
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0294531 A1

Alten

US 2007029.4531A1

(43) Pub. Date: Dec. 20, 2007

(54) SYSTEM AND METHODS FOR A VERNAM Related U.S. Application Data
STREAM CIPHER, A KEYED ONE-WAY
HASH AND ANON-CYCLC
PSEUDO-RANDOMINUMBER GENERATOR

(76) Inventor:

Correspondence Address:
Richard Butler
Valley Oak Law
i106
5655 Silver Creek Road
San Jose, CA 95138 (US)

(21) Appl. No.:

(22) Filed:

11/705,313

Feb. 12, 2007

R65536

Alexander I. Alten, Pleasanton, CA
(US)

2904
Compression

(62) Division of application No. 09/938,790, filed on Aug.
24, 2001, now Pat. No. 7,197,142.

Publication Classification

(51) Int. Cl.
H04L 9/00 (2006.01)

(52) U.S. Cl. .. 713/168

(57) ABSTRACT

The invention discloses a cryptographic system and consist
ing of three methods: a cryptographic Vernam Stream cipher
that permits software programs on separate computers to
encrypt and decrypt information; a cryptographic keyed
one-way hash that ensures the integrity and authenticity of
a message; a non-cyclic pseudo-random number generator
that permits a Software program inside a computer to create
large amounts of pseudo-random bits at high data rates.

H 4 Bytes ->

Compression Value

Sub- Sub
Compression
Walue B

2906

Walue A

- 4 Byes -->

2916

2918

2924

2926

Pre-Hash Look Pre-Hash Look
Up Table A -2B 2Bwt Up Table B 2908 ytes-e K-2Bytes- 290 p

R1'

R2"

9.
E R3'

d

l R65536
KH 4 Bytes --> - 4 Bytes -

Pre-Hash Walue A 292

2914 CD
Pre-Hash Walue B

Hash Value

2920 CB

Encryption Pad

2922

Encryption Pool

-- Encryption Pad

2924

MAC Walue

Patent Application Publication Dec. 20, 2007 Sheet 1 of 30 US 2007/029.4531 A1

Fig. 1

Sender or Receiver Computer
102

104 Processor
120 Network interface 122

106 106 Data Bus (for Secure Data Ethernet
Transmissions)

ALU ALU

108
Memory Cache 120 NetWork interface 122

Data Bus (for Server Ethernet
Communications}

120 116

110

Dynamic Random Access 114
Memory

112

Patent Application Publication Dec. 20, 2007 Sheet 2 of 30 US 2007/029.4531 A1

Fig. 2

Key & Pad Server Computer
2O2

2O4. Processor
218

2O6 2O6 Network interface

Dynamic Random Access
Memory

Patent Application Publication Dec. 20, 2007 Sheet 3 of 30 US 2007/029.4531A1

Simple Mechanism of Generating a Random Permutation
of a Sequence of Unique Numbers from 0 to N

Fig. 3
302

Random Permutation of a Sequence of N Unique Numbers (0 to N-1 Values)
Each of Log2(N) Bits

Fig. 4 Near Perfect Riffle Shuffle Mechanism of Generating a Random
9. Permutation of a Sequence of Unique Numbers from 0 to N.

Example: N = 256 C) X Random Repeat Number
X >= 3/2x log2(N)

402 404 (X >= 12)

406 U
Controls shute to ... to N2B Randonvector

Sequence of 256 Unique Numbers
408 Each 8Bits

O * o ... triata total ... as
4.D X

410 Riffle Shuffle TWO Halves

... r
a OF Insert to Left

At it also a ... as d
s 412
did
2
b
l a o as to a ... was

414
Randomly Shuffled Sequence of 256 Unique Numbers

Each 8 Bits

Patent Application Publication Dec. 20, 2007 Sheet 4 of 30 US 2007/029.4531 A1

Fig. 5 Randomly Permutating a Sequence of Numbers

Example: N = 8

Random Sequence of Eight 3 bit Unique (0 to 7) indices

Controls
Sequence
Re-Ordering

Sequence of Eight Shuffled Random Numbers

Patent Application Publication Dec. 20, 2007 Sheet 5 of 30 US 2007/029.4531 A1

Fig. 6 Key or Seed Data Structure

A Randomly Permutated Sequence of
2^Y Unique Y Bit Numbers

602 as a series to
where Y = 6, 7, or 8

K

Unit Sizes Used For Partitioning
Fig. 7 Random Permutations

702 Card 1 Card = 2^UBytes, where U = 0, 1, 2, 3, or 4 (i.e. 1, 2, 4, 8, or 16 Bytes) | 704 e 1 Pack = 2^V Cards, where V = 6, 7, 8 or more.
Card

Pack

706 1 Case = 2^W Packs, where W = 6, 7, 8 or more.

Case

708 C 1 Pad or Pool = 2^X Cases, where X = 6, 7, 8 or more.
aSe

ad P

Patent Application Publication Dec. 20, 2007 Sheet 6 of 30 US 2007/029.4531 A1

Fig. 8 Flow Chart for Nested Shuffle

Receive 3 Mixing Keys
802 or Seeds

Shuffle Cases According to
804 Case Key or Seed L1

Divide Each Case into
806 Multiple Packs

Shuffle Packs of Each Case
808 According to L2

Pack Key or Seed

810 Divide. Each Pack into
Multiple Cards

Shuffle Cards of Each Pack
812 According to L3

Card Key or Seed

Patent Application Publication Dec. 20, 2007 Sheet 7 of 30 US 2007/029.4531 A1

Fig. 9 Nested Shuffle of a Series of Cards

KH Pad Or Pool or Table ->

3 Mixing KeyS 904 grey
rarr anarassenesee-eeee-er-scar-wres--a

Case Key or Seed

908

: Pack Key or Seed
Level 2 (L.2)

910

912

Card Key or Seed X X X X 1757. Level 3 (L3)

914

Patent Application Publication Dec. 20, 2007 Sheet 8 of 30 US 2007/029.4531 A1

Fig. 10 Non-Cyclic Pseudo-Random Number Generator

Periodic Periodic
Refresh Refresh

Source Pool A Source Pool B

Pseudo
Random
Number
Stream

Fast

US 2007/029.4531A1

80 || ||

\/ [OOd 30.InOS

Patent Application Publication Dec. 20, 2007 Sheet 9 of 30

Patent Application Publication Dec. 20, 2007 Sheet 10 of 30 US 2007/029.4531 A1

Fig. 12 Nested Shuffle of A Source Pool A or B (128MB)
1202 1204 1206

Case Seed (L1) Pack Seed (L2) Card Seed (L3) E.

\ Y / | A \ Random Source Pool A or B

Case 1 Case 2 Case 3 XV

Shuffle Cases using Case Seed (L1) 5 shune cases using case seed to C C
" . . . /

car cage care
NS S.

Case R512

OS) N
Pack
Ns

1214 U. U
(N N Z

Sign pack using Pack seed, d 1216 1216 K

U- U - N N
Pack Pack

Pack R1|Pack R2|Pack R3|y. ack R1|Pack R2|Pack R3 ...

SSS AN
Card Card Card Card Card Card Card

1 2 3 512 1 2 3

1220 Ys 1220 -
1222 1222

Card = 1 Byte
4N UE O

Card Card Card Card Card Card Card Card W = W = X - 9
R1 R2 R3 . . . R512 R1 R2 R3 . . . R512

1224 1224

1214 -

Patent Application Publication Dec. 20, 2007 Sheet 11 of 30 US 2007/029.4531 A1

Keys, Pads and Encrypted
Data Flows

With Central Server

Fig. 13

Sender 1308 Receiver
Computer Encrypted Data Computer

1304 1306

|
Central Key & Pad

Server
1302

Patent Application Publication Dec. 20, 2007 Sheet 12 of 30 US 2007/029.4531 A1

Fig. 14 Keys, Pads and Encrypted
Data Flows

Stand Alone Operation

1410 Receiver
Encrypted Data Computer

1408

Sender
Computer

1406

|
Key & Pad Disk

1404
Key & Pad Disk

1404

Disk
Manufacturing

1402

Patent Application Publication Dec. 20, 2007 Sheet 13 of 30 US 2007/029.4531 A1

Fig. 15 ENCRYPTION

Working Key A Rotation A 1532 Rotational is
Working Key B

U U
Max 8 MBytes R Max 8 MBytes
Clear Text ry H) Cipher Text

1528 1530

Source Pad A
1514 KH levere Nested 1506

Shuffle
1516 &

Substitution
Machinery

Mixing Key B L1 1502

1518
Mixing Key B L2

Source Pad B
16 MBytes

1508

Source Pad C
16 MBytes

Substitution Key C
152O

Substitution Key D

Mixing Key C L1

1522 Mixing Key C. L2
Substitution
Machinery

1504
1524 Mixing Key D L2

Mixing Key D L2

1510

Source Pad D
16 MBytes

1512

Patent Application Publication Dec. 20, 2007 Sheet 14 of 30 US 2007/029.4531 A1

Fig. 16 DECRYPTION

Working Key A
1632 1634 Working Key B

U -
Cipher

Max 8 MBytes Machine Max 8 MBytes
Cipher Text) ry H) Clear Text

1628 1630

1614 Source Pad A
16 MBytes

A Nested

Shuffle
1616 8.

Substitution
Machinery

1602

1618 Mixing Key B L2

1606

Source Pad B
16 MBytes

1608

Source Pad C
16 MBytes

Substitution Key C
1620

Substitution Key D

1622 Mixing Key CL2
Mixin Key CL2 Substitution

Source Pad D Machinery

1624 or)

1610

1612

Patent Application Publication Dec. 20, 2007 Sheet 15 of 30 US 2007/029.4531 A1

Fig. 17
K- 16 MBytes -> K- 16 MBytes

Source Pad A Source Pad B
1702 1704

Nested Shuffle

1710

Shuffled Source Pad A
1714

Substitution A)

Mixing Key A L1

Mixing Key A L2

Mixing Key A L3

1706

Substitution Key A

1722 1718

Working Pad A
1728

KH- 16 MBytes —
Fig. 18
K— 16 MBytes —- K- 16 MBytes -->

Source Pad C Source Pad D
1802 1804

NM NY Mixing Key D L1

Nested Shuffle Nested Shuffle

1810 1812

Shuffled Source Pad C Shuffled Source Pad D
1814 1816

Substitution D

1820

Mixing Key Cl1

Mixing Key Cl2 Mixing Key D L2

Mixing Key CL3 Mixing Key D L3

Substitution Key D

Working Pad B
1828

K- 16 MBytes ->

Patent Application Publication Dec. 20, 2007 Sheet 16 of 30 US 2007/029.4531 A1

Fig. 19 1 Byte

1902

Substitution
Table

A or B or C or D

1904 (Actually a
Substitution key
A Or B or C or

D)

1906

Patent Application Publication Dec. 20, 2007 Sheet 17 of 30 US 2007/029.4531 A1

Fig. 20

K- 16 MBytes -> K- 16 MBytes ->
Working Pad A Working Pad B

2002 2004

2014 2016
2006

Rotation &
imple Shuffle

2008

Rotation 8
imple Shuffle

2012

2036 CD
Clear Text Data CipherText Data

2032 2038

Cipher Text Data ClearText Data
2034 2040

Patent Application Publication Dec. 20, 2007 Sheet 18 of 30 US 2007/029.4531A1

Fig. 21 Nested Shuffle Of A Source Pad (16 MB)
2102 2104 2106

Case Key (L1) Pack Key (L2) Card Key (L3) s

are TAN / I

In , XV
Shuffle Cases using Case Key (L1)

2110 U - 1 A N \ .

NT

Pack

2114 2114

(N Y Z

Shuffle Packs using Pack Key (L.2) Shuffle Packs using Pack Key (L.2)

"U U U /U, "U U U U U \,
Pack R1 Pack R2 Pack R3 Pack Pack R256 Pack R1|Pack R2|Pack R3 ... R256

SSS 2118 AN
Card Card Card Card Card Card Card Card

1 2 3 256 1 2 3 256

2120 U- 2120 U
2122 2122

Card = 1 Byte
4N U = 0

Card Card Card Card Card Card Card Card W = W = X - 8
R1 R2 R3 . . . R256 R1 R2 R3 . . . R256

2124 2124

US 2007/029.4531 A1 Patent Application Publication Dec. 20, 2007 Sheet 19 of 30

£ pueO

| pueO

9 | Z | |

Kay! pueO

Z pueO

Patent Application Publication Dec. 20, 2007 Sheet 20 of 30 US 2007/029.4531 A1

Fig. 23 Keyed One-Way Hash Function

2302

Message Data

2308
Encryption

Pool
Englion Keyed

aS One-Way Hash
2310 Function

2304
Rotation
POO

Padding
Bytes
23 18

Padding
POO

Mixing Keys and
Mixing Keys and Pools LookupTables

Transmitted T
2324 ransmitted

2326 2328

Patent Application Publication Dec. 20, 2007 Sheet 21 of 30 US 2007/029.4531 A1

Fig. 24 Array of R Byte Elements R = 1, 2, 4, or 8

2404 2408 Rotation Wector O:1
Compression

Function

Comp.

24.08 Rotation Wector

Rotation Pool

2410

S = log2(Rx 8)
S bits

- R Bytes - |
Fig. 25

2506 Element 1 T 2502 A " ..)
2508 |2504

2506 Element 2

2504 a 25086B)
5

C 3.

25086)
2504

2506 Element O - Hoo
murmaa

2510 Compressed Value

US 2007/029.4531 A1

8 | 92

• !

Patent Application Publication Dec. 20, 2007 Sheet 22 of 30

Patent Application Publication Dec. 20, 2007 Sheet 23 of 30 US 2007/029.4531 A1

Fig. 27 Compressing a 64 Byte Message

Rotation Vector L1 27O6

6. Compression

Comp,

0282OZ92
US 2007/029.4531 A1

808Z

6upped

uuopueu ?o s??Áq 8L6uipped ppy

908ZZO82
Patent Application Publication Dec. 20, 2007 Sheet 24 of 30

Patent Application Publication Dec. 20, 2007 Sheet 25 of 30 US 2007/029.4531 A1

K- 4. Bytes ->

Compression Value

Sub
Compression

Fig. 29 2902

Sub
Compression

Value B

K-2 Bytes-> K-2 Bytes- 2910

2904 2906

Pre-Hash Look
Up Table A

Pre-Hash Look
Up Table B

3 8
S

8
T 9

.

3

K- 4 Byes --> KH 4 Bytes -> K- 4 Bytes ->
2912

2916 Pre-Hash Value B

2918 Hash Value

2920 CD

Encryption Pad

2926 MAC Value

2922

Encryption Pool

Encryption Pad

2924

2924

Patent Application Publication Dec. 20, 2007 Sheet 26 of 30 US 2007/029.4531A1

Nested Shuffling a Pre-Hash Look Up Table (256 KB)
Fig. 30 3002 3004 3006

Case Key (L1) Pack Key (L2) Card Key (L3) Mixing Keys

Pre-Hash Lookup Table N

3008 - A /N
Shuffle Cases using Case Key (L1)

" A Y \,

NT

UAL Z
Shuffle Packs using Pack Key (L.2)

3016 URL
Pack R1 Pack R2 Pack R3 Pack Pack R1|Pack R2|Pack R3 ... E

"U U U

Card
1 2 3 64

3020 2. L
3022 3022

4N - Card = 1 Byte
Card Card Card Card Card Card Card Card U E 1
R1 R2 R3 R64 R1 R2 R3 a R64 W = W = X = 6

3024 3024

Patent Application Publication Dec. 20, 2007 Sheet 27 of 30 US 2007/029.4531 A1

Nested Shuffling an Encryption Pool (512 KBytes)
Fig. 31 3102 3104 3106

Case Key Pack Key Card Key
Mixing
Keys

Li X\
Shuffle Cases using Case Key (L1) 5 shute cases using casekey d

" A
SS ASN Ns

3114

N Z

Shuffle Packs using Pack Key (L.2) Shuffle Packs using Pack Key (L2)

". . . / "
Pack Pack
R64 Pack R1|Pack R2|Pack R3 ... R64

AS
Card Card Card Card Card Card Card Card

1 2 3 s / 64 2 3 64

312O Y
1

"U-
3122 3122

Card = 2 Bytes U. L. "UU
Card Card Card Card Card Card Card Card W = W = X = 6
R1 R2 R3 R64 R1 R2 R3 is a R64

3124 3124

Patent Application Publication Dec. 20, 2007 Sheet 28 of 30 US 2007/029.4531 A1

Nested Shuffling A Rotation Pool (4 MBytes)
Fig. 32 32O2 3204 3206

Case Key (L1) Pack Key (L2) Card Key (L3)

Rotation Pool /

3208 U A /N
Shuffle Cases using Case Key (L1)

" A
SS, Case R128

ill AN
Pack

U- 2. A \,
Shuffle Packs using Pack Key (L2) Shuffle Packs using Pack Key (L2)

Pack R1 Pack R2 Pack R3

Card Card Card Card Card Card Card
1 2 3 1 2 3 128

3220 LU- O Y
3222 3222

UNU- J-U- Card = 2 Bytes 4N U = 1
Card Card Card Card Card Card Card Card W = W = X = 7
R1 R2 R3 . . . R128 R1 || R2 R3 . . . R128 - - O.

3224 3224

Patent Application Publication Dec. 20, 2007 Sheet 29 of 30 US 2007/029.4531 A1

Shuffling A Padding Pool (256KB)
Fig. 33 3302 3304 3306

Case Key (L1) Pack Key (L2) Card Key (L3) g

T AN/A Rotation Pool

Shuffle Cases using Case Key (L1) 5 shute cases using case key (1) C C
" U U | U/\

SSSI "N
3314 U- U

N 4

Shuffle Packs using Pack Key (L2) Shuffle Packs using Pack Key (L.2)

" . ". . . . U- N N
Pack Pack

R3| / Pack R1|Pack R2|Pack R3 ...

SS 3318

/N
Card Card Card Card Card Card Card Card

1 2 3 64 1 2 3 64

3320 Y- 3320 Y
3322 3322

Card = 1 Byte
4N U = 1

Card Card Card Card Card Card Card Card V = W = X = 6
R1 R2 R3 is a R64 R1 R2 R3 a a R64

3324 3324

Patent Application Publication Dec. 20, 2007 Sheet 30 of 30 US 2007/029.4531A1

Fig. 34

3402

O-O
Peer-to-Peer

Hub & Spoke or
Client-Server

Switched Fabric or
Fully Connected Matrix

3408

Broadcast

US 2007/029.4531 A1

SYSTEMAND METHODS FOR AVERNAM
STREAM CIPHER, A KEYED ONE-WAY HASH
AND ANON-CYCLIC PSEUDO-RANDOM

NUMBER GENERATOR

FIELD OF THE INVENTION

0001. This invention relates to cryptographic algorithms
in general and in particular to the generation of non-cyclic
pseudo-random number sequences, for the encryption and
decryption of data, and for the keyed one-way hash of a
message.

BACKGROUND OF THE INVENTION

0002 Cryptographic ciphers, keyed one-way hashes and
pseudo-random number generators are well known for pro
viding the underpinnings of security systems and secure
communication channels. The availability of good commer
cial quality ciphers and one-way hashes has helped enable
commercial data traffic over the insecure Internet. One of the
goals of cryptographic ciphers is to encrypt and decrypt
efficiently the communication channels between computers,
routers and firewalls in Such a manner as to scale Smoothly
from the very high bandwidth fiber optic channels to the
slow telephone connections carrying Internet data packet
traffic without significantly burdening a host computer's or
router's processor. Unfortunately, the computer processing
overhead typically needed by Standard ciphers in a secure
computer network protocol tends to be relatively large
compared to what is required to Support the non-crypto
graphic processing portion of that protocol over a commu
nications channel. Moreover, one-way hashes, keyed or not,
can add significantly to the processing burden when used in
a secure computer network protocol.
0003. In a general form, existing ciphers have been
optimized using classic computer programming techniques.
However, even the best techniques often only yield nominal
performance gains. Ciphers are usually extremely difficult to
optimize, via techniques like loop unrolling, because by
their very nature they are designed to prevent brute force
attack methods that attempt to simplify the cryptographic
processing. Even modern ciphers designed with modern
microprocessor architectures in mind cannot always take
advantage of larger registers, multiple microinstruction
pipelines or on-chip caches. This is more problematic with
one-way hashes which by design typically compress data
bits randomly throughout a data block. One way hashes are
difficult to optimize properly on modern microprocessors.
0004. In the class of stream ciphers, Vernam ciphers stand
out in their ability to very efficiently encrypt and decrypt
without modifying the data payload sizes of computer
network protocol packets. The cipher's computational over
head is minimal making it an extremely desirable candidate
to encipher computer network communications. Both the
USA and Russia use a variant known as a one-time pad
system to encipher diplomatic and spy communications.
This is theoretically and in practice unbreakable. However it
is impractical to implement it in a large-scale security
system due to the stupendous amounts of key material that
needs to be distributed and managed.
0005. In the early 1990s some stream ciphers were
developed that used an internal PRNG seeded with a random
key to generate a Vernam key stream. Notable examples are

Dec. 20, 2007

RC4 and SEAL. These ciphers are typically about half a
magnitude faster than a comparable block cipher Such as
DES or AES. Their main limitation is that they cannot
randomly access and operate on any part of a data stream.
This limits their ability to support datagram protocols like
IPv4, where data packets may arrive out of order. Since their
key setup costs are high, this also limits their utility in
Supporting a datagram protocol which may need to rekey
frequently, often per packet.
0006 Most security systems that utilize a Vernam stream
cipher typically have a very good quality source of large
amounts of random bits over a given period of time, to be
used for keying materials. The hardware based random
number generators typically cannot Supply sufficient random
bits for this system.
0007. In most security network protocols, packets have
their integrity and authenticity ensured during transit over an
insecure network channel. A method used is a keyed one
way hash, or message authentication code (MAC). HMAC,
using either the MD5 or the SHA-1 hash, has been the
utilized for recent Internet security protocols. The difficulty
with using either hash is that for a legacy protocol like IPv4
there is not enough room for all the bits of the hash in the
packet header. Furthermore, these hashes were designed to
protect large files of indeterminate size. Often their design
and implementation is not suited for protocols that typically
require very fast operation over packets with a known
maximum size, such as 64 kilobytes for IPv4 packets.

SUMMARY OF THE INVENTION

0008. A system and methods are disclosed which allow a
Vernam Stream cipher to be successfully used in a security
system, in particular one that Supports a secure computer
network protocol. Supporting the cipher are methods for a
non-cyclic pseudo-random number generator (PRNG) and a
keyed one-way hash, or message authentication code
(MAC) mechanism.
0009. The invention provides methods for generating a
stream of random bits from a PRNG. They generate these
bits in Such a manner as to not have any predictable random
number sequence cycle and to have them all ultimately come
from a true hardware random number generator (RNG). In
effect these PRNGs act as performance amplifiers for a much
slower hardware RNG, providing vast amounts of random
bits for use in a Vernam cipher based cryptosystem. By
randomly shuffling the private static source of random bits
this provides a high level of system wide entropy.
0010 Further, the invention provides a system and
method for enciphering or deciphering bytes of data. The
first layer of protection is to create a final pad from a private
and secret derived source of random bits to encipher or
decipher a data stream using simple XOR and rotation
operations. The second layer of protection is to periodically
deliver random cryptographic keys and values from a
secured server to the local computer that control the random
reshuffling of the private and secret local source of random
bits, creating the derived source of random bits. The final
layer of protection is to every so often replace the private
and secret local source of random bits with a fresh set of
random bits from a secured server. The secured server
contains the previously described PRNG, which generates
all the random bits needed to deliver keys and new secret

US 2007/029.4531 A1

random bits to the local computer. A large disk storage
media, such as a CD ROM, could be substituted for the
secured server to allow off line operation.
0011. The invention provides a system and method for
maintaining the integrity and providing authentication for a
message. This method of a keyed one-way hash uses a tree
construction that cascades the results of a set of compression
functions into another Smaller set until an intermediate value
is formed. Each compression function utilizes a set of
random vectors used to randomly rotate message bits to
prevent a type of 2" pre-image attack and to make it
non-deterministic to foil MAC forgery attacks. This inter
mediate value in turn is used to look up a random value, or
hash value, from a set of tables, which prevent 1 pre-image
and certain 2" pre-image attacks. A one-time pad in turn
encrypts the hash value, thus practically and theoretically
eliminating any known-plain text attacks to determine any
internal tables or source bits of the random vectors. For
added security internal tables, random source bits for the
vectors and the one-time pad are periodically refreshed from
the security server. The secured server contains the previ
ously described PRNG that generates all the random bits
needed to deliver new look up tables, rotation vectors and
one-time pad random bits to the local computer. A large disk
storage media, such as a CD ROM, could be substituted for
the secured server to allow off line operation.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 depicts a diagram illustrating one embodi
ment of the of a sender or a receiver computer according to
the invention.

0013 FIG. 2 depicts a diagram illustrating one embodi
ment of the of a server computer according to the invention.
0014 FIG. 3 depicts a diagram illustrating one embodi
ment of the random permutation according to the invention.
0.015 FIG. 4 depicts a diagram illustrating one embodi
ment of the random permutation according to the invention.
0016 FIG. 5 depicts a diagram illustrating one embodi
ment of re-arranging a sequence of numbers randomly
according to the invention.
0017 FIG. 6 depicts a diagram illustrating the Key or
Seed Data Structure according to the invention.
0018 FIG. 7 depicts a diagram illustrating unit sizes
according to the invention.
0.019 FIG. 8 depicts a flow diagram illustrating a process
of random nested shuffling according the invention.
0020 FIG. 9 depicts a diagram illustrating a random
nested shuffle of a number sequence according to the inven
tion.

0021 FIG. 10 depicts a diagram illustrating a pseudo
random number generator according to the invention.
0022 FIG. 11 depicts a diagram illustrating a data flow of
generating a stream of pseudo-random numbers according to
the invention.

0023 FIG. 12 depicts a diagram illustrating a data flow of
random shuffling a random source pool according to the
invention.

Dec. 20, 2007

0024 FIG. 13 depicts a diagram illustrating a data flow
between a sender, a receiver and server according to the
invention.

0025 FIG. 14 depicts a diagram illustrating a data flow
between a sender, a receiver and storage disk according to
the invention.

0026 FIG. 15 depicts a diagram illustrating encryption
according to the invention.
0027 FIG. 16 depicts a diagram illustrating decryption
according to the invention.
0028 FIG. 17 depicts a flow diagram illustrating a half of
the first part of the cipher according to the invention.

0029 FIG. 18 depicts a flow diagram illustrating another
half of the first part of the cipher according to the invention.
0030 FIG. 19 depicts a flow diagram illustrating a sub
stitution table according to the invention.
0031 FIG. 20 depicts a flow diagram illustrating the
second and final part of the cipher according to the inven
tion.

0032 FIG. 21 depicts a diagram illustrating a data flow of
random nested shuffling a source pad according to the
invention.

0033 FIG. 22 depicts a diagram illustrating a data flow of
random rotation and random shuffling a preliminary pad to
create via extraction a final enciphering pad according to the
invention.

0034 FIG. 23 depicts a diagram illustrating a data flow of
a keyed one-way hash function according to the invention.

0035 FIG. 24 depicts a diagram illustrating a data flow of
a compression function according to the invention.

0036 FIG. 25 depicts a diagram illustrating a data flow of
compression calculation according to the invention.
0037 FIG. 26 depicts a diagram illustrating a process of
compressing a message according to the invention.

0038 FIG. 27 depicts a diagram illustrating a process of
compressing a message according to the invention.

0039 FIG. 28 depicts a diagram illustrating a process of
compressing a message according to the invention.

0040 FIG. 29 depicts a diagram illustrating a data flow of
MAC Value calculation according to the invention.
0041 FIG. 30 depicts a diagram illustrating a data flow of
nested shuffling a pre-hash table according to the invention.

0042 FIG. 31 depicts a diagram illustrating a data flow of
nested shuffling an encryption pool according to the inven
tion.

0043 FIG. 32 depicts a diagram illustrating a data flow of
nested shuffling a rotation pool according to the invention.

0044 FIG.33 depicts a diagram illustrating a data flow of
nested shuffling a padding pool according to the invention.
0045 FIG. 34 depicts a diagram illustrating a variety of
ways to connect communicating computers.

US 2007/029.4531 A1

DETAILED DESCRIPTION OF THE
INVENTION

0046) Specific reference is made in detail to the embodi
ments of the invention, examples of which are illustrated in
the accompanying drawings and following descriptions.
While the invention is described in conjunction with the
embodiments, it will be understood that the embodiments
are not intended to limit the scope of the invention. The
various embodiments are intended to illustrate the invention
in different applications. Further, specific details are set forth
in the embodiments for exemplary purposes and are not
intended to limit the scope of the invention. In other
instances, well-known methods, procedures, and compo
nents have not been described in detail as not to unneces
sarily obscure aspects of the invention.
0047. In the following descriptions the following descrip
tive names will be used; Key, Seed, Vector, Pad, Pool, Strip,
Table, Value, Card, Pack, Case, random number generator
(RNG), and pseudo random number generator (PRNG). A
Seed is populated with random bits from a hardware RNG,
and are generated and consumed within a centralized
secured server or disk manufacturing utility. A Key, Pad,
Value, Table, and Pool are populated with random bits from
the PRNG. A Vector can be populated with random bits from
either a RNG or a PRNG. A Pool is never used directly but
supplies random bits for other things like Pads, Vectors, and
Strips. A Strip is a sequence of bytes taken out of a Pool only
once (known in the literature as a one-time pad). A Vector is
a sequence of random numbers or bits used to control an
operation on another sequence of random numbers. A ran
dom factorial permutation of a sequence of bytes or numbers
will be referred to as a Shuffle.

0048 Referring to FIG. 1, a Sender or Receiver Com
puter (102) contains a processor (104), a dynamic random
access memory (DRAM) module (110) and one or more
network interfaces (116), all interconnected internally by
one or more data buses (120). The Network Interfaces (116)
are also connected to a data link channel (122) Such as
Ethernet. Within the processor (104) are one or more arith
metic logic units (ALUs, 106) which can perform bit wise
exclusive OR (XOR) or bit wise rotations of supported
integers sizes, typically 1, 2, 4 or 8 bytes, and high speed
on-chip memory cache (108). The DRAM contains the
software of the Vernam Stream Cipher (112) and Keyed
One-Way Hash (114).
0049 Referring to FIG. 2, a Key & Pad Server Computer
(202) contains a processor (204), a dynamic random access
memory (DRAM) module (210), a network interface (214)
and a hardware random number generator (RNG, 216), all
interconnected internally by one or more data buses (218).
The network interface (214) is also connected to a data link
channel (220) such as Ethernet. Within the processor (204)
are one or more arithmetic logic units (ALUs, 206), which
can perform bit wise exclusive OR (XOR) or bit wise
rotations of Supported integers sizes, typically 1, 2, 4 or 8
bytes, and high speed on-chip memory cache (208). The
DRAM contains the software of the PRNG (212).
0050 Referring to FIG. 3, a simple mechanism of gen
erating a random sequence of Nunique numbers from the set
of numbers 0 to N-1, where N is a power of 2, would be to
take the output of a hardware RNG (302) and use its output
of bits to fill in an array of N values (304). Each value is

Dec. 20, 2007

represented by log(N) bits. The first log(N) bits produced
by the RNG would fill in the first value in the array. The 2"
log(N) bits produced by the RNG would be used to fill in
the 2" value in the array if they are different from the 15
value. If not, then those bits are thrown away and another set
of bits are acquired from the RNG and the procedure is
repeated until a 2" value is found that is different from the
1 value. The process is continued for the 3" through Nth
values, where each value from the RNG is compared with all
previous values and used to fill a position in the array only
if it is different. In this way all possible numbers from 0 to
N-1 are randomly selected and placed into the array.
0051 Referring to FIG. 4, a near-perfect rifle shuffle
mechanism of generating a random sequence of N unique
numbers from the set of numbers 0 to N-1, where N is a
power of 2, would be to take the output of a hardware RNG
(402) and use its output of bits to create a Random Repeat
Number (404) and a Random Control Vector (406) of N/2
bits. The Random Repeat Number, X, is not less than
%xlog(N), for example if N equals 256 then X equals 12 or
greater. If X is too small, then another number is retrieved
from the RNG until this criteria is satisfied. Taking a
sequence of numbers from 0 to N-1 (408), we then split it
into two halves (410, 412) and rifle shuffle them together,
similar to how a pack of cards would be shuffled, with the
interleaving of the numbers being determined by the Ran
dom Control Vector (406). The vector indicates whether a
number in an array slot from the upper half (410) should go
before or after its corresponding number in the same array
slot in the lower half (412). The result is then placed in a new
array of numbers (414). This new array of numbers (414)
then replaces the original array of numbers (408). This
whole process (from 406 to 414) is repeated X times (404),
until the original sequence of numbers (408) are thoroughly
and randomly shuffled (414).
0052 Referring to FIG. 5, using a random sequence of
unique numbers (502), a control sequence, which come from
a countable sequence of numbers starting at Zero, and
treating them as indices to a source array of random numbers
(504), the invention indicates the new arrangement of a
result sequence of the random numbers (506). For example,
counting from 0, if the 0" element in the control sequence
is the number 2, then this means that the value of the 0"
element of the result sequence is the same as the value of the
2" element of the source sequence. If the 1 element in the
control sequence is the number 5, then this means that the
value of the 1 element of result sequence is the same as the
value of the 5" element of the source sequence. This is
repeated for all N indices from 0 to N-1. This operation
using the control sequence to convert the source sequence to
the result sequence will be known as a random shuffle
throughout the rest of this document.
0053 Referring to FIG. 6, the random control sequence
of unique numbers will be referred to as a Key or a Seed
(602) throughout the remainder of this document. The
difference between the two terms is that a Seed is generated
directly from a hardware RNG while a Key is generated
from a PRNG. Keys and Seeds come in sequences with an
amount of numbers countable by powers of 2, 2 where Y
is usually 6, 7, or 8. I.e. sequences of 64, 128 or 256 unique
numbers randomly shuffled. The number of bits per number
is Y. For example if Y is 7 then we have a sequence of 27,
or 128, unique numbers (randomly shuffled) with each

US 2007/029.4531 A1

number consisting of only 7 bits, i.e. only from the range of
values 0 to 127. Referring to FIG. 7, when large sequences
of numbers are randomly shuffled, they are broken up into
certain sizes. The smallest size is called a Card (702). This
can consist of 2 bytes, where U is 0,1,2,3, or 4. I.e. a Card
can be 1, 2, 4, 8 or 16 bytes in size. Usually a Card size is
chosen for optimal arithmetic operation using common
microprocessor architectures. The next larger size is a Pack
(704), which consists of 2Y Cards, where V is 6, 7, 8 or
larger. I.e. a Pack can consist of 64, 128, 256 or more Cards.
The next larger size is a Case (706), which consists of 2Y
Cards, where W is 6, 7, 8 or larger. I.e. a Case can consist
of 64, 128, 256 or more Packs. The largest size is the large
sequence of numbers to be shuffled, usually called a Pad or
a Pool (708), which consists of 2^ Cases, where X is 6, 7,
8 or larger. I.e. a Pad or Pool can consist of 64, 128, 256 or
more Cases.

A Non-Cyclic Pseudo-Random Number Generator
0054 Because a Vernam stream cipher, described later,
requires a tremendous amount of random material (bytes), it
is critical to have a high throughput and high quality
Pseudo-Random Number Generator available. Without it, it
would be impossible to engineer a security system based
around a Vernam stream cipher.
0.055 Referring to FIG. 8, a nested shuffling process is
shown by the flow diagram. At block 802, the 3 Mixing
Seeds are received. The 3 Mixing Seeds include Case Seeds,
Pack Seeds, and Card Seeds. At block 804, a shuffling
function is performed on each Case utilizing a Case Seed for
each Case, this is a Level 1 shuffle (L1). At block 806, each
of the shuffled Cases are divided into multiple Packs. At
block 808, a shuffling function is performed on each Pack
utilizing a Pack Seed for each Pack, this is a Level 2 shuffle
(L2). At block 810, each of the shuffled Packs are divided
into multiple Cards. At block 812, a shuffling function is
performed on each Card utilizing a Card Seed for each Card,
this is a Level 3 shuffle (L3).
0056 Referring to FIG. 9, a nested shuffling of a
sequence of Cards proceeds as follows. A sequence of cards
(902) divided into Cases (904), which are then shuffled
according to a Case Key or Seed (916), resulting in ran
domly permuted sequence of Cases (906). Then in turn,
these shuffled Cases (906) are subdivided into Packs (908),
each Case being partitioned identically, which are then
shuffled according to a Pack Key or Seed (918) that is
applied once per Case to each set of Packs contained therein,
resulting in identically randomly permuted sequence of
Packs per Case (910). Then in turn, these shuffled Packs
(910) are subdivided into Cards (912), each Pack being
partitioned identically, which are then shuffled according to
a Card Key or Seed (920) that is applied once per Pack to
each set of Cases contained therein, resulting in identically
randomly permuted sequence of Cards per Pack (914).
0057 Referring to FIG. 10, a RNG (1002), is used to
periodically to create a couple of Random Source Pools A
(1004) and B (1006). Using both Random Source Pools and
input Mixing Seeds from the RNG, a PRNG (1008) emits a
very large number of random numbers over a very short
period of time. The PRNG is non-cyclic where finite
sequences of random numbers have a very low probability
of repeating in an unpredictable or random manner, until the
next refresh of both Random Source Pools occurs.

Dec. 20, 2007

0.058 Referring to FIG. 11, to initialize a PRNG, the
RNG (1102) first fills a couple of Source Pools A (1104) and
B (1106) with random numbers. The Source Pools (1104,
1106) are recommended to be at least 128 megabytes each,
to ensure a very deep source of entropy for the PRNG.
However, there is no absolute requirement for the Source
Pools (1104, 1106) to be this large, except to ensure that any
Keys, Pads or Pools (1128) that result from the PRNG and
used within a large security system will have an extremely
miniscule probability of being duplicated. The Source Pool
A (1104) is nested shuffled (1112) using three Mixing Seeds
A (1108), resulting in a Shuffled Source Pool A (1116). The
Source Pool B (1106) is nested shuffled (1114) using three
Mixing Seeds B (1110), resulting in a Shuffled Source Pool
B (1120). These seeds come directly from the RNG (1102).
The Shuffled Source Pool A is then used to XOR (1118) with
the Shuffled Source Pool B (1120), byte by byte, resulting in
a Source Pool (1122). When a sequence of random numbers
is needed from the PRNG a Strip (1124) is copied from the
Source Pool (1122). This Strip (1124) is not reused again.
When the Source Pool (1122) is exhausted and a Strip (1124)
cannot be retrieved from it, without being a duplicate of an
older Strip, then two sets of 3 new Mixing Seeds (1108,
1110) are generated from the RNG (1102) and used to
reshuffle the Source Pools (1104, 1106) to then create a new
pair of Shuffled Source Pools (1116, 1120), which are
combined together by XOR operations (1118) into a new
Source Pool. The series of Strips taken from the Source Pool
(1122) constitutes a PRNG stream of random numbers or
bytes (1126) used to create Keys, Pads and Pools (1128). An
old Strip can never be reused. Periodically the two Source
Pools A and B (1104, 1106) are refreshed from the RNG
(1102) to maintain their secrecy.
0059 Referring to FIG. 12, the operation to nested shuffle
a Source Pool A or B utilizes three Mixing Seeds; a Case
Seed (1202), a Pack Seed (1204) and a Card Seed (1206),
each having 512 unique random numbers. The Source Pool
is partitioned into 512 Cases (1208). The Cases (1208) are
all shuffled together randomly (1210), using the Case Seed
(1202) to determine the shuffle pattern, and results in a
random sequence of Cases (1212). Each Case is further
partitioned into 512 Packs (1214). The Packs (1214) within
each Case are shuffled together randomly (1216), using the
Pack Seed (1204) to determine the shuffle pattern, and
results in a random sequence of Packs (1218), identically
shuffled per Case. Each Pack within each Case is further
partitioned into 512 Cards (1120) of one byte each. The
Cards (1120) within each Pack are shuffled together ran
domly (1222), using the Card Seed (1206) to determine the
shuffle pattern, and results in a random sequence of Cards
(1224), identically shuffled per Pack. These three levels of
shuffling, Level 1 (L1), Level 2 (L2) and Level 3 (L3), result
in a randomly shuffled Source Pool, which has (27) or

random permutations, i.e. entropy of 3315 bits.
A Vernam Stream Cipher
0060. The idea behind this embodiment of the Vernam
Stream cipher is that its work factor strength and its high
processor efficiency comes from its bipartite structure: one
part being a set of nested shuffles and Substitution transla
tions of the Source Pads, the other being an operation
creating a Final Pad with two simple rotations and shuffles.
0061 Note that random materials, be it Pads or Keys,
ultimately comes from the Server. In one embodiment, the

US 2007/029.4531 A1

Server is absolutely physically secured, with a very high
quality, fast PRNG inside it that is fed bits by a high quality
RNG.

0062). The most expensive and time consuming processor
operations are being amortized over time by refreshing the
Source Pads periodically at a low frequency and then
shuffling the Source Pads at a higher frequency using the
Mixing Keys.

0063) The Substitution Tables are needed when the
Source Pads are shared among a group of computers, e.g. a
fully meshed set of optical switches. For example, if there
are 1024 switches sharing the same Source Pads, then each
switch needs 1023 tables for each communicating channel.
If a table is 256 bytes in size then this is a total of 261888
bytes, or approximately 4 megabyte of tables that must be
distributed to each machine. Even though all the switches
know the Source Pads, they cannot easily discover the
Substitution table used by other pairs of communicating
Switches. Caution needs to be exercised, by ensuring that the
Source Pads are not made fully public across an entire
network. Different Source Pads must be used for different
sections of a network that need this type of communication,
be it an Ethernet segment, a wireless LAN segment, server
communicating to multiple client computers, or a fully
connected set of computers. In this way if a set of Source
Pads are discovered by an attacker only that section of the
network is compromised.

0064. The creation and use of the Final Pad on-the-fly
from the Working Pads A & B is meant to be extremely
processor efficient and stored within the on-chip cache of the
processor. The creation of the Final Pad is much more
frequent than the shuffling of the Source Pads by the Mixing
Keys. If possible the Final Pad could even be pre-computed
to handle very high bursts of data traffic (matching the
highest network transmission speeds possible), for example
handling an 8 MB burst before requiring a fresh Final Pad.
A series of Final Pads could also be pre-computed to handle
a long burst of data traffic, for example handling a 64 MB
burst with 8 pre-computed Final Pads, each one’s 8 MB
unique with a very high probability. A Working Pad is paired
with two Working Keys. There are never any random bits
shared from one pair of Working Keys to the next pair of
Working Keys.

0065. The whole cipher has a layered design to thwart
attacks on the internal secrets and yet allow it to be
extremely efficient during encipherment. A Shuffled Source
Pad is designed to allow the generation of a series of
Working Pads before it needs to be reshuffled. The XORing
of the two Working Pads together prevents a simple known
plaintext attack on the 1 Card to discover the Card shuffle
pattern of the Working Pad (this assumes the Shuffled
Source Pad has been compromised and is known). Even if
the Shuffled Source Pad is compromised, the attacker then
tries to get to the original Source Pad through three layers of
shuffling. Even if the Source Pad itself is compromised at
some point, that Source Pad is thrown away and a whole new
Source Pad is downloaded from the Server. The random
rotation of the Working Pads discourages certain counting
and partial key attacks. The cipher is designed Such that if
attacks are possible with keys of 128 unique random num
bers, then increase the keys to 256 unique random numbers.
Any partial key attacks are made more difficult through use

Dec. 20, 2007

of the partitioning of the Source Pads and operating on them
separately under random guidance until the last possible
moment before creating the Final Pad.
0066 Through software implementation, the cipher does
not require burning in new firmware nor redesigning an
ASIC chip set. Another embodiment would be to add more
memory chips.

0067 Referring to FIG. 13, the Vernam cipher depends
upon access to a reliable, moderately fast network for key
and pad material distribution. It is designed with a 10 Mbps
Ethernet LAN in mind for the back channel communications
with a central Key and Pad Server (1302), which contains a
RNG and a PRNG. The cipher itself will support over 1
Gbps encrypted throughput (1308) on an ordinary comput
er's communication interface, typically either 100 Mbps or
1 Gbps Ethernet, between the two computers, a Sender
Computer (1304) and a Receiver Computer (1306). Each of
these computers shares the identical sets of Working Keys
(1316), Rotation Values (1318), Substitution Keys (1314),
Mixing Keys (1312), and Source Pads (1310), and a copy of
the cipher algorithm (1320) either in software or hardware.
The Source Pads (1310) and Substitution Keys (1316) are
periodically refreshed on both computers to maintain the
maximum level of security. To extend the life (i.e. keep them
secret longer) of the Source Pads, while they are on both
computers, the server will send out Mixing Keys (1312) and
Substitution Keys (1314) as needed. More frequently, Rota
tion Values (1318) and Working Keys (1316) are sent out to
each machine to regenerate the actual randomly created pad
used to encrypt the clear data or decrypt the cipher data
(1308). Note that for purposes of this document all commu
nications with the Key & Pad Server are considered secure,
i.e. cryptographically mutually authenticated and private.
This could also be achieved by having a separate physically
secure 10 Mbps LAN dedicated to only distributing Keys,
Values and Pads from the Server.

0068 Referring to FIG. 14, another embodiment for
stand-alone operation without a server uses two identical
disks (1404) that are generated from a Disk Manufacturing
utility (1402), which contains a RNG and a PRNG. The
cipher supports over 1 Gbps encrypted throughput (1410) on
an ordinary computer's communication interface between
the two computers, a Sender Computer (1406) and a
Receiver Computer (1408). Each of these computers shares
the identical sets of Working Keys (1418), Rotation Values
(1420), Substitution Keys (1416), Mixing Keys (1414),
Source Pads (1412), and a copy of the cipher algorithm
(1422) either in software or hardware. The Source Pads
(1412) and Substitution Keys (1416) are periodically
refreshed on both computers to maintain the maximum level
of security. To extend the life (i.e. keep them secret longer)
of the Source Pads, while they are on both computers, they
can retrieve Mixing Keys (1414) and Substitution Keys
(1416) as needed from their respective disks (1404). More
frequently, Rotation Values and Working Keys are retrieved
by each machine to regenerate the actual randomly created
pad used to encrypt the clear data or decrypt the cipher data
(1410). Note that for purposes of this document all commu
nications with the disks are considered secure, e.g. located
inside each computer.
0069. Referring to FIG. 15, for encryption the Cipher
machinery (1526) takes as input two Working Pads, derived

US 2007/029.4531 A1

from the four Source Pads (1506, 1508, 1510, 1512), two
Working Keys (1532), two Rotation Values (1534), and the
Clear Text data (1528). The two Working Pads each comes
from one of the two Nested Shuffle & Substitution Machin
eries (1502, 1504). One machinery (1502) takes as input two
Source Pads A and B (1506, 1508), two Substitution Keys. A
and B (1514), and two sets of three Mixing Keys (1516,
1518). The other machinery (1504) takes as input two
Source Pads C and D (1510, 1512), two Substitution Keys
C and D (1520), and two sets of three Mixing Keys (1522,
1624). The Clear Text data (1528) cannot exceed half the
length of a Source Pad, before requiring a new set of
Working Keys and Rotation Values. For example, using four
16 MB Source Pads, a maximum of 8 MB of data can be
encrypted before requiring a fresh set of two Working Keys
and two Rotation Values. So every 8 MB block of encrypted
data has a pair of Working Keys and a pair of Rotation
Values associated with it. Every byte of Clear Text data is
transformed out into a corresponding byte of Cipher Text
data (1530), in a manner very similar to standard stream
cipher behavior. The 1 clear byte becomes the 1" cipher
byte, and the 2" clear byte becomes the 2" cipher byte, and
so forth, until the last clear byte becomes the last cipher byte.
However, unlike a normal stream cipher the bytes can be
encrypted out of order, but regardless of order the n" clear
byte always becomes the n" cipher byte.
0070) Note that one of the properties of this Cipher is the
ability to do “random access’ encryption. For example to
encipher the 5" 8 MB block of data then simply get the 5"
pair of Working Keys and operate on it. Given an offset of
a particular byte within the block then just encrypt that byte.
The block can be smaller than 8 MB and then encrypt that
Smaller amount. The cipher machinery does not require any
padding bytes to fill out a minimum block size like DES
requires.

0071 Note that another one of the properties of this
Cipher is the ability to do “broadcast encryption. For
example several hosts can share the four Source Pads.
During normal communications each pair of communication
hosts will have a unique pair of Substitution Keys for each
channel between a pair of hosts. However if one host
broadcasts to the other hosts, then for the broadcast all
receiving hosts can use the same Substitution Keys. This
works in a similar same way for a fully meshed networking
fabric of routers or switches.

0072 Referring to FIG. 16, decryption is identical to
encryption, except that now the Cipher Machinery (1626)
takes as input two Working Pads, derived from the four
Source Pads (1606, 1608, 1610, 1612), two Working Keys
(1632), two Rotation Values (1634), and the Cipher Text
data (1628). The two Working Pads each comes from one of
the two Nested Shuffle & Substitution Machineries (1602,
1604). One machinery (1602) takes as input two Source
Pads A and B (1606, 1608), two Substitution Keys A and B
(1614), and two sets of three Mixing Keys (1616, 1618). The
other machinery (1604) takes as input two Source Pads C
and D (1610, 1612), two Substitution Keys C and D (1620),
and two sets of three Mixing Keys (1622, 1624). The Cipher
Text data (1628) cannot exceed half the length of a Source
Pad, before requiring a new set of Working Keys (1632) and
Rotation Values (1634). For example, using four 16 MB
Source Pads, a maximum of 8 MB of data can be encrypted
before requiring a fresh set of two Working Keys and two

Dec. 20, 2007

Rotation Values. Every byte of Cipher Text data is trans
formed out into a corresponding byte of Clear Text data
(1630), in a manner similar to normal stream cipher behav
ior.

0.073 FIG. 17 reveals an internal view of a half of an
initial phase of the Cipher Machinery. The Source Pad A of
16 megabytes (1702) is nested shuffled (1710) with the three
Mixing Keys A (1706) resulting in a Shuffled Source Pad A
of 16 megabytes (1714). Each byte of this is then randomly
substituted for another byte using Substitution Table A
(1718), which takes as input Substitution Key A (1722). The
Source Pad B of 16 megabytes (1704) is nested shuffled
(1712) with the three Mixing Keys B (1708) resulting in a
Shuffled Source Pad B of 16 megabytes (1716). Each byte
of this is then randomly substituted for another byte using
Substitution Table B (11720), which takes as input Substi
tution Key B (1724). XOR the two resulting pads from
Substitution Tables A and B together (1726), byte-by-byte,
and the result pads a 16-megabyte Working Pad A (1728).
0074 FIG. 18 reveals an internal view of another half of
the initial phase of the Cipher Machinery. The Source Pad C
of 16 megabytes (1802) is nested shuffled (1810) with the
three Mixing Keys C (1806) resulting in a Shuffled Source
Pad C of 16 megabytes (1814). Each byte of this is then
randomly substituted for another byte using Substitution
Table C (1818), which takes as input Substitution Key C
(1822). The Source Pad D of 16 megabytes (1804) is nested
shuffled (1812) with the three Mixing Keys D (1808)
resulting in a Shuffled Source Pad D of 16 megabytes
(1816). Each byte of this is then randomly substituted for
another byte using Substitution Table D (1820), which takes
as input Substitution Key D (1824). XOR the two resulting
pads from Substitution Tables D and C together (1826),
byte-by-byte, and the result is a 16-megabyte Working Pad
B (1828).
0075 FIG. 19 reveals an internal view of the mechanics
of a Substitution Table. Each byte of a Shuffled Source Pad
(1902) is used as an index into a byte of a Substitution Key,
which is also known as the Substitution Table (1904). The
indexed byte or new byte (1906) is then substituted for the
old byte (1902). This is repeated for each byte of the
Shuffled Source Pad.

0.076 FIG. 20 reveals an internal view of a final phase of
the Cipher Machinery. The Working Pad A (2002) is Rotated
and then Simple Shuffled (2006), using a Working Key A
(2010) and a Rotation Value A (2014), then extract half of
each of the Cards (2018), and the result is a 8-megabyte
Temporary Pad A (2022). The Working Pad B (2004) is
Rotated and then Simple Shuffled (2008), using a Working
Key B (2012) and a Rotation Value B (2016), then extract
half of each of the Cards (2020), and the result is a
8-megabyte Temporary Pad B (2026). XOR the two result
ing Temporary Pads (2022, 2026) together (2024), byte-by
byte, and the result is a 8-megabyte Final Pad (2028). This
Final Pad can then be used to XOR (2030) with Clear Text
Data (2032), byte by byte, resulting in Cipher Text Data
(2034), or it can be used to XOR (2036) with Cipher Text
Data (2038), byte by byte, resulting in Clear Text Data
(2040).
0.077 Referring to FIG. 21, the operation to nested shuffle
a Source Pad A or B or C or D of 16 megabytes each utilizes
three Mixing Seeds; a Case Seed (2102), a Pack Seed (2104)

US 2007/029.4531 A1

and a Card Seed (2106), each having 256 unique random
numbers. The Source Pad is partitioned into 256 Cases
(2108). The Cases (2108) are all shuffled together randomly
(2110), using the Case Seed (2102) to determine the shuffle
pattern, and results in a random sequence of Cases (2112).
Each Case is further partitioned into 256 Packs (2114). The
Packs (2114) within each Case are shuffled together ran
domly (2116), using the Pack Seed (2104) to determine the
shuffle pattern, and results in a random sequence of Packs
(2118), identically shuffled per Case. Each Pack within each
Case is further partitioned into 256 Cards (2120) of one byte
each. The Cards (2120) within each Pack are shuffled
together randomly (2122), using the Card Seed (2106) to
determine the shuffle pattern, and results in a random
sequence of Cards (2124), identically shuffled per Pack.
These three levels of shuffling, Level 1 (L1), Level 2 (L2)
and Level 3 (L3), result in a randomly shuffled Source Pad,
which has (2') or 2' random permutations, i.e. entropy
of 1536 bits.

0078 Referring to FIG.22, this illustrates the core opera
tion of the cipher. First a Working Pad of 16-megabytes
(2206) is randomly rotated by 4-byte intervals using the
random Rotation Value (2204). Then the Working Pad is
sub-divided into 16384 Packs (2208) of which each is
further sub-divided into 256 Cards (2210) where a Card is 4
bytes in size. Using the Working Key (2202) we shuffle the
Cards in the 1 Pack (2212). This results in 256 randomly
shuffled Cards in the first Pack (2214). We repeat this from
2" to the last Pack in the Working Pad. This results in a
16-megabyte Rotated and Shuffled Working Pad (2216).
Finally we extract the first 128 Cards of each Pack (2218)
and assemble them into an 8-megabyte Temporary Pad
(2220).
0079. This shuffle can be done extremely fast since a
typical Working Key and many Source Pad Packs can be
brought in the microprocessor's fastest L1 cache. The Key
stays in L1 cache, amortizing its load cost from DRAM over
all the 16384 Packs. Further performance gains can be made
by taking advantage of multiple ALU pipelines in a CPU to
process either larger Cards or multiple Packs simulta
neously.

0080. The Source Pads are considered to be secret,
known only to the Sender, the Receiver, and the Key & Pad
Server. The only exception is for Supporting host broadcast
ing, when they are shared across all the hosts. The three
levels of four sets of Mixing Keys, two sets of Substitution
Keys, along with the four Source Pads, which themselves
are periodically changed, interact to effectively keep the four
Source Pads secret for as long as possible. In the exceptional
case of broadcast support, where the Source Pads are known,
then the Substitution table should prevent an offline pre
computation attack.
A Keyed One-Way Hash
0081 Referring to FIG. 23, a Keyed One-Way Hash
function (2304) takes as input a Data Buffer (2302), Encryp
tion Pads (2310) from an Encryption Pool (2308), Rotation
Vectors (2314) from a Rotation Pool (2312), Padding bytes
(2318) from a Padding Pool (2316), and Pre-Hash Lookup
Table A (2320) and Pre-Hash Lookup Table B (2322). It
outputs a Message Authentication Code or MAC Value
(2306). All pools and tables come from a central Server or
a Disk (2324). Mixing Keys for nested reshuffling all the

Dec. 20, 2007

pools and pool refreshes come from the Server or the Disk
(2326). Mixing Keys for nested reshuffling the tables, and
tables refresh come from the Server or the Disk (2328). The
server is used to provide online support, while the disk is
used provide offline Support of a computer using the Keyed
One-Way Hash. A disk would contain everything needed
maintain offline secure communications, including extra
keys, pools, and tables.
0082 Referring to FIG. 24, the core Compression Func
tion (2404) of the Keyed One-Way Hash, compresses an
input array of 16 elements (2402), where each element is 4
bytes in size, resulting with an output of a Compressed Value
(2406), which is 4 bytes in size. The compression ratio is
16:1. To prevent certain types of 2" pre-image attacks, a
Rotation Vector (2408) composed of random bits is
extracted from a Rotation Pool (2410), and is supplied to the
Compression Function (2404). For each new use of the
Compression Function a fresh Rotation Vector is extracted
from the Rotation Pool. A Rotation Vector can never be
reused. If no more Rotation Vectors can be extracted from
the Rotation Pool then it must be refreshed from the Server
or Disk.

0083) While the example above results in a four byte
Compressed Value, which is useful due to the limited space
inside an IPv4 packet header, it could also result in larger
values such as 16 bytes, 20 bytes or 32 bytes, by simply
adjusting the compression ratio and the size of the Array of
4-byte Elements (2402). Also the size of each element in the
array (2402) can be adjusted, however normally for perfor
mance reasons the native integer size for arithmetic opera
tions of the host microprocessor should be selected.
0084. Referring to FIG. 25, the mechanics of the com
pression function operate such that each 32-bit Element
(2506) is rotated by a unique random 5 bits (2504). For
example if the 5 bits of the 15 Rotate Value (2504) contained
the random value 7, then the corresponding 1 Element
(2506) would have it's 32 bits shifted left by 7 bits, where
the leftmost original 7 bits would be copied to first 7 bits of
the resulting 32 bits. A similar operation could use a right
shift instead. The rotation on an Intel CPU would typically
use the ROL or ROR machine operation for higher perfor
mance. These 5 bits come from the Rotation Vector (2502),
and are log(32) bits in total, where 32 is the bit size of the
4-byte integer value to be rotated. The Rotation Vector is a
total of 80 bits, which is calculated from 5 bits times the
compressed ratio of 16, or 10 bytes. After the random
rotation of each Element they are XOR'd together (2508), 15
times, and the result is a four byte Compressed Value (2510).
0085) Referring to FIG. 26, to compress a 64 Kilobyte
data buffer (2602), divided into 16384 4-byte Elements, a
16:1 compression function (2604) can be used 1024 times,
each with a ten byte Rotation Vector L1 (2606). The result
ing 1024 4-byte Elements (2608) can be 16:1 compressed
again (2610) 64 times, each with a ten byte Rotation Vector
L2 (2612). The resulting 64 4-byte Elements (2614) can be
16:1 compressed yet again (2616) 4 times, each with a ten
byte Rotation Vector L3 (2618). Finally the resulting four
4-byte Elements (2620) can be 4:1 compressed (2622), with
a 2/2 byte Rotation Vector L4 (2624), with a resulting final
four byte Compressed Value (2626).
0086) Referring to FIG. 27, to compress a 64 byte data
buffer (2702), divided into sixteen 4-byte Elements, a 16:1

US 2007/029.4531 A1

compression function (2704) can be used once, with a ten
byte Rotation Vector L1 (2706), resulting with a final four
byte Compressed Value (2708).

0087. Referring to FIG. 28, to compress a 1518 Byte data
buffer (2802), it is first padded with 18 random bytes (2806),
which come from the Padding Pool, resulting in 3844-byte
Elements (2808). A 16:1 compression function (2810) can
be used 24 times, with a ten byte Rotation Vector L1 (2812).
The resulting 24 4-byte Elements are padded with 32
random bytes (2814), which come from the Random Pad
ding Pool, to end up with 32 4-byte Elements (2816). An 8:1
compression function (2818) can be used four times, with a
five byte Rotation Vector L2 (2820). Finally the resulting
four 4-byte Elements (2822) can be 4:1 compressed (2824),
with a 2/2 byte Rotation Vector L3 (2826), resulting with a
four byte Compressed Value (2828).

0088 Referring to FIG. 29, after calculating a Compres
sion Value (2902), of four bytes, the Compression Value
(2902) is split into Sub-Compression Value A (2904) and
Sub-Compression Value B (2906), each two bytes in size.
Pre-Hash Look Up Table A (2908) is filled with 65536
entries, each consisting of a random four bytes from the
PRNG. Likewise Pre-Hash Look Up Table B (2910) is filled
with 65536 entries, each consisting of a random four bytes
from the Server's PRNG. The Sub-Compression Value A is
then used as an index into Pre-Hash Look Up Table A to
extract a random number, four bytes in size, a Pre-Hash
Value A (2912). Likewise the Sub-Compression Value B is
then used as an index into Pre-Hash Look Up Table B to
extract a random number, four bytes in size, a Pre-Hash
Value B (2916). They are then XOR'd together (2914) to
create a Hash Value (2918). These series of operations are
designed to prevent a 1 pre-image attack working back
wards from the Hash Value. To further protect the Hash
Value (2918), a four byte Encryption Pad (2924) is extracted
from an Encryption Pool (2922) of 2 megabytes in size,
which is the total amount of hash data expected to be
operated on over a period of time, and XOR'd with it (2920)
to produce the four byte MAC Value (2926). Each Encryp
tion Pad (2924) is unique and can never be reused. If no
more unique Encryption Pads can be extracted from the
Encryption Pool then it is either refreshed from the Server's
PRNG or from new PRNG bits Stored on the Disk. If the
stored PRNG bits are exhausted on the Disk then a new Disk
must be manufactured by the Disk Manufacturing Utility,
using its PRNG. The new Disk then replaces the old,
exhausted Disk.

0089 Another embodiment of the invention would take a
Compression Value of 16 bytes and divide it into eight
Sub-Compression Values, which in turn is an index to eight
separate Pre-Hash Look Up Tables of 65536 16-byte random
value entries. The resulting eight indices are XOR'd together
to form the 16-byte Hash Value. This in turn is XOR'd with
a 16-byte Encryption Pad and results in a 16-byte MAC
Value.

0090 Referring to FIG. 30, the operation to nested shuffle
a Pre-Hash Look Up Tables Source of 512 Kilobytes utilizes
three Mixing Seeds; a Case Seed (3002), a Pack Seed (3004)
and a Card Seed (3006), each having 64 unique random
numbers. The Pre-Hash Look Up Tables Source is parti
tioned into 64 Cases (3008). The Cases (3008) are all
shuffled together randomly (3010), using the Case Seed

Dec. 20, 2007

(3002) to determine the shuffle pattern, and results in a
random sequence of Cases (3012). Each Case is further
partitioned into 64 Packs (3014). The Packs (3.014) within
each Case are shuffled together randomly (3016), using the
Pack Seed (3004) to determine the shuffle pattern, and
results in a random sequence of Packs (3018), identically
shuffled per Case. Each Pack within each Case is further
partitioned into 64 Cards (3020) of one byte each. The Cards
(3020) within each Pack are shuffled together randomly
(3022), using the Card Seed (3006) to determine the shuffle
pattern, and results in a random sequence of Cards (3024),
identically shuffled per Pack. These three levels of shuffling,
Level 1 (L1), Level 2 (L2) and Level 3 (L3), result in a
randomly shuffled Pre-Hash Look Up Tables Source, which
has (2) or 2' random permutations, i.e. entropy of 276
bits.

0.091 Referring to FIG. 31, the operation to nested shuffle
a Encryption Pool of 512 Kilobytes utilizes three Mixing
Seeds; a Case Seed (3102), a Pack Seed (3104) and a Card
Seed (3106), each having 64 unique random numbers. The
Encryption Pool is partitioned into 64 Cases (3108). The
Cases (3108) are all shuffled together randomly (3110),
using the Case Seed (3102) to determine the shuffle pattern,
and results in a random sequence of Cases (3112). Each Case
is further partitioned into 64 Packs (3114). The Packs (3114)
within each Case are shuffled together randomly (3116),
using the Pack Seed (3104) to determine the shuffle pattern,
and results in a random sequence of Packs (3118), identi
cally shuffled per Case. Each Pack within each Case is
further partitioned into 64 Cards (3120) of one byte each.
The Cards (3120) within each Pack are shuffled together
randomly (3122), using the Card Seed (3106) to determine
the shuffle pattern, and results in a random sequence of
Cards (3124), identically shuffled per Pack. These three
levels of shuffling, Level 1 (L1), Level 2 (L2) and Level 3
(L3), result in a randomly shuffled Encryption Pool, which
has (2) or 2' random permutations, i.e. entropy of 276
bits.

0092 Referring to FIG. 32, the operation to nested shuffle
a Rotation Pool of four megabytes utilizes three Mixing
Seeds; a Case Seed (3202), a Pack Seed (3204) and a Card
Seed (3206), each having 128 unique random numbers. The
Rotation Pool is partitioned into 128 Cases (3208). The
Cases (3208) are all shuffled together randomly (3210),
using the Case Seed (3202) to determine the shuffle pattern,
and results in a random sequence of Cases (3212). Each
Case is further partitioned into 128 Packs (3214). The Packs
(3214) within each Case are shuffled together randomly
(3216), using the Pack Seed (3204) to determine the shuffle
pattern, and results in a random sequence of Packs (3218),
identically shuffled per Case. Each Pack within each Case is
further partitioned into 128 Cards (3220) of one byte each.
The Cards (3220) within each Pack are shuffled together
randomly (3222), using the Card Seed (3206) to determine
the shuffle pattern, and results in a random sequence of
Cards (3224), identically shuffled per Pack. These three
levels of shuffling, Level 1 (L1), Level 2 (L2) and Level 3
(L3), result in a randomly shuffled to Rotation Pool, which
has (2') or 2' random permutations, i.e. entropy of 660
bits.

0093. Referring to FIG.33, the operation to nested shuffle
a Random Padding Pool of 256 kilobytes utilizes three
Mixing Seeds; a Case Seed (3302), a Pack Seed (3304) and

US 2007/029.4531 A1

a Card Seed (3306), each having 64 unique random num
bers. The Random Padding Pool is partitioned into 64 Cases
(3308). The Cases (3308) are all shuffled together randomly
(3310), using the Case Seed (3302) to determine the shuffle
pattern, and results in a random sequence of Cases (3312).
Each Case is further partitioned into 64 Packs (3314). The
Packs (3314) within each Case are shuffled together ran
domly (3316), using the Pack Seed (3304) to determine the
shuffle pattern, and results in a random sequence of Packs
(3318), identically shuffled per Case. Each Pack within each
Case is further partitioned into 64 Cards (3320) of one byte
each. The Cards (3320) within each Pack are shuffled
together randomly (3322), using the Card Seed (3306) to
determine the shuffle pattern, and results in a random
sequence of Cards (3324), identically shuffled per Pack.
These three levels of shuffling, Level 1 (L1), Level 2 (L2)
and Level 3 (L3), result in a randomly shuffled Random
Padding Pool, which has (2) or 27 random permuta
tions, i.e. entropy of 276 bits.
0094) Referring to FIG. 34, these solid circle aid attached
line drawings demonstrate the various ways computers (the
Solid circles) can communicate securely (the lines). A peer
to-peer connection (3402) shows two computers communi
cating securely. A hub-and-spoke connection model (3404)
shows how a server computer may communicate securely
with outlying client computers. A fully meshed network
(3406) shows how peers, such as optical switches, may
communicate securely with any one of the others directly. A
broadcast network (3408) shows how a group of computers
may share a communications channel in order to securely
communicate with one another.

The Non-Cyclic Pseudo-Random Number Generator
0.095 The non-cyclic pseudo-random number generator
of this invention provides a secure and efficient mechanism
for magnifying the output of a slower hardware random
number generator. It does so without introducing bias or
predictable number sequences. It generates the random bits
in Such a manner as to minimize the burden on the host
computer and to take full advantage the performance capa
bilities of modern microprocessor architectures.
0096. In addition, its overall strength is based on its secret
buffers and seeds, not in the algorithms complexity. This
means that if any secret or seed is compromised wholly or
partially the generator can be quickly repaired with a new
secret or seed. If the generator is considered too weak for
whatever reason, then larger secrets and longer seeds can be
introduced Swiftly and easily without requiring significant
redesign or changes to existing generator implementations in
software or hardware, with the possible exception of addi
tional memory.
The Vernam Stream Cipher
0097. The Vernam stream cipher of this invention pro
vides a secure and efficient mechanism for transmitting
encrypted data between sender and receiver computers. It
does not introduce any extra bytes into the encrypted Stream.
It encrypts and decrypts in Such a manner as to minimize the
burden on the host computer and to take full advantage the
performance capabilities of modern microprocessor archi
tectures.

0098. In addition, its overall strength is based on its
shared secret buffers and keys, not in the algorithms com

Dec. 20, 2007

plexity. This means that if any secret or key is compromised
wholly or partially the cipher can be quickly repaired with
a new secret or key. If the cipher is considered too weak for
whatever reason, then larger Secrets and longer keys can be
introduced Swiftly and easily without requiring significant
redesign or changes to existing cipher implementations in
software or hardware, with the possible exception of addi
tional memory.
0099 Furthermore, the Vernam Stream Cipher has the
additional advantages in that

0.100 it can support a fully meshed network of N
computers, involving /2x(N-N) encrypted connec
tions;

0101 it can support encrypted broadcasts to multiple
computers simultaneously;

0102 it can be seamlessly integrated with the Keyed
One-Way Hash.

The Keyed One-Way Hash
0103) The Keyed One-Way Hash, or message authenti
cation code (MAC), of this invention provides a highly
secure and efficient mechanism for transmitting a code
authenticating the data sent between sender and receiver
computers. It compresses in Such a manner as to minimize
the burden on the host computer and to take full advantage
the performance capabilities of modern microprocessor
architectures.

0104. In addition, its overall strength is based on its
shared secret buffers, tables and one-time pad, not in the
algorithms complexity. This means that if any secret, table
or pad is compromised wholly or partially the keyed one
way hash can be quickly repaired with a new secret, table or
pad. If the hash is considered too weak for whatever reason,
then larger secrets, tables and pad can be introduced Swiftly
and easily without requiring significant redesign or changes
to existing cipher implementations in Software or hardware,
with the possible exception of additional memory.
0105. Furthermore, the Keyed One-Way Hash has the
additional advantages in that

0106 it can support a fully meshed network of N
computers, involving /2x(N-N) encrypted connec
tions;

0.107 it can support encrypted broadcasts to multiple
computers;

0.108 it can be seamlessly integrated with a Vernam
Stream Cipher.

0.109 The foregoing descriptions of specific embodi
ments of the invention have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise embodi
ments disclosed, and naturally many modifications and
variations are possible in light of the above teaching. The
embodiments were chosen and described in order to explain
the principles of the invention and its practical application,
to thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica
tions as are Suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
Claims appended hereto and their equivalents.

US 2007/029.4531 A1

1-23. (canceled)
24. An apparatus for generating a keyed one-way hash

value comprising:
a. a rotation pool for providing a plurality of rotation

vectors, each of the plurality of rotation vectors con
sisting of a series of random rotation values;

b. a plurality of lookup tables containing random values
in a table entry;

c. a compression function configured to receive a block of
message data, a rotation vector containing the series of
random rotation values, a plurality of padding values,
and outputs a final compression value; and

d. a mechanism connected to the plurality of look-up
tables configured to substitute a random hash value for
the final compression value.

Dec. 20, 2007

25. The apparatus according to claim 24 further compris
ing an encryption pool for providing encryption pads.

26. The apparatus according to claim 25 further compris
ing a one time pad encipherment of the hash value using a
pad extracted in a unique manner from the encryption pool,
resulting in a message authentication code value.

27. The apparatus according to claim 24 further compris
ing a padding pool for providing random padding values.

28. The apparatus according to claim 27 further compris
ing a plurality of random padding values.

29. The apparatus according to claim 24 further compris
ing a tree construction of multiple, cascaded compression
functions, which input multiple message blocks and outputs
the final compression value.

