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(57) ABSTRACT 

The invention discloses a cryptographic system and consist 
ing of three methods: a cryptographic Vernam Stream cipher 
that permits software programs on separate computers to 
encrypt and decrypt information; a cryptographic keyed 
one-way hash that ensures the integrity and authenticity of 
a message; a non-cyclic pseudo-random number generator 
that permits a Software program inside a computer to create 
large amounts of pseudo-random bits at high data rates. 
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Fig. 1 
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Fig. 2 
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Fig. 5 Randomly Permutating a Sequence of Numbers 
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Fig. 6 Key or Seed Data Structure 
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Fig. 8 Flow Chart for Nested Shuffle 
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Fig. 9 Nested Shuffle of a Series of Cards 
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Fig. 10 Non-Cyclic Pseudo-Random Number Generator 
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Fig. 12 Nested Shuffle of A Source Pool A or B (128MB) 
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Fig. 15 ENCRYPTION 
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Fig. 16 DECRYPTION 
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Fig. 17 
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Fig. 20 
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Fig. 21 Nested Shuffle Of A Source Pad (16 MB) 
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Fig. 23 Keyed One-Way Hash Function 
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Fig. 24 Array of R Byte Elements R = 1, 2, 4, or 8 
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Fig. 27 Compressing a 64 Byte Message 
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Nested Shuffling a Pre-Hash Look Up Table (256 KB) 
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Nested Shuffling an Encryption Pool (512 KBytes) 
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Nested Shuffling A Rotation Pool (4 MBytes) 
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Shuffling A Padding Pool (256KB) 
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SYSTEMAND METHODS FOR AVERNAM 
STREAM CIPHER, A KEYED ONE-WAY HASH 
AND ANON-CYCLIC PSEUDO-RANDOM 

NUMBER GENERATOR 

FIELD OF THE INVENTION 

0001. This invention relates to cryptographic algorithms 
in general and in particular to the generation of non-cyclic 
pseudo-random number sequences, for the encryption and 
decryption of data, and for the keyed one-way hash of a 
message. 

BACKGROUND OF THE INVENTION 

0002 Cryptographic ciphers, keyed one-way hashes and 
pseudo-random number generators are well known for pro 
viding the underpinnings of security systems and secure 
communication channels. The availability of good commer 
cial quality ciphers and one-way hashes has helped enable 
commercial data traffic over the insecure Internet. One of the 
goals of cryptographic ciphers is to encrypt and decrypt 
efficiently the communication channels between computers, 
routers and firewalls in Such a manner as to scale Smoothly 
from the very high bandwidth fiber optic channels to the 
slow telephone connections carrying Internet data packet 
traffic without significantly burdening a host computer's or 
router's processor. Unfortunately, the computer processing 
overhead typically needed by Standard ciphers in a secure 
computer network protocol tends to be relatively large 
compared to what is required to Support the non-crypto 
graphic processing portion of that protocol over a commu 
nications channel. Moreover, one-way hashes, keyed or not, 
can add significantly to the processing burden when used in 
a secure computer network protocol. 
0003. In a general form, existing ciphers have been 
optimized using classic computer programming techniques. 
However, even the best techniques often only yield nominal 
performance gains. Ciphers are usually extremely difficult to 
optimize, via techniques like loop unrolling, because by 
their very nature they are designed to prevent brute force 
attack methods that attempt to simplify the cryptographic 
processing. Even modern ciphers designed with modern 
microprocessor architectures in mind cannot always take 
advantage of larger registers, multiple microinstruction 
pipelines or on-chip caches. This is more problematic with 
one-way hashes which by design typically compress data 
bits randomly throughout a data block. One way hashes are 
difficult to optimize properly on modern microprocessors. 
0004. In the class of stream ciphers, Vernam ciphers stand 
out in their ability to very efficiently encrypt and decrypt 
without modifying the data payload sizes of computer 
network protocol packets. The cipher's computational over 
head is minimal making it an extremely desirable candidate 
to encipher computer network communications. Both the 
USA and Russia use a variant known as a one-time pad 
system to encipher diplomatic and spy communications. 
This is theoretically and in practice unbreakable. However it 
is impractical to implement it in a large-scale security 
system due to the stupendous amounts of key material that 
needs to be distributed and managed. 
0005. In the early 1990s some stream ciphers were 
developed that used an internal PRNG seeded with a random 
key to generate a Vernam key stream. Notable examples are 
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RC4 and SEAL. These ciphers are typically about half a 
magnitude faster than a comparable block cipher Such as 
DES or AES. Their main limitation is that they cannot 
randomly access and operate on any part of a data stream. 
This limits their ability to support datagram protocols like 
IPv4, where data packets may arrive out of order. Since their 
key setup costs are high, this also limits their utility in 
Supporting a datagram protocol which may need to rekey 
frequently, often per packet. 
0006 Most security systems that utilize a Vernam stream 
cipher typically have a very good quality source of large 
amounts of random bits over a given period of time, to be 
used for keying materials. The hardware based random 
number generators typically cannot Supply sufficient random 
bits for this system. 
0007. In most security network protocols, packets have 
their integrity and authenticity ensured during transit over an 
insecure network channel. A method used is a keyed one 
way hash, or message authentication code (MAC). HMAC, 
using either the MD5 or the SHA-1 hash, has been the 
utilized for recent Internet security protocols. The difficulty 
with using either hash is that for a legacy protocol like IPv4 
there is not enough room for all the bits of the hash in the 
packet header. Furthermore, these hashes were designed to 
protect large files of indeterminate size. Often their design 
and implementation is not suited for protocols that typically 
require very fast operation over packets with a known 
maximum size, such as 64 kilobytes for IPv4 packets. 

SUMMARY OF THE INVENTION 

0008. A system and methods are disclosed which allow a 
Vernam Stream cipher to be successfully used in a security 
system, in particular one that Supports a secure computer 
network protocol. Supporting the cipher are methods for a 
non-cyclic pseudo-random number generator (PRNG) and a 
keyed one-way hash, or message authentication code 
(MAC) mechanism. 
0009. The invention provides methods for generating a 
stream of random bits from a PRNG. They generate these 
bits in Such a manner as to not have any predictable random 
number sequence cycle and to have them all ultimately come 
from a true hardware random number generator (RNG). In 
effect these PRNGs act as performance amplifiers for a much 
slower hardware RNG, providing vast amounts of random 
bits for use in a Vernam cipher based cryptosystem. By 
randomly shuffling the private static source of random bits 
this provides a high level of system wide entropy. 
0010 Further, the invention provides a system and 
method for enciphering or deciphering bytes of data. The 
first layer of protection is to create a final pad from a private 
and secret derived source of random bits to encipher or 
decipher a data stream using simple XOR and rotation 
operations. The second layer of protection is to periodically 
deliver random cryptographic keys and values from a 
secured server to the local computer that control the random 
reshuffling of the private and secret local source of random 
bits, creating the derived source of random bits. The final 
layer of protection is to every so often replace the private 
and secret local source of random bits with a fresh set of 
random bits from a secured server. The secured server 
contains the previously described PRNG, which generates 
all the random bits needed to deliver keys and new secret 
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random bits to the local computer. A large disk storage 
media, such as a CD ROM, could be substituted for the 
secured server to allow off line operation. 
0011. The invention provides a system and method for 
maintaining the integrity and providing authentication for a 
message. This method of a keyed one-way hash uses a tree 
construction that cascades the results of a set of compression 
functions into another Smaller set until an intermediate value 
is formed. Each compression function utilizes a set of 
random vectors used to randomly rotate message bits to 
prevent a type of 2" pre-image attack and to make it 
non-deterministic to foil MAC forgery attacks. This inter 
mediate value in turn is used to look up a random value, or 
hash value, from a set of tables, which prevent 1 pre-image 
and certain 2" pre-image attacks. A one-time pad in turn 
encrypts the hash value, thus practically and theoretically 
eliminating any known-plain text attacks to determine any 
internal tables or source bits of the random vectors. For 
added security internal tables, random source bits for the 
vectors and the one-time pad are periodically refreshed from 
the security server. The secured server contains the previ 
ously described PRNG that generates all the random bits 
needed to deliver new look up tables, rotation vectors and 
one-time pad random bits to the local computer. A large disk 
storage media, such as a CD ROM, could be substituted for 
the secured server to allow off line operation. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0012 FIG. 1 depicts a diagram illustrating one embodi 
ment of the of a sender or a receiver computer according to 
the invention. 

0013 FIG. 2 depicts a diagram illustrating one embodi 
ment of the of a server computer according to the invention. 
0014 FIG. 3 depicts a diagram illustrating one embodi 
ment of the random permutation according to the invention. 
0.015 FIG. 4 depicts a diagram illustrating one embodi 
ment of the random permutation according to the invention. 
0016 FIG. 5 depicts a diagram illustrating one embodi 
ment of re-arranging a sequence of numbers randomly 
according to the invention. 
0017 FIG. 6 depicts a diagram illustrating the Key or 
Seed Data Structure according to the invention. 
0018 FIG. 7 depicts a diagram illustrating unit sizes 
according to the invention. 
0.019 FIG. 8 depicts a flow diagram illustrating a process 
of random nested shuffling according the invention. 
0020 FIG. 9 depicts a diagram illustrating a random 
nested shuffle of a number sequence according to the inven 
tion. 

0021 FIG. 10 depicts a diagram illustrating a pseudo 
random number generator according to the invention. 
0022 FIG. 11 depicts a diagram illustrating a data flow of 
generating a stream of pseudo-random numbers according to 
the invention. 

0023 FIG. 12 depicts a diagram illustrating a data flow of 
random shuffling a random source pool according to the 
invention. 
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0024 FIG. 13 depicts a diagram illustrating a data flow 
between a sender, a receiver and server according to the 
invention. 

0025 FIG. 14 depicts a diagram illustrating a data flow 
between a sender, a receiver and storage disk according to 
the invention. 

0026 FIG. 15 depicts a diagram illustrating encryption 
according to the invention. 
0027 FIG. 16 depicts a diagram illustrating decryption 
according to the invention. 
0028 FIG. 17 depicts a flow diagram illustrating a half of 
the first part of the cipher according to the invention. 

0029 FIG. 18 depicts a flow diagram illustrating another 
half of the first part of the cipher according to the invention. 
0030 FIG. 19 depicts a flow diagram illustrating a sub 
stitution table according to the invention. 
0031 FIG. 20 depicts a flow diagram illustrating the 
second and final part of the cipher according to the inven 
tion. 

0032 FIG. 21 depicts a diagram illustrating a data flow of 
random nested shuffling a source pad according to the 
invention. 

0033 FIG. 22 depicts a diagram illustrating a data flow of 
random rotation and random shuffling a preliminary pad to 
create via extraction a final enciphering pad according to the 
invention. 

0034 FIG. 23 depicts a diagram illustrating a data flow of 
a keyed one-way hash function according to the invention. 

0035 FIG. 24 depicts a diagram illustrating a data flow of 
a compression function according to the invention. 

0036 FIG. 25 depicts a diagram illustrating a data flow of 
compression calculation according to the invention. 
0037 FIG. 26 depicts a diagram illustrating a process of 
compressing a message according to the invention. 

0038 FIG. 27 depicts a diagram illustrating a process of 
compressing a message according to the invention. 

0039 FIG. 28 depicts a diagram illustrating a process of 
compressing a message according to the invention. 

0040 FIG. 29 depicts a diagram illustrating a data flow of 
MAC Value calculation according to the invention. 
0041 FIG. 30 depicts a diagram illustrating a data flow of 
nested shuffling a pre-hash table according to the invention. 

0042 FIG. 31 depicts a diagram illustrating a data flow of 
nested shuffling an encryption pool according to the inven 
tion. 

0043 FIG. 32 depicts a diagram illustrating a data flow of 
nested shuffling a rotation pool according to the invention. 

0044 FIG.33 depicts a diagram illustrating a data flow of 
nested shuffling a padding pool according to the invention. 
0045 FIG. 34 depicts a diagram illustrating a variety of 
ways to connect communicating computers. 
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DETAILED DESCRIPTION OF THE 
INVENTION 

0046) Specific reference is made in detail to the embodi 
ments of the invention, examples of which are illustrated in 
the accompanying drawings and following descriptions. 
While the invention is described in conjunction with the 
embodiments, it will be understood that the embodiments 
are not intended to limit the scope of the invention. The 
various embodiments are intended to illustrate the invention 
in different applications. Further, specific details are set forth 
in the embodiments for exemplary purposes and are not 
intended to limit the scope of the invention. In other 
instances, well-known methods, procedures, and compo 
nents have not been described in detail as not to unneces 
sarily obscure aspects of the invention. 
0047. In the following descriptions the following descrip 
tive names will be used; Key, Seed, Vector, Pad, Pool, Strip, 
Table, Value, Card, Pack, Case, random number generator 
(RNG), and pseudo random number generator (PRNG). A 
Seed is populated with random bits from a hardware RNG, 
and are generated and consumed within a centralized 
secured server or disk manufacturing utility. A Key, Pad, 
Value, Table, and Pool are populated with random bits from 
the PRNG. A Vector can be populated with random bits from 
either a RNG or a PRNG. A Pool is never used directly but 
supplies random bits for other things like Pads, Vectors, and 
Strips. A Strip is a sequence of bytes taken out of a Pool only 
once (known in the literature as a one-time pad). A Vector is 
a sequence of random numbers or bits used to control an 
operation on another sequence of random numbers. A ran 
dom factorial permutation of a sequence of bytes or numbers 
will be referred to as a Shuffle. 

0048 Referring to FIG. 1, a Sender or Receiver Com 
puter (102) contains a processor (104), a dynamic random 
access memory (DRAM) module (110) and one or more 
network interfaces (116), all interconnected internally by 
one or more data buses (120). The Network Interfaces (116) 
are also connected to a data link channel (122) Such as 
Ethernet. Within the processor (104) are one or more arith 
metic logic units (ALUs, 106) which can perform bit wise 
exclusive OR (XOR) or bit wise rotations of supported 
integers sizes, typically 1, 2, 4 or 8 bytes, and high speed 
on-chip memory cache (108). The DRAM contains the 
software of the Vernam Stream Cipher (112) and Keyed 
One-Way Hash (114). 
0049 Referring to FIG. 2, a Key & Pad Server Computer 
(202) contains a processor (204), a dynamic random access 
memory (DRAM) module (210), a network interface (214) 
and a hardware random number generator (RNG, 216), all 
interconnected internally by one or more data buses (218). 
The network interface (214) is also connected to a data link 
channel (220) such as Ethernet. Within the processor (204) 
are one or more arithmetic logic units (ALUs, 206), which 
can perform bit wise exclusive OR (XOR) or bit wise 
rotations of Supported integers sizes, typically 1, 2, 4 or 8 
bytes, and high speed on-chip memory cache (208). The 
DRAM contains the software of the PRNG (212). 
0050 Referring to FIG. 3, a simple mechanism of gen 
erating a random sequence of Nunique numbers from the set 
of numbers 0 to N-1, where N is a power of 2, would be to 
take the output of a hardware RNG (302) and use its output 
of bits to fill in an array of N values (304). Each value is 
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represented by log(N) bits. The first log(N) bits produced 
by the RNG would fill in the first value in the array. The 2" 
log(N) bits produced by the RNG would be used to fill in 
the 2" value in the array if they are different from the 15 
value. If not, then those bits are thrown away and another set 
of bits are acquired from the RNG and the procedure is 
repeated until a 2" value is found that is different from the 
1 value. The process is continued for the 3" through Nth 
values, where each value from the RNG is compared with all 
previous values and used to fill a position in the array only 
if it is different. In this way all possible numbers from 0 to 
N-1 are randomly selected and placed into the array. 
0051 Referring to FIG. 4, a near-perfect rifle shuffle 
mechanism of generating a random sequence of N unique 
numbers from the set of numbers 0 to N-1, where N is a 
power of 2, would be to take the output of a hardware RNG 
(402) and use its output of bits to create a Random Repeat 
Number (404) and a Random Control Vector (406) of N/2 
bits. The Random Repeat Number, X, is not less than 
%xlog(N), for example if N equals 256 then X equals 12 or 
greater. If X is too small, then another number is retrieved 
from the RNG until this criteria is satisfied. Taking a 
sequence of numbers from 0 to N-1 (408), we then split it 
into two halves (410, 412) and rifle shuffle them together, 
similar to how a pack of cards would be shuffled, with the 
interleaving of the numbers being determined by the Ran 
dom Control Vector (406). The vector indicates whether a 
number in an array slot from the upper half (410) should go 
before or after its corresponding number in the same array 
slot in the lower half (412). The result is then placed in a new 
array of numbers (414). This new array of numbers (414) 
then replaces the original array of numbers (408). This 
whole process (from 406 to 414) is repeated X times (404), 
until the original sequence of numbers (408) are thoroughly 
and randomly shuffled (414). 
0052 Referring to FIG. 5, using a random sequence of 
unique numbers (502), a control sequence, which come from 
a countable sequence of numbers starting at Zero, and 
treating them as indices to a source array of random numbers 
(504), the invention indicates the new arrangement of a 
result sequence of the random numbers (506). For example, 
counting from 0, if the 0" element in the control sequence 
is the number 2, then this means that the value of the 0" 
element of the result sequence is the same as the value of the 
2" element of the source sequence. If the 1 element in the 
control sequence is the number 5, then this means that the 
value of the 1 element of result sequence is the same as the 
value of the 5" element of the source sequence. This is 
repeated for all N indices from 0 to N-1. This operation 
using the control sequence to convert the source sequence to 
the result sequence will be known as a random shuffle 
throughout the rest of this document. 
0053 Referring to FIG. 6, the random control sequence 
of unique numbers will be referred to as a Key or a Seed 
(602) throughout the remainder of this document. The 
difference between the two terms is that a Seed is generated 
directly from a hardware RNG while a Key is generated 
from a PRNG. Keys and Seeds come in sequences with an 
amount of numbers countable by powers of 2, 2 where Y 
is usually 6, 7, or 8. I.e. sequences of 64, 128 or 256 unique 
numbers randomly shuffled. The number of bits per number 
is Y. For example if Y is 7 then we have a sequence of 27, 
or 128, unique numbers (randomly shuffled) with each 
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number consisting of only 7 bits, i.e. only from the range of 
values 0 to 127. Referring to FIG. 7, when large sequences 
of numbers are randomly shuffled, they are broken up into 
certain sizes. The smallest size is called a Card (702). This 
can consist of 2 bytes, where U is 0,1,2,3, or 4. I.e. a Card 
can be 1, 2, 4, 8 or 16 bytes in size. Usually a Card size is 
chosen for optimal arithmetic operation using common 
microprocessor architectures. The next larger size is a Pack 
(704), which consists of 2Y Cards, where V is 6, 7, 8 or 
larger. I.e. a Pack can consist of 64, 128, 256 or more Cards. 
The next larger size is a Case (706), which consists of 2Y 
Cards, where W is 6, 7, 8 or larger. I.e. a Case can consist 
of 64, 128, 256 or more Packs. The largest size is the large 
sequence of numbers to be shuffled, usually called a Pad or 
a Pool (708), which consists of 2^ Cases, where X is 6, 7, 
8 or larger. I.e. a Pad or Pool can consist of 64, 128, 256 or 
more Cases. 

A Non-Cyclic Pseudo-Random Number Generator 
0054 Because a Vernam stream cipher, described later, 
requires a tremendous amount of random material (bytes), it 
is critical to have a high throughput and high quality 
Pseudo-Random Number Generator available. Without it, it 
would be impossible to engineer a security system based 
around a Vernam stream cipher. 
0.055 Referring to FIG. 8, a nested shuffling process is 
shown by the flow diagram. At block 802, the 3 Mixing 
Seeds are received. The 3 Mixing Seeds include Case Seeds, 
Pack Seeds, and Card Seeds. At block 804, a shuffling 
function is performed on each Case utilizing a Case Seed for 
each Case, this is a Level 1 shuffle (L1). At block 806, each 
of the shuffled Cases are divided into multiple Packs. At 
block 808, a shuffling function is performed on each Pack 
utilizing a Pack Seed for each Pack, this is a Level 2 shuffle 
(L2). At block 810, each of the shuffled Packs are divided 
into multiple Cards. At block 812, a shuffling function is 
performed on each Card utilizing a Card Seed for each Card, 
this is a Level 3 shuffle (L3). 
0056 Referring to FIG. 9, a nested shuffling of a 
sequence of Cards proceeds as follows. A sequence of cards 
(902) divided into Cases (904), which are then shuffled 
according to a Case Key or Seed (916), resulting in ran 
domly permuted sequence of Cases (906). Then in turn, 
these shuffled Cases (906) are subdivided into Packs (908), 
each Case being partitioned identically, which are then 
shuffled according to a Pack Key or Seed (918) that is 
applied once per Case to each set of Packs contained therein, 
resulting in identically randomly permuted sequence of 
Packs per Case (910). Then in turn, these shuffled Packs 
(910) are subdivided into Cards (912), each Pack being 
partitioned identically, which are then shuffled according to 
a Card Key or Seed (920) that is applied once per Pack to 
each set of Cases contained therein, resulting in identically 
randomly permuted sequence of Cards per Pack (914). 
0057 Referring to FIG. 10, a RNG (1002), is used to 
periodically to create a couple of Random Source Pools A 
(1004) and B (1006). Using both Random Source Pools and 
input Mixing Seeds from the RNG, a PRNG (1008) emits a 
very large number of random numbers over a very short 
period of time. The PRNG is non-cyclic where finite 
sequences of random numbers have a very low probability 
of repeating in an unpredictable or random manner, until the 
next refresh of both Random Source Pools occurs. 
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0.058 Referring to FIG. 11, to initialize a PRNG, the 
RNG (1102) first fills a couple of Source Pools A (1104) and 
B (1106) with random numbers. The Source Pools (1104, 
1106) are recommended to be at least 128 megabytes each, 
to ensure a very deep source of entropy for the PRNG. 
However, there is no absolute requirement for the Source 
Pools (1104, 1106) to be this large, except to ensure that any 
Keys, Pads or Pools (1128) that result from the PRNG and 
used within a large security system will have an extremely 
miniscule probability of being duplicated. The Source Pool 
A (1104) is nested shuffled (1112) using three Mixing Seeds 
A (1108), resulting in a Shuffled Source Pool A (1116). The 
Source Pool B (1106) is nested shuffled (1114) using three 
Mixing Seeds B (1110), resulting in a Shuffled Source Pool 
B (1120). These seeds come directly from the RNG (1102). 
The Shuffled Source Pool A is then used to XOR (1118) with 
the Shuffled Source Pool B (1120), byte by byte, resulting in 
a Source Pool (1122). When a sequence of random numbers 
is needed from the PRNG a Strip (1124) is copied from the 
Source Pool (1122). This Strip (1124) is not reused again. 
When the Source Pool (1122) is exhausted and a Strip (1124) 
cannot be retrieved from it, without being a duplicate of an 
older Strip, then two sets of 3 new Mixing Seeds (1108, 
1110) are generated from the RNG (1102) and used to 
reshuffle the Source Pools (1104, 1106) to then create a new 
pair of Shuffled Source Pools (1116, 1120), which are 
combined together by XOR operations (1118) into a new 
Source Pool. The series of Strips taken from the Source Pool 
(1122) constitutes a PRNG stream of random numbers or 
bytes (1126) used to create Keys, Pads and Pools (1128). An 
old Strip can never be reused. Periodically the two Source 
Pools A and B (1104, 1106) are refreshed from the RNG 
(1102) to maintain their secrecy. 
0059 Referring to FIG. 12, the operation to nested shuffle 
a Source Pool A or B utilizes three Mixing Seeds; a Case 
Seed (1202), a Pack Seed (1204) and a Card Seed (1206), 
each having 512 unique random numbers. The Source Pool 
is partitioned into 512 Cases (1208). The Cases (1208) are 
all shuffled together randomly (1210), using the Case Seed 
(1202) to determine the shuffle pattern, and results in a 
random sequence of Cases (1212). Each Case is further 
partitioned into 512 Packs (1214). The Packs (1214) within 
each Case are shuffled together randomly (1216), using the 
Pack Seed (1204) to determine the shuffle pattern, and 
results in a random sequence of Packs (1218), identically 
shuffled per Case. Each Pack within each Case is further 
partitioned into 512 Cards (1120) of one byte each. The 
Cards (1120) within each Pack are shuffled together ran 
domly (1222), using the Card Seed (1206) to determine the 
shuffle pattern, and results in a random sequence of Cards 
(1224), identically shuffled per Pack. These three levels of 
shuffling, Level 1 (L1), Level 2 (L2) and Level 3 (L3), result 
in a randomly shuffled Source Pool, which has (27) or 

random permutations, i.e. entropy of 3315 bits. 
A Vernam Stream Cipher 
0060. The idea behind this embodiment of the Vernam 
Stream cipher is that its work factor strength and its high 
processor efficiency comes from its bipartite structure: one 
part being a set of nested shuffles and Substitution transla 
tions of the Source Pads, the other being an operation 
creating a Final Pad with two simple rotations and shuffles. 
0061 Note that random materials, be it Pads or Keys, 
ultimately comes from the Server. In one embodiment, the 
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Server is absolutely physically secured, with a very high 
quality, fast PRNG inside it that is fed bits by a high quality 
RNG. 

0062). The most expensive and time consuming processor 
operations are being amortized over time by refreshing the 
Source Pads periodically at a low frequency and then 
shuffling the Source Pads at a higher frequency using the 
Mixing Keys. 

0063) The Substitution Tables are needed when the 
Source Pads are shared among a group of computers, e.g. a 
fully meshed set of optical switches. For example, if there 
are 1024 switches sharing the same Source Pads, then each 
switch needs 1023 tables for each communicating channel. 
If a table is 256 bytes in size then this is a total of 261888 
bytes, or approximately 4 megabyte of tables that must be 
distributed to each machine. Even though all the switches 
know the Source Pads, they cannot easily discover the 
Substitution table used by other pairs of communicating 
Switches. Caution needs to be exercised, by ensuring that the 
Source Pads are not made fully public across an entire 
network. Different Source Pads must be used for different 
sections of a network that need this type of communication, 
be it an Ethernet segment, a wireless LAN segment, server 
communicating to multiple client computers, or a fully 
connected set of computers. In this way if a set of Source 
Pads are discovered by an attacker only that section of the 
network is compromised. 

0064. The creation and use of the Final Pad on-the-fly 
from the Working Pads A & B is meant to be extremely 
processor efficient and stored within the on-chip cache of the 
processor. The creation of the Final Pad is much more 
frequent than the shuffling of the Source Pads by the Mixing 
Keys. If possible the Final Pad could even be pre-computed 
to handle very high bursts of data traffic (matching the 
highest network transmission speeds possible), for example 
handling an 8 MB burst before requiring a fresh Final Pad. 
A series of Final Pads could also be pre-computed to handle 
a long burst of data traffic, for example handling a 64 MB 
burst with 8 pre-computed Final Pads, each one’s 8 MB 
unique with a very high probability. A Working Pad is paired 
with two Working Keys. There are never any random bits 
shared from one pair of Working Keys to the next pair of 
Working Keys. 

0065. The whole cipher has a layered design to thwart 
attacks on the internal secrets and yet allow it to be 
extremely efficient during encipherment. A Shuffled Source 
Pad is designed to allow the generation of a series of 
Working Pads before it needs to be reshuffled. The XORing 
of the two Working Pads together prevents a simple known 
plaintext attack on the 1 Card to discover the Card shuffle 
pattern of the Working Pad (this assumes the Shuffled 
Source Pad has been compromised and is known). Even if 
the Shuffled Source Pad is compromised, the attacker then 
tries to get to the original Source Pad through three layers of 
shuffling. Even if the Source Pad itself is compromised at 
some point, that Source Pad is thrown away and a whole new 
Source Pad is downloaded from the Server. The random 
rotation of the Working Pads discourages certain counting 
and partial key attacks. The cipher is designed Such that if 
attacks are possible with keys of 128 unique random num 
bers, then increase the keys to 256 unique random numbers. 
Any partial key attacks are made more difficult through use 
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of the partitioning of the Source Pads and operating on them 
separately under random guidance until the last possible 
moment before creating the Final Pad. 
0066 Through software implementation, the cipher does 
not require burning in new firmware nor redesigning an 
ASIC chip set. Another embodiment would be to add more 
memory chips. 

0067 Referring to FIG. 13, the Vernam cipher depends 
upon access to a reliable, moderately fast network for key 
and pad material distribution. It is designed with a 10 Mbps 
Ethernet LAN in mind for the back channel communications 
with a central Key and Pad Server (1302), which contains a 
RNG and a PRNG. The cipher itself will support over 1 
Gbps encrypted throughput (1308) on an ordinary comput 
er's communication interface, typically either 100 Mbps or 
1 Gbps Ethernet, between the two computers, a Sender 
Computer (1304) and a Receiver Computer (1306). Each of 
these computers shares the identical sets of Working Keys 
(1316), Rotation Values (1318), Substitution Keys (1314), 
Mixing Keys (1312), and Source Pads (1310), and a copy of 
the cipher algorithm (1320) either in software or hardware. 
The Source Pads (1310) and Substitution Keys (1316) are 
periodically refreshed on both computers to maintain the 
maximum level of security. To extend the life (i.e. keep them 
secret longer) of the Source Pads, while they are on both 
computers, the server will send out Mixing Keys (1312) and 
Substitution Keys (1314) as needed. More frequently, Rota 
tion Values (1318) and Working Keys (1316) are sent out to 
each machine to regenerate the actual randomly created pad 
used to encrypt the clear data or decrypt the cipher data 
(1308). Note that for purposes of this document all commu 
nications with the Key & Pad Server are considered secure, 
i.e. cryptographically mutually authenticated and private. 
This could also be achieved by having a separate physically 
secure 10 Mbps LAN dedicated to only distributing Keys, 
Values and Pads from the Server. 

0068 Referring to FIG. 14, another embodiment for 
stand-alone operation without a server uses two identical 
disks (1404) that are generated from a Disk Manufacturing 
utility (1402), which contains a RNG and a PRNG. The 
cipher supports over 1 Gbps encrypted throughput (1410) on 
an ordinary computer's communication interface between 
the two computers, a Sender Computer (1406) and a 
Receiver Computer (1408). Each of these computers shares 
the identical sets of Working Keys (1418), Rotation Values 
(1420), Substitution Keys (1416), Mixing Keys (1414), 
Source Pads (1412), and a copy of the cipher algorithm 
(1422) either in software or hardware. The Source Pads 
(1412) and Substitution Keys (1416) are periodically 
refreshed on both computers to maintain the maximum level 
of security. To extend the life (i.e. keep them secret longer) 
of the Source Pads, while they are on both computers, they 
can retrieve Mixing Keys (1414) and Substitution Keys 
(1416) as needed from their respective disks (1404). More 
frequently, Rotation Values and Working Keys are retrieved 
by each machine to regenerate the actual randomly created 
pad used to encrypt the clear data or decrypt the cipher data 
(1410). Note that for purposes of this document all commu 
nications with the disks are considered secure, e.g. located 
inside each computer. 
0069. Referring to FIG. 15, for encryption the Cipher 
machinery (1526) takes as input two Working Pads, derived 
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from the four Source Pads (1506, 1508, 1510, 1512), two 
Working Keys (1532), two Rotation Values (1534), and the 
Clear Text data (1528). The two Working Pads each comes 
from one of the two Nested Shuffle & Substitution Machin 
eries (1502, 1504). One machinery (1502) takes as input two 
Source Pads A and B (1506, 1508), two Substitution Keys. A 
and B (1514), and two sets of three Mixing Keys (1516, 
1518). The other machinery (1504) takes as input two 
Source Pads C and D (1510, 1512), two Substitution Keys 
C and D (1520), and two sets of three Mixing Keys (1522, 
1624). The Clear Text data (1528) cannot exceed half the 
length of a Source Pad, before requiring a new set of 
Working Keys and Rotation Values. For example, using four 
16 MB Source Pads, a maximum of 8 MB of data can be 
encrypted before requiring a fresh set of two Working Keys 
and two Rotation Values. So every 8 MB block of encrypted 
data has a pair of Working Keys and a pair of Rotation 
Values associated with it. Every byte of Clear Text data is 
transformed out into a corresponding byte of Cipher Text 
data (1530), in a manner very similar to standard stream 
cipher behavior. The 1 clear byte becomes the 1" cipher 
byte, and the 2" clear byte becomes the 2" cipher byte, and 
so forth, until the last clear byte becomes the last cipher byte. 
However, unlike a normal stream cipher the bytes can be 
encrypted out of order, but regardless of order the n" clear 
byte always becomes the n" cipher byte. 
0070) Note that one of the properties of this Cipher is the 
ability to do “random access’ encryption. For example to 
encipher the 5" 8 MB block of data then simply get the 5" 
pair of Working Keys and operate on it. Given an offset of 
a particular byte within the block then just encrypt that byte. 
The block can be smaller than 8 MB and then encrypt that 
Smaller amount. The cipher machinery does not require any 
padding bytes to fill out a minimum block size like DES 
requires. 

0071 Note that another one of the properties of this 
Cipher is the ability to do “broadcast encryption. For 
example several hosts can share the four Source Pads. 
During normal communications each pair of communication 
hosts will have a unique pair of Substitution Keys for each 
channel between a pair of hosts. However if one host 
broadcasts to the other hosts, then for the broadcast all 
receiving hosts can use the same Substitution Keys. This 
works in a similar same way for a fully meshed networking 
fabric of routers or switches. 

0072 Referring to FIG. 16, decryption is identical to 
encryption, except that now the Cipher Machinery (1626) 
takes as input two Working Pads, derived from the four 
Source Pads (1606, 1608, 1610, 1612), two Working Keys 
(1632), two Rotation Values (1634), and the Cipher Text 
data (1628). The two Working Pads each comes from one of 
the two Nested Shuffle & Substitution Machineries (1602, 
1604). One machinery (1602) takes as input two Source 
Pads A and B (1606, 1608), two Substitution Keys A and B 
(1614), and two sets of three Mixing Keys (1616, 1618). The 
other machinery (1604) takes as input two Source Pads C 
and D (1610, 1612), two Substitution Keys C and D (1620), 
and two sets of three Mixing Keys (1622, 1624). The Cipher 
Text data (1628) cannot exceed half the length of a Source 
Pad, before requiring a new set of Working Keys (1632) and 
Rotation Values (1634). For example, using four 16 MB 
Source Pads, a maximum of 8 MB of data can be encrypted 
before requiring a fresh set of two Working Keys and two 
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Rotation Values. Every byte of Cipher Text data is trans 
formed out into a corresponding byte of Clear Text data 
(1630), in a manner similar to normal stream cipher behav 
ior. 

0.073 FIG. 17 reveals an internal view of a half of an 
initial phase of the Cipher Machinery. The Source Pad A of 
16 megabytes (1702) is nested shuffled (1710) with the three 
Mixing Keys A (1706) resulting in a Shuffled Source Pad A 
of 16 megabytes (1714). Each byte of this is then randomly 
substituted for another byte using Substitution Table A 
(1718), which takes as input Substitution Key A (1722). The 
Source Pad B of 16 megabytes (1704) is nested shuffled 
(1712) with the three Mixing Keys B (1708) resulting in a 
Shuffled Source Pad B of 16 megabytes (1716). Each byte 
of this is then randomly substituted for another byte using 
Substitution Table B (11720), which takes as input Substi 
tution Key B (1724). XOR the two resulting pads from 
Substitution Tables A and B together (1726), byte-by-byte, 
and the result pads a 16-megabyte Working Pad A (1728). 
0074 FIG. 18 reveals an internal view of another half of 
the initial phase of the Cipher Machinery. The Source Pad C 
of 16 megabytes (1802) is nested shuffled (1810) with the 
three Mixing Keys C (1806) resulting in a Shuffled Source 
Pad C of 16 megabytes (1814). Each byte of this is then 
randomly substituted for another byte using Substitution 
Table C (1818), which takes as input Substitution Key C 
(1822). The Source Pad D of 16 megabytes (1804) is nested 
shuffled (1812) with the three Mixing Keys D (1808) 
resulting in a Shuffled Source Pad D of 16 megabytes 
(1816). Each byte of this is then randomly substituted for 
another byte using Substitution Table D (1820), which takes 
as input Substitution Key D (1824). XOR the two resulting 
pads from Substitution Tables D and C together (1826), 
byte-by-byte, and the result is a 16-megabyte Working Pad 
B (1828). 
0075 FIG. 19 reveals an internal view of the mechanics 
of a Substitution Table. Each byte of a Shuffled Source Pad 
(1902) is used as an index into a byte of a Substitution Key, 
which is also known as the Substitution Table (1904). The 
indexed byte or new byte (1906) is then substituted for the 
old byte (1902). This is repeated for each byte of the 
Shuffled Source Pad. 

0.076 FIG. 20 reveals an internal view of a final phase of 
the Cipher Machinery. The Working Pad A (2002) is Rotated 
and then Simple Shuffled (2006), using a Working Key A 
(2010) and a Rotation Value A (2014), then extract half of 
each of the Cards (2018), and the result is a 8-megabyte 
Temporary Pad A (2022). The Working Pad B (2004) is 
Rotated and then Simple Shuffled (2008), using a Working 
Key B (2012) and a Rotation Value B (2016), then extract 
half of each of the Cards (2020), and the result is a 
8-megabyte Temporary Pad B (2026). XOR the two result 
ing Temporary Pads (2022, 2026) together (2024), byte-by 
byte, and the result is a 8-megabyte Final Pad (2028). This 
Final Pad can then be used to XOR (2030) with Clear Text 
Data (2032), byte by byte, resulting in Cipher Text Data 
(2034), or it can be used to XOR (2036) with Cipher Text 
Data (2038), byte by byte, resulting in Clear Text Data 
(2040). 
0.077 Referring to FIG. 21, the operation to nested shuffle 
a Source Pad A or B or C or D of 16 megabytes each utilizes 
three Mixing Seeds; a Case Seed (2102), a Pack Seed (2104) 



US 2007/029.4531 A1 

and a Card Seed (2106), each having 256 unique random 
numbers. The Source Pad is partitioned into 256 Cases 
(2108). The Cases (2108) are all shuffled together randomly 
(2110), using the Case Seed (2102) to determine the shuffle 
pattern, and results in a random sequence of Cases (2112). 
Each Case is further partitioned into 256 Packs (2114). The 
Packs (2114) within each Case are shuffled together ran 
domly (2116), using the Pack Seed (2104) to determine the 
shuffle pattern, and results in a random sequence of Packs 
(2118), identically shuffled per Case. Each Pack within each 
Case is further partitioned into 256 Cards (2120) of one byte 
each. The Cards (2120) within each Pack are shuffled 
together randomly (2122), using the Card Seed (2106) to 
determine the shuffle pattern, and results in a random 
sequence of Cards (2124), identically shuffled per Pack. 
These three levels of shuffling, Level 1 (L1), Level 2 (L2) 
and Level 3 (L3), result in a randomly shuffled Source Pad, 
which has (2') or 2' random permutations, i.e. entropy 
of 1536 bits. 

0078 Referring to FIG.22, this illustrates the core opera 
tion of the cipher. First a Working Pad of 16-megabytes 
(2206) is randomly rotated by 4-byte intervals using the 
random Rotation Value (2204). Then the Working Pad is 
sub-divided into 16384 Packs (2208) of which each is 
further sub-divided into 256 Cards (2210) where a Card is 4 
bytes in size. Using the Working Key (2202) we shuffle the 
Cards in the 1 Pack (2212). This results in 256 randomly 
shuffled Cards in the first Pack (2214). We repeat this from 
2" to the last Pack in the Working Pad. This results in a 
16-megabyte Rotated and Shuffled Working Pad (2216). 
Finally we extract the first 128 Cards of each Pack (2218) 
and assemble them into an 8-megabyte Temporary Pad 
(2220). 
0079. This shuffle can be done extremely fast since a 
typical Working Key and many Source Pad Packs can be 
brought in the microprocessor's fastest L1 cache. The Key 
stays in L1 cache, amortizing its load cost from DRAM over 
all the 16384 Packs. Further performance gains can be made 
by taking advantage of multiple ALU pipelines in a CPU to 
process either larger Cards or multiple Packs simulta 
neously. 

0080. The Source Pads are considered to be secret, 
known only to the Sender, the Receiver, and the Key & Pad 
Server. The only exception is for Supporting host broadcast 
ing, when they are shared across all the hosts. The three 
levels of four sets of Mixing Keys, two sets of Substitution 
Keys, along with the four Source Pads, which themselves 
are periodically changed, interact to effectively keep the four 
Source Pads secret for as long as possible. In the exceptional 
case of broadcast support, where the Source Pads are known, 
then the Substitution table should prevent an offline pre 
computation attack. 
A Keyed One-Way Hash 
0081 Referring to FIG. 23, a Keyed One-Way Hash 
function (2304) takes as input a Data Buffer (2302), Encryp 
tion Pads (2310) from an Encryption Pool (2308), Rotation 
Vectors (2314) from a Rotation Pool (2312), Padding bytes 
(2318) from a Padding Pool (2316), and Pre-Hash Lookup 
Table A (2320) and Pre-Hash Lookup Table B (2322). It 
outputs a Message Authentication Code or MAC Value 
(2306). All pools and tables come from a central Server or 
a Disk (2324). Mixing Keys for nested reshuffling all the 
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pools and pool refreshes come from the Server or the Disk 
(2326). Mixing Keys for nested reshuffling the tables, and 
tables refresh come from the Server or the Disk (2328). The 
server is used to provide online support, while the disk is 
used provide offline Support of a computer using the Keyed 
One-Way Hash. A disk would contain everything needed 
maintain offline secure communications, including extra 
keys, pools, and tables. 
0082 Referring to FIG. 24, the core Compression Func 
tion (2404) of the Keyed One-Way Hash, compresses an 
input array of 16 elements (2402), where each element is 4 
bytes in size, resulting with an output of a Compressed Value 
(2406), which is 4 bytes in size. The compression ratio is 
16:1. To prevent certain types of 2" pre-image attacks, a 
Rotation Vector (2408) composed of random bits is 
extracted from a Rotation Pool (2410), and is supplied to the 
Compression Function (2404). For each new use of the 
Compression Function a fresh Rotation Vector is extracted 
from the Rotation Pool. A Rotation Vector can never be 
reused. If no more Rotation Vectors can be extracted from 
the Rotation Pool then it must be refreshed from the Server 
or Disk. 

0083) While the example above results in a four byte 
Compressed Value, which is useful due to the limited space 
inside an IPv4 packet header, it could also result in larger 
values such as 16 bytes, 20 bytes or 32 bytes, by simply 
adjusting the compression ratio and the size of the Array of 
4-byte Elements (2402). Also the size of each element in the 
array (2402) can be adjusted, however normally for perfor 
mance reasons the native integer size for arithmetic opera 
tions of the host microprocessor should be selected. 
0084. Referring to FIG. 25, the mechanics of the com 
pression function operate such that each 32-bit Element 
(2506) is rotated by a unique random 5 bits (2504). For 
example if the 5 bits of the 15 Rotate Value (2504) contained 
the random value 7, then the corresponding 1 Element 
(2506) would have it's 32 bits shifted left by 7 bits, where 
the leftmost original 7 bits would be copied to first 7 bits of 
the resulting 32 bits. A similar operation could use a right 
shift instead. The rotation on an Intel CPU would typically 
use the ROL or ROR machine operation for higher perfor 
mance. These 5 bits come from the Rotation Vector (2502), 
and are log(32) bits in total, where 32 is the bit size of the 
4-byte integer value to be rotated. The Rotation Vector is a 
total of 80 bits, which is calculated from 5 bits times the 
compressed ratio of 16, or 10 bytes. After the random 
rotation of each Element they are XOR'd together (2508), 15 
times, and the result is a four byte Compressed Value (2510). 
0085) Referring to FIG. 26, to compress a 64 Kilobyte 
data buffer (2602), divided into 16384 4-byte Elements, a 
16:1 compression function (2604) can be used 1024 times, 
each with a ten byte Rotation Vector L1 (2606). The result 
ing 1024 4-byte Elements (2608) can be 16:1 compressed 
again (2610) 64 times, each with a ten byte Rotation Vector 
L2 (2612). The resulting 64 4-byte Elements (2614) can be 
16:1 compressed yet again (2616) 4 times, each with a ten 
byte Rotation Vector L3 (2618). Finally the resulting four 
4-byte Elements (2620) can be 4:1 compressed (2622), with 
a 2/2 byte Rotation Vector L4 (2624), with a resulting final 
four byte Compressed Value (2626). 
0086) Referring to FIG. 27, to compress a 64 byte data 
buffer (2702), divided into sixteen 4-byte Elements, a 16:1 
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compression function (2704) can be used once, with a ten 
byte Rotation Vector L1 (2706), resulting with a final four 
byte Compressed Value (2708). 

0087. Referring to FIG. 28, to compress a 1518 Byte data 
buffer (2802), it is first padded with 18 random bytes (2806), 
which come from the Padding Pool, resulting in 3844-byte 
Elements (2808). A 16:1 compression function (2810) can 
be used 24 times, with a ten byte Rotation Vector L1 (2812). 
The resulting 24 4-byte Elements are padded with 32 
random bytes (2814), which come from the Random Pad 
ding Pool, to end up with 32 4-byte Elements (2816). An 8:1 
compression function (2818) can be used four times, with a 
five byte Rotation Vector L2 (2820). Finally the resulting 
four 4-byte Elements (2822) can be 4:1 compressed (2824), 
with a 2/2 byte Rotation Vector L3 (2826), resulting with a 
four byte Compressed Value (2828). 

0088 Referring to FIG. 29, after calculating a Compres 
sion Value (2902), of four bytes, the Compression Value 
(2902) is split into Sub-Compression Value A (2904) and 
Sub-Compression Value B (2906), each two bytes in size. 
Pre-Hash Look Up Table A (2908) is filled with 65536 
entries, each consisting of a random four bytes from the 
PRNG. Likewise Pre-Hash Look Up Table B (2910) is filled 
with 65536 entries, each consisting of a random four bytes 
from the Server's PRNG. The Sub-Compression Value A is 
then used as an index into Pre-Hash Look Up Table A to 
extract a random number, four bytes in size, a Pre-Hash 
Value A (2912). Likewise the Sub-Compression Value B is 
then used as an index into Pre-Hash Look Up Table B to 
extract a random number, four bytes in size, a Pre-Hash 
Value B (2916). They are then XOR'd together (2914) to 
create a Hash Value (2918). These series of operations are 
designed to prevent a 1 pre-image attack working back 
wards from the Hash Value. To further protect the Hash 
Value (2918), a four byte Encryption Pad (2924) is extracted 
from an Encryption Pool (2922) of 2 megabytes in size, 
which is the total amount of hash data expected to be 
operated on over a period of time, and XOR'd with it (2920) 
to produce the four byte MAC Value (2926). Each Encryp 
tion Pad (2924) is unique and can never be reused. If no 
more unique Encryption Pads can be extracted from the 
Encryption Pool then it is either refreshed from the Server's 
PRNG or from new PRNG bits Stored on the Disk. If the 
stored PRNG bits are exhausted on the Disk then a new Disk 
must be manufactured by the Disk Manufacturing Utility, 
using its PRNG. The new Disk then replaces the old, 
exhausted Disk. 

0089 Another embodiment of the invention would take a 
Compression Value of 16 bytes and divide it into eight 
Sub-Compression Values, which in turn is an index to eight 
separate Pre-Hash Look Up Tables of 65536 16-byte random 
value entries. The resulting eight indices are XOR'd together 
to form the 16-byte Hash Value. This in turn is XOR'd with 
a 16-byte Encryption Pad and results in a 16-byte MAC 
Value. 

0090 Referring to FIG. 30, the operation to nested shuffle 
a Pre-Hash Look Up Tables Source of 512 Kilobytes utilizes 
three Mixing Seeds; a Case Seed (3002), a Pack Seed (3004) 
and a Card Seed (3006), each having 64 unique random 
numbers. The Pre-Hash Look Up Tables Source is parti 
tioned into 64 Cases (3008). The Cases (3008) are all 
shuffled together randomly (3010), using the Case Seed 
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(3002) to determine the shuffle pattern, and results in a 
random sequence of Cases (3012). Each Case is further 
partitioned into 64 Packs (3014). The Packs (3.014) within 
each Case are shuffled together randomly (3016), using the 
Pack Seed (3004) to determine the shuffle pattern, and 
results in a random sequence of Packs (3018), identically 
shuffled per Case. Each Pack within each Case is further 
partitioned into 64 Cards (3020) of one byte each. The Cards 
(3020) within each Pack are shuffled together randomly 
(3022), using the Card Seed (3006) to determine the shuffle 
pattern, and results in a random sequence of Cards (3024), 
identically shuffled per Pack. These three levels of shuffling, 
Level 1 (L1), Level 2 (L2) and Level 3 (L3), result in a 
randomly shuffled Pre-Hash Look Up Tables Source, which 
has (2) or 2' random permutations, i.e. entropy of 276 
bits. 

0.091 Referring to FIG. 31, the operation to nested shuffle 
a Encryption Pool of 512 Kilobytes utilizes three Mixing 
Seeds; a Case Seed (3102), a Pack Seed (3104) and a Card 
Seed (3106), each having 64 unique random numbers. The 
Encryption Pool is partitioned into 64 Cases (3108). The 
Cases (3108) are all shuffled together randomly (3110), 
using the Case Seed (3102) to determine the shuffle pattern, 
and results in a random sequence of Cases (3112). Each Case 
is further partitioned into 64 Packs (3114). The Packs (3114) 
within each Case are shuffled together randomly (3116), 
using the Pack Seed (3104) to determine the shuffle pattern, 
and results in a random sequence of Packs (3118), identi 
cally shuffled per Case. Each Pack within each Case is 
further partitioned into 64 Cards (3120) of one byte each. 
The Cards (3120) within each Pack are shuffled together 
randomly (3122), using the Card Seed (3106) to determine 
the shuffle pattern, and results in a random sequence of 
Cards (3124), identically shuffled per Pack. These three 
levels of shuffling, Level 1 (L1), Level 2 (L2) and Level 3 
(L3), result in a randomly shuffled Encryption Pool, which 
has (2) or 2' random permutations, i.e. entropy of 276 
bits. 

0092 Referring to FIG. 32, the operation to nested shuffle 
a Rotation Pool of four megabytes utilizes three Mixing 
Seeds; a Case Seed (3202), a Pack Seed (3204) and a Card 
Seed (3206), each having 128 unique random numbers. The 
Rotation Pool is partitioned into 128 Cases (3208). The 
Cases (3208) are all shuffled together randomly (3210), 
using the Case Seed (3202) to determine the shuffle pattern, 
and results in a random sequence of Cases (3212). Each 
Case is further partitioned into 128 Packs (3214). The Packs 
(3214) within each Case are shuffled together randomly 
(3216), using the Pack Seed (3204) to determine the shuffle 
pattern, and results in a random sequence of Packs (3218), 
identically shuffled per Case. Each Pack within each Case is 
further partitioned into 128 Cards (3220) of one byte each. 
The Cards (3220) within each Pack are shuffled together 
randomly (3222), using the Card Seed (3206) to determine 
the shuffle pattern, and results in a random sequence of 
Cards (3224), identically shuffled per Pack. These three 
levels of shuffling, Level 1 (L1), Level 2 (L2) and Level 3 
(L3), result in a randomly shuffled to Rotation Pool, which 
has (2') or 2' random permutations, i.e. entropy of 660 
bits. 

0093. Referring to FIG.33, the operation to nested shuffle 
a Random Padding Pool of 256 kilobytes utilizes three 
Mixing Seeds; a Case Seed (3302), a Pack Seed (3304) and 
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a Card Seed (3306), each having 64 unique random num 
bers. The Random Padding Pool is partitioned into 64 Cases 
(3308). The Cases (3308) are all shuffled together randomly 
(3310), using the Case Seed (3302) to determine the shuffle 
pattern, and results in a random sequence of Cases (3312). 
Each Case is further partitioned into 64 Packs (3314). The 
Packs (3314) within each Case are shuffled together ran 
domly (3316), using the Pack Seed (3304) to determine the 
shuffle pattern, and results in a random sequence of Packs 
(3318), identically shuffled per Case. Each Pack within each 
Case is further partitioned into 64 Cards (3320) of one byte 
each. The Cards (3320) within each Pack are shuffled 
together randomly (3322), using the Card Seed (3306) to 
determine the shuffle pattern, and results in a random 
sequence of Cards (3324), identically shuffled per Pack. 
These three levels of shuffling, Level 1 (L1), Level 2 (L2) 
and Level 3 (L3), result in a randomly shuffled Random 
Padding Pool, which has (2) or 27 random permuta 
tions, i.e. entropy of 276 bits. 
0094) Referring to FIG. 34, these solid circle aid attached 
line drawings demonstrate the various ways computers (the 
Solid circles) can communicate securely (the lines). A peer 
to-peer connection (3402) shows two computers communi 
cating securely. A hub-and-spoke connection model (3404) 
shows how a server computer may communicate securely 
with outlying client computers. A fully meshed network 
(3406) shows how peers, such as optical switches, may 
communicate securely with any one of the others directly. A 
broadcast network (3408) shows how a group of computers 
may share a communications channel in order to securely 
communicate with one another. 

The Non-Cyclic Pseudo-Random Number Generator 
0.095 The non-cyclic pseudo-random number generator 
of this invention provides a secure and efficient mechanism 
for magnifying the output of a slower hardware random 
number generator. It does so without introducing bias or 
predictable number sequences. It generates the random bits 
in Such a manner as to minimize the burden on the host 
computer and to take full advantage the performance capa 
bilities of modern microprocessor architectures. 
0096. In addition, its overall strength is based on its secret 
buffers and seeds, not in the algorithms complexity. This 
means that if any secret or seed is compromised wholly or 
partially the generator can be quickly repaired with a new 
secret or seed. If the generator is considered too weak for 
whatever reason, then larger secrets and longer seeds can be 
introduced Swiftly and easily without requiring significant 
redesign or changes to existing generator implementations in 
software or hardware, with the possible exception of addi 
tional memory. 
The Vernam Stream Cipher 
0097. The Vernam stream cipher of this invention pro 
vides a secure and efficient mechanism for transmitting 
encrypted data between sender and receiver computers. It 
does not introduce any extra bytes into the encrypted Stream. 
It encrypts and decrypts in Such a manner as to minimize the 
burden on the host computer and to take full advantage the 
performance capabilities of modern microprocessor archi 
tectures. 

0098. In addition, its overall strength is based on its 
shared secret buffers and keys, not in the algorithms com 
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plexity. This means that if any secret or key is compromised 
wholly or partially the cipher can be quickly repaired with 
a new secret or key. If the cipher is considered too weak for 
whatever reason, then larger Secrets and longer keys can be 
introduced Swiftly and easily without requiring significant 
redesign or changes to existing cipher implementations in 
software or hardware, with the possible exception of addi 
tional memory. 
0099 Furthermore, the Vernam Stream Cipher has the 
additional advantages in that 

0.100 it can support a fully meshed network of N 
computers, involving /2x(N-N) encrypted connec 
tions; 

0101 it can support encrypted broadcasts to multiple 
computers simultaneously; 

0102 it can be seamlessly integrated with the Keyed 
One-Way Hash. 

The Keyed One-Way Hash 
0103) The Keyed One-Way Hash, or message authenti 
cation code (MAC), of this invention provides a highly 
secure and efficient mechanism for transmitting a code 
authenticating the data sent between sender and receiver 
computers. It compresses in Such a manner as to minimize 
the burden on the host computer and to take full advantage 
the performance capabilities of modern microprocessor 
architectures. 

0104. In addition, its overall strength is based on its 
shared secret buffers, tables and one-time pad, not in the 
algorithms complexity. This means that if any secret, table 
or pad is compromised wholly or partially the keyed one 
way hash can be quickly repaired with a new secret, table or 
pad. If the hash is considered too weak for whatever reason, 
then larger secrets, tables and pad can be introduced Swiftly 
and easily without requiring significant redesign or changes 
to existing cipher implementations in Software or hardware, 
with the possible exception of additional memory. 
0105. Furthermore, the Keyed One-Way Hash has the 
additional advantages in that 

0106 it can support a fully meshed network of N 
computers, involving /2x(N-N) encrypted connec 
tions; 

0.107 it can support encrypted broadcasts to multiple 
computers; 

0.108 it can be seamlessly integrated with a Vernam 
Stream Cipher. 

0.109 The foregoing descriptions of specific embodi 
ments of the invention have been presented for purposes of 
illustration and description. They are not intended to be 
exhaustive or to limit the invention to the precise embodi 
ments disclosed, and naturally many modifications and 
variations are possible in light of the above teaching. The 
embodiments were chosen and described in order to explain 
the principles of the invention and its practical application, 
to thereby enable others skilled in the art to best utilize the 
invention and various embodiments with various modifica 
tions as are Suited to the particular use contemplated. It is 
intended that the scope of the invention be defined by the 
Claims appended hereto and their equivalents. 
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1-23. (canceled) 
24. An apparatus for generating a keyed one-way hash 

value comprising: 
a. a rotation pool for providing a plurality of rotation 

vectors, each of the plurality of rotation vectors con 
sisting of a series of random rotation values; 

b. a plurality of lookup tables containing random values 
in a table entry; 

c. a compression function configured to receive a block of 
message data, a rotation vector containing the series of 
random rotation values, a plurality of padding values, 
and outputs a final compression value; and 

d. a mechanism connected to the plurality of look-up 
tables configured to substitute a random hash value for 
the final compression value. 
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25. The apparatus according to claim 24 further compris 
ing an encryption pool for providing encryption pads. 

26. The apparatus according to claim 25 further compris 
ing a one time pad encipherment of the hash value using a 
pad extracted in a unique manner from the encryption pool, 
resulting in a message authentication code value. 

27. The apparatus according to claim 24 further compris 
ing a padding pool for providing random padding values. 

28. The apparatus according to claim 27 further compris 
ing a plurality of random padding values. 

29. The apparatus according to claim 24 further compris 
ing a tree construction of multiple, cascaded compression 
functions, which input multiple message blocks and outputs 
the final compression value. 


