发明名称：电化学加工轴承环的方法和包括该电化学方法加工的轴承环的轴承

摘要：一种用于轴承（如滚珠轴承或滚柱轴承）的轴承环（1）的制造方法，其中轴承环（1）绕—轴线（6）转动，去除材料的数量由平行于电极（3）下面的 座圈的表面的电极（3）的截面的选择来控制。因此凹槽（2）的半径保持不变。具有适当凸面形状的电极可以使轴承环的制造限定在一个很小的规格范围 内。因此，本发明还涉及包含根据本发明进行电化学加工的、具有优良工作寿 命和特性的轴承环（1）的轴承。
1. 用于轴承的轴承环的制造方法，由此形成一用作座圈的凹槽，其这样进行电化学加工：使一电流穿过所述轴承环和电极装置之间的狭缝；以与轴承环的凹槽大致相切的方向使电解质供应到狭缝；同时绕一轴线转动轴承环，并且从面对所述电极的所述轴承环的凹槽上除去材料，其特征在于，凹槽（2）的加工包括多个薄的、周向延伸的同轴区的加工，并且电极（3）为一具有一定宽度的电极，加工时的电极沿该宽度方向与每一特定的周向延伸区的转动轴线（6）相切，从而在电化学加工过程中，凹槽（2）的曲率半径保持不变。

2. 如权利要求1所述的方法，其特征在于，轴承环（1）的凹槽（2）通过珩磨形成，并进行电化学加工，使用一具有宽度的电极（3），加工时的电极（3）沿该宽度方向与每一特定的周向延伸区的转动轴线（6）相切，从而使凹槽（2）的曲率半径保持不变。

3. 包含轴承环的轴承，其特征在于，轴承环（1）是如权利要求1或2所述的方法电化学加工的。
电化学加工轴承环的方法和
包括该电化学方法加工的轴承环的轴承

本发明涉及一种用于轴承的轴承环的制造方法，从而可形成一可用作座圈的凹槽，其采用电化学加工方法，先通一电流穿过上述轴承环和电极装置之间的狭缝，再以与轴承环的凹槽大致相切的方向把电解质供应到狭缝，同时绕一轴线转动轴承环，从面对上述电极的上述轴承环的凹槽中除去材料。

这样一种方法已在荷兰专利申请 91.01379 中所公知。在该申请中描述了一种轴承环座圈的电化学加工方法，并使用其滚珠或薄片作为电极。

该方法具有一缺点，即在电化学加工过程中，不仅凹槽的深度会增加，而且凹槽的半径也会增加。这样，使轴承环和转动体匹配更加困难，从而使轴承的工作寿命缩短。

因此，本发明的目的是提供一种简单且具有经济效益的方法来电化学加工轴承环的座圈，从而可更精确地控制形状，尤其是保持轴承环凹槽的曲率半径，从而使轴承的工作寿命增加，并获得更好的噪音特性。

为达到上述目的，本发明提供了一种方法，其中凹槽的加工包括对多个薄的、周向延伸的同轴区的加工，并且电极为一具有一定宽度的电极，该电极沿该宽度方向与每一特定的周向延伸区的转动轴线相切，从而在电化学加工过程中，凹槽的曲率半径保持不变。

因此，通过使用一具有精心选择的凸截面的电极，可以控制在电极下面转动的每一区域的材料去除率，使得凹槽的曲率半径保持不变。
根据优选的实施例，轴承环凹槽通过研磨形成，并进行电化学加工，使用一具有高度电极，该电极沿该宽度方向与每一特定的周向延伸区的转动轴线相切，从而使凹槽的曲率半径保持不变。

这种方法使轴承环在波度、平滑度和曲率半径方面具有优越的特性，从而制造出品质优良的轴承。

因此，本发明还涉及一种包括轴承环的轴承，其中该轴承环根据本发明进行电化学加工。

本发明将通过附图进行说明，其中：
图1是示意性的截面图，示出了一个电极和待加工的轴承环。
图2是沿图1中II-II线的截面图。
图1示出了轴承环1，其包括一个构成轴承环1的座圈的凹槽2，电极3具有一个电极表面4，该表面与凹槽2相对，弯曲的电极表面4和凹槽2被一狭缝5分开，该狭缝例如为200μm。这个弯曲的电极表面4曲率半径与凹槽2的曲率半径相同。电解质，例如硝酸钠溶液，以与凹槽2表面相切的方向供应给狭缝5。轴承环1绕轴线6转动，该轴线6与座圈的中心轴线重合。电流穿过狭缝5以对凹槽2进行电化学加工。

如果电极仍然采用普通矩形截面，那么随着凹槽深度的增加，凹槽的半径也要增大（如外侧虚线所示），这样会增大公差的范围，从而使轴承环和转动体的匹配更加困难。如果不考虑这种半径增大的效果，那么轴承将不会具有正确的内部间隙和接触角度，而且会缩短工作寿命。因此，利用如图2所示的凸起形的电极截面，就可以使在凹槽深度增大的同时保持不变的半径（内侧虚线）成为可能。

通过研磨抛光操作可除去座圈上的波度。如果以矩形电极采用电化学加工方法，由于表面不够精确，则凹槽曲率半径的相应改变会使研磨抛光操作变得无效。本发明的凹槽曲率半径保持不变，使得研磨抛光操作可以除去座圈的波度。这样可以延长轴承的工作寿
本领域的技术人员可以容易地确定电极所需的精确形状。例如，当发现从凹槽的轴线端除去了太多的材料时，那就意味着电极3相应的宽度太大了，因此减小电极3即可。电极3除了可以具有为凸出的截面形状外，还可采用两面凸的截面形状。

本发明并不仅仅局限于滚珠轴承的轴承环，而且可用于其他的轴承，例如滚柱轴承等。因此，术语“曲率半径”是指被保持的凹槽的理想轮廓。