WO 2005/078576 A1 |0 |00 00 0 000 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date

AT OO O O

(10) International Publication Number

25 August 2005 (25.08.2005) PCT WO 2005/078576 Al
(51) International Patent Classification’: GOGF 9/44 (74) Agent: MACLEAN, Scott; Cassan Maclean, Suite 401,
80 Aberdeen Street, Ottawa, Ontario K1S 5R5 (CA).
(21) International Application Number:
PCT/CA2005/000054 (81) Designated States (unless otherwise indicated, for every

(22) International Filing Date: 18 January 2005 (18.01.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/781,229 18 February 2004 (18.02.2004) US

(71) Applicant (for all designated States except US):
ROBOCODER CORPORATION [CA/CA], 1075
West Georgia St., Suite 1380, Vancouver, British Colum-
bia V6E 3C9 (CA).

(72) Inventor: LIN, Nelson, H.; 3471 Johnson Ave., Rich-
mond, British Columbia V7C 5R2 (CA).

(84)

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

[Continued on next page]

(54) Title: CODE GENERATOR FOR ADDING A NEW FEATURE

Self-Generating Automatic Code Generator

(Code-Generating Robot)

102
{

(57) Abstract: A self-generating
automatic code generation
system includes a user interface
for capturing a set of knowledge
and rules that define an

o
o

104
{

Front-End User Interface to
Capture Dynamic >
Knowledge and Rules

Dynamic Rule Layer to
Apply Dynamic Rules to
Captured Dynamic
Knowledge and Rules

application; a first automatic
code generator for generating
code for the application using
the set of knowledge and rules;
a user-interface for capturing
a set of knowledge and rules
that define a new feature to be

106

Compiles

110
{

Dynamic Knowlege and
Rules Data Store

\\

Y

added to the application; and a
second automatic code generator
supporting the new feature that
was automatically generated by
the first automatic code generator
using the set of knowledge and
rules defining the new feature as
well as a set of knowledge and
rules defining the first automatic
code generator, wherein the
second automatic code generator
is to regenerate the code for
the application such that the

108
f

Back-End User Interface to
Generate Computer Code
Based on Static Knowledge |«
and Static Rules Applied to
Stored Dynamic Knowledge

Code Generation Rule
Layer to Apply Static
Knowledge and Static
Rules to Stored Dynamic
Knowledge

application includes the new
feature using a set of knowledge
and rules for generating the
application as well as a set of
knowledge and rules for using
the new feature.

WO 2005/078576 Al

0 0000 00O

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
NA, SD, SL, §Z, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI patent (BE, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for the following desig-
nations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW,
BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,

IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
NA, SD, SL, §Z, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, BG, CH, CY, CZ, DE, DK, FEE, ES, FI, FR, GB, GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

CODE GENERATOR FOR ADDING A NEW FEATURE

Technical Field

The present invention relates generally to the field of software development ‘&nd,

more particularly, to improvements in automatic code generation for enterprise software.

Backeround of the Invention

Reducing development and maintenance time is an increasingly important goal for
developers of enterprise software. Automatic code generation is one approach to achieving
this goal. Enterprise software applications are usually comprised of millions of lines of
computer code and have traditionally required teams of programmers several years to
create, test and debug. Today, an automatic code generator may be used to capture
knowledge and business rules for an enterprise software application and generate the
millions of lines of codes within seconds in any desired computer language and for any
platform. An example of an automatic code generator includes GeneXus, a product of
ARTech Consultores S.R.L.

Ironically, automatic code generators, which are themselves enterprise-level

- software applications, are developed from scratch using standard development tools and

programming techniques, not using automatic code generation. This means that all the
benefits attributable to automatic code generators do not apply to the development process
of automatic code generators.

Another deficiency of conventional automatic code generators is the discontinuity
that inevitably results between development and maintenance of enterprise software.
Traditionally, an automatic code generator produces computer code for a target platform
based on the captured knowledge and business rules. Once the computer code is generated,
programmers customize the code to fix bugs, add new features, and the like. This breaks
the continuity between the enterprise software and the automatic code generator.
Subsequent development or maintenance on the enterprise software must be done the
traditional way without the benefit of the automatic code generator.

The discontinuity problem is exacerbated where an automatic code generator is
used to create several different software applications for an enterprise, all of which are
subsequently modified or updated in various ways outside of the context of the automatic

code generator. If a new feature is later desired for all of the software applications,

-1-

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

programmers must independently code the new feature into each application, thereby
increasing development time and the possibility of bugs and incompatibility between
applications.

What is needed is a way to bring all the benefits provided by an automatic code
generator to the automatic code generator, itself, so that any enterprise software
applications generated thereby can always rely on the automatic code generator to
regenerate any computer code that these applications require. Furthermore, what is needed
is a way for programmers to add a new feature only once and have the code generator

automatically supply that feature to all of the other applications.

Brief Description of the Drawings

Non-exhaustive embodiments of the invention are now described with reference to
the figures, in which

FIG. 1 is a block diagram of a self-generating automatic code generator, also
referred to herein as a code-generating robot;

FIG. 2 is a user interface screen for capturing some of the dynamic knowledge
required for generating itself or a different screen;

FIG. 3 is a user interface screen for capturing some of the dynamic rules required
for the validation and organization of dynamic knowledge captured by the user interface
screen of FIG. 2;

FIG. 4 is an entity relationship diagram showing some of the data stored and their
relationships for the dynamic knowledge captured in FIG. 2;

FIG. 5 illustrates some of the static knowledge and rules required for the
generation of computer code for a plurality of applications;

FIG. 6 is a user interface for the generation of computer codes based on static
knowledge and static rules applied to captured dynamic knowledge;

FIG. 7 illustrates a process of seeding a first iteration of the code-generating robot;

FIG. 8 illustrates a process of enhancing the first iteration of the code-generating
robot;

FIG. 9 is an example screen of an application generated with the new feature
“Screen Filters” with the default filter radio button checked;

FIG. 10 is an example screen of an application generated with the new feature

“Screen Filters” with the other filter radio button checked;

-2

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

FIG. 11 is a table with columns used for the storage of dynamic knowledge for the
new feature “Screen Filters” to appear in the desirgd applications;

FIG. 12 illustrates dynamic knowledge captured for the generation of the screen
required to capture dynamic knowledge required for the new feature “Screen Filters”,

FIG. 13 is a dialog for generating the screen required to capture dynamic
knowledge for the new feature “Screen Filters”;

FIG. 14 illustrates the screen to capture dynamic knowledge required for the new
feature “Screen Filters”;

FIG. 15 shows some of the code representing static knowledgé and static rules for
the generation of computer code needed for the new feature “Screen Filters”;

FIG. 16 illustrates the fact that a screen used to generate the new feature also enjoy
the same benefit of the new feature;

FIG. 17 further illustrates a code-generating robot that has just generated itself with
a new feature that is now also available for other applications; and

FIG. 18 is a flowchart of a method for application development and maintenance

according to an embodiment of the invention.

Detailed Description

The present invention solves the foregoing problems and disadvantages by
providing a self-generating automatic code generator that maintains continuity with the
enterprise applications it creates throughout development and maintenance of the
applications. If a new feature is required by one application that would also by needed by
the other applications within the organization, a programmer may simply add this new
feature to the self-generating automatic code generator, which is itself an enterprise
application, after which the self-generating automatic code generator can, within seconds,
regenerate the other applications to include this new feature, including itself.

Reference is now made to the figures in which like reference numerals refer to like
elements. For clarity, the first digit of a reference numeral indicates the figure number in
which the corresponding element is first used.

In the following description, numerous specific details of programming, software
modules, user selections, network transactions, database queries, database structures, etc.,
are provided for a thorough understanding of the embodiments of the invention. However,

those skilled in the art will recognize that the invention can be practiced without one or

-3-

10

15

20

25

30

¥

WO 2005/078576 PCT/CA2005/000054

more of the specific details, or with other methods, components, materials, etc.

In some cases, well-known structures, materials, or operations are not shown or
described in detail in order to avoid obscuring aspects of the invention. Furthermore, the
described features, structures, or characteristics may be combined in any suitable manner
in one or more embodiments.

FIG. 1 is a block diagram of a self-generating automatic code generator 100 (also
referred to herein as a “code-generating robot” or simply “robot”) according to an
embodiment of the invention. A typical enterprise application essentially includes input,
data stores and output. Input data is usually captured by a screen (user interface) or by
integration with other applications. In order to make sure that the input data are stored
properly, a set of rules must be defined and applied to the input data. The output data is
usually a report, a document, a file, or integration with other applications. There is usually
a criteria screen for the selection of the output data. A set of rules is also defined and
applied to the output data to make them useful.

As shown in FIG. 1, the code-generating robot 100 is, itself, an enterprise
application. In one embodiment, the code-generating robot 100 includes a front-end user
interface 102 for software developers to capture dynamic knowledge and dynamic rules as
input reqilired for automatic code generation. The code-generating robot 100 also includes
a dynamic rule layer 104 to apply dynamic rules to captured dynamic knowledge and
rules.

As illustrated, the front-end user interface 102, as well as various other screens
depicted in succeeding figures, may be displayed within the context of a standard web
browser, such as Microsoft Internet Explorer™. However, those of skill in the art will
recognize that the present invention is not limited to web-based implementations.

In the depicted embodiment, the code-generating robot 100 includes one or more
data stores 106, such as a SQL (structured query language) server, for storing and
organizing the dynamic knowledge and dynamic rules captured by the front-end user
interface 102. In one embodiment, the SQL server may be embodied as a standard
Microsoft SQL Server or other SQL server known to those of skill in the art.

As further illustrated in FIG. 1, the code-generating robot 100 also includes a code
generation rule layer 108 to apply static knowledge and static rules to stored dynamic

knowledge. Finally, the robot 100 includes, in one configuration, a back-end user interface

-4-

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

110 to generate computer code based on static knowledge and static rules applied to stored

dynamic knowledge.

Each enterprise application has its purpose. The purpose of the code-generating

robot 100 is to generate an enterprise application such as itself. Therefore, as shown in

FIG. 2, the input data is the dynamic knowledge 200 required by the target enterprise

application. As an example, for a code-generating robot 100 to generate a screen 202 for a

target enterprise application, including itself, the dynamic knowledge 200 captured may

include:

Screen name;

Table names to store the input data;

Column names and their structures to store the input data;

The absolute or relative positions these columns should appear on the
screen;

The manner these columns should appear on the screen;

etc.

Referring to FIG. 3, depending on the dynamic knowledge 200 captured, certain

dynamic rules 300 are provided to ensure that the dynamic knowledge 200 captured is

useful data and structured in a desirable manner. Various types of dynamic rules 300 may

be captured. For instance, the dynamic rules 300 may include:

Validation rules governing input data integrity, e.g., constraint rules. An
example of a validation rule may include “execution order entered must be
positive”.

Calculation rules performing mathematical computation to input data, e.g.,
computation rules. An example of a calculation rule may include “total
invoice amount = sales amount + sales tax”.

Inferriﬁg rules modify or add other data based on input data, e.g., inference
rules. An example of an inferring rule may include "if new column entered
then default new column to read only”.

Action rules triggers other activities based on input data, e.g., action-
enabling rules. An example of an action rule may be to delete all the storage
of help message, heading, label, etc. associated with a column if that

column is being erased from the screen to be generated.

-5.

10

15

20

25

30

¥

WO 2005/078576 PCT/CA2005/000054

FIG. 3. provides an example screen 302 showing different dynamic rules 300. However,
those of skill in the art will recognize that a wide variety of other rules 300 may be
provided within the scope of the invention.

Because the code-generating robot 100 is to generate an enterprise application such
as itself, several conditions should be satisfied, although not all of the following conditions
may be satisfied in every embodiment. First, the application and the code-generating robot
100 employ substantially identical (i.e., similar, compatible, interoperable) user interfaces
to capture knowledge and rules. For instance, Screen Columns Maintenance screen Fig.
200 that capture dynamic knowledge for screen columns has essentially the same user
interfaces as the Server Rules Maintenance screen Fig. 300 that capture dynamic
knowledge for screen business rules.

Second, the knowledge and rules captured by both the application and the code-
generating robot are of substantially identical types. As an example, screen column name
is stored as Unicode characters.

Third, the application and the code-generating robot 100 employ substantially
identical platforms, languages, and architectures. For example, in the depicted
embodiment, the application and the code-generating robot 100 may each use Windows
Server 2003 as the platform, C# as the computer language, and Microsoft Dot Net
Framework as the architecture.

Finally, the application and the code generators employ substantially identical data
stores and data relationships. For example, SQL relational databases could be used within
an embodiment of the invention.

Referring to FIG. 4, the captured dynamic knowledge 200 and rules 300 are then
stored as relational data 400 in an SQL Server (not shown). As illustrated, the relational
data 400 may include various tables 402, such as a screen table 402a, a screen object table
402b, a screen type table 402c, a server rule table 402d, and a server rule type table 402e.

In one embodiment, the screen table 402a is used for capturing characteristic of a
screen. It may include various columns, such as Screen Type, Table Name, Program
Name, etc.

The screen object table 402b is used for capturing columns characteristic of a
screen. Columns for the screen object table 402b may include Column Name, Column

Type, Column Size, etc..

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

The screen type table 402c may be used to capture name and description of each
screen type. Columns for the screen type table 402¢ may include Screen Type Name,
Screen Type Description, etc.

In the illustrated embodiment, the server rule table 402d may be used to capture
server side business rules. Columns within the server rule table 402d may include Rule
Name, Rule Type, Execution Order, etc..

Finally, the server rule type table 402 may be used to capture name and description
each server rule type. Columns within the server rule type table 402 may include Server
Rule Type Name, Server Rule type Description.

In the depicted embodiment of FIG. 4, the relational data 400 is being displayed by
a SQL Server Manager, utility 404, which is typically included with a standard SQL
server. Such utilities 404 may be used in the process enterprise software development, but
are not necessary for the operation of the code-generating robot 100.

Referring to FIG. 5, various static universal knowledge and rules 500 may be
applicable to all (or a majority of) applications. The knowledge is generally framework- or
platform-related, such as network connectivity, database connectivity, security, language,
architecture, etc. For example, in the illustrated embodiment, the static universal
knowledge and rules 500 relate to preparing codes based on various data types specific to
the database used.

The static universal knowledge and rules 500 are depicted within a SQL query
analyzer 502, which, again, is a utility provided with a standard SQL server that may assist
with enterprise software development, but is not required for the operation of the code-
generating robot 100.

The static universal knowledge and rules 500 usually comprise the code to be
generated depending on the dynamic knowledge 200 being captured. As explained with
reference to FIG. 1, the code generation rule layer 108 applies the static knowledge and
rules 500 to the captured dynamic knowledge 200 and rules 300 that are stored within the
data store 106.

As shown in FIG. 6, when a user is ready to generate the computer code required
for the target application, including the code-generating robot 100 itself, the back-end user
interface 110 for code generation is called upon. The back-end user interface 110 displays

a list of screens from which the user may select the screen (or screens) to be generated.

-7

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

In one embodiment, a selection mechanism 602 is provided to allow the user to
decide whether the code is to be generated in the target language and platform on a test
basis for further checking or directly deployed to the development environment. When a
user selects the “test” option, the system proceeds to generate codes to a predefined
directory for reviewing and testing only. If, however, the user selects the “deployment”
option, the system proceeds to generate codes to a predefined development directory for
compilation.

In one embodiment, the back-end user interface 110 includes an “all screens”
check box 604 that allows the user to automatically select all of the listed screens for
generation. The generation process starts in response to the user selecting a “create” button
606 or the like.

The computer code generated is not limited to a particular user interface, netwofk
interface, security, connectivity, integration, database schema, etc. The computer code
generated is also not limited to any computer language, architecture, or platform.

FIG. 7 is flowchart of a process for creating a code-generating robot 100 according
to an embodiment of the invention. Those of skill in the art will recognize that the code-
generating robot 100 cannot generate itself when it does not initially exist. Accordingly,
the process begins with seeding. The first utility that needs to be generated is the screen
for capturing dynamic knowledge, as depicted in FIG. 2. Therefore, to seed the code-
generating robot 100, the dynamic knowledge that should have been captured by this
interface (that does not yet exist) is manually entered 702 and stored in a dynamic
knowledge data store 704.

The dynamic knowledge is manually entered with extreme care so that the
dynamic rules required for this screen can be deferred. Thereafter, the static knowledge
and static rules are manually programmed 706 to apply to the manually entered dynamic
knowledge. Using these knowledge and rules, the code generator generates 708 (compiles
the knowledge and rules into) the very first screen 710.

This first screen 710 does not yet have any dynamic rules attached, and many other
features may still be needed for this screen. Therefore, as shown in FIG. 8, a second screen
802—the user interface needed to capture dynamic rules—is created by using the first
screen 710 to capture the dynamic knowledge required for the second screen. This is done

carefully, since no dynamic rules are available yet for the first screen 710.

-8-

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

As before, the dynamic knowledge is stored within the dynamic knowledge store
704. Thereafter, the static knowledge and static rules are manually programmed 806 to
apply to the manually entered dynamic knowledge. Using these knowledge and rules, the
code generator then generates 808 target computer codes for the second screen 802. When
the second screen 802 (an example of which is shown in FIG. 3) is available, it is used to
capture the dynamic rules required for the first screen 710, and thus, the first screen 710 is
enhanced.

By the iterative process of developing more and more utilities as in FIG. 8, more
and more new features can be added to the code-generating robot 100. Because the same
features are available for the target applications the robot 100 generates, the reverse is also
true when a new feature is required by a target application. The new feature is added to
this self-generating automatic code generator 100 first. The code for the target application
is then generated with the new feature in it.

An example of the foregoing process is now described with reference to FIGs. 9-
17. Suppose that a user wishes to add a new feature, such as a filter, to a screen. The
purpose of this screen filter is to allow a user to choose from a list of radio-buttons to
selectively display certain items from a list of items, e.g., active vs. inactive employees in
a payroll system. As illustrated in FIG. 9, selecting the first radio button 902 displays a list
of all the active employees, while, as shown in FIG. 10, selecting the second radio-button
1002 displays only the inactive employees.

Referring to FIG. 11, to enable this feature for one or more target applications,
such as the one depicted in FIGs. 9 and 10, as well as for the code-generating robot 100
itself, a data store table 1102 called “ScreenFilter” is first created. The table 1102 may
include various columns 1104, such as screen filter ID 1104a, screen ID 1104b, screen
filter name 1104c, screen filter description 1004d, filter clause 1104e, and filter order
11041

The screen filter ID 1104a may be used for identifying this particular screen filter
in the system. The screen ID 1104b relates to the particular screen this screen filter applies
to. The screen filter name 1104c is the unique name identifying this screen filter. The
screen filter description 1104d may contain description other than just a name to easily
identify this screen filter upon sorting or searching. The filter clause 1104e relates to the

condition this screen filter becomes valid. Finally, the filter order 1104f defines the order

-9.

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

this screen filter appears with respect to other filters for the same screen. Of course, the
table 1102 may include additional or different information within the scope of the
invention.

Thereafter, as depicted in FIG. 12, the dynamic knowledge needed for the screen
“ScreenFilter” is captured using the first screen created by the code-generating robot 100.
The dynamic knowledge may be represented within one or more columns 1202. For
example, the columns 1202 may include screen column ID 1202a, master table 1202b,
column ID 1202c, column name 1202d, default value 1202e, system value 1202f, launch
screen 1202g, column size 1202h, column height 1202i, and display mode 1202j, drop
down key column 1202k.

The screen column ID 1202c¢ relates to the column of the data store for this
column. The column name 1202d is the unique name referring to the column of the data
store for this column. The default value 1202¢ capture the initial displayed value for this
column. The system value 1202f capture the server assigned value for this column, etc..
Different or additional columns 1202 may be provided within the scope of the invention.

As shown in FIG. 13, the code for the “ScreenFilter” screen may be generated
using the depicted code-generation screen 1300. As previously noted, the code-generation
screen 1300 may include a selection mechanism 1302 for allowing the user to determine
whether the code is to be generated in the target language and platform on a test basis for
further checking or directly deployed to the development environment.

Referring to FIG. 14, note that the new feature “Screen Filter” is not available for
the newly generated screen which is used to capture dynamic knowledge for screen filters.
As depicted in FIG. 14, this screen is now available to capture dynamic knowledge for all
screen filters for selected screens. The “salary” screen is used as an example to
demonstrate the knowledge captured. Note that there is no screen filter yet for this screen.

FIG. 15 illustrates the addition of the static knowledge and rules 1500 needed for
the generation of codes for this new feature. In the illustrated embodiment, the static
knowledge and rules is represented as program code in the C# language. However, any
language could be used within the scope of the invention.

Referring to FIG. 16, the next step is to generate and test the codes using salary
info screen (see FIG. 9 & 10) as an example. When satisfied, a Screen Filter Maintenance

screen 1600 is used to capture dynamic knowledge for itself. The dynamic knowledge

-10 -

10

15

20

25

30

WO 2005/078576 PCT/CA2005/000054

captured for itself includes the screen that refers to itself, the condition that this screen
filter becomes valid, and the order this screen filter appears with respect to other screen
filters for the same screen.

As shown in FIG. 17, this new filter feature is now apparent as more dynamic
knowledge is captured for this Screen Filter Maintenance screen 1700 itself, which is
being used to generate other applications. This new feature is fully utilized now in the
code-generating robot generator 100. Notice not only the screen (FIG. 17) for the self-
generated code generator 100 has the same features as the screen (FIG. 9 & 10) for the
application it generates, they share the same look and feel, architecture, language,
platform, etc.

FIG. 18 is a flowchart for a method 1800 for adding a new feature to an application
generated by an automatic code generator. Initially, a set of knowledge and rules that
define an application is captured 1802. Thereafter, code for the application is generated
1804 by providing a first automatic code generator, such as the code-generating robot 100
of FIG. 1, with the set of knowledge and rules.

A set of knowledge and rules that define a new feature to be added to the
application is then captured 1806. In one embodiment, code for a second automatic code
generator (e.g., a new version of the first automatic code generator) that supports the new
feature is then generated 1808 by providing the first automatic code generator with the set
of knowledge and rules defining the new feature as well as a set of knowledge and rules
defining the first automatic code generator.

Finally, code for the application is regenerated 1810 such that the application
includes the new feature by providing the second automatic code generator with the set of
knowledge and rules for generating the application as well as a set of knowledge and rules
for using the new feature.

While specific embodiments and applications of the present invention have been
illustrated and described, it is to be understood that the invention is not limited to the
precise configuration and components disclosed herein. Various modifications, changes,
and variations apparent to those of skill in the art may be made in the arrangement,
operation, and details of the methods and systems of the present invention disclosed herein

without departing from the spirit and scope of the present invention.

-11-

WO 2005/078576 PCT/CA2005/000054

CLAIMS
1. A computer-implemented method for adding a new feature to an application
generated by an automatic code generator comprising:

capturing a set of knowledge and rules that define the application;

generating codes for the application by providing a first automatic code generator
with the set of knowledge and rules;

capturing a set of knowledge and rules that define a new feature to be added to the
application;

generating codes for a second automatic code generator that supports the new
feature by providing the first automatic code generator with the set of knowledge and rules
defining the new feature as well as a set of knowledge and rules defining the first
automatic code generator; and

regenerating the code for the application such that the application includes the new
feature by providing the second automatic code generator with the set of knowledge and
rules for generating the application as well as a set of knowledge and rules for using the

new feature.

2. The method of claim 1, wherein the application and the code generators employ

substantially identical user interfaces to capture knowledge and rules.

3. The method of claim 2, wherein the knowledge and rules captured by both the

application and the code generator are of substantially identical types.

4. The method of claim 1, wherein the application and the code generators employ

substantially identical platforms, languages, and architectures.

5. The method of claim 1, wherein the application and the code generators employ

substantially identical data stores and data relationships.

6. The method of claim 1, wherein the application and the code generators employ
substantially identical user interfaces, platforms, languages, and architectures, data stores,

and data relationships.

7. The method of claim 1, wherein the first code generator is a subsequent iteration of

an earlier code generator automatically generated by the earlier code generator.

-12-

WO 2005/078576 PCT/CA2005/000054

8. The method of claim 1, further comprising:

regenerating codes for a second application such that the second application
includes the new feature by providing the second automatic code generator with a set of
knowledge and rules for generating the second application as well as a set of knowledge

and rules for using the new feature.

9. The method of claim 1, wherein the rules comprise at least one of:
validation rules governing input data;
calculation rules for performing mathematical calculations on input data;
inference rules for modifying or adding other data based on input data; and

action rules for triggering actions based on input data.

10. The method of claim 1, further comprising storing captured rules and knowledge

within a relational database.

11. A self-generating automatic code generation system comprising:

a user interface for capturing a set of knowledge and rules that define an
application;

a first automatic code generator for generating codes for the application using the
set of knowledge and rules;

a user-interface for capturing a set of knowledge and rules that define a new
feature to be added to the application; and

a second automatic code generator that was automatically generated by the first
automatic code generator using the set of knowledge and rules defining the new feature as
well as a set of knowledge and rules defining the first automatic code generator,

Whefein the second automatic code generator is to regenerate the code for the
application such that the application includes the new feature using the set of knowledge
and rules for generating the application as well as a set of knowledge and rules for using

the new feature.

12. The system of claim 11, wherein the application and the code generators employ

substantially identical user interfaces to capture knowledge and rules.

-13-

WO 2005/078576 PCT/CA2005/000054

13. The system of claim 12, wherein the knowledge and rules captured by both the

application and the code generator are of substantially identical types.

14. The system of claim 11, wherein the application and the code generators employ

substantially identical platforms, languages, and architectures.

15. The system of claim 11, wherein the application and the code generators employ

substantially identical data stores and data relationships.

16. The system of claim 11, wherein the application and the code generators employ
substantially identical user interfaces, platforms, languages, and architectures, data stores,

and data relationships.

17. The system of claim 11, wherein the first code generator is a subsequent iteration

of an earlier code generator automatically generated by the earlier code generator.

18. The system of claim 11, wherein the second code generator is to regenerate code
for a second application such that the second application includes the new feature using a
set of knowledge and rules for generating the second application as well as a set of

knowledge and rules for using the new feature.

19. The system of claim 11, wherein the rules comprise at least one of:
validation rules governing input data;
calculation rules for performing mathematical calculations on input data;
inference rules for modifying or adding other data based on input data; and

action rules for triggering actions based on input data.

20. The system of claim 11, further comprising a relational database for storing

captured rules and knowledge.

21. A computer program product comprising program code for performing a method
for adding a new feature to an application generated by an automatic code generator
comprising:

program code for capturing a set of knowledge and rules that define the
application;

program code for generating codes for the application by providing a first

-14 -

WO 2005/078576 PCT/CA2005/000054

automatic code generator with the set of knowledge and rules;

program code for capturing a set of knowledge and rules that define a new feature
to be added to the application;

program code for generating codes for a second automatic code generator that
supports the new feature by providing the first automatic code generator with the set of
knowledge and rules defining the new feature as well as a set of knowledge and rules
defining the first automatic code generator; and

program code for regenerating the code for the application such that the application
includes the new feature by providing the second automatic code generator with the set of
knowledge and rules for generating the application as well as a set of knowledge and rules

for using the new feature.

22. The computer program product of claim 21, wherein the application and the code

generators employ substantially identical user interfaces to capture knowledge and rules.

23. The computer program product of claim 22, wherein the knowledge and rules

captured by both the application and the code generator are of substantially identical types.

24, The computer program product of claim 21, wherein the application and the code

generators employ substantially identical platforms, languages, and architectures.

25. The computer program product of claim 21, wherein the application and the code

generators employ substantially identical data stores and data relationships.

26. The computer program product of claim 21, wherein the application and the code
generators employ substantially identical user interfaces, platforms, languages, and

architectures, data stores, and data relationships.

27. The computer program product of claim 21, wherein the first code generator is a
subsequent iteration of an earlier code generator automatically generated by the earlier

code generator.

28. The computer program product of claim 21, further comprising:
program code for regenerating codes for a second application such that the second

application includes the new feature by providing the second automatic code generator

-15-

WO 2005/078576 PCT/CA2005/000054

with a set of knowledge and rules for generating the second application as well as a set of

knowledge and rules for using the new feature.

29. The computer program product of claim 21, wherein the rules comprise at least
one of:

validation rules governing input data;

calculation rules for performing mathematical calculations on input data;

inference rules for modifying or adding other data based on input data; and

action rules for triggering actions based on input data.

30. The computer program product of claim 21, further comprising program code for

storing captured rules and knowledge within a relational database.

31. A self-generating automatic code generator comprising:

a front-end user interface to capture dynamic knowledge and rules;

a dynamic rule layer to apply the dynamic rules to the dynamic knowledge;

a data store for storing the dynamic kﬁowledge and rules after application of the
dynamic rules by the dynamic rule layer;

a code generation rule layer to apply static knowledge and rules to the stored
dynamic knowledge; and

a back-end user interface to generate new computer code for the front-end user
interface based on the static knowledge and static rules applied to the stored dynamic

knowledge.

32. A method for creating a self-generating automatic code generator comprising:
manually programming dynamic knowledge for a user first interface for capturing
dynamic knowledge;
manually programming static knowledge and rules to be applied to the manually-
programmed dynamic knowledge;
generating codes for the first user interface using the manually-programmed static
knowledge and static rules applied to the manually-programmed dynamic knowledge;
using the first user interface to capture dynamic knowledge for a second user
interface for capturing dynamic rules;

manually programming static knowledge and rules to be applied to the manually-

-16-

WO 2005/078576 PCT/CA2005/000054

programmed dynamic knowledge for the second user interface;

generating codes for the second user interface using the manually-programmed
static knowledge and static rules for the second user interface applied to the manually-
programmed dynamic knowledge for the second user interface;

using the first and second user interfaces to capture dynamic knowledge and rules,
respectively, for a third user interface for the automatic code generator; and

automatically generating codes for the automatic code generator using the captured

dynamic knowledge and rules.

-17-

PCT/CA2005/000054

WO 2005/078576
118
Self-Generating Automatic Code Generator 100
(Code-Generating Robot)
102 104
{ {
Front-End User Interface to AE) yn'arglcnlz;li I:li(leersttoo
Capture Dynamic | OPPYLY .
Knowledge and Rules Captured Dynamic
Knowledge and Rules
A
106
Compiles Dynamic Knowlege and
Rules Data Store
110 108
{ {
Back-End User Interface to Code Generation Rule
Generate Computer Code Layer to Apply Static
Based on Static Knowledge j«———— Knowledge and Static
and Static Rules Applied to Rules to Stored Dynamic
Stored Dynamic Knowledge Knowledge

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

WO 2005/078576

2/18

¢ 9Old

00¢

jauelju| [e00T]

A
dgejeisuss
EEEGEE A se A PRI \t\ A | dseeRwD| gousawmg| N | 28
] HSaUWINIOY] PIUWNIOY PIUWN]ODIYIPA
BEERIEE N ogl A -uwnjogqq ~uwnjogqg|PSrumeadoiq PluWNO3}2HIPA -lqoussndg| N €8
1 bsaquwinjog pluwnjo plulnjoDAsMIPG
BECERIE] N ozt A -:E:_oo_pn_ -uwnjopqglisumeadeid piuwnjoAeXPa -lqoussng| N c8
|| osagedA}-| piadA 1 PISPONAEIdSIg
|JRleaIPs A oLk A adA 1 AeidsiqiopdA L Aeidsiaioy isrjumogdoig PiapopiAeldsig ~[gousaiog N 18
WBPHUWN oD
BRI N 004 A xogxaL WyBleHuwneD Jqouseng| N 08
B 3ZISUWnioD
wum—mﬂ—«__um N 06 A xogixal 8ZjSUWn|od -[qouselog N 61
U8aJoGUoune |
m_m_mﬂ_:vm N 08 A xogxel] USBIDGHIUNET Jqousasng [N 8L
| anjeAwalsis
BT T N 0L A XogpeL ONBAWSISAS | pqouseg | N | 44
] ENEINBEEL]
BEERIEE] N 09 A xogyxal| anjepyneleq -qousswg| N 9l
| BUWENUWN[OD
EEERTEE] A 0s A xogixa || sweNuwnje) -[gousaIog N SL
| PS8 quUN(o: Uwn|o: uwinjo)
SRIBaNPT N 0¥ A -:m:_oo_nw .:__ucz_on“nw Jsrumogdoiq PIULINIOD ._%n_u_._mo‘__ow N v.
EGEIREET
EEEaEE] A o¢ A xogiosuo) aeumsen| SR N | es
ICeNEESS
SeRa[IPY A 0z A xogpa plaousanng| PO SEOS | N f- 12
] o U210
EEER|IRE] A (13 o_wmm A xogxe L] oSl plusalog u_cmm ._QM A 19
4o8YyD —_ PR e
WAIXe | WRWUIN| SOAL|ISEN | painbay |1epi0 fepuf |38p[od B TwnoDiay | twnjeoiay PO | WbleH| ozis|usans| enep| anep SUERUIAGS TS SIGEL [UinjoD)
Sbuey| ©buey|abuey|ndul duj| Vos|aer| qer “‘Uumogdoiqg| umogdolg Redsig | uwnjog [uwnjo)|youne | [WeisAsfinesa I5isEp | US8105 |
[B k™ ziol D[3]
. 01] a1 usasg || A fqousasogupy |2
- _8:_ oiseq [M
r=
_ _ QmunD_ souBUBJURY Suwnjo) uaalg ||
o “Jusuewiad sbueyo sy sxew o} uoyng a1epdn 8y} OI[o ‘SUWN|OD MBU B}E81D JO JSUSIOBIEYD SULWNOD U} IPe ‘usaios sjepdoldde sy} 109]es ases]d| |
a9 A [A] _mmﬁum<_ o0 @ 3| @ @Pen0O sajoned JL youess of” | @ Ex ¢&wea)

dieH sjoof

selonBy melX IpT

i

J010]dXT JoUIBU| JOSOIDI ~ SoUBUSJUIE SUWN|OD U9aIS []

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

WO 2005/078576

3/18

€ 'Old

youenu) [goo [- auoa []
L @ _ | [
12 /
1811 Apoyiny — N
i N i uwnjoD wo fuouny
A N | N vipfaguasiog zeiubs piqousaios 100UINYI8aS00000008 §00F smol vwﬂwm uwnje | N |eousiey
opeosen woyy sseiy
ST
diHlgousalog sjqeL
| A N N yipliqousaing zZewibs pilgousaios dHIGOUL210519AS0000000Y HOOE sjqel diHfgoussios | N [esusisyu)
pituo s3efep woyy sselg
apeosen
A S[qET
uoyiny
Yixapuiqel 'y L pIfqOussIog uwnjod SIqel
‘gLpluaaIng [aLulbs zelulbs zeubs xepulgey'pllqousaios‘pjuseios 100UINYNUI90000000% 102 u] sisixa Auouiny | N fsousiajuf
N A A Jou Aloyine suwnjo)
yneyap szilemu)
Jo uwinjoojl
. Hasuj
pLaweNUWNeD Q_ﬂgnuwamm 1L
N A | A [prPUgOUsainggLplusalog BuS'ZEIUDS ZEIIDSPLIENUWINI0OPIIGOUSR10S PlUSa.0S diHfqOu2a198)U1700000004 HOO} pIYo Ul w%xw dinfgousans | N [souassyy
JoU Ji pasu] szljepiu]
PIEpan
2q 0} paau
N A A yiplfqousslog zZewlbs pilqousaIaspsaqunjonfgous2105pdNZ0000000Y HOS ommcﬂﬁﬂmw IsaquUUINiod { Ny |sousisju]
ajepd,
usppiH epen
sje[eq | ayepdn | PPV —_— 13 uopduoss| [3dR1 on
Rl | SWEled BUIED S50RL BPUEIEd SEWEN Jojeweled SN BTPa00Td (ot "o | T ™ eaes
I =] W4 101 [BEIE
[T 0r}al usaiog ||~ faousaogwpy ||2
| o gjsed | o) z
_ _ 0ymuas_ SoUBUBUIBI SOINY JOAIBS %
— “Jusueuttad afueyo ay) exew o} uolng sjepdr) 8y} YdJJ9 ‘SOUBIBJRI SB|NI MBU D110 JO DSLISIORIBYD SN JOAISS B} JIPS ‘uselos ejeudoidde ay) josjes sseeld| |
0p Q V]]sseippv | [] @ = |@Epan O sawoneg I yoess oy | @ &weg o)
djeH sIo0L sejoABd mSIN WP alid
J1310jdX3 19UIS)U| YOSOIOIN - SDUBUSJUIBI SOINY JOAISS

c0€

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

WO 2005/078576

4/18

<4

v

D

v

9207 —

| oseqgedAusalog
1 sweNadALusalng
v pjadA Lusaiog

adAjusaiog

A

N\ ’e)
ybraquwnon | | SOJONUSRIS | |
usasogyoune| | sweNweiboid | |
anepAwesAg | | SMOMPHD ||
SAleAlIneeg| | SMOYISIT (|
osequuwnjo) | | Bunusooyyoiesg ||
sweNuwnpy [™ plyosesg | |
puwnjey | | plelgelelea| |
| s|qeLisiseN| | L_{ PleleLesen | |
= plusasg | | =| predAtusans| |
~ pllgoussiog ~ pluasiog
f[qouaaiog u3949g

qzor—

ezZ0p—

!

L\ 00y

b

083(3INYIonIg
piedALsny JoA198

A

adA]a|nylon1ag)o

<]

swesedbuled
sadA | lejewelredq
saweNIa)sueled
sweNaInpavold
JapiQosxs
uopduosagainy
aweNa|ny

a|qe | Jeisely
adA1anyIanes
plusalog

pleiny sonleg

HEEEEEEEN

—~

anyIoAlag

pcoy

OO0 8 g2 de Lo %0tV SAL

HEE

dieH

mopuip el O

&=

[(feooy), uo ,ubise@oy, ul weibelq meN] - 1obeueyy esidiejug Jeates TOS O

¥ "Old

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

WO 2005/078576

5/18

oo G "Old

_ _ L:suojoauLoD _

I3]

L 10004} u| smoi 0| 00:00:0[uBisaany | (zg)soansgoanyf(o-8)0aR| Apeay

\ >

1 o+ 98N L Su®) = 8snelg L sul@ 10T 1S W <> 9SNEIDLSUID) 4|

an3
(S1)4VHD + ,TINN =, + SWENIBAD) + Lewwod® + bgpdnainpesoid® = |bgpdnainpssoid® 193738
(EL)YYHD + , TINN =, + SWENIEAD) + |EWwod® + [PSpPYa4npao0id® = [bgppyeinpsooid@ 10373S
(EL)YVHO + 1NN =, + (WBuaTUWNEOD(9)HVHOUVA/LYIANOD +), + SWENIBAD) = sWeNJeA® 1D313S
0< A ' ._mco._m>.._mr_o.._mco._m>c.meo:.bmc_nhma\cm:_n_ .mEmZma>._.ﬂmv@va_QZ_W_<IO =]
aweNadA L Bjep® + (6)4YHD + (PIRIGBI® (01)HVHOYVA) LYIANOD + SWENUWN[0OD) + 0, = SWeN.eA® 10373S ,
Nio3g
«1 = BnjeAwsIsAs® YO TINN SI enfeAwsisis® H|
NI93g
9|qe Lulew® = sWeNs|qel® + ,'0qp’, + oseqereddydp® [NV TINN LON Si PISIqEI® 4|
ERE|
ang
(EL)HVYHD + [TINN =, + dweNeAD +, , + IbS[eQeinpedold® = jbgleganpscoid® 103738
(1)EVHO +, TINN =, + SWENIeAD) + Lewwoo® + |bgpdneinpasold® = [bgpdneinpecoid® 193738
(€1)YVHD +.1NdLNO TINN =, + SUENIEAD) + LEWWO0D + [bSppyainpecoid® = jbgppyainpsoald®@ 10T 13S
+ (4 + (busquwnjoo@ () YYHOUVA) LAIANQD +,) , + SWENIEAD) = sweNeA®) 103738
0 < (Jeyosentreyoieyoseautieyou‘leuiquen‘Aeulq, ‘awenNadA) e1ep@)XIANINYHD Sl
aweNadA1elep® + (6)HVHO + SWEeNIeAD) = sWENJeA® 103138
=, + SWENIEAD) = 9SNne|OESUID ‘SWENIBAD) + , =, + + SWENUWN|00®) = 9SNB|QaIoum@D ‘DWEeNSIqeI® + , ogp, + aseqejeqddygp® = sjgelulew® 103138
(PIRI9BYD “(0L) YVYHOHVA)LYIANOD + SWENUWN0OD + ,©), = SWeNIeA® 103138 ,
Nio3g
[x MorysiyayrsisiyL ./ A, = Aepfiewnd® i
_ NBREE]
. . 0=SNLYLS HO134DD JTIHM
Aewnd® ‘Apuspiuwnioo® ‘Yibusquinjod® ‘sleNUWN[oo® ‘sWeNsS|qel@ ‘PIe[qel® ‘PIUWN|oD}eY LPPD ‘enjeAWsISASD ‘eponAe|dsip@ OLN] Josindfqo WOXS bm__z HOL13d
Josandlqo N3IdO
. ATINO avay yod
xapulqeL e ‘0ssp AeplAlewlid g Ad HIAHO PIUea10S® = p|ussios e JHIHM
PlWB)SAS'} = PlWSIsAS "o NO § sweisAS NIOr ¥3LNO L4317
PieIge ™2 = PJ9|geL"q NO @ 8|qe1qd NIOr ¥3.LNO0 1431
pledALeieq'p = odA] ejed'q NO P edALeIe@lO NIOr ¥3LNO 1431

pIadAL"0 = p{spoyAe[dsiqe NO 0 edA1LAe|dsIqIO NIOr HINNI 2
PIUWN[OD] = PJUWIN[OD™8 NO g uwnjodqd NIOP ¥3.1N0L4T1 k:
—] e [qousalog WOYd >
aseqejeqddyqp ‘N3 sweNedA] eied'p 3573 ,Je0ld, NIHL [ewiaq, = sweNadALejeq'p NIHM ISVO = sweNadAlejeq S
Aayhiewndq ‘Apuspjuwnod g ‘YiBuSTUWNOD g ‘BLUBNULINOD] ‘BLUENS|EL™S ‘P[ejqeL q ‘PIULN|ODeY LPQ e anjeAWs)sAS e 0saqadAL 0 1031IS WO |6
- ¥OSYND JosinQlqo IYY103ad ||
09 Qv 0000 [[Gseaodae« A |« OO0 O0OE8-E
dieH smopuifA sjool Alend ¥pg sjid
XIEE] L«LPeRUN-80ONH\S0ANY UBisea0 Y '80aNY-A1enD] JazAjeuy A1enp TOS

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

WO 2005/078576

6/18

9 "Old

jouenu] |eoo [

_ _ _ _ suoq [

<]

| >

v

909 —w|

a1ealn _ _

WD@ N [J suss10s |Iv NO@/\‘ 8l O

yuswAolda(g asesjoy - Aojdayort i wpy
ooueusjuR) a8dA] ajeldwa] - ejejdwa { wpy
souBUBJUIRI SBINY JSAISS - S[NYISAIBSWPY
S19p[04 ge] USaI0g - B U9sIoSWpY

abessaly djgH uwnjo) usalog - diHlgoussiogupy
SoUBUSJUIBY SUWIN|OD UBBIOS - [goussioguwipy
SOUBUSBJUIEI USBIDS ~ UDBIOSWIPY

SoUBRUBJUIB SUWN|OD Loday - [qouodaywpy ()\ﬁ/\()\/

JOJEBIABN UORBASIUILIPY - UIWPYABNWPY

q aoueusjUIe S[aqeT NUS - dIHNUBNWPY

Ol | Z

juswdoasg @

*AjoAoadsal susaIos e Isi| 10 aseqelep auy)
woi} yoresas o} Jybu syy uo suojng auy asn) “sweiboid saanoadsal ay; ajerausb o}
uopng MO ssaid uay) usaios sjeudoldde oy) 109]9S J0 SUSIOG || %o9Yd osed|d

SU2910g 9jeIdUDY)

0o &1 _M_ _H_ ssaippy

| @ 3 _@ elpoN(SoeluoARd me yoress ¢y’ _ @ HH Auv_omm nv

Ay |

dieH slool sojuoAB4 MO WpT dlid

X&)

JaJo|dx3 1ouIB)U| YOSOIDIN ~ SUSBIOG BjeIsuss [

031\

SUBSTITUTE SHEET (RULE 26)

WO 2005/078576

First User Interface
to Capture Dynamic
Knowledge

710

A

Compiles

PCT/CA2005/000054

7/18

702
$

Manually Enter
Dynamic
Knowledge for First
Screen

704

Dynamic Knowlege

Data Store

Generate Target Computer
708 Code Based on Static
' Knowledge and Static Rules
Applied to Manually Entered
Dynamic Knowledge

Manually Program
Static Knowledge and
Static Rules for Code

< ~706

Generation

FIG. 7

WO 2005/078576

802

8/18

Second User
Interface to Capture
Dynamic Rules for
the First User

Interface
A

704

Compiles

808 4

PCT/CA2005/000054

804
<

Manually Enter
Dynamic
Knowledge for
Second Screen

Using First Screen

Dynamic Knowlege

Data Store

Generate Target Computer
Code Based on Static
Knowledge and Static Rules je—
Applied to Manually Captured
Dynamic Knowledge

Manually Program
Static Knowledge and
Static Rules for Code

Generation

FIG. 8

-~806

PCT/CA2005/000054

6 'Old

9/18

WO 2005/078576

SUBSTITUTE SHEET (RULE 26)

618{00°0 | L9'¥0.'8(00°GLE'€2Z| 00°0 |00°0 00°20€'8|00'9G.°.L N N ¥ 08

¥9 |v9°G¥L L9¥€6'6 |00°0VY 12| 000 (000 00°20€'8|0079G.°. N N 1% 08
| — fed Aees |— | mouag AOld [————idwex3 |1dwex3 | uogedsep SIH
I3 ddO SSOID | [enuuy Snuod 9|gexe_L 1al pedidl J @0Qq uyor
¥ @0 uyor
e/ € 8oQq uyor
¢ ®0(Q uyor
_ L] alsequeiy | [Z 90Q uyor

oju] uley Mu

ssfoldwz saoeu; O
C06 —_—gakojdwz oAy (o)
ayepdn ojuj Aiejeg

"6666 J29A 89 1SNW 0)-pljeA 1se| 8y | “Jeye Aep auo 8 SN Wol-pljeA
0} uojing a1epdn ay} oI ‘uonewlioul Alejes sjeudoidde sy Ips/ppe Usy} ‘laquiaw au) J0o]es ases|d

PCT/CA2005/000054

WO 2005/078576

10/18

0L "Old

0 |000 | 9¥'8€66|00°0226E | 00'0 |00°009 |00°20€8|00°9G. N A 14 08
8% |1S°L0l| 9%'8€8°L|00°022Z'LL | 00°0 [00°0 00°L0€'8{00°9G. L N N 14 08
GE |LL7ZL | ¥5°180°C|00°829'8L | 00°0 (0070 00°20€°8| 009G L N N 14 08
L€ |LZ'€L | #5180°C|00°829'8L | 00'0 |00°0 0089180092 N N 17 08
92 [10°0SG | 00°9.¥'L |0¥'¥S.L'GS | 00°0 |00°0 00891'8|00'¥€9°L N N 14 08
— | —— Aed Aeeg |— | Jeuag ANOJd | ———— [} dwexg [Jdwaxy | ———— SIH
13| ddO ssoin | [enuuy snuog SIqEXE L Xell ped LAl a5 IEl uoneoep poreg Aeq
N [|4| 101 | P
L | dllequisiy A 9 @0(uyor
o U |
200t "ot oot
alepdn ojuj Alejeg

6666 JB9A 99 }snw oO}-pljeA 1se| 8y “Jaye Aep auo 8q ISnul Woi-pilen
0] uonng ajepdn ay: oI ‘uonewloyul Alejes ajeudoidde ay) Jipa/ppe usay) ‘Jaquiswl 8y} 199]8S ased|d

SUBSTITUTE SHEET (RULE 26)

WO 2005/078576 PCT/CA2005/000054

11/18

1102
r

ScreenFilter
1104da—_ [ﬁ? ScreenFilterld
1104b—__LL Screenld

1104c— 1 | ScreenFilterName
1104d—__ 41 | ScreenFilterDesc
110de—_ . |FilterClause
1104f

\T— FilterOrder
FIG. 11

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

12/18

WO 2005/078576

Xzozh leozi lgozh uzozih Bzozh 4zozi ezozh PZ0OZL 9202k 920zt BZOZ)

S A S A A — p

—

SUBSTITUTE SHEET (RULE 26)

| 7
SWEeNIo]t
xogxel SUENSMI -Q_Ihmu__u_c_/_._wmm_u.m_ N | 6v8
preImng- preImINg
13inn91o 1srumogdoiq PISIMING ~djHJ9}I4us8108 N |8v8
d
xogixa | pIdIHJ8}I4uBBI0S v._Q"H“M“W__“MMwM N |9v8
XOgIXE | 05 19pI0ISNI4 .Lmﬂ_w_mg_mww_u_m_ A |ovs
aurmni | 99 00 asnejoeid MH@M_UM_ A |vve
xogixa1 05z OWENI9)||4Us8I0S mesz“mmwwwm A |zve
plussmsg |, d . pjusa1og
Moang [1Sumeadeia plueemns sonuseng] A |48
xogixe | 00} PHSI4USBI0S U_M“MMMMMM A |ovs
ai
uwin[on4ay] opoly | ybBH| 9zIS|usaidg| enjep| enfep ETNETY] —e e~ | BIGEL [UWnjod
umogdoiq Reidsig | Uwinjo) [uwnjo)|youne|wesAsinesq uwinen QIUWNIOD - Ii5isepy| Teeog
W [+ | 4] 101 | P]D
63] Qlusens | 3] Jo}IJUSBIOSWPY
A E| oujuep | b
alepdn ‘ 92UBUBJUIBJ SUWN|OY) UAIIS

ajepdn 8y} YOl|0‘SUWIN|OD MBU 8}eaI0 JO OISLIB}oRIEYD SULLN|OD By} 1Ips ‘uasios a)eldosdde ey 10e]es aseald

WO 2005/078576 PCT/CA2005/000054

13/18

1300
e

Generate Screens

Please check All Screens or select the appropriate screen then press OK button
to generate the respective programs. Use the buitons on the right to search from
the database or list all screens respeciively.

O Test iy
® Development 1302 Al screens

| RO

AdmScreenFilter - Screen Filters Maintenance A\
AdmScreenObj - Screen Columns Maintenance
AdmScreenObjHIp - Screen Column Help Message
AdmScreenTab - Screen Tab Folders
AdmServerRule - Server Rules Maintenance
AdmTemplate - Template Type Maintenance
AdmUser - User Maintenance

AdmUsrGroup - User Groups Maintenance
AdmWizardObj - Wizard Columns Maintenance
AdmWizardRule - Wizard Rules Maintenance

A\

Programs for Screen "AdmScreenFilter - Screen Filters
Maintenance" generated successfully.

FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

14/18

i ©l4d SETETY TeE
a19[9Q up3 eafojdwg annjoy SN-ue
JapeaH Jayji4 aIMmnd
Nl |4 Lo | P|D
_ L | JepiQ Jeyid
- (A = @9hojdw3 | e ANV PHeqWiBN‘Loe
= PHOqUIBIN’00E FHIHM LOE OjupequsN oqp sIHOY
<~ WO¥4 2ns, 10373S) SLSIXT ANV A, = angoy | SSNEID I8l
_ 89A0|dw3 A0y | SWEeN J8}id
[A] AejeSAed | usslI0g asfojdw 3 aanoeu| - AiejegAed
2aAojdwg aAoY - AlejegAed
_ 2| di +end <JI8]|IJUB8I0SUIPY MaU B ppy>
ojuf Urey Mu
91919 a1epdn aoueUdjUIR SI9}]I{ Ud3IIS

SUBSTITUTE SHEET (RULE 26)

WO 2005/078576

‘peniwad jusuewiad sabueyo
ayew 0} uopng aiepdn oy} Y219 ‘SUBU0D 3Y} P ‘uopng-olpel Jey ussios sjeudoidde ay) 109]8s ases|d

PCT/CA2005/000054

WO 2005/078576

GL '9Old

(e1(1eyo) + .(Jpuaddygs

‘(g1(1eyo) + ,:1p uinjel .Jpuaddy gs
‘(g1(4eud) + ,:(p)IN4"ep . Jpuaddygs
‘(g1(Jeyo) + .i()alqeLereq mau = 1p s|qeLejed « Jpuaddy’qs
(e1(Jeyd) + ,:pwles = PUBWIWIODIOB[8S EP , Jpueddy gs
((g1(1eyo) + ,{(PHeNI4uB8.0s ‘,\PI 18}l USDIoS®),\)PPV SISJSWE.BL"PWDISS y vncmo_%.gw

(e1(eyo) + ,(, + weled + , *,\, + weled + ,@,\)ppy siejoweled puig|es wpuaddy-gs
{(y1(1eyo) ‘sawieNJalewesed)plopisiddod (()sin meu) = weled v
(0 < yiBue soweNJeleweled) ajluMm
w i, = wesed
o) {(()Pumso ._..rmemZ:QmEEmn_._:o_m\som.m_.:Ev:wgq‘q.mmEmzhﬁoEEma
T ”E«mcmn_.mmEmthmEEma.ovo>oEmm.memz._QoEEma
‘(e1(12Y0) + ,‘0inpao0idpeiolg adA] puewiwo] = adA] pueWWO) pPWOISS " vncmaa,q”nw
()bumso] [,eweNwelboid,]mp + SIMen),\) puewiwoD|bg meu = pwQjes puewwo)|bs Jpuaddy-gs
. ((c1(1eud) + .(. Jpueddy-gs
‘ . . ddy-gs

1eyo) + ,:(sweNjIn4-()adA 1o)uondeoxgpasodsi1osfqO’WwalSAS mau moiuy} . Jpus

e ey (eyo) +,) . Jpuaddy’qs
(eL(eyo) +, (lInu ==ep) Ji « Jpueddy’qs
f(¢) (Jeuo) +) . Jpuaddy-gs

‘(e1(1eud) + (pHeNiduesios Zewbs *, + (()Buso L ‘[weiboidshs, Jmp)ioquolen)pusddyqs

005} \

SUBSTITUTE SHEET (RULE 26)

PCT/CA2005/000054

16/18

oo,ﬁ\//
oL OI4 e IToE]
CIETE]Y p3 Ssuaal1oguonelsiuupy SN-us
JapeaH Jay|i4 2NNy
¥ [+ 4| 4| 101 [P|M
_ } | JepIO sy
fa (LA, = welboidsAgS zoe NV PIUsaIog” | Qe=p|usaIog goe.
IYIHM Plwe)shszoe = pjweisAs’Loe NO Zoe sweysAg ogp
| NIOF YNNI L0. useiog'oqp WOXS Bni, LOFTIS)SLSIXA | OSNe[D I8}l
_ SU9S10S UONEeNSIUIupY | awWweN Jajji4
[~[J8)ijusalogupy | usalog
SU98I0S UOofel]SIulWpY-18){IJusalogupy
_ v | ai 4sjid <I9}jI4USBIOSWPY MaU B ppy>
oju| urepy Mu

SU2vl0g uonelisiuiupy @

s1Ied

alepdn

9ouUBUIJUIRIA SIS} UD3IOG

SUBSTITUTE SHEET (RULE 26)

WO 2005/078576

‘peniuLiad Jusueuwlad sabueyo
ayew 0} uopng ajepdn 8y} olj0 ‘SJusju09 ay) JIP9 ‘uopng-olpe. Jayi uaalos ajeudoldde sy} 109j9s aseald

PCT/CA2005/000054

WO 2005/078576

17/18

Ll "Old

002 —_

mawm_mn_ np3
avleq M_WM SuU98l10gIBY10 Sn-us
JapeaH Jayi4 2imnd
i Al 4| 101 ||

¢ | JopiO Jalid

>

{]

A_>. <> Em._mol_n_w\nm.wcm ANV U_:mm._ow.romub_cmml_uw.oom
JHIHM PlwesAs zoe = pjuelsAsTL0e NO ¢oe sweisAg ogp
NIOP HANNI 10e usaIos ogp WOXL 2Ny, 1D3T13S8)SLSIX3

esne|D Joyid

SUoaI0S IDY)0 | SwWeN Joyjid

[A] 18jJusdlosuipy | u9alIdg

SU8810g JBUI-19)|I4Us8I0SWPY

8 | al seu4

SU93a10S UOoNE.SIUILPY-I8)|I{UsaioSupY

<i9)jI4UBBI0SWPY MaU B ppy>

oJu| Urepy Mu

susangeyo O
SU9I0G UONBSIUIWLPY (o)

CIETETg| arepdn

aoueUdUIRI SI9)|I4 UBBIIS

‘peniwled jusuewlad sabueyo
a)ew 0} uoyng ayepdn eyl Yol ‘SjuULuUD 8y} ipe ‘uopng-olpel ey usalos ajeldoidde ay) 109jes ases|d

SUBSTITUTE SHEET (RULE 26)

WO 2005/078576 PCT/CA2005/000054

18/18

180
C Start)

v

Capture a set of knowledge and rules that define an
application

Y

Generate code for the application by providing a first
automatic code generator with the set of knowledge |~ 1804
and rules

v

Capture set of knowledge and rules that define a
new feature to be added to the application

v

Generate code for a second automatic code
generator that supports the new feature by providing
the first automatic code generator with the setof |{__ 1808
knowledge and rules defining the new feature as well
as a set of knowledge and rules defining the first
automatic code generator

Y

Regenerate the code for the application such that
the application includes the new feature by providing | _ 1810
the second automatic code generator with the set of

knowledge and rules for generating the application
as well as a set of knowledge and rules for using the

new feature

Y
o

— 1802

- 1806

FIG. 18

INTERNATIONAL SEARCH REPORT International application No.
PCT/CA2005/000054

A. CLASSIFICATION OF SUBJECT MATTER
IPC7 GO6F 9/44
According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms

Delphion, IEEE Xplore, Canadian Patent Database, & keywords: code generat*, new feature, regenerat*, re-generat*.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant Relevant to claim No(s).

X US 20040015809 A1 (Cheng) 22 Jan., 2004 (22-01-2004) 1-32
abstract, [0005], [0008], [0021], [0022], [0024], [0025], [0030]-{0040], [0042],
[0049], [0052] and Figs. 1-4

A US 6658579 B1 (Bell et al.) 02 Dec., 2003 (02-12-2003) 1-32
col.10 lines 19-55, col. 11 lines 30-43, col. 26 lines 16-34

A US 6671699 B1 (Black et al.) 30 Dec. 2003 (30-12-2003) 1-32
col. 7 line 6-col. 8 line 32, col. 9 lines 15-27, col. 23 lines 44-62

[] Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents : “ later document published after the international filng date or
“A" document defining the general state of the art which is not considered priority date and not in conflict with the application but cited
to be of particular relevance to understand the principle or theory underlying the invention
“E” earlier application or patent but published on or afier the international “X” document of particular relevance; the claimed invention cannot
filing date be considered novel or cannot be considered to involve an
“L" document which may throw doubt on priority claim(s) or which is inventive step when the document is taken alone
cited to establish the publication date of another citation or other “y" document of particular relevance; the claimed invention cannot
special reason (as specified) be considered to involve an mventive step when the document
“0” document referring to an oral disclosure, use, exhibition or other is combined with one or more other such documents, such
means combination being obvious to a person skilled in the art
“p” document published prior to the mternational filing date but later than “&” document member of the same patent family

the priority date claimed

I?ate of the actual completion of the international search Date of mailing of the international search report
16 March 2005 (16-03-2005) 31 March 2005 (31-03-2005)

Name and mailing address of the ISA/CA Authorized officer

Canadian Intellectual Property Office ..

Place du Portage I, Ci 14 - Ist Floor, Box PCT Cristian S. Popa (819) 997-2299

50 Victoria Street
Gatineau, Quebec K14 0C9

Facsimile No: 001(819)953-2476

Form PCT/ISA/210 (second sheet) (January 2004) Page 2 of 3

INTERNATIONAL SEARCH REPORT

Information 6n patent family members

International application No.
PCT/CA2005/000054

Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date

US2004015809 22-01-2004 US2004015809 A1 22-01-2004

WQO02095570 A2 28-11-2002

US6658579 02-12-2003 AUG166301 A 03-12-2001

AU6167701 A 03-12-2001

AUG171101 A 03-12-2001

. AU6463801 A 03-12-2001

' EP1299966 A1 09-04-2003

EP1305686 A2 02-05-2003

JP2003534748TT 18-11-2003

JP2004523139T T 29-07-2004

US6332198 B4 18-12-2001

Us6461513 B1 08-10-2002

US6639910 B1 28-10-2003

US6654803B1 | 25-11-2003

US6658579 B1 02-12-2003

USB658580B1 . 02-12-2003

US6760339 B1 06-07-2004

US2002001307 A1 03-01-2002

US2002057018 A1 16-05-2002

US2002116485 A1 22-08-2002

US2002118031 A1 29-08-2002

US2003126195 A1 03-07-2003

US2004031030 A1 12-02-2004

WO00189669 A2 29-11-2001

WO0190843 A2 29-11-2001

WO00190865 A1 29-11-2001

WO0191345 A1 29-11-2001

US6671699 30-12-2003 US6671699 B1 30-12-2003

Form PCT/ISA/210 (patent family annex) (January 2004))

Page 3 of 3

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

