Office de la Propriete
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian CA 2234463 C 2003/02/11
Intellectual Property

Office (11)(21) 2 234 463
An agency of 12y BREVET CANADIEN

Industry Canada

CANADIAN PATENT
13) C
(86) Date de dépot PCT/PCT Filing Date: 1996/10/09 (51) Cl.Int.%/Int.CI.° GOBF 9/45
(87) Date publication PCT/PCT Publication Date: 199/7/04/17 | (72) Inventeurs/Inventors:
21 . AHMAVUO, PEKKA, FI;
(45) Date de deélivrance/lssue Date: 2003/02/11 ALARANTALA MARTTI. FI
(85) Entree phase nationale/National Entry: 1998/04/08 NARVANEN. PIA FI
(86) N° demande PCT/PCT Application No.: FI 1996/000530 | (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 1997/014097 NOKIA TELECOMMUNICATIONS OY, Fl
(30) Priorité/Priority: 1995/10/11 (954838) FI (74) Agent: OGILVY RENAULT

(54) Titre : PROCEDE DE CREATION DE SERVICES GERES PAR ORDINATEUR
54) Title: METHOD FOR PRODUCING COMPUTER-CONTROLLED SERVICES

— s— NN E—

DESCRIPTION OF

DEFAULT CLASS FRAME CLASS
TEMPLATE FRES TEMPLATE FILES

I
N

APPLICATION

TEMPLATE FILES %3b

—— — —-—-—-Hw—--w“——-—-——-w--n—w

1
1

o
_“——*———4

MVC++BASE CLASSES

reads

CLASSES WITH APPLI-
writes GENERATED CODE CATION SPECIFIC
DEFAULT FUNCTIO-
NALITY {l.LE. DEFAULT
CLASSES)

11

GENERATOR
reads/wntes

>

S S SN SN S SN SN S SN SN SN S S e s s el ol s Sl SR BEED NN BN BN BN T YR R YT [P S—————— . - ——— — e T T W T - —— l

GENERATED CODE
| MANUALLY WRITTEN | FRAMECLASSES

CODE 2

W

T S S ———— . P - e~ v w—" w——— —— — gy YW W N W N N S W——— —-—---——————————————‘-’

— LI S S n wn ol SN BN GNPt s b R - — — -'-l"q

L————L——ll.- e 2 r B _F = 2 3 | Fr 1 £ 8 1 L | B B L 1 L 2 N . J WD SENN SN SN SN SN SN WSS W SN WUW T SN W U NN N S S —— -------’----‘--,

2

SDH SDHJ—- SDH

(57) Abrége/Abstract:

DCN

23
' UMD — "
o MD| ‘PDHHPDH|

The Invention relates to a method for producing application-specific computer-controlled services. An application-specific
program code Is generated automatically and an application-specific computer program for providing said service Is formed. In
order to perform changes more easily than before, the computer program Is divided into three groups. The first group (A) Is

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

OPIC - CIPO 191

CA 2234463 C 2003/02/11

anen 2 234 463
13) C

(57) Abréege(suite)/Abstract(continued):

formed only of such a code that remains the same regardless of the application, and the second and the third group are
provided with a code produced by means of said generation in such a way that (a) the second group (B) only includes a code
produced by means of sald generation and (b) the third group (C) contains a code produced with said generation that Is to be

changed by the designer after the generation. The generating means (11) are informed of whether the code to be generated Is
produced for the second or for the third group.

CA 02234463 1998-04-08

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : | (11) International Publication Number: WO 97/14097 I

06F 9/45 Al |
G (43) International Publication Date: 17 April 1997 (17.04.97)
(21) International Application Number: PCT/F196/00530 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
(22) International Filing Date: 9 October 1996 (09.10.96) HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, |

| LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA,
(30) Priority Data: UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ,
054838 11 October 1995 (11.10.95) FI UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
(71) Applicant (for all designated States except US): NOKIA BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
. TELECOMMUNICATIONS OY ([FI/FI); Upseerninkatu 1,
FIN-02600 Espoo (F1).

Published
| (72) Inventors; and With international search report.
(75) Inventors/Applicants (for US only): AHMAVUO, Pekka Before the expiration of the time limit for amending the
[F/FI]; Suvantokatu 1 D 41, FIN-33100 Tampere (FI). claims and to be republished in the event of the receipt of
ALA-RANTALA, Martti [FU/FI}; Satamakatu 18 F 74, amendments.

| FIN-33200 Tampere (FI). NARVANEN, Pia [FI/FI];
Mesinmarjakuja 4, FIN-33960 Pirkkala (F1).

(74) Agent: OY KOLSTER AB; Iso Roobertinkatu 23, P.O. Box
148, FIN-00121 Helsinki (FI).

(54) Title: METHOD FOR PRODUCING COMPUTER-CONTROLLED SERVICES

(57) Abstract

The invention relates to a method for producing application-specific computer-controlled services. An application-specific program
code is generated automatically and an application-specific computer program for providing said service is formed. In order to perform
| changes more easily than before, the computer program is divided into three groups. The first group (A) is formed only of such a code
that remains the same regardless of the application, and the second and the third group are provided with a code produced by means of
said generation in such a way that (a) the second group (B) only includes a code produced by means of said generation and (b) the third
| group (C) contains a code produced with said generation that is to be changed by the designer after the generation. The generating means
{ (11) are informed of whether the code to be generated is produced for the second or for the third group.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

1

Method for producing computer-controlled services

The invention relates generally to systems similar to network
management systems that are provided by means of software with services by
means of which the end user uses the system, for example controls the
apparatuses in the network. More precisely, the invention relates to a method
according to the preamble of the appended claim 1 for producing application-
specific computer-controlled services for a user of such a system. The invention
also relates to a system according to the appended claim 8 for producing
application-specific computer-controlled services.

There are several systems intended for code generation in the market.
Such generators are typically intended for use at the beginning of programming
and they cannot be used for making significant changes in finished applications
rapidly and without any mistakes. In other words, known generators do not
provide sufficient support for repeated changes and additions.

Several applications are also such that it should be possible to make
changes therein as rapidly and correctly as possible. An example of such an
application i1s a network management system wherein the network to be
managed comprises several apparatuses of different types and the network
changes continuously as the operator acquires devices from several different
manufacturers and performs updatings on existing devices and their software.
Especially with the new free competition in the field of telecommunications a
need has occurred to continuously provide the users with new services, which

further increases the importance of flexible possibilities of change.

The known systems are not very well suitable for applications of the
type described above. This is for example due to the fact that the systems
provide the designer with a great deal of detailed and therefore also secondary
information from which it is difficult to find the essential parts (to which the
changes are directed). The designer must also be able to control (understand)

this information. Therefore the person who makes the changes must be an

expert in the field of programming.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

20

25

30

2

In such a system, there is ailso the danger that the designer changes
such a part of the software that is not to be changed.

The purpose of the present invention is to eliminate the
aforementioned drawback by providing a new type of arrangement for
producing an application-specific service. This object is achieved with the
method according to the invention that is characterized by what is described in
the characterizing portion of the appended claim 1.

The idea of the invention is to create an environment where changes
are as simple and clear as possible for the designer. This is possible by placing
separately the code to be generated (a) in such a part (containing the default
functionality) that the designer can ignore during the changes (so that it can be
invisible) and (b) in a part that is visible to the designer and that requires
changes to be made by the designer in each situation of change. The
separation is based on the use of special template files and the changes are
carried out by making a change corresponding to the change in the description
file of the application, by regenerating the application framework and by
thereafter making, if required, the changes that are to be carried out manually
by the designer. In connection with the generation, the code generator modifies
the template files on the basis of the description file of the application.

Due to the arrangement according to the invention, changes can be
carried out rapidly and as faultlessly as possible. The product to be delivered to
the user of the service can thus be made faultless rapidly. Due to the invention,
it is even possible that changes are made by a person employed by the
organization, such as the network operator, using the service, in which case the
changes will be as flexible as possible.

The above-described advantages are based on the fact that the
system increases the abstraction level of the designer's work; the designer only
sees the essential part (the parts requiring changes) of the application and the
secondary matters (the complicated program code) are invisible. Therefore it is

easier for the designer to locate the parts to which changes must be made. At

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

3

the same time, this also decreases the possibility for the designer to
accidentally change parts that are not to be edited.
In the following, the invention and the preferred embodiments thereof

will be described in greater detail with reference to the examples according to

10

15

20

25

30

the accompanying drawings, in which

Figure 1 illustrates a system according to the invention,

Figure 2 shows the generation of a finished application with the
system according to the invention,

Figure 3a shows the main window in an illustrative application,

Figure 3b shows a subwindow of the illustrative application,

Figure 4 shows an object model of the illustrative application,

Figure & shows an application description supplied to the code
generator,

Figure 6 shows a generated application framework,

Figure 7 shows the main window of the application in its changed
form,

Figure 8 shows the change to be made to the object model, and

Figure 9 illustrates another change to be made to the application.

Figure 1 illustrates the network management system according to the
invention. An object-based program, based on the MVC++ application
architecture (and the use of the C++ programming language), Is used as an
example. It can generally be stated that the method requires the use of a simple
application architecture, for example the MVC++ architecture. Since this
architecture will be used as an example below, such features that facilitate the

understanding of the following description will be described shortly in this

connection.
The MVC++ architecture is modified from the known MVC (Model-

View-Control) architecture and according to it the application is divided into
three parts: model, view and control. The model part is a collection of objects
describing the area of the real world to which the application relates. The view

part is the outmost layer of the application, visible to the end user. This part

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

10

15

20

25

30

4

determines what the user sees on the monitor. The view part is divided into a
visual and functional part. The visual part manages the layout of the display and
the functional part controis the functionality related to the display. The view part
is created by the controller part, and for each view object there is one controller
object. The controller part controls the cooperation of the model and view parts
and forms the application-specific logic. One controller object may have a
relation to several model objects and the same mode! object may be connected
to several controller objects. In the application according to the MVC++
architecture, the objects of the model part and the view part are not directly
connected to each other, but a view object can communicate with a model
object only via a controller object. Therefore the view part interprets a command
given by a user from the workstation and indicates to the controller part which
function is in question. The controller part contains the knowledge about how
each command is to be processed, so that the controller part requests the

model part to carry out the measures corresponding to the command. The

model part informs the controller part of the results of the measures, and the
controller part in turn asks the view part to show them to the user. Each
application according to the MVC++ architecture has a main controller class, i.e.
a main controller, that controls the other controller classes and thus the entire
application. Also, a main controller object creates a main view object and
controls it. The main view object forms the main window of the application. For
every other window (dialog) there are separate view and controller classes.

A more detailed description of the MVC++ architecture 1s provided for
example in Implementing Interactive Applications in C++ by A. Jaaksi (Software
Practice & Experience, Volume 25, No. 3, March 1985, pp. 271-289).

The network management system according to the invention can be in
practice for example such as shown in Figure 1. Network operators sitting in
operation and maintenance centres MS use network management workstations
WS connected to a separate workstation network WSN that may be for

example an Ethernet network. The management system is typically divided into

several computers of the workstation network, some of the computers

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

10

19

20

25

30

5

comprising a database DB containing the data required to control the network.
The management system is connected via a Q3 interface defined in the
standards for example to a transmission network DCN that may comprise for
example SDH devices 21 and PDH devices 23. The control channels between
the SDH devices are formed in practice in header bytes of an STM-N signal
(N=1,4,16), so the control signals between the SDH devices travel together with
the payload signal (i.e. also in the same physical network). Conventional PDH
devices 23 in tum require arrangements that are specific for each manufacturer
wherefore they must be connected to the management system via a separate
mediation device 22.

The system according to the invention comprises a code generator 11
that automatically generates a part of the application-specific computer program
10 used in the system and called hereinafter an application framework. This is
the program framework that is run when the operator uses the network
management services from his workstation. The finished application is stored in
a server or an individual workstation of the workstation network (or in both).

A high abstraction leve! description of the application is formed for the
generator, the description forming the first input group of the generator. This
description is denoted with reference numeral 12. The description can be
written for example manually directly into a text form understood by the
generator and the description can thereafter be stored as a file in the system
memory. The description can also be produced with a known CASE (Computer
Aided Software Engineering) device where the application is displayed as a
graphic description. In this case, the description stored in the file by the CASE
device is converted into a form understood by the generator with a special
conversion program.

Another input group to the generator consists of template files 13
acting as models to the generation of the application framework. The code
generator 11 generates the application framework by regenerating the code to
the template files on the basis of the description 12 written by the designer. The

template files are divided into two groups, 13a and 13b, and a certain part of the

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00830

6

application framework is generated on the basis of each group. The template
files are fixed files that do not have to be changed when the application is
modified. In this respect, the template files could also be considered to be a part
of the internal implementation of the code generator 11.

5 From the above-described two input groups the code generator forms
its own part (denoted in Figure 1 with the term "generated code") of the
application-specific computer program 10 (i.e. the application framework) shown
on the right side of Figure 1. According to the invention, the application
framework is divided into three different groups or layers A to C in such a way

10 that the properties of group A are inherited to group B and the properties of

' group B are inherited to group C. In Figure 1, the inheritance is indicated with a
triangle pointing upwards.

The first group A (the lowermost layer; even though the layer is shown

in the figure as the uppermost one, it is the lowest layer for the designer) only

15 contains such a program code that remains the same regardless of the

application. Therefore this group does not have to be created specifically, but it

remains the same from one application to another. The group contains the

functionality that remains the same from one application to another. Even

though some changes would have to be made to the application or the

20 application would be changed altogether, this group always remains the same.

In this example, the first group consists of MVC++ base classes (that are the
same for all applications).

The second group B (the middle layer) and the third group C (the

uppermost layer) are provided with a program code produced with the code

25 generator 11. The division Is performed In such a way that the second group is

only provided with a program code produced by means of the generator and the

third group in turn is provided with a code produced both by the generator and

manually by the designer. During the generation, the third group is therefore

provided with a code to which the designer is intended to make changes, e.g.

30 additions. After the generation, the designer makes the necessary changes to

the third group. The third group is therefore divided in its final form into two

CA 02234463 1998-04-08

WO 97/14097 PCT/FI196/00830

10

15

20

25

30

7
parts: part C1 that only contains a code produced by the generator and part C2

that contains a code produced manually by the designer.

The second group B comprises the classes that contain the
application-specific default functionality. These classes are generated by means
of the generator iIn a manner described below, and the designer does not have
to make any changes in this group at any stage. This default functionality is
dependent on the application structure and the services connected thereto, and
it can be changed in such a way that the properties the designer has added to
the application (i.e. to group C) are retained. The second group is generated on
the basis of the corresponding template files (13a) and the description 12. The
classes of the second group are stored in the system into their own files which
do not contain a code written manually by the designer. These classes will be
called below default classes.

The third group (C) consists of skeleton classes that are classes to
which the designer manually writes an additional functionality required by the
application. Due to the technical properties of programming languages,
changes must also be made to the skeleton classes during the regeneration of
the application framework. For that purpose, the code (part C1) to be
regenerated is separated from the rest of the code (part C2) in the files
containing the skeleton classes. The separation employs character strings
which are reserved especially for this purpose and on the basis of which the
generator recognizes the parts of the files that are to be regenerated during the
changes.

Information about whether the code to be generated Is a part of the
default classes (i.e. group B) or the skeleton classes (i.e. group C) is given to
the generator by means of the template files. For this purpose, the template file
section 13 comprises specifically a part corresponding to group B, i.e. the
template files 13a of the classes containing the default functionality, and a part
corresponding to group C, i.e. the template files 13b of the skeleton classes.
The template files of the default classes are a model to the functionality that can

be implemented automatically on the basis of the description file 12. By means

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

18

20

25

30

8

of the template files 13b of the skeleton classes one generates the frames that
are supplemented by the designer with the code that cannot be automatically
generated. The accompanying appendix 1 uses the template files of the default
and skeleton main controller classes as examples.

When the application framework is created for the first time, the code
generator writes the required code into groups B and C. When changes are to
be made to the final application, the generator rewrites groups B and C. The
generator can rewrite group B in full on the basis of the changed input data, but
the contents of group C (skeleton classes) must be read first so that the

generator recognizes the part added manually by the designer so that it can be

left as it is.

When the code to be generated is such that it contains a code of the
generator, the code to be generated is supplemented with an identifier by
means of which the code to be generated and the manually written code are
connected. This will be described in greater detail below.

The generator reads template files. When the generator finds a certain
character string reserved for this purpose from the template files, it replaces the
string with the code part it has generated. The generator forms these code parts
according to its own generation rules and the application description. The
generation rules depend on the application architecture used, but they are
iIndependent of an individual application. (The generation rules therefore form a
kind of a function providing a result that is dependent on the parameter used,
l.e. on the description 12 of the application.)

As It I1s apparent from what is stated above, the application framework

to be generated has the following characteristics:

1. The manually written code and the automatically generated code

are separated from one another by dividing the application into default classes

and skeleton ciasses.

2. The manually wntten code and the code to be generated are

separated within the skeleton classes by means of character strings reserved

for this purpose.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI196/00530

10

15

20

25

30

9

3. The manually written code and the code to be generated are
combined with special identifiers when the code to be generated contains a
directly manually written code.

Figure 2 illustrates an example of the generation of a finished
application with the method according to the invention. The designer first makes
an object diagram e.g. with a CASE device. The description is converted into a
form understood by the code generator 11 either by writing it manually or
alternatively by means of a conversion program. The code generator then
generates the application framework 10 consisting in this example of files in the
C++ language (controller classes and functional view classes) and of files
(visual view classes) in the format of the user interface tool (e.g. X-Designer™,
the trademark of Imperial Software Limited). The designer supplements the
functionality of the application by means of manual coding and (e.g. the
aforementioned) user interface tool of the user interface. The program can then
be compiled and linked as a program to be run for example In a network
management system where the network and its network elements (physical
devices) are controlled from a workstation WS via a transmission network. The
above-described development tools can also be located in one workstation of
the network management system so that the operator personnel can make
themselves the changes required in the network management system.

In the foliowing, the implementation of the application will be illustrated
by using as an example an imaginary application The radio network parameters
of the base station related to the network management, the application making
it possible to view and set parameters related to the radio network of the base
station.

Figure 3a shows the main window of the application as it is seen on
the display of the workstation WS of the control centre in the network
management system MS of Figure 1. The application is started from the main

user interface of the network management system, and the main window of the
application then appears on the display. The data related to the transmission

power of the base station can be read and set from this main window. The

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

29

30

10

application also comprises one subwindow that is shown in Figure 3b. The base
station to be treated can be selected from this subwindow.

The designer first draws with the CASE device an object model
describing the application. The obtained model is shown in Figure 4, employing
the commonly used OMT notation described for example in Object Oriented
Modelling and Design by James Rumbaugh et al. (Prentice-Hall, New Jersey,
USA, 1991, chapter 3). (It should be mentioned that the frame 4a shown on the
left side of Figure 4 and not connected to any class provides additional
information about the entire application described in greater detail below. By
means of the view type definitions 4B and 4C, the user interface components
iInherited to the view classes are selected.)

This graphic description is converted by a conversion program or by
manually writing into a form understood by the code generator. The code thus
obtained is shown in Figure 5. In order to understand this description file, the
accompanying appendix 2 shows the syntax of the description language used.
(Figure 5 shows by means of parenthetical expressions a similar hierarchial
structure as shown in Figure 4 with the OMT notation).

The application framework 10 is then generated by using the

application generator 11. The listing shown in Figure 5 is then generated into

the application framework shown In Figure 6. Figure 6 shows the above-

described group division in such a way that of the generated code, the classes

belonging to group B (i.e. the default classes) are depicted with thin frames and

the classes of group C (i.e. the skeleton classes) are shown with thick frames.

The programmer thus sees from the application framework as the C++ source

code the (view, controller and abstract partner) classes shown with thick

frames. The designer implements the functionality of the application by adding a

necessary amount of code to theses skeleton classes. (Abstract partner is a

class describing what an object expects from a calling object. Since the concept

of abstract partner Is not related to the actual inventive idea, it will not be

described in greater detail in this connection. A more thorough description of

the abstract partner is provided In the aforementioned article on the MVC++)

CA 02234463 1998-04-08

WO 97/14097

10

15

PCT/F196/00830

11

The designer implements the layout of the user interface by editing

the visual view classes (the classes shown in the figure with broken thick

frames) with a user interface tool (e.g. X-Designer™). The other classes shown

in Figure 6 are not visible to the designer. (The user interface components

shown in the figure and inherited to the visual view classes are selected on the

basis of the view type definition set forth in the description file 12.)

When Figures 4 and 6 are compared, it becomes apparent how the

arrangement according to the invention makes it possible to increase the

abstraction level of the programming work. A description on the abstraction

level of Figure 4 can be converted into the (rather complicated) class hierarchy

of Figure 6. Of the classes of Figure 6, the designer only sees the classes

depicted with thick frames, so the designer also sees the generated code on a

high abstraction level.

The naming of the classes to be generated employs the naming rule

shown in the following table. In the table the character string "abc" is a three-

letter prefix of the application given in the description file (Figure 5).

AbcDefaultProgram c

t abcProgram c

abcDefaultMainController c

| abcMainController c

abcDefaultMainView ¢

abcMainView ¢

abcDefaultMainViewAbsVP ¢

abcMainViewAbsVP ¢

S

abcDefault<Sub>Conroller ¢

| application default main program class

; application skeleton main program class
application default main controller class
application skeleton main controller class
application default main view class

application skeleton main view class

vervury

application default main view abstract partner

class

application skeleton main view abstract partner

class

default subcontrolier class where <Sub> is the

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

abc<Sub>Controller ¢ skeleton subcontroller class where <Sub> is the
! controller name given in the description file

| C

12

subcontroller name given in the description file
———*_““'ﬁ

abcDefault<Sub>ControllerAbsCP_ | default subcontroller abstract partner class

where <Sub> 1s the subcontroller name given in l

the description file

abc<Sub>ControllerAbsCP ¢ | skeleton subcontroller abstract partner class

where <Sub> is the controller name given in the

descniption file

| abcDetault<Sub>View c default subview class where <Sub> is the
subcontroller name given in the description file
-
abc<Sub>View ¢ skeleton subview class where <Sub> is the
| controller name given in the description file
abcDetfault<Sub>ViewAbsVP ¢ | default subview abstract partner class where
| <Sub> 1s the subcontroller name given in the |
description file |
abc<Sub>ViewAbsVP ¢ skeleton subcontroller abstract partner class
where <Sub> is the controller name given in the
| description file

The following items A to E show as an example the generation of the
declaration of the default main controller class (the class "abcDefaultMain-
Controller_c" of group B) on the basis of the template file and the data in the
description file. The frames show the parts of the files that are changed. The |
frame has on one line an arrow, and the part preceding the arrow describes the
situation before the change and the part following the arrow in turn describes
the situation after the change.

A. The name of the class is obtained by replacing the character string
'fit" In the class name (cf. appendix 1) of the template file with an application

prefix provided in the description file, in this case "abc":

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

{ -
l public:

13

class fftDefaultMainController ¢
=> class abcDefaultMainController

B. The name of the main view abstract partner class to be inherited to

the default class I1s obtained by replacing from the character string
‘fitMainViewAbsVP _c" the part "ffit" with "abc". The names of the subcontroiler
abstract partner classes to be inherited to the main controller are formed
according to the naming rule. They are formed into a character string where the
names of the abstract partner classes are separated with a comma and a line

feed character. The character string thus obtained replaces the character string
INHERIT _ABS in the template file:

: public mvcMainControllerBase c,
public kuiConfirmationDialogControllerAbsCP c,
public fftMainViewAbsVP cINHERIT ABS

=>

: public mvcMainControllerBase c,
public kuiConfirmationDialogControllerAbsCP _c,
public abcMainViewAbsVP c,
public abcSelectionControllerAbsCP ¢

C. In the declaration of the methods of the public part in the template

file, the character string "fft" is replaced with "abc":

fftDefaultMainController c(tftDefaultProgram ¢ *{ftPrg);
virtual ~fftDefaultMainController c();
virtual errAtom ¢ *MVCCreate();

// defived from abs. view partner
virtual void Fit WMClose Wanted();

// confirmation controller abstract partner
// methods

virtual void KuiActionConfirmed();
virtual void KuiActionNotConfirmed();

| =>

d

| public:

abcDefaultMainController c(abcDefaultProgram c *abcPrg);

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

14

virtual ~abcDefaultMainController ¢();
virtual errAtom ¢ *MVCCreate();

// defived from abs. view partner
S virtual void AbcWMClose Wanted();

| // confirmation controller abstract partner

// methods
virtual void KuiActionConfirmed();

10 virtual void KuiActionNotConfirmed();

D. In the declaration of the protected part of the template file, the

character string "fft" is replaced with "abc" and MAINVIEW _C is replaced with a
main view name formed according to the naming rule. The character string

15 SUB_CONT_DECLARATIONS is replaced with a character string formed in the

following manner:

The following steps are repeated for each subcontroller defined in the
- description file:
1. A character string according to the naming rule is formed as the
20 name of the subcontroller class on the basis of the name given with the
sub controlier definition of the template file.
2. The character string is supplemented in order with a space
character and an asterisk.
3. If an instance name has been defined for the subcontroller by
25 means of the instance definttion, it is added to the character string, otherwise a
name given with the sub_controller definition is added to the character string.
4. The character string is supplemented with a semicolon and a line

feed character.

The character strings thus obtained are combined.

30 |protected:
mvcMainViewBase ¢ *MVCGetMainView();

MAINVIEW C *view;
tftDetaultProgram c *tftProgram;
35

// confirmation dialog

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00830

10

15

25

30

35

15

kuiConfirmationDialogControllerC ¢ *confirmationDialog;

|SUB_CONT_DECLARATIONS

=>

| protected:
mvcMainViewBase ¢ *MVCGetMainView();

|

abcMainView c *view;
abcDefaultProgram c *abcProgram;

| // confirmation dialog
kuiConfirmationDialogControlierC ¢ *confirmationDialog;

abcSelectionController ¢ *selection;

E. The private part is formed by replacing the character string "fft" with

"abc" given in the description file 12:

| ettt —_— b

privaté :

fftDefaultMainController c(const fftDefaultMainController ¢ &);

fftDefaultMainController ¢ operator=
| (const fftDefaultMainController ¢ &) const;

| private:

abcDefaultMainController c¢(const abcDefaultMainController ¢ &);

abcDefaultMainController ¢ operator=
(const abcDefaultMainController ¢ &) const;

BE

The files generated from the illustrative application are shown in the

table below:

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

16

Skeleton classes to which the programmer encodes the additional functlonahty required by

the application: |
file iclass

abcviewmainmx.h 'abcMainView_c, abcMainViewAbsVP_c
abcviewmainmx.cc ___JabcMaan!ew C l
abevivalintmx.h |

abcSelectionView _C, achelectlothewAbsVP
abcvivalintmx.cc achelectlonV|ew C

]

abccovalmtmx h

achelectlonControI!er C, achelectnonControllerAbsCP C

abccovalmtmx cC

echelectnonController C

abccontmammx h

7abcMamController c

abccontmainmx.cc

abcMalnController c

abcmainprogmx.h

abcMamProgram C

abcmainprogmx.cc

| labcMainProgram_c

File where the version number of the application is set:

abcyourbvermx.h

Description in the format of the user interface tool about the visual view classes

The visual skeleton ciasses are generated on the basis of the view type determination, e. g

(type "basic_application_ base") |

i

file

class

-t

abcvsmamvnmx xd

‘abcMainViewVisual_c

abcvsvalintmx.xd

abcSelectionViewVisual_c

Classes containing the aﬁlication-speciﬁg default functionality:

file

class

abcviewmadfmx.h

*

abcDefaultMainView c, abcDefauItMamVuewAbsVP C

abcviewmadfmx.cc

-

abcDefaultMainView_c

abcvdvalintmg.h

‘abcDefaultSelectionView_c, abcDefaultSelectlonV:ewAbsVP C

abcvdvalintmx.cc

abcDefaultSelectionView_c |

|

abccdvalintmx.h

vabcDefauItSeIectlonControIler C, abcDefauItSelectlonControlIerAbsC

abccdvalintmx.cc

abcDefauItSelectlonController_c |

|
4

!

——

abccontmadfmx.h

\abcDefaultMainController_c |

——pr

abccontmadfmx.cc

labcDefaultMainControlier_c

i
‘

abcmainprdfmx.h

|sua view classes In the C++ janguage.

|abcDefaultMainProgram c

€ code generator starts the

|
|
|

XDesigner user interface tool that generates the visual view classes from the

descriptions in the XDesugner format

iie

-

“Telass

abcvsmainvimx.cc

abcMainViewVisual ¢

abcvsmainvimx.h

~ |abcMainViewVisual ¢

abcvsselectmx.cc

o abcSelectionViewVisual c

abcvsselectmx.h

abcSelectionViewVisual ¢

-

ile containing data about the generated appli catlon'frarnework

. . - _1_

ADME. 1st

—

A

VIakefile for compiling the application:

abcyourbankmx.mak

As the table and Figure 4 show, one controller class of the application
O description is converted into two classes: a skeleton class (belonging to group

C) and a default class (belonging to group B). The view classes in turn are

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

[

17

converted into three classes: for the functional part of the view, default and
skeleton classes, and for the visual part of the view, only a skeleton class (since
this part can be processed with the user interface tool on a level higher than the
source code).

In the following, examples of main controller default and skeleton
classes are shown. The header and implementation files of the default class are
shown first and the header and implementation files of the skeleton class are
shown next. A header file shows the interface of the object visible to the
outside, i.e. the functions that another object can call. An implementation file in
turn contains the actual code that is performed when a function is called.

The header file (in the C++ language) "abccontmadfmx.h" of the
default main controller class is as follows (when the template file shown in the

appendix has been amended in the above-described manner):

'/i***

*x Xk

% >k

** gRCSfile$

% %

*

sk 3k ok ok ok 3k % ok s ok sk % ok o 3k ok % ok % 3 sk 3% ok K ok % ok 3k ok 3 ok ok 3k ok 3K ok ok %k ok 3 ok 3 3k 3 oK 3k %k ok 3 % sk ok ok %k 3 ok o 3K %k ok 3 3k 3 ok % 3% % ok %k %

* %

** $Author$

* Xk

* * Copyright (¢) Nokia Telecommunications 1991 - 1995
*
sk 3k sk 5k sk A ok 2k ok 2k sk ok 3k ok 3k ok 3k 3k ok ok sk ok 2k ok 3k ok 3k ko 3k sk sk ok 3k ok K dk 3k >k ok 3k k3 ok 3 ok dk 3k Ak ok ok A ke ok 5k A 2k ok A ok Kk A ok 3k ok %k 3k %k Xk %k

* %k

* * Application Framework generated file
* * This is a header file for default main controller class.

* * You should not edit this file!!
* * RUNGOXMX version: @(#) Version 1.9 (t8mcl)

X ¥
sk
3% ok ok 3k >k %k sk 5k 3k ok 5k 2k 3k 3k 3%k sk 3k ok sk %k 5k 5k 5k ok 3k 3 3k ok 3k 3k 3k 5k ok 2 3k 3k ok Ak 3k 3k ¥k 5k %k >k A A4 ok k% 2k %k Kk %k Kk Xk ¥k %k Kk Ak %k Xk %k 5k xk 3k %k 5% k%

* XK

** $Logd
%
e s e ok ok 3 o ok ok sk o oK o oKk ok ok o ok ok oKk ok ok ok sk ok ok ok ok ok o ok ok sk ok ok ok ok s K s ok Sk ok o ok Sk ok sk s ok ok ok ok ok ok ok o ok ok ok ok ok Kk ok /

CA 02234463 1998-04-08

WO 97/14097 PCT/FI196/00530

18

#ifndef ABCDEFAULTMAINTCONTROLLER H
#define ABCDEFAULTMAINTCONTROLLER H

|/* MODULE IDENTIFICATION

5 **/

| static char abccontmadfmx_resid[] = "IdS" ;

l#include <stdio h>
10 |[#include <stdlib.h>

#include <weratomx.h> // Errors
I#include <kuicocfmdigmx.h> // controller confirmation dialog
#include "abcviewmainmx.h" // Main View and abstract view partner

15 |// header files of sub controllers
#include "abccoselectmx.h”

i

| class abcDefaultProgram c;

20 |

| class abcDefaultMainController ¢

: public mvcMainControlierBase c,

25 | public kuiConfirmationDialogControllerAbsCP c,
public abcMainViewAbsVP c,

public abcSelectionControllerAbsCP ¢

{
| public:

30 abcDetaultMainController c(abcDefaultProgram c *abcPrg);
virtual ~abcDetaultMainController ¢();

virtual errAtom ¢ *MVCCreate();

// defived from abs. view partner
35 virtual void AbcWMCloseWanted();

// confirmation controller abstract partner
// methods

virtual void KuiActionConfirmed();

40 virtual void KuiActionNotConfirmed();

protected:
45 | mvcMainViewBase ¢ *MVCGetMainView();

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530
19
abcMainView ¢ *view:;
abcDefaultProgram c *abcProgram;
// confirmation dialog

10

15

20

29

30

35

40

kuiConfirmationDialogControllerC ¢ *confirmationDialog;

abcSelectionController ¢ *selection;

private:

abcDefaultMainController c(const abcDefaultMainController ¢ &);

abcDefaultMainController c operator=
(const abcDefaultMainController ¢ &) const;

3

#endif
|/* ABCDEFAULTMAINCONTROLLER_H */

The implementation file "abccontmadfmx.cc” of the default main

controller class is as follows:

/4 ko ok sk ok o o o ok o Kok o o KK o o kK ok ok kKo ok o ok K s o ok ok R ok ok sk ok SR R ok o ok sk o o ok ok ok ok ok ok s o o o K K

sk

* Kk

* % $RCSfile$

X Kk

| *
s sk % 3k 3 3 sk 3 ok ok 3 sk ok sk 3k ok 3 ok 3k 3k 3 ok ok ok % ok ok 3k sk % 3k 3 ok ok 3k ok ok 3k ok ok ok 3k oK sk ok 3k 3 ok k ok 3 3 3k e 3k 3k 3K 3 ke ok e ok o ok K ok sk K ok %

Iak*

** $Author$

* %k

* * Copyright (¢) Nokia Telecommunications 1991 - 1995
| %
sk >k 3k sk 3k ok ok 5k 3 o %k ok o 3 ok sk ok oK ok ok ok ok ok ok ok ok ok ok % 3k 3k 3k ok % 3k 3k ok oK o %k ok ok K 3 5k % ok ok K sk ok 3k ok sk ok % 3k 3k %k 5K %k ok e sk 3k %k sk %k % Xk

sk

Application Framework generated file
This is a implementation file for default main controller class.

*
*
* You should not edit this file!
K
-

RUNGOXMX version: @(#) Version 1.9 (t8mcl)

* X ¥ X X X x

| ok ok sk ok sk ok ok dk 3 3k sk sk ok ok 3k 3k ok 3k sk ok ok ok s ok oK o % 3k ok ok ok ok 3k ok ok ke 3k ok ok 3k ok sk o 3k 3 3k ok ok sk 3k ke 3k 3k ok k ok ok ok 3k ok ok ok 3 ok ok ok sk ok ok

¥ 3k

** $Logd

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

20

" .
l***/

5 |
/f MODULE IDENTIFICATION
’**
| static char rcsid[] = "Id" ;
10 |

#include "abccontmadfmx.h" // Header of this main controller |

#include "abecmainprogmx.h" // Header of program module
|

15 |// message text for WM close confirmation dialog

const char *closeText =
"This will close the application.\nDo you want to proceed?";

|

ZK) /**

| %

- | * <PUBLIC> FUNCTION:
abcDetaultMainController c::abcDetfaultMainController ¢()

25 3K % X 3k 2k 3k 3k 3k 3k ok ok Kk 3k 3k ok K I 3k %k ok 3k K Kk %k %k 3k 3k %k ok %k %k 2 ok sk ok ok sk sk 2k ok 3k ok 3k ok dk 5k %K 3k 3k dk sk sk 3k 5k ok 2k 3k sk 2k ok ok 3k 3k ok e 2k ok ok k k

| %

%

* Constructor.
*

30 3 3k % %k 3k ok %k %k 2k 3 ok 3k %k ek K K 3k ok 5k ok Kk kA ok ke 2k o ok 5k ke 2k dk 3k 3k %k 3k ok ok ok K sk ok 3k 3k sk %k %k K sk 3k 3k sk 2k %k 3k ok 3k %k ok %k 5 ok 3k sk %k sk ok %k %k

*/
abcDetaultMainController c::abcDefaultMainController ¢

(

abcDetfaultProgram c *abcPrg
35 |)

{

abcProgram = abcPrg;
view = ():

40 | confirmationDialog = 0;

selection = O;

45 |}

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

21

/***#************************

I *
* <PUBLIC> FUNCTION:
abcDefaultMainController c::~abcDefaultMainController_c()

l**

¥
o

* Destructor
10 | *

e ke 5 ok ok ok o 3 3 ok ok ok ok ok 3K o ok ke 3 3k sk ok ok ok s o ok 3k 3 ok ok sk ok ok sk ok ok ok ok ok ok ok 3 3k o ok 3k ok ok sk ok 3k o ke ok ok ok ok ok ok oKk sk ok ok ok ok

{ */
abcDefaultMainController c::~abcDefaultMainController_c()

{
15 | view->MVCHideFM();

delete view;
view = 0;

delete confirmationDialog;

20
delete selection;

selection = 0;

25

/**

%k

30 | * <PRIVATE> FUNCTION: errAtom_c *abcDefaultMainController c:MVCCreate()

e ke ke 3k ok ok ok o o o 3k ok s ok e ok ok 3k ok ok ok ok ok ok sk ok ok ok sk 3k ok ok ok ok o ok ok sk ok ok ok ok sk ok ok ook ok ok sk kb Sk Kok ok ok ok ok ok ok Kok ok ok kX

%

*

35 | * Controller creation
| X%

p———————e e T T T LT LR EE L E L L EE R S bbbt btk

*/
40 |errAtom C
| *abcDefaultMainController_c:MVCCreate()

\

errAtom c *err = 0;

45
// Instantiate The MainWindow

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00S530

10

15

20

25

30

39

40

45

22

//
view = new abcMainView c(this);

// Motif things will be initialized (Only main view should do this)
-/

err = view->MV ClnitializeWindowingSystem();

it (err) return(err);

// Create the main view

//
| err = view->MVCCCreate();
if (err) return(err);

// 1nstantiate confirmation dialog

//
confirmationDialog = new kuiConfirmationDialogControllerC c(this);

err = confirmationDialog->MV CCreate(view->MV CGetParentCandidateQM());
1if (err) return err;

// Instantiate sub controllers and create them

]/
selection = new abcSelectionController c(this):

err = selection->MV CCreate(view->MVCGetParentCandidateQM());
1f (err) return(err); -

return OK;

)

/4 ke ok sk ok sk sk sk sk ok 3 ok ok K ok ok ok 3k ok 3k ok o ok ok B ok ok ok o ok ok ok sk ok ok ok ok ok ok 3k ok o ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok

ok
l* <PROTECTED> FUNCTION: mvcViewBase c
* abcDefaultMainController c:MVCGetMainView()

3k ok sk ok ok sk sk 3k sk ok ok ok ok sk ok ok ok %k ok 3 sk ok sk % 3k ok 3k sk 3 ok % ok 3k 3k 5 sk ok ok ok ok ok ok %k ok k3 oK 3k 3k 3k % ok % 3k % ok K ok 3k 3k ok ok 3k ok oK oK 3 ok ok %k

%k

sk

* Returns the main view
k

| 3% ok ok ok sk ok ok 3 ok 3k 3 3k 3k 3 ok 3 3k 3 3k 3 ok %k ok %k sk ok 3k ok 3 % sk ok 3k ok ok 3 ok ok 3 ok %k sk ok 3k ok ok ok 3k 3k ok 3 ok 3k 3K ok % 3k ok ok % ok % ok 3%k 3k oK % ok %k %

| % /
mvcMainViewBase ¢
*abcDetaultMainController c::MVCGetMainView()

\

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

29

30

35

40

45

K

23

return(view);

;

3k sk o ok ok ok ok ok sk ok ok ks ok ok ok stk s ok stk ok K ok sk ok kR ok sk ok ok ok o ok ki ok Sk Kok K ok sk sk sk ok ok ok ke sk ok ok s ke ok ok ok ok ok o ok ok ok

*

* <PUBLIC> FUNCTION: void abcDetaultMainController_c::AbcWMClose Wanted()

sk 3k 3K % ok % 3k % s 3k ok ok 3 sk ok o ok 3 ok ok e o 3 o ok 3k 3 ok 3k ok ok ok ok ok 3k Sk ok sk ok ok 3k 5K ok ok ok sk 3k ke ok ok 3k ok ok 3k e ok 3k ok ok 3k 3k 3 3k 3k ok k ok ok Kk ok

s

*

* Shuts the application down

| %

3k ke 3k 3¢ ok Ak ok ok 3k Kk 3k 3k 3k 3k ok 5k ok %k XK 3K ¥k 3k 3k 2k Ak 3k 3k Kk 3k 3k 3k 2k ok ok ok ol dk e dk Ak 3 Ak sk ok Kk ok 3 2k o ok e ok K ke k 3k ok 3k 2k sk sk ok K Ak 3k %k ok 3k ok

*/
void abcDefaultMainController ¢::AbcWMCloseWanted()

if (view->MV ClslconifiedQM())

1
view->MVCUnlcomiyFM();
b

confirmationDialog->AskConfirmation((char *) closeText);

/******************************#***************************************

*

* <PUBLIC> FUNCTION: void abcDefaultMainController c::KuiActionConfirmed()

3 ok 5k 3k 3k ok 3k 3k 3k 2k 3k ok sk sk 3k 3k ok 2k ok 3 3 3k ok 5k 3 3 % %k 3k 5k ok % 3% 3k 3k 3k 3k 5k 3k 3k 3k sk 3k 5k 3 3k 5k %k 3 ok % 3k 3 3 3k 3K %k %k % % 5k % % % %k % %k %k % %k

%

%

* Shuts the application down
| %

I 3k 3 3k 3k sk 5k 3k 3k % vk 3k 3k 2k 2 ok 2k 3k ok ok 3k sk 3k ok ok sk ok sk 3k 5k 3k ok 2 ok K Ak 2k 2k k 2k dk ok ko sk 3k K kK 2k 3k 3k K sk ok ok Xk B 5k 3k ok 3k %k 3k %k ok ok ok ok ok ok

|/

i void abcDefaultMainController c::KuiActionConfirmed()

{
j

abcProgram->MV CShutdown();

sk ke ok sk ok ok ke sk ok ok o ok sk ok o ok ok ok Kk sk ok ok ok ok ok ok ok ok sk ok ok ok sk ok sk ok ok sk ok ok ok ok ok o sk sk ok ok ok o Sk ok ke sk ok ok ok K F o ok ok

*

CA 02234463 1998-04-08

WO 97/14097 PCT/FI196/00530

24

* <PUBLIC> FUNCTION: void
abcDefaultMainController c::KuiActionNotConfirmed()

% 3k 2k 2k 3k 3k Ak 3k 3k ok ok 3k K ok ok ok 3 Ak A 3 ok 2k Ak 2k 2k K ok ok 3k 3k %k ok sk ok ok Ak 2k 3k 3k ok 3k 3k ok 3k 3k %k 3%k 3k 3 2k 3k 3k 3k % 3k ok 3k ok %k sk %k 3k %k 3k %k %k %k Kk %

5 %

*

* Shuts the application down
*

A [Aok sk ok ok sk ok o kbbb s ook ok ok ok oo s ok ok ok ok ok s sk ok ok kR K Sk ok ok ok ok ok ok o o o o ok s o s s s o ok ok ok ok K ok K ok o o
*/
void abcDefaultMainController c::KuiActionNotConfirmed()

// does't need any actions

15 |}

A skeleton main controller class will be described next. The header file
"abccontmainmx.h” of the skeleton class is as follows (cf. the corresponding

template file shown in Appendix 1).

2c)I/**

*
¥ %k
¥ * $RCSfile$
*k %k
25 | *
s 3k 3k 3k sk sk sk sk 3k ok sk 3k 3k ok >k 3k ok %k 5k 3K % 5k 5k 3K >k 3k %k % % 3k 3k 3k 5k 5k ok 3 5k 3k ok 3k 3k 3k 5%k 3k 3k 3k 3 % 3% 3 5k 5k ok >k 3k 3 2k ok 3%k 5k 3k 5K %k %k 3k %k % % K
| % %
| ** $Author
* %k
30 | ** Copyrnght (¢) Nokia Telecommunications 1991 - 1995
*

sk 3k 3k ok ok ok 3k sk sk ok s 3k 3k ok sk ok ok 2k ok sk %k sk ok ok 3k ok 3k 3k 3k 5k 3k 3k 3k sk ok sk ok 3k ok ok ok 3k ok 3 3k sk ok ok 3k 3k ok 3K ok ok %k %k 5k 3k %k %k K ok % %k 3k ok sk xk %k %
| % %

| * * Application Framework generated file

35 | ** Thisis a header file for skeleton main controller class.

| * Complete the required functionality in this file.
** RUNGOXMX version: @(#) Version 1.9 (t8mcl)

* %k
%
Q) | AR ok ko ok ok ok sk okok ok sk sk ok ok ok o ook ok ok skok oK Kok ok ok o o sk ks ok sk ok o s koK kKoK kKR KO sk koK ok KK Kk ok ok ok ok o ok

*k Xk

** $Log}

%

-*************#*****************#*************************$************/

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00830

29

4ifndef ABCMAINCONTROLLER H
5 |#define ABCMAINCONTROLLER H

/* MODULE IDENTIFICATION

o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ook sk ok sk ok ok skok o ok ok ok ok ok sk ok ok ok ok ok ok ok o ok ok ok ok

10 |static char abccontmainmx rcsidf] = "Id" ;

#include "abccontmadimx.h"

15 jclass abcMainController ¢
. public abcDefaultMainController ¢

{
| public:

20 abcMainController c(abcDefaultProgram c *abcPrg);
~abcMainController c();

virtual errAtom ¢ *MVCCreate();

25 // AF TOKEN START#public_methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF TOKENS

// AF TOKEN END#public_methods#

30
// AF TOKEN START#abs partner methods#

// AFTool generated abstract partner methods.
// Don’t add your own code between AF TOKENS

35 | void AbcUpdateButtonActivated (name t name, intID_t identitier, tloat maxPower,

float minPower);
void AbcSelectButtonActivated();

void BuiExitWanted(); // iInherited from a gul component
void BuiPrintSetupWanted(); // inherited from a gul component
40 void BuiPrintWanted(); // inherited from a gui component

void AbcControllerSelected(intID t identifier);
// AF TOKEN END#abs partner methods#

45 |protected:

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

39

40

26

l private:

abcMainController ¢(const abcMainController ¢ &);
abcMainController_c operator=(const abcMainController ¢ &) const;

¥

i#endif
/* ABCMAINCONTROLLER H */

The implementation file "abccontmainmax.cc" of the skeleton main

controller class In turn Is as follows.

/**

* % SRCSfile$

sk ok 3k 3k % % 3k 3k ok 3k 3 % ok 3 3k %k %k ok sk 3k ok 5 3k ok 3k 3k %k 3k 3 5k 5k %k 5k 5k %k 3 3 ok ok % 3k ok %k 5k %k ok 3 % 3%k ok 3% 5 3% %k 5k >k 3k ok 3 3k 3 >k %k 5k %k % % 5%k %K *k

* %

I * * $Author$

* Xk

* * Copynght (¢) Nokia Telecommunications 1991 - 1995
*

% 2k %k 3k ok Kk Kk Kk Kk K 3k K X 3k K 3k 2 5k 3 %k 3k %k %k 5k K 3k 5k %k % ok ok ok Ak K Kk Ak 3k kK dk 3k 5k %k ok %k 5k ok ok %k %k 5k 3k sk %k 3k 3%k %k 3k 3k sk 2k ok ok 3k %k ok %k k Xk

* X

* * Application Framework generated file
** This 1s a implementation file for skeleton main controller class.
* * Complete the required functionality in this file.

** RUNGOXMX version: (@(#) Version 1.9 (t8mcl)

* ok

*
¥ 3k 3 sk ok ok ok 3 sk 3k ok 3 ok 3k 3 2k ok e ok sk 3 ok ok sk ok ke sk 3k 3k ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok oK Sk 3 3 3k 3k ok 3k ok 3k 3K ke ok 3k ok %k %k k % %

% K

** SLog

*k
**/

//f MODULE IDENTIFICATION

e 3k ok 3k ok 3k %k 3k ok ok 3 3k 3k ok ok ok 3k ok 3k 3 ok sk ok ok ok ok ok 3k 3k 3 ok ok ok ok ok 3k 5k %k %k 3k 3 ok ok ok %k Kk %k K

static char rcsid[] = "Id" ;

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

5

10

15

20

25

30

35

40

45

27

| #1nclude <wmtracmx.h>

// trace object
lextern wmtTrace c *trace;

#include "abccontmainmx.h” // Header of this main controller
#include "abcmainprdfmx.h" // Header of the program module

[k ko o o Kk ko s ok ok ok ko ok sk ok ok o ks sk stk o o ko sk ok sk sk sk sk ook o Kok ok o o ok K R R ok Kk

*

* <PUBLIC> FUNCTION: abcMainController c::abcMainController c¢()

sk 3k 3K 3k 3k 3 3k 3k o 3k 3k % %k ok ok 3k 2k 3k % 3% 3k sk 3%k ok ok vk ok 3k 3k 3k 3k 3k 3 ok 3k 3 3k 3k 3k 3k 2k ok ok ok 3k 3k 3k 3 3k ko 3k ok sk ok ok sk ok sk ok ok ok K ok ok %k K ok %k Kk

*

%

* Constructor.
*

3¢ ok sk fe ok sk 3k ok ok ok K ok 3k 3k sk 3k ok 3k ok ok ok ok ok ok 3K o ok ok ok ok ok ok 3k ok ok 3k 3k 3k 3k ok o ok 3k 3k ok 3k 3k ok ok ok 3K ok 3k ok ok s ok ok ok ok ok ok sk sk ok 3k ok %k Kk Xk

*/
abcMainController c::abcMainController ¢

(

abcDefaultProgram ¢ *abcPrg

)
- abcDefaultMainController c(abcPrg)

{

/**

*

* <PUBLIC> FUNCTION: abcMainController c::~abcMainController ¢()

| 3k ok ok sk ok o 3k sk sk 3k 2K o oK ok sk 3k 3K e ok ok 3 3k ok oK ok ok ok 3k ok 3k ok 3k ok ok ok ok ok ok 3k 3k ok ok ok ok ok 3k 3k % 3 ok % s 3k ok ok 3k ok 3k ok K 3k ok 3k e %k ok ok ok k

%

] %k

* Destructor
%

¢ 3k 3 3K ok ok 3k 3 3k ok s 3k ok 3k ok ok 5k ok ok ok 3k 3 ok 3k % 3K 3K 3k ok 3k 3k sk ok K 3k 3k 3 3k ok ok 3k 3k 3K 3k ok 3k 3k %k 3k % 3k ok o ok ok ok 3k 5k %k %k 3 5k ok ok % sk *k k %k ¥

*/
abcMainController c::~abcMainController c()

f
|

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

28

B | /% ok s ok e sk ok ok e ok s ke ok o ok ok ke ok ke ok ok s ok ok ok sk ok sk ok ok sk ok o ok ok ok sk ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok K ok ok ok o ok o ok ok sk ok ok K o

| *

* <PUBLIC> FUNCTION: abcMainController c::MVCCreate()

%k 3 2 3 3k %k sk %k 3k 3k 3k 2k ok 3 3k ok 3 3k Ak Ak ok 3 3k ok ek Kk 3k ok 3k ok ok sk ok ok 3k sk ok Ak 3 3k 3k 3k 3k ok ok Kk ok 3k 3 3k o ok ¢ A 3k ok 3 3k 3k 3k ok %k ok ok sk ok ok ok ok

10 |*

*

* Controller creation
*

15 %k 2 ok % 3k % ¥k 3 3 vk A ok ok % 3k oK ok %k %k 3k ok kA K Ak Kk Kk 3k ok ok 3k 3k 3k ok sk ok sk 3k ok sk sk k ¥k 3k ok ok ok dk %k ok ok k Kk 3k K 2k sk sk ok 3k 5k 3k ok 2k ok sk ok % %k

*/
errAtom_c¢ *abcMainController ¢::MVCCreate()
d
errAtom_c *err = abcDetaultMainController ¢::MVCCreate();
20
// add actions needed 1n conroller construction here
return err;
j
25

/% 3k sk 3 3 ek ok ke o K ok ok o ok o e ok ok ok ok o oK oKk ok s ok ok ok ok o ok ok ok sk ok ok ok o ok ok o ok ok ok ok o ox ok sk ok ok ok ok o sk ok 3k ok K ok ok ok ok K

4

30 | * <PUBLIC> FUNCTION: void abcMainController c:: AbcUpdateButtonActivated

l(narne_t name, IntID t identifier, float maxPower, float minPower)

|
| 2k ke 3k sk ok 3k 3k 3 3k 3k ok e 3k 3 3 e e ok ok 3k ok sk ok ok 3k 3k ok ok sk ok 3k sk e ok ok ok ok ok 3k ok ok ok ok ok ok ok ak ok ok ok ok ok 3k ok 3k ok 3k 3k oK 3K 3k ok 5k sk 3k ok o % % %

*

35 | * Implementation of an abstract partner method
%

%

¥ ok 3k ok 3 2k 3k 3k Ak Ak Ak %k 3k 3 3k 3k K ok %k ok kK 2k ok K ok ok Ok v 3k ok ok 3k ok 3k 2k ok Ak 3k Kk ok ck 2k sk ok ok 3k ok ak ok %k ok Kk 3k 3k ok 3k 2k 5K k dk 3k ok 3k %k dk Kk *k Xk

40 |*/
/I AF TOKEN#abc2# - Don’t remove this token
| void abcMainController c::AbcUpdateButtonActivated (name t name, intID t

identifier, float maxPower, float minPower)

{

45

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

29

AF TRACE("void abcMainController_c::AbcUpdateButtonActivated (name t name,

intID t identifier, float maxPower, tloat minPower)");
// Add your own code here.

5 |

[oKk o o ok ok ok ok o kK Rk Kok ko o R R KK R K KKKk o ok o ok kot ok s e o o sk ok ok ok o K K K

{ %

* <PUBLIC> FUNCTION: void abcMainController c::AbcSelectButtonActivated()

10
3k 5k 3k 2k 3k 3 ok 3k 3k 3k 3k ok 3k 3k 3k sk ok ok 5k 3k 3k 3 ok 3 3 ok 3k 5k e 3k ok 3k ke 3 ok ok ok o 3k 3k 3k 3k 3k ok sk 3k ok ok ok ok ok 3 ok 3k ok 3k 5 ok 3k 3k 3k oK ok 3K Ak o oK %k %k k
*
* Implementation of an abstract partner method
*
15 | *

s 3k 3 3k 3k 3k 3k 3k ok ak 5k 3 3k 5k ok sk 3 ok ok 3k 3k ok ok ok ok 3k 3k 3k 3k ok ok ok sk sk 3k 3K 3k ok 3 3K 3k 3 3k 3k sk ok 3k 3k 3k ok 5k 3k %k 3 %k K K sk 3k 3k ok 3k 2k 3% 3K %K XK XK %k %

*/
// AF TOKEN#abc3# - Don’t remove this token
20 {void abcMainController c::AbcSelectButtonActivated()

\

AF TRACE("void abcMainController_c::AbcSelectButtonActivated()");
// Add your own code here.

25
J

3k o o ok ok ok sk sk ok ok ok ok sk sk ok ok ok ko e ook o K ok o ok ok ok ok ok K K R sk ok ok ok ok R ok ok R K R Rk sk ok skt ok o ok ok ok ok ok ok ok ok sk ok

%

30 | * <PUBLIC> FUNCTION: void abcMainController c¢::BuiExitWanted()

sk 3% 3 % % % % 3k 3k 3 3k ok 3 ok ok ok ok sk % 3k 3k ok 3 3k 3k ok ok 3k 2K 3 3% 3k 3k 3k 5k 5k 3 5% 3 ok ok oK 3k ok ok 3 3 3 3 ok 3k o 3k 3k ok 3k 3 3 ok ok ok %k 3k ok %k *k %k Kk Kk K

%

* Implementation of an abstract partner method
35 | *

s

s 3k %k 3k 3K 3 %k % 3 3k 3% 3k sk 3% 3k 3%k ok 3k ok 5 3k 3 3k 3k 3k ok 2k 3k 3%k 3K 3K 5k 3k 3k 5k 5k 3%k %k 3% 3 5K 3k 5k 3k %k 3k 3 % 3 3 3 3k 3k 3k ok ok 3k 3 3k ok 5k 3k % 3k sk % %k % k¥

*/
40 |// AF TOKEN#buil2# - Don’t remove this token
void abcMainController c¢::BuibExitWanted()

\

AF TRACE("void abcMainController c::BuikExitWanted()");
45 // Add vour own code here.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI196/00530

5

10

15

20

25

30

35

40

45

30

/% 3 3 ek ok ok ok o ok sk e ok ok ok ok ok ok ok sk ok ok b ok 3K e ok ok ok ok ok ke o ok ke ok sk s sk ok sk o 3 o ok kol ok s ok ok ok ok sk ok ke ok ok 3 ok sk ok k3 oK ok oK ok ok

%k

* <PUBLIC> FUNCTION: void abcMainController_c::BuiPrintSetupWanted()

¥ % 3 3 A 3 3k sk 3k 3k 2k ok 2k Kk 3k k3K ok 3k ok o ok kA % % 3k 5k 3 sk ok 3K ok ok ok 3k ok ok sk vk sk sk 3k sk ok dk 3 3k dk ok 5k ok ok 3 ok 3k 3k Ak ke 3k 3 ek ok ok %k ok %k Xk Kk

%

* Implementation of an abstract partner method
%k

%k

sk 3 3K ok 3k 3 ok % s 3K 3 ok 3k ok ok ok 5 3 o 3k ok 3k 3k %k ok 3k 3K 3k 3k 3 ok ok o b 3k K ok 5k ok sk K sk ok ok ok 2k ok ok sk o 3k 3k 3k oK ok ok ok ok 3 ok 3k ok sk ok ok ok 3k 3K K k

*/
// AF TOKEN#buil3# - Don’t remove this token
void abcMainController c¢::BuiPrintSetupWanted()

K

AF TRACE("void abcMainController c::BuiPrintSetupWanted()");
// Add your own code here.

;

3K 3 3k ok sk ok sk ok ok ok ok ok ok ok o ok o sk ok sk ok e ok ok ok ok sk o ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok 3k sk ok ok ok ok ok o ok ok ok
%k

* <PUBLIC> FUNCTION: void abcMainController c::BuiPrintWanted()

:
s ok sk ok 3 3 3k %k %k ok 3k ok sk %k ok 3 3 3k 3k 3 3 3k 3k 3k 3k % ok %k ok ok 3k 3k % %k 3k ok ok sk 3k 3 3k ok %k 5k ok ok % 3% ok 3 ok 3 3 sk ok 3 3k 3K %k 3k 3k % 3k ok 5k % ok ok k kK

%

* Implementation of an abstract partner method
'*

xK

:
**

*/
// AF TOKEN#buil4# - Don’t remove this token
vold abcMainController c::BuiPrintWanted()

K

AF TRACE("void abcMainController c::BuiPnintWanted()");
// Add your own code here.

k

[/**

*
e e e e errerem——————————

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00330

S

10

15

25

30

39

31

* <PUBLIC> FUNCTION: void abcMainController c:: AbcControllerSelected(intID t
identifier)

{ 3 ok ok 3k 3k 3 2k 3k 3k ok ok 3k 2 3k ok 3k sk 2k ok vk k 2k ok ok 3k Ak 3k e 3k A Rk o Ak 3k vk ok dk Ak ok Ak Kk ok Kk ke k ok ok ok dk 3k sk e ok vl e ke ok Nk ek 3k 3k dk e dk 3k %k sk ¥ ok

l**

* Implementation of an abstract partner method

[*

s

3k 3¢ ¢ 2k 3 sk ok ok ok sk ok ok ok 3k 3K 3k 2k ok 2k 3k ok ok ok e sk 3k ok ok 3k ok ok ok k sk 3k 3k 3k ok 3k ok 3K o ok sk 3k ok ok 3k 3k 3k 3k 3 3k 3k ok 3k ok ok ok ok 3K oK o %k 3k %k %k XK %k

*/
/{ AF TOKEN#abc7# - Don’t remove this token
void abcMainController_c:: AbcControllerSelected(intID t identifier)

{

AF TRACE("void abcMainController c:: AbcControllerSelected(intID t

l identifier)");

// Add your own code here.

The designer implements the functionality required by the application
by adding a sufficient amount of code to the skeleton classes. The user
interface is supplemented for example with the aforementioned X-Designer™
tool by using generated descriptions of the visual view classes having the
format of the X-Designer™.

The classes of the model part, BaseStation ¢ and
BaseStationGroup c (cf. Figure 4), have already been implemented in the class
ibrary of the model part, wherefore they do not have to be carried out in
connection with the present application.

As it i1s apparent from the above, the code generator creates default
and skeleton classes automatically by modifying the corresponding template
files on the basis of the data provided in the description file of the application.

It has been described above in detail how the application framework is
generated. This example thus described a situation where an application is
created for the first time. A situation where changes must be made to the
application framework will be examined next. The example relates to a situation

where the operator using the network management system requests for the

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

S

20

25

32

addition of a new property, a so-called priority service, to the base station
controller. In the network of this operator the clients are divided into two
classes: those who have a gold card and those who have a silver card. If all the
channels are being used during heavy traffic and a user with a gold card makes
a call, one of the users of a silver card is removed from the channel. This
service requires a new parameter indicating whether the priority service is being
used.

Figure 7 lllustrates the change required in the user interface. As
Figures 3a and / show, the window will be provided with a new parameter
"priority mode” which may have two values (yes or no).

Figure 8 illustrates the change required in the object diagram that was
shown earlier in Figure 4. Figure 8 only shows the part of the diagram that is
changed. The diagram will thus be provided with a new class
"BaseStationController_c" the attribute of which is "priorityMode" and the
method is "SetPriorityMode".

It 1s also noted in this connection that the updating of the radio
network parameters In a base station takes a long time. Therefore the
application must be provided with a so-called working dialog that indicates to
the user that the operation is still in process. Figure 9 illustrates a working dialog
window.

The addition of the priority service will be described first. In order to
implement this change (the addition of a new parameter to the methods
"ShowParameterskFM" and "AbcUpdateButtonActivated" that the change
concerns), the new boolean t parameter "priorityMode" is added to the
declaration of the methods in the description file 12 of the application. The
frame below shows a part of the description file shown above. The frame shows

in boldface the additions that are made to the description file when the priority

service I1s added.

I#
30 |(public_method "#abcl# void ShowParametersFM(name t name, intID _t identifier,

tfloat maxPower, float minPower,
boolean_t priorityMode)"

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

Flasé' abcMainViewAbsVP ¢
25

30

{
{

|

33

)
(abs partner "

(abs partner method
"#abc2# void:: AbcUpdateButtonActivated(name _t name, intID t

1dentifier,
float maxPower, float minPower

boolean_t prionityMode)"

The identifiers #abc1# and #abc2# indicate that logically the same
methods are still used (i.e. the implementation written for the methods remains
the same) even though the declaration changes.

When the required changes have been made to the description file,
the code is regenerated by means of the code generator. The code generator
then updates in the header files of the skeleton main view and main controller
classes the parts that are to be regenerated. The parts to be regenerated are
indicated with the character strings AF_ TOKEN_END and AF_ TOKEN START
and they can therefore be updated without any other parts in the file being
changed (AF_TOKEN_START is the initial character and AF TOKEN END is
the stop character for the part to be regenerated.)

Before the change, the shared header file of the skeleton main view

and abstract partner classes Is as follows:

: public abcDefaultMainViewAbsVP ¢

{
public:

// AF TOKEN START#abs partner methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF TOKENS

virtual void AbcUpdateButtonActivated (name_t name, intID t identifier, float

maxPower, minPower) = 0;
virtual void AbcSelectButtonActivated() = 0;

// AF TOKEN END#abs partner methods#
3 '

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

34

lclass abcMainView ¢

}

|

. public abcDefaultMainView ¢
d

5 |public:

/...
// AF TOKEN START#public _methods#

// AFTool generated abstract partner methods.
// Don’t add your own code between AF TOKENS

virtual void ShowParameterskM (name_t name, intID t identifier, float maxPower,

'minPower) = 0;

virtual void AbcSelectButtonActivated() = O;

[/ AF TOKEN END#public methods#

b

After the change, the situation is as follows (the added parts are

shown In boldface).

class abcMainViewAbsVP ¢
: public ab¢cDefaultMainViewAbsVP ¢

{ |

public;:

// AF TOKEN START#abs partner methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF TOKENS

virtual void AbcUpdateButtonActivated (name t name, intID t identifier, float

maxPower, float minPower, boolean ¢t priorityMode) = 0;
virtual void AbcSelectButtonActivated() = 0;

// AF TOKEN END#abs partner methods#
s

class abcMainView c
: public abcDefaultMainView c¢

{
public:

/...
// AF TOKEN START#public methods#
// AFTool generated abstract partner methods.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

S

10

15

25

30 |

35

!

39

// Don’t add your own code between AF TOKENS

virtual void ShowParameterskFM (name t name, intID t identifier, float maxPower,
float minPower, boolean t priorityMode)= 0;
virtual void AbcSelectButtonActivated() = 0;

// AF TOKEN END#public_methods#

The above-described header file of the skeleton main controller class

in turn is as follows after the change (only a part of the file is shown, the

changed parts are in boldface).

class abcMainController ¢

. public abcDefaultMainController ¢

{
public:
/] ...

// AF TOKEN_ START#abs partner methods#

// AFTool generated abstract partner methods.
// Don’t add your own code between AF TOKENS

void AbcUpdateButtonActivated (name_t name, intID _t identifier, float maxPower,
float minPower, boolean_t priorityMode);

void AbcSelectButtonActivated();

void BuiExitWanted(); // inherited from a gui component
void BuiPrintSetupWanted(); // inherted from a gu1 component
void BuiPnntWanted(); // inherited from a gu1 component

void AbcControllerSelected (intID t identifier);

// AF TOKEN END#abs partner methods#
/...

s

Adding the aforementioned parameter (boolean_t priorityMode)
automatically to the declaration of the "void AbcUpdateButtonActivated()"
method in the declarations of the skeleton main controller class and the
skeleton main view abstract partner class illustrates how easy it is to add new
properties to the application framework with the arrangement according to the

invention. The aforementioned addition was carried out by making the addition

CA 02234463 1998-04-08

WO 97/14097 PCT/F196/00530

36

to the description file and by regenerating the code by the code generator. It
should be noted that 'also the default classes are regenerated in this
connection, but in this example no changes occur in the default classes (since
no changes concerning them were made to the description file).

5 The partner method to be changed in the implementation file of the
skeleton main controller class is identified with the Identifier #abc2# (provided in
the description file) following AF TOKEN. The change takes place in the
following manner: the code generator reads the file and eliminates the
characters beginning from the line following AF_TOKEN to the first {" sign and

10 writes in that place the new declaration of the partner method (on the basis of
the new declaration of the description file). The code generator then goes on
scanning the file until it sees the first AF_TRACE character string. The code
generator replaces the characters in the brackets following AF_TRACE with a
new partner method declaration. The code generator then scans the file

15 backwards until it sees the character string <PUBLIC> FUNCTION:. The code
generator eliminates the characters following <PUBLIC> FUNCTION: until the
next line feed character and writes in their place the new partner method
declaration (N.B. Even though in the code example given below the declaration
of the abstract partner method continues on the following line, the line feed

20 character only comes at the end of the method declaration.)

/**

* %

| * <PUBLIC> FUNCTION: void abcMainController_c:: AbcUpdateButtonActivated (
name_t name, intID_t identifier, float maxPower, float minPower, boolean_t

25 | priorityMode)

**

* Xk

| * Implementation of an abstract partner method
30 | *

*

'**

35 |// AF. TOKEN#abc2#

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

5

10

15

20

25

30

|

37

void abcMainController c:: AbcUpdateButtonActivated (name t name, intID t
identifier, float maxPower, float minPower, boolean t priorityMode)

{
AF TRACE("void abcMainController c:: AbcUpdateButtonActivated (name t

name, IntID_t identifier, float maxPower, float minPower, boolean_t priorityMode)");
// Add your own code here.

// the programmer's own code may be provided here

The above-described changing of the method declaration (i.e. adding
the parameter to the declaration) i1s an example of how a connection is
maintained between a code generated by the code generator and a code
written by the programmer. In this example, the character string "abc2" is an
identifier which corresponds to the method (UpdateButtonActivated) and by
means of which the connection is maintained. The programmer had earlier
written a code manually in the frame generated for this method in order to
update the parameters to the base station controller.

The method "ShowParametersFM()" is changed in the implementation
file "abcviewmainmx.cc” of the main view class in the same manner as the
above-described abstract partner method in the implementation file of the main
controlier. The identifer corresponding to this method is "abc1”, as the
description file of the application shows. By means of these identifiers given in
the description file, it is known even after the changes made to the description
file and the regeneration of the skeleton classes to which part of the skeleton
class each change corresponds.

The addition of the priority service to the application has been
described above. In the following, the addition of the aforementioned working
dialog will be described.

In order to carry out this change, the header files of the main controller
classes must be supplemented with the header file of the working dialog

component, the abstract partner class of the working dialog must be inherited to

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

38

the main controller, the abstract partner methods of the working dialog must be
declared, and a variable must be declared as a pointer to the working dialog
object. A pointer must be initialized in the implementation file of the main
controller class to the working dialog, a new working dialog object instance must
be created, the working dialog object dialog must be deleted and the abstract
partner methods of the working dialog must be implemented.

The change Is carried out in practice by writing the line:

(service “working dialog”)

to the definition part of the main controller in the description file
(reference numeral 12, Figure 1) of the application and by regenerating the
application framework. In the foliowing, the changes caused in the regeneration
by a change made to the description file are shown.

The code generator regenerates the header file "abccontmadfmx.h" of
the default class to which header file the header file of the working dialog
component has been added, the abstract partner class of the working dialog
has been inhernted and a link to the working dialog object has been added to

the protected part of the class (these changes are shown in boldface):

// for working dialog
#include "kuiccwrkdlgmx.h"

7/ ..

class abcDefaultMainController c

| - public mveMainControllerBase _c,

public kuiConfirmationDialogControllerAbsCP c,
i public abcMainViewAbsVP c,

public abcSelectionControllerAbsCP c,

public kuiWorkingDialogControllerAbsCP ¢

{
/..

protected:
/...
// working dialog
kuiWorkingDialogControllerC ¢ *workingDialog;

s

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

39

The code generator also regenerates the implementation file
"abccontmadfmx.cc” of the default class, wherein

1. the working dialog pointer is initialized:

O |abcDefaultMainController_c::abcDefaultMainController ¢

(

abcDefaultProgram ¢ *abcPrg
)

{
10 | //..

i workingDialog = 0;
)

2. the working dialog 1s deleted:

abcDefaultMainController_c::~abcDefaultMainController c¢()
15 |4
/...
delete workingDialog;
workingDialog = 0;

- 1}
20 ~and

3. a new working dialog object instance is created:

leIrAtom ¢
*abcDefaultMainController c::MVCCreate()

K
25 | /...

// create new working dialog

| workingDialog = new kuiWorkingDialogControllerC_c(this);

err = workingDialog->MV CCreate(view->MV CGetParentCandidateQM());
if (err) return(err);

30 |}
Abstract partner declarations are regenerated in the header file

"abccontmainmx.h" of the skeleton main controlier class, the abstract partner

method of the working dialog being included therein:

class abcMainController ¢
39 |: public abcDefaultMainController ¢

d
public:

/...
/| AF_TOKEN START#abs partner methods#
40 // AFTool generated abstract partner methods.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

5

10I

15

g

20

25

35

40

40

' // Don’t add your own code between AF_TOKENS

void AbcUpdateButtonActivated (name_t name, intID _t identifier, float maxPower,

 float minPower, boolean_t priorityMode);
void AbcSelectButtonActivated();

| void BuiExitWanted(); // inherited from a gui component
void BuiPrnintSetup Wanted(); // mherted from a gui component
| void BuiPrintWanted(), // inherited from a gui component

| void AbcControllerSelected (intID t identifier);
virtual void KuiCancelWanted(); // for working dialog

// AF TOKEN_ END#abs partner methods#
/...

)
The code generator identifies the part to be regenerated by means of
AF_TOKEN_START and AF_TOKEN_END and it can therefore change a part

of the file so that the rest of the code remains the same.

A frame is generated in the implementation file "abccontmainmx.cc” of

the skeleton main controller class for the implementation of the abstract partner

method:

I/**

* <PUBLIC> FUNCTION: void abcMainController c::KuiCancelWanted()

|k ok sk ok 3 ok 3k 3 ok ok sk ok 3k ok ok 3 ok ok ok 3K oK 3 ok sk 3k K 3k ok ok ok ok ok ok 3K K 3 3k ok 3K oK K % ke ok ok ok ok ok ok sk ok ok ok ke sk ok ok oK 3k ok ok oK %k ok ok ok K ok ok

I**

* Implementation of an abstract partner method
*

' |

l**/

// AF TOKEN#kui3# - don’t remove this token
' void abcMainController c::KuiCancelWanted()

\

AF TRACE("void abcMainController c::KuiCancelWanted()");
// Add vour own code here.

!
)

In this frame of the abstract partner method, the designer implements

a functionality that is to follow the pressing of the Cancel button of the working

dialog.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

41

The designer activates (shows on the display) the working dialog by
writing the request workingDialog-ShowlLongDelay(MESSAGE_TEXT) before

the part of the code that begins the time-consuming operation, for example:

void abcMainController c:: AbcUpdateButtonActivated (name_t name, intlD t
identifier, float maxPower, float minPower, boolean_t priorityMode)

{

AF TRACE("void abcMainController_c:: AbcUpdateButtonActivated (name_t
name, intID t identifier, float maxPower, tloat minPower, boolean_t priorityMode)");
// Add your own code here.

// a time-consuming operation begins
workingDialog->ShowLongDelay(MESSAGE_TEXT);

basestation->SetParameters(maxPower, minPower, priorityMode)

j

The above example (the addition of the working dialog) shows how
easy it is to add a new property to the application framework. The change was
implemented by adding one line to the description file and by regenerating the
application framework on the basis of the changed description file. The
abstraction level of the application also remains high since only the methods
"KuiCancelWanted()" and "ShowlLongDelay()" are shown in the application part
visible to the designer from the working dialog service. The more complicated
code for adding the working dialog object to the application was generated
(automatically) to a defauit class that is not visible to the designer.

Even though the invention is described above with reference to the
examples according to the accompanying drawings, it is clear that the invention
is not restricted thereto, but it can be modified within the scope of the inventive
idea disclosed above and in the appended claims. Even though an object-
based application is described above, It is in principle possible to use a similar
arrangement also in other types of arrangements. Similarly, the method can
also be used for producing services in other systems besides the network
management systems, even though the lafter systems constitute an
advantageous environment of implementation for the reasons given at the

beginning. The means according to the invention can form a part of such a

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

42

system providing services or the method can be carried out separately from the

system and a finished application can be transferrea thereafter to the system.

CA 02234463 1998-04-08

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45 |

43
Appendix 1 - examples of template files

Template for header file of default main controller class.
/**
%k %k

* 2k

* * SRCSfile$

| * %
| %

%k % 3k 3% 3k 3k %k %k 3k 3k 3k & ¥ %k 3k %k ok 5k %k 3 %k %k ok ok %k 3k ok 3%k 3k ok 3k sk sk ok 2 sk v ok 3k 3k 3k ok 2k 5k 3k sk ok 3k 5k 3k sk 3k 5%k 3k %k 3k 3k 5k 5k sk ok %k ok sk 3k sk 3k %k % %k
* %k

* * $Author$

* %k
** Copyright (¢) Nokia Telecommunications 1991 - 1995
%

%k 2k ok % 3k 3k %k ok 3k ok ¥ %k o 3k Ak ¥ Ak 3k 5k %k ok 3k 5 3k ok 3k 3k 3k 3 %k ok 3Kk 3k 3k 3%k >k sk ok 2k 3k 3k sk 3k %k >k 5k 3K 5k 3k 3k sk 3k ok 2k 5k % 4k 3k 4 2k sk 5k 5k 3k sk 3k sk *k ok
* ¥k

* * Template file for Application Framework generated class
X ¥k

S
% 3k 3k 2k %k % o o 3k 2k >k 3k %k %k K 5K ok Ak 3 5k k %k 3k sk 3k 3k ok 3k ok 5k %k 3k ok sk 2k sk 2k 3k ok 3k 3k 3k 3k 3k dk 3k 3k 3k %k 3k 3k 3k ok 2k 3k 3k 3k ok o g 2k Ae Ak ok ok sk ok 3k K %k
* %

** Log

*
**/

BODY START

#iindet FFTDEFAULTMAINTCONTROLLER H
#define FFTDEFAULTMAINTCONTROLLER H

/* MODULE IDENTIFICATION

**/

static char fftcontmadfmx rcsid[] = "Id" ;

#include <stdio.h>

#1nclude <stdlib.h>

#include <weratomx.h> // Errors

#include <kuicoctmdigmx.h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>