PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/37530
G09C A2 -

(43) International Publication Date: 27 August 1998 (27.08.98)

(21) International Application Number: PCT/US98/01354 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 23 January 1998 (23.01.98)

(30) Priority Data:

08/795,592 UsS

6 February 1997 (06.02.97)

(71) Applicant: THE REGENTS OF THE UNIVERSITY OF
CALIFORNIA [US/US]; 22nd floor, 300 Lakeside Drive,
Oakland, CA 94612-3550 (US).

(72) Inventors: CRAWFORD, Henry, J.; 2410 Spaulding Avenue,
Berkeley, CA 94703 (US). LINDENSTRUTH, Volker;
8754 Terrace Drive, El Cerrito, CA 94530 (US).

(74) Agents: GALLIANI, William, S. et al.; Flehr Hohbach Test
Albritton & Herbert LLP, Suite 3400, 4 Embarcadero
Center, San Francisco, CA 94111-4187 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, IR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished

upon receipt of that report.

(54) Title: APPARATUS AND METHOD FOR MANAGING DIGITAL RESOURCES BY CONTROLLING TOKENS ASSOCIATED

WITH DIGITAL RESOURCES

(57) Abstract

. B A
Disable 28 a6 .
Tx
Channel Yes
\e2
No
Wait for 52
External Remove
Request > Token
¢ 6 /% from VRQ
< FBQ y 54
Match Token
with Request f32 ;reo:::;
! Memory
* 8 £4 * 56
Move Return
Request into > VRQ Token to
Memory, FBQ
Token to VRG] I

A method of managing digital resources of a digital system includes the step of reserving token values for certain digital resources
in the digital system. A selected token value in a free-buffer—queue is then matched to an incoming digital resource request. The selected
token value is then moved to a valid—request—queue. The selected token is subsequently removed from the valid-request-queue to allow
a digital agent in the digital system to process the incoming digital resource request associated with the selected token. Thereafter, the

selected token is returned to the free-buffer-queue.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
S5G

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
Us
uz
VN
YU
YAV4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/37530 PCT/US98/01354

APPARATUS AND METHOD FOR MANAGING DIGITAL RESOURCES BY
CONTROLLING TOKENS ASSOCIATED WITH DIGITAL RESOURCES

of T -y ¢ the) :
This invention relates generally to the management of access to digital
resources in digital systems. More particularly, this invention relates to a technique of

controlling access to digital resources by controlling tokens which are assigned to

5 define the digital resources.

Background of the Invention
This invention relates generally to the management of access to digital
resources in digital systems. The term digital system is intended to refer to any system
10 that includes or is operated by a digital logic circuit or hardware state machine. Thus,
the digital system may be a network interface, a network switch, a computer program,
a computer, a network of computers, and the like. Digital systems of this type may
include a number of digital agents and a number of digital resources. As used herein, a
digital agent refers to a digital element that requests a digital resource or responds to a
15 request received from another digital agent. Examples of digital agents in a digital
system include an input/output device on a system bus, a computer on a network, and
the like. As used herein, a digital resource is a memory space or computational state.
For example, the digital resource may be a buffer slot associated with a digital agent.
Access to the digital resource is controlled by the digital agent.
20 An arbitration mechanism must be established to determine what digital agent

can have access to a digital resource at any given time. For example, a number of

WO 98/37530 PCT/US98/01354

10

15

20

25

30

agents in a digital system may simultaneously contend for access to a single digital
resource, say a buffer slot of an input/output interface.

Prior art arbitration mechanisms for digital resources typically rely upon some
type of acknowledgment protocol. Figure 1 illustrates a simple prior art digital
system. A data transmission channel 20 routes a digital resource request to a digital
agent 22. A handshake interface circuit 24 is used to arbitrate the access to the digital
agent 22. The handshake interface circuit 24 receives the digital resource request and
determines whether it can be processed. If the digital agent 22 is available, the
handshake interface circuit 24 reserves the appropriate buffer resources for the pending
data transmission. It may then send a request for control of the data transmission
channel 20. This request for control of the data transmission channel 20 is then
processed by an arbitration mechanism (e.g., a microprocessor). The arbitration
mechanism subsequently passes an acknowledgment to the handshake interface circuit
24, indicating that it may control the data transmission channel 20 to obtain the
information corresponding to the initial digital resource request. The information is
subsequently transmitted to the handshake interface circuit 24 via the data
transmission channel 20 for subsequent processing by the digital agent 22.

This simple example of a request, acknowledgment, send operation over a data
transmission channel 20 demonstrates a “handshake” operation that typically
transpires before access is provided to a digital resource of a digital system.
Arbitration mechanisms, whether “handshakes”, “messages”, “locks”, or related
techniques, are used in the prior art to control access to digital resources. The problem
with prior art digital resource management schemes of this type is that they can be
relatively complex and slow.

Accordingly, it would be highly desirable.to simplify the design of digital
systems by providing a digital resource management technique that does not rely upon

handshakes, locks, or related techniques.

Summary of the Invention

The invention is a method of managing digital resources of a digital system by
reserving token values for certain digital resources in the digital system. A selected
token value in a free-buffer-queue is then matched to an incoming digital resource

request. The selected token value is then moved to a valid-request-queue. The

WO 98/37530 PCT/US98/01354

10

15

20

25

30

selected token is subsequently removed from the valid-request-queue to allow a digital
agent in the digital system to process the incoming digital resource request associated
with the selected token. - Thereafter, the selected token is returned to the free-buffer-
queue.

In accordance with the invention, a digital system is controlled by the
population of various token stores. Every state of the digital system is described by
the state of the token stores. If a resource request has a token, the resource request is
guaranteed the availability of the specified resource and requires no verifying response
from the resource. All transactions take the form of single, complete instructions
which means that pathways are not locked during data transmission. Consequently,
the invention allows pipelined, lock-free, communication between any number of
asynchronous agents. Thus, the invention avoids handshakes and other high-overhead
communication protocols. Moreover, the invention avoids resource locks that plague

multi-processor digital systems.

Brief T . ¢ the Drawi

For a better understanding of the nature and objects of the invention, reference
should be made to the following detailed description taken in conjunction with the
accompanying drawings, in which:

FIGURE 1 is a general illustration of a prior art technique for managing digital
resources in a digital system. *

FIGURE 2 illustrates a token controller in accordance with an embodiment of
the invention.

FIGURE 3 illustrates processing operations associated with a token controller
in accordance with an embodiment of the invention.

FIGURE 4 illustrates a digital system incorporating multi-port token
controllers, in accordance with an embodiment of the invention.

FIGURE 5 illustrates a software-based queue to be used as a token store
building block with an embodiment of the invention.

FIGURE 6 illustrates a token controller in accordance with an embodiment of
the invention.

Like reference numerals refer to corresponding parts throughout the several

views of the drawings.

WO 98/37530 PCT/US98/01354

10

15

20

25

30

Detailed Descrintion of the I :

Figure 2 illustrates a token controller 26 in accordance with an embodiment of
the invention. The token controller 26 is positioned between a data transmission
channel 20 and a digital agent 22. The token controller 26 is used in lieu of a
handshake interface circuit 24, as shown in the prior art system of Figure 1.

As will become apparent, the token controlier 26 of the invention may be used
in any digital system. By way of example, assume that the token controller 26 is used
as a network bridge. Networks such as Ethemnet, SCI, SerialExpress and ATM
produce packet traffic on a data transmission channel 20. A prior art handshake
interface circuit 24 monitors the packet traffic to identify packets of information
addressed to its corresponding digital resource or agent 22 (e.g., a computer). The
handshake interface circuit 24 captures appropriately addressed packets and stores
them in a buffer. If a sequence of packets exceeds the available buffer space, either
flow control methods have to siow down the packet transmission or data will be lost.
The performance of the packet receiver (i.e., the handshake interface circuit 24 in the
prior art and the token controller 26 of the present invention) is substantially
determined by the technique that determines the availability and location of free input
buffers. As indicated above, the prior art relies upon handshakes, messages, locks, or
related techniques to control this operation. In contrast, the present invention controls
this operation through the use of locally controlled tokens.

In accordance with the invention, a token is associated with each digital
resource. In the present example, a token is assigned for each buffer slot availabie for
packet traffic. In other words, the digital resources in this example are the various
buffer slots in memory 32. A token-based request processor 28 performs a prior art
operation of interfacing with the data channel 20. Thus, in the example of a network
bridge, the token-based request processor 28, as prior art devices, observes traffic on
the data transmission channel 20 to identify packets of data addressed to its
corresponding digital agent. If such a packet is identified, instead of relying upon
some type of interactive handshake technique, as in the prior art, the token-based
controller 28 has prior knowledge of the availability and identity of buffer resources.
This is accomplished by reading one token from the free-buffer-queue (FBQ) 30

before the first incoming packet is received. If a token is available in the free-buffer-

WO 98/37530 PCT/US98/01354

10

15

20

25

30

queue 30, that means that there is a digital resource available to accept the packet. In
the present example, the digital resource 1s a buffer slot in memory 32.

If a token is available identifying a free buffer resource, then the data
transmission channel 20 places the packet of information directly in memory 32, as
shown with arrow 33. In particular, it places the packet of information at a memory 32
location corfesponding to the token value selected by the token-based request
processor 28. For example, suppose a first token defining the first memory buffer
space has been read from the free-buffer-queue 30. The corresponding packet of
information is stored beginning at this first address location until some fixed offset
(e.g., 64 bytes) from the first address location. After the packet has been transferred,
the request processor 28 moves the token identifying the target buffer to a valid-
request-queue 34A.

The digital agent 22 operates by virtue of the token-based responder 36 to fetch
a token from the valid-request-queue 34. It then retrieves, directly from memory 32,
the packet of information corresponding to the fetched token. Relying upon the
present example, the token-based responder 36 fetches the first token and then fetches
from the memory 32 the information from the first address location until the fixed
offset from the first address location. Afterwards, the token-based responder 36
pushes the token into the free-buffer-queue 30.

Thus, it can be observed that the control of access to the memory 32 is
managed by the availability of tokens, which are either positioned in the free-buffer-
queue 30 or the valid-request-queue 34A. Suppose the memory 32 has 16 buffer slots
to receive packets of information. In this case, the free-buffer-queue 30 and the valid-
request-queue 34A must each be able to hold 16 values. Assuming that the free-
buffer-queue 30 and the valid-request-queue 34A are implemented as First-In-First-
Out (FIFO) data structures with a width of log2(N), and N equals the 16 slots, then
each queue 30 and 34A will be 4 bits wide.

Observe that tokens are assigned as data is accepted. If a token is not available
in the free-buffer-queue 30, then a packet is rejected. Thus, no handshake is required
to prevent overflow. Instead, all control is local. The token flow control is pipelined,
hiding propagation delays of the tokens in the token stores -- the free-buffer queue 30

and the valid-request-queue 34A, provided that there is at least one token in each store.

10

15

20

25

30

WO 98/37530 PCT/US98/01354

A First-In-First-First-Out (FIFO) structure offers a simple way of determining
the availability of resources. In addition, it provides a simple mechanism for
implementing a first-come-first served sequencing. FIFOs are a standard building
block in digital electronics which are available at very low cost. On the other hand,
the FIFO is not the only possible token store, many other implementations such as
stacks are prossible.

It is possible to have several token-based responders 36 process requests from
the same or multiple valid-request-queues 34. Similarly, it is possible to have several
token-based request processors 28 accept requests from several physical interfaces,
relying upon the same or multiple free-buffer-queues 30.

Note that the buffer space is directly related to the throughput or processing
rate of requests. Therefore, it is possible to control the processing rate by artificially
reducing the number of tokens in the free-buffer-queue 30 of a given data transmission
channel 20, thus limiting the maximum number of outstanding requests in the buffer
request queue. This allows one to partition available bandwidth. Since the token
concept can manage multiple queues, priority queues are also possible. Figure 2
illustrates that multiple valid-request-queues 34A, 34B may be used. One valid-
request-queue 34A may preferentially receive tokens from the token-based request
processor 28 and preferentially have those tokens processed by the token-based
responder 36.

The foregoing operation is more fully appreciated with reference to Figure 3.
Figure 3 illustrates the processing performed by the token-based request processor 28
and the token-based responder 36. The token-based request processor 28 attempts to
read a token from the free-buffer-queue (step 40). If a token is not available, further
requests are blocked as the data transmission channel 20 is disabled (step 42). A
disabled data transmission channel typically acknowledges all received requests with a
request to retry the transaction at a later time or disables the peer transmitter. When
tokens are available, a wait state is entered to wait for request (step 44). When a
request is received, a token is matched with the request (step 46). Thereafter, the
request (e.g., the received packet of information) is moved into the memory 32 space
specified by the token and the token is moved to the valid-request-queue (step 48).

Control then returns to step 40.

WO 98/37530 PCT/US98/01354

10

15

20

25

30

The token-based responder 36 has an inverse operation. It operates to
determine whether the valid-request-queue is empty (step 50). If the queue is empty,
then it is continually checked until a token arrives. When a token arrives, it is
removed from the valid-request-queue (step 52). The request in memory 32 at the
location specified by the token is then fetched for processing (step 54). Thus, memory
32 may be implemented as a multi-ported memory that is addressed by token values.
The processing of the request entails passing it to the digital agent 22 (not shown).
Upon completion of the request processing, the token is pushed back into the free-
buffer-queue 30 (step 56), thus making its buffer available to store new requests.

The example system of Figures 2 and 3 describes a 16 slot (N=16) system
where each slot is either used or unused (M=2 states (used/unused)). Each resource is
represented by a token, simply an integer number. Sixteen tokens are required to
unambiguously identify any of the N=16 digital resources (slots). Two token stores
are required to define the token state (M=2 states): one store for used tokens (e.g., the
valid-request-queue 34) and one store for unused tokens (e.g., the free-buffer-queue
30). This system can be used as a building block for larger systems. Figure 4
illustrates a full-duplex three-port packet switch system 60 that is completely managed
by tokens in an M=3 system. This concept is not limited to M=3, but can be expanded
to any size.

Each token controller 26A, 26B, 26C of Figure 4 includes a triple-port memory
32. The triple-port memory 32 is used as an elasticity buffer for any of the
incoming/outgoing packets. The basic difference between this and the previously
described M=2 scenario is that there are two different fields within one token. One
field identifies the buffer-ID (memory address) in the triple port memory and the other
field identifies the token controller (either 26A, 26B, or 26C). The combination of the
information in the two fields uniquely identifies any buffer resource in the system.
Because the free-buffer-queue defines the agent implicitly, it does not need to store the
agent type. Therefore, in this embodiment the valid-request-queue is wider (by 2 bits
or three states) than the free-buffer-queue.

Figure 4 illustrates a digital agent (e.g., a network) 24 A passing data to a
token-based request processor 28A. As described above, the token-based request
processor 28A attempts to fetch a token from its corresponding free-buffer queue 30A.

If a token is available, the passed data is loaded into the triple-port memory 32A at the

WO 98/37530 PCT/US98/01354

10

15

20

25

30

location specified by the token. Now assume that the passed data is intended for
digital agent 24C. That is, the digital agent 24 A intends to pass a packet of data to
digital agent 24C for processing. The router 64A of the token-based request processor
28A recognizes the address of digital agent 24C that is associated with the information
that is passed to it. It pushes a token into the valid-request-queue 23C of token handler
26C, as shown with arrow 66. The token in the valid-request-queue specifies the
source of the token (token handler 26A) and the buffer resource (memory location in
triple-port memory 32A) which contains the information to be processed. Observe
that each queue on this three port switch is being written to by two agents. For
example, the valid-request-queue 34C is filled by router 64A and router 64B. Possible
contention can be avoided by time slicing the push operations allocating even clock
cycles to router 64A and odd clock cycles to router 64B. Only one token needs to be
passed per request and therefore this implementation is not going to cause a token flow
bottle neck.

The token-based responder 36C reads the token from its valid-request-queue
34C. It then accesses the information, as shown with arrow 68. Afterwards, it returns
the token to the free-buffer-queue 30A, as shown with arrow 70. All communications
in the network switch system 60 are executed in this manner.

The concept and operation of the invention have now been fully described.
Attention presently turns to additional implementations of the concepts of the
invention. All multi-processor architectures require buffer resource management and
message passing for synchronization. Typically, buffer states and message queues are
managed through global state tables, which are protected by locks. These locks are
usually implemented using atomic transactions, which put a burden on the bus system.
In addition, the transactions are not pipelined. If a lock is asserted, other requesters are
stalled. The probability for such a lock stall increases with the system load; the system
performance does not scale with its load. In order to prevent locks from pending due
to task rescheduling, the lock set/release routines are usually encapsulated by system
calls preventing the task from being interrupted. However, this method makes
execution of locks on the requester side relatively expensive.

Lock-based resource management has a fairly high system overhead. The
token concept allows implementing any buffer resource management or message

queue system without any locks. It also allows those token transactions to be write-

WO 98/37530 PCT/US98/01354

10

15

20

25

30

only transactions, which means they can be posted. Consequently, a token based
multi-processor system is totally pipelined and scales well with its load.

The token buffer management system can be adopted to a multi-processor
architecture by setting up a software token store. Like the FIFO in the hardware case,
it is possible to implement a software FIFO, which requires only (posted) writes across
any given bus boundary. Such a FIFO token store forms the building block for the
token queues.

Figure 5 illustrates a software implementation 80 of a valid-request-queue 34.
As in the previous embodiments, a valid-request-queue 34 receives tokens from a
token-based request processor 28, which communicates with a software agent 83. The
tokens from the valid-request-queue 34 are then fetched by a token-based responder
36, which uses the token to convey information to a software agent 88. In the software
embodiment of the invention, the valid-request-queue 34 is implemented as a set of
index terms with bound values. In other words, the index can only be incremented to a
defined value (the maximum number of defined tokens minus one before it wraps to
zero). When a request is received at the token-based request processor 28, the local
write index 82 is incremented. The token is written to the location in the token
memory 81 specified by the updated local write index. The incremented value is then
passed to the remote write index 84. The read index 86 then passes the existing index
value to the token-based responder 36, allowing the token-based responder 36 to
obtain the specified information from the token memory 81.

The status of the valid-request-queue 34 is defined by the difference between
the read and write pointers. A FIFO with N words has N+1 states (states 0 through N,
where state 0 is empty and state N is full). Therefore, the write-only software FIFO
for N tokens needs to be at least N+1 elements large in order to avoid ambiguities
between full and empty states. An empty state is defined as
WritePointer==ReadPointer. The full state is defined as WritePointer=—=ReadPointer-1
taking the appropriate index wrapping into account. Observe that the full state does
not have to be determined because the token concept prevents overflow.

As previously indicated, if the token-based request processor 28 needs to write
to the FIFO, it uses the defined global FIFO data base address to write (post) the data
word. Then, it writes the incremented write index to both the local write index 82 and

remote write index 84, thus making the new data word visible to the token-based

WO 98/37530 PCT/US98/01354

10

15

20

25

30

responder 36. Consequently, at most two remote write transactions are required per
FIFO transaction, or, depending on the bus type between the two handshaking agents,
a message can be passed typically within less than a microsecond. If more than one
data word or token is to be transferred, the write index update transaction can be
amortized over several data write transactions.

The token-based responder 36 compares the read and write pointers to
determine the FIFO empty state. If asynchronous notification is required, the FIFO
write index field, which can be located anywhere in the mutual address space, can be
placed into a memory region that acts as a mailbox interrupt (it fires the local interrupt
upon any write transaction to the memory region).

The operation of the system of Figure 5 and similar systems is more fully
appreciated with reference to a specific system. A typical multi-processor system
contains a series of processors that receive and compute input data. The resulting
output data is transmitted to higher level processors performing other tasks on
combined output data sets or the output data is transmitted by appropriate interfaces to
a network or a mass storage device. In any case, a typical processing element receives
data and produces a different data set. Both the input and output data require proper
flow control to avoid data overruns.

For example, in an image processing system, the source data controller is
connected to a camera producing frames. Each CPU has a set of internal frame buffers
available. The output of the first processing layer, where image pattern recognition
algorithms are implemented, could be sent to a second, similar processing layer that
performs motion analysis of the images found in the first layer. The output of the
second layer could be a storage system recording the type and velocity vector of
identified objects. In military applications, this system can be used to control and steer
cruise missiles.

The buffer flow control implemented by the token resource management
scheme of the present invention is similar between all interfaces exchanging data in
this system. Each processing element or interface has a set of identical buffer
clements. Each buffer element is represented by a token. In the system sketched
above, each processor has at least two valid queues that implement the software FIFO
80. One of these queues resembles a priority queue of buffers that are to be processed

at priority. The appropriate processor reads this queue first for valid requests. Both

10

WO 98/37530 PCT/US98/01354

10

15

20

25

30

queues have the same depth, which is the maximum number of tokens available. The
data source (the camera interface or the appropriate lower processing layer)
implements a free-buffer-queue per processor. It is at its discretion to which CPU the
next data request is sent. It can implement load dependent algorithms using the fill
status of the free-buffer-queues, minimizing the latency of any given request. Given
the availabiﬁty of a free buffer token, the data source pushes the appropriate input data
directly into the input buffer of the appropriate processor. The input buffer is
unambiguously identified by the token. After completion of the data transfer, the
appropriate token is moved from the free-buffer-queue to the appropriate valid request
queue. Note that the data output resembles a data source for the next layer, which is
implemented similar to the data source shown.

The token resource management concept has been described in reference to the
management of N identical resources. In the case of buffers, that means resources of
fixed identical length. The token concept of the invention also allows implementation
of variable length buffers. The basic method is to break up variable length objects into
a multiple of fixed length buffers.

The foregoing image processing example can also be interpreted as a data
acquisition and analysis filter. In that scenario, the data sources are digitizers that
produce variable length data. The source data controller breaks that source data into a
multiple of fixed length buffer slots. It knows how many tokens (buffer slots) each
processor has available. If the source data requires M buffer slots, M tokens are taken
from the appropriate free-buffer-queue. The raw data is then transferred to the
appropriate buffers. This can be accomplished using a chain mode DMA controller
pushing data into the local buffer slots of the analysis CPU. One chain entry will be
required per buffer slot. Correspondingly, the resulting output data can be scattered in
the input buffer or the destination processor.

The availability of the complete data set is communicated by pushing all
tokens of all used buffers into the valid-request-queue of the target processor. In order
to avoid race conditions, it is required to add a qualifier to the token value . This
qualifier defines the sequence number of the given buffer slot within the data set. One
defined qualifier is reserved to identify the last data page. In case of a non-empty
valid-request-queue, the receiving processor reads tokens until the end of data set

qualifier is received. This scheme works for any number of pages in a data set.

11

WO 98/37530 PCT/US98/01354

10

15

20

25

30

Note that all of the foregoing examples share the concept that they are
managed by tokens, which are much smaliler than the buffer resource itself. The
position and handling of the buffer resource itself is completely independent of the
tokens. However, the token concept can also be used to elegantly implement message
passing queues.

Figure 6 illustrates a token based message passing command interface. In this
implementation, the token does not represent a buffer resource, but is the resource
itself. The valid message queue 94 and the acknowledge queue (ACKQ) 31 are
instantiations of the previously discussed software FIFO 80. CPU 1 90 includes a
token-based request processor 28, which writes token messages to the valid message
queue 94 on CPU 2 92. Since the valid message queue 94 can only be loaded when a
token is available in the free-buffer-queue 30, it is guaranteed that it will not overflow.
After a token is written to the valid message queue 94, the token-based responder 36
pushes the token back to the free-buffer-queue 30, or provides acknowledgment using
the acknowledgment queue 31. Observe that in this case, due to the lack of a buffer
pool 32, the width of the tokens in the free-buffer-queue 30 is zero bits. In other
words, the free-buffer-queue 30 in the token message interface 99 is reduced to the
pointer index pair 35 of the software queue 80.

There are obvious trade-off considerations between the different embodiments
of the token concept. The message token implementation requires the messages to be
processed in the order they are received. The token based resource identification
implementation does not have that constraint. However, it requires one additional
level of pointer indirection. The resource address has to be calculated based on the
base address of the resource pool and the resource ID as specified by the token. In
many cases it is efficient to separate the buffer from the token management. This is
especially the case if large buffers are in use and data is moved using direct memory
access assistance, or if muitiple priority request queues are implemented. Basically,
the token message implementation is useful for command interfaces using short
messages that can be efficiently transmitted by programmed input/output. The
resource identification token implementation is best suited for larger buffer slots,
which are filled by direct memory access engines or which require out-of-order
processing. In any case, the token resource management allows implementation of the

required flow control with minimal overhead.

12

WO 98/37530 PCT/US98/01354

10

The foregoing description, for purposes of explanation, used specific
nomenclature to provide a thorough understanding of the invention. However, it will
be apparent to one skilled in the art that the specific details are not required in order to
practice the invention. In other instances, well known circuits and devices are shown
in block diagram form in order to avoid unnecessary distraction from the underlying
invention. Thus, the foregoing descriptions of specific embodiments of the present
invention are presented for purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the precise forms disclosed,
obviously many modifications and variations are possible in view of the above
teachings. The embodiments were chosen and described in order to best explain the

principles of the invention and its practical applications, to thereby enable others

skilled in the art to best utilize the invention and various embodiments with various

modifications as are suited to the particular use contemplated. It is intended that the

scope of the invention be defined by the following Claims and their equivalents.

13

WO 98/37530 PCT/US98/01354

10

15

20

25

30

IN THE CLAIMS:

1. A method of managing digital resources in a digital system, said method
comprising the steps of:

reserving token values for certain digital resources in said digital system;

matching a selected token value in a free-buffer-queue to an incoming digital
resource request;

moving said selected token value to a valid-request-queue;

removing said selected token value from said valid-request-queue to allow a
digital agent in said digital system to process said incoming digital resource request;

and

returning said selected token to said free-buffer-queue.

2. The method of claim 1wherein said moving step includes the step of moving a
packet of data associated with said incoming digital resource request into a memory

location corresponding to said selected token value.

3. The method of claim 2 wherein said moving step includes the step of moving
said incoming digital resource request from said memory location to allow said digital

agent to process said incoming digital resource request.

4. The method of claim 1 further comprising the step of blocking an incoming

digital resource request when said free-buffer-queue is empty.

5. The method of claim 1 further comprising the step of preferentially removing

said selected token value from a priority valid-request-queue.

0. A digital system, comprising:

(A) atransmission channel to route an incoming digital resource request;

(B) adigital agent to process said incoming digital resource request; and

(C) atoken controller positioned between said transmission channel and said
digital agent, said token controller including

(1) a free-buffer-queue,

14

WO 98/37530 PCT/US98/01354

10

15

20

25

30

(2) avalid-request-queue,

(3) amemory,

(4) atoken-based request processor connected to said transmission
channel, said free-buffer-queue, said valid-request-queue, and said memory, said
token-based request processor being configured to

(a) match said incoming digital resource request with a selected
token value in said free-buffer-queue,
(b) move said incoming digital resource request into said

memory, and

(c) place said selected token value in said valid-request-queue,
and
(5) atoken-based responder connected to said free-buffer-queue, said
valid-request-queue, said memory, and said digital resource, said token-based
responder being configured to
(a) move said selected token value from said valid-request-

queue into said free-buffer-queue, and

(b) route said digital resource request from said memory to said

digital agent.

7. The apparatus of claim 6 wherein said token-based request processor is

configured to block an incoming digital resource request when said free-buffer-queue

1s empty.

8. The apparatus of claim 6 wherein said token-based request processor
selectively places high priority incoming digital resource requests into a priority valid-
request-queue of a set of priority valid-request-queues, and said token-based responder

preferentially removes tokens from said priority valid-request-queue.

9. The apparatus of claim 6 wherein said free-buffer-queue is constructed as a

hardware-based First-In-First-Out device.

10. The apparatus of claim 6 wherein said valid-request-queue is constructed as a

hardware-based First-In-First-Out device.

15

WO 98/37530 PCT/US98/01354

10

15

20

25

30

11. The apparatus of claim 6 wherein said free-buffer-queue is constructed as a

software-based write-only FIFO using a write index cache.

12. The apparatus of claim 6 wherein said valid-request-queue is constructed as a

software-based write-only FIFO using a write index cache.

13. A digital system, comprising:

(A) atransmission channel,

(B) aplurality of digital agents; and

(C) aplurality of token controllers, each of said token controllers being
positioned between said transmission channel and a selected digital agent of said
plurality of digital agents, each of said token controllers including

(1) a free-buffer-queue,

(2) avalid-request-queue,

(3) a multi-port memory,

(4) atoken-based request processor connected to said selected digital
agent, said free-buffer-queue, and said multi-port memory, said token-based request
processor being configured to

(a) match an incoming digital resource request from said
selected digital agent with a selected token value in its free-buffer-queue,

(b) route said selected token value to a valid-request-queue of a
destination token controller of said plurality of token controllers, and

(c) move said incoming digital resource request into said multi-
port memory, and

(5) atoken-based responder connected to said valid-request-queue and
said transmission channel, and said selected digital agent, said token-based responder
being configured to

(a) read a specific token value from its valid-request-queue,
said specific token value originating from a digital resource request generated by a
source token controller,

(b) receive said digital resource request from a multi-port

memory of said source token controller, and

16

WO 98/37530 PCT/US98/01354

10

15

20

(c) pass said digital resource request to said selected digital

agent associated with said token-based responder.

14. The apparatus of claim 13 wherein said token-based request processor includes
a router to route said selected token value to said valid-request-queue of said

destination token controller.

15. The apparatus of claim 13 wherein said token-based responder is configured to

route said specific token value to a free-buffer-queue of a source token controller.

16. A method of managing digital resources in a digital system, said method
comprising the steps of:

reserving token values for certain digital resources in said digital system;

matching a selected token value in a free-buffer-queue to an incoming digital
resource request;

moving said selected token value and said incoming digital resource request to
a digital agent for processing; and

returning said selected token to said free-buffer-queue.
17. The method of claim 16 further comprising the step of performing said

reserving, said matching, and said moving steps with a first processor and executing

said returning step with a second processor.

17

WO 98/37530

1/6

[20

Data Transmission Channel

:

Handshake 24
Interface
Circuit

:

Digital 22
Agent

Figure 1
(Prior Art)

PCT/US98/01354

WO 98/37530 PCT/US98/01354

2/6
20
Data Transmission Channel
28
Token-Based Request Processor \
Py ;
—
33
2y
Bl |vRq |vRd —£°
Memory
N ™ ™
30 34 A 348

P v v @

Token-Based Responder

I |
Digital Agent

Figure 2

¢ ainbi4

PCT/US98/01354

3/6

DHA 01 us)o]
Og4d ‘Alows iy
0} Us)o | OHA < ojul }senbay
uiniay SO
J J :
9g * pe wv\ »
o W\ Aowspyy |«
1sanbey
$S8001d Nm\ 1senbay yum
7 : usMo | Yol
bG + — | —» s >
OdA woly om\ 9\\ %
USMOL |
SAOWSY 1senbay
[euisixy
Nm\ 10} JIEM
vp/
mj SSA
[ouuey) Ireny
o X1 susdo |
8¢ 084
|/ // 8|qesig o

WO 98/37530

PCT/US98/01354

WO 98/37530

4/6

ave

a9

Juseby (eyubiQg
$ ¥
092
b m_sm_n_ < Jopuodsey ommm 10Ss8001d Jsenbay
DoSEg-USYOL paseg-usyo |
lsinoy
09e~ + org~ % +
O
09 Y m
A 0L Wd.l |
ove— 4/ 8 028” Hog
9
o) : @) O O
m WNdL | |8 d Wdl | |9
AN = AN N 4
are vhe
geze’
v oo g0e—"y v2e” Moe’ v
] 181noy <vm lejnoy
Jspuodsey 10558001 }senbay Jspuodsey l0sse001d }senbey
paseg-us)o | poseg-usyo| peseg-us)o| peseg-us)o|
age— + g8z’ A vog— ﬁ v8z— A
_ _
\ weby renbig %\ Jueby jenbiqg
— vz~

WO 98/37530 PCT/US98/01354

5/6

f83

Softw‘are
Agent

r'd
l -

Token-Based
Request Processor

80

Remote Write Index

Read Index

Token-Based
Responder

¢ 88

Software
Agent

Figure 5

WO 98/37530

PCT/US98/01354
6/6
CPU 1 .
90
Token-Based ~~
Request Processor 28
e S
I |FBQD I
| ° 30 I
o, |
A ™
: CKQ 31 :
7 Y
I l\
1 | 99
| |
36 N
l [| 9o
I IToken-Based [
I |Responder 1
1 ¢ o I
I Y /77
1 Valid Message |
I Queue I
.
CPU 2

Figure 6

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

