell view
schema may be configured to provide a shell view for a subset of explorer items.

15 At 1106, the method 1100 accesses the data store to select the
explorer items. The explorer items are associated with the desired field entry.
Those skilled in the art will recognize that the selection of such items in a
database are well known in the art. Those skilled in the art will further recognize
that developers may create explorers configured for such interaction.

20 Development of explorers capable of accessing a data store is contemplated by
the instant invention.

At 1108, the explorer items are displayed according to an explorer
display schema. The explorer display schema is described above, and this
display may also include interaction with a shell browser. For example the shell

25 may provide one or more shell views. In addition, item decoration elements from
an item decoration schema may be utilized to enhance the presentation of the
explorer items.

As those skilled in the art will recognize, the explorer storage
application may be considered an application and/or an extension of the shell

30 browser. Consequently, the foregoing description is appropriate for both
depictions of the present invention. As an application, the explorer program may
include a shell interaction module that is configured to interact with the shell

browser. Such interaction allows the program to communicate information with

WO 2005/045592 PCT/US2004/025306
30

the shell and allows the software to work together to present items. The shell
interaction module may facilitate the accessing of the data store and may provide
display attributes. Such interaction between an application and the shell is well

known in the art.

5 F. PRESENTATION OF RELATED ITEMS

The present invention may also display related items in the data
store to the user. As described above, the items in a data store may include items
having one or more declared properties. An item may have declared relationships
which elucidate the other items in the data store which share a relationship. For

10 instance, an item containing an email address may declare a relationship to an
item containing other contact information for the owner of the email address.
The shell may utilize this declared relationship to present the other contact
information upon a user request. The shell may also determine relationships by
considering an item’s declared properties. For example, a set of documents may

15 be related if they share a common property; items with an extension
“LegalltemExtension” may be related if a common value is stored as part of the
extension. Such a relationship may be determined by a data query well known in
the art.

FIG. 12 displays a method 1200 for presenting related items

20 according to the present invention. At 1202, the method 1200 accesses the data
store and, at 1204, relationships between items in the data store are determined.
As described above, such a determination utilizes the declared properties
included with an item. This determination may be in response to a user input.
For example, an item having a set of declared item characteristics may be

25 displayed to a user. The item characteristic and relational information may be
displayed with the item. The user may select one of the characteristics and input
a request to see other items sharing the item characteristic. At 1206, the method
1200 presents related items to the user. Such presentation may include any
display schema known in the art.

30 Alternative embodiments and implementations of the present
invention will become apparent to those skilled in the art to which it pertains

upon review of the specification, including the drawing figures. Accordingly,

WO 2005/045592 PCT/US2004/025306
31

the scope of the present invention is defined by the appended claims rather than

the foregoing description.

WO 2005/045592 PCT/US2004/025306
32

CLAIMS

The invention claimed is:

1. A computer system for presenting related items in a

S universal data store to a user, the system comprising: a universal data store
containing a plurality of items stored in accordance with a universal data schema

and containing relational information corresponding to at least a portion of said
plurality of items, wherein the relational information allows relationships
between two or more of the plurality of items to be determined; and a shell for

10 presenting said plurality of items to avuser, wherein the shell is configured to
present a selected item to a user and is further configured to utilize said relational
information to present one or more items in said data store which are related to

said selected item.

2. The computer system of Claim 1, wherein the relational
15 information corresponding to one or more of said plurality of items includes a set

of item characteristics.

3. The computer system of Claim 2, wherein said shell is

configured to present one or more of said set of item characteristics to a user.

4. The computer system of Claim 2, wherein said shell is
20 configured to accept a user input representing a selection to view one or more

items in the data store having one of said item characteristics.

5. The computer system of Claim 2, wherein said shell is
configured to present one or more items in the data store which share one of said

item characteristics.

25 6. The computer system of Claim 1, wherein the shell is

configured to present at least a portion of said relational information.

WO 2005/045592 PCT/US2004/025306
33

7. The computer system of Claim 1, wherein the shell is
configured to accept a user input representing a selection to view items in the

data store which are related to said selected item.

8. The computer system of Claim 7, wherein said relational

5 information corresponding to the selected item includes a set of item
characteristics associated with the selected item and wherein said user input
represents a selection to view one or more items in the data store which share one

of said set of item characteristics with the selected item.

9. A computer-implemented method for presenting related

10 items in a universal data store to a user, the method comprising: accessing data
in said universal data store, wherein said universal data store stores a plurality of
items in accordance with a universal data schema, and wherein at least a portion

of said plurality of items contain relational information which allows
relationships between said plurality of items to be determined; utilizing said

15 relational information to determine a relationship between a selected item and
one or more of the items containing said relational information in the data store;

and displaying said selected item and one or more related items to the user.

10. The method of Claim 9, wherein the displaying of said
selected item and one or more related items includes displaying at least a portion

20 of said relational information to a user.

11. The method of Claim 9, wherein said method further
comprises receiving a user input representing a selection to view one or more

items in the data store which are related to said selected item.

12. The method of Claim 11, wherein the displaying of said

25 selected item and one or more related items is responsive to said input.

PCT/US2004/025306

1/11

WO 2005/045592

9€
0G AL Addojy suoneoyddy
]

=

|
6z obelo)g s|qeAowsy

4 OF pieoghey) Zi 8snopN
(s)Mendwon syoway Le geereqg | Le sboid -sdd
e ,-Hi\ wesborg | seyo | 9 'SUOV | SESO
I S PP 0€ oAud [eopdo gzomahddoyy N e

=] | zenapen

A

A
)
A

A A

N
o
Z
=

Y. Y.

9f d/i Hod leueg e €S d/laNlIQ ze 4l SEVIva
aAlq eond siq o
d/1 8AlQg [edanao %81 onsubepy anuQ ysIg pleH NVHOON

A A A /€ SWYHOOUd
YEHLIO

9€ SWVHDO0Yd
v v v NOLLYOINdaV

* .]| Cem
Lyl g€ SO

Jaydepy 3soH Jeydepy ospip nun Buissasoid (ST vy

9¢ SOId

(2 Wow)

Y
[52}
[le]
Tl
=
=
—
£
]
2

Y

b e e] €2 sng wajshAs

c9

A

soine(q obriolg 9g sng ISOS

Ly JOJUOWN
IR |

| T

AAN IV ENEUETS

A

0¢ Jamnauwion

PCT/US2004/025306

WO 2005/045592

2/11

—

N

ININOJINOD THVMAUVH

0¢

_J

.

—

0¢

R

ININOJINOD NILSAS FOVAUILNI JHVMLAOS / FHVMQAAVH

ININOdINOD WVHDO0Ud NOILYIITddV

|

«©
o
N

00¢

WO 2005/045592 PCT/US2004/025306

3/11

N (o)
< N

e
20
FIG. 2B

N

o
N
(ol
o
N
N o
1 N
N
o < (0|
ha) D o ~ -
N

|
2
%

(= N N
N

N

(=]

N

PCT/US2004/025306

WO 2005/045592

4/11

oFE
Slele} §
juswihojdeqg
ewayos

e
Sewayos AS] MoN

e

)

cve
Sewayog
wuofie|d papusixy

e F47 [0 %]
soedsswepN 810}S ejeq 2l01s eled -
ZEUIM Jewlo4 Jayl0 Jeuwlo4 UoWiLoD)
/ B8EE STHOLS Y.Lvd ILONWTY
PIE INIONT
o)
S4IN 21015 JOS 25vav 1vq
Ole 308 508 702 _
tohowsq Ajunoeg Bupoel | ebuel BpPOIA Bl -
JuoROLOL]] poes | ebueyn [opol eleq
20€ I¥oLs viva
_ 3 oee
cle oee SUOREOUION uoneziuoiyoukg |
210 — i .
|dV 8I01S sonInN wmm.
uo JE
YOV o 82F SA0IAYTS
oce § 743 s
IdV Z€ NIM ga310 Idv wuojeld ebeioig
02 SFOVLHILNI ONINWVEOON NOILLYOITddY
305¢ a0se Y05E

welboid uopeoljddy

welibold uoneoddy

welbo.id uojeslddy

[0
Sewsyos wioyeld

WO 2005/045592

PCT/US2004/025306

5/11

3 3 g
(32) o)))
< < A

<
o 9
LL

J

)

CATORGORIES

ITEMS

© 0 o
N A o
<r < <

(ITEM FOLDERS

PCT/US2004/025306

WO 2005/045592

6/11

¢0g

V.1va N3l

V.1vd NOILYYVY103d
Ald3d0dd

909

V.1VQd NOILYHOO3a NALI

00S \

PCT/US2004/025306

WO 2005/045592

7111

809

MIIN AVTdSIA L' INV43d
Ol ONIAYOOIV LNISTHHd

A

ON

M3IA NOILVEH0O3A
W3LI NV HLIMINT1l INISHdd

& YINFHOS
NOILYH023d
W3l

¢09

JHOLS Vivad sS30JY

009

909

PCT/US2004/025306

WO 2005/045592

8/11

904

MIIANOILYHO0D3d
W3.LI OL ONIAHOIIV INIST¥d

\ I

M3IA NOILYHOO3a NALI
NV NOd4 INJWNITI AV1dSId
V HLIMNELl INISTHd

/

M3JIA NOILYHOO3A T13HS
V HLIM SW3L1l IN3S34d

0LL

¢ VINIGHOS

S3A

NOILVH0O3d
W31l JNVS

3d01S v1vd SS300V

J

0.

20. L 'Old

6 9OIid g O3
\\\l 006 »\I 008

PCT/US2004/025306

9/11

WO 2005/045592

5]
SONILLIS MIIA YIS
<8 SNOILYH033a
806 SNOLLYHO0030 ¥RI01dX3 (22X SNWINT0O
808 INVd MIINTUd
906 YWIHOS MIIA TI3HS
908 SMSVL
708 YWIHOS MAIA TI3HS
6 YINIHOS MIIA ¥FHOTdX3 _
208 YWZHOS MIIA WL
206 YWIHOS MIIAWILI

WO 2005/045592 PCT/US2004/025306

10/11

ACCESS DATA STORE

1002

SELECT EXPLORER ITEMS
1004

FIG. 10

UTILIZE SHELL

DOES EXPLORER

VIEW
SH”E\]S_L\L/JIE'\EN o CONTAINED IN
' THE SHELL

1008

UTILIZE SHELL VIEW
CONTAINED IN THE
EXPLORER

1010

//’ 1012

UTILIZE DECORAT IVE ELEMENTS FROM AN ITEM
DISPLAY SCHEMA

PRESENT EXPLORER ITEM
ACCORDING TO SHELL AND ITEM
VIEWS

1014

1016

PRESENT EXPLORER
DECORATIVE PROPERTIES

1000

202}

PCT/US2004/025306

SINFLI A3LVT3d ONIAYIdSId

v0cl

11/11

SINELI NIFamL349
dIHSNOILY 13 ONINING313d

A

N
o
N
-~

FH0LS V1IVA ONISSIOOV

WO 2005/045592

00L1L
/ [T Oid

VINIHOS
AV1dSId d3407TdX3 OL ONIQHOO0V
SWZ LI ¥3H01dX3 ONIAVYIdSId

SWELI 43401dX3 LO3T13S
0L 340L1S Y1Va VY ONISSIOOVY

VYNIHOS W
AY1dSIA Y340 1dX3 NY ONINIZ3A

AdLIN= 1314 d34IS3A ONILOI TS

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

