

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2017374044 B2

(54) Title
Modified guide RNAs

(51) International Patent Classification(s)
C12N 15/113 (2010.01)

(21) Application No: **2017374044** (22) Date of Filing: **2017.12.08**

(87) WIPO No: **WO18/107028**

(30) Priority Data

(31) Number **62/431,756** (32) Date **2016.12.08** (33) Country **US**

(43) Publication Date: **2018.06.14**
(44) Accepted Journal Date: **2023.11.30**

(71) Applicant(s)
Intellia Therapeutics, Inc.

(72) Inventor(s)
Smith, Amy Madison Rhoden;Morrissey, David V.;Strapps, Walter

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WO 2016/089433 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization

International Bureau

(10) International Publication Number

WO 2018/107028 A1

(43) International Publication Date

14 June 2018 (14.06.2018)

(51) International Patent Classification:

C12N 15/113 (2010.01)

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(21) International Application Number:

PCT/US2017/065306

(22) International Filing Date:

08 December 2017 (08.12.2017)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/431,756 08 December 2016 (08.12.2016) US

(71) Applicant: INTELLIA THERAPEUTICS, INC. [US/US]; 40 Erie Street, Cambridge, Massachusetts 02139 (US).

(72) Inventors: SMITH, Amy Madison Rhoden; 40 Erie Street, Cambridge, Massachusetts 02139 (US). MORRISSEY, David V.; 40 Erie Street, Cambridge, Massachusetts 02139 (US). STRAPPS, Walter; 40 Erie Street, Cambridge, Massachusetts 02139 (US).

(74) Agent: BAUR, Amelia Feulner et al.; Mcneill Baur PLLC, 125 Cambridge Park Drive, Suite 301, Cambridge, Massachusetts 02140 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

WO 2018/107028 A1

Declarations under Rule 4.17:

- of inventorship (Rule 4.17(iv))

(54) Title: MODIFIED GUIDE RNAs

(57) Abstract: This disclosure relates to modified single and dual guide RNAs having improved in vitro and in vivo activity in gene editing methods.

MODIFIED GUIDE RNAs

SEQUENCE LISTING

[0000] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on December 7, 2017, is named 01155-0004-00PCT_SeqList.txt and is 118,877 bytes in size.

[0001] This application claims the benefit of priority to United States Provisional Application No. 62/431,756, which was filed on December 8, 2016, and which is incorporated by reference in its entirety.

[0002] This disclosure relates to the field of gene editing using CRISPR/Cas systems, a part of the prokaryotic immune system that recognizes and cuts exogenous genetic elements. The CRISPR/Cas system relies on a single nuclease, termed CRISPR-associated protein 9 (Cas9), which induces site-specific breaks in DNA. Cas9 is guided to specific DNA sequences by small RNA molecules termed guide RNA (gRNA). Guide RNA comprises trRNA (also known as tracrRNA) and crisprRNA (crRNA). The trRNA and crRNA may be contained within a single guide RNA (sgRNA) or in two separate RNA molecules of a dual guide RNA (dgRNA). Cas9 in combination with trRNA and crRNA or an sgRNA is termed the Cas9 ribonucleoprotein complex (RNP).

[0003] Oligonucleotides, and in particular RNA, are sometimes degraded in cells and in serum by endonuclease or exonuclease cleavage. Improved methods and compositions for preventing such degradation, improving stability of gRNAs and enhancing gene editing efficiency is desired, especially for therapeutic applications.

SUMMARY

[0004] In some embodiments, therapeutic genome editing tools are provided comprising modified guide RNAs. The modified guide RNAs described herein may improve the stability of the guide RNA and the guide RNA/Cas9 complex and improve the activity of Cas9 (e.g., SpyCas9 and equivalents) to cleave target DNA. In some embodiments, the guide RNA is an sgRNA. In some embodiments, the guide RNA is a dgRNA. In some embodiments, the guide RNA is a tracrRNA. In some embodiments, the guide RNA is a crRNA.

[0005] The guide RNAs described herein comprise at least one modified nucleotide. Modifications may include 2'-O-methyl (2'-O-Me), 2'-O-(2-methoxyethyl) (2'-O-moe), 2'-fluoro (2'-F), phosphorothioate (PS) bond between nucleotides, G-C substitutions, and

inverted abasic linkages between nucleotides and equivalents thereof. Embodiments of the invention include:

[0006] In some embodiments, a single guide RNA (sgRNA) is encompassed comprising a 5' end modification and one or more modification in one or more of: the upper stem region; the hairpin 1 region; and the hairpin 2 region, wherein the 5' end modification comprises at least two phosphorothioate linkages within the first seven nucleotides at the 5' end of the 5' terminus. In some instances, the modification is a 2'-O-methyl (2'-O-Me) modified nucleotide. In some embodiments, the modification is a 2'-fluoro (2'-F) modified nucleotide.

[0007] In some embodiments, the sgRNA comprises modifications at US1 to US12 and/or a modification at H1-1 and/or a modification in H2-1. In some embodiments, the sgRNA comprises modifications at H1-1 to H1-12 and/or H2-1 to H2-15. In some embodiments, the sgRNA comprises one or more modifications in each of the upper stem region, the hairpin 1 region, and the hairpin 2 region. In some embodiments, the sgRNA comprises a modified nucleotide between hairpin 1 and hairpin 2 regions. In some embodiments, the sgRNA comprises a modification in the lower stem region.

[0008] In some embodiments, the sgRNA comprises a modification at the 5' terminus and/or the 3' terminus. In some embodiments, the sgRNA comprises a 3' end modification in the 3' terminus. In some embodiments, the sgRNA comprises modifications on at least two of the last four nucleotides at the 3' end of the 3' terminus. In some embodiments, the sgRNA comprises a 5' end modification in the 5' terminus. In some embodiments, the sgRNA comprises modifications on at least two of the first four nucleotides at the 5' end of the 5' terminus. In some embodiments, the sgRNA comprises a 3' end modification in the 3' terminus and a 5' end modification in the 5' terminus. In some embodiments, the sgRNA comprises modifications on at least two of the last four nucleotides at the 3' end of the 3' terminus and on at least two of the first four nucleotides at the 5' end of the 5' terminus. In some instances, these modifications are 2'-O-Me, 2'-F, 2'-O-moe, or phosphorothioate (PS) bonds linking the nucleotides. In some embodiments, the sgRNA comprises PS bonds between at least two of the last four nucleotides at the 3' end of the 3' terminus and/or at least two of the first four nucleotides at the 5' end of the 5' terminus. In some instances, the sgRNA comprises 5' terminus and 3' terminus with more than one modification as described herein, such as, with PS bonds and 2'-O-Me modifications.

[0009] In some embodiments, the sgRNA comprises a modification in the bulge region. In some embodiments, 50% of the nucleotides in the bulge region are modified, wherein the modification is 2'-O-Me or 2'-F.

[0010] In some embodiments, the sgRNA comprises a modification in the nexus region. In some embodiments, the sgRNA comprises modifications at N15, N16, N17, and/or N18 in the nexus region, wherein the modification is 2'-O-Me or 2'-F. In some instances, N16, N17, and N18 are linked with PS bonds.

[0011] In some embodiments, the sgRNA comprises at least the first three nucleotides at the 5' end of the 5' terminus, and the last three nucleotides at the 3' end of the 3' terminus are modified.

[0012] In some embodiments, the sgRNA comprises modifications at the 3' terminus and/or 5' terminus. In some instances, the first four nucleotides at the 5' end of the 5' terminus, and the last four nucleotides at the 3' end of the 3' terminus are linked with phosphorothioate (PS) bonds. In some embodiments, the 5' and 3' modification comprises 2'-O-Me or 2'-O-moe. In some embodiments, the 5' and 3' modification comprises 2'-F. In some embodiments, the 5' and/or 3' modification comprises PS bonds linking nucleotides. In some embodiments, the 5' and/or 3' modification comprises one or more of 2'-O-Me, 2'-O-moe, 2'-F, and PS bonds linking nucleotides.

[0013] In some embodiments, the sgRNA comprises modifications at the first four nucleotides at the 5' end of the 5' terminus and the last four nucleotides at the 3' end of the 3' terminus. In some instances, these modifications are linking PS bond (i.e., PS bonds that link the first four and last four nucleotides). In some embodiments, the sgRNA further comprises 2'-O-Me modifications at the first three nucleotides at the 5' end of the 5' terminus and the last three nucleotides at the 3' end of the 3' terminus.

[0014] In some embodiments, the sgRNA comprises modifications at the first four nucleotides at the 5' end of the 5' terminus and the last four nucleotides at the 3' end of the 3' terminus, wherein the modifications are at least PS bonds linking the four nucleotides, and further wherein the first three nucleotides at the 5' end of the 5' terminus and the last three nucleotides at the 3' end of the 3' terminus comprise 2'-O-Me, 2'-O-moe, or 2'-F modifications.

[0015] In some embodiments, the sgRNA comprises modifications LS1, LS6, LS7, LS8, LS11, and LS12, wherein the modification is 2'-O-Me or 2'-F.

[0016] In some embodiments, the sgRNA comprises modifications at each of the nucleotides in the bulge region, wherein the modification is 2'-O-Me or 2'-F.

[0017] In some embodiments, the sgRNA comprises modifications at each of the nucleotides in the upper stem region, wherein the modification is 2'-O-Me or 2'-F.

[0018] In some embodiments, the sgRNA comprises modifications at each of the nucleotides in the hairpin 1 region, wherein the modification is 2'-O-Me or 2'-F.

[0019] In some embodiments, the sgRNA comprises modifications at each of the nucleotides in the hairpin 2 region, wherein the modification is 2'-O-Me or 2'-F.

[0020] In some embodiments, an sgRNA is encompassed comprising 2'-O-Me modified nucleotides at the following positions:

- a. the first three nucleotides at the 5' end of the 5' terminus;
- b. LS1, LS6, LS7, LS8, LS11, and/or LS12 in the lower stem region;
- c. B1 and/or B2 in the bulge region;
- d. each nucleotide in the upper stem region;
- e. N16, N17, and/or N18 in the nexus region;
- f. each nucleotide in the hairpin 1 region;
- g. each nucleotide in the hairpin 2 region; and
- h. the last four nucleotides at the 3' end of the 3' terminus.

In some embodiments, B3-B6 are modified with 2'-O-Me. In some instances, the sgRNA further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus. In some embodiments, the sgRNA comprises 2'-F modifications at LS9 and LS10. In some embodiments, the sgRNA comprises 2'F modifications at N15, N16, N17, and N18. In some embodiments, the sgRNA comprises 2'F modifications at H2-9, H2-10, H2-11, H2-12, H2-13, H2-14, and H2-15. In some embodiments, the sgRNA comprises 2'F modifications at the second to last, third to last, and fourth to last nucleotides at the 3' end of the 3' terminus.

[0021] In some embodiments, an sgRNA is encompassed comprising 2'-F modified nucleotides at the following positions:

- a. LS9 and LS10 in the lower stem region;
- b. N15, N16, N17, and N18 in the nexus region; and
- c. H2-9, H2-10, H2-11, H2-12, H2-13, H2-14, and H2-15 in the hairpin 2 region.

In some embodiments, the sgRNA comprises 2'-F modified nucleotides at the second to last, third to last, and fourth to last nucleotides at the 3' terminus. In some embodiments, the sgRNA comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of

the 3' terminus. In some embodiments, the sgRNA comprises 2'-O-Me or 2'-F modified nucleotides at the first three nucleotides at the 5' end of the 5' terminus, and 2'-O-Me or 2'-F modified nucleotides at three of the last four nucleotides at the 3' end of the 3' terminus.

[0022] In some embodiments, an sgRNA is encompassed comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' end of the 5' terminus;
- b. Optional 2'-O-Me modified nucleotides at LS1 and/or LS6;
- c. 2'-O-Me modified nucleotides at US1-US12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- e. Optional 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' end of the 3' terminus; and optionally

further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0023] In some embodiments, an sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' end of the 5' terminus;
- b. 2'-F modified nucleotides at LS1-LS6;
- c. 2'-O-Me modified nucleotides at US1-US12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- e. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' end of the 3' terminus; and optionally

further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0024] In some embodiments, an sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-F modified nucleotides at LS2-LS5;
- c. 2'-O-Me modified nucleotides at LS1 and LS6;
- d. 2'-O-Me modified nucleotides at US1-US12;

- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus and optionally

further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0025] In some embodiments, a sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at LS7, LS8, LS11, and LS12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- e. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus,

and optionally further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0026] In some embodiments, a sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at LS7, LS8, LS11, and LS12;
- d. 2'-F modified nucleotides at LS9 and LS10;
- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus,

and optionally further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0027] In some embodiments, an sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;

- c. 2'-O-Me modified nucleotides at LS8, LS10, and LS12;
- d. 2'-O-F modified nucleotides at LS7, LS9, and LS11;
- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus, and optionally

further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0028] In some embodiments, a sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at LS1, LS6, LS7, LS8, LS11, and LS12
- c. 2'-O-Me modified nucleotides at US1-US12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- e. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus, and optionally

further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus

[0029] In some embodiments, a sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at LS1, LS6, LS7, LS8, LS11, and LS12;
- c. 2'-F modified nucleotides at LS9 and LS10;
- d. 2'-O-Me modified nucleotides at US1-US12;
- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus, and optionally

further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0030] In some embodiments, a sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' end of the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- d. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- e. 2'-O-Me modified nucleotides at H2-1 – H2-8;
- f. 2'-F modified nucleotides at H2-9 – H2-15;
- g. 2'-F modified nucleotides at the second from last, third from last, and fourth from last nucleotide at the 3' terminus; and
- h. a 2'-O-Me modified nucleotide at the last nucleotide at the 3' terminus, and optionally

further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0031] In some embodiments, a sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' end of the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at H1-2, H1-4, H1-6, H1-8, H1-10, and H1-12;
- d. 2'-F modified nucleotides at H1-1, H1-3, H1-5, H1-7, H1-9, and H1-11;
- e. a 2'-F modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-F modified nucleotides at H2-2, H2-4, H2-6, H2-8, H2-10, H2-12; and H2-14;
- g. 2'-O-Me modified nucleotides at H2-1, H2-3, H2-5, H2-7, H2-9, H2-11; H2-13, and H2-15;
- h. 2'-F modified nucleotides at the second from last, and fourth from last nucleotide at the 3' terminus; and
- i. 2'-O-Me modified nucleotide at the third from last and last nucleotide at the 3' end of the 3' terminus,

and optionally further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.

[0032] In some embodiments, a sgRNA is encompassed comprising:

- a. 2'-O-Me modified nucleotides LS8, LS10, LS12, H1-2, H1-4, H1-6, H1-8, H1-10, H1-12, H2-1, H2-3, H2-5, H2-7, H2-9, H2-11, H2-13, and H2-15; and
- b. 2'-F modified nucleotides at LS7, LS9, LS11; H1-1, H1-3, H1-5, H1-7, H1-9, H1-11, H1-13, H2-2, H2-4, H2-6, H2-8, H2-10, H2-12, and H2-14, and optionally further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus; and optionally further comprising:
 - c. 2'-O-Me modified nucleotides at the last and third to last nucleotide at the 3' end of the 3' terminus; and/or
 - d. 2'-F modified nucleotides at the second to last, fourth to last, and/or last nucleotide at the 3' end of the 3' terminus.

[0033] In some embodiments, a sgRNA is encompassed comprising the nucleic acids of any of SEQ ID Nos: 228-353, including the modifications of Table 4. In some embodiments, a sgRNA is encompassed comprising any of SEQ ID Nos: 228-332, including the modifications of Table 4. In some embodiments, an sgRNA is encompassed comprising any of SEQ ID Nos: 235-240, 265-285, and 309-329, including the modifications of Table 4. In some embodiments, an sgRNA is encompassed comprising SEQ ID No: 240. In some embodiments, a sgRNA is encompassed comprising SEQ ID No. 240, including the modifications of Table 4. In some embodiments, a sgRNA is encompassed comprising SEQ ID No: 242. In some embodiments, a sgRNA is encompassed comprising SEQ ID No: 358. In additional embodiments, a sgRNA comprising nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 235-240, 265-285, and 309-329, wherein the modification at each nucleotide of the sgRNA that corresponds to a nucleotide of the reference sequence identifier in Table 4, is identical to or equivalent to the modification shown in the reference sequence identifier in Table 4, optionally further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus. In some embodiments, the sgRNA further comprises at least three PS bonds linking the nucleotides in the hairpin 1 region. In some embodiments, the sgRNA further comprises at least three PS bonds linking the nucleotides in

the hairpin 2 region. In some embodiments, the sgRNA further comprises at least three PS bonds linking the nucleotides in the upper stem region. In some embodiments, the sgRNA forms a ribonucleoprotein complex with *S. pyogenes* Cas9.

FIGURE LEGENDS

[0034] FIG 1 shows percent editing as measured by next-generation sequence (NGS) of mouse transthyretin (TTR) gene following transfection of Neuro2A cells with modified crRNAs together with Cas9 mRNA and unmodified trRNA (TR000002).

[0035] FIG 2 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with modified trRNAs together with unmodified crRNA (CR000686) and Cas9 mRNA.

[0036] FIG 3 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with Cas9 mRNA and crRNAs and trRNAs having G-C pairings not found in parental sequences.

[0037] FIG 4 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with modified crRNAs and trRNAs together with Cas9 mRNA. Standard deviations follow the value.

[0038] FIG 5 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with modified sgRNAs together with Cas9 mRNA.

[0039] FIG 6 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with modified crRNAs and unmodified trRNA (TR000002) together with Cas9 mRNA. The asterisk denotes a dual guide that for technical reasons did not show activity in this experiment. This dual guide was tested again in the experiment represented in Figure 9, in which it showed editing activity.

[0040] FIG 7 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with unmodified crRNA (CR000686) and modified trRNAs together with Cas9 mRNA.

[0041] FIG 8 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with Cas9 mRNA and crRNA and trRNA pairings with G-C pairings or G-U mismatches not found in the parental sequences.

[0042] FIG 9 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with modified crRNAs and modified trRNAs together with Cas9 mRNA. Standard deviations follow the value.

[0043] FIG 10 shows percent editing as measured by NGS of mouse TTR gene following transfection of Neuro2A cells with modified sgRNAs together with Cas9 mRNA.

[0044] FIG 11 shows percent editing as measured by NGS of mouse Factor VII (FVII) gene following transfection of Neuro2A cells with modified sgRNAs together with Cas9 mRNA.

[0045] FIGs 12A and 12B show percent editing as measured by NGS of mouse TTR (FIG 12A) or FVII (FIG 12B) following transfection of Neuro2A cells with modified crRNAs and unmodified trRNA together with Cas9 mRNA.

[0046] FIGs 13A and 13B shows percent editing as measured by NGS of mouse TTR (FIG 13A) or FVII (FIG 13B) following transfection of Neuro2A cells with modified trRNAs and unmodified crRNA together with Cas9 mRNA.

[0047] FIGs 14A, 14B, 14C, and 14D show interferon alpha (IFN-alpha, 14A), interleukin 6 (IL-6, 14B), monocyte chemotactic protein 1 (MCP-1, 14C), and tumor necrosis factor alpha (TNF-alpha, 14D) levels in serum after in vivo administration of LNPs comprising Cas9 mRNA and sgRNAs.

[0048] FIGs 15A, 15B, and 15C show in vivo results following administration of LNPs comprising Cas9 mRNA and sgRNAs. FIG 15A shows percentage of total editing in liver. FIG 15B shows serum TTR levels. FIG 15C shows the mean and standard deviation for the results of FIG 15A. FIG 15D summarizes modifications to the G000209 sgRNA (SEQ ID NO: 228). FIG 15E summarizes modifications to the G000267 sgRNA (SEQ ID NO: 234). In FIG 15D and 15E, the nucleotides in bold are 2'-O-Me modified.

[0049] FIGs 16A, 16B, 16C, and 16D show interferon alpha (IFN-alpha, 16A), tumor necrosis factor alpha (TNF-alpha, 16B), interleukin 6 (IL-6, 16C), and monocyte chemotactic protein 1 (MCP-1, 16D) levels in serum after in vivo administration of LNPs comprising Cas9 mRNA and sgRNAs.

[0050] FIGs 17A, 17B, 17C, and 17D show in vivo results following administration of LNPs comprising Cas9 mRNA and sgRNAs. FIG 17A shows percentage of total editing in liver. FIG 17B shows the mean and standard deviation for the results of FIG 17A. FIG 17C shows serum TTR levels. FIG 17D shows the mean and standard deviation for the results of FIG 17B.

[0051] FIGs 18A, 18B, and 18C show in vivo results following administration of LNPs comprising Cas9 mRNA and sgRNAs. FIG 18A shows percentage of total editing in liver. FIG 18B summarizes liver editing data. FIG 18C shows serum TTR levels. MPK = milligrams per kilogram; BLOD = below level of detection.

[0052] FIGs 19A, 19B, 19C, and 19D show interferon alpha (IFN-alpha, 19A), monocyte chemotactic protein 1 (MCP-1, 19B), interleukin 6 (IL-6, 19C), and tumor necrosis factor alpha (TNF-alpha, 19D) levels in serum after in vivo administration of LNPs comprising Cas9 mRNA and sgRNAs.

[0053] FIGs 20A and 20B show editing in liver of FVII locus (FIG 20A) and TTR locus (FIG 20B) following in vivo administration of LNPs comprising Cas9 mRNA and sgRNAs.

[0054] FIGs 21A, 21B, and 21C show schematics of an annotated sgRNA (SEQ ID NO: 341) (FIG 21A), non-annotated dgRNA CR000686 (SEQ ID NO: 1) and TR000002 (SEQ ID NO: 188) (FIG 21B), and annotated dgRNA CR000686 (SEQ ID NO: 1) and TR000002 (SEQ ID NO: 188) (FIG 21C).

[0055] FIG 22A, 22B, and 22C show in vivo results following administration of LNPs comprising Cas9 mRNA and sgRNAs. FIG 22A shows percentage of total editing of TTR locus in liver. FIG 22B summarizes liver editing data. FIG 22C shows serum TTR levels.

[0056] FIG 23A, 23B, and 23C show in vivo results following administration of LNPs comprising Cas9 mRNA and sgRNAs. FIG 23A shows percentage of total editing of TTR locus in liver. FIG 23B summarizes liver editing data. FIG 23C shows serum TTR levels.

[0057] FIGs 24A, 24B, and 24C show editing in primary mouse hepatocytes following administration of LNPs comprising Cas9 mRNA and sgRNAs. FIG 24A shows editing percentage of total editing of TTR locus. FIG 24B shows normalized transforms of editing percentage as a function of mRNA dose used to calculate EC50. FIG 24C shows EC50 values for the LNPs tested.

DETAILED DESCRIPTION

[0058] Provided herein are modified guide RNAs, including dual and single guide RNAs for use in gene editing methods. The modified guides are more stable and show improved in vitro and in vivo efficacy as compared to their non-modified counterparts. Sequences of engineered and tested guide RNAs are shown in Table 4.

Table 4:

SEQ ID NO	Name	Alias	Description	Sequence
	crRNA			
1	CR000686		unmodified	CCAGUCCAGCGAGGCCAAAGGGUUUUUAGAGCUAUUGCUGUUUUUG
2	CR003393	CR686-1	upper	CCAGUCCAGCGAGGCCAAAGGGUUUUUAGAGCUAUUGCUGUUUUUG GmUmUmUmUmG
3	CR003394	CR686-2	partial upper	CCAGUCCAGCGAGGCCAAAGGGUUUUUAGAGCUAUUGCUGUUUUUG mUmUmUmG
4	CR003395	CR686-3	partial upper	CCAGUCCAGCGAGGCCAAAGGGUUUUUAGAGCUAUUGCUGUUUUUG UmG
5	CR003396	CR686-4	partial upper	CCAGUCCAGCGAGGCCAAAGGGUUUUUAGAGCUAUUGCUGUUUUUG UmG
6	CR003397	CR686-5	lower	CCAGUCCAGCGAGGCCAAAGGGmUmUmUmUmAGAGCUAUGCUGUUUU UG
7	CR003398	CR686-6	lower walk	CCAGUCCAGCGAGGCCAAAGGGmGUUUUAGAGCUAUGCUGUUUUUG
8	CR003399	CR686-7	lower walk	CCAGUCCAGCGAGGCCAAAGGGmGUUUUAGAGCUAUGCUGUUUUUG
9	CR003400	CR686-8	lower walk	CCAGUCCAGCGAGGCCAAAGGGmGUUUUAGAGCUAUGCUGUUUUUG
10	CR003401	CR686-9	lower walk	CCAGUCCAGCGAGGCCAAAGGGmGUUUUAGAGCUAUGCUGUUUUUG
11	CR003402	CR686-10	lower walk	CCAGUCCAGCGAGGCCAAAGGGmGUUUUAGAGCUAUGCUGUUUUUG
12	CR003403	CR686-11	lower walk	CCAGUCCAGCGAGGCCAAAGGGmGUUUUAGAGCUAUGCUGUUUUUG
13	CR003404	CR686-12	partial lower	CCAGUCCAGCGAGGCCAAAGGGmUmUmUmAGAGCUAUGCUGUUUUUG
14	CR003405	CR686-13	partial lower	CCAGUCCAGCGAGGCCAAAGGGmUmUmAGAGCUAUGCUGUUUUUG
15	CR003406	CR686-GC1	Lower GC	CCAGUCCAGCGAGGCCAAAGGGmGCAGAGCUAUGCUGUUUUUG
16	CR003407	CR686-GC3	Upper GC	CCAGUCCAGCGAGGCCAAAGGGUUUUUAGAGCUAUGCUGGGCG
17	CR003408	CR686-GC5	Lower Upper GC	CCAGUCCAGCGAGGCCAAAGGGCAAGAGCUAUGCUGGGCG
18	CR003409	CR686 all OMe		mCmCmAmGmUmCmAmGmCmUmAmGmAmGmUmUmUmUmUmUmUmGm mG
19	CR003393 - mod only		upper	GUUUUAGAGCUAmUmGmCmUmAmUmGmUmUmUmUmUmG
20	CR003394 - mod only		partial upper	GUUUUAGAGCUAmUmGmCmUmAmUmUmUmUmG

SEQ ID NO	Name	Alias	Description	Sequence
21	CR003395 - mod only		partial upper	GUUUUAGAGCUAUGCmUmGmUmUmUmG
22	CR003396 - mod only		partial upper	GUUUUAGAGCUAUGCmUmUmUmUmG
23	CR003397 - mod only		lower	mGmUmUmUmUmAGAGCUAUGCmGUUUUG
24	CR003398 - mod only		lower walk	mGUUUUAGAGCUAUGCmGUUUUG
25	CR003399 - mod only		lower walk	GmUUUUAGAGCUAUGCmGUUUUG
26	CR003400 - mod only		lower walk	GUmUUUAGAGCUAUGCmGUUUUG
27	CR003401 - mod only		lower walk	GUUmUUAGAGCUAUGCmGUUUUG
28	CR003402 - mod only		lower walk	GUUmUAGAGCUAUGCmGUUUUG
29	CR003403 - mod only		lower walk	GUUUUmAGAGCUAUGCmGUUUUG
30	CR003404 - mod only		partial lower	GmUmUmUmAGAGCUAUGCmGUUUUG
31	CR003405 - mod only		partial lower	GUmUmUUAGAGCUAUGCmGUUUUG
32	CR003721	CR686-14	upper and lower	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAGAmGmCmUmAmUmGmCmUmUmUmUmUmG
33	CR003722	CR686-15	lower combo	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAGAGCUAUGCmGUUUUG
34	CR003723	CR686-16	upper, lower combo	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAGAmGmCmUmAmUmGmCmUm
35	CR003724	CR686-17	lower combo	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAGAGCUAUGCmGUUUUG
36	CR003725	CR686-18	upper, lower combo	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAGAmGmCmUmAmUmGmCmUm
37	CR003726	CR686-19	nexus walk	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAGmCmUmAmUmGmCmUm
38	CR003727	CR686-20	nexus walk	mGmUmUmUmUmUmG
39	CR003728	CR686-21	nexus walk	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAmUmGmCmUmAmUmGmCmUm
40	CR003729	CR686-22	nexus walk	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAmUmGmCmUmAmUmGmCmUm
41	CR003730	CR686-23	2'F lower walk	CCAGUCCAGCGAGGCCAAAGGmGUUUUmAmUmGmCmUmAmUmGmCmUm

SEQ ID NO	Name	Alias	Description	Sequence
42	CR003731	CR686-24	2'F lower walk	CCAGUCCAGCGAGGCCAAGGGUfUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
43	CR003732	CR686-25	2'F lower walk	CCAGUCCAGCGAGGCCAAGGGUUfUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
44	CR003733	CR686-26	2'F lower walk	CCAGUCCAGCGAGGCCAAGGGUUUUfUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
45	CR003734	CR686-27	2'F lower combo	CCAGUCCAGCGAGGCCAAGGGfGTfUfUfUfAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
46	CR003735	CR686-28	lower alt	CCAGUCCAGCGAGGCCAAGGGfGmUfUmUfUmAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
47	CR003736	CR686-29	lower alt	CCAGUCCAGCGAGGCCAAGGGfGfUmUfUmUfAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
48	CR003737	CR686-GC6	Lower GC	CCAGUCCAGCGAGGCCAAGGGGUUCAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
49	CR003738	CR686-GC7	Lower C walk	CCAGUCCAGCGAGGCCAAGGGCUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
50	CR003739	CR686-GC8	Lower C walk	CCAGUCCAGCGAGGCCAAGGGUCUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
51	CR003740	CR686-GC9	Lower C walk	CCAGUCCAGCGAGGCCAAGGGUUUCUAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
52	CR003741	CR686-GC10	Lower C walk	CCAGUCCAGCGAGGCCAAGGGUUUCAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
53	CR003721-mod only	CR686-14-mod only	upper and lower	mGUUUUmAGAmGmCmUmAmUmGmCmUmUmUmUmG
54	CR003722-mod only	CR686-15-mod only	lower combo	mGUUUUmAGAGCUAUGCUGUUUUG
55	CR003723-mod only	CR686-16-mod only	upper, lower combo	mGUUUUmAGAmGmCmUmAmUmGmCmUmUmUmUmG
56	CR003724-mod only	CR686-17-mod only	lower combo	mGUUUUmAGAGCUAUGCUGUUUUG
57	CR003725-mod only	CR686-18-mod only	upper, lower combo	mGUUUUmAGAmGmCmUmAmUmGmCmUmUmUmUmG

SEQ ID NO	Name	Alias	Description	Sequence
58	CR003726-mod only	CR686-19-mod only	nexus walk	GUUUUAmGAmGmCmUmAmUmGmCmUmUmUmUmG
59	CR003727-mod only	CR686-20-mod only	nexus walk	GUUUUAmGAmGmCmUmAmUmGmCmUmUmUmUmG
60	CR003728-mod only	CR686-21-mod only	nexus walk	GUUUUAmGAmGmCmUmAmUmGmCmUmUmUmUmG
61	CR003729-mod only	CR686-22-mod only	nexus walk	GUUUUAmGAmGmCmUmAmUmGmCmUmUmUmUmG
62	CR003730-mod only	CR686-23-mod only	2'F lower walk	GfUUUUAGfAmGmCmUmAmUmGmCmUmUmUmUmG
63	CR003731-mod only	CR686-24-mod only	2'F lower walk	GfUUUUAGfAmGmCmUmAmUmGmCmUmUmUmUmG
64	CR003732-mod only	CR686-25-mod only	2'F lower walk	GUUUUAGfAmGmCmUmAmUmGmCmUmUmUmUmG
65	CR003733-mod only	CR686-26-mod only	2'F lower walk	GUUUUAGfAmGmCmUmAmUmGmCmUmUmUmUmG
66	CR003734-mod only	CR686-27-mod only	2'F lower combo	fGfufufufufAGAmGmCmUmAmUmGmCmUmUmUmG
67	CR003735-mod only	CR686-28-mod only	lower alt	fgmUfmUfmUfAGAmGmCmUmAmUmGmCmUmUmUmG
68	CR003736-mod only	CR686-29-mod only	lower alt	mgfUmUfmUfAGAmGmCmUmAmUmGmCmUmUmUmG
69	CR003737-mod only	CR686-GC6-mod only	Lower GC	GUCUCAGAmGmCmUmAmUmGmCmUmUmUmUmG
70	CR003738-mod only	CR686-GC7-mod only	Lower C walk	GCUUUAGAmGmCmUmAmUmGmCmUmUmUmUmG
71	CR003739-mod only	CR686-GC8-mod only	Lower C walk	GCUUUAGAmGmCmUmAmUmGmCmUmUmUmUmG
72	CR003740-mod only	CR686-GC9-mod only	Lower C walk	GUUUCAGAmGmCmUmAmUmGmCmUmUmUmUmG
73	CR003741-mod only	CR686-GC10-mod only	Lower C walk	GUUUCAGAmGmCmUmAmUmGmCmUmUmUmUmG
74	CR000705		unmodified	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG
75	CR004188	CR705-1	upper	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG GmUmUmUmUmG
76	CR004189	CR705-2	partial upper	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG mUmUmG
77	CR004190	CR705-3	partial upper	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG UmG
78	CR004191	CR705-4	partial upper	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG UmG
79	CR004192	CR705-5	lower	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG UG
80	CR004193	CR705-6	lower walk	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG
81	CR004194	CR705-7	lower walk	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG
82	CR004195	CR705-8	lower walk	UUACAGCCACGUUCUACAGCAGUUUUAGAGCUAUGCUGUUUG

SEQ ID NO	Name	Alias	Description	Sequence
83	CR004196	CR705-9	lower walk	UUACAGGCCACGUUCUACAGCCAGUUmUAGAGCUAUGCUGUUUUG
84	CR004197	CR705-10	lower walk	UUACAGGCCACGUUCUACAGCCAGUUmUAGAGCUAUGCUGUUUUG
85	CR004198	CR705-11	lower walk	UUACAGGCCACGUUCUACAGCCAGUUmUAGAGCUAUGCUGUUUUG
86	CR004199	CR705-14	upper and lower	UUACAGGCCACGUUCUACAGCCAGCAGGUUmAGAmGmCmUmAmUmGmCmUmGm
87	CR004200	CR705-15	lower combo	UUACAGGCCACGUUCUACAGCCAGCAGGUUmAGAGCUAUGCUGUUUUG
88	CR004201	CR705-16	upper, lower combo	UUACAGGCCACGUUCUACAGCCAGGUUmAGAGCUAUGCUGUUUUG
89	CR004202	CR705-17	lower combo	UUACAGGCCACGUUCUACAGCCAGGUUmAGAGCUAUGCUGUUUUG
90	CR004203	CR705-18	upper, lower combo	UUACAGGCCACGUUCUACAGCCAGGUUmAGAmGmCmUmAmUmGmCmUmGm
91	CR004204	CR705-19	nexus walk	UUACAGGCCACGUUCUACAGCCAGGUUmAGAmGmCmUmAmUmGmCmUmGm
92	CR004205	CR705-20	nexus walk	UUACAGGCCACGUUCUACAGCCAGGUUmAGmAmGmCmUmAmUmGmCmUmGm
93	CR004206	CR705-21	nexus walk	UUACAGGCCACGUUCUACAGCCAGGUUmAfGmCmUmAmUmGmCmUmGm
94	CR004207	CR705-22	nexus walk	UUACAGGCCACGUUCUACAGCCAGGUUmAGfAmGmCmUmAmUmGmCmUmGm
95	CR004208	CR705-23	2'F lower walk	UUACAGGCCACGUUCUACAGCCAGGUUmAGAmGmCmUmAmUmGmCmUmGm
96	CR004209	CR705-24	2'F lower walk	UUACAGGCCACGUUCUACAGCCAGGUUmAGAmGmCmUmAmUmGmCmUmGm
97	CR004210	CR705-25	2'F lower walk	UUACAGGCCACGUUCUACAGCCAGGUUmAmGmCmUmAmUmGmCmUmGm
98	CR004211	CR705-26	2'F lower walk	UUACAGGCCACGUUCUACAGCCAGGUUmAmGmCmUmAmUmGmCmUmGm
99	CR004212	CR705-27	2'F lower combo	UUACAGGCCACGUUCUACAGCCAGGUUmAmGmCmUmAmUmGmCmUmGm

SEQ ID NO	Name	Alias	Description	Sequence
100	CR004213	CR705-28	lower alt	UUACAGCCACGUUCUACAGCAfGmUfUUmAGAmGmCmUmAmUmG mCmUmGmUmUmUmUmG
101	CR004214	CR705-29	lower alt	UUACAGCCACGUUCUACAGCAmGfUmUfUmUFAGAmGmCmUmAmUmG mCmUmGmUmUmUmUmG
102	CR004215	CR705-GC1	Lower GC	UUACAGCCACGUUCUACAGCAGGGCAGAGCUAUGCUGUUUUG
103	CR004216	CR705-GC3	Upper GC	UUACAGCCACGUUCUACAGCAGGUUUUAGCUAUGCUGGC
104	CR004188-mod only	CR705-1-mod only	upper	GUUUUAGAmGmCmUmAmUmGmCmUmUmUmUmUmG
105	CR004189-mod only	CR705-2-mod only	partial upper	GUUUUAGAGGUAmUmGmCmUmUmUmUmUmG
106	CR004190-mod only	CR705-3-mod only	partial upper	GUUUUAGAGGUAmGmCmUmUmUmUmUmG
107	CR004191-mod only	CR705-4-mod only	partial upper	GUUUUAGAGGUAmGmCmUmUmUmUmG
108	CR004192-mod only	CR705-5-mod only	lower	mGmUmUmUmUmAGAGCUAUGCUGUUUUG
109	CR004193-mod only	CR705-6-mod only	lower walk	mGUUUUAGAGGUAmGmCmUmUmUmUmG
110	CR004194-mod only	CR705-7-mod only	lower walk	GmUUUUAGAGGUAmGmCmUmUmUmUmG
111	CR004195-mod only- mod only	CR705-8-mod only	lower walk	GUmUUUUAGAGGUAmGmCmUmUmUmUmG
112	CR004196-mod only	CR705-9-mod only	lower walk	GUUmUUUAGAGGUAmGmCmUmUmUmUmG
113	CR004197-mod only	CR705-10-mod only	lower walk	GUUUmUAGAGGUAmGmCmUmUmUmUmG
114	CR004198-mod only	CR705-11-mod only	lower walk	GUUUUmUAGAGGUAmGmCmUmUmUmUmG
115	CR004199-mod only	CR705-14-mod only	upper and lower	mGUUUUmUmAGAGGUAmGmCmUmUmUmUmG
116	CR004200-mod only	CR705-15-mod only	lower combo	mGUUUUmUmAGAGGUAmGmCmUmUmUmUmG
117	CR004201-mod only	CR705-16-mod only	upper, lower combo	mGUUUUmAGAGGUAmGmCmUmUmUmUmG
118	CR004202-mod only	CR705-17-mod only	lower combo	mGUUUUmAGAGGUAmGmCmUmUmUmUmG
119	CR004203-mod only	CR705-18-mod only	upper, lower combo	mGUUUUAGAmGmCmUmAmUmUmUmUmUmG
120	CR004204-mod only	CR705-19-mod only	nexus walk	GUUUUAmGAmGmCmUmAmUmUmUmUmG
121	CR004205-mod only	CR705-20-mod only	nexus walk	GUUUUAGAmGmCmUmAmUmUmUmUmG
122	CR004206-mod only	CR705-21-mod only	nexus walk	GAmGmCmUmAmUmGmCmUmUmUmUmG
123	CR004207-mod only	CR705-22-mod only	nexus walk	GfAmGmCmUmAmUmGmCmUmUmUmUmG

SEQ ID NO	Name	Alias	Description	Sequence
124	CR004208-mod only	CR705-23-mod only	2'F lower walk	GfUUUUAGAAGmCmUmAmUmGmCmUmGmUmUmUmG
125	CR004209-mod only	CR705-24-mod only	2'F lower walk	GfUUUAGAAGmCmUmAmUmGmCmUmGmUmUmUmG
126	CR004210-mod only	CR705-25-mod only	2'F lower walk	GUUUUAGAAGmCmUmAmUmGmCmUmGmUmUmUmG
127	CR004211-mod only	CR705-26-mod only	2'F lower walk	GUUUUAGAAGmCmUmAmUmGmCmUmGmUmUmUmG
128	CR004212-mod only	CR705-27-mod only	2'F lower combo	fgfUfUfUfAGAmGmCmUmAmUmGmCmUmGmUmUmG
129	CR004213-mod only	CR705-28-mod only	lower alt	fGmUfUmUfUmAGAmGmCmUmAmUmGmCmUmGmUmUmG
130	CR004214-mod only	CR705-29-mod only	lower alt	mGfUmUfUmUfAGAmGmCmUmAmUmGmCmUmGmUmUmG
131	CR000657		unmodified	CAGGGCUCUUAGAAUCUCCGUUUUAGAGCUAUGCUGUUUUG
132	CR004218	CR657-1	upper	CAGGGCUCUUAGAAUCUCCGUUUUAGAGAmGmCmUmAmUmGmCmUm
133	CR004219	CR657-2	partial upper	GmUmUmUmUmG
134	CR004220	CR657-3	partial upper	CAGGGCUCUUAGAAUCUCCGUUUUAGAGCUAUGCmUmGmUmUm
135	CR004221	CR657-4	partial upper	CAGGGCUCUUAGAAUCUCCGUUUUAGAGCUAUGCUGUmUmUmG
136	CR004222	CR657-5	lower	CAGGGCUCUUAGAAUCUCCmGmUmUmUmAGAGCUAUGCGUUU
137	CR004223	CR657-6	lower walk	CAGGGCUCUUAGAAUCUCCmGUUUUAGAGCUAUGCUGUUUUUG
138	CR004224	CR657-7	lower walk	CAGGGCUCUUAGAAUCUCCmGUUUUAGAGCUAUGCUGUUUUUG
139	CR004225	CR657-8	lower walk	CAGGGCUCUUAGAAUCUCCGUUUUAGAGCUAUGCUGUUUUUG
140	CR004226	CR657-9	lower walk	CAGGGCUCUUAGAAUCUCCGUUUUAGAGCUAUGCUGUUUUUG
141	CR004227	CR657-10	lower walk	CAGGGCUCUUAGAAUCUCCGUUUUAGAGCUAUGCUGUUUUUG
142	CR004228	CR657-11	lower walk	CAGGGCUCUUAGAAUCUCCmGUUUUAGAGCUAUGCUGUUUUUG
143	CR004229	CR657-14	upper and lower	mUmGmUmUmUmG
144	CR004230	CR657-15	lower combo	CAGGGCUCUUAGAAUCUCCmGUUUUAGAGCUAUGCUGUUUUUG
145	CR004231	CR657-16	upper, lower combo	CAGGGCUCUUAGAAUCUCCmGUUUUAGAGmGmCmUmAmUmGmCm
146	CR004232	CR657-17	lower combo	CAGGGCUCUUAGAAUCUCCmGUUUUAGAGCUAUGCUGUUUUUG

SEQ ID NO	Name	Alias	Description	Sequence
147	CR004233	CR657-18	upper, lower combo	CAGGGCUCUUAGAACUCUCCmGUUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
148	CR004234	CR657-19	nexus walk	CAGGGCUCUUAGAACUCUCCGUUUUAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
149	CR004235	CR657-20	nexus walk	CAGGGCUCUUAGAACUCUCCGUUUUAGmAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
150	CR004236	CR657-21	nexus walk	CAGGGCUCUUAGAACUCUCCGUUUUAGfAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
151	CR004237	CR657-22	nexus walk	CAGGGCUCUUAGAACUCUCCGUUUUAGfAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
152	CR004238	CR657-23	2'F lower walk	CAGGGCUCUUAGAACUCUCCGFUUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
153	CR004239	CR657-24	2'F lower walk	CAGGGCUCUUAGAACUCUCCGFUUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
154	CR004240	CR657-25	2'F lower walk	CAGGGCUCUUAGAACUCUCCGUUUUAGAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
155	CR004241	CR657-26	2'F lower walk	CAGGGCUCUUAGAACUCUCCGUUUUfUAGAmGmCmUmAmUmGmCmUmGmUmUmUmUmG
156	CR004242	CR657-27	2'F lower combo	CAGGGCUCUUAGAACUCUCCfGfUfUfUfUfAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
157	CR004243	CR657-28	lower alt	CAGGGCUCUUAGAACUCUCCfGfUfUfUfUfAGAmGmCmUmAmUmGmCmUmGmUmUmUmG
158	CR004244	CR657-29	lower alt	CAGGGCUCUUAGAACUCUCCmGfUmUfUmUfAGAmGmCmUmAmUmGmCmUmUmUmUmG
159	CR004245	CR657-GC1	Lower GC	CAGGGCUCUUAGAACUCUCCGGCGAGCUAUGCUGUUUUU
160	CR004246	CR657-GC3	Upper GC	CAGGGCUCUUAGAACUCUCCGUUUUAGGCUAUGCUGGGCG
161	CR004218-mod only	CR657-1-mod only	upper	GUUUUAGAmGmCmUmAmUmGmUmUmUmUmG
162	CR004219-mod only	CR657-2-mod only	partial upper	GUUUUAGAGCUAmUmGmCmUmGmUmUmUmUmG
163	CR004220-mod only	CR657-3-mod only	partial upper	GUUUUAGAGCUAUGCmUmGmUmUmUmUmG

SEQ ID NO	Name	Alias	Description	Sequence
164	CR004221-mod only	CR657-4-mod only	partial upper	GUUUUAGAGCUAUGCUGUmUmUmUmG
165	CR004222-mod only	CR657-5-mod only	lower	mGmUmUmUmUmAGAGCUAUGCUGUUUUG
166	CR004223-mod only	CR657-6-mod only	lower walk	mGUUUUAGAGCUAUGCUGUUUUG
167	CR004224-mod only	CR657-7-mod only	lower walk	GmUUUAGAGCUAUGCUGUUUUG
168	CR004225-mod only	CR657-8-mod only	lower walk	GUmUUUAGAGCUAUGCUGUUUUG
169	CR004226-mod only	CR657-9-mod only	lower walk	GUUmUUUAGAGCUAUGCUGUUUUG
170	CR004227-mod only	CR657-10-mod only	lower walk	GUUmUAGAGCUAUGCUGUUUUG
171	CR004228-mod only	CR657-11-mod only	lower walk	GUUUUmAGAGCUAUGCUGUUUUG
172	CR004229-mod only	CR657-14-mod only	upper and lower	mGUUUUmAGAGAmGmCmUmAmUmGmCmUmUmUmG
173	CR004230-mod only	CR657-15-mod only	lower combo	mGUUUmAGAGCUAUGCUGUUUUG
174	CR004231-mod only	CR657-16-mod only	upper, lower	mGUUUUmAGAGAmGmCmUmAmUmGmCmUmUmUmG
175	CR004232-mod only	CR657-17-mod only	combo	mGUUUUmAGAGCUAUGCUGUUUUG
176	CR004233-mod only	CR657-18-mod only	upper, lower	mGUUUUAGAGAmGmCmUmAmUmGmCmUmUmUmUmG
177	CR004234-mod only	CR657-19-mod only	nexus walk	GUUUUAmGAmGmCmUmAmUmGmCmUmUmUmUmG
178	CR004235-mod only	CR657-20-mod only	nexus walk	GUUUUAGmAmGmCmUmAmUmGmCmUmUmUmUmG
179	CR004236-mod only	CR657-21-mod only	nexus walk	GUUUUAGmAmGmCmUmAmUmGmCmUmUmUmUmG
180	CR004237-mod only	CR657-22-mod only	nexus walk	GUUUUAGfAmGmCmUmAmUmGmCmUmUmUmUmG
181	CR004238-mod only	CR657-23-mod only	2'F lower walk	GfUUUUAGAmGmCmUmAmUmGmCmUmUmUmUmG
182	CR004239-mod only	CR657-24-mod only	2'F lower walk	GfUUUAGAmGmCmUmAmUmGmCmUmUmUmUmG
183	CR004240-mod only	CR657-25-mod only	2'F lower walk	GUUUUAGAmGmCmUmAmUmGmCmUmUmUmUmG
184	CR004241-mod only	CR657-26-mod only	2'F lower walk	GUUUfUAGAmGmCmUmAmUmGmCmUmUmUmUmG
185	CR004242-mod only	CR657-27-mod only	2'F lower walk	fGUfUfUfUfAGAmGmCmUmAmUmGmCmUmUmUmG
186	CR004243-mod only	CR657-28-mod only	lower alt	fGmUfUmUfUmAGAmGmCmUmAmUmGmCmUmUmUmG
187	CR004244-mod only	CR657-29-mod only	lower alt	mGfUmUfUmUfAGAmGmCmUmAmUmGmCmUmUmUmG
	trRNA			AACAGCAUAGCAAGUUAAAUAAGGUAGGUAGGUUAUCACUUGAAAAAG UGGCACCGAGUCGGGUUUUUUU
188	TR000002		unmodified	

SEQ ID NO	Name	Alias	Description	Sequence
189	TR000110	TR2-v2-1	shortened tail	AACAGCAUAGCAAGUUAAAAUAAGGUAGUCCGUUAUCACUUUGAAAAAG UGGCACCCGAGUCGGUGCUUUU mAmAmCmAmGmCmAmUmAmGmCmAmAmAmAmAmGmUmGmCmAmCmGm
190	TR000111	TR2-v2-2	Upper, hairpins	AUCAmAmCmUmUmGmAmAmAmAmGmUmUmUmUm AmGmUmCmGmGmUmGmCmUmUmUm
191	TR000112	TR2-v2-3	upper only	mAmAmCmAmGmCmAmUmAmGmCmAmGmUmGmCmAmUmUm AUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
192	TR000113	TR2-v2-4	hairpin 1	AACAGCAUAGCAAGUUAAAAUAAGGUAGUCCGUUAUCAmAmCmUmUm GmAmAmAmAmGmUmGmCmAmGmUmGmCmAmUmUmUm
193	TR000114	TR2-v2-5	hairpin 2	AACAGCAUAGCAAGUUAAAAUAAGGUAGUCCGUUAUCACUUUGAAAAAG UGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmAmGmUmUmUm mAmAmCmAmGmCmAmUmAmGmCmAmCmGmUmCmGmUmUmGmUmGm
194	TR000115	TR2-v2-6	upper, hairpin 2	AUCAACUUGAAAAAGUGUmGmCmAmCmGmUmCmGmUmUmGmUmGm mCmUmUmUm AACAGCAUAGCAAGUUAAAAUAAGGUAGUCCGUAGUCCGUAMCmUmUm GmAmAmAmGmUmGmCmAmCmCmGmAmGmUmCmGmUmCmGm
195	TR000116	TR2-v2-7	both hairpins	UmGmCmUmUmUm AACAGCAUAGCAAGGUUMAAAAAAAGGUAGUCCGUUAACUUUGAAA
196	TR000117	TR2-v2-8	lower walk	AAGUGGCACCGAGUCGGUGCUUUU AACAGCAUAGCAAGGUAMAAAGGUAGUCCGUAGUCCGUUAACUUUGAAA
197	TR000118	TR2-v2-9	lower walk	AAGUGGGACCGAGUCGGUGCUUUU AACAGCAUAGCAAGGUAAAAMAmUAAAGGUAGUCCGUAGUCCGUUAACUUUGA
198	TR000119	TR2-v2-10	lower walk	AAGUGGGACCGAGUCGGUGCUUUU AACAGCAUAGCAAGGUAAAAMAmUAAAGGUAGUCCGUAGUCCGUUAACUUUGA
199	TR000120	TR2-v2-11	partial nexus	AAAAGUGGCACCGAGUCGGUGCUUUU AACAGCAUAGCAAGGUAAAUAAGGUAGUCCGUAMUmCmAACUUGA
200	TR000121	TR2-v2-12	partial nexus	AAAAGUGGGACCCGAGUCGGUGCUUUU AACAGCAUAGCAAGGUUGGGCUAAGGUAGUCCGUUAACUUUGAAAAAG
201	TR000122	TR2-GC1	Lower GC	UGGCACCGAGUCGGUGCUUUU

SEQ ID NO	Name	Alias	Description	Sequence
202	TR000123	TR2-GC3	upper GC	GCCAGCAUAGCAAGUUAAAAAAGGCUAGUCCGUUAUCUACUUUGAAAAAG UGGCACCGAGUGGGUGGUUUU
203	TR000124	TR2-GC5	Lower Upper GC	GCCAGCAUAGCAAGGUUGCGCUAAGGCUAGUCCGUUAUCUACUUUGAAAAAA
204	TR000125	TR2 all OMe		mAmAmCmAmGmCmAmUmAmGmAmCmAmUmAmCmAmUmAmCmAmUmAmU mAmAmGmGmCmUmAmGmUmCmGmUmUmAmUmCmAmUmCmAmUmCmUm mUmGmAmAmAmAmGmUmGmCmAmCmAmGmUmGmCmAmGmAmGmUmCmG mGmUmGmCmU
205	TR000126	TR2-v2-13	lower	mAmAmCmAmGmCmAmUmAmGmCAAGUmUmAmAmAmUmAmAmUmAmAmU AGUCCGUUAUCAmAmCmUmUmGmAmAmAmUmGmAmAmUmGmGmCmAmA mCnCmGmAmGmUmCmGmUmGmCmUmUmUmUmUmUmUmUmUmUmUmUmU
206	TR000127	TR2-v2-14	lower	mAmAmCmAmGmCmAmUmGmAmAmAmAmGmUmGmUmGmCmAmUmAmC UCCGUUAUCAmAmCmUmUmGmAmAmAmUmGmCmUmUmUmUmUmUmUmU
207	TR000128	TR2-v2-15	lower	mAmAmCmAmGmCmAmUmAmGmCAAGUmUmGmAmAmAmGmUmGmCmAm GUCCGUUAUCAmAmCmUmUmGmAmAmAmUmGmCmUmUmUmUmUmUmUmU
208	TR000129	TR2-v2-16	lower alt	mAmAmCmAmGmCmAmUmAmGmCAAGUmAmAmAmAmGmUmGmCmUmUmU UCCGUUAUCAmAmCmUmUmGmAmAmAmAmGmUmGmCmUmUmUmUmUmU
209	TR000130	TR2-v2-17	lower alt	mAmAmCmAmGmCmAmUmAmGmCAAGUmAmAmAmAmGmUmGmCmUmUmU UCCGUUAUCAmAmCmUmUmGmAmAmAmAmGmUmGmCmUmUmUmUmUmU
210	TR000131	TR2-v2-18	nexus walk	mAmAmCmAmGmCmAmUmAmGmCAAGUUAAAAAGGUAGUCCGU AUCCGUUAUCAmAmCmUmUmGmAmAmAmGmUmGmGmCmAmCmCmG mAmGmUmCmGmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmU
211	TR000132	TR2-v2-19	nexus walk	mAmGmUmCmGmUmUmGmAmAmAmGmUmGmGmCmAmCmCmG mAmGmUmCmGmUmUmGmAmAmAmGmUmGmGmCmAmCmCmG

SEQ ID NO	Name	Alias	Description	Sequence
212	TR000133	TR2-v2-20	nexus walk	mAmAmCmAmGmCmAmUmAmGmCAAGUUAAAAUAGGUAGUCGUU AmUCAmAmCmUmUmGmAmAmAmAmGmUmGmCmAmCmCmG mAmGmUmCmGmUmGmCmUmUmU
213	TR000134	TR2-v2-21	nexus walk	mAmAmCmAmGmCmAmUmAmGmCAAGUUAAAAUAGGUAGUCGUU mAUCAmAmCmUmUmGmAmAmAmAmGmUmGmCmAmCmCmG mAmGmUmCmGmUmGmCmUmUmU
214	TR000135	TR2-v2-22	nexus walk	mAmAmCmAmGmCmAmUmAmGmGmUmGmCmAmCmCm mUAUCAmAmCmUmUmGmAmAmAmGmUmGmCmAmCmCm GmAmGmUmCmGmUmGmCmUmUmU
215	TR000136	TR2-v2-23	nexus walk	mAmAmCmAmGmCmAmUmAmGmCAAGUUAAAAUAGGUAGUCGUU UUUAUCAmAmCmUmUmGmAmAmAmGmUmGmCmAmCmCm GmAmGmUmCmGmUmGmCmUmUmU
216	TR000137	TR2-v2-24	nexus walk	mAmAmCmAmGmCmAmAmAmAmGmUmGmCmAmCmCm AUfCfAmAmCmUmUmGmAmAmAmGmUmGmCmAmCmCm mAmGmUmCmGmUmUmGmGmUmGmCmUmUmU
217	TR000138	TR2-v2-25	nexus walk	mAmAmCmAmGmCmAmUmAmGmCAAGUUAAAAUAGGUAGUCGUU fafUCAmAmCmUmUmGmAmAmAmGmUmGmCmAmCmCm mAmGmUmCmGmUmUmGmGmUmGmCmUmUmU
218	TR000139	TR2-v2-26	nexus walk	mAmAmCmAmGmCmAmUmAmGmCAAGUUAAAAUAGGUAGUCGUU UAUCAmAmCmUmUmGmGmUmGmCmAmCmCm mAmGmUmCmGmUmUmGmGmUmGmCmAmCmCm
219	TR000140	TR2-v2-27	nexus walk	mAmAmCmAmGmCmAmUmAmGmCAAGUUAAAAUAGGUAGUC CGUUAUCAmAmCmUmUmGmAmAmAmGmUmGmCmAmCm CmGmAmGmUmCmGmUmUmGmCmUmUmU
220	TR000141	TR2-v2-28	nexus walk	mAmAmCmAmAmCmUmUmGmAmAmAmGmUmGmCmAmCm CmGmAmGmUmCmGmUmUmGmCmAmCmUmUmU

SEQ ID NO	Name	Alias	Description	Sequence
231	G000264	G209-3	tetraloop	mC*mC*mA*GUCCAGGAGGCAAAGGUUUUAGAGCUAmAmAmAU AGCAAGUUAAAUAAGGUUAUCUACUUGAAAAGUGGCACCG GAGUCGGUGCmU*mU*mU*U
232	G000265	G209-4	upper	mC*mC*mA*GUCCAGGAGGCAAAGGUUUUAGAGCUAmGmCmUmAGAAA UmAmGmCAAGUUAAAUAAGGUUAUCUACUUGAAAAGUGUG GCACCGAGUCGGUGCmU*mU*mU*U
233	G000266	G209-5	upper and loop	mC*mC*mA*GUCCAGGAGGCAAAGGUUUUAGAGCUAmGmCmUmAmGmA mAmAmUmAmGmCAAGUUAAAUAAGGUUAUCUACUUGAAA AAAGUGGCACCGAGUCGGUGCmU*mU*mU*U
234	G000267	G209-6	upper, loop, hairpins	mC*mC*mA*GUCCAGGAGGCAAAGGUUUUAGAGCUAmGmCmUmAmCmU mAmAmUmAmGmCAAGUUAAAUAAGGUUAUCUAmGmCmUmGmCmUmCmG mUmGmAmAmAmAmGmUmGmCmAmCmCmGmAmGmUmCmG mGmUmGmCmU*mU*mU*mU
235	G000262-mod only	G209-1-mod only	hairpin 2	GUUUUAGAGGUAGAAAAGCAAGUAAAAAUAGGUUAAGGUAGUCGUAGUCGUUAUC CUUAGAAAAGGUUmGmCmAmCmAmAmGmUmGmCmAmGmUmGmCmUmGmCm U*mU*mU*mU
236	G000263-mod only	G209-2-mod only	hairpins	GUUUUAGAGGUAGAAAAGCAAGUAAAAAUAGGUUAAGGUAGUCGUAGUCGUUAUC AmCmUmUmGmAmAmAmAmGmUmGmCmAmGmAmGm UmCmGmGmUmGmCmU*mU*mU*mU
237	G000264-mod only	G209-3-mod only	tetraloop	GUUUUAGAGGUAGAAAAGGUAGUCGGAGUCGGUGCmU*mU*mU*U UAUCAACUUGAAAAGUGGUAGUCGGAGUCGGUGCmU*mU*mU*U
238	G000265-mod only	G209-4-mod only	upper	GUUUUAGAGGUAGAAAAGGUAGUCGGAGUCGGUGCmU*mU*mU*U UCCGUUUACUUGAAAAGUGGUAGUCGGAGUCGGUGCmU*mU*mU*U
239	G000266-mod only	G209-5-mod only	upper and loop	GUUUUAGAGGUAGAAAAGGUAGUCGGAGUCGGUGCmU*mU*mU*U GCUAGUCGGUUACUACUUGAAAAGUGGUAGUCGGAGUCGGUGCmU*mU*U
240	G000267-mod only	G209-6-mod only	upper, loop, hairpins	GUUUUAGGUAGGUAGUCGGUUACUACUUGAAAAGUGGUAGUCGGAGUCGGUGCmU*mU*U GCUAGUCGGUUACUACUUGAAAAGUGGUAGUCGGAGUCGGUGCmU*mU*U

SEQ ID NO	Name	Alias	Description	Sequence
249	G000336	G211-12	lower tr	mCmUmUmGmAmAmGmUmGmGmCmAmCmCmGmAmGm mCmGmGmUmGmCmU*mU*mU*mU*mU mU*mA*CAGCCACGCUUACAGCAGUUUAGAmGmCmUmAmGmAm AmAmUmAmGmCAAGUfUmAfAmAfAmUAAAGGUUAGUCCGUUAUCAmA mCmUmUmGmAmAmGmUmGmGmCmAmCmCmGmAmGm mCmGmUmGmCmU*mU*mU*mU*mU
250	G000337	G211-13	lower all	mU*mA*CAGCCACGCUUACAGCAGUUUUmAGAmGmCmUmAmG mAmAmUmAmGmCAAGUfUmAmUAAAmAmUAAAGGUUAGUCCGUUAUCAmA mAmCmUmUmGmAmAmGmUmGmCmAmCmCmGmAmG mUmCmGmGmUmGmCmU*mU*mU*mU
251	G000338	G211-14	lower all	mU*mA*CAGCCACGCUUACAGCAGUUUUmAGAmGmCmUmAmG mAmAmUmAmGmCAAGUfUmAfAmAfAmUAAAGGUUAGUCCGUUAUCAmA mAmCmUmUmGmAmAmAmGmUmGmCmAmCmCmGmAm GmUmCmGmUmGmCmU*mU*mU*mU*mU
252	G000339	G211-15	lower all	mU*mA*CAGCCACGCUUACAGCAGfGfUfUfUfAGAmGmCmUmAmG AmAmUmAmGmCAAGUfUmAmUAAAmAmUAAAGGUUAGUCCGUUAUCAmA GmUmCmGmGmUmGmCmU*mU*mU*mU
253	G000340	G211-16	lower all	mU*mA*CAGCCACGCUUACAGCAGfGfUfUfUfAGAmGmCmUmAmG mAmAmUmAmGmCAAGUfUmAmUAAAmAmGmUmGmCmAmCmCmGmAm GmUmCmGmGmUmGmCmU*mU*mU*mU
254	G000341	G211-17	lower all	mU*mA*CAGCCACGCUUACAGCAGfGfUfUfUfAGAmGmCmUmAmG mAmAmUmAmGmCAAGUfUmAfAmAmUAAAGGUUAGUCCGUUAUCAmA GmUmCmGmGmUmGmCmU*mU*mU
255	G000342	G211-18	lower all	mU*mA*CAGCCACGCUUACAGCAGfGfUfUfUfAGAmGmCmUmAmG mAmAmUmAmGmCAAGUfUmAfAmAfAmUAAAGGUUAGUCCGUUAUCAmA

SEQ ID NO	Name	Alias	Description	Sequence
				AmAmCmUmUmGmAmAmAmGmUmGmCmAmGmGmAmGmAm GmUmCmGmGmUmGmCnU*mU*mU*mU*mU*mU
256	G000343	G211-19	Bulge cr	mU*mA*CAGCCACGUCUACAGCAGUUUUAmGmAmGmCmUmAmG mAmAmAmUmAmGmCAAGUUAAAUAAGGUAGUCGUUAUCAmAmC mUmUmGmAmAmAmAmGmUmGmGmAmGmAmGmUmC mGmGmUmGmCmU*mU*mU*mU
257	G000344	G211-20	Bulge tr	mU*mA*CAGCCACGUCUACAGCAGUUUUAGAmGmCmUmAmGmAm AmAmUmAmGmCmAmAmGmUmGmCmAmGmAmGmUmC CmUmUmGmAmAmAmGmUmGmCmU*mU*mU*mU
258	G000345	G211-21	nexus	mU*mA*CAGCCACGUCUACAGCAGUUUUAGGUAGUCGUUFAtUfcfAmAmCmU AmAmUmAmGmCAAGUUAAAUAAGGUAGUCGUUFAtUfcfAmAmCmU mUmGmAmAmAmAmGmUmGmGmCmAmCmCmAmGmAmGmUmCmG mGmUmGmCmU*mU*mU*mU
259	G000346	G211-22	nexus	mU*mA*CAGCCACGUCUACAGCAGfGfUfUfUfAmGmAmGmCmUmAmGmAm AmAmUmAmGmCAAGUUAAAUAAGGUAGUCGUAGUCGUAmUmCmAmAmC mUmUmGmAmAmAmAmGmUmGmCmAmCmCmGmAmGmUmCmUmAmGmUmCmAmAmC mGmUmGmCmU*mU*mU*mU
260	G000347	G211-23	lower all	mU*mA*CAGCCACGUCUACAGCAGfGfUfUfUfAmGmAmGmCmUmAmGmAm mGmAmAmAmUmAmGmCmAmAmGmUmUmAfAtAmAmUAGGUAGU CCGUAmUmCmAmAmCmUmUmGmAmAmAmGmUmGmGmCm AmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
261	G000348	G211-24	no PS	mUmUmACAGCCACGUCUACAGCAGUUUUAGAmGmCmUmAmGmAmAm AmUmAmGmCAAGUUAAAUAAGGUAGUCGUUAUCAmAmCmUmUm GmAmAmAmAmGmUmGmCmAmCmCmGmAmGmUmCmGmGm UmGmCmUmUmUmU
262	G000349	G211-25	2 OMe PS	mU*mA*CAGCCACGUCUACAGCAGUUUAGAmGmCmUmAmGmAmA mAmUmAmGmCAAGUUAAAUAAGGUAGUCGUUAUCAmAmCmUmUm

SEQ ID NO	Name	Alias	Description	Sequence
271	G000337-mod only	G211-13-mod only	lower all	mGUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUmUmAAA mAmUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmGm UmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*m U
272	G000338-mod only	G211-14-mod only	lower all	mGUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUmUmAfAf AmAmUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmG mUmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*m mU
273	G000339-mod only	G211-15-mod only	lower all	mGUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUmUmAfAm AfAmUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmG mUmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*m mU
274	G000340-mod only	G211-16-mod only	lower all	fGfUfUfUfUfAGAmGmCmUmAmGmAmAmUmAmGmCAAGUmUmAA AmAmUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmG mUmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*m mU
275	G000341-mod only	G211-17-mod only	lower all	fGfUfUfUfUfAGAmGmCmUmAmGmAmAmUmAmGmCAAGUmUmAfA mAfAmUAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAm GmUmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*m *mU
276	G000342-mod only	G211-18-mod only	lower all	GUUUUAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAAAU AAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmGmUmG mGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
277	G000343-mod only	G211-19-mod only	Bulge cr	

SEQ ID NO	Name	Alias	Description	Sequence
278	G000344-mod only	G211-20-mod only	Bulge tr	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCmAmAmGmUm AUAGGCUAGUCGUUAUCAmAmCmUmUmGmAmAmAmAmGmUm GmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
279	G000345-mod only	G211-21-mod only	nexus	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCmAmAmGmUm GCUAGUCGUUFafUfcfAmAmCmUmUmGmAmAmAmGmUmGm GmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
280	G000346-mod only	G211-22-mod only	nexus	GUUUUAGAmGmCmUmAmGmAmAmCmUmUmGmAmAmAmGmUm GCUAGUCGUUAUAmCmAmCmUmUmGmGmUmGmCmU*mU*mU*mU mGmCmAmCmCmGmAmGmUmCmGmUmGmCmAmCmGmUmCmGmGm fGfUfUfUfAmGmAmGmCmUmAmGmAmAmUmAmGmCmAmAmG mUmAfAfAmAmUAGGCUAGUCGUUAUUmCmAmAmCmUmUmG mAmAmAmAmAmGmUmGmCmAmCmGmAmGmUmCmGmUmCmGmGm mGmCmU*mU*mU*mU
281	G000347-mod only	G211-23-mod only	lower all	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAGGUAAAAUAAG GCUAGUCGUUAUCAmAmCmUmUmGmAmAmAmGmUmGmUm CmAmCmCmGmAmGmUmCmGmUmGmCmUmUmU
282	G000348-mod only	G211-24-mod only	no PS	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAGGUAAAAUAAG GCUAGUCGUUAUCAmAmCmUmUmGmAmAmAmGmUmGmUm CmAmCmCmGmAmGmUmCmGmUmGmCmUmUmU
283	G000349-mod only	G211-25-mod only	2 OMe PS	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAGGUAAAAUAAG GCUAGUCGUUAUCAmAmCmUmUmGmAmAmAmGmUmGmUm CmAmCmCmGmAmGfUfcfGfGfUfcfU*fU*fU*mU
284	G000350-mod only	G211-26-mod only	2'F hairpin	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAGGUAAAAUAAG GCUAGUCGUUAUCAfAmCfUmUfGmCfU*mU*fU*mU
285	G000351-mod only	G211-27-mod only	Alt hairpin	mC*mA*mG*GGCUCUUGAAGAUCUCGUUUUAGAGCUAGAAAAGCAAG fGmAfGmUfcfCmGfGmUfGmCfU*mU*fU*mU
286	G000208		end mod	UUAAAAGGCUAGUCGUUAUCAACUUGAAAAGUGGCACCGAGUCG GUGCmU*mU*mU

SEQ ID NO	Name	Alias	Description	Sequence
287	G000373	mod6		mC*mA*mG*GGCUUUAGAAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUUAAAAGGUAGCmUmAmGmCmUmCmG mUmGmAmAmAmAmGmUmGmCmAmGmAmGmUmCmG mGmUmGmCmU*mU*mU*mU
288	G000352	G208-7	lower cr	mC*mA*mG*GGCUUUAGAAGAUCUCCGUUUAGAmGmCmUmAmG mAmAmUmAmGmCAAGUUAAAAGGUAGCmUmAmGmUmCmAmC mUmUmGmAmAmAmGmUmGmCmAmCmGmAmGmUmC mGmUmGmCmU*mU*mU*mU
289	G000353	G208-8	lower cr	mC*mA*mG*GGCUUUAGAAGAUCUCCmGflfufufUUmAGAmGmCmUmA mAmAmAmUmAmGmCAAGUUAAAAGGUAGCmUmAmGmUmCmAmC mUmUmGmAmAmAmGmUmGmCmAmCmGmAmGmUmC mGmGmUmGmCmU*mU*mU*mU
290	G000354	G208-9	lower cr	mC*mA*mG*GGCUUUAGAAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUmUmAAAmAmGmUmGmCmAmCmGmAmGmU mCmGmUmGmCmU*mU*mU*mU
291	G000355	G208-10	lower tr	mC*mA*mG*GGCUUUAGAAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUmUmAfAmfAmGmUmGmCmAmCmGmAmGm AmCmUmUmGmAmAmAmGmUmGmCmAmCmGmAmGm
292	G000356	G208-11	lower tr	UmCmGmGmUmGmCmU*mU*mU*mU
293	G000357	G208-12	lower tr	mC*mA*mG*GGCUUUAGAAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUmAfAmfAmGmUmGmCmAmCmGmAmGm AmCmUmUmGmAmAmGmUmGmCmAmCmGmAmGm

SEQ ID NO	Name	Alias	Description	Sequence
294	G000358	G208-13	lower all	mC* mA* mG* GGCUUUAGAUCUCCmGUUUUmAGAmGmCmUmAmG mAmAmUmAmGmCAAGUmUmAAAAmAmUAGGUAGUCCGUUAUC mAmCmUmUmGmAmAmAmGmUmGmCmAmCmCmGmAmG mUmCmGmGmUmGmCmU* mU* mU* mU
295	G000359	G208-14	lower all	mC* mA* mG* GGCUUUAGAUCUCCmGUUUUmAGAmGmCmUmAmG mAmAmUmAmGmCAAGUmUmAfAmUAGGUAGUCCGUUAUC AmAmCmUmUmGmAmAmGmUmGmCmAmCmCmGmAm GmUmCmGmGmUmGmCmU* mU* mU* mU
296	G000360	G208-15	lower all	mC* mA* mG* GGCUUUAGAUCUCCmGUUUUmAGAmGmCmUmAmG mAmAmUmAmGmCAAGUmUmAfAmUAGGUAGUCCGUUAUC AmAmCmUmUmGmAmAmAmGmUmGmCmAmCmCmGmAm GmUmCmGmGmUmGmCmU* mU* mU* mU
297	G000361	G208-16	lower all	mC* mA* mG* GGCUUUAGAUCUCCfUfUfUfUfUfUfUfUfUfUfUf mAmAmUmAmGmCAAGUmUmAfAmUAGGUAGUCCGUUAUC mAmCmUmUmGmAmAmAmAmGmUmGmGmCmAmCmCmGmAm mUmCmGmGmUmGmCmU* mU* mU* mU
298	G000362	G208-17	lower all	mC* mA* mG* GGCUUUAGAUCUCCfUfUfUfUfUfUfUfUfUfUf mAmAmUmAmGmCAAGUmUmAfAmUAGGUAGUCCGUUAUC AmAmCmUmUmGmAmAmAmGmUmGmCmAmCmCmGmAm GmUmCmGmGmUmGmCmU* mU* mU* mU
299	G000363	G208-18	lower all	mC* mA* mG* GGCUUUAGAUCUCCGUUUAmGmAmGmCmUmAmG mAmAmUmAmGmCAAGUUAAAUAAGGUAGUCCGUUAUCAmAmC mUmUmGmAmAmAmGmUmGmCmAmCmCmGmAmGmUmC mGmGmUmGmCmU* mU* mU* mU
300	G000364	G208-19	Bulge cr	

SEQ ID NO	Name	Alias	Description	Sequence
301	G000365	G208-20	Bulge tr	mC* mA* mG* GGCUUUAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCmAmGmUUAAAUAAGGUAGUCGUUAUCAmA mCmUmUmGmAmAmAmGmUmGmCmAmCmCmGmAmGm mCmGmGmUmGmCmU* mU* mU
302	G000366	G208-21	nexus	mC* mA* mG* GGCUUUAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUUAAAUAAGGUAGUCGUUAUCfAmAmC mUmUmGmAmAmAmGmUmGmGmAmCmCmGmAmGmUmC mGmGmUmGmCmU* mU* mU
303	G000367	G208-22	nexus	mC* mA* mG* GGCUUUAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUUAAAUAAGGUAGUCGUUAUCAmCmAmAm CmUmUmGmAmAmAmGmUmGmGmAmCmCmGmAmGmUm CmGmGmUmGmCmU* mU* mU
304	G000368	G208-23	lower all	mC* mA* mG* GGCUUUAGAUCUCCfGUfUfUfAmGmAmGmCmUm AmGmAmAmUmAmGmCmAmAmCmUmUmGmAmAmAmGmUmGmGmC UCCGUUAmUmCmAmAmCmUmUmGmGmUmGmCmU* mU* mU
305	G000369	G208-24	no PS	mCmAmGGGUUUAGAUCUCCGUUUAGAmGmCmUmAmGmAmA mAmUmAmGmCAAGUUAAAUAAGGUAGUCGUUAUCAmAmCmUm mGmAmAmAmAmGmUmGmGmCmAmCmCmGmAmGmUmCmGmG mUmGmCmUmUmUmU
306	G000370	G208-25	2 OMe PS	mC* mA* mG* GGCUUUAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUUAAAUAAGGUAGUCGUUAUCAmAmCmU mUmGmCmUmU* mU
307	G000371	G208-26	2'F hairpin	mC* mA* mG* GGCUUUAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmAmAmGmUmGmGmAmCmCmGmAmGfUfCfGfGU fGfCfU* fU* fU

SEQ ID NO	Name	Alias	Description	Sequence
308	G000372	G208-27	Alt hairpin	mC* mA * mG * GGCUUUAGAUCUCCGUUUAGAmGmCmUmAmGmA mAmAmUmAmGmCAAGUUAAAAGCUAGUCGUUAUCAfAmCfUmU fGmAfAmAfGmUfGmGfCmAfGmCfGmAfGmUfCmGfGmCfU * mU*fU*mU
309	G000352-mod only	G208-7-mod only	lower cr	mGUUUUmAGAmGmCmUmAmGmAmUmAmGmAmAmGmUmGmCmUmUmGmAmAmGmUmGmCmU*mU*mU*mU
310	G000353-mod only	G208-8-mod only	lower cr	AAGGCUAGUCCGUUAUCAmAmGmAmAmUmAmGmCAAGUUAAA fGfUfUfUfUfAGAmGmCmUmAmGmAmAmUmAmGmUmGmCmUmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
311	G000354-mod only	G208-9-mod only	lower cr	AUAAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmGmUm GmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
312	G000355-mod only	G208-10-mod only	lower tr	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGGUUmAAAmA mUAAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmGmU mGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
313	G000356-mod only	G208-11-mod only	lower tr	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGGUUmAAfAfAm AmUAAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmGmU mGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
314	G000357-mod only	G208-12-mod only	lower tr	GUUUUAGAmGmCmUmAmGmAmAmCmUmUmGmAmAmAmGmU mUAAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmGmU mGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU*mU
315	G000358-mod only	G208-13-mod only	lower all	mGUUUUmAGAmGmCmUmAmGmAmAmUmAmGmCAAGUmUmAAA mAmUAAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmGmUmGmGmUmCmGmUmCmGmUmGmCmU*mU*mU*mU
316	G000359-mod only	G208-14-mod only	lower all	mGUUUUmAGAmGmCmUmAmGmAmAmUmAmGmCAAGUmUmAfAmAmUAAAGGCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmGmAmAmAmG

SEQ ID NO	Name	Alias	Description	Sequence
				mUmGmGmCmAmCmCmGmAmGmUmCmGmGmUmGmCmU*mU*mU* mU
317	G000360-mod only	G208-15-mod only	lower all	mGUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUfUmAfAm AfAmUAGGCCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmG mUmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU* mU
318	G000361-mod only	G208-16-mod only	lower all	fgfUfUfUfAGAmGmCmUmAmGmAmAmUmAmGmCAAGUfUmAA AmAmUAGGCCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmG mUmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU* mU
319	G000362-mod only	G208-17-mod only	lower all	fgfUfUfUfAGAmGmCmUmAmGmAmAmUmAmGmCAAGUfUmAfA fAmAmUAGGCCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmG mUmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU* mU
320	G000363-mod only	G208-18-mod only	lower all	fgfUfUfUfAGAmGmCmUmAmGmAmAmUmAmGmCAAGUfUmAfA mAfAmUAGGCCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmG mUmGmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU* mU
321	G000364-mod only	G208-19-mod only	Bulge cr	GUUUUAmGmAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAAAU AAGGCCUAGUCCGUUAUCAmAmCmUmUmGmAmAmAmAmGmUmG mUmGmCmAmCmCmGmAmGmUmCmGmUmGmCmU*mU*mU* mU
322	G000365-mod only	G208-20-mod only	Bulge tr	GUUUUAGAmGmCmUmAmGmAmGmUmCmGmUmGmCmU*mU*mU* mU
323	G000366-mod only	G208-21-mod only	nexus	GUAGUCCGUUAfUffCfAmAmCmUmUmGmAmAmGmUmGmCmU*mU*mU* mU

SEQ ID NO	Name	Alias	Description	Sequence
324	G000367-mod only	G208-22-mod only	nexus	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmUmCmAmAmCmUmUmGmAmAmAmAmGmUmG mGmCmAmCmGmAmGmUmCmGmUmGmUmGmCmU*mU*mU*mU fGUfufufAmGmAmGmCmUmAmGmAmAmUmAmGmCmAmAmG mUmUmAfAfAmAmUAGGUAGUCCGUUAmUmCmAmAmCmUmGmG mAmAmAmAmAmGmUmGmGmAmCmCmGmAmGmUmCmGmGm mGmCmU*mU*mU*mU
325	G000368-mod only	G208-23-mod only	lower all	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGmUmCmGmUmGmUmUmUmUm GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGmUmCmGmUmGmUmUmUmUm GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGfUfGfGfUfGfCU*fU*fU*mU GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U
326	G000369-mod only	G208-24-mod only	no PS	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGmUmCmGmUmGmUmUmUmUm GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGfUfGfGfUfGfCU*fU*fU*mU GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U
327	G000370-mod only	G208-25-mod only	2 OM _e PS	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGmUmCmGmUmGmUmUmUmUm GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGfUfGfGfUfGfCU*fU*fU*mU GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U
328	G000371-mod only	G208-26-mod only	2'F hairpin	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCmUmUmGmAmAmAmAmGmUmGmGm CmAmCmCmGmAmGmUmCmGmUmGmUmUmUmUm GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U
329	G000372-mod only	G208-27-mod only	Alt hairpin	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U
330	G000269		end mod	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U
331	G000283		mod6	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U
332	G000285		unmod	GUUUUAGAmGmCmUmAmGmAmAmUmAmGmCAAGUUAAAUAAG GCUAGUCCGUUAmCfAmCfUmUfGmAfAmAfAmAfGmUfGm fGmAfGmUfCmGfGmUfGmCfU*mU*fU*mU mC*mC*AUACUCCUACAGCACCAGUUUAGAGCUAGAAAUAAGCAAG UUAAAUAAGGUAGUCCGUUACUACUUGAAAAGUGGCACCGAGUC GUUGCmU*mU*mU*U

[0059] “Guide RNA” and “gRNA” are used herein interchangeably to refer collectively to either an sgRNA, a trRNA (also known as tracrRNA), or a crRNA (also known as a CRISPR RNA). The crRNA and trRNA may be associated on one RNA molecule (single guide RNA [sgRNA]) or in two separate RNA molecules (dual guide RNA [dgRNA]). “Guide RNA” or “gRNA” refers to each type.

[0060] The trRNA sequences may be naturally-occurring, or the trRNA sequence may include modifications or variations compared to naturally-occurring sequences.

[0061] “Editing efficiency” or “editing percentage” or “percent editing” as used herein is the total number of sequence reads with insertions or deletions of nucleotides into the target region of interest over the total number of sequence reads following cleavage by a Cas RNP.

[0062] “Hairpin” as used herein describes a loop of nucleic acids that is created when a nucleic acid strand folds and forms base pairs with another section of the same strand. A hairpin may form a structure that comprises a loop or a U-shape. In some embodiments, a hairpin may be comprised of a RNA loop. Hairpins can be formed with two complementary sequences in a single nucleic acid molecule bind together, with a folding or wrinkling of the molecule. In some embodiments, hairpins comprise stem or stem loop structures.

[0063] “Regions” as used herein describes conserved groups of nucleic acids. Regions may also be referred to as “modules” or “domains.” Regions of a gRNA may perform particular functions, e.g., in directing endonuclease activity of the RNP, for example as described in *Briner AE et al., Molecular Cell 56: 333–339 (2014)*. Regions of a gRNA are described in Tables 1-3.

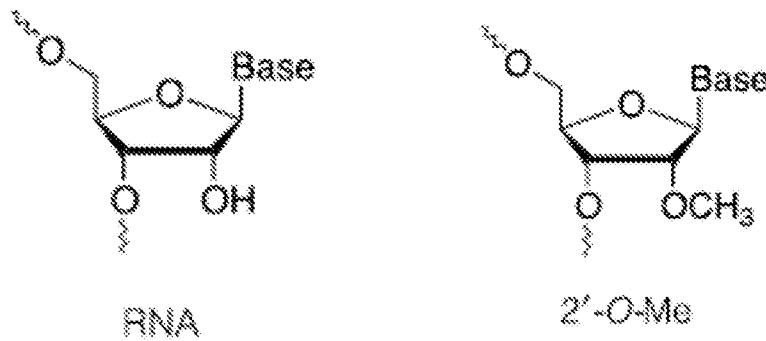
[0064] “Ribonucleoprotein” (RNP) or “RNP complex” as used herein describes a gRNA, for example, together with a nuclease, such as a Cas protein. In some embodiments, the RNP comprises Cas9 and gRNA.

[0065] “Stem loop” as used herein describes a secondary structure of nucleotides that form a base-paired “stem” that ends in a loop of unpaired nucleic acids. A stem may be formed when two regions of the same nucleic acid strand are at least partially complementary in sequence when read in opposite directions. “Loop” as used herein describes a region of nucleotides that do not base pair (i.e., are not complementary) that may cap a stem. A “tetraloop” describes a loop of 4 nucleotides. As used herein, the upper stem of a sgRNA may comprise a tetraloop.

[0066] In certain embodiments involving dgRNA, a “stem” region as used herein describes a secondary structure of nucleotides that forms a base-paired region between certain

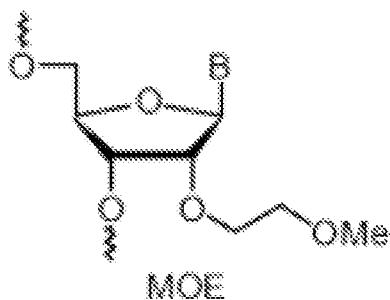
regions of a crRNA and trRNA (e.g., the lower and upper stem regions of each RNA). The “stem” region of a dgRNA may also be referred to in the art as a “flagpole” region.

[0067] “Treatment” as used herein covers any administration or application of a therapeutic for disease in a subject, and includes inhibiting the disease, arresting its development, relieving one or more symptoms of the disease, curing the disease, or preventing reoccurrence of one or more symptoms of the disease.


1. Types of Modifications

A. 2'-O-methyl modifications

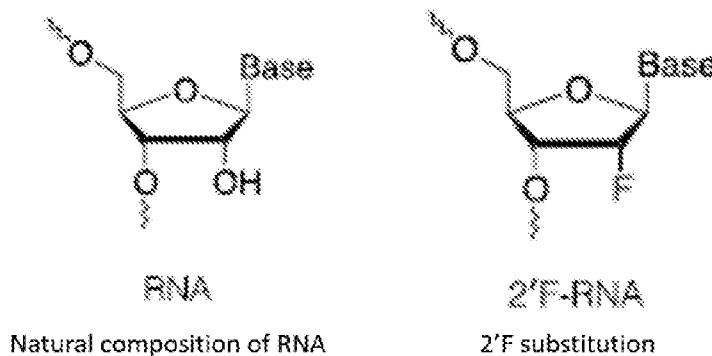
[0068] Modified sugars are believed to control the puckering of nucleotide sugar rings, a physical property that influences oligonucleotide binding affinity for complementary strands, duplex formation, and interaction with nucleases. Substitutions on sugar rings can therefore alter the confirmation and puckering of these sugars. For example, 2'-O-methyl (2'-O-Me) modifications can increase binding affinity and nuclease stability of oligonucleotides, though as shown in the Examples, the effect of any modification at a given position in an oligonucleotide needs to be empirically determined.


[0069] The terms “mA,” “mC,” “mU,” or “mG” may be used to denote a nucleotide that has been modified with 2'-O-Me.

[0070] Modification of a ribonucleotide as 2'-O-methyl ribonucleotide can be depicted as follows:

B. 2'-O-(2-methoxyethyl) modifications

[0071] In some embodiments, the modification may be 2'-O-(2-methoxyethyl) (2'-O-moe). Modification of a ribonucleotide as a 2'-O-moe ribonucleotide can be depicted as follows:


[0072] The terms "moeA," "moeC," "moeU," or "moeG" may be used to denote a nucleotide that has been modified with 2'-O-moe.

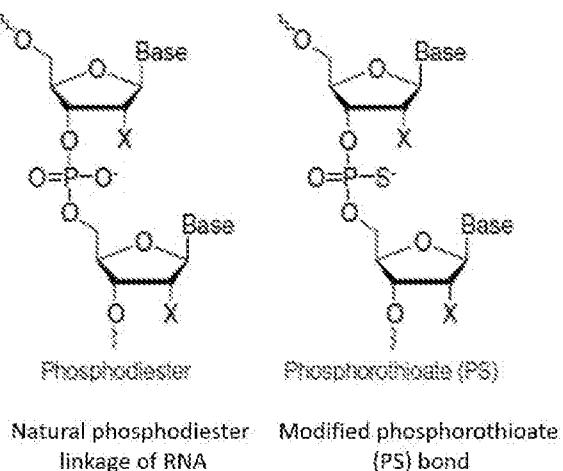
C. 2'-fluoro modifications

[0073] Another chemical modification that has been shown to influence nucleotide sugar rings is halogen substitution. For example, 2'-fluoro (2'-F) substitution on nucleotide sugar rings can increase oligonucleotide binding affinity and nuclease stability.

[0074] In this application, the terms "fA," "fC," "fU," or "fG" may be used to denote a nucleotide that has been substituted with 2'-F.

[0075] Substitution of 2'-F can be depicted as follows:

D. Phosphorothioate modifications

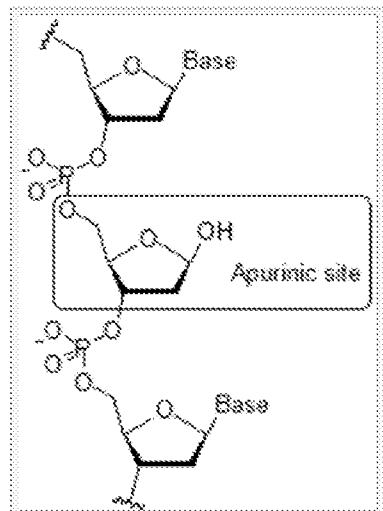

[0076] Phosphorothioate (PS) linkage or bond refers to a bond where a sulfur is substituted for one nonbridging phosphate oxygen in a phosphodiester linkage, for example

in the bonds between nucleotides bases. When phosphorothioates are used to generate oligonucleotides, the modified oligonucleotides may also be referred to as S-oligos.

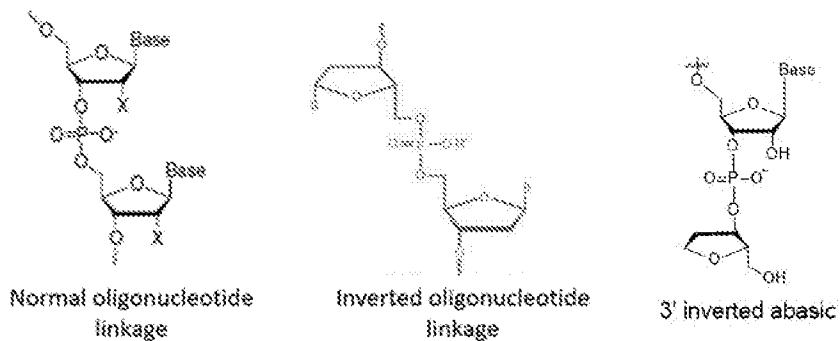
[0077] A “*” may be used to depict a PS modification. In this application, the terms A*, C*, U*, or G* may be used to denote a nucleotide that is linked to the next (e.g., 3') nucleotide with a PS bond.

[0078] In this application, the terms “mA*,” “mC*,” “mU*,” or “mG*” may be used to denote a nucleotide that has been substituted with 2'-O-Me and that is linked to the next (e.g., 3') nucleotide with a PS bond. Similarly, the terms “fA*,” “fC*,” “fU*,” or “fG*” may be used to denote a nucleotide that has been substituted with 2'-F and that is linked to the next (e.g., 3') nucleotide with a PS bond. Equivalents of a PS linkage or bond are encompassed by embodiments described herein.

[0079] The diagram below shows the substitution of S- into a nonbridging phosphate oxygen, generating a PS bond in lieu of a phosphodiester bond:



E. G-C substitutions


[0080] In some embodiments, gRNAs are modified with sequence substitutions that do not comprise chemical modifications. In some embodiments, modified gRNAs are engineered with G-C pairings (e.g., in lower and/or upper stem regions) that are not found in the parental gRNA sequence. In some embodiments, modified gRNAs are engineered with G-U mismatches (“GU wobbles” or mismatch pairings) that are not found in the parental gRNA sequence.

F. Inverted abasic modifications

[0081] Abasic nucleotides refer to those which lack nitrogenous bases. The figure below depicts an oligonucleotide with an abasic (also known as apurinic) site that lacks a base:

[0082] Inverted bases refer to those with linkages that are inverted from the normal 5' to 3' linkage (i.e., either a 5' to 5' linkage or a 3' to 3' linkage). For example:

[0083] An abasic nucleotide can be attached with an inverted linkage. For example, an abasic nucleotide may be attached to the terminal 5' nucleotide via a 5' to 5' linkage, or an abasic nucleotide may be attached to the terminal 3' nucleotide via a 3' to 3' linkage. An inverted abasic nucleotide at either the terminal 5' or 3' nucleotide may also be called an inverted abasic end cap. In this application, the terms “invd” indicates an inverted abasic nucleotide linkage.

[0084] The above modifications and their equivalents are included within the scope of the embodiments described herein.

2. Guide RNA Compositions

[0085] Compositions comprising guide RNA are encompassed. In some embodiments, the guide RNA comprises a trRNA. In some embodiments, the guide RNA comprises a crRNA. In some embodiments, the guide RNA comprises a crRNA and trRNA. In some embodiments, the guide RNA comprises a crRNA and trRNA on one RNA molecule as a sgRNA. In some embodiments, the guide RNA comprises a crRNA and trRNA on two RNA molecules as a dgRNA. In a dgRNA, the two RNA molecules may associate via base pairing.

[0086] In some embodiments, the guide RNA comprises a 5' terminus region. In some embodiments, the guide RNA does not comprise a 5' terminus region. In some embodiments, the 5' terminus region comprises a “spacer” region as described in *Briner AE et al., Molecular Cell* 56:333–339 (2014) for sgRNA (but applicable herein to all guide RNAs). In some embodiments, the 5' terminus region comprises a 5' end modification. A 5' terminus region with or without a spacer region may be associated with a crRNA, trRNA, sgRNA and/or dgRNA. The spacer region is also sometimes referred to herein, and by others, as a “guide region,” “guide domain” or “targeting domain.” A “target sequence” as used herein refers to a sequence of nucleic acid to which the guide region/domain directs a nuclease for cleavage. In some embodiments, a spyCas9 protein may be directed by a guide region/domain to a target sequence of a target nucleic acid molecule by the nucleotides present in the spacer region. In some embodiments, the guide RNA does not comprise a spacer region.

[0087] In some embodiments, the guide RNAs described herein comprise or consist of any of the sequences shown in Table 4. Note, however, that where a sequence shows a guide/spacer region, it should be recognized that the composition may comprise this region or not. Further, guide RNAs are encompassed that comprise the modifications of any of the sequences shown in Table 4, and identified therein by SEQ ID No. That is, the nucleotides may be the same or different, but the modification pattern shown may be the same or similar to a modification pattern of a guide sequence of Table 4. A modification pattern includes the relative position and identity of modifications of the gRNA or a region of the gRNA (e.g. 5' terminus region, lower stem region, bulge region, upper stem region, nexus region, hairpin 1 region, hairpin 2 region, 3' terminus region). In some embodiments, the modification pattern contains at least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% of the modifications of any one of the sequences shown in the sequence column of Table

4, or over one or more regions of the sequence. In some embodiments, the modification pattern is at least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical to the modification pattern of any one of the sequences shown in the sequence column of Table 4. In some embodiments, the modification pattern is at least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over one or more regions of the sequence shown in Table 4, e.g., a 5' terminus region, lower stem region, bulge region, upper stem region, nexus region, hairpin 1 region, hairpin 2 region, and/or 3' terminus region. For example, in some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical to the modification pattern of a sequence over the 5' terminus region. In some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over the lower stem. In some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over the bulge. In some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over the upper stem. In some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over the nexus. In some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over the hairpin 1. In some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over the hairpin 2. In some embodiments, a guide RNA is encompassed wherein the modification pattern is least 50%, 55%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, and 99% identical over the 3' terminus. In some embodiments, the modification pattern differs from the modification pattern of a sequence of Table 4, or a region (e.g. 5' terminus, lower stem, bulge, upper stem, nexus, hairpin 1, hairpin 2, 3' terminus) of such a sequence, at 0, 1, 2, 3, 4, 5, or 6 nucleotides. In some embodiments, the gRNA comprises modifications that differ from the modifications of a sequence of Table 4, at 0, 1, 2, 3, 4, 5, or 6 nucleotides. In some embodiments, the gRNA comprises modifications that differ from modifications of a region (e.g. 5' terminus, lower stem, bulge, upper stem, nexus, hairpin 1, hairpin 2, 3' terminus) of a sequence of Table 4, at 0, 1, 2, 3, 4, 5, or 6 nucleotides.

[0088] In some embodiments, the gRNA comprises a 2'-O-methyl (2'-O-Me) modified nucleotide. In some embodiments, the gRNA comprises a 2'-O-(2-methoxyethyl) (2'-O-moe) modified nucleotide. In some embodiments, the gRNA comprises a 2'-fluoro (2'-F) modified nucleotide. In some embodiments, the gRNA comprises a phosphorothioate (PS) bond between nucleotides.

[0089] In some embodiments, the gRNA comprises a 5' end modification, a 3' end modification, or 5' and 3' end modifications. In some embodiments, the 5' end modification comprises a phosphorothioate (PS) bond between nucleotides. In some embodiments, the 5' end modification comprises a 2'-O-methyl (2'-O-Me), 2'-O-(2-methoxyethyl) (2'-O-moe), and/or 2'-fluoro (2'-F) modified nucleotide. In some embodiments, the 5' end modification comprises at least one phosphorothioate (PS) bond and one or more of a 2'-O-methyl (2'-O-Me), 2'-O-(2-methoxyethyl) (2'-O-moe), and/or 2'-fluoro (2'-F) modified nucleotide. The end modification may comprise a phosphorothioate (PS), 2'-O-methyl (2'-O-Me), 2'-O-(2-methoxyethyl) (2'-O-moe), and/or 2'-fluoro (2'-F) modification. Equivalent end modifications are also encompassed by embodiments described herein. In some embodiments, the gRNA comprises an end modification in combination with a modification of one or more regions of the gRNA.

A. Compositions of sgRNAs

[0090] In some embodiments, the compositions and methods of the invention comprise gRNA comprising a crRNA and trRNA that direct a nuclease such as Cas9 to a target DNA sequence. In some embodiments, the gRNAs described herein may be associated on one RNA molecule (single guide RNA or sgRNA).

[0091] In some embodiments, the invention comprises a sgRNA comprising or consisting of any one of the sequences described in SEQ ID Nos: 228-332.

[0092] In some embodiments, a sgRNA comprising any one of the modified sequences of SEQ ID Nos: 235-240, 265-285, and 309-329 is provided. In some embodiments, a sgRNA comprising any one of the modified sequences of SEQ ID Nos: 235-240, 265-285, and 309-329, wherein the sgRNA further comprises a 5' "spacer" sequence ("guide sequence") that is complementary to a target sequence, and directs a Cas9 to its target for cleavage is encompassed. In some instances, the invention comprises sgRNA comprising nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 235-240, 265-285, and 309-329, wherein the

modification pattern is identical to the modification pattern shown in the reference sequence identifier.

1. Domains of sgRNAs

[0093] *Briner AE et al., Molecular Cell* 56:333–339 (2014) describes functional domains of sgRNAs, referred to herein as “domains”, including the “spacer” domain responsible for targeting, the “lower stem”, the “bulge”, “upper stem” (which may include a tetraloop), the “nexus”, and the “hairpin 1” and “hairpin 2” domains. See, Briner et al. at page 334, Figure 1A.

[0094] **Table 1** and FIG. 21A provide a description of the domains of a sgRNA as used herein. In Table 1, the “n” between regions represents a variable number of nucleotides, for example, from 0 to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more. In some embodiments, n equals 0. In some embodiments, n equals 1.

Table 1: Regions of sgRNA (linear view, 5' to 3')

5' terminus (n)	LS1-6		B1-2		US1-12		B3-6	
	lower stem	n	bulge	n	upper stem	n	bulge	n

(continued below)

LS7-12	N1-18		H1-1 thru H1-12		H2-1 thru H2-15		3' terminus	
	lower stem	n	nexus	n	hairpin 1	n	hairpin 2	3' terminus

a) 5' terminus region

[0095] In some embodiments, the sgRNA comprises nucleotides at the 5' terminus as shown in Table 1. In some embodiments, the 5' terminus of the sgRNA comprises a spacer or guide region that functions to direct a Cas protein to a target nucleotide sequence. In some embodiments, the 5' terminus does not comprise a spacer or guide region. In some embodiments, the 5' terminus comprises a spacer and additional nucleotides that do not function to direct a Cas protein to a target nucleotide region.

[0096] In some embodiments, the guide region comprises the first 1-10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides at the 5' end of the sgRNA. In some embodiments, the guide region comprises 20 nucleotides. In some embodiments, the guide region may comprise 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 or more nucleotides. In some embodiments, the guide region may comprise 17 nucleotides. In some embodiments, the guide region may comprise 18 nucleotides. In some embodiments, the guide region may comprise 19 nucleotides.

[0097] In some embodiments, the selection of the guide region is determined based on target sequences within the gene of interest for editing. For example, in some embodiments, the sgRNA comprises a guide region that is complementary to target sequences of a gene of interest.

[0098] In some embodiments, the target sequence in the gene of interest may be complementary to the guide region of the sgRNA. In some embodiments, the degree of complementarity or identity between a guide region of a sgRNA and its corresponding target sequence in the gene of interest may be about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the guide region of a sgRNA and the target region of a gene of interest may be 100% complementary or identical. In other embodiments, the guide region of a sgRNA and the target region of a gene of interest may contain at least one mismatch. For example, the guide region of a sgRNA and the target sequence of a gene of interest may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mismatches, where the total length of the target sequence is at least about 17, 18, 19, 20 or more base pairs. In some embodiments, the guide region of a sgRNA and the target region of a gene of interest may contain 1-6 mismatches where the guide sequence comprises at least about 17, 18, 19, 20 or more nucleotides. In some embodiments, the guide region of a sgRNA and the target region of a gene of interest may contain 1, 2, 3, 4, 5, or 6 mismatches where the guide

sequence comprises about 20 nucleotides. The 5' terminus may comprise nucleotides that are not considered guide regions (i.e., do not function to direct a cas9 protein to a target nucleic acid).

b) Lower stem

[0099] In some embodiments, the sgRNA comprises a lower stem (LS) region that when viewed linearly, is separated by a bulge and upper stem regions. See Table 1.

[00100] In some embodiments, the lower stem regions comprise 1-12 nucleotides, e.g. in one embodiment the lower stem regions comprise LS1-LS12. In some embodiments, the lower stem region comprises fewer nucleotides than shown in Table 1 and FIG. 21A. In some embodiments, the lower stem region comprises more nucleotides than shown in Table 1 and FIG. 21A. When the lower stem region comprises fewer or more nucleotides than shown in the schematic of Table 1 and FIG. 21A, the modification pattern, as will be apparent to the skilled artisan, should be maintained.

[00101] In some embodiments, the lower stem region has nucleotides that are complementary in nucleic acid sequence when read in opposite directions. In some embodiments, the complementarity in nucleic acid sequence of lower stem leads to a secondary structure of a stem in the sgRNA (e.g., the regions may base pair with one another). In some embodiments, the lower stem regions may not be perfectly complimentary to each other when read in opposite directions.

c) Bulge

[00102] In some embodiments, the sgRNA comprises a bulge region comprising six nucleotides, B1-B6. When viewed linearly, the bulge region is separated into two regions. See Table 1. In some embodiments, the bulge region comprises six nucleotides, wherein the first two nucleotides are followed by an upper stem region, followed by the last four nucleotides of the bulge. In some embodiments, the bulge region comprises fewer nucleotides than shown in Table 1 and FIG. 21A. In some embodiments, the bulge region comprises more nucleotides than shown in Table 1 and FIG. 21A. When the bulge region comprises fewer or more nucleotides than shown in the schematic of Table 1 and FIG. 21A, the modification pattern, as will be apparent to the skilled artisan, should be maintained.

[00103] In some embodiments, the presence of a bulge results in a directional kink between the upper and lower stem modules in a sgRNA.

d) Upper stem

[00104] In some embodiments, the sgRNA comprises an upper stem region comprising 12 nucleotides. In some embodiments, the upper stem region comprises a loop sequence. In some instances, the loop is a tetraloop (loop consisting of four nucleotides).

[00105] In some embodiments, the upper stem region comprises fewer nucleotides than shown in Table 1 and FIG. 21A. In some embodiments, the upper stem region comprises more nucleotides than shown in Table 1 and FIG. 21A. When the upper stem region comprises fewer or more nucleotides than shown in the schematic of Table 1 and FIG. 21A, the modification pattern, as will be apparent to the skilled artisan, should be maintained.

[00106] In some embodiments, the upper stem region has nucleotides that are complementary in nucleic acid sequence when read in opposite directions. In some embodiments, the complementarity in nucleic acid sequence of upper stem leads to a secondary structure of a stem in the sgRNA (e.g., the regions may base pair with one another). In some embodiments, the upper stem regions may not be perfectly complimentary to each other when read in opposite directions.

e) Nexus

[00107] In some embodiments, the sgRNA comprises a nexus region that is located between the lower stem region and the hairpin 1 region. In some embodiments, the nexus comprises 18 nucleotides. In some embodiments, the nexus region comprises nucleotides N1 through N18 as shown in Table 1 and FIG. 21A.

[00108] In some embodiments, the nexus region comprises fewer nucleotides than shown in Table 1 and FIG. 21A. In some embodiments, the nexus region comprises more nucleotides than shown in Table 1 and FIG. 21A. When the nexus region comprises fewer or more nucleotides than shown in the schematic of Table 1 and FIG. 21A, the modification pattern, as will be apparent to the skilled artisan, should be maintained.

[00109] In some embodiments, the nexus region has nucleotides that are complementary in nucleic acid sequence when read in opposite directions. In some embodiments, the complementarity in nucleic acid sequence leads to a secondary structure of a stem and/or stem loop in the sgRNA (e.g., certain nucleotides in the nexus region may base pair with one another). In some embodiments, the nexus regions may not be perfectly complimentary to each other when read in opposite directions.

f) Hairpin

[00110] In some embodiments, the sgRNA comprises one or more hairpin regions. In some embodiments, the hairpin region is downstream of (e.g., 3' to) the nexus region. In some embodiments, the region of nucleotides immediately downstream of the nexus region is termed “hairpin 1” or “H1”. In some embodiments, the region of nucleotides 3' to hairpin 1 is termed “hairpin 2” or “H2”. In some embodiments, the hairpin region comprises hairpin 1 and hairpin 2. In some embodiments, the sgRNA comprises only hairpin 1 or hairpin 2.

[00111] In some embodiments, the hairpin 1 region comprises 12 nucleic acids immediately downstream of the nexus region. In some embodiments, the hairpin 1 region comprises nucleotides H1-1 through H1-12 as shown in Table 1 and FIG. 21A.

[00112] In some embodiments, the hairpin 2 region comprises 15 nucleic acids downstream of the hairpin 1 region. In some embodiments, the hairpin 2 region comprises nucleotides H2-1 through H2-15 as shown in Table 1 and FIG. 21A.

[00113] In some embodiments, one or more nucleotides is present between the hairpin 1 and the hairpin 2 regions. The one or more nucleotides between the hairpin 1 and hairpin 2 region may be modified or unmodified. In some embodiments, hairpin 1 and hairpin 2 are separated by one nucleotide. In some embodiments, the hairpin regions comprise fewer nucleotides than shown in Table 1 and FIG. 21A. In some embodiments, the hairpin regions comprise more nucleotides than shown in Table 1 and FIG. 21A. When a hairpin region comprises fewer or more nucleotides than shown in the schematic of Table 1 and FIG. 21A, the modification pattern, as will be apparent to the skilled artisan, should be maintained.

[00114] In some embodiments, a hairpin region has nucleotides that are complementary in nucleic acid sequence when read in opposite directions. In some embodiments, the hairpin regions may not be perfectly complimentary to each other when read in opposite directions (e.g., the top or loop of the hairpin comprises unpaired nucleotides).

[00115] In some embodiments, the sgRNA comprises replacement of hairpin 1 with nucleotides “n”, wherein “n” is an integer between 1 and 50, 40, 30, 20, 15, 10, 5, 4, 3, and 2. In some embodiments, the hairpin 1 region of a sgRNA is replaced by 2 nucleotides.

g) 3' terminus region

[00116] In some embodiments, the sgRNA comprises nucleotides after the hairpin region(s). In some embodiments, the 3' terminus region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 or more nucleotides, e.g. that are not associated with the secondary structure of a

hairpin. In some embodiments, the 3' terminus region comprises 1, 2, 3, or 4 nucleotides that are not associated with the secondary structure of a hairpin. In some embodiments, the 3' terminus region comprises 4 nucleotides that are not associated with the secondary structure of a hairpin. In some embodiments, the 3' terminus region comprises 1, 2, or 3 nucleotides that are not associated with the secondary structure of a hairpin.

2. *Modifications of sgRNAs*

[00117] In some embodiments, the invention comprises a sgRNA comprising one or more modifications within one or more of the following regions: the nucleotides at the 5' terminus; the lower stem region; the bulge region; the upper stem region; the nexus region; the hairpin 1 region; the hairpin 2 region; and the nucleotides at the 3' terminus.

[00118] In some embodiments, the modification comprises a 2'-O-methyl (2'-O-Me) modified nucleotide. In some embodiments, the modification comprises a 2'-O-(2-methoxyethyl) (2'-O-moe) modified nucleotide. In some embodiments, the modification comprises a 2'-fluoro (2'-F) modified nucleotide. In some embodiments, the modification comprises a phosphorothioate (PS) bond between nucleotides.

[00119] In some embodiments, the sgRNA comprises modifications at 1, 2, 3, or 4 of the first 4 nucleotides at its 5' end. In some embodiments, the first three or four nucleotides at the 5' terminus, and the last three or four nucleotides at the 3' terminus are modified. In some embodiments, the first four nucleotides at the 5' terminus, and the last four nucleotides at the 3' terminus are linked with phosphorothioate (PS) bonds. In some embodiments, the modification comprises 2'-O-Me. In some embodiments, the modification comprises 2'-F. In some embodiments, the modification comprises 2'-O-moe.

[00120] In some embodiments, the sgRNA comprises modifications at 1, 2, 3, or 4 of the first 4 nucleotides at the 5' end. In some embodiments, the sgRNA comprises modifications at 1, 2, 3, or 4 of the first 4 nucleotides at the 3' end. In some embodiments, the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-O-Me or 2'-O-moe modifications.

[00121] In some embodiments, the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-F modifications.

[00122] In some embodiments, a sgRNA is provided wherein LS1, LS6, LS7, LS8, LS11, and LS12 are modified with 2'-O-Me. In some embodiments, each of the nucleotides in

the bulge region of the sgRNA are modified with 2'-O-Me. In some embodiments, each of the nucleotides in the upper stem region of the sgRNA are modified with 2'-O-Me. In some embodiments, N16, N17, and N18 in the nexus region of the sgRNA are modified with 2'-O-Me. In some embodiments, each of the nucleotides in the hairpin 1 region of the sgRNA are modified with 2'-O-Me. In some embodiments, each of the nucleotides in the hairpin 2 region of the sgRNA are modified with 2'-O-Me.

[00123] In some embodiments, the sgRNA comprises 2'-O-Me modified nucleotides at the following nucleotides: the first three nucleotides at the 5' terminus; LS1, LS6, LS7, LS8, LS11, and LS12; B1 and B2 in the bulge region; each of the nucleotides in the upper stem region of the sgRNA; N16, N17, and N18 in the nexus region; each of the nucleotides in the hairpin 1 region; each of the nucleotides in the hairpin 2 region; and last four nucleotides at the 3' terminus.

[00124] In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises 2'-O-Me or 2'-F modified nucleic acids at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleic acids at the last four nucleotides at the 3' terminus. In some embodiments, LS9 and LS10 are modified with 2'-F. In some embodiments, N15, N16, N17, and N18 are modified with 2'-F. In some embodiments, H2-9, H2-10, H2-11, H2-12, H2-13, HS-14, and H2-15 are modified with 2'-F. In some embodiments, the second to last, third to last, and fourth to last nucleotides at the 3' terminus are modified with 2'-F.

[00125] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-F modified nucleic acids at the following nucleotides: LS9 and LS10 in the lower stem region; N15, N16, N17, and N18 in the nexus region; and H2-9, H2-10, H2-11, H2-12, H2-13, HS-14, and H2-15 in the hairpin 2 region. In some embodiments, the sgRNA further comprises 2'-F modified nucleotides at the second to last, third to last, and fourth to last nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises 2'-O-Me or 2'-F modified nucleic acids at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleic acids at three of the last four nucleotides at the 3' terminus.

[00126] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-O-Me

modified nucleotides at LS1 and LS6; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-15; and 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00127] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-F modified nucleotides at LS1-LS6; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide at “n” between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-15; and 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00128] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-F modified nucleotides at LS2-LS5; 2'-O-Me modified nucleotides at LS1 and LS6; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide at “n” between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-15; and 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00129] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at LS7, LS8, LS11, and LS12; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide at “n” between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-15; and 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00130] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-O-Me

modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at LS8, LS10, and LS12; 2'-O-F modified nucleotides at LS7, LS9, and LS11; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-15; and 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00131] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-O-Me modified nucleotides at LS1, LS6, LS7, LS8, LS11, and LS12; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-15; and 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00132] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-O-Me modified nucleotides at LS1, LS6, LS7, LS8, LS11, and LS12; 2'-F modified nucleotides at LS9 and LS10; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-15; and 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00133] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at H1-1 – H1-12; a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2; 2'-O-Me modified nucleotides at H2-1 – H2-8; 2'-F modified nucleotides at H2-9 – H2-15; 2'-F modified nucleotides at the second from last, third from last, and fourth from last nucleotide at the 3' terminus; and a 2'-O-Me modified nucleotide at the last nucleotide at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00134] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus; 2'-O-Me modified nucleotides at US1-US12; 2'-O-Me modified nucleotides at H1-2, H1-4, H1-6, H1-8, H1-10, and H1-12; 2'-F modified nucleotides at H1-1, H1-3, H1-5, H1-7, H1-9, and H1-11; a 2'-F modified nucleotide between Hairpin 1 and Hairpin 2; 2'-F modified nucleotides at H2-2, H2-4, H2-6, H2-8, H2-10, H2-12; and H2-14; 2'-O-Me modified nucleotides at H2-1, H2-3, H2-5, H2-7, H2-9, H2-11; H2-13, and H2-15; 2'-F modified nucleotides at the second from last, and fourth from last nucleotide at the 3' terminus; and 2'-O-Me modified nucleotide at the third from last, and last nucleotide at the 3' terminus. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00135] Disclosed herein, in some embodiments, is a single guide RNA (sgRNA) comprising 2'-O-Me modifications at nucleotides LS8, LS10, LS12, H1-2, H1-4, H1-6, H1-8, H1-10, H1-12, H2-1, H2-3, H2-5, H2-7, H2-9, H2-11, H2-13, and H2-15; and 2'-F modifications at LS7, LS9, LS11; H1-1, H1-3, H1-5, H1-7, H1-9, H1-11, H1-13, H2-2, H2-4, H2-6, H2-8, H2-10, H2-12, and H2-14. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus. In some embodiments, the sgRNA further comprises 2'-O-Me modified nucleotides at the last and third to last nucleotide at the 3' terminus; and 2'-F modified nucleotides at the second to last and third to last nucleotide at the 3' terminus.

[00136] Disclosed herein, in some embodiments, is a sgRNA comprising the nucleic acids of any one of SEQ ID Nos: 228-232. Disclosed herein, in some embodiments, is a sgRNA comprising the nucleic acids of any one of SEQ ID Nos: 235-240, 265-285, and 309-329. Disclosed herein, in some embodiments, is a sgRNA comprises nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 235-240, 265-285, and 309-329, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier. In some embodiments, the sgRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00137] In some embodiments, a sgRNA comprising a 5' end modification and one or more modifications in one or more of: the upper stem region; the hairpin 1 region; and the

hairpin 2 region is provided, wherein the 5' end modification comprises at least two phosphorothioate linkages within the first seven nucleotides of the 5' terminus.

[00138] In some embodiments, a sgRNA comprising a 5' end modification and one or more modifications in one or more of: the upper stem region; the hairpin 1 region; and the hairpin 2 region is provided, wherein the 5' end modification comprises one or more phosphorothioate linkages at the 5' end of the RNA. In some embodiments, one or more phosphorothioate bonds link the 5' terminal nucleotides.

[00139] In some embodiments, a sgRNA comprising a 5' end modification and one or more modifications in one or more of: the upper stem region; the hairpin 1 region; and the hairpin 2 region is provided, wherein the 5' end modification comprises one or more phosphorothioate linkages within the first seven nucleotides of the 5' terminus.

[00140] In some embodiments, a sgRNA comprising any one of the modified sgRNA sequences of SEQ ID Nos: 228-332 is provided.

[00141] In some embodiments, a sgRNA comprising or consisting of any one of the modified sgRNA sequences of SEQ ID Nos: 235-240, 265-285, and 309-329 is provided.

[00142] In some embodiments, the invention comprises a sgRNA comprising any one of the modified sequences of SEQ ID Nos: 235-240, 265-285, and 309-329, wherein the sgRNA further comprises a 5' spacer sequence that is at least partially complementary to a target sequence, and directs a Cas9 to its target for cleavage.

[00143] In some embodiments, the invention comprises a sgRNA comprising nucleotides having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleotides of any one of SEQ ID Nos: 235-240, 265-285, and 309-329, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier. That is, the nucleotides A, U, C, and G may differ by 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% compared to what is shown in the sequences, but the modification remains unchanged.

[00144] In some embodiments, the invention comprises a sgRNA comprising one or more modifications within one or more of the following regions: the nucleotides at the 5' terminus; the lower stem region; the bulge region; the upper stem region; the nexus region; the hairpin 1 region; the hairpin 2 region; and the nucleotides at the 3' terminus.

[00145] In some embodiments, the modification comprises a 2'-O-methyl (2'-O-Me) modified nucleotide. In some embodiments, the modification comprises a 2'-fluoro (2'-F) modified nucleotide. In some embodiments, the modification comprises a phosphorothioate

(PS) bond between nucleotides. In some embodiments, the modification comprises an inverted abasic nucleotide.

[00146] In some embodiments, a sgRNA is provided comprising 2'-O-Me modified nucleotides at: the first three nucleotides in the 5' terminus; LS1, LS6, LS7, LS8, LS11, and LS12 in the lower stem; B1 and B2 in the bulge region; each of the nucleotides in the upper stem region; N16, N17, and N18 in the nexus region; each of the nucleotides in the hairpin 1 region; one nucleotide between hairpin 1 and hairpin 2; each of the nucleotides in the hairpin 2 region; and the last four nucleotides at the 3' terminus. In one embodiment, the sgRNA further comprises three PS bonds between the first four nucleotides at the 5' terminus and three PS bonds between the last four nucleotides at the 3' terminus.

[00147] In some embodiments, a sgRNA is provided comprising 2'-O-Me modified nucleotides at: the first three nucleotides in the 5' terminus; LS1, LS6, LS7, LS8, LS11, and LS12 in the lower stem; B1-B6 in the bulge region; each of the nucleotides in the upper stem region; N16, N17, and N18 in the nexus region; each of the nucleotides in the hairpin 1 region; one nucleotide between hairpin 1 and hairpin 2; each of the nucleotides in the hairpin 2 region; and the last four nucleotides at the 3' terminus. In one embodiment, the sgRNA further comprises three PS bonds between the first four nucleotides at the 5' terminus and three PS bonds between the last four nucleotides at the 3' terminus.

[00148] In some embodiments, a sgRNA is provided comprising 2'-F modified nucleotides at: LS9 and LS10 in the lower stem; 15-N18 in the nexus region; H2-9-HS-15 in the hairpin 2 region; and the second to last, third to last, and fourth to last nucleotide in the 3' terminus region.

[00149] In some embodiments, a sgRNA is provided comprising 2'-F modified nucleotides at: each nucleotide in the lower stem; 15-N18 in the nexus region; H2-9-HS-15 in the hairpin 2 region; and the second to last, third to last, and fourth to last nucleotide in the 3' terminus region.

[00150] In some embodiments, a single guide RNA (sgRNA) is provided comprising 2'-O-Me modified nucleotides at LS8, LS10, LS12, H1-2, H1-4, H1-6, H1-8, H1-10, H1-12, H2-1, H2-3, H2-5, H2-7, H2-9, H2-11, H2-13, H2-15, and the last and third to last nucleotides at the 3' terminus; and 2'-F modifications at LS7, LS9, LS11; H1-1, H1-3, H1-5, H1-7, H1-9, H1-11, H1-13, H2-2, H2-4, H2-6, H2-8, H2-10, H2-12, H2-14, and the second to last and fourth to last nucleotide at the 3' terminus.

[00151] Each of the following embodiments are encompassed:

Embodiment 01. A single guide RNA (sgRNA) comprising one or more modifications in one or more of the following regions:

- a. the 5' terminus;
- b. the lower stem region;
- c. the bulge region;
- d. the upper stem region;
- e. the nexus region;
- f. the hairpin 1 region;
- g. the hairpin 2 region; and
- h. the 3' terminus.

Embodiment 02. The sgRNA of embodiment 1, wherein the modification comprises a 2'-O-methyl (2'-O-Me) modified nucleotide.

Embodiment 03. The sgRNA of embodiment 1, wherein the modification comprises a 2'-fluoro (2'-F) modified nucleotide.

Embodiment 04. The sgRNA of embodiment 1, wherein the modification comprises a phosphorothioate (PS) bond between nucleotides.

Embodiment 05. The sgRNA of any one of embodiments 1-3, wherein the first three or four nucleotides at the 5' terminus, and the last three or four nucleotides at the 3' terminus are modified.

Embodiment 06. The sgRNA of any one of embodiments 1-5, wherein the first four nucleotides at the 5' terminus, and the last four nucleotides at the 3' terminus are linked with phosphorothioate (PS) bonds.

Embodiment 07. The sgRNA of embodiment 5, wherein the modification comprises 2'-O-Me.

Embodiment 08. The sgRNA of embodiment 5, wherein the modification comprises 2'-F.

Embodiment 09. The sgRNA of any one of embodiments 1-7, wherein the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-O-Me modifications.

Embodiment 10. The sgRNA of any one of embodiments 1-8, wherein the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-F modifications.

Embodiment 11. The sgRNA of any one of embodiments 1-10, wherein LS1, LS6, LS7, LS8, LS11, and LS12 are modified with 2'-O-Me.

Embodiment 12. The sgRNA of any one of embodiments 1-11, wherein each of the nucleotides in the bulge region are modified with 2'-O-Me.

Embodiment 13. The sgRNA of any one of embodiments 1-12, wherein each of the nucleotides in the upper stem region are modified with 2'-O-Me.

Embodiment 14. The sgRNA of any one of embodiments 1-13, wherein N16, N17, and N18 in the nexus region are modified with 2'-O-Me.

Embodiment 15. The sgRNA of any one of embodiments 1-14, wherein each of the nucleotides in the hairpin 1 region are modified with 2'-O-Me.

Embodiment 16. The sgRNA of any one of embodiments 1-15, wherein each of the nucleotides in the hairpin 2 region are modified with 2'-O-Me.

Embodiment 17. A single guide RNA (sgRNA) comprising 2'-O-Me modified nucleic acids at the following nucleotides:

- a. the first three nucleotides at the 5' terminus;
- b. LS1, LS6, LS7, LS8, LS11, and LS12 in the lower stem region;
- c. B1 and B2 in the bulge region;
- d. each nucleotide in the upper stem region;
- e. N16, N17, and N18 in the nexus region;
- f. each nucleotide in the hairpin 1 region;
- g. each nucleotide in the hairpin 2 region; and
- h. the last four nucleotides at the 3' terminus.

Embodiment 18. The sgRNA of embodiment 17, wherein B3-B6 are modified with 2'-O-Me.

Embodiment 19. The sgRNA of embodiment 17, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 20. The sgRNA of any one of embodiments 1-10, wherein LS9 and LS10 are modified with 2'-F.

Embodiment 21. The sgRNA of any one of embodiments 1-10 and 20, wherein N15, N16, N17, and N18 are modified with 2'-F.

Embodiment 22. The sgRNA of any one of embodiments 1-10 and 20-21, wherein H2-9, H2-10, H2-11, H2-12, H2-13, H2-14, and H2-15 are modified with 2'-F.

Embodiment 23. The sgRNA of any one of embodiments 1-10 and 21-22, wherein the second to last, third to last, and fourth to last nucleotides at the 3' terminus are modified with 2'-F.

Embodiment 24. A single guide RNA (sgRNA) comprising 2'-F modified nucleotides at the following positions:

- a. LS9 and LS10 in the lower stem region;
- b. N15, N16, N17, and N18 in the nexus region; and
- c. H2-9, H2-10, H2-11, H2-12, H2-13, H2-14, and H2-15 in the hairpin 2 region.

Embodiment 25. The sgRNA of embodiment 24, further comprising 2'-F modified nucleotides at the second to last, third to last, and fourth to last nucleotides at the 3' terminus.

Embodiment 26. The sgRNA of any one of embodiments 24 or 25, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 27. The sgRNA of any one of embodiments 24 -26, further comprising 2'-O-Me or 2'-F modified nucleotides at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleotides at the three of the last four nucleotides at the 3' terminus.

Embodiment 28. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at LS1 and LS6;
- c. 2'-O-Me modified nucleotides at US1-US12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- e. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 29. The sgRNA of embodiment 28 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 30. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-F modified nucleotides at LS1-LS6;
- c. 2'-O-Me modified nucleotides at US1-US12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;

- e. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 31. The sgRNA of embodiment 30 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 32. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-F modified nucleotides at LS2-LS5;
- c. 2'-O-Me modified nucleotides at LS1 and LS6;
- d. 2'-O-Me modified nucleotides at US1-US12;
- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 33. The sgRNA of embodiment 32 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 34. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at LS7, LS8, LS11, and LS12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- e. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 35. The sgRNA of embodiment 34 further comprising three

phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 36. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at LS7, LS8, LS11, and LS12;
- d. 2'-F modified nucleotides at LS9 and LS10;

- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 37. The sgRNA of embodiment 36 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 38. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at LS8, LS10, and LS12;
- d. 2'-O-F modified nucleotides at LS7, LS9, and LS11;
- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 39. The sgRNA of embodiment 32 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 40. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at LS1, LS6, LS7, LS8, LS11, and LS12
- c. 2'-O-Me modified nucleotides at US1-US12;
- d. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- e. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- g. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 41. The sgRNA of embodiment 40 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus

Embodiment 42. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at LS1, LS6, LS7, LS8, LS11, and LS12;
- c. 2'-F modified nucleotides at LS9 and LS10;

- d. 2'-O-Me modified nucleotides at US1-US12;
- e. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- f. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- g. 2'-O-Me modified nucleotides at H2-1 – H2-15; and
- h. 2'-O-Me modified nucleotides at the last four nucleotides at the 3' terminus.

Embodiment 43. The sgRNA of embodiment 43 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 44. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at H1-1 – H1-12;
- d. a 2'-O-Me modified nucleotide between Hairpin 1 and Hairpin 2;
- e. 2'-O-Me modified nucleotides at H2-1 – H2-8;
- f. 2'-F modified nucleotides at H2-9 – H2-15;
- g. 2'-F modified nucleotides at the second from last, third from last, and fourth from last nucleotide at the 3' terminus; and
- h. a 2'-O-Me modified nucleotide at the last nucleotide at the 3' terminus.

Embodiment 45. The sgRNA of embodiment 44 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 46. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides at the first three nucleotides at the 5' terminus;
- b. 2'-O-Me modified nucleotides at US1-US12;
- c. 2'-O-Me modified nucleotides at H1-2, H1-4, H1-6, H1-8, H1-10, and H1-12;
- d. 2'-F modified nucleotides at H1-1, H1-3, H1-5, H1-7, H1-9, and H1-11;
- e. a 2'-F modified nucleotide between Hairpin 1 and Hairpin 2;
- f. 2'-F modified nucleotides at H2-2, H2-4, H2-6, H2-8, H2-10, H2-12; and H2-14;
- g. 2'-O-Me modified nucleotides at H2-1, H2-3, H2-5, H2-7, H2-9, H2-11; H2-13, and H2-15;
- h. 2'-F modified nucleotides at the second from last, and fourth from last nucleotide at the 3' terminus; and

- i. 2'-O-Me modified nucleotide at the third from last, and last nucleotide at the 3' terminus.

Embodiment 47. The sgRNA of embodiment 46 further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 48. A single guide RNA (sgRNA) comprising

- a. 2'-O-Me modified nucleotides LS8, LS10, LS12, H1-2, H1-4, H1-6, H1-8, H1-10, H1-12, H2-1, H2-3, H2-5, H2-7, H2-9, H2-11, H2-13, and H2-15; and
- b. 2'-F modified nucleotides at LS7, LS9, LS11; H1-1, H1-3, H1-5, H1-7, H1-9, H1-11, H1-13, H2-2, H2-4, H2-6, H2-8, H2-10, H2-12, and H2-14.

Embodiment 49. The sgRNA of embodiment 48, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 50. The sgRNA of any one of embodiments 48-49, further comprising

- a. 2'-O-Me modified nucleotides at the last and third to last nucleotide at the 3' terminus; and
- b. 2'-F modified nucleotides at the second to last and third to last nucleotide at the 3' terminus.

Embodiment 51. A sgRNA comprising the nucleic acids of any one of SEQ ID Nos: 228-332.

Embodiment 52. A sgRNA comprising the nucleic acids of any one of SEQ ID Nos: 235-240, 265-285, and 309-329.

Embodiment 53. A sgRNA comprising nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 235-240, 265-285, and 309-329, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier.

Embodiment 54. The sgRNA of any one of embodiments 51-53, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

B. Compositions of dgRNAs

[00152] In some embodiments, the compositions and methods of the invention comprise gRNA comprising a crRNA and trRNA that direct a nuclease such as Cas9 to a

target DNA sequence. In some embodiments, the gRNAs are associated, but on two separate RNA molecules (dual guide RNA or dgRNA).

[00153] **Table 2** and FIG. 21C provides a description of domains of a crRNA as used herein. The 5' terminus region may comprise a spacer region at or near the 5' terminus of the crRNA and functions to direct a Cas9 to a target region in the DNA, e.g., as described herein. In Table 2, the “n” between regions represents a variable number of nucleotides, for example, from 0 to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more. In some embodiments, n equals 0. Any of the dgRNAs described herein may include an “n” between any domain.

[00154] **Table 3** and FIG. 21C provide a description of domains of a trRNA as used herein. In Table 3, the “n” between regions represents a variable number of nucleotides, for example, from 0 to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more. In some embodiments, n equals 0. Any of the dgRNAs described herein may include an “n” between any domain.

1. Domains of dgRNAs

[00155] As described in *Briner 2014*, dgRNAs can be developed based on specific functional domains, referred to herein as “domains”, including the spacer responsible for targeting, the lower stem, the bulge, the upper stem, the nexus, and the hairpin domains. In dgRNAs, the crRNA comprises some components of the gRNA and the trRNA comprises some components of the gRNA.

[00156] Regions of crRNAs are provided in **Table 2** and **FIG 21C**. Regions of trRNAs are provided in **Table 3** and **FIG 21C**. FIG 21C shows a schematic of an exemplary dgRNA.

Table 2: Regions of crRNA (linear view, 5' to 3')

5' terminus (n)	LS1-6 lower stem	B1-2 n bulge	US1-14 upper stem	3' terminus

Table 3: Regions of trRNA (linear view, 5' to 3')

5' terminus (n)	US1-11 upper stem	B1 -4 n bulge	LS1-6 lower stem	N1-18 nexus	H1-1 thru H1-12 nexus	H2-1 thru H2-15 hairpin 1	n	hairpin 2	3' terminus

a) 5' Terminus Region

[00157] In some embodiments, the dgRNA comprises nucleotides at the 5' terminus of the crRNA and trRNA as shown in Tables 2-3 and FIG 21C.

[00158] In some embodiments, the 5' terminus of the crRNA comprises a spacer or guide region that functions to direct a Cas protein to a target nucleotide sequence. In some embodiments, the 5' terminus does not comprise a spacer or guide region. In some embodiments, the 5' terminus comprises a spacer and additional nucleotides that do not function to direct a Cas protein to a target nucleotide region.

[00159] In some embodiments, the guide region comprises the first 1-10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides at the 5' end of the crRNA. In some embodiments, the guide region comprises 20 nucleotides. In some embodiments, the guide region may comprise 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 or more nucleotides. In some embodiments, the guide region may comprise 17 nucleotides. In some embodiments, the guide region may comprise 18 nucleotides. In some embodiments, the guide region may comprise 19 nucleotides.

[00160] In some embodiments, the selection of the guide region is determined based on target sequences within the gene of interest for editing. For example, in some embodiments, the crRNA comprises a guide region that is complementary to target sequences of a gene of interest.

[00161] In some embodiments, the target sequence in the gene of interest may be complementary to the guide region of the crRNA. In some embodiments, the degree of complementarity or identity between a guide region of a crRNA and its corresponding target sequence in the gene of interest may be about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the guide region of a crRNA and the target region of a gene of interest may be 100% complementary or identical. In other embodiments, the guide region of a crRNA and the target region of a gene of interest may contain at least one mismatch. For example, the guide region of a crRNA and the target sequence of a gene of interest may contain 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mismatches, where the total length of the target sequence is at least about 17, 18, 19, 20 or more base pairs. In some embodiments, the guide region of a crRNA and the target region of a gene of interest may contain 1-6 mismatches where the guide sequence comprises at least about 17, 18, 19, 20 or more nucleotides. In some embodiments, the guide region of a crRNA and the target

region of a gene of interest may contain 1, 2, 3, 4, 5, or 6 mismatches where the guide sequence comprises about 20 nucleotides.

[00162] In some embodiments, the trRNA comprises a 5' terminus. In some embodiments, the trRNA comprises a 5' terminus which forms, in part, the upper stem of a dgRNA. The 5' terminus of the trRNA is not complementary to a region of the target gene.

b) Lower stem

[00163] In some embodiments, the dgRNA comprises a lower stem (LS) region. The lower stem region comprises a crRNA lower stem region and a trRNA lower stem region that associate as depicted in FIG 21C. In some embodiments, the lower stem region of the crRNA is at least partially complementary to the lower stem region of the trRNA. In some embodiments, the lower stem region of the crRNA is fully complementary to the lower stem region of the trRNA.

[00164] In some embodiments, the lower stem region of the crRNA and trRNA each comprise 6 nucleotides. In some embodiments, the lower stem region of the crRNA and trRNA each comprise fewer nucleotides than shown in Tables 2 and 3 and FIG. 21C. In some embodiments, the lower stem region comprises more nucleotides than shown in Tables 2 and 3 and FIG. 21C. When the lower stem region comprises fewer or more nucleotides than shown in the schematic of Tables 2 and 3 and FIG. 21C, the modification patterns, as will be apparent to the skilled artisan, are maintained. In some embodiments, the number of nucleotides in the lower stem of the crRNA differs from the number of nucleotides in the lower stem of the trRNA.

c) Bulge

[00165] In some embodiments, the dgRNA comprises a bulge (B) region. In some embodiments, the crRNA comprises one bulge region and the trRNA comprises one bulge region. In some embodiments, each bulge region comprises 1-4 nucleotides. In some embodiments, the bulge region of the crRNA comprises two nucleotides, and the bulge region of the trRNA comprises four nucleotides.

[00166] In some embodiments, the crRNA bulge region is located between the lower stem region and the upper stem region of the crRNA. In some embodiments, the bulge region of the crRNA comprises two nucleotides. In some embodiments, the bulge region of the crRNA comprises nucleotides B1 and B2 as shown Table 2 and FIG 21C.

[00167] In some embodiments, the trRNA bulge region is located between the upper stem region and the lower stem region of the trRNA. In some embodiments, the bulge region

of the trRNA comprises four nucleotides. In some embodiments, the bulge region of the trRNA comprises nucleotides B1 through B4 as shown Table 3 and FIG 21C.

[00168] In some embodiments, the presence of a bulge results in a directional kink between the upper and lower stems modules in a dgRNA. The crRNA bulge and trRNA bulge may be partially complementary. The crRNA bulge and trRNA bulge may have no complementary.

[00169] In some embodiments, the bulge regions of the crRNA and trRNA comprise more nucleotides than shown in Tables 2 and 3 and FIG. 21C. When the bulge region comprises fewer or more nucleotides than shown in the schematic of Tables 2 and 3 and FIG. 21C, the modification patterns, as will be apparent to the skilled artisan, are maintained. In some embodiments, the number of nucleotides in the bulge of the crRNA differs from the number of nucleotides in the bulge of the trRNA.

d) Upper stem

[00170] In some embodiments, the dgRNA comprises an upper stem (US) region. The upper stem region comprises a crRNA upper stem region and a trRNA upper stem region that associate as depicted in FIG 21C. In some embodiments, the upper stem region of the crRNA is at least partially complementary to the upper stem region of the trRNA. In some embodiments, the upper stem region of the crRNA is fully complementary to the upper stem region of the trRNA.

[00171] In some embodiments, the upper stem region of the crRNA comprises fourteen nucleotides. In some embodiments, the upper stem region of the trRNA comprises eleven nucleotides. In some embodiments, the upper stem regions of the crRNA and trRNA each comprise fewer nucleotides than shown in Tables 2 and 3 and FIG. 21C. In some embodiments, the upper stem regions of the crRNA and trRNA comprise more nucleotides than shown in Tables 2 and 3 and FIG. 21C. When the upper stem region comprises fewer or more nucleotides than shown in the schematic of Tables 2 and 3 and FIG. 21C, the modification patterns, as will be apparent to the skilled artisan, are maintained.

[00172] In some embodiments, the upper stem of the crRNA comprises nucleotides US1 through US14 as shown in Table 2 and FIG. 21C.

[00173] In some embodiments, the upper stem of the trRNA comprises nucleotides US1 through US11 as shown in Table 3 and FIG. 21C.

e) Nexus

[00174] In some embodiments, the dgRNA comprises a trRNA comprising a nexus region. In some embodiments, the nexus is between the lower stem region and the hairpin 1 region of the trRNA. In some embodiments, the nexus is located immediately downstream of the lower stem of the trRNA. In some embodiments, the nexus comprises eighteen nucleotides. In some embodiments, the nexus region of the trRNA comprises nucleotides N1-N18 as shown in Table 3 and FIG 21C. In some embodiments, the nexus comprises fewer nucleotides than shown in Table 3 and FIG 21C. In some embodiments, the nexus region of the trRNA comprises more nucleotides than shown in Table 3 and FIG. 21C. When the nexus region comprises fewer or more nucleotides than shown in Table 3 and FIG. 21C, the modification patterns, as will be apparent to the skilled artisan, are maintained.

[00175] In some embodiments, the nexus region has nucleotides that are complementary in nucleic acid sequence when read in opposite directions. In some embodiments, the complementarity in nucleic acid sequence leads to a secondary structure of a stem and/or stem loop in the sgRNA (e.g., certain nucleotides in the nexus region may base pair with one another). In some embodiments, the nexus regions may not be perfectly complimentary to each other when read in opposite directions.

f) Hairpin

[00176] In some embodiments, the hairpin region of the trRNA is downstream of the nexus region. In some embodiments, the region of nucleotides immediately downstream of the nexus region is termed “hairpin 1.” In some embodiments, the region of nucleotides immediately downstream of the hairpin 1 region is termed “hairpin 2.” In some embodiments, the hairpin region comprises hairpin 1 and hairpin 2. In some instances, hairpin 1 and hairpin 2 are separated by one or more nucleotide “n.” In some embodiments, n=1. In some embodiments, the trRNA comprises only hairpin 1 or hairpin 2.

[00177] Replacement of the hairpin 1 region of a trRNA with 2 nucleotides has been shown to allow editing activity of a Cas RNP (see US20150376586, Fig. 16). In some embodiments, the trRNA comprises replacement of hairpin 1 with nucleotides “n”, wherein “n” is an integer between 1 and 50, 40, 30, 20, 15, 10, 5, 4, 3, and 2. In some embodiments, the hairpin 1 region of a trRNA is replaced by 2 nucleotides.

[00178] In some embodiments, hairpin 1 of the trRNA comprises twelve nucleotides immediately downstream of the nexus region. In some embodiments, the hairpin 1 region of the trRNA comprises nucleotides H1-1 through H1-12 as shown in Table 3 and FIG 21C.

[00179] In some embodiments, non-hairpin nucleotides are present between the hairpin 1 and the hairpin 2 regions of the trRNA. In some embodiments, one to two non-hairpin nucleotides reside between hairpin 1 and hairpin 2.

[00180] In some embodiments, hairpin 2 of the trRNA comprises fifteen nucleotides after (3' to) hairpin 1. In some embodiments, the hairpin 2 region of the trRNA comprises nucleotides H2-1 through H2-15 as shown in Table 3 and FIG 21C. In some embodiments, the hairpin 2 region of the trRNA comprises nucleotides H2-1 through H2-15 as shown in Table 3, and the “n” between hairpin 1 and hairpin 2 is 1 or 2.

[00181] In some embodiments, a hairpin region of the trRNA comprises more nucleotides than shown in Table 3 and FIG. 21C. When a hairpin region comprises fewer or more nucleotides than shown in Table 3 and FIG. 21C, the modification patterns, as will be apparent to the skilled artisan, are maintained.

[00182] In some embodiments, a hairpin region has nucleotides that are complementary in nucleic acid sequence when read in opposite directions. In some embodiments, the hairpin regions may not be perfectly complimentary to each other when read in opposite directions (e.g., the top or loop of the hairpin comprises unpaired nucleotides).

[00183] In some embodiments, the trRNA comprises replacement of hairpin 1 with nucleotides “n”, wherein “n” is an integer between 1 and 50, 40, 30, 20, 15, 10, 5, 4, 3, and 2. In some embodiments, the hairpin 1 region of a trRNA is replaced by 2 nucleotides.

g) 3' terminus

[00184] In some embodiments, the dgRNA comprises a trRNA comprising a 3' terminus region comprising additional nucleotides after (3' to) the hairpin region(s). In some embodiments, the 3' terminus region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 or more nucleotides that are not associated with the secondary structure of a hairpin. In some embodiments, the 3' terminus region comprises 1, 2, 3, or 4 nucleotides that are not associated with the secondary structure of a hairpin. In some embodiments, the 3' terminus region comprises 4 nucleotides that are not associated with the secondary structure of a hairpin. In some embodiments, the 3' terminus region comprises 1, 2, or 3 nucleotides that are not associated with the secondary structure of a hairpin.

2. *Modifications of dgRNAs*

[00185] In some embodiments, a dgRNA comprises a modified crRNA and an unmodified trRNA. In some embodiments, a dgRNA comprises an unmodified crRNA and a

modified trRNA. In some embodiments, both the crRNA and trRNA of a dgRNA comprise modifications.

[00186] In some embodiments, the gRNAs described herein are in two separate RNA molecules (dual guide or dgRNA). See, Tables 2, 3, and FIG. 21C.

[00187] In some embodiments, the invention comprises a dgRNA comprising or consisting of a) any one of the crRNA sequences of SEQ ID Nos: 1-187; and b) any one of the trRNA sequences described in SEQ ID Nos: 188-227.

[00188] In some embodiments, a dgRNA comprising any one of the modified crRNA sequences of 1-187 is provided.

[00189] In some embodiments, a dgRNA comprising any one of the modified trRNA sequences of 188-227 is provided.

[00190] In some embodiments, a dgRNA comprising any one of the modified crRNA sequences of SEQ ID Nos: 19-31, 53-73, and 104-130 is provided. In some embodiments, the invention comprises a dgRNA comprising any one of the modified sequences of SEQ ID Nos: 19-31, 53-73, and 104-130, wherein the crRNA further comprises a 5' spacer sequence that is at least partially complementary to a target sequence, and directs a Cas9 to its target for cleavage.

[00191] In some embodiments, the invention comprises a crRNA comprising any one of the sequences described in SEQ ID Nos: 1-187. In some embodiments, the invention comprises a crRNA comprising or consisting of any one of the sequences described in SEQ ID Nos: 19-31, 53-73, and 104-130. In some embodiments, the invention comprises a crRNA comprising any one of the sequences described in SEQ ID Nos: 19-31, 53-73, and 104-130 and a spacer region.

[00192] In some embodiments, the invention comprises a trRNA comprising or consisting of any one of the sequences described in SEQ ID Nos: 188-277.

[00193] In some embodiments, the invention comprises a crRNA comprising nucleotides having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleotides of any one of SEQ ID Nos: 1-187, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier. That is, the nucleotides A, U, C, and G may differ by 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% compared to what is shown in the sequences, but the modification remains unchanged.

[00194] In some embodiments, the invention comprises a trRNA comprising nucleotides having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to

the nucleotides of any one of SEQ ID Nos: 188-277, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier. That is, the nucleotides A, U, C, and G may differ by 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% compared to what is shown in the sequences, but the modification on each nucleotide remains unchanged.

3. crRNAs, trRNAs, and dgRNAs with modifications

[00195] In some embodiments, the crRNA comprises one or more modified nucleotides within one or more of the 5' terminus, lower stem, bulge, upper stem, and 3' terminus.

[00196] In some embodiments, the modification comprises 2'-O-Me.

[00197] In some embodiments, the modification comprises 2'-F.

[00198] In some embodiments, the modification comprises a phosphorothioate (PS) bond linking one or more nucleotides. In some embodiments, the modification is three PS bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00199] In some embodiments, the modification comprises an inverted abasic nucleotide.

[00200] In some embodiments, a crRNA is provided comprising 2'-O-Me modified nucleotides at each nucleotide in the upper stem. In some embodiments, US-1 through US-14 of the crRNA are each modified with 2'-O-Me. In some embodiments, LS1 and LS6 of the crRNA are modified with 2'-O-Me. In some embodiments, LS5 of the crRNA is modified with 2'-O-Me.

[00201] In some embodiments, a crRNA comprising 2'-O-Me modified nucleotides at each of the nucleotides in the upper stem, and LS1 and LS6 in the lower stem is provided. In some embodiments, the crRNA further comprises one or more 2'-O-Me or 2'-O-moe modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00202] In some embodiments, a crRNA comprising 2'-O-Me modified nucleotides at each of the nucleotides in the upper stem, LS1, LS5, and LS6 in the lower stem is provided. In some embodiments, the crRNA further comprises one or more 2'-O-Me or 2'-O-moe modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00203] In some embodiments, the invention comprises a crRNA comprising 2'-F modified nucleotides at LS1, LS2, and LS6 in the lower stem. In some embodiments, the crRNA further comprises 2'-F modified nucleotides at each of B1 and B2 in the bulge region. In some embodiments, the invention comprises a crRNA comprising 2'-F modified nucleotides at LS1, LS2, and LS6 in the lower stem, and at each of B1 and B2 in the bulge region. In some embodiments, the crRNA further comprises one or more 2'-O-Me or 2'-O-moe modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00204] In some embodiments, the crRNA comprises 2'-O-Me modified nucleotides at nucleotides LS1 and LS6 in the lower stem region; each of the nucleic acids in the bulge region; and each of the nucleic acids in the upper stem region. In some embodiments, the LS5 nucleotide of the crRNA is also modified with 2'-O-Me. In some embodiments, LS2, LS3, and LS4 of the crRNA are not modified. In some embodiments, the crRNA further comprises one or more 2'-O-Me or 2'-O-moe modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00205] In some embodiments, the crRNA comprises 2'-fluoro (2'-F) modified nucleotides at LS1, LS2, and LS6 in the lower stem region, and each of the nucleotides in the bulge region. In some embodiments, the crRNA comprises 2'-fluoro (2'-F) modified nucleotides at LS1, LS2, and LS6 in the lower stem region, and at B2 and B2 in the bulge region. In some embodiments, the crRNA comprises 2'-fluoro (2'-F) modified nucleotides at LS1- LS6 in the lower stem region, and each of the nucleotides in the bulge region. In some embodiments, the crRNA further comprises one or more 2'-O-Me or 2'-O-moe modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00206] In some embodiments, the invention comprises a trRNA comprising one or more modified nucleotides within one or more of the following regions: the 5' terminus, the upper stem region; the bulge region; the lower stem region; the nexus region; the hairpin 1 region; the intervening region between the hairpin 1 and hairpin 2 regions; the hairpin 2 region; and the 3' terminus region.

[00207] In some embodiments, the modification comprises 2'-O-Me.

[00208] In some embodiments, the modification comprises 2'-F.

[00209] In some embodiments, the modification comprises a phosphorothioate (PS) bond linking one or more nucleotides. In some embodiments, the modification is three PS bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00210] In some embodiments, the modification comprises an inverted abasic nucleotide.

[00211] In some embodiments, the trRNA comprises 2'-O-Me modified nucleotides at each nucleic acid in the upper stem; B1 and B2 in the bulge region; LS1 and LS2 in the lower stem region; N3, N4, N5, N15, N16, N17, and N18 in the nexus region; each nucleotide in the hairpin 1 region; one nucleotide between the hairpin 1 and hairpin 2 region; and each nucleotide in the hairpin 2 region. In some embodiments, the trRNA further comprises one or more 2'-O-Me or 2'-O-moe modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00212] In some embodiments, the trRNA comprises 2'-O-Me modified nucleotides at each nucleic acid in the upper stem; each nucleotide in the bulge region; LS1, LS2, LS5, and LS6 in the lower stem region; N3- N5, N10-N18 in the nexus region; each nucleotide in the hairpin 1 region; one nucleotide between the hairpin 1 and hairpin 2 region; and each nucleotide in the hairpin 2 region. In some embodiments, the crRNA further comprises one or more 2'-O-Me or 2'-O-moe modified nucleotides in the 5' and/or 3' terminus region, , e.g. in a 5' and/or 3' end modification.

[00213] In some embodiments, the trRNA comprises 2'-F modified nucleotides at N15 through N18 in the nexus region. In some embodiments, the trRNA further comprises one or more 2'-F modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00214] In some embodiments, the trRNA comprises 2'-F modified nucleotides at LS4 and LS5 in the lower stem region, and N13-N18 in the nexus region. In some embodiments, the trRNA further comprises one or more 2'-F modified nucleotides in the 5' and/or 3' terminus region, e.g. in a 5' and/or 3' end modification.

[00215] In some embodiments, the trRNA comprises 2'-F modified nucleotides at LS1, LS3, and LS5 in the lower stem, and 2'-O-Me modified nucleotides at LS2, LS4, and LS6 in the lower stem.

[00216] Disclosed herein, in some embodiments, is a crispr RNA (crRNA) comprising one or more modifications within one or more of the following regions: the first five nucleotides at the 5' terminus; the lower stem region; the bulge region; the upper stem region; and the last five nucleotides at the 3' terminus. In some embodiments, the modification comprises a 2'-O-methyl (2'-O-Me) modified nucleotide. In some embodiments, the modification comprises a 2'-fluoro (2'-F) modified nucleotide. In some embodiments, the modification comprises a phosphorothioate (PS) bond between nucleotides. In some

embodiments, the first three nucleotides at the 5' terminus, and the last three nucleotides at the 3' terminus are modified. In some embodiments, the first four nucleotides at the 5' terminus, and the last four nucleotides at the 3' terminus are linked with phosphorothioate (PS) bonds. In some embodiments, the modification comprises 2'-O-Me. In some embodiments, the modification comprises 2'-F. In some embodiments, the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-O-Me modifications. In some embodiments, the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-F modifications. In some embodiments, LS1 and LS6 are modified with 2'-O-Me. In some embodiments, each of the nucleotides in the upper stem region are modified with 2'-O-Me.

[00217] In some embodiments, the invention comprises a crispr RNA (crRNA) comprising 2'-O-Me modified nucleic acids at the following nucleotides: LS1 and LS6 in the lower stem region; and each nucleotide in the upper stem region. In some embodiments, the crRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus. In some embodiments, the crRNA further comprises 2'-O-Me or 2'-F modified nucleic acids at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleic acids at the last three nucleotides at the 3' terminus. In some embodiments, LS1, LS2, and LS6 are modified with 2'-F. In some embodiments, each nucleotide in the bulge region is modified with 2'-F.

[00218] Disclosed herein, in some embodiments, is a crispr RNA (crRNA) comprising 2'-F modified nucleic acids at the following nucleotides: LS1, LS2, and LS6 in the lower stem region; and each nucleotide in the bulge region. In some embodiments, the crRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus. In some embodiments, the crRNA further comprises 2'-O-Me or 2'-F modified nucleic acids at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleic acids at the last three nucleotides at the 3' terminus.

[00219] In some embodiments, a crRNA comprising the nucleic acids of any one of SEQ ID Nos: 1 – 187 is provided. In some embodiments, a crRNA comprising the nucleic acids of any one of SEQ ID Nos: 19-31, 53-73, 104-130, and 161-187 is provided. In some

embodiments, a crRNA comprising nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 19-31, 53-73, 104-130, and 161-187, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier, is provided. In some embodiments, the crRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00220] Also encompassed is a tracr RNA (trRNA) comprising one or more modifications within one or more of the following regions: the first five nucleotides at the 5' terminus; the upper stem region; the bulge region; the lower stem region; the nexus region; the hairpin 1 region; the hairpin 2 region; and the last five nucleotides at the 3' terminus. In some embodiments, the modification comprises a 2'-O-methyl (2'-O-Me) modified nucleotide. In some embodiments, the modification comprises a 2'-fluoro (2'-F) modified nucleotide. In some embodiments, the modification comprises a phosphorothioate (PS) bond between nucleotides. In some embodiments, the first four nucleotides at the 5' terminus, and the last four nucleotides at the 3' terminus are linked with phosphorothioate (PS) bonds. In some embodiments, the first three nucleotides at the 5' terminus, and the last three nucleotides at the 3' terminus are modified. In some embodiments, the modification comprises 2'-O-Me. In some embodiments, the modification comprises 2'-F. In some embodiments, the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-O-Me modifications. In some embodiments, the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-F modifications. In some embodiments, each nucleotide in the upper stem region is modified with 2'-O-Me. In some embodiments, B1 and B2 within the bulge region are modified with 2'-O-Me. In some embodiments, N3, N4, N5, N15, N16, N17, and N18 in the nexus region are modified with 2'-O-Me. In some embodiments, each nucleotide in the hairpin 1 region is modified with 2'-O-Me. In some embodiments, each nucleotide in the hairpin 2 region is modified with 2'-O-Me.

[00221] In some embodiments, the invention comprises a tracr RNA (trRNA) comprising 2'-O-Me modified nucleic acids at the following nucleotides: each nucleotide in the upper stem; B1 and B2 within the bulge region; N3, N4, N5, N15, N16, N17, and N18 in

the nexus region; each nucleotide in the hairpin 1 region; and each nucleotide in the hairpin 2 region. In some embodiments, the trRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus. In some embodiments, the trRNA further comprises 2'-O-Me or 2'-F modified nucleotides at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleic acids at the last three nucleotides at the 3' terminus. In some embodiments, N15, N16, N17, and N18 are modified with 2'-F. In some embodiments, LS1, LS3, and LS5 are modified with 2'-F, and LS2, LS4, and LS6 are modified with 2'-O-Me. In some embodiments, the trRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus. In some embodiments, the trRNA further comprises 2'-O-Me or 2'-F modified nucleic acids at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleic acids at the last three nucleotides at the 3' terminus.

[00222] In some embodiments, a trRNA comprising the nucleic acids of any one of SEQ ID Nos: 188-227 is provided. In some embodiments, a trRNA comprising nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 188-227, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier, is provided. In some embodiments, the trRNA further comprises three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

[00223] In some instances, a dual guide comprising a crRNA and a trRNA is provided, wherein the crRNA comprises the nucleic acids of any one of SEQ ID Nos: 1-187, and wherein the trRNA comprises the nucleic acids of any one of SEQ ID Nos: 188-227.

[00224] A dual guide comprising a crRNA disclosed herein and a trRNA disclosed herein is encompassed, as is a dual guide comprising a crRNA disclosed herein and an unmodified trRNA. In some embodiments, a dual guide comprising an unmodified crRNA and a modified trRNA disclosed herein is provided.

[00225] In some embodiments, and of the following are encompassed:

Embodiment 55. A crispr RNA (crRNA) comprising one or more modifications within one or more of the following regions:

- a. the first five nucleotides at the 5' terminus;
- b. the lower stem region;
- c. the bulge region;

- d. the upper stem region; and
- e. the last five nucleotides at the 3' terminus.

Embodiment 56. The crRNA of embodiment 55, wherein the modification comprises a 2'-O-methyl (2'-O-Me) modified nucleotide.

Embodiment 57. The crRNA of embodiment 55, wherein the modification comprises a 2'-fluoro (2'-F) modified nucleotide.

Embodiment 58. The crRNA of embodiment 55, wherein the modification comprises a phosphorothioate (PS) bond between nucleotides.

Embodiment 59. The crRNA of any one of embodiments 55-58, wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus are modified.

Embodiment 60. The crRNA of any one of embodiments 55-58, wherein the first four nucleotides at the 5' terminus, and the last four nucleotides at the 3' terminus are linked with phosphorothioate (PS) bonds.

Embodiment 61. The crRNA of embodiment 59, wherein the modification comprises 2'-O-Me.

Embodiment 62. The crRNA of embodiment 59, wherein the modification comprises 2'-F.

Embodiment 63. The crRNA of any one of embodiments 55-62, wherein the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-O-Me modifications.

Embodiment 64. The crRNA of any one of embodiments 55-62, wherein the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-F modifications.

Embodiment 65. The crRNA of any one of embodiments 55-60, wherein LS1 and LS6 are modified with 2'-O-Me.

Embodiment 66. The crRNA of any one of embodiments 55-60 and 65, wherein each of the nucleotides in the upper stem region are modified with 2'-O-Me.

Embodiment 67. A crispr RNA (crRNA) comprising 2'-O-Me modified nucleotides at:

- a. LS1 and LS6 in the lower stem region; and
- b. each nucleotide in the upper stem region.

Embodiment 68. The crRNA of embodiment 67, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 69. The crRNA of embodiment 67 or 68, further comprising 2'-O-Me or 2'-F modified nucleotides at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleotides at the last three nucleotides at the 3' terminus.

Embodiment 70. The crRNA of any of embodiments 55-60, wherein LS1, LS2, and LS6 are modified with 2'-F.

Embodiment 71. The crRNA of any of embodiments 55-60 and 70, wherein each nucleotide in the bulge region is modified with 2'-F.

Embodiment 72. A crispr RNA (crRNA) comprising 2'-F modified nucleotides at:

- a. LS1, LS2, and LS6 in the lower stem region; and
- b. each nucleotide in the bulge region.

Embodiment 73. The crRNA of any one of embodiments 70-72, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 74. The crRNA of embodiment 72 or 73, further comprising 2'-O-Me or 2'-F modified nucleotides at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleotides at the last three nucleotides at the 3' terminus.

Embodiment 75. A crRNA comprising the nucleic acids of any one of SEQ ID Nos: 1 – 187.

Embodiment 76. A crRNA comprising the nucleic acids of any one of SEQ ID Nos: 19-31, 53-73, 104-130, and 161-187.

Embodiment 77. A crRNA comprising nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 19-31, 53-73, 104-130, and 161-187, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier.

Embodiment 78. The crRNA of any one of embodiments 75-77, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 79. A tracr RNA (trRNA) comprising one or more modifications within one or more of the following regions:

- a. the first five nucleotides at the 5' terminus;
- b. the upper stem region;

- c. the bulge region;
- d. the lower stem region;
- e. the nexus region;
- f. the hairpin 1 region;
- g. the hairpin 2 region; and
- h. the last five nucleotides at the 3' terminus.

Embodiment 80. The trRNA of embodiment 79, wherein the modification comprises a 2'-O-methyl (2'-O-Me) modified nucleotide.

Embodiment 81. The trRNA of embodiment 79, wherein the modification comprises a 2'-fluoro (2'-F) modified nucleotide.

Embodiment 82. The trRNA of embodiment 79, wherein the modification comprises a phosphorothioate (PS) bond between nucleotides.

Embodiment 83. The trRNA of any one of embodiments 79-82, wherein the first four nucleotides at the 5' terminus, and the last four nucleotides at the 3' terminus are linked with phosphorothioate (PS) bonds.

Embodiment 84. The trRNA of any one of embodiments 79-82, wherein the first three nucleotides at the 5' terminus, and the last three nucleotides at the 3' terminus are modified.

Embodiment 85. The trRNA of embodiment 84, wherein the modification comprises 2'-O-Me.

Embodiment 86. The trRNA of embodiment 84, wherein the modification comprises 2'-F.

Embodiment 87. The trRNA of any one of embodiments 79-86, wherein the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-O-Me modifications.

Embodiment 88. The trRNA of any one of embodiments 79-86, wherein the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-F modifications.

Embodiment 89. The trRNA of any one of embodiments 79-84, wherein each nucleotide in the upper stem region is modified with 2'-O-Me.

Embodiment 90. The trRNA of any one of embodiments 79-84 and 89, wherein B1 and B2 within the bulge region are modified with 2'-O-Me.

Embodiment 91. The trRNA of any one of embodiments 79-84 and 89-90, wherein N3, N4, N5, N15, N16, N17, and N18 in the nexus region are modified with 2'-O-Me.

Embodiment 92. The trRNA of any one of embodiments 79-84 and 89-91, wherein each nucleotide in the hairpin 1 region is modified with 2'-O-Me.

Embodiment 93. The trRNA of any one of embodiments 79-84 and 89-92, wherein each nucleotide in the hairpin 2 region is modified with 2'-O-Me.

Embodiment 94. A tracr RNA (trRNA) comprising 2'-O-Me modified nucleotides at:

- a. each nucleotide in the upper stem;
- b. B1 and B2 within the bulge region;
- c. N3, N4, N5, N15, N16, N17, and N18 in the nexus region;
- d. each nucleotide in the hairpin 1 region; and
- e. each nucleotide in the hairpin 2 region.

Embodiment 95. The trRNA of embodiment 94, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 96. The crRNA of embodiment 94 or 95, further comprising 2'-O-Me or 2'-F modified nucleotides at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleic acids at the last three nucleotides at the 3' terminus.

Embodiment 97. The trRNA of any of embodiments 79-84, wherein N15, N16, N17, and N18 are modified with 2'-F.

Embodiment 98. The trRNA of any of embodiments 79-84 and 97, wherein LS1, LS3, and LS5 are modified with 2'-F, and LS2, LS4, and LS6 are modified with 2'-O-Me.

Embodiment 99. The trRNA of any one of embodiments 87-98, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 100. The trRNA of embodiment 98 or 99, further comprising 2'-O-Me or 2'-F modified nucleotides at the first three nucleotides at the 5' terminus, and 2'-O-Me or 2'-F modified nucleotides at the last three nucleotides at the 3' terminus.

Embodiment 101. A trRNA comprising the nucleic acids of any one of SEQ ID Nos: 188-227.

Embodiment 102. A trRNA comprising nucleic acids having at least 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 85, 80, 75, or 70% identity to the nucleic acids of any one of SEQ ID Nos: 188-227, wherein the modification pattern is identical to the modification pattern shown in the reference sequence identifier.

Embodiment 103. The trRNA of any one of embodiments 101 - 102, further comprising three phosphorothioate (PS) bonds linking the first four nucleotides at the 5' terminus and three PS bonds linking the last four nucleotides at the 3' terminus.

Embodiment 104. A dual guide comprising a crRNA and a trRNA, wherein the crRNA comprises the nucleotides of any one of SEQ ID Nos: 1-187, and wherein the trRNA comprises the nucleic acids of any one of SEQ ID Nos: 188-227.

Embodiment 105. A dual guide comprising a crRNA of any one of embodiments 55-78 and a trRNA of any one of embodiments 79-103.

Embodiment 106. A dual guide comprising a crRNA of any one of embodiments 55-78 and an unmodified trRNA.

Embodiment 107. A dual guide comprising an unmodified crRNA and a trRNA of any one of embodiments 79-103.

C. Modifications to terminal nucleotides

[00226] In some embodiments, the 5' or 3' terminal nucleotides of any of the guide RNAs described herein are modified. In some embodiments, the terminal (i.e., last) 1, 2, 3, 4, 5, 6, or 7 nucleotides in 3' terminus region of guide RNA, including, for example, the sgRNA, the dgRNA, the crRNA, trRNA, or both crRNA and trRNA are modified. In some embodiments, the terminal (i.e., last) 1, 2, 3, 4, 5, 6, or 7 nucleotides in 3' terminus region of guide RNA comprise more than one modification. In some embodiments, at least one of the terminal (i.e., last) 1, 2, 3, 4, 5, 6, or 7 nucleotides at the 3' terminus region are modified. In some embodiments, at least two of the terminal (i.e., last) 1, 2, 3, 4, 5, 6, or 7 nucleotides in 3' terminus region are modified. In some embodiments, at least three of the terminal (i.e., last) 1, 2, 3, 4, 5, 6, or 7 nucleotides in 3' terminus region are modified. In some embodiments, the modification comprises a PS linkage.

[00227] In some embodiments, the 5' end of the 5' terminus region is modified, for example, the first 1, 2, 3, 4, 5, 6, or 7 nucleotides of the sgRNA, the dgRNA, crRNA, trRNA, or both crRNA and trRNA are modified. In some embodiments, the first 1, 2, 3, 4, 5, 6, or 7 nucleotides in 3' terminus region of guide RNA comprise more than one modification. In some embodiments, at least one of the terminal (i.e., first) 1, 2, 3, 4, 5, 6, or 7 nucleotides at the 5' end are modified. In some embodiments, at least two of the terminal 1, 2, 3, 4, 5, 6, or 7 nucleotides at the 5' end are modified. In some embodiments, at least three of the terminal 1, 2, 3, 4, 5, 6, or 7 nucleotides at the 5' end are modified. In some embodiments, the modification comprises a PS linkage.

[00228] In some embodiments, both the 5' and 3' termini (e.g., ends) of the guide RNA, e.g., sgRNA, dgRNA, crRNA, trRNA, or both crRNA and trRNA are modified. In some embodiments, only the 5' terminus of the guide RNA, e.g., sgRNA, dgRNA, crRNA, trRNA, or both crRNA and trRNA is modified. In some embodiments, only the 3' terminus of the guide RNA, e.g., sgRNA, dgRNA, crRNA, trRNA, or both crRNA and trRNA is modified.

[00229] In some embodiments, the gRNA comprises modifications at 1, 2, 3, 4, 5, 6, or 7 of the first 7 nucleotides at a 5' end of the gRNA. In some embodiments, the gRNA comprises modifications at 1, 2, 3, 4, 5, 6, or 7 of the 7 terminal nucleotides at a 3' end. In some embodiments, 2, 3, or 4 of the first 4 nucleotides at the 5' end, and/or 2, 3, or 4 of the terminal 4 nucleotides at the 3' end are modified. In some embodiments, 2, 3, or 4 of the first 4 nucleotides at the 5' end are linked with phosphorothioate (PS) bonds.

[00230] In some embodiments, the modification to the 5' terminus and/or 3' terminus comprises a 2'-O-methyl (2'-O-Me) or 2'-O-(2-methoxyethyl) (2'-O-moe) modification to a nucleotide. In some embodiments, the modification comprises a 2'-fluoro (2'-F) modification to a nucleotide. In some embodiments, the modification comprises a phosphorothioate (PS) linkage between nucleotides. In some embodiments, the modification comprises an inverted abasic nucleotide. In some embodiments, the modification comprises a more than one modification selected from 2'-O-Me, 2'-O-moe, 2'-fluoro (2'-F), a phosphorothioate (PS) linkage between nucleotides, and an inverted abasic nucleotide. In some embodiments, an equivalent modification is encompassed.

[00231] In some embodiments, the guide RNA, e.g., sgRNA, dgRNA, crRNA, trRNA, or both crRNA and trRNA comprises one or more phosphorothioate (PS) linkages between the first one, two, three, four, five, six, or seven nucleotides at the 5' terminus. In some embodiments, the guide RNA, e.g., sgRNA, dgRNA, crRNA, trRNA, or both crRNA and trRNA comprises one or more PS linkages between the last one, two, three, four, five, six, or seven nucleotides at the 3' terminus. In some embodiments, the guide RNA, e.g., sgRNA, dgRNA, crRNA, trRNA, or both crRNA and trRNA comprises one or more PS linkages between the last one, two, three, four, five, six, or seven nucleotides at both the 5' terminus and the 3' terminus. In some embodiments, in addition to PS linkages, the 5' and 3' terminal nucleotides may comprise 2'-O-Me, 2'-O-moe, or 2'-F modified nucleotides.

[00232] In some embodiments, the guide RNA, e.g., sgRNA, dgRNA, crRNA, trRNA, or both crRNA and trRNA comprises modified nucleotides at the 5' and 3' terminus, and

modified nucleotides in one or more other regions described in Tables 1-3 and FIG 21A or 21C.

[00233] In some embodiments, the crRNA, trRNA, or both crRNA and trRNA comprises modified nucleotides that are not at the 5' or 3' ends. Specific patterns of modifications are described below and in Table 4.

3. Delivery of gRNAs and Cas Protein

[00234] In some embodiments, in addition to the at least one gRNA, the compositions provided herein further comprise a nuclease. In some embodiments, the nuclease is a Cas protein. In some embodiments, the gRNA together with a Cas protein is called a Cas RNP. In some embodiments, the Cas protein is from the Type-II CRISPR/Cas system. In some embodiments, the Cas protein is Cas9. In some embodiments, the Cas9 protein is a wild type Cas9. In some embodiments, the Cas9 protein is derived from the *Streptococcus pyogenes* Cas9 protein, e.g., a *S. pyogenes* Cas9. In some embodiments, the Cas9 protein is not derived from *S. pyogenes*, but functions in the same way as *S. pyogenes* Cas9 such that gRNA that is specific to *S. pyogenes* Cas9 will direct the non-*S. pyogenes* Cas9 to its target site. In some embodiments, the Cas induces a double strand break in target DNA. Equivalents of *S. pyogenes* Cas9 protein are encompassed by the embodiments described herein.

[00235] Cas9 encompasses modified and variants thereof. Modified versions of Cas9 having one catalytic domain, either RuvC or HNH, that is inactive are termed “nickases.” Nickases cut only one strand on the target DNA, thus creating a single-strand break. A single-strand break may also be known as a “nick.” In some embodiments, the compositions and methods comprise nickases. In some embodiments, the compositions and methods comprise a nickase Cas9 that induces a nick rather than a double strand break in the target DNA.

[00236] In some embodiments, the Cas protein may be modified to contain only one functional nuclease domain. For example, the Cas protein may be modified such that one of the nuclease domains is mutated or fully or partially deleted to reduce its nucleic acid cleavage activity. In some embodiments, a nickase Cas is used having a RuvC domain with reduced activity. In some embodiments, a nickase Cas is used having an inactive RuvC domain. In some embodiments, a nickase Cas is used having an HNH domain with reduced activity. In some embodiments, a nickase Cas is used having an inactive HNH domain.

[00237] In some embodiments, a conserved amino acid within a Cas protein nuclease domain is substituted to reduce or alter nuclease activity. In some embodiments, a Cas protein

may comprise an amino acid substitution in the RuvC or RuvC-like nuclease domain. Exemplary amino acid substitutions in the RuvC or RuvC-like nuclease domain include D10A (based on the *S. pyogenes* Cas9 protein). In some embodiments, the Cas protein may comprise an amino acid substitution in the HNH or HNH-like nuclease domain. Exemplary amino acid substitutions in the HNH or HNH-like nuclease domain include E762A, H840A, N863A, H983A, and D986A (based on the *S. pyogenes* Cas9 protein).

[00238] In some embodiments, the RNP complex described herein comprises a nickase and a pair of guide RNAs that are complementary to the sense and antisense strands of the target sequence, respectively. In this embodiment, the guide RNAs direct the nickase to a target sequence and introduce a double stranded break (DSB) by generating a nick on opposite strands of the target sequence (i.e., double nicking). In some embodiments, use of double nicking may improve specificity and reduce off-target effects. In some embodiments, a nickase Cas is used together with two separate guide RNAs targeting opposite strands of DNA to produce a double nick in the target DNA. In some embodiments, a nickase Cas is used together with two separate guide RNAs that are selected to be in close proximity to produce a double nick in the target DNA.

[00239] In some embodiments, chimeric Cas proteins are used, where one domain or region of the protein is replaced by a portion of a different protein. In some embodiments, a Cas nuclease domain may be replaced with a domain from a different nuclease such as Fok1. In some embodiments, a Cas protein may be a modified nuclease.

[00240] In some embodiments, the Cas protein comprises a fusion protein comprising a catalytically inactive Cas9 linked to a heterologous functional domain (see, e.g., WO2014152432). In some embodiments, the catalytically inactive Cas9 is from *S. pyogenes*. In some embodiments, the catalytically inactive Cas9 comprises mutations that inactivate the Cas9. In some embodiments, the heterologous functional domain is a domain that modifies gene expression, histones, or DNA. In some embodiments, the heterologous functional domain is a transcriptional activation domain or a transcriptional repressor domain.

A. PAM

[00241] In some embodiments, the target sequence may be adjacent to the PAM. In some embodiments, the PAM may be adjacent to or within 1, 2, 3, or 4, nucleotides of the 3' end of the target sequence. The length and the sequence of the PAM may depend on the Cas protein used. For example, the PAM may be selected from a consensus or a particular PAM sequence for a specific Cas9 protein or Cas9 ortholog, including those disclosed in Figure 1

of Ran et al., *Nature* 520:186-191 (2015), which is incorporated herein by reference. In some embodiments, the PAM may comprise 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides in length. Non-limiting exemplary PAM sequences include NGG, NAG, NGA, NGAG, NGCG, NNGRRT, TTN, NGGNG, NG, NAAAAN, NNAAAAW, NNNNACA, GNNNCNNA, and NNNNGATT (wherein N is defined as any nucleotide, and W is defined as either A or T, and R is defined as either A or G). In some embodiments, the PAM sequence may be NGG. In some embodiments, the PAM sequence may be NGGNG. In some embodiments, the PAM sequence may be NNAAAAW.

B. Delivery of Modified gRNA

[00242] Lipid nanoparticles (LNPs) are a well-known means for delivery of nucleotide and protein cargo, and may be used for delivery of the gRNA, mRNA, Cas9, and RNPs disclosed herein. In some embodiments, the LNPs deliver nucleic acid, protein, or nucleic acid together with protein.

[00243] In some embodiments, the invention comprises a method for delivering any one of the gRNAs disclosed herein to a subject, wherein the gRNA is associated with an LNP. In some embodiments, the gRNA/LNP is also associated with a Cas9 or an mRNA encoding Cas9.

[00244] In some embodiments, the invention comprises a composition comprising any one of the gRNAs disclosed and an LNP. In some embodiments, the composition further comprises a Cas9 or an mRNA encoding Cas9.

[00245] In some embodiments, the LNPs comprise cationic lipids. In some embodiments, the LNPs comprise (9Z,12Z)-3-((4,4-bis(octyloxy)butanoyl)oxy)-2-(((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl octadeca-9,12-dienoate, also called 3-((4,4-bis(octyloxy)butanoyl)oxy)-2-(((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl (9Z,12Z)-octadeca-9,12-dienoate). In some embodiments, the LNPs comprise molar ratios of a cationic lipid amine to RNA phosphate (N:P) of about 4.5.

[00246] In some embodiments, LNPs associated with the gRNAs disclosed herein are for use in preparing a medicament for treating a disease or disorder.

[00247] Electroporation is a well-known means for delivery of cargo, and any electroporation methodology may be used for delivery of any one of the gRNAs disclosed herein. In some embodiments, electroporation may be used to deliver any one of the gRNAs disclosed herein and Cas9 or an mRNA encoding Cas9.

[00248] In some embodiments, the invention comprises a method for delivering any one of the gRNAs disclosed herein to an ex vivo cell, wherein the gRNA is associated with an LNP or not associated with an LNP. In some embodiments, the gRNA/LNP or gRNA is also associated with a Cas9 or an mRNA encoding Cas9.

4. Methods of Gene Modulation

[00249] In some embodiments, the invention comprises a pharmaceutical formulation comprising any one of the gRNAs disclosed herein together with a pharmaceutically acceptable carrier. In some embodiments, the invention comprises a pharmaceutical formulation comprising any one of the gRNAs disclosed herein and an LNP together with a pharmaceutically acceptable carrier. In some embodiments, the invention comprises a pharmaceutical formulation comprising any one of the gRNAs disclosed herein, a Cas9 protein or an mRNA encoding a Cas9 protein, and a LNP together with a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical formulation is for use in preparing a medicament for treating a disease or disorder. In some embodiments, the invention comprises a method of treating a human patient comprising administering any one of the gRNAs or pharmaceutical formulations described herein.

[00250] In some embodiments, the invention comprises a method or use of modifying a target DNA comprising, administering or delivering a Cas protein or Cas mRNA and any one or more of the gRNAs disclosed herein.

[00251] In some embodiments, the invention comprises a method or use for modulation of a target gene comprising, administering or delivering a Cas protein or Cas mRNA and any one or more of the gRNAs disclosed herein. In some embodiments, the modulation is editing of the target gene. In some embodiments, the modulation is a change in expression of the protein encoded by the target gene.

[00252] In some embodiments, the method or use results in gene editing. In some embodiments, the method or use results in a double-stranded break within the target gene. In some embodiments, the method or use results in formation of indel mutations during non-homologous end joining of the DSB. In some embodiments, the method or use results in an insertion or deletion of nucleotides in a target gene. In some embodiments, the insertion or deletion of nucleotides in a target gene leads to a frameshift mutation or premature stop codon that results in a non-functional protein. In some embodiments, the insertion or deletion of nucleotides in a target gene leads to a knockdown or elimination of target gene expression. In some embodiments, the method or use comprises homology directed repair of a DSB. In

some embodiments, the method or use further comprises delivering to the cell a template, wherein at least a part of the template incorporates into a target DNA at or near a double strand break site induced by the Cas protein.

[00253] In some embodiments, the method or use results in gene modulation. In some embodiments, the gene modulation is an increase or decrease in gene expression, a change in methylation state of DNA, or modification of a histone subunit. In some embodiments, the method or use results in increased or decreased expression of the protein encoded by the target gene.

[00254] In some embodiments, any of the gRNAs disclosed herein may be useful in preparing a medicament for treating a disease or disorder.

A. Measures of Gene Modulation

[00255] The efficacy of modified gRNAs can be tested in vitro and in vivo. In some embodiments, the invention comprises one or more of the gRNAs disclosed herein, wherein the gRNA results in gene modulation when provided to a cell together with Cas9. In some embodiments, the efficacy of gRNA can be measured in *in vitro* or *in vivo* assays.

1. In vitro measurement of Cas efficacy

[00256] In some embodiments, the activity of a Cas RNP comprising a modified sgRNA is compared to the activity of a Cas RNP comprising an unmodified sgRNA.

[00257] In some embodiments, the activity of a Cas RNP comprising a dgRNA comprising a modified trRNA is compared to the activity of a Cas RNP comprising a dgRNA comprising an unmodified trRNA.

[00258] In some embodiments, the activity of a Cas RNP comprising a dgRNA comprising a modified crRNA is compared to the activity of a Cas RNP comprising a dgRNA comprising an unmodified crRNA.

[00259] In some embodiments, the activity of a Cas RNP comprising a dgRNA comprising a modified crRNA and a modified trRNA is compared to the activity of a Cas RNP comprising an unmodified crRNA and an unmodified trRNA.

[00260] In some embodiments, the efficiency of a gRNA in increasing or decreasing target protein expression is determined by measuring the amount of target protein. In some embodiments, the invention comprises any one of the gRNAs described herein, wherein the gRNA increases or decreases the amount of protein produced from the targeted gene. In some embodiments, the invention comprises a method of modulating protein expression

comprising administering any one of the gRNAs disclosed herein to a subject, wherein the gRNA directs Cas9 to the gene encoding the target protein, and the target protein expression is increased or decreased as compared to a gRNA control that does not target Cas9 to that gene.

[00261] In some embodiments, the efficiency of editing with specific gRNAs is determined by the editing present at the target location in the genome following delivery of Cas9 and the gRNA (either sgRNA or dgRNA comprising a crRNA and trRNA). In some embodiments, the efficiency of editing with specific gRNAs is measured by next-generation sequencing. In some embodiments, the editing percentage of the target region of interest is determined. In some embodiments, the total number of sequence reads with insertions or deletions of nucleotides into the target region of interest over the total number of sequence reads is measured following delivery of a gRNA and Cas9. In some embodiments, the invention comprises a method of increasing the efficiency of gene editing comprising, administering or delivering any one of the modified gRNAs described herein to a cell, wherein the percentage of gene editing is increased as compared to a control gRNA that is not similarly modified.

[00262] In some embodiments, the efficiency of editing with specific gRNAs is measured by the presence of insertions or deletions of nucleotides introduced by successful gene editing. In some embodiments, the invention comprises a method of creating insertions or deletions of nucleotides in genes comprising, administering or delivering any one of the modified gRNAs described herein to a cell, wherein the nucleotides are inserted or deleted as compared to a control gRNA that is not similarly modified. In some embodiments, activity of a Cas9 and gRNAs is tested in biochemical assays. In some embodiments, activity of a Cas9 and gRNAs is tested in a cell-free cleavage assay. In some embodiments, activity of a Cas9 and gRNAs is tested in Neuro2A cells.

[00263] In some embodiments, Cas 9 and sgRNA or dgRNA comprising modified crRNA and/or trRNA shows similar, greater, or reduced activity compared to the unmodified sgRNA or dgRNA comprising unmodified crRNA and trRNA. In some embodiments, Cas9 and modified sgRNA or dgRNA comprising modified crRNA and/or trRNA shows enhanced activity compared to the unmodified sgRNA or dgRNA comprising unmodified crRNA and trRNA.

2. In vivo measurement of Cas efficacy

[00264] In some embodiments, the activity of modified gRNAs is measured after in vivo dosing of LNPs comprising modified gRNAs and Cas protein or mRNA encoding Cas protein.

[00265] In some embodiments, in vivo efficacy of a gRNA or composition provided herein is determined by editing efficacy measured in DNA extracted from tissue (e.g., liver tissue) after administration of gRNA and Cas9.

3. In vivo measurement of immune system activation

[00266] Modifications to gRNA as disclosed herein may reduce the subject's immune response to in vivo dosing of gRNAs. In some embodiments, activation of the subject's immune response is measured by serum concentrations of cytokine(s) following in vivo dosing of sgRNA or dgRNA comprising trRNA and crRNA together with Cas9 mRNA or protein (e.g., formulated in a LNP). In some embodiments, the cytokine is interferon-alpha (IFN-alpha), interleukin 6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and/or tumor necrosis factor alpha (TNF-alpha). In some embodiments, the invention comprises a method of reducing a subject's immune response to delivery of a gRNA comprising, administering any one of the gRNAs disclosed herein, wherein the gRNA produces a reduced response by the subject's immune system following administration. In some embodiments, the invention comprises a method of reducing activation of the subject's immune system following administration as compared to a control gRNA that is not similarly modified.

[00267] In some embodiments, administration of Cas RNP or Cas9 mRNA together with the modified gRNA (e.g., sgRNA or dgRNA) produces lower serum concentration(s) of immune cytokines compared to administration of unmodified sgRNA. In some embodiments, the invention comprises a method of reducing a subject's serum concentration of immune cytokines comprising, administering any one of the gRNAs disclosed herein, wherein the gRNA produces a lower concentration of immune cytokines in a subject's serum as compared to a control gRNA that is not similarly modified.

[00268] This description and exemplary embodiments should not be taken as limiting. For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages, or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term "about," to the extent they are not already so modified. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached

claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

[00269] It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” and any singular use of any word, include plural referents unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.

EXAMPLES

[00270] The following examples are provided to illustrate certain disclosed embodiments and are not to be construed as limiting the scope of this disclosure in any way.

Example 1 – Materials and Methods

A. Synthetic guide RNA (gRNA)

[00271] gRNA in both dual (dgRNA, i.e., crRNA and trRNA) and single guide (sgRNA) format were chemically synthesized by commercial vendors with modified nucleotides and linkages as provided in Table 4.

B. In vitro transcription (“IVT”) of Cas9 mRNA

[00272] Capped and polyadenylated Cas9 mRNA containing N1-methyl pseudo-U was generated by *in vitro* transcription using a linearized plasmid DNA template and T7 RNA polymerase. Plasmid DNA containing a T7 promoter and a 100 nucleotide (nt) poly(A/T) region was linearized by XbaI and obtained from a commercial manufacturer. The IVT reaction to generate Cas9 modified mRNA was incubated at 37 °C for 4 hours in the following conditions: 50 ng/µL linearized plasmid; 2 mM each of GTP, ATP, CTP, and N1-methyl pseudo-UTP (Trilink); 10 mM ARCA (Trilink); 5 U/µL T7 RNA polymerase (NEB); 1 U/µL Murine RNase inhibitor (NEB); 0.004 U/µL Inorganic *E. coli* pyrophosphatase (NEB); and 1x reaction buffer. After the 4 hr incubation, TURBO DNase (ThermoFisher) was added to a final concentration of 0.01 U/µL, and the reaction was incubated for an additional 30 minutes to remove the DNA template. The Cas9 mRNA was purified from enzyme and nucleotides using standard protocols, including silica binding columns such as a

MegaClear Transcription Clean-up kit (ThermoFisher) or precipitation steps using LiCl followed by EtOH with NaOAc. The transcript concentration was determined by measuring the light absorbance at 260 nm (Nanodrop), and the transcript was analyzed by capillary electrophoresis by Bioanlayzer (Agilent).

C. Cas9 mRNA and gRNA Transfections in Neuro2A Cells

[00273] The mouse cell line Neuro2A was cultured in DMEM media supplemented with 10% fetal bovine serum and was plated at a density of 15,000 cells/well in a 96-well plate 24 hours prior to transfection. On the day of transfection, the media was aspirated from cells and replaced with fresh media. Lipofectamine-2000 (Invitrogen) was diluted 1:50 (v/v) in Opti-MEM (Invitrogen). Cas9 mRNA and single guide RNA were diluted separately in Opti-MEM. For the dual guide format, crRNA and trRNA were diluted together in 1:1 molar ratio in Opti-MEM. Both Cas9 mRNA and gRNA were mixed separately 1:1 (v/v) with diluted Lipofectamine-2000, producing two lipoplexes. After 5 minutes of incubation, lipoplexes were added in succession to cells, for a final concentration of 100 ng Cas9 mRNA/well and 0.4 μ L total lipofection reagent. Guides were tested at two dose levels for each experiment, including 25 nM and 2.5 nM, 16.7 nM and 1.67 nM, 10 nM and 1 nM, 8.3 nM and 0.83 nM, and 3 nM and 0.3 nM. For dual guide, this concentration includes equimolar amounts of crRNA and trRNA, such that, for example, 25 nM crRNA and 25 nM trRNA produce 25 nM total dual guide. Cells were lysed 24 hours post transfection, and lysates were used directly in the PCR reaction that was analyzed for editing by NGS.

[00274] Cas9 mRNA with 1xNLS (SEQ ID NO: 359):

GGGUCCCGCAGUCGGCGUCCAGCGGCUCUGCUUGUUUCGUGUGUGUGUCGUUGCAGGC
CUUAUUCGGAUCCAUGGAAUAGAAGUACUCAUCGGCUGGAAUACGGAACUAUUC
CGUGGGUUGGGCAGUGAUCACGGAUGAAUACAAAGUGGCCGUCCAAGAAGUUCAAGGU
CCUGGGGAACACCGAUAGACACAGCAUCAAGAAAAAUUCUCAUCGGAGGCCUGCUGUU
UGACUCCGGCGAAACCGCAGAAGCGACCCGGCUCAAACGUACCGCGAGGCACGCUA
CACCCGGCGGAAGAAUCGCAUCUGCUACUGCAAGAGAUCUUUUCGAACGAAUAGG
AAAGGUCGACGACAGCUUCUCCACCGCCUGGAAGAAUCUUUCCUGGUGGAGGAGGA
CAAGAAGCAUGAACGGCAUCCUAUCUUUUGAAACAUUCGUCGACGAAGUGGGCUACCA
CGAAAAGUACCCGACCAUCUACCAUCUGCGGAAGAAAGUUGGUUGACUACUGACAA
GGCCGACCUCAGAUUGAUCUACUUUGGCCUCGCCAUAAUGAUCAAAUUCGCGGACA
CUUCCUGAUCGAAGGCGAUCUGAACCUCUGAUAAACUCCGACGUGGAAUAGCUUUUCAU
UCAACUGGUGCAGACCUACAACCAACUGUUCGAAGAAAACCAAUCAUGCUAGCGG
CGUCGAUGCCAAGGCCAUCCUGUCCGCCGGCUGUCGAAGUCCGGGCCUCGAAAA
CCUGAUCGCACAGCUGCCGGAGAGAAAAAGAACGGACUUUUCGGCAACUUGAUCGC
UCUCUCACUGGGACUCACUCCAAUUUCAAGUCCAAUUUUGACCUGGCCGAGGACGC
GAAGCUGCAACUCUCAAAGGACACCUACGACGACGACUUGGACAUUUUGCUGGACACA
AAUUGGCGAUCAGUACGCGGAUCUGUUCUUCGCGCUAAGAACCUUUCGGACGCAAU
CUUGCUGUCCGAUAUCCUGCGCGUGAACACCGAAAUAACCAAAGCGCCGCUUAGCGC
CUCGAUGAUUAAGCGGUACGACGAGCAUCACCAGGAUCUCACGCUGCUAAAGCGCU

CGUGAGACAGCAACUGCCUGAAAAGUACAAGGAGAUCUUCUUCGACCAGUCCAAGAA
UGGGUACGCAGGGUACAUCGAUGGAGGCGCUAGCCAGGAAGAGUUCUAUAAGUCAU
CAAGCCAAUCCUGGAAAAGAUGGACGGAACCGAAGAACUGCUGGUCAAGCUGAACAG
GGAGGAUCUGCUCCGGAAACAGAGAACCUUUGACAACCGGAUCCAUUCCCCACCAGAU
CCAUCUGGGUGAGCUGCAGCCAUCUUGCGGCCAGGAGGACUUUACCCAUUCCU
CAAGGACAACCAGGGAAAAGAUCGAGAAAAAUUCUGACGUUCCGCAUCCGUAAUACGU
GGGCCACUGGCGCCGGCAAUUCGCGUUCGCGUGGAUGACUAGAAAUCAGAGGA
AACCAUCACUCCUUGGAAUUCGAGGAAGUUGUGGAAAGGGAGCUUCGGCACAAAG
CUUCAUCGAACGAAUGACCAACUUCGACAAGAACUCCCAAACGAGAACGGUGCUUCC
UAAGCACAGCCUCCUUACGAAUACUUCACUGCUACAACGAACUGACUAAAGUGAA
AUACGUUACUGAAGGAUGAGGAAGCCGCCUUUCUGUCCGGAGAACAGAACAGAAC
AAUUGUCGAUCUGCUGUCAAGACCAACCGCAAGGUGACGUCAAGCAGCUUAAAGA
GGACUACUCAAGAAGAUCGAGUGUUUCGACUCAGUGGAAAUCAGCGGGGUGGAGGA
CAGAUUCAACGCUUCGCUGGGACCUCAUCAUGAUCUCCUGAAGAACAUCAAGGACAA
GGACUCCUUGACAAACGAGGAGAACGAGGACAUCUGGAAGAACUACGUCCUGACCU
GACCUUUUCGAGGAUCGCGAGAUGAUCGAGGAGGGCUUAGACCUACGCUCUACU
CUUCGACGAUAAGGUCAUGAAACAACUCAAGCGCCGCCGUACACUGGUUGGGCCG
CCUCUCCGCAAGCUGAUCACGGUAUUCGCGUAAACAGAGGGGUAAAACUAUCCU
GGAUUUCUCAAAUCGGAUGGCUUCGCUAAUCGUACUUCAUUGCAAUUGAUCCACGA
CGACAGCCUGACCUUUAAGGAGGACAUCACAAAAGCACAAGUGUCCGGACAGGGAGA
CUCACUCCAUGAACACAUUCGCGAACUCCGGGUUCGCCGGCAUUAAGAACGGGAAU
UCUGCAAACUGUGAAGGUGGUCCGACGAGCUGGUGAAGGUCAUGGGACGGCACAAACC
GGAGAAUAUCGUGAUUUGAAAUGGCCCAGAGAAAACCAGACUACCCAGAACGGGCAGAA
AAACUCCCGGAAAGGAUGAAGCGGAUCGAAGAACGAAUCAAGGAGCUGGGCAGCCA
GAUCCUGAAAGAGCACCCGGUGGAAAACACGCAGCUGCAGAACGAGAACGUACCU
GUACUAAUUGCAAAUUGGACGGACAUGUACGUGGACCAAGAGCUGGACAUCAUCG
GUUGUCUGAUUACGACGUGGACCAUCGUUCCACAGGUCCUUUCUGAAGGAUGACUC
GAUCGAUAACAAGGUGUUGACUCGCAGCGACAAGAACAGAGGGAGUACAGAUAAUGU
GCCAUCGGAGGAGGUCCGUGAAGAACUGAACUACUGGCGCAGCUCCUGAAUUGC
GAAGCUGAUUACCCAGAGAAAAGUUUGACAAUCACUAAAGCCGAGCGCCGGACU
CUCAGAGCUGGAAAGGCUGGAAUCAUCAAACGGCAGCUGGUCGAGACUCGGCAGAU
UACCAAGCACGUGGCCAGAUUCUUGGACUCCCGCAUGAACACUAAAACGACGAGAA
CGAUAGCUCAUCCGGAAAGUGAAGGUGAUUACCCUGAAAAGCAAACUUGUGUCCGGA
CUUUCGGAAGGACUUUCAGUUUACAAAGUGAGAGAAAUCACUACUACCAUCACGC
GCAUGACGCAUACCUCAACGCUGGUGGUACGCCCGUGAUCACUAAAAGUACCCUAA
ACUUGAAUCGGAGUUGUGUACGGAGACUACAAGGUACAGCAGUGAGGAAGAUGAU
AGCCAAGUCCGAACAGGAAAUCGGAAAGCAACUGCGAAAACUUCUUUACUAAA
CAUCAUGAACUUUUCAAGACUGAAAUUACGCUGGCCAAUUGGAGAAAUCAGGAAGAG
GCCACUGAUCGAAACUACGGAGAAACGGCGAAAUCGUGUGGGACAAGGGCAGGG
CUUCGCAACUGUUCGCAAAGUGUCUCUUAUGCCGCAAGUCAAUAUUGUGAAGAAC
CGAAGUGCAAACCGCGGUUUUCAAAGGAAUCGAUCCUCCCAAAGAGAAAAGCGA
CAAGCUCAUUGCAGCAAGAACAGACUGGGACCGAAGAACGUACGGAGGAUCGAUUC
GCCGACUGUCGCAUACUCCGUCCUCGUGGUGGCCAGGUGGAGAACGGGAAAGAGCAA
AAAGCUAAUCCGUCAAAGAGCUGCUGGGAUUACCAUCAUGGAACACGAUCCUCGUU
CGAGAAGAACCCGAUUGAUUUCUCUGAGGCGAAGGGGUACAAGGAGGUGAAGAAGGA
UCUGAUCAUAAACUCCCAAGUACUACUGUUCGAACUGGAAAUGGUCCGGAAGCG
CAUGCUGGUUCGGCCGGAGAACUCCAAAAGGAAAAGAGCUGGUUCGUUAGCAA
GUACGUUACUUCUCCUCAUCUUGCUUCGCAUCUACGAAAACUCAAAGGGUCCACCGGA
AGAUAAACGAACAGCAGCUUUCGUGGAGCAGCACAAGCAUUAUCUGGAUGAAAU
CAUCGAACAAACUCCCGAGUUUCAAAGCGCGUGAUCGUCCUCCGACGCCAACUCA
CAAAGUCCUGUCGGCUACAAUAAGCAUAGAGAACGCGAUACAGAGAACAGGCCGA
GAACAUUAUCCACUUGUUCACCCUGACUAACCUGGGAGGCCAGCGCCUUCAGUA
CUUCGGAUACUACUACGCAAAAGAUACACGUCCACCAAGGAAGUUCUGGACGC
GACCCUGAUCACCAAGCAUCACUGGACUACGAAACUACUGGAUCUGCGCA
GCUGGGUGGCCAGUGGCGGUGGAUCUCCGAAAAAGAAGAGAACAGGUGUAUGAGCUAG
CCAUCACAUUAAAAGCAUCUACGCCUACCAUGAGAAUAAGAGAACAGGAAAGAAGA

UCAAUAGCUUAUUCAUCUCUUUUUCUUUUUCGUUGGUGUAAGCCAACACCCUGUCU
AAAAAACAUAAAUCUUUAUCAUUUUCGUCCUCUUUCUCUGUGCUUCAAUUA
AAAAAUGGAAAGAACCUCGAGAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAAAAAUCUAG

[00275] Cas9 mRNA with 2xNLS and HA tag (SEQ ID NO: 360):

GGGUCCCGCAGUCGGCGUCCAGCGGCUCUGCUUGUUCGUGUGUGUGUCGUUGCAGGC
CUAUUCGGAUCCAUGGUAAGAACUCAUCGGCUGGUAUCGGAACUAAUC
CGUGGGUUGGGCAGUGAUCACGGAUGAAUACAAAGUGCCGUCCAAGAACGUCAAGGU
CCUGGGGAACACCGAUAGACACAGCAUCAAGAAAAAUCAUCUGGAGCCUGCUGUU
UGACUCCGGCGAACCCGAGAACCGCAGAAGCGACCCGGCUCAAACGUACCGGAGGCACGCUA
CACCCGGCGGAAGAAUCGAUCUGCUAUCUGCAAGAGAACUUUUCGAACGAAUAGGC
AAAGGUCGACGACAGCUUCCACCGCCUGGAAGAACUUUCCUGGUGGAGGAGGA
CAAGAAGCAUGAACGGCAUCCUAUCUUUGGAAACAUUCGUGACGAAGUGGGGUACCA
CGAAAAGUACCCGACCAUCUACCAUCUGCGGAAGAACUUGGUUGACUCAACUGACAA
GGCGGACCUACAGAUUGAUCUACUUGGCCUCGCCAUAUGAACUAAAUCGGCGGACA
CUUCCUGAUCGAAGGCGAUCUGAACCCUGAUACUCCGACGUGGUAAGCUUUUCAU
UCAACUGGUGCAGACCUACAACCAACUGUUCGAAGAAAACCCAAUCAUAGCUAGCG
CGUGCAGCAAGGCCAUCCUGGCCGGCUGUGCAAGUGCCGGCCUCGAAAA
CCUGAUCGCACAGCUGCCGGAGAGAAAAGAACGGACUUUCGGCAACUUGAUCGC
UCUCUCACUGGGACUCACUCCAAUUUCAAGUCCAAUUUUGACCUGGCCAGGAGC
GAAGCUGCAACUCUCAAAGGACACCUACGACGACUUGGACAAUUGCUGGCCACA
AAUUGGCGAUCAGUACCGGAUCUGUUCUUGCCGCUAGAACCUUUCGGACGCAAU
CUUGCUGCCGAUAUCCUGCGCGUGAACACCGAAUACCAAGCGCCGCUUAGCGC
CUCGAUGAUAAGCGGUACGACGAGCAUCACCAGGAUCUCACCCUGCUCAAAGCGC
CGUGAGACAGCAACUGCCUGAAAAGUACAAGGAGAACUUCUUCGACCAGUCCAAGAA
UGGGUACGCAGGGUACAUUCGAUGGAGGCGUAGCCAGGAAGAGUUCUAAAGUUCAU
CAAGCCAAUCCUGGAAAAGAUGGACCGAACCGAACAGCUGCUGGUCAAGCUGAACAG
GGAGGAUCUGCUCCGGAAACAGAGAACCUUUGACAACGGAUCCAUUCCCAACAGAU
CCAUCUGGGUGAGCUGCGCCACUUCUGCCGCGCCAGGAGGACUUUACCAUUCU
CAAGGACAACCAGGGAAAAGAUCGAGAAAAAUUCUGACGUUCCGCAUCCGUAAUACGU
GGGCCACUGGCGCGCGCAAUUCGCGCUUCGCGUGGAUGACUAGAAAUCAGAGGA
AACCAUCACUCCUUGGAAUUCGAGGAAGUUGUGGAAUAGGGAGCUUCGGCACAAAG
CUUCAUCGAACGAAUGACCAACUUCGACAAGAACUCCCAAACGAGAACGGGCUUCC
UAAGCACAGCCUCCUUUACGAAUACUUCACUGCUACACGAACUGACUAAAGUGAA
AUACGUUACUGAAGGAUGAGGAAGCCGGCUUUCUGCCGGAGAACAGAACAG
AAUUGUCGAUCUGCUGUCAAGACCAACCGCAAGGUGACCGUCAAGCAGCUUAAAGA
GGACUACUCAAGAACUAGCGAGGAGAACGAGGACAUCUGGUACUCCUGACCU
GACCCUUUCGAGGAUCGCGAGAUGAUCGAGGAGAGGCUUAAGACCUACGCUCACU
CUUCGACGAUAAGGUCAUGAAACAACUCAAGCGCCGCCGUACACUGGUUGGGCCG
CCUCUCCCGCAAGCUGAUCAACGGUAAUUCGCGAUAAACAGAGCGGUAAAACUACCU
GGAAUUCUCAAAUCGGAUGGCUUCGCUAAUCGUACUUCAGCAUUGCAAUUGAUCCACGA
CGACAGCCUGACCUUUAAGGAGGACAUCACAAAAGCACAAGUGUCCGGACAGGGAGA
CUCACUCCCAUGAACACAUUCGCGAAUCUGGCCGUUCGCCGGCAUUAAGAAGGGAAU
UCUGCAAACUGUGAAGGUGGUCCGACGAGCUGGUGAAGGUCAUGGGACGGCACAAACC
GGAGAAUACGUGAUUGAAAUGGCCGAGAAAACCAGACUACCCAGAACGGCCAGAA
AAACUCCCGGAAAGGAUGAAGCGGAUCGAAGAACGGAAUCAAGGAGCUGGGCAGCCA
GAUCUGAAAGAGCACCCGGUGGAAAACACGCAGCUGCAGAACGAGAACGCUACCU
GUACUAAUUGCAAAUUGGACGGGACAUGUACGUGGACCAAGGACUGGACAUCAUC
GUUGUCUGAUUACGACGUGGACCAUCGUUCCACAGGUCCUUUCUGAAGGAUGACUC
GAUCGAUAACAAGGUGUUGACUCGCAGCGACAAGAACAGAGGGAGUCAAGUAAUGU

GCCAUCGGAGGAGGUCGUGAAGAAGAUGAAGAAUUACUGGCAGCUCUGAAUGC
GAAGCUGAUUACCCAGAGAAAGUUUGACAAUCACUAAGCCGAGCGCGGCGACU
CUCAGAGCUGGAUAGGCUGGAUCAUCAAACGGCAGCUGGUCGAGACUCGGCAGAU
UACCAAGCAGCUGGCGCAGAUCUUGGACUCCCGCAUGAACACUAAAACGACGAGAA
CGAAUAGCUCAUCCGGGAAGUGAAGGUGAUAACCUAGAAAAGCAAACUUGUGUCGGA
CUUCGGAAAGGACUUUCAGUUUACAAAGUGAGAGAAAUAACAAACUACCAUCACGC
GCAUGACGCAUACCUCAACGCUGGGUACCGCCUGAUCAAAAGUACCCUAA
ACUUGAAUCGGAGUUUGUGUACGGAGACUACAAGGUACAGCUGAGAAGAUGAU
AGCCAAGUCCGAACAGGAAUCCGGAAAGCAACUGCGAAAUACUUCUUUACUAAA
CAUCAUGAACUUUUCAGACUGAAAUACGCUGGCCAAGGGAGAAUCAGGAAGAG
GCCACUGAUCGAAACUAACGGAGAAACGGCGAAUUCGUGUGGGACAAGGGCAGGG
CUUCGCAACUGUUCGCAAAGUGUCUCUAUGCCGCAAGUCAAUUAUGUGAAGAAAAC
CGAAGUGCAAACCGCGGAAUUUUCAAAGGAUUCGAUCCUCCCAAAGAGAAAAGCGA
CAAGCUCAUUGCACGCAAGAAAGACUGGGACCGAAGAAGUACGGAGGAIUCGAIUC
GCCGACUGUCGCAUACUCCGUCCUCGUGGGCCAAGGUGGAGAAGGGAAAGAGCAA
AAAGCUAAUCCGUCAAAGAGCUGCUGGGAUUACCAUCAUGGAACGAUCCUCGUU
CGAGAAGAACCGAUUGAUUUCCUCGAGGCGAAGGGUUACAAGGAGGUGAAGAAGGA
UCUGAUCAUCAAACUCCCAAGUACUCAGUUCGACUGGAAAAGGUUCGGAAGCG
CAUGCUGGUUCGGCCGGAGAACUCAAAAGGAAAUGAGCUGGUCCUUGGUCAAGCAA
GUACGUCAACUUCCUCUAUCUUGCUUCGACUACGAAAACUCAAAGGGUACCGGA
AGAUAAACGAAACAGACAGCUUUUCGUGGAGCAGCACAAGCAUUAUCUGGAUGAAA
CAUCGAACAAAUCUCCGAGUUUUCAAAGCGCGUGAUCCUCGCCAGGCCACCUCGA
CAAAGUCCUGUCGGCCUACAAUAGCAUAGAGAAAGCCGAUCAGAGAACAGGCCGA
GAACAUUAUCCACUUGUUCACCCUGACUAACCUUGGGAGCCCCAGCCGCCUCAAGUA
CUUCGAUACUACUACUGCAUCGAAAAGAUACACGUCCACCAAGGAAGUUCUGGACGC
GACCCUGAUCCACCAAAGCAUCACUGGACUCUACGAAACUAGGAUCUGCUGCGCA
GCUGGGUGGCGAUGGCUCGGCUUACCCAUACGACGUGCCUGACUACGCCUCGCG
AUCGGGCUCCCCAAAAAGAACCGAAGGUGGACGGAUCCCCAAAAAGAAGAGAAA
GGUGGACUCCGGAUGAGAAUUAUGCAGUCUAGCCAUCACAUAAAAGCAUCUCAGC
CUACCAUGAGAAUAGAGAAAGAGAAAAGAAGAUCAUAGCUUUAUCUCUUUUUC
UUUUUCGUUGGUGUAAGCCAACACCCUGUCUAAAACAUAAUUCUUUAUCAU
UUUGCCUCUUUCUCUGGUCAUUAUAAAAGGAAGAACCUCGAGAAAAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAUCUAG

D. Primary liver hepatocytes

[00276] Primary mouse liver hepatocytes (PMH) (Gibco) were cultured per the manufacturer's protocol (Invitrogen, protocol 11.28.2012). In brief, the cells were thawed and resuspended in hepatocyte thawing medium with supplements (Gibco, Cat. CM7000) followed by centrifugation at 100 g for 10 minutes. The supernatant was discarded and the pelleted cells resuspended in hepatocyte plating medium plus supplement pack (Invitrogen, Cat. A1217601 and CM3000). Cells were counted and plated on Bio-coat collagen I coated 96-well plates (ThermoFisher, Cat. 877272) at a density of 15,000 cells/well and incubated for 5 hours at 37°C and 5% CO₂ atmosphere to allow for monolayer formation. After 5 hours, the plating media was removed and replaced with supplemented hepatocyte culture medium (Invitrogen, Cat. A1217601 and CM4000) containing LNP formulated Cas9 mRNA and guide RNA plus

3% mouse serum. LNPs were diluted from a starting dose level of 100ng Cas9 mRNA and approximately 30nM guide RNA per well, carrying out serial dilutions down to 0.1ng mRNA and 0.03nM guide per well. Cells were incubated for approximately 48 hours at 37°C and 5% CO₂ atmosphere before cell lysis and NGS analysis as described herein.

E. Lipid Nanoparticle (“LNP”) Formulation

[00277] LNPs were formulated with a cationic lipid amine to RNA phosphate (N:P) molar ratio of about 4.5. The lipid nanoparticle components were dissolved in 100% ethanol with the following molar ratios: 45 mol-% (12.7 mM) cationic lipid (e.g., (9Z,12Z)-3-((4,4-bis(octyloxy)butanoyl)oxy)-2-(((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl octadeca-9,12-dienoate, also called 3-((4,4-bis(octyloxy)butanoyl)oxy)-2-(((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl (9Z,12Z)-octadeca-9,12-dienoate); 44 mol-% (12.4 mM) helper lipid (e.g., cholesterol); 9 mol-% (2.53 mM) neutral lipid (e.g., DSPC); and 2 mol-% (.563 mM) PEG (e.g., PEG2k-DMG). The RNA cargo were prepared in 25 mM sodium acetate buffer, pH 4.5, resulting in a concentration of RNA cargo of approximately 0.45 mg/mL.

[00278] The LNPs were formed by microfluidic mixing of the lipid and RNA solutions using a Precision Nanosystems NanoAssemblrTM Benchtop Instrument, according to the manufacturer's protocol. A 2:1 ratio of aqueous to organic solvent was maintained during mixing using differential flow rates.

[00279] LNP Formulation Procedure A: After mixing, the LNPs were collected, diluted in phosphate buffered saline (PBS, approximately 1:1), and then remaining buffer was exchanged into PBS (100-fold excess of sample volume), overnight at 4°C under gentle stirring using a 10 kDa Slide-a-LyzerTM G2 Dialysis Cassette (ThermoFisher Scientific). The LNPs were concentrated using 10kDa Amicon spin filter (centrifugation at 4000g at 4°C) to achieve the desired concentration. The resulting mixture was then filtered using a 0.2 µm sterile filter. The resulting filtrate was stored at 2-8 °C.

[00280] LNP Formulation Procedure B: After mixing, the LNPs were collected, diluted in 50mM Tris at pH 7.5 (approximately 1:1), and then LNPs were exchanged into 50mM Tris at pH 7.5 (100-fold excess of sample volume), overnight at 4°C under gentle stirring using a 10 kDa Slide-a-LyzerTM G2 Dialysis Cassette (ThermoFisher Scientific). The LNPs were concentrated using 10kDa Amicon spin filter (centrifugation at 4000g at 4°C) to achieve twice the desired concentration. These concentrated LNPs were mixed 1:1 with 50mM Tris, 90mM

NaCl, 10% sucrose at pH 7.5 (2X TSS). The resulting mixture was then filtered using a 0.2 μ M sterile filter. The resulting filtrate was stored at -80°C.

[00281] **LNP Formulation Procedure C:** The RNA cargo were prepared in 25mM sodium citrate, 100mM sodium chloride at pH 5 resulting in a concentration of RNA cargo of approximately 0.45 mg/mL. After mixing, the LNPs were collected in water at the ratio of 3:1. The LNPs were incubated for an hour at room temperature and mixed 1:1 with water. Then they were buffer-exchanged into 1X TSS (50mM Tris, 45mM NaCl, 5% sucrose at pH 7.5) on PD-10 columns (GE Healthcare), using manufacturer's protocol. The LNPs were concentrated using 10kDa Amicon spin filter (centrifugation at 4000g at 4°C) to achieve the desired concentration. The resulting mixture was then filtered using a 0.2 μ m sterile filter. The resulting filtrate was stored at -80°C.

F. Next-Generation Sequencing (“NGS”) and Analysis for On-Target Cleavage Efficiency

[00282] To quantitatively determine the efficiency of editing at the target location in the genome, deep sequencing was utilized to identify the presence of insertions and deletions introduced by gene editing.

[00283] PCR primers were designed around the target site (*e.g.*, TTR, FVII), and the genomic area of interest was amplified. Primer sequences are provided below in Table 5.

Table 5

Guide	Gene	Forward Primer (5'-3')	SEQ ID	Reverse Primer (5'-3')	SEQ ID
For experiments with guides based on CR000686/G000209 targeting domains	TTR	AGTCAATAATCAGAACATCAGCAGGT	333	AGAAGGCACTTCTCTTATCTAAGGT	337
For experiments with guides based on CR000705/G000211 targeting domains	TTR	GTTTGTTCAGAGTCTATCACCG	334	ACACGAATAAGAGCAAATGGGAAC	338
For experiments with guides based on G000269/ G000285 targeting domains	TTR	ATTACCAGCTTAGCATCCTGTGAA	335	ACACGGTTATAGAGCAAGAACAC	339
For experiments with guides based on CR000657/G000208 targeting domains	FVII	AGCACATGAGACCTCTGTTCTC	336	GACATAGGTGTGACCCTACAATC	340

Additional PCR was performed according to the manufacturer's protocols (Illumina) to add the necessary chemistry for sequencing. The amplicons were sequenced on an Illumina MiSeq instrument. The reads were aligned to the human reference genome (*e.g.*, hg38) after eliminating those having low quality scores. The resulting files containing the reads were mapped to the reference genome (BAM files), where reads that overlapped the target region

of interest were selected and the number of wild type reads versus the number of reads which contain an insertion, substitution, or deletion was calculated.

[00284] The editing percentage (*e.g.*, the “editing efficiency” or “percent editing”) is defined as the total number of sequence reads with insertions or deletions over the total number of sequence reads, including wild type.

G. LNP Delivery in vivo

[00285] CD-1 female mice, ranging 6-10 weeks of age were used in each study. Animals were weighed and grouped according to body weight for preparing dosing solutions based on group average weight. LNPs were dosed via the lateral tail vein in a volume of 0.2 mL per animal (approximately 10 mL per kilogram body weight). The animals were observed at approximately 6 hours post dose for adverse effects. Body weight was measured at twenty-four hours post-administration, and animals were euthanized at various time points by exsanguination via cardiac puncture under isoflourane anesthesia. Blood was collected into serum separator tubes or into tubes containing buffered sodium citrate for plasma as described herein. For studies involving *in vivo* editing, liver tissue was collected from the median lobe from each animal for DNA extraction and analysis.

H. Cytokine induction analysis

[00286] For this analysis, approximately 50-100 μ L of blood was collected by tail vein nick for serum cytokine measurements. Blood was allowed to clot at room temperature for approximately 2 hours, and then centrifuged at 1000xg for 10 minutes before collecting the serum. A Luminex based magnetic bead multiplex assay (Affymetrix ProcartaPlus, catalog number Exp040-00000-801) measuring IL-6, TNF-alpha, IFN-alpha, and MCP-1 was used for cytokine analysis in collected in samples. Kit reagents and standards were prepared as directed in the manufacturer's protocol. 25 μ L of mouse serum was added to wells containing 25 μ L of the diluted antibody coated magnetic beads. The plate was incubated for 2 hours at room temperature and then washed. Diluted biotin antibody (50 μ L) was added to the beads and incubated for 1 hour at room temperature. The beads were washed again before adding 50 μ L of diluted streptavidin-PE to each well, followed by incubation for 30 minutes. The beads were washed once again and then suspended in 100 μ L of wash buffer and read on the Bio-Plex 200 instrument (Bio-Rad). The data was analyzed using Bioplex Manager ver. 6.1 analysis package with cytokine concentrations calculated off a standard curve using a five parameter logistic curve fit.

I. Genomic DNA Isolation

[00287] For the *in vivo* studies, genomic DNA was extracted from 10 mg of tissue using a bead based extraction kit, MagMAX-96 DNA Multi-Sample Kit (ThermoFisher, Cat #4413020) according to manufacturer's protocol, which includes homogenizing the tissue in lysis buffer (approximately 400 μ L/10 mg tissue). All DNA samples were normalized to 100 ng/ μ L concentration for PCR and subsequent NGS analysis, as described herein.

J. Transthyretin (TTR) ELISA analysis

[00288] Blood was collected and the serum was isolated as indicated. The total TTR serum levels were determined using a Mouse Prealbumin (Transthyretin) ELISA Kit (Aviva Systems Biology, Cat. OKIA00111). Kit reagents and standards were prepared according to the manufacturer's protocol. Mouse serum was diluted to a final dilution of 10,000-fold with 1x assay diluent. This was done by carrying out two sequential 50-fold dilutions resulting in a 2500-fold dilution. A final 4-fold dilution step was carried out for a total sample dilution of 10,000-fold. Both standard curve dilutions (100 μ L each) and diluted serum samples were added to each well of the ELISA plate pre-coated with capture antibody. The plate was incubated at room temperature for 30 minutes before washing. Enzyme-antibody conjugate (100 μ L per well) was added for a 20-minute incubation. Unbound antibody conjugate was removed and the plate was washed again before the addition of the chromogenic substrate solution. The plate was incubated for 10 minutes before adding 100 μ L of the stop solution, *e.g.*, sulfuric acid (approximately 0.3 M). The plate was read on a SpectraMax M5 plate reader at an absorbance of 450 nm. Serum TTR levels were calculated by SoftMax Pro software ver. 6.4.2 using a four parameter logistic curve fit off the standard curve. Final serum values were adjusted for the assay dilution.

Example 2 – Engineering modified gRNA and in vitro testing

[00289] Modified gRNAs were designed in the dual guide format (dgRNA), as shown in Table 4. Accordingly, both modified crRNAs and trRNAs were designed and chemically synthesized to allow for the pairing of modified and unmodified components forming dgRNA. These pairings were transfected into Neuro2A cells at concentrations as indicated in the figures and editing efficiency (*e.g.*, percent editing) was measured by NGS, as described in Example 1.

[00290] Certain modified crRNAs from Table 4 targeting the mouse TTR gene were transfected with Cas9 mRNA and unmodified trRNA (TR000002). Tested guides included

SEQ ID Nos: 1- 18. As shown in Figure 1, some of the modified crRNAs (together with unmodified trRNA) conferred similar or enhanced activity as compared to the unmodified control, while other modified crRNAs decreased activity.

[00291] In parallel, modified trRNAs from Table 4 were transfected with Cas9 mRNA along with an unmodified crRNA (CR000686) targeting the same sequence of the mouse TTR gene. Tested guides included SEQ ID Nos: 188 - 200, and 204. As shown in Figure 2, many of the modified trRNAs (together with unmodified crRNA) conferred similar or enhanced activity as compared to the unmodified control, while some of the modified trRNAs decreased activity.

[00292] In addition to substituting chemically modified nucleotides, some of the crRNA and trRNA pairings tested were also engineered with sequence substitutions, e.g., resulting in G-C pairings not found in the parental sequences. Tested guides included SEQ ID Nos: 15 and 201; 16 and 202; 1 and 188. As shown in Figure 3, one such pairing (SEQ ID Nos: 16 and 202) resulted in similar or enhanced activity as compared to the unmodified control, while two of the pairings decreased activity.

[00293] Next, pairings of modified crRNAs and modified trRNAs from Table 4 were tested. As shown in Figure 4, some of the pairings of modified crRNA with modified trRNA conferred similar or enhanced activity as compared to the unmodified controls, while some of the pairings decreased activity. In Figure 4, the column headings depict different trRNA used in the experiment, and the row headings depict different crRNA used. To determine the combination used in the experiment, you match column to row. TR000002 and CR000686 are the unmodified controls (see lower right cells).

[00294] Based on the dgRNA designs, corresponding single guide RNAs (sgRNAs) were engineered featuring aspects of some of the modified crRNAs and trRNAs, as depicted in Table 4 and Figure 15D. These sgRNAs, SEQ ID Nos: 228 - 234, were also tested in Neuro2A cells, and as shown in Figure 5, each of the modified sgRNAs displayed activities comparable to the controls containing only 5' and 3' end modifications (G0000209; SEQ ID NO: 228).

[00295] A similar set of experiments were conducted for additional dgRNAs guides depicted in Table 4 and Figure 6. Tested guides included SEQ ID Nos: 32 – 47, and 1. Modified crRNAs also targeting the mouse TTR gene were transfected with Cas9 mRNA and unmodified trRNA (TR000002). As shown in Figure 6, some of the modified crRNAs (together with unmodified trRNA) conferred similar or enhanced activity as compared to the unmodified control (CR000686), while other modified crRNAs decreased activity.

[00296] In parallel, as shown in Figure 7, modified trRNAs from Table 4 were transfected with Cas9 mRNA along with an unmodified crRNA (CR000686) targeting the same sequence of the mouse TTR gene. Tested guides included SEQ ID Nos: 205 - 222, and 1. As shown in Figure 7, many of the modified trRNAs (together with unmodified crRNA) conferred similar or enhanced activity as compared to the unmodified control (TR000002), while some of the modified trRNAs decreased activity.

[00297] In addition to substituting chemically modified nucleotides, some of the crRNA and trRNA pairings tested from Table 4 were also engineered with sequence substitutions, e.g., resulting in G-C pairings or G-U mismatches (“GU wobbles”) not found in the parental sequences. As shown in Figure 8, some of the modifications and pairings conferred similar or enhanced activity as compared to the unmodified control, while some (e.g., the “GU wobble” or mismatch pairings) decreased activity. Figure 8 shows results using trRNA guides shown in SEQ ID Nos: 223-227 and 188 with crRNA guides shown in SEQ ID Nos: 48-52, and 1.

[00298] Next, select pairings of the modified crRNAs and modified trRNAs from Table 4 were tested as shown in Figure 9. Some of the pairings of modified crRNA with modified trRNA conferred similar or enhanced activity as compared to the unmodified controls, while some of the pairings decreased activity. In Figure 9, the column headings depict different trRNA used in the experiment, and the row headings depict different crRNA used. To determine the combination used in the experiment, you match column to row. Unmodified controls are TR000002, and CR000686.

[00299] Some of the modified gRNAs (dgRNAs and sgRNAs) from Table 4 were also tested in a purely biochemical assay (i.e., cell free cleavage assay). Interestingly, many of the modified gRNAs that were largely inactive in the Neuro2A cells were active in the biochemical assay, indicating that such biochemical assays may not be predictive of modified gRNA activity in cells (data not shown).

Example 3. Further testing of modified gRNAs to other targets

[00300] Having established that certain modifications affected gRNA activity, it was next tested whether these modifications would affect the activity when targeting (1) a separate sequence in the same gene or (2) a sequence in a different gene. Accordingly, gRNAs targeting another sequence in the mouse TTR gene as well as a sequence in the mouse Factor-VII (FVII) gene were engineered and synthesized having certain modification patterns tested in Example 2 (see Table 4). These gRNAs were transfected into Neuro2A

cells at the concentrations indicated in the figures and editing efficiency (e.g., percent editing) was measured by NGS, as described in Example 1.

[00301] Modified crRNAs from Table 4 targeting either the mouse TTR gene (different sequence as targeted in Example 2) or the mouse FVII gene, were transfected with Cas9 mRNA and unmodified trRNA (TR000002). Tested guides included those shown in Figures 12A and 12B. Some of the modified crRNAs (together with unmodified trRNA) conferred similar or enhanced activity as compared to the unmodified controls, while other modified crRNAs decreased activity.

[00302] In parallel, modified trRNAs from Table 4 were transfected with Cas9 mRNA along with an unmodified crRNA targeting the same sequence of the mouse TTR gene (CR000705; different sequence as targeted in Example 2) or the same sequence as the mouse FVII gene (CR000657). As shown in Figures 13A and 13B, many of the modified trRNAs (together with unmodified crRNAs) conferred similar or enhanced activity as compared to the unmodified controls, while some of the modified trRNAs decreased activity. This data shows that certain modification patterns tended to have similar effects over the different sequences.

[00303] Based on the dgRNA designs described above, corresponding single guide RNAs (sgRNAs) were engineered featuring aspects of some of the modified crRNAs and trRNAs. *See, Table 4.* These sgRNAs were also tested in Neuro2A cells. Results are shown in Figure 10 (mouse TTR) and Figure 11 (mouse FVII). These experiments show that some modification patterns result in similar effects even when targeting different genes.

Example 4. Testing of modified gRNA *in vivo*

[00304] Following the *in vitro* testing, modified sgRNAs were delivered to animals in six separate studies in order to determine whether the modifications conferred any benefits for editing *in vivo*.

[00305] LNPs were formulated with IVT Cas9 mRNA together with chemically modified sgRNA (targeting TTR or FVII), as described in Example 1. The ratio of mRNA:sgRNA was approximately 1:1, by weight of the RNA components. Unless otherwise indicated, the Cas9 mRNA used in the studies described in this example had the sequence of SEQ ID NO: 360 and the LNPs were formulated using LNP Formulation Procedure A described above.

[00306] In one experiment, mice (n=5 per group) were administered a single dose of LNP at 2mg/kg and blood was collected four hours post dose for serum cytokine analysis. 7 days post dose at necropsy, livers and blood were collected for NGS measurements of editing

efficiency and serum TTR analysis, respectively. Each of the sgRNAs in this experiment targeted the same sequence in the TTR gene, the only difference between the sgRNAs being the modifications made to each (See Figures 14A-D and 15A-E; Table 4 SEQ ID Nos: 228 - 234). G000209 (two lots tested) served as the less modified control, having only 2'-O-methyl modifications and phosphorothioate linkages at and between the three terminal nucleotides at both the 5' and 3' termini of the sgRNA, respectively. (See Figure 15D).

[00307] The results shown in Figures 14A-D, show that the more heavily modified sgRNAs tended to induce less of a response for each the cytokines assayed, as compared to the less modified G000209 controls. The more heavily modified sgRNAs also conferred larger editing efficiencies in the livers of treated animals, with percent editing reaching ~60% for two of the more heavily modified sgRNAs (e.g., G000263 and G000267) as compared to ~44-47% for the less modified controls (G000209 lots) (Figure 15A). Importantly, the editing efficiencies correlated with phenotypic changes as serum knockdown of TTR levels were comparable or significantly greater than the less modified controls (See e.g., G000263 and G000267 vs G000209 lots in Figures 15A-15B). The differences between the end-modified G000209 and highly-modified G000267 are summarized in Figure 15D and 15E (2'-O-Me modified nucleotides are shown in bold, and * represents phosphorothioate linkages).

[00308] In another *in vivo* study, three sgRNAs targeting a separate sequence in the mouse TTR gene were tested. Mice (n=5 per group) were administered a single dose of LNP at 2mg/kg, 1mg/kg, or 0.3mg/kg. Blood was collected four hours post dose for serum cytokine analysis. 7 days post dose at necropsy, livers and blood were collected for NGS measurements of editing efficiency and serum TTR analysis, respectively. In this study, each of the sgRNAs targeted the same sequence in the TTR gene (a different sequence from what was targeted in the previous *in vivo* study) with one sgRNA being completely unmodified (G000201 (SEQ ID NO: 243)), another having only end modifications (G000211 (SEQ ID NO: 241)), with 2'-O-methyl modifications and phosphorothioate linkages at and between the three terminal nucleotides at both the 5' and 3' termini of the sgRNA, respectively), and a third sgRNA having the same modification pattern as G000267 in the previous *in vivo* study (G000282 (SEQ ID NO: 242)).

[00309] As shown in Figures 16A-16D, each of the sgRNAs resulted in similar responses in a dose dependent manner for each of the cytokines tested. For editing efficiency, the unmodified sgRNA (G000201(SEQ ID NO: 243)) conferred little *in vivo* editing, while the heavily modified sgRNA (G000282 (SEQ ID NO: 242)) conferred levels

reaching ~60% with a dose of 2mg/kg, which was significantly greater than the levels achieved with the less modified sgRNA (G000211 (SEQ ID NO: 241)) (Figure 17A and B). As with the previous *in vivo* study, the levels of editing correlated with the amount of serum TTR knockdown (Figure 17C and D).

[00310] A similar study as the second *in vivo* study was next conducted with another set of three sgRNAs targeting yet a different TTR sequence in the mouse TTR gene (targeting a different sequence than what was targeted in the two previous *in vivo* studies). Mice (n=5 per group) were administered a single dose of LNP at 2mg/kg, 1mg/kg, or 0.3mg/kg. Blood was collected four hours post dose for serum cytokine analysis. 7 days post dose at necropsy, livers and blood were collected for NGS measurements of editing efficiency and serum TTR analysis, respectively. In this study, each of the sgRNAs targeted the same sequence in the TTR gene (a different sequence from what was targeted in the previous two *in vivo* studies) with one sgRNA being completely unmodified (G000285; (SEQ ID NO: 332)), another having only end modifications (G000269 (SEQ ID NO: 330)), with 2'-O-methyl modifications and phosphorothioate linkages at and between the three terminal nucleotides at both the 5' and 3' ends of the sgRNA, respectively), and a third sgRNA having the same modification pattern as G000267 and G000282 in the previous two *in vivo* studies (G000283 (SEQ ID NO: 331)).

[00311] In this study, the unmodified sgRNA (G000285 (SEQ ID NO: 332)) conferred little *in vivo* editing, while the heavily modified sgRNA (G000283 (SEQ ID NO: 331)) conferred levels reaching ~60% with a dose of 2mg/kg, which was significantly greater than the levels achieved with the less modified sgRNA (G000269 (SEQ ID NO: 330)) (Figures 18A-18B). As with the previous *in vivo* studies, the levels of editing correlated with the amount of serum TTR knockdown (Figure 18C).

[00312] In a fourth *in vivo* study, the effects of modifications to gRNAs was evaluated for another gene (FVII). For in-study comparison, two of the sgRNAs tested in the first *in vivo* study were included (G000209 and G000267). Mice (n=5 per group) were administered a single dose of LNP at 2mg/kg, 1mg/kg, or 0.3mg/kg, and blood was collected four hours post dose for serum cytokine analysis. 6 days post dose at necropsy, livers were collected for NGS measurements of editing efficiency. In this study, each of the sgRNAs targeted the same sequence in the TTR or FVII genes, with one sgRNA for each having only end modifications (G000208 (SEQ ID NO: 286)) for FVII, G000209 for TTR, both having 2'-O-methyl modifications and phosphorothioate linkages at and between the three terminal

nucleotides at both the 5' and 3' ends of the sgRNA, respectively), and a second sgRNA having the same modification patterns as G000267, G000282, and G000283 in the previous *in vivo* studies (G000373 (SEQ ID NO: 287) for FVII; G000267 (SEQ ID NO: 234) for TTR).

[00313] As shown in Figures 19A-19D, each of the sgRNAs resulted in similar responses in a dose dependent manner for each of the cytokines tested. For editing efficiency, the more heavily modified sgRNA targeting FVII (G000373 (SEQ ID NO: 287)) had an increase in editing efficiency as compared to the less modified version (G000208 (SEQ ID NO: 286)) across each of the doses tested (Figure 18A). These results were also observed for the sgRNAs targeting TTR (Figures 20A-20B).

[00314] In another *in vivo* study, ten additional sgRNAs targeting the same sequence in the mouse TTR gene as G000282 were tested. G000282 was also included in the study for comparative purposes. Mice (n=5 per group) were administered a single dose of LNP at 1mg/kg or 0.5mg/kg. The LNPs used in this study were formulated using LNP Formulation Procedure B described above. Seven (7) days post dose at necropsy, livers and blood were collected for NGS measurements of editing efficiency and serum TTR analysis, respectively. In this study, each of the sgRNAs targeted the same sequence in the TTR gene. The modification pattern of each sgRNA tested varied and included 2'-OMe, 2'-F, and PS modifications in the 5' terminus, 3' terminus, hairpin 1, hairpin 2, nexus, lower stem, bulge, and upper stem of the sgRNA. The results of this study are shown in Figures 22A-22C, including % editing (Figure 22A), average editing and standard deviation (Figure 22B), and serum TTR levels (Figure 22C). These same sgRNAs were tested in primary mouse hepatocytes as per the methods described herein. The results of this dose response TTR editing study are shown in Figures 24A-24C, including % editing (Figure 24A), dose response curves (Figure 24B), and EC50 values (Figure 24C).

[00315] In another *in vivo* study, thirteen sgRNAs targeting the same sequence in the mouse TTR gene as G000282 were tested. G000282 was also included in the study for comparative purposes. Mice (n=5 per group) were administered a single dose of LNP at 1mg/kg. The LNPs used in this study were formulated using LNP Formulation Procedure C described above. The Cas9 mRNA used in this study had the sequence of SEQ ID NO: 359. Blood was collected four hours post dose for serum cytokine analysis. 7 days post dose at necropsy, livers and blood were collected for NGS measurements of editing efficiency and serum TTR analysis, respectively. In this study, each of the sgRNAs targeted the same

sequence in the TTR gene. The sgRNAs tested include additional 2'-OMe and PS modifications in the 5' terminus, 3' terminus, hairpin 1, hairpin 2, and upper stem of the sgRNA. The results of this study are shown in Figures 23A-23C, including % editing (Figure 23A), average % editing (Figure 23B), and serum TTR levels (Figure 23C).

[00316] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[00317] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

Claims:

1. A single guide RNA (sgRNA) comprising an upper stem region and a hairpin region, wherein (i)
 - a. each nucleotide in the upper stem region is modified with 2'-O-Me;
 - b. the hairpin region comprises a hairpin 1 region and a hairpin 2 region and each nucleotide in the hairpin 2 region is modified with 2'-O-Me; or
 - c. both (a) and (b); and(ii) a 5' end modification comprising at least two phosphorothioate (PS) linkages within the first seven nucleotides at the 5' end of the 5' terminus.
2. The sgRNA of claim 1, wherein
 - a. the sgRNA comprises one or more modifications in the upper stem region; and/or
 - b. the sgRNA comprises one or more modifications in the hairpin 1 region; and/or
 - c. the sgRNA comprises one or more modifications in the hairpin 2 region.
3. The sgRNA of claim 1 or claim 2, wherein the hairpin region comprises a hairpin 1 region and a hairpin 2 region, and the sgRNA comprises one or more modifications in each of the upper stem region, the hairpin 1 region, and the hairpin 2 region.
4. The sgRNA of any one of claims 1-3, wherein each of the nucleotides in the hairpin 1 region and/or in the hairpin 2 region are modified with 2'-O-Me.
5. The sgRNA of any one of claims 1-4, wherein the hairpin region comprises a hairpin 1 region and a hairpin 2 region, and the sgRNA comprises a modified nucleotide between the hairpin 1 and hairpin 2 regions.
6. The sgRNA of any one of claims 1-5, further comprising a lower stem region comprising a modification.

7. The sgRNA of any one of claims 1-6, further comprising a 3' terminus region comprising a modification.
8. The sgRNA of claim 7, further comprising a 3' end modification in the 3' terminus.
9. The sgRNA of claim 8, wherein at least two of the last four nucleotides at the 3' end of the 3' terminus are modified, optionally with 2'-O-Me, 2'-F, or 2'-O-moe.
10. The sgRNA of claim 9, further comprising phosphorothioate (PS) bonds between one or more of the last four nucleotides at the 3' end of the 3' terminus.
11. The sgRNA of any one of claims 1-10, further comprising a bulge region comprising a modification and/or a nexus region comprising a modification.
12. The sgRNA of any one of claims 1-11, wherein at least the first three nucleotides at the 5' end of the 5' terminus, and the last three nucleotides at the 3' end of the 3' terminus are modified.
13. The sgRNA of any one of claims 1-12, wherein the first four nucleotides at the 5' end of the 5' terminus, and the last four nucleotides at the 3' end of the 3' terminus are linked with phosphorothioate (PS) bonds.
14. The sgRNA of claim 13, wherein the end modifications comprise 2'-O-Me or 2'-F.
15. The sgRNA of any one of claims 1-14, wherein the first four nucleotides at the 5' end of the 5' terminus and the last four nucleotides at the 3' end of the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' end of the 5' terminus and the last three or four nucleotides at the 3' end of the 3' terminus comprise 2'-O-Me modifications.

16. The sgRNA of any one of claims 1-15, wherein the first four nucleotides at the 5' terminus and the last four nucleotides at the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' terminus and the last three nucleotides at the 3' terminus comprise 2'-O-Me, 2'-F, and/or 2'-O-moe modifications.
17. The sgRNA of any one of claims 1-16, wherein the first four nucleotides at the 5' end of the 5' terminus and the last four nucleotides at the 3' end of the 3' terminus are linked with a PS bond, and wherein the first three nucleotides at the 5' end of the 5' terminus and the last three nucleotides at the 3' end of the 3' terminus are modified with 2'-O-Me, and wherein each nucleotide in the upper stem region are modified with 2'-O-Me.
18. The sgRNA of any one of claims 1-16, wherein the first four nucleotides at the 5' end of the 5' terminus and the last four nucleotides at the 3' end of the 3' terminus are linked with a PS bond, wherein the first three nucleotides at the 5' end of the 5' terminus and the last four nucleotides at the 3' end of the 3' terminus are modified with 2'-O-Me, and wherein each nucleotide in the upper stem region are modified with 2'-O-Me.
19. The sgRNA of any one of claims 1-18, wherein the lower stem region comprises nucleotides LS1 to LS12 from the 5' end to the 3' end thereof, and LS1, LS6, LS7, LS8, LS11, and/or LS12 are modified with 2'-O-Me and/or wherein the sgRNA comprises a bulge region and each nucleotide in the bulge region is modified with 2'-O-Me and/or wherein at least 50% of the nucleotides in the bulge region are modified with 2'-O-Me and/or wherein each nucleotide in the upper stem region is modified with 2'-O-Me and/or wherein the sgRNA further comprises a nexus region comprising nucleotides N1 through N18 from the 5' end to the 3' end thereof, and N16, N17, and/or N18 in the nexus region are modified with 2'-O-Me and/or wherein N15, N16, N17, and/or N18 in the nexus region are modified.
20. The sgRNA of claim 19, wherein the modifications in the nexus region are selected from 2'-O-Me and 2'-F.

21. The sgRNA of claim 1, wherein the sgRNA comprises 2'-O-Me modified nucleotides consisting of 2'-O-Me modified nucleotides at:
 - a. the first three nucleotides at the 5' end of the 5' terminus;
 - b. each nucleotide in the upper stem region;
 - c. each nucleotide in the hairpin 1 region;
 - d. the nucleotide between hairpin 1 and hairpin 2;
 - e. each nucleotide in the hairpin 2 region; and
 - f. the last four nucleotides at the 3' end of the 3' terminus.
22. The sgRNA of claim 1, wherein the upper stem region comprises US1 to US12 from the 5' end to the 3' end thereof, and the hairpin region comprises a hairpin 1 region and a hairpin 2 region, wherein the hairpin 1 region comprises H1-1 to H1-12 from the 5' end to the 3' end thereof and the hairpin 2 region comprises H2-1 to H2-15 from the 5' end to the 3' end thereof, and wherein the sgRNA comprises 2'-O-Me modified nucleotides consisting of 2'-O-Me modified nucleotides at:
 - a. the first three nucleotides at the 5' end of the 5' terminus;
 - b. each of nucleotides US1, US2, US3, US4, US5, US6, US7, US8, US9, US10, US11 and US12;
 - c. each of nucleotides H1-1, H1-2, H1-3, H1-4, H1-5, H1-6, H1-7, H1-8, H1-9, H1-10, H1-11, and H1-12;
 - d. the nucleotide between hairpin 1 and hairpin 2;
 - e. each of nucleotides H2-1, H2-2, H2-3, H2-4, H2-5, H2-6, H2-7, H2-8, H2-9, H2-10, H2-11, H2-12, H2-13, H2-14, and H2-15; and
 - f. the last four nucleotides at the 3' end of the 3' terminus; and
 - g. three PS bonds linking the first four nucleotides at the 5' end of the 5' terminus and three PS bonds linking the last four nucleotides at the 3' end of the 3' terminus.
23. The sgRNA of claim 1, wherein the sgRNA is a sgRNA comprising any of SEQ ID NOs: 235, 236, 240, 265-283, 309-327, and 331.

24. The sgRNA of claim 1, wherein the sgRNA is a sgRNA comprising SEQ ID No: 242 or SEQ ID No: 358.
25. A composition comprising an sgRNA of any one of claims 1-24, further comprising a lipid nanoparticle (LNP).
26. The composition of claim 25, further comprising an mRNA which encodes a nuclease.
27. A composition comprising an sgRNA of any one of claims 1-24, further comprising a nuclease or an mRNA which encodes the nuclease.
28. The composition of claim 26 or claim 27, wherein the nuclease is a Cas protein.
29. The composition of any one of claims 26-28, wherein the Cas protein is a Cas9.
30. The composition of claim 29, wherein the Cas9 protein is an *S. pyogenes* Cas9.
31. The composition of any one of claims 26-30, wherein the nuclease is a nickase.
32. The composition of any one of claims 26-31, wherein the nuclease is modified.
33. A pharmaceutical formulation comprising the sgRNA of any one of claims 1-24 or the composition of any one of claims 25-32, and further comprising a pharmaceutically acceptable carrier.
34. A method of modifying a target DNA comprising delivering (1) a Cas protein or a nucleic acid encoding a Cas protein, and (2) the sgRNA of any one of claims 1-24 or the composition of any one of claims 25-32.

35. The sgRNA of any one of claims 1-24, the composition of any one of claims 25-32, or the pharmaceutical formulation of claim 33, for use in the treatment of a disease or disorder.
36. Use of the sgRNA of any one of claims 1-24 or the composition of any one of claims 25-32 in the manufacture of a medicament for treating a disease or disorder.
37. A method of treating a disease or disorder, comprising administering the sgRNA of any one of claims 1-24, the composition of any one of claims 25-32 or the pharmaceutical formulation of claim 33.

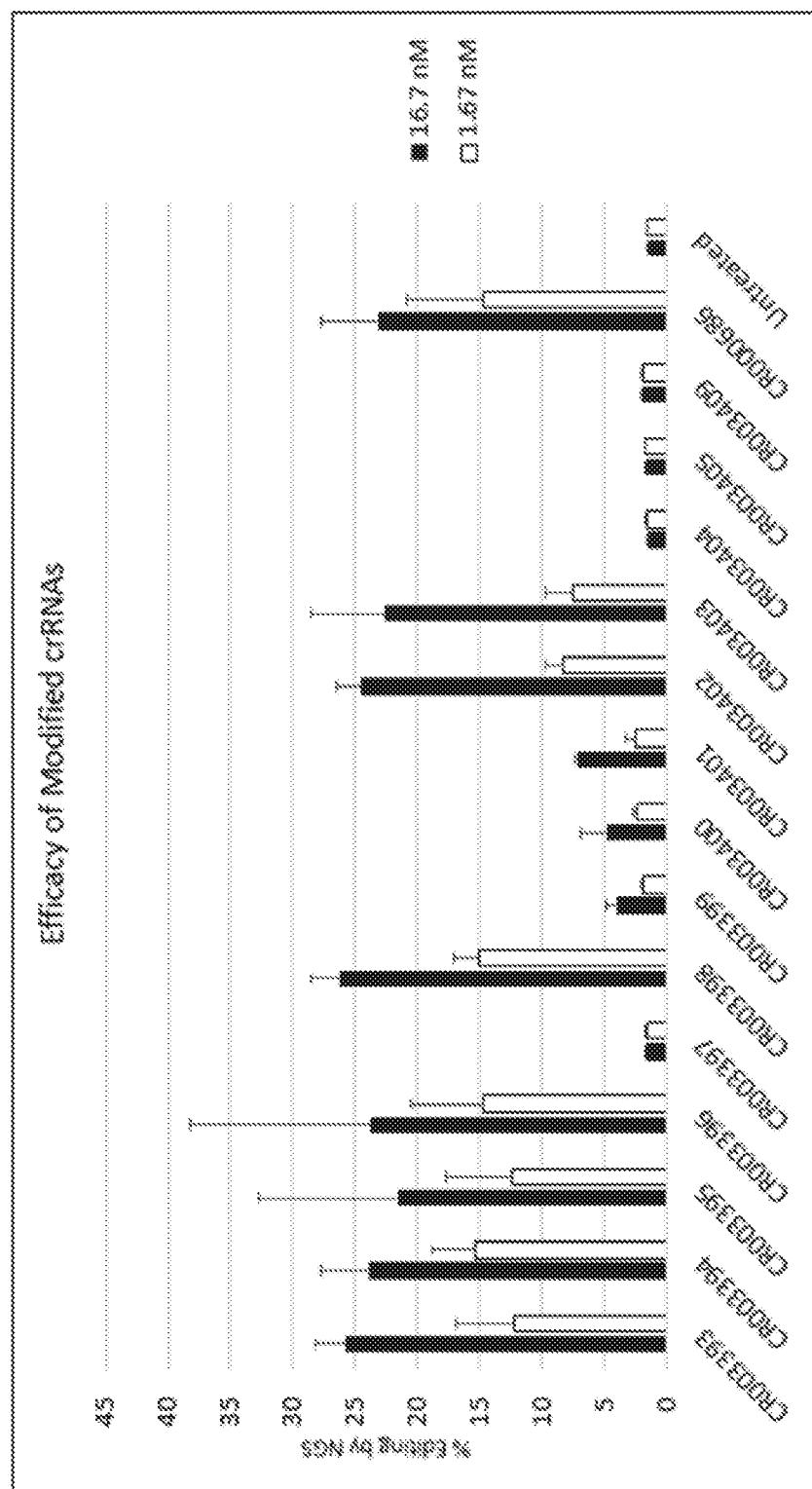
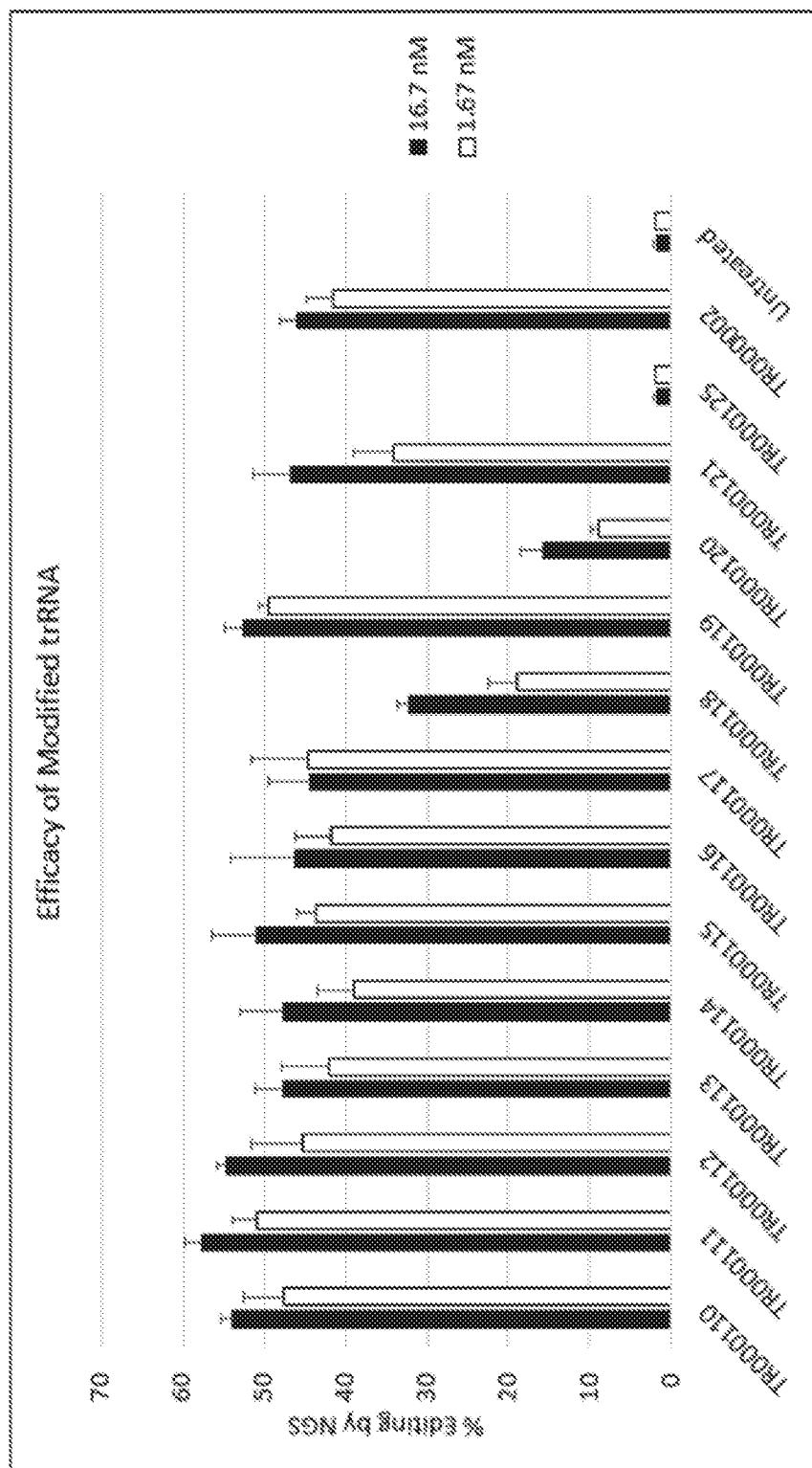



Figure 1

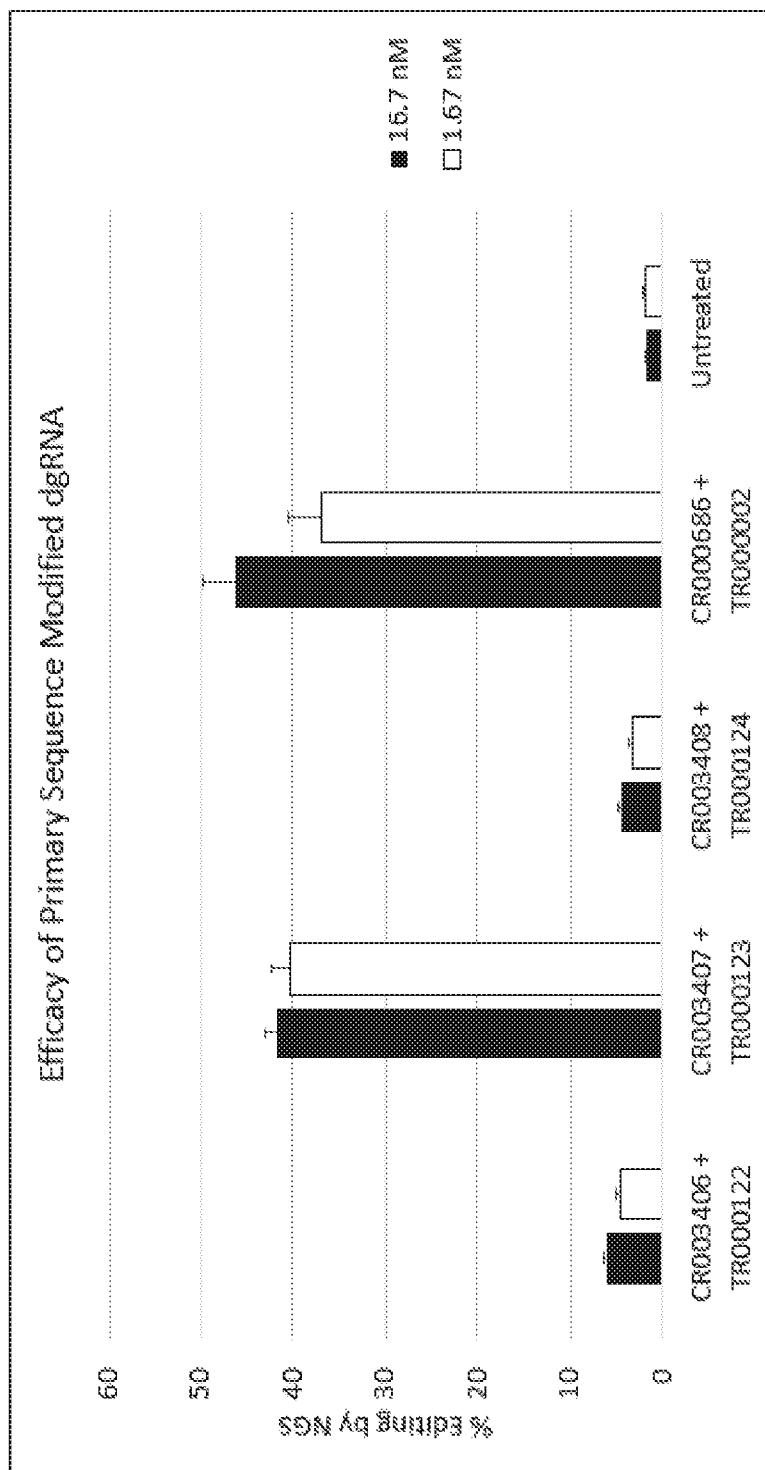


Figure 3

	TR000110	TR000111	TR000112	TR000113	TR000114	TR000115	TR000116	TR000117	TR000118	TR000119	TR000121	TR000002
CR003393	54.1 ± 5	61.2 ± 3.1	56.7 ± 5	55.9 ± 4	53.8 ± 10.7	56.3 ± 10	52.7 ± 5.8	55.5 ± 7	40.7 ± 12.9	48.5 ± 8.1	51.3 ± 11.4	
CR003394	57.7 ± 4.7	61.5 ± 8.2	64.8 ± 6.4	65.4 ± 8.9	60.1 ± 2.5	61.6 ± 4.6	57.3 ± 7.2	57.8 ± 8.3	38.6 ± 7.9	50.9 ± 10.3	54.8 ± 8.9	
CR003395	52.4 ± 2.4	62.8 ± 6.8	61.1 ± 7.2	62.8 ± 11.1	55.9 ± 7.6	57 ± 4.9	53.4 ± 7.1	52.5 ± 8.1	38.2 ± 7.5	49.7 ± 14.4	53.1 ± 11.7	
CR003396	56 ± 3.9	56.4 ± 7.6	58.7 ± 7.3	58.1 ± 7.3	54.7 ± 4.9	58.8 ± 5	48.9 ± 2.8	52.5 ± 9.7	34.3 ± 6	48.3 ± 10.3	52.4 ± 9.5	
CR003398	50.8 ± 10.2	56.2 ± 8.2	62.5 ± 6.9	59.7 ± 8.9	56.3 ± 3.4	61.2 ± 5	53 ± 7.1	53.8 ± 9.2	29.4 ± 9.3	52.2 ± 12.2	51.9 ± 15.6	
CR003402	42.7 ± 4.5	53.3 ± 5.4	56.9 ± 11	57.4 ± 12.1	52.8 ± 9.3	55.1 ± 8.5	46.1 ± 8.4	50.5 ± 8.8	17.7 ± 6.7	45.2 ± 12	52.8 ± 11.3	
CR003403	45.8 ± 9.9	52.7 ± 8.6	59.7 ± 13.9	54.8 ± 13.7	47.2 ± 12.1	50.9 ± 8.4	43.4 ± 10.3	47 ± 13	10.5 ± 5.9	44.5 ± 15.2	46 ± 19.3	
CR000686												34.5 ± 6.4

	TR000110	TR000111	TR000112	TR000113	TR000114	TR000115	TR000116	TR000117	TR000118	TR000119	TR000121	TR000002
CR003393	41.8 ± 6.2	50.4 ± 3.2	40.2 ± 4.7	43.4 ± 2	40.1 ± 4.8	43.1 ± 3.9	39.1 ± 4.2	43 ± 6	15.6 ± 6	34.9 ± 3.1	34.9 ± 11.6	38.6 ± 2.2
CR003394	45.4 ± 4.7	49.6 ± 7.9	43.9 ± 6.6	46.7 ± 5.6	40.4 ± 7.5	47.2 ± 6.9	46.8 ± 3.1	43.9 ± 2.4	13.7 ± 1.6	28.9 ± 4.3	35.9 ± 6.2	
CR003395	39 ± 10	56 ± 5.1	42.2 ± 3.5	48.2 ± 3.2	36 ± 2.8	47.4 ± 7.3	44.4 ± 5.9	41.6 ± 7	12 ± 1.4	25.8 ± 1	31.4 ± 1.8	
CR003396	34.8 ± 2.3	46.5 ± 0.4	42 ± 4.9	42.4 ± 1.8	32 ± 4	44.4 ± 5.5	41.1 ± 7.7	40.5 ± 5.1	20.7 ± 1.2	26 ± 1.2	42.4 ± 8.9	
CR003398	33.6 ± 3.3	47 ± 6.8	41.9 ± 2.6	41.9 ± 1.1	37.1 ± 4.1	43.2 ± 9.4	40.1 ± 3.9	42.9 ± 3.6	1.4 ± 0.1	34.2 ± 2	40.7 ± 7.4	
CR003402	31.2 ± 4.7	46.4 ± 5	38.5 ± 2.8	40.7 ± 3.5	29.9 ± 1.1	42.4 ± 6.6	31.7 ± 2.9	32.8 ± 4.6	7 ± 0.8	31.3 ± 2.1	46.8 ± 3.8	
CR003403	28 ± 4.3	38.3 ± 3.3	37.5 ± 4.4	36.4 ± 2.7	31.4 ± 4.6	34.6 ± 3.7	32.9 ± 4	35.8 ± 4.2	1.4 ± 0.1	34.6 ± 6.1	40.7 ± 6.6	
CR000686												21.7 ± 4.9

Figure 4

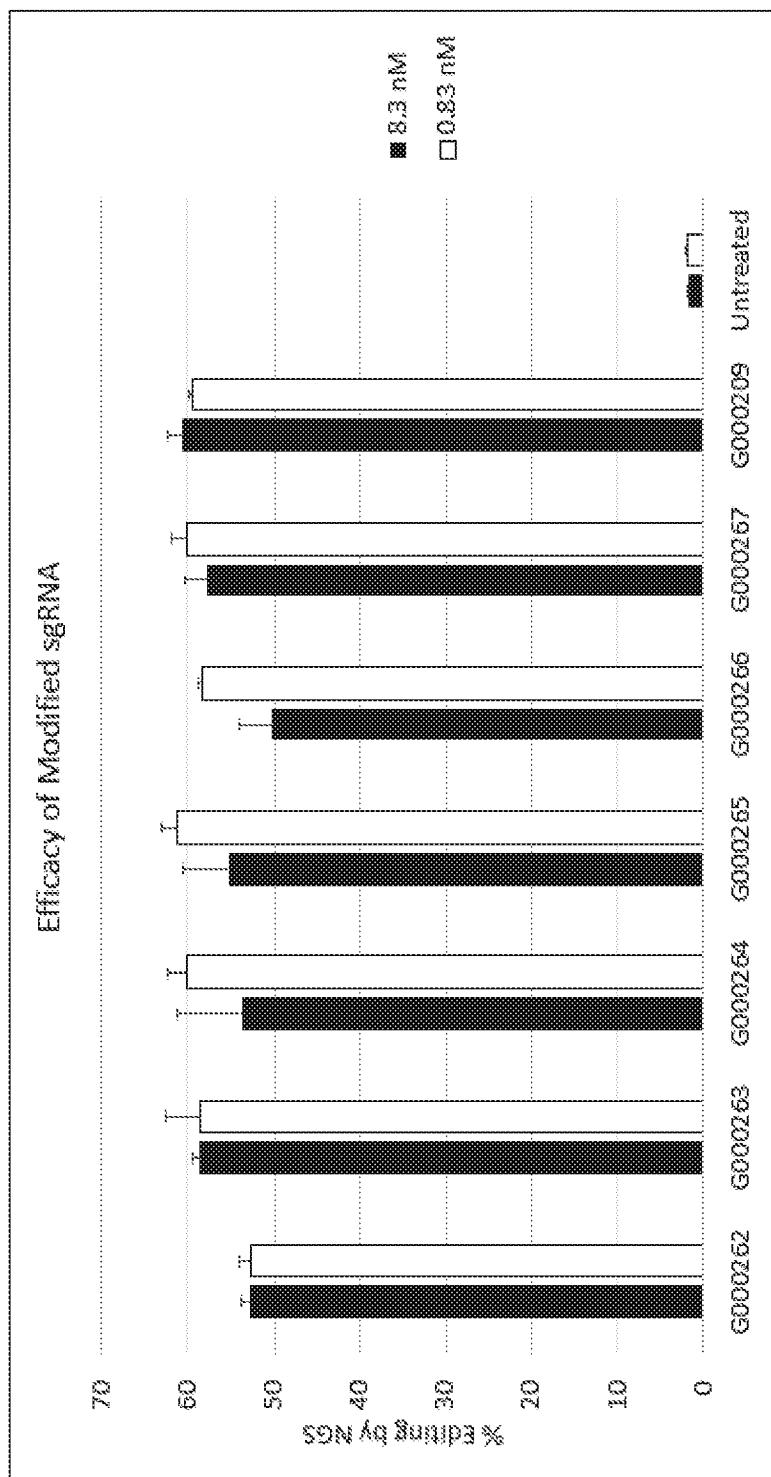


Figure 5

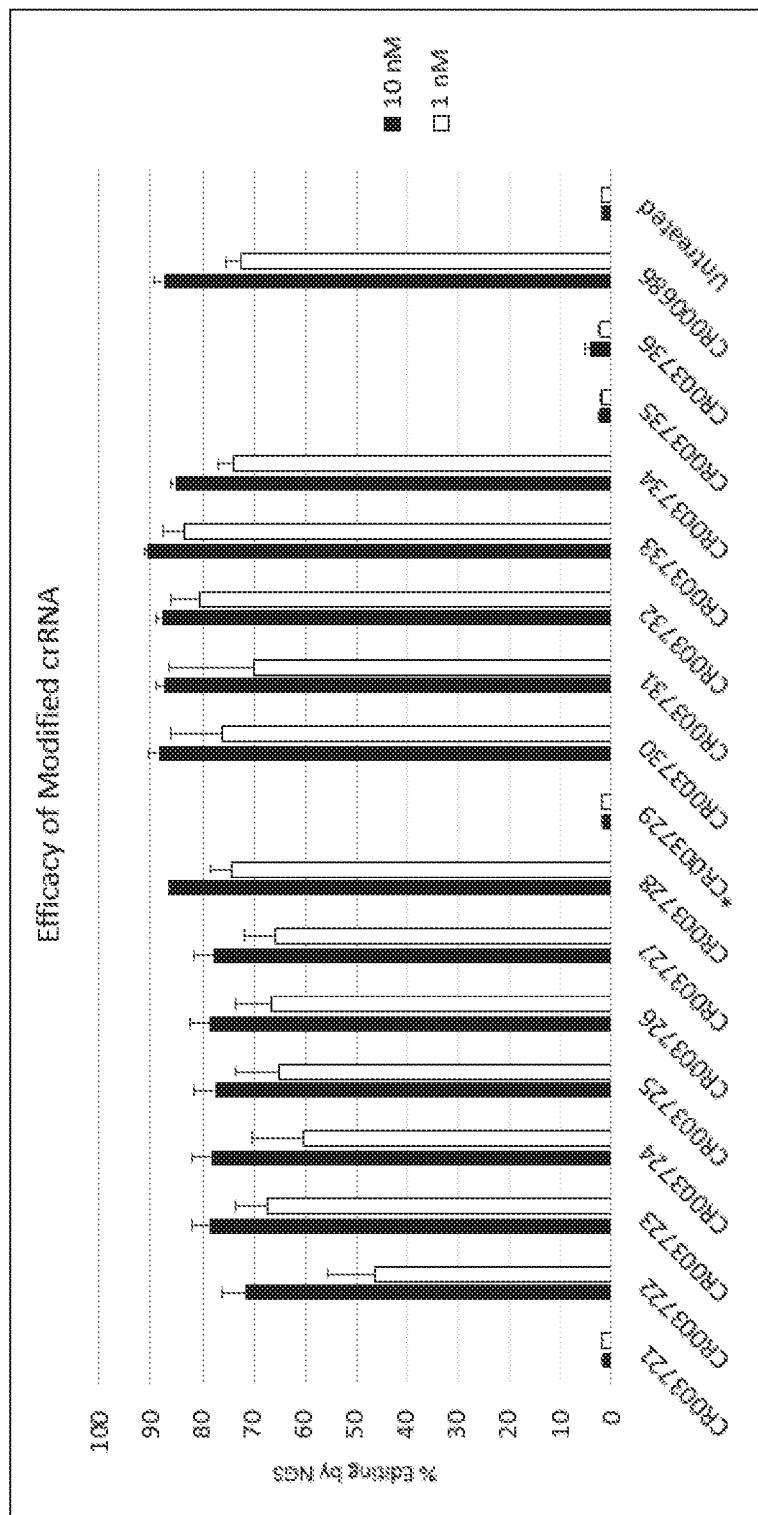
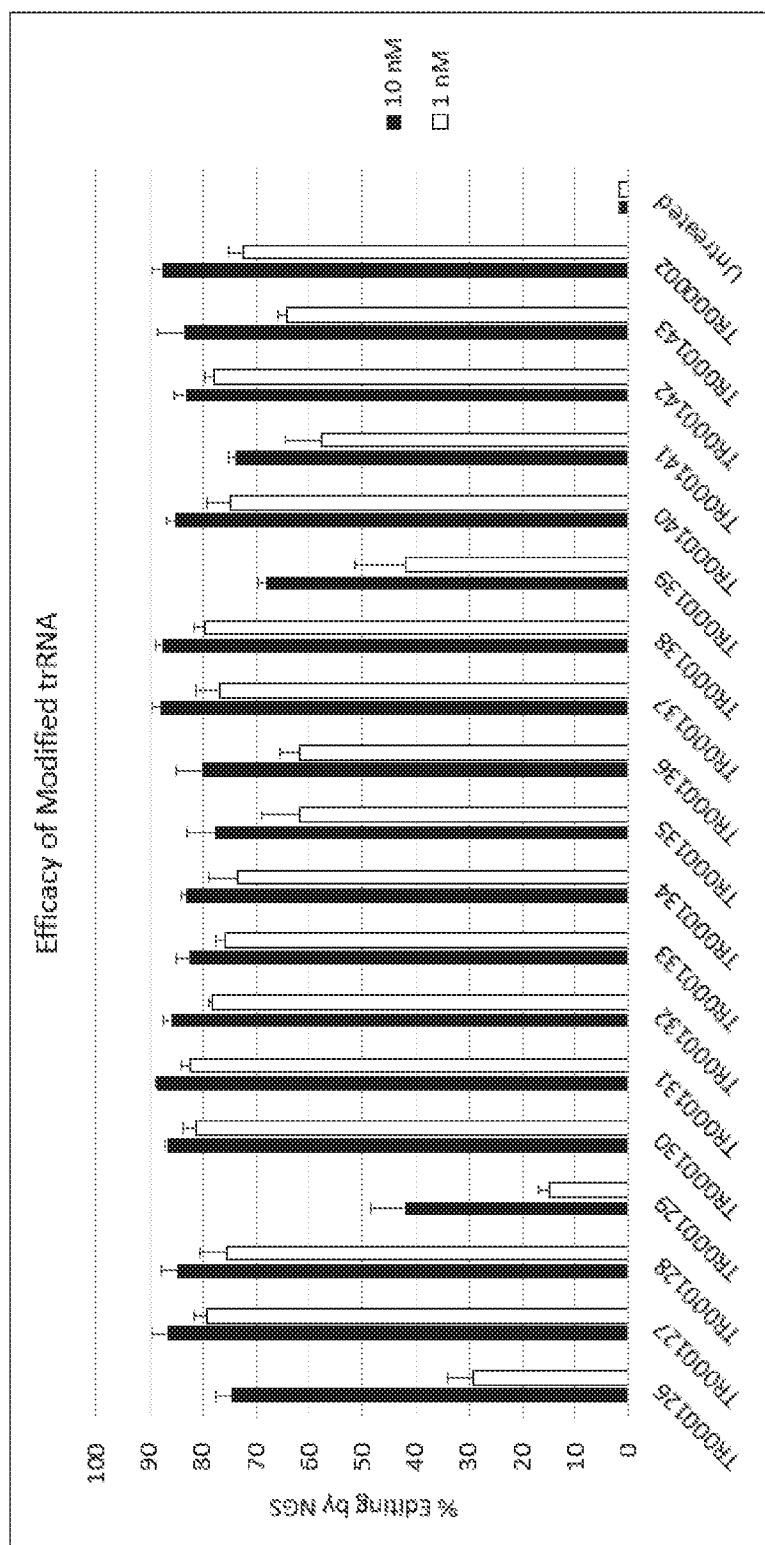
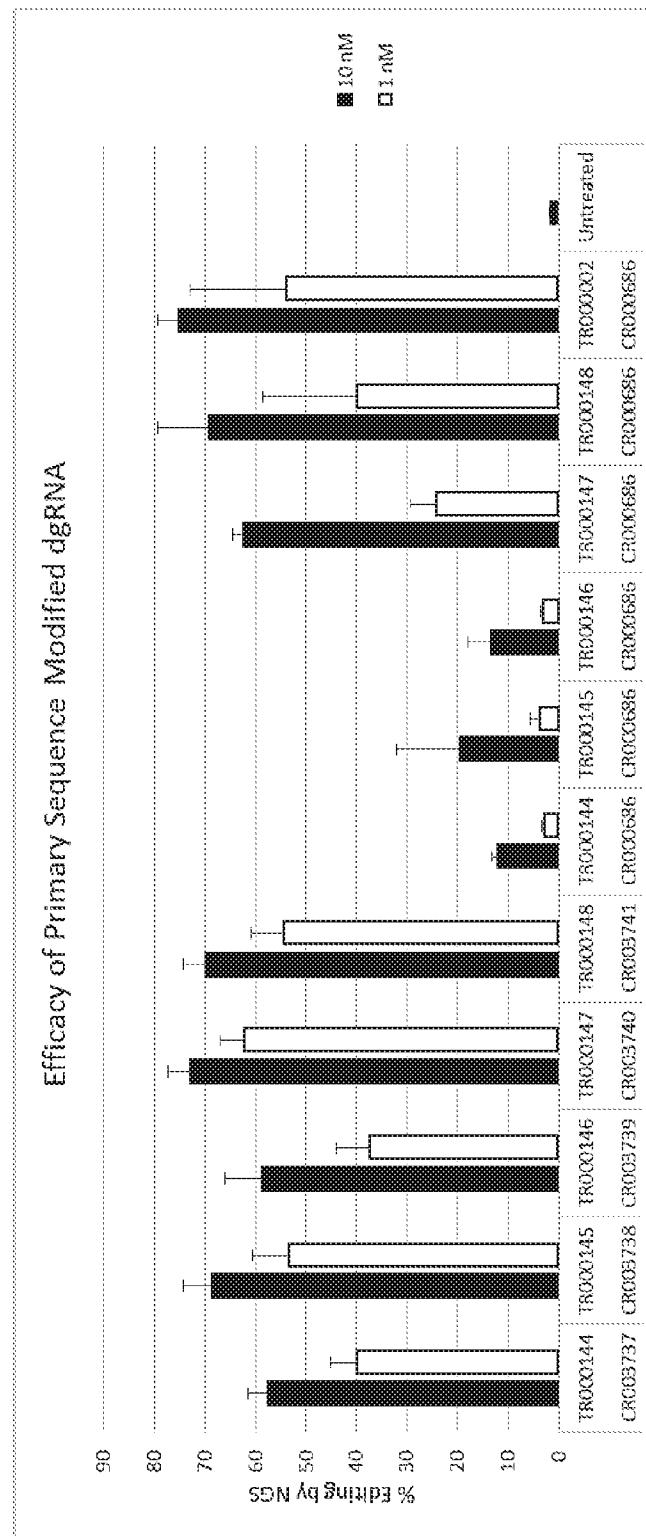
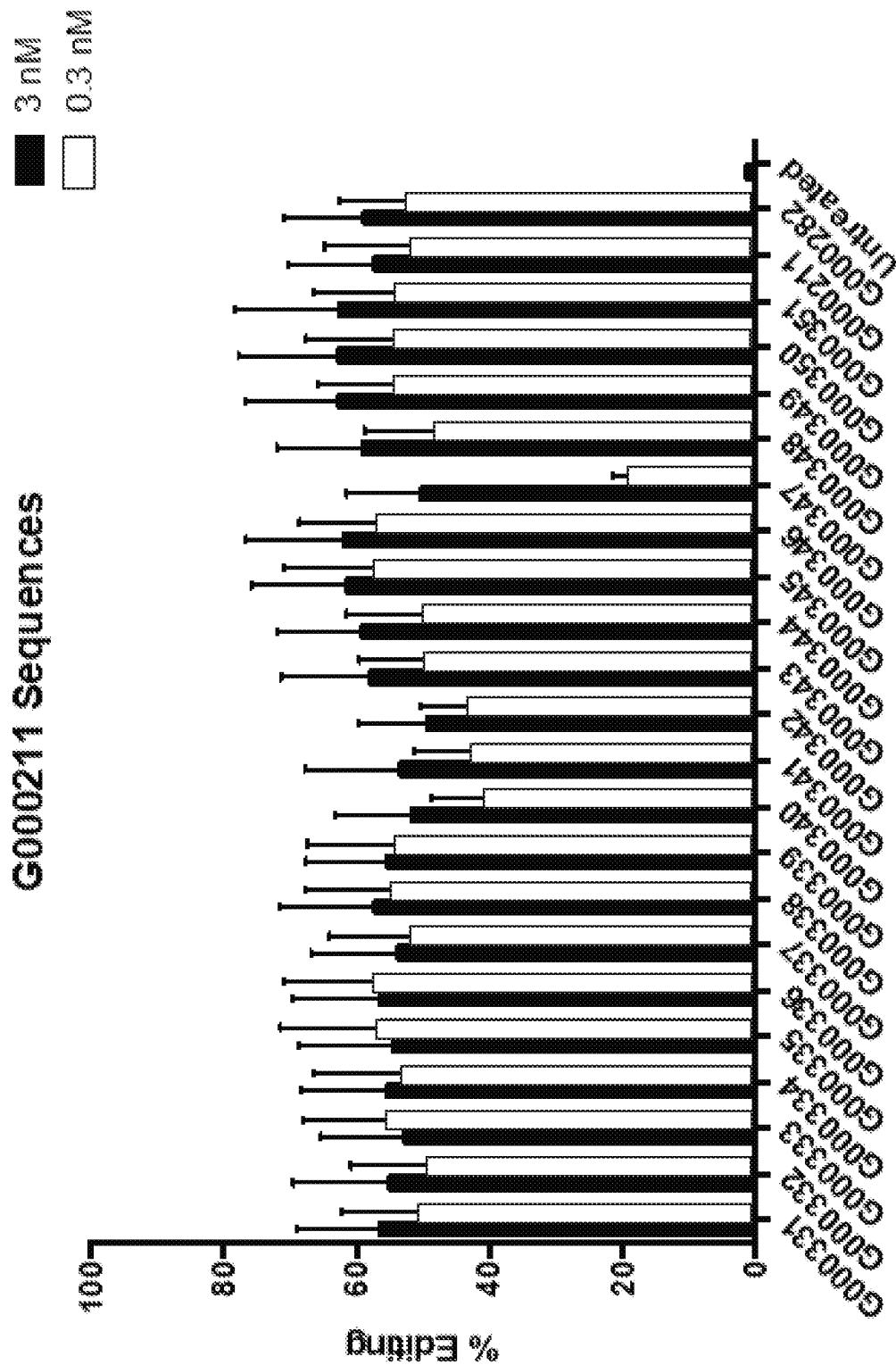



Figure 6

7 / 41




Figure 8

	10 nM	TR000127	TR000128	TR000130	TR000134	TR000135	TR000136	TR000137	TR000138	TR000139	TR000142	TR000143	TR000143
CRO03723	18±13.8	22.8±4.1	24±2.6	26.9±2.8	20.8±5	22.2±5.7	26.7±5	23.6±4.1	13.7±2.4	22.3±4.4	10.8±2.2	18.5±1.5	
CRO03725	28.4±1.2	29.2±4.2	27.9±1.3	30.6±3.4	26.1±3.8	25.9±4.4	30±3	26.9±2	18.5±2.2	25.1±0.9	23.1±1.7		
CRO03726	30.4±1.1	31.3±3.2	30.6±2.9	32±2.2	29.8±2.5	29.9±2.8	32.3±1	28.7±2.2	20.9±2.4	27±1.4	23.6±2.3	24.9±1.1	
CRO03727	31.6±2.1	27±2.7	29.6±0.8	32.1±1.3	26.7±1.2	27.2±5.2	31±2	28.1±0.7	19.2±0.7	26.7±2.1	22.5±1.2	25.6±3	
CRO03728	34.6±2.4	24±0.1	34.9±2.6	37.7±3.1	33.1±2.1	33.1±4	35.4±0.9	32.4±2.9	25.8±4.8	30.7±2.7	28.2±2.2	28.6±0.7	
CRO03729	34.8±0.9	32.3±1.5	33.8±1.1	34.8±2.5	29.8±1.8	31.5±3.6	32.6±1.7	31±1.9	25.4±3.7	28.6±0.5	25.6±1.1	27.8±0.6	
CRO03734	27.5±0.3	21.5±1.5	29.8±1.6	29.5±1.6	13.7±2.1	14.6±1.2	31±2.4	28±2.5	7±1.1	25.5±1.3	3.4±0.1	22.7±2.8	
CRO00686	23±2.8	22.4±3.9	23.6±6.2	26.4±1	22.2±2	19.5±1.1	24.6±3	27.4±2.6	12.2±1.7	22.9±1.8	20.2±1.1	22.6±3	

	1 μM	TR000127	TR000128	TR000130	TR000134	TR000135	TR000136	TR000137	TR000138	TR000139	TR000142	TR000143	TR000143
CRO03723	18.3±14.1	16±12.1	25.3±0.8	22.5±3.4	14.3±19.6	17.5±2	23.1±3.8	21±1.4	8.8±1.4	18.3±0.7	8.3±1.5	14.6±0.4	
CRO03725	26.9±1.8	25.1±4.1	25±2.7	24.8±2.3	23.1±2.8	16.2±12.1	17.3±13.1	22.5±1	15.2±1.7	22.7±1.5	19.7±3.1		
CRO03726	16.8±12.9	26.4±2	23.6±2.6	25.2±1.5	22.7±3.4	20.7±1.5	26.6±1.4	20.4±0.9	13.3±0.3	21.6±1.5	18.6±0.5	17±1	
CRO03727	24.1±3.1	20.3±1.4	21±1.3	23.6±2.6	19.7±1.7	20.3±1.4	15.3±11.3	20.2±1.5	11.7±1.7	20.7±0.7	15.1±0.8	19.7±4.2	
CRO03728	26.9±0.8	2.4±0.1	28.2±2.4	27.9±0.6	26.4±3.2	22.9±1.2	26.4±1.9	24.8±0.5	18.8±1.8	23.3±1.4	20.3±1.1	23.4±3.7	
CRO03729	26.3±2.5	30.5±4.6	28.3±2.7	28.6±2	25.3±3.1	24.6±1.6	25±0.3	23.7±0.6	17.1±1.7	21.9±0.5	21±2	22±2	
CRO03734	18.9±5.3	15.2±3	21.4±1.7	20.1±0.1	8.5±1.7	7.4±0.9	20.4±0.8	20.4±1.4	3±0.1	19.3±0.8	2.5±0.3	17.3±2.1	
CRO00686	16.2±1	17.3±3.4	18.3±3.3	20.5±5	15.4±1.2	14.8±3	18.9±3.6	20.1±1.7	7.9±2.3	17.5±3.3	15.4±1	14.1±1.6	

Figure 9

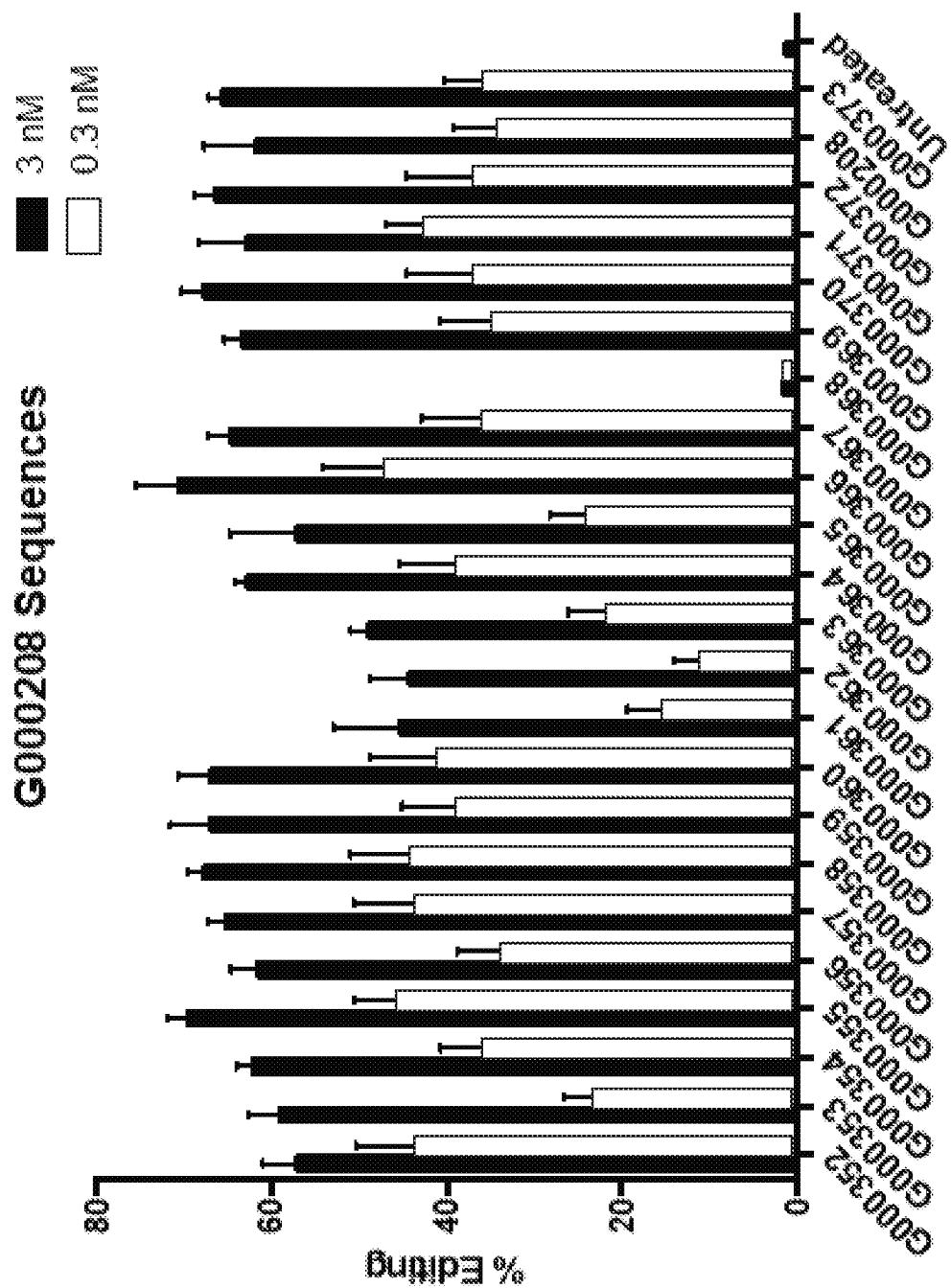
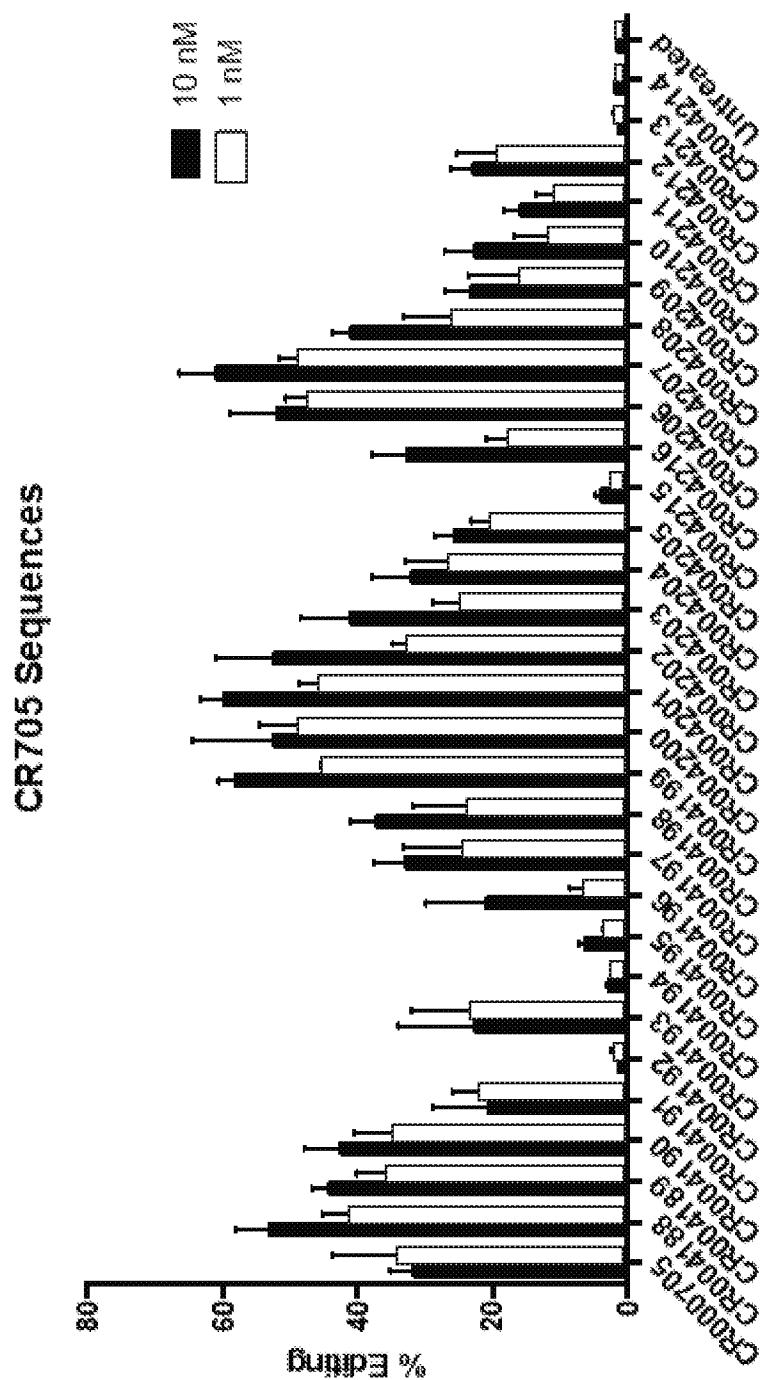



Figure 11

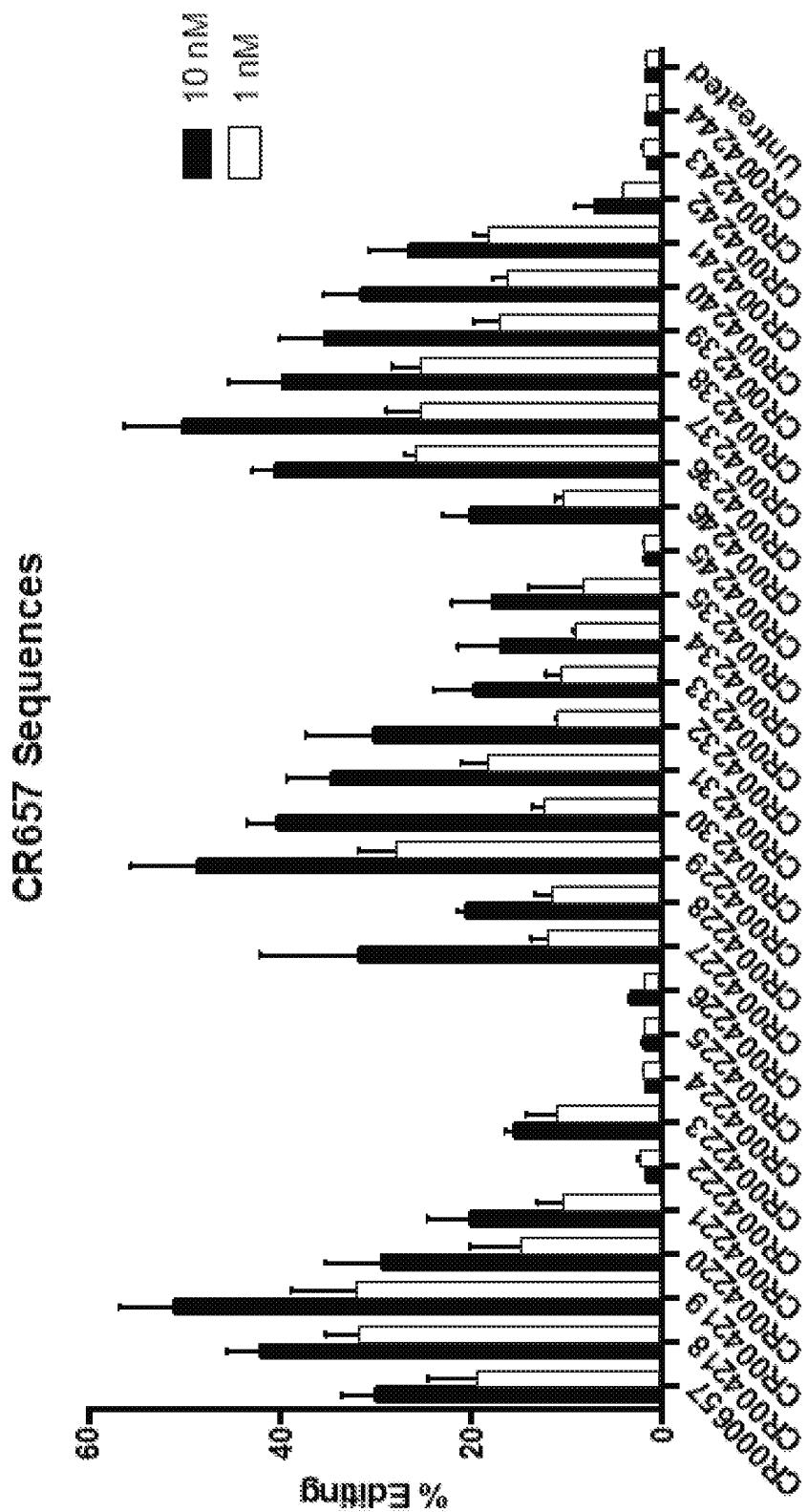


Figure 12B

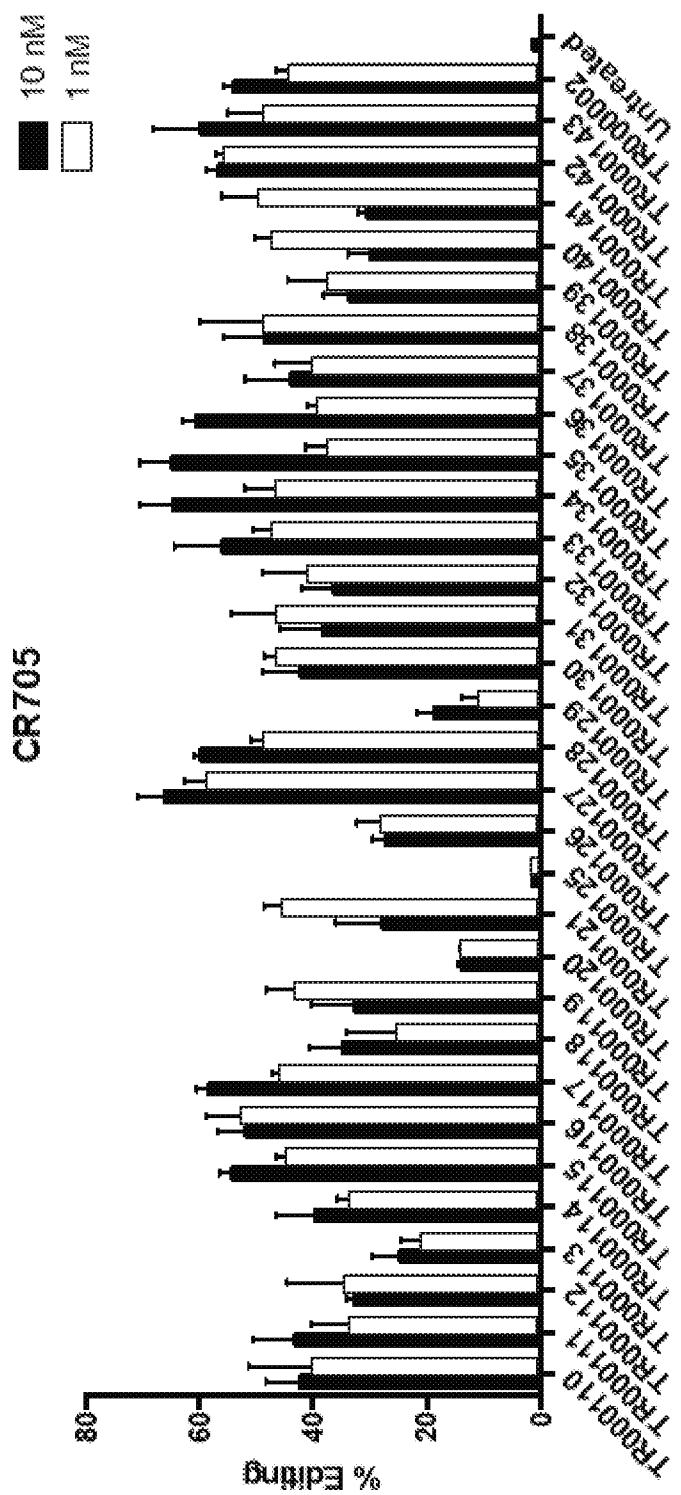


Figure 13A

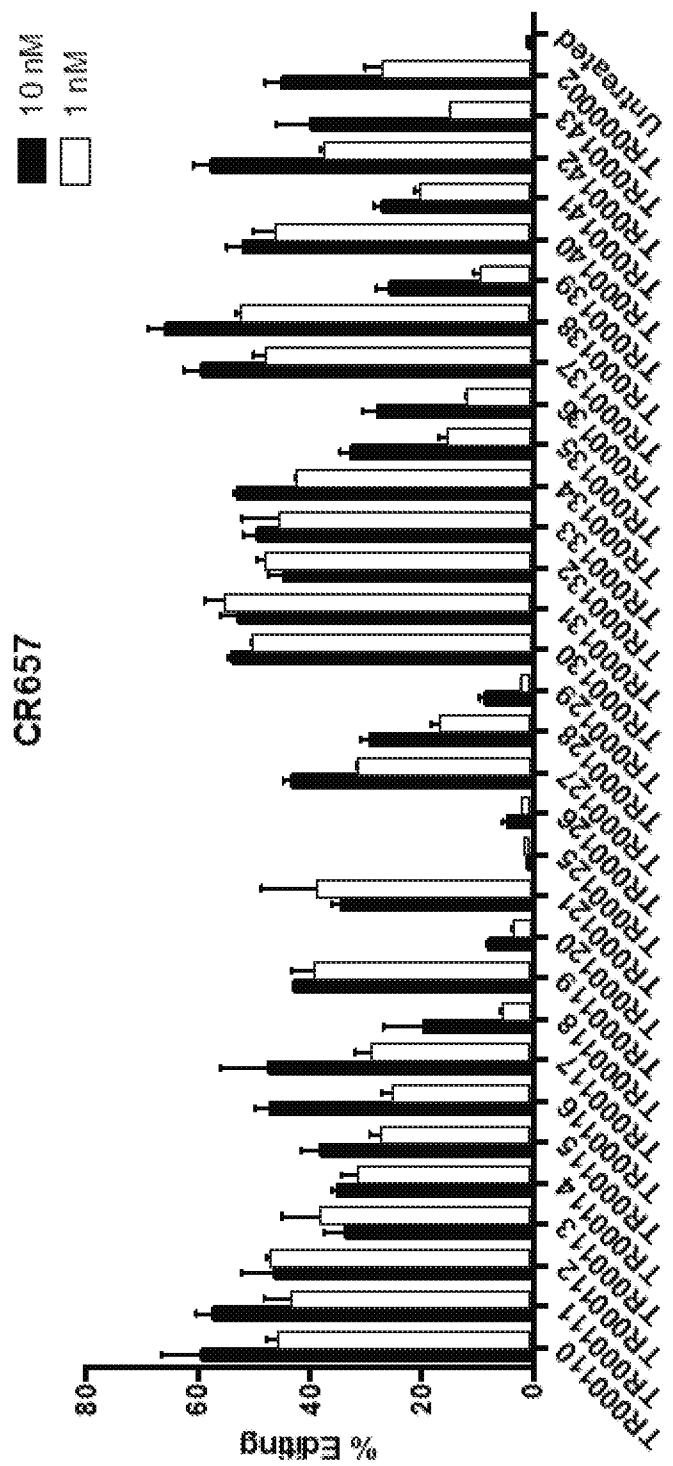
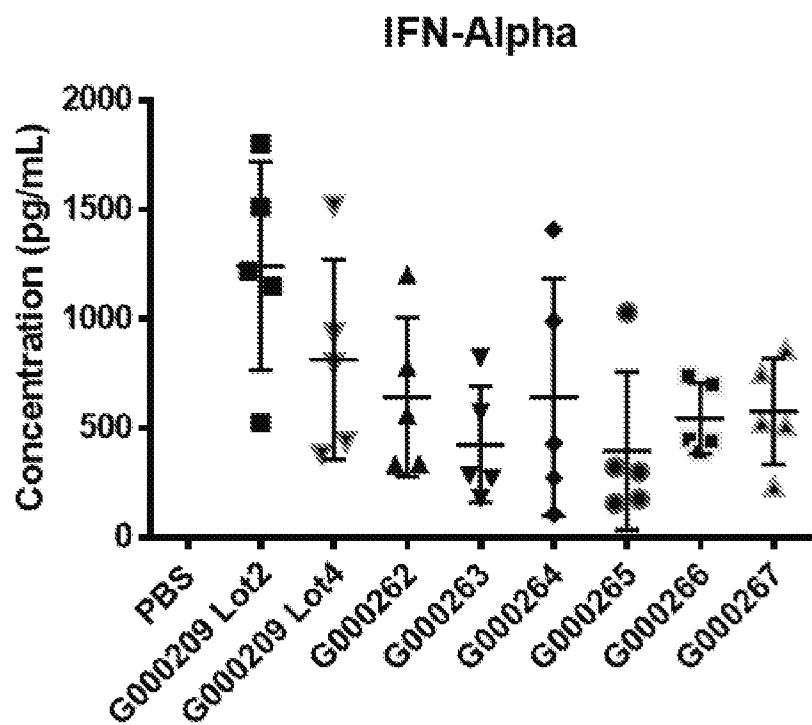
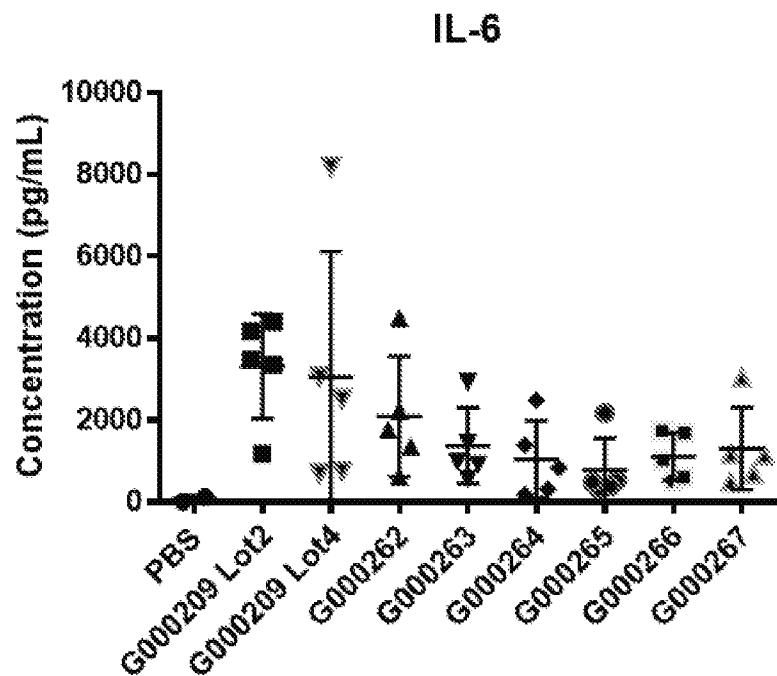




Figure 13B

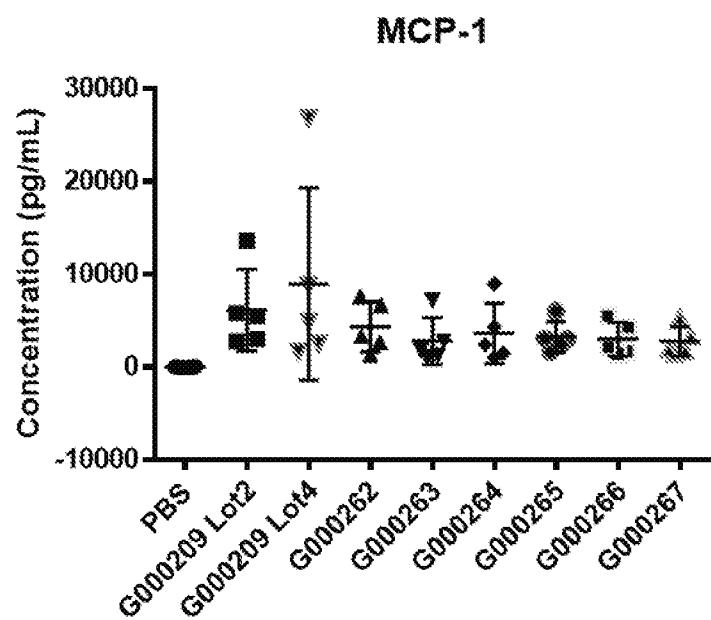


Figure 14A

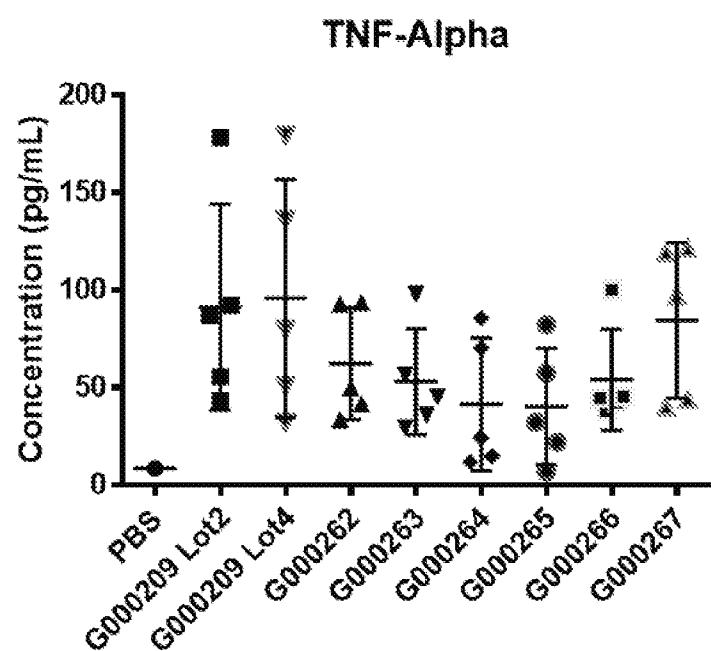


Figure 14B

17 / 41

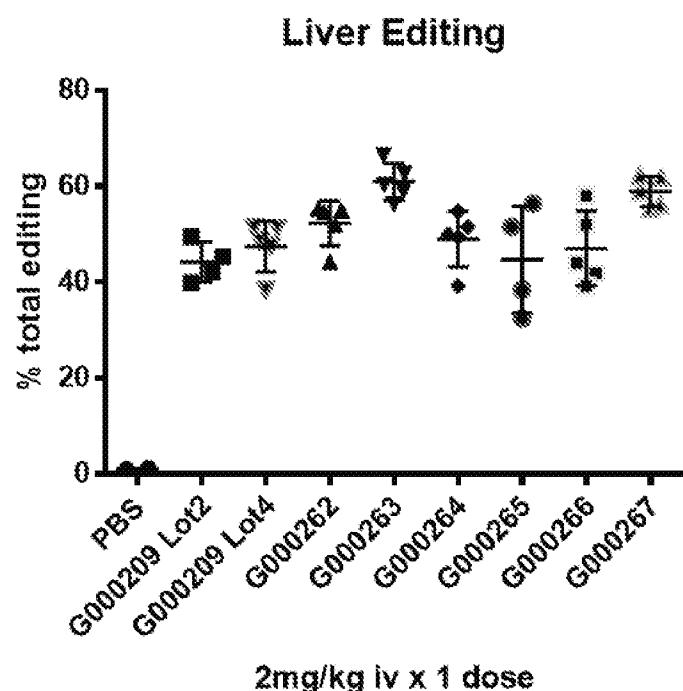


Figure 14C

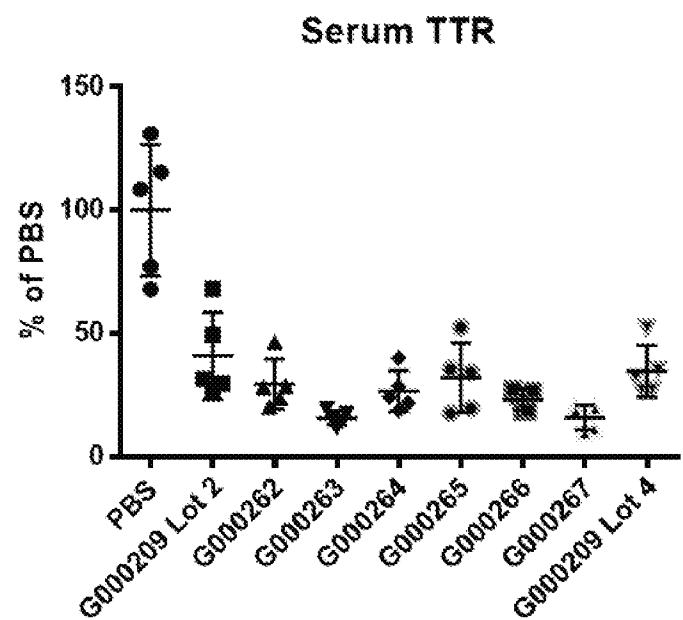


Figure 14D

18 / 41

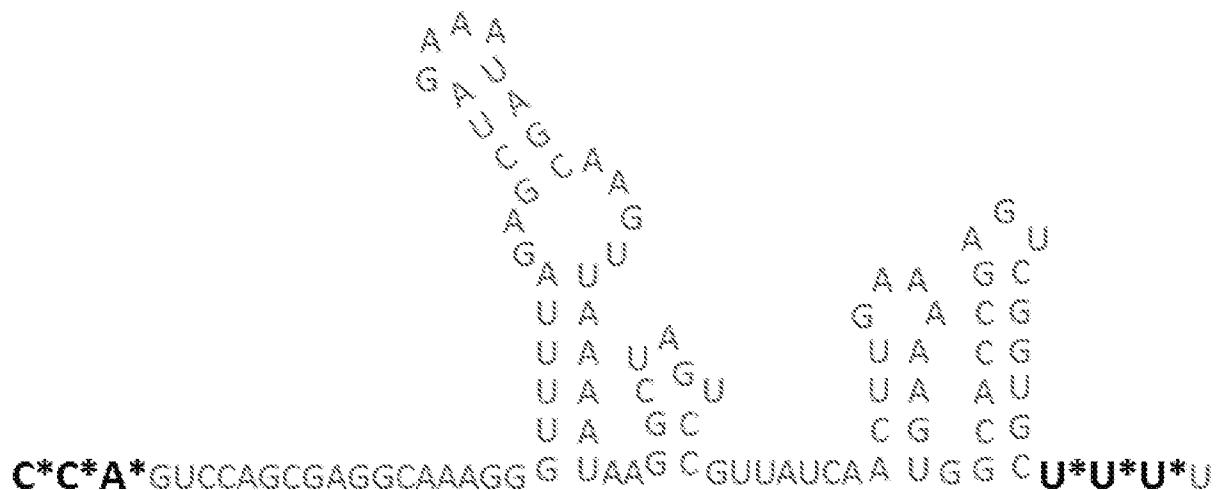


Figure 15A

Figure 15B

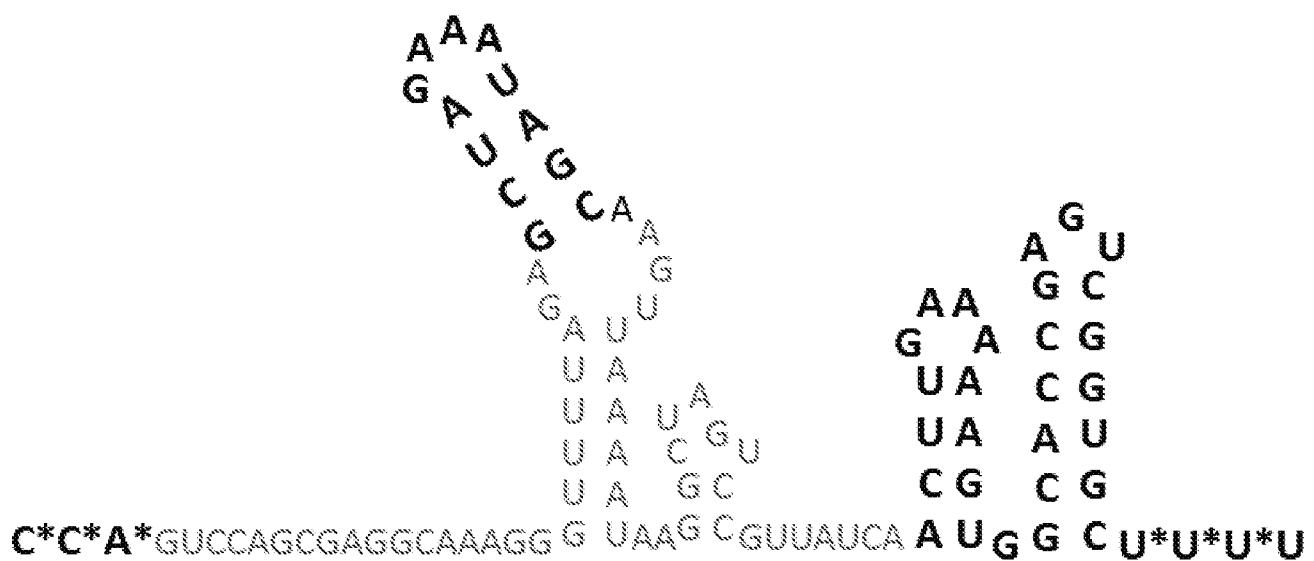
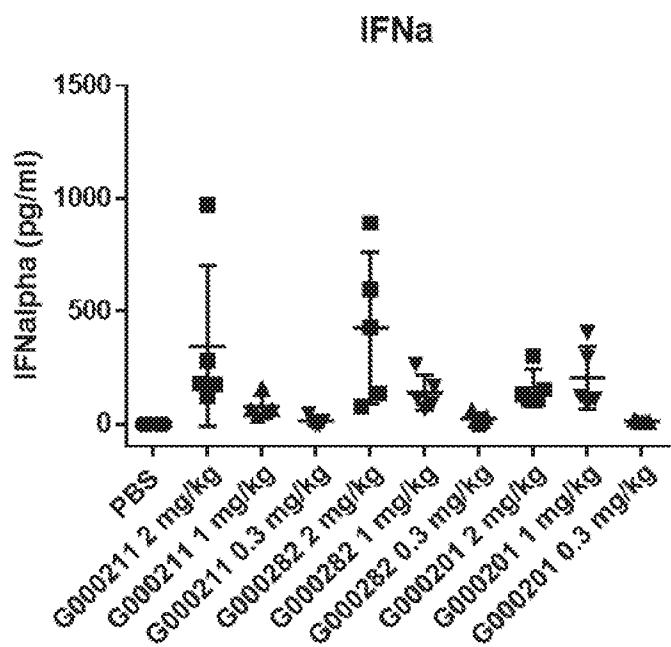
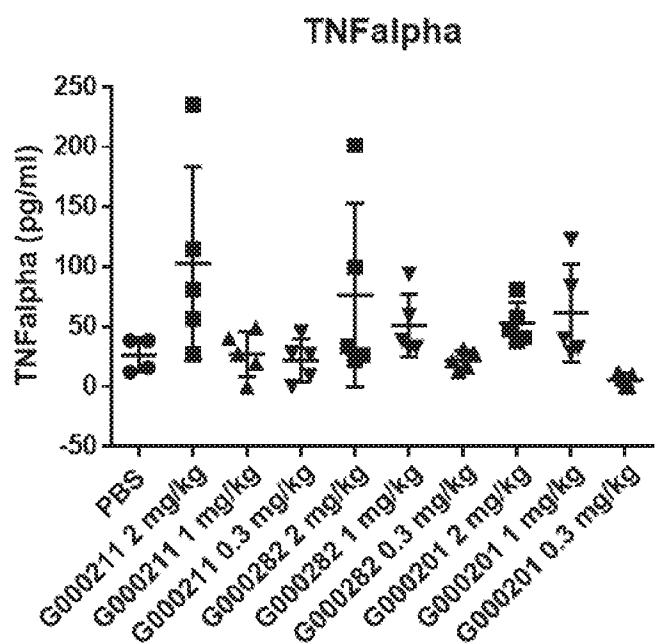

Guide	Average % Editing	Std. Dev.
<i>G209 Lot#2</i>	44.2	4.1
<i>G209 Lot#4</i>	47.5	5.3
<i>G262</i>	52.2	4.7
<i>G263</i>	60.9	3.8
<i>G264</i>	48.9	5.8
<i>G265</i>	44.7	11.1
<i>G266</i>	47.0	7.8
<i>G267</i>	58.9	3.1

Figure 15C

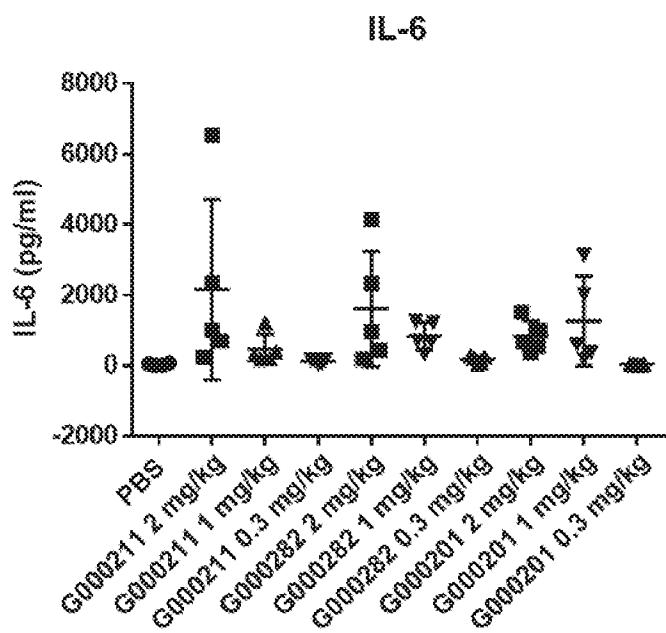
* = Phosphorothioate

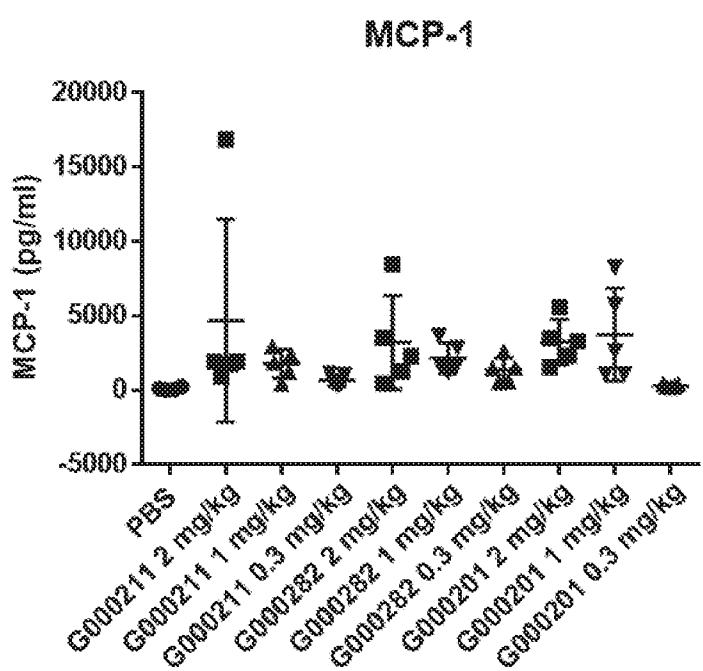
End-modified sgRNA
G000209


Figure 15D


* = Phosphorothioate

Highly modified sgRNA G000267


Figure 15E


Figure 16A

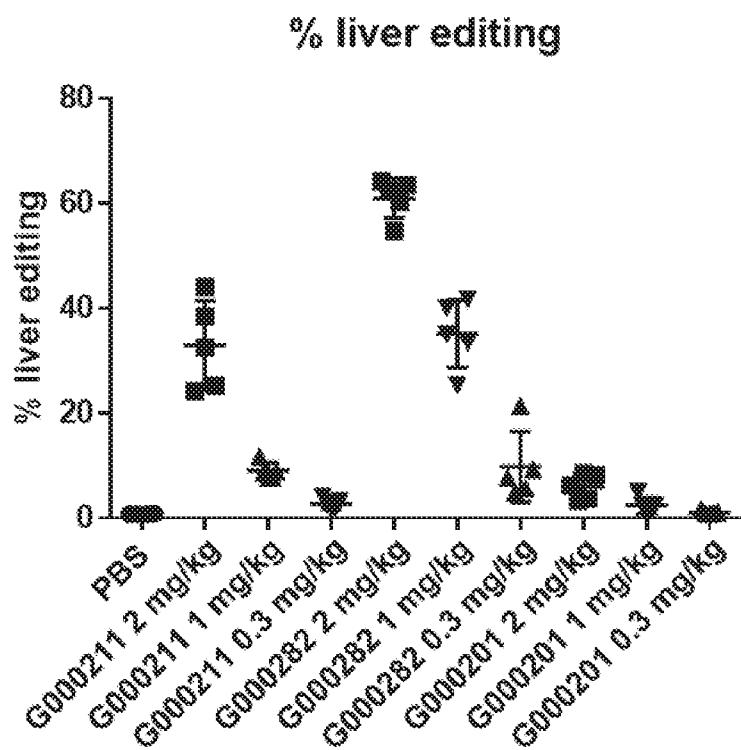

Figure 16B

Figure 16C

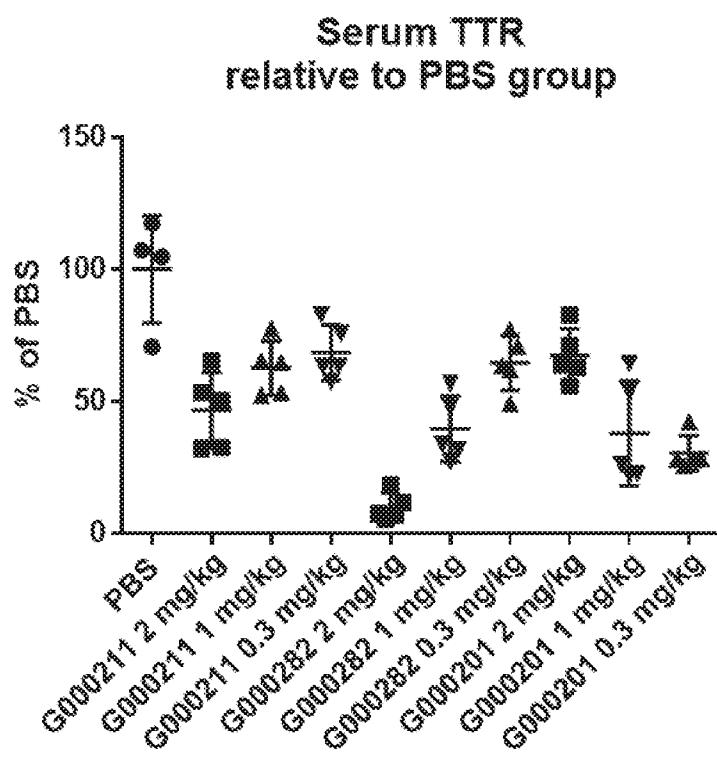
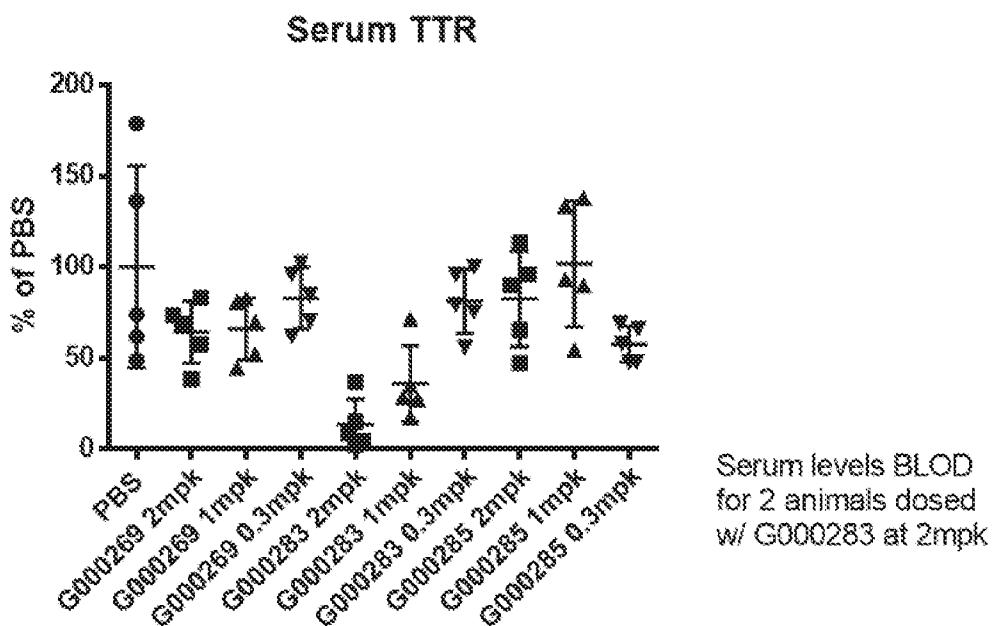

Figure 16D

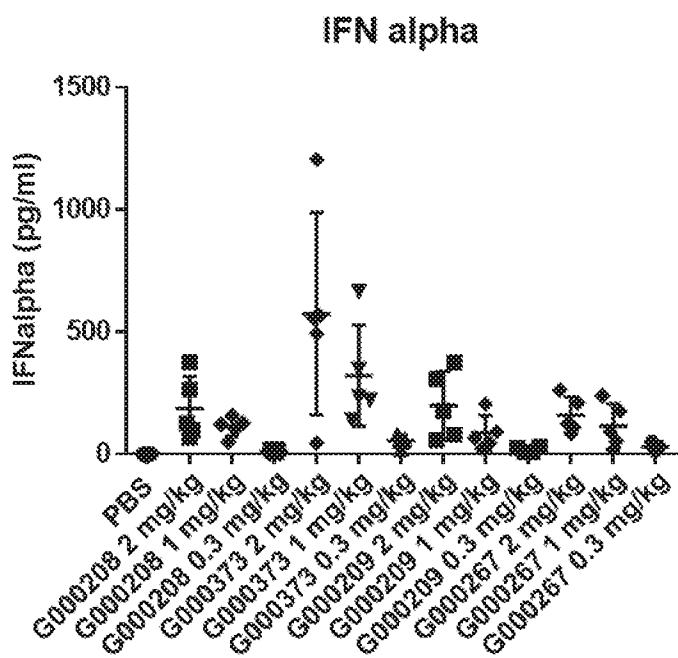
Figure 17A

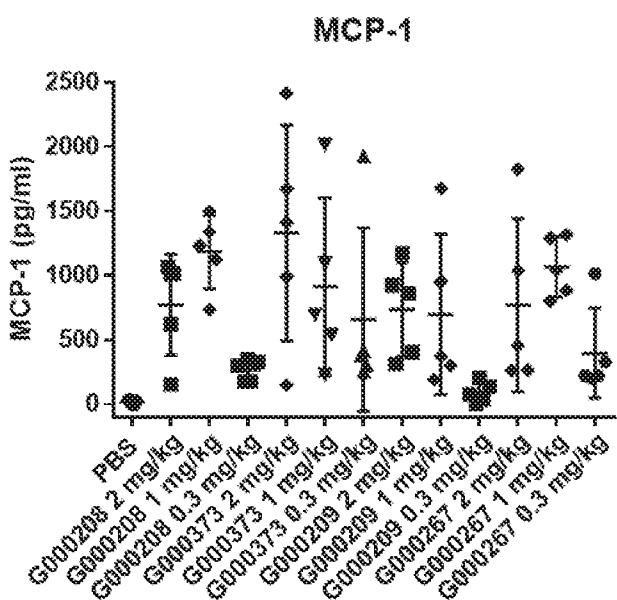
	Average % Editing	Std. Dev.
PBS	0.8370155	0.03184162
G211 2 mg/kg	32.89082	8.520595
G211 1 mg/kg	9.024511	1.640143
G211 0.3 mg/kg	2.762495	0.9668095
G282 2 mg/kg	60.99886	3.792423
G282 1 mg/kg	35.13641	6.434229
G282 0.3 mg/kg	9.812781	6.713302
G284 2 mg/kg	6.007987	2.434861
G284 1 mg/kg	2.413099	1.540902
G284 0.3 mg/kg	1.130903	0.3189707

Figure 17B

Figure 17C


	Average % TTR Reduction	Std. Dev.
PBS	100.000	20.31276
G211 2 mg/kg	46.73565	14.33137
G211 1 mg/kg	62.66805	10.30656
G211 0.3 mg/kg	68.51203	10.40399
G282 2 mg/kg	9.890765	5.288372
G282 1 mg/kg	39.58118	12.35095
G282 0.3 mg/kg	64.59702	10.51861
G284 2 mg/kg	67.28742	10.217
G284 1 mg/kg	37.76873	19.77835
G284 0.3 mg/kg	30.4822	6.612638


Figure 17D


Figure 18A

Guide	Dose	Average % Editing
<i>PBS</i>		2.38
<i>G269</i>	2 MPK	28.57
	1 MPK	16.21
	0.3 MPK	3.54
<i>G283</i>	2 MPK	56.32
	1 MPK	39.73
	0.3 MPK	8.08
<i>G285</i>	2 MPK	4.80
	1 MPK	2.90
	0.3 MPK	2.44

*Figure 18B**Figure 18C*

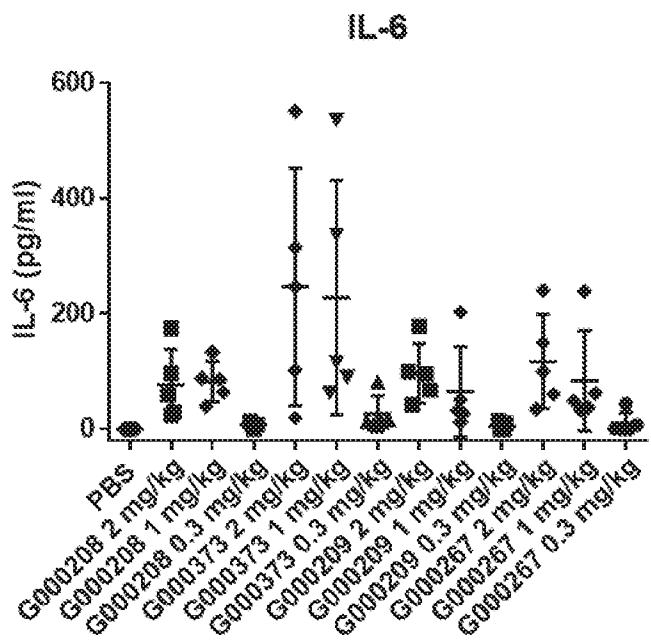


Figure 19A

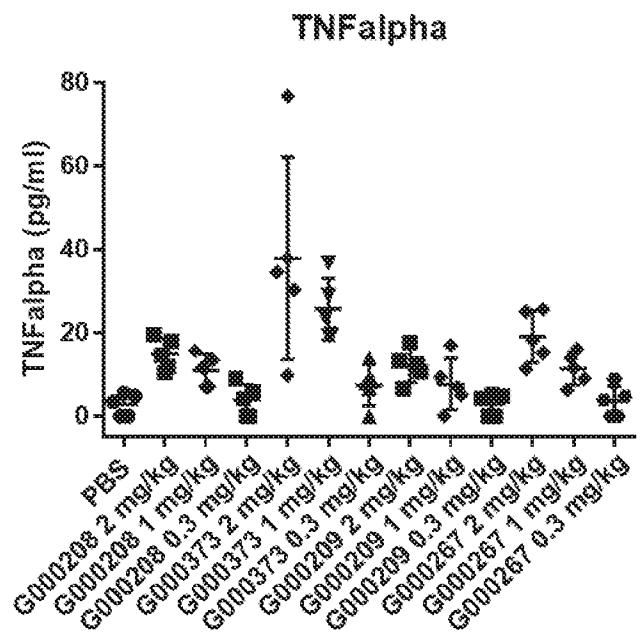
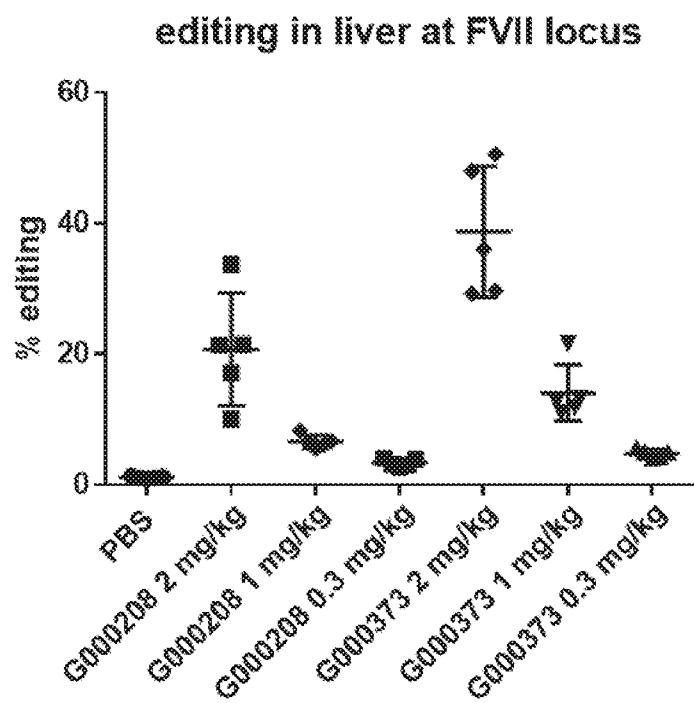
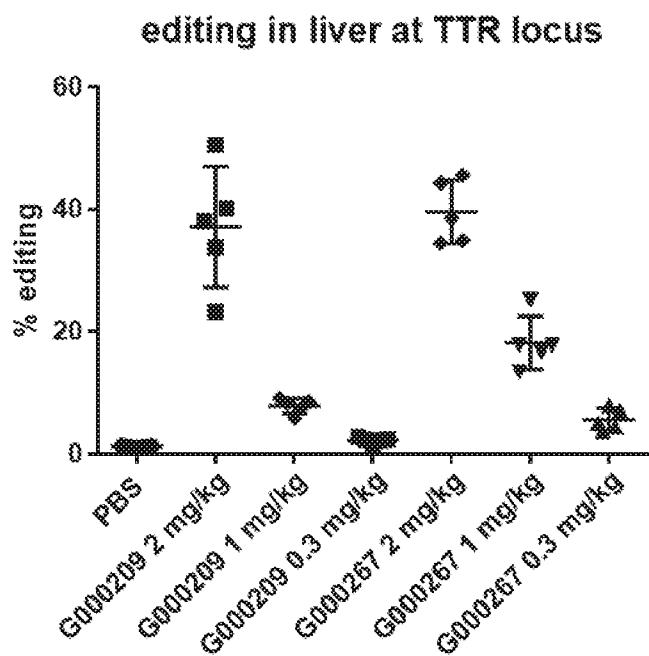
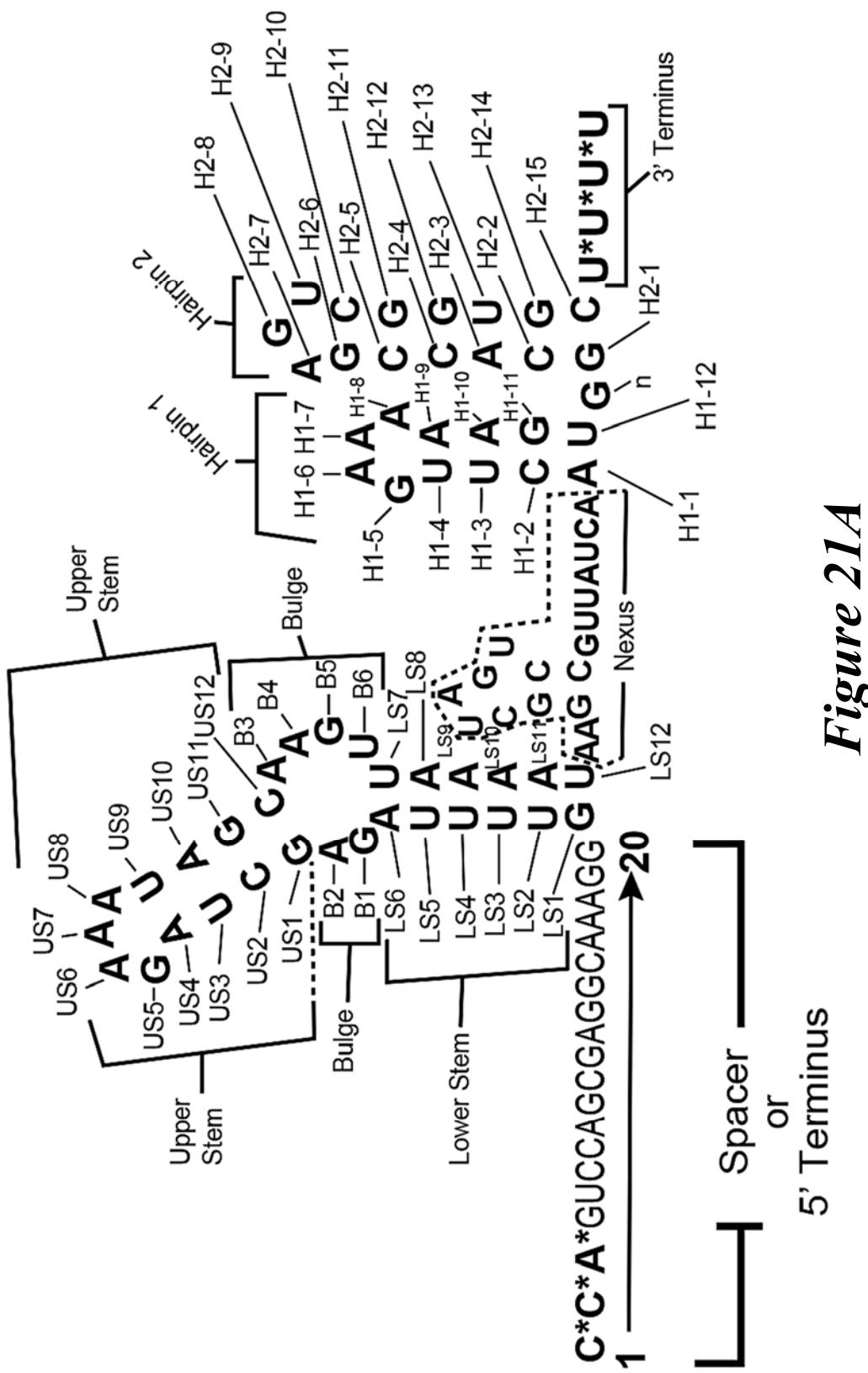


Figure 19B


28 / 41


Figure 19C


Figure 19D

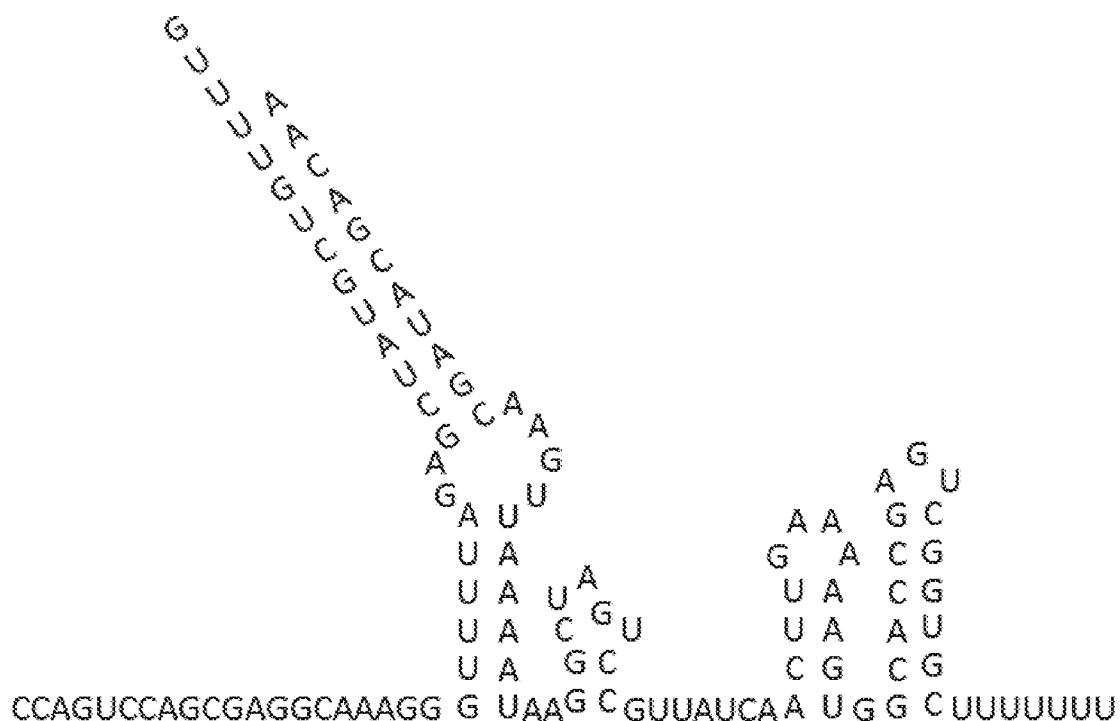


Figure 20A

Figure 20B

Figure 21A

Figure 21B

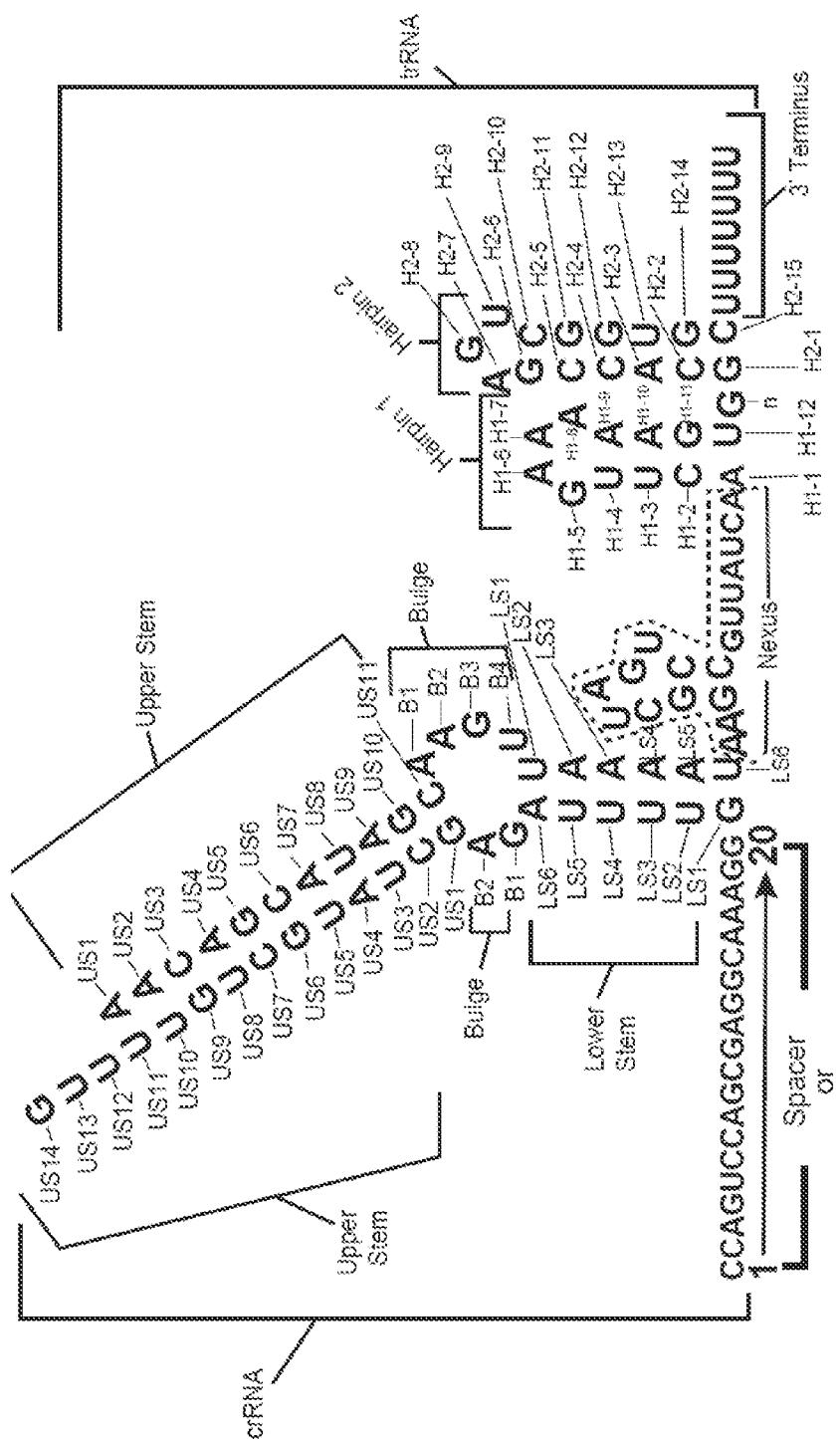
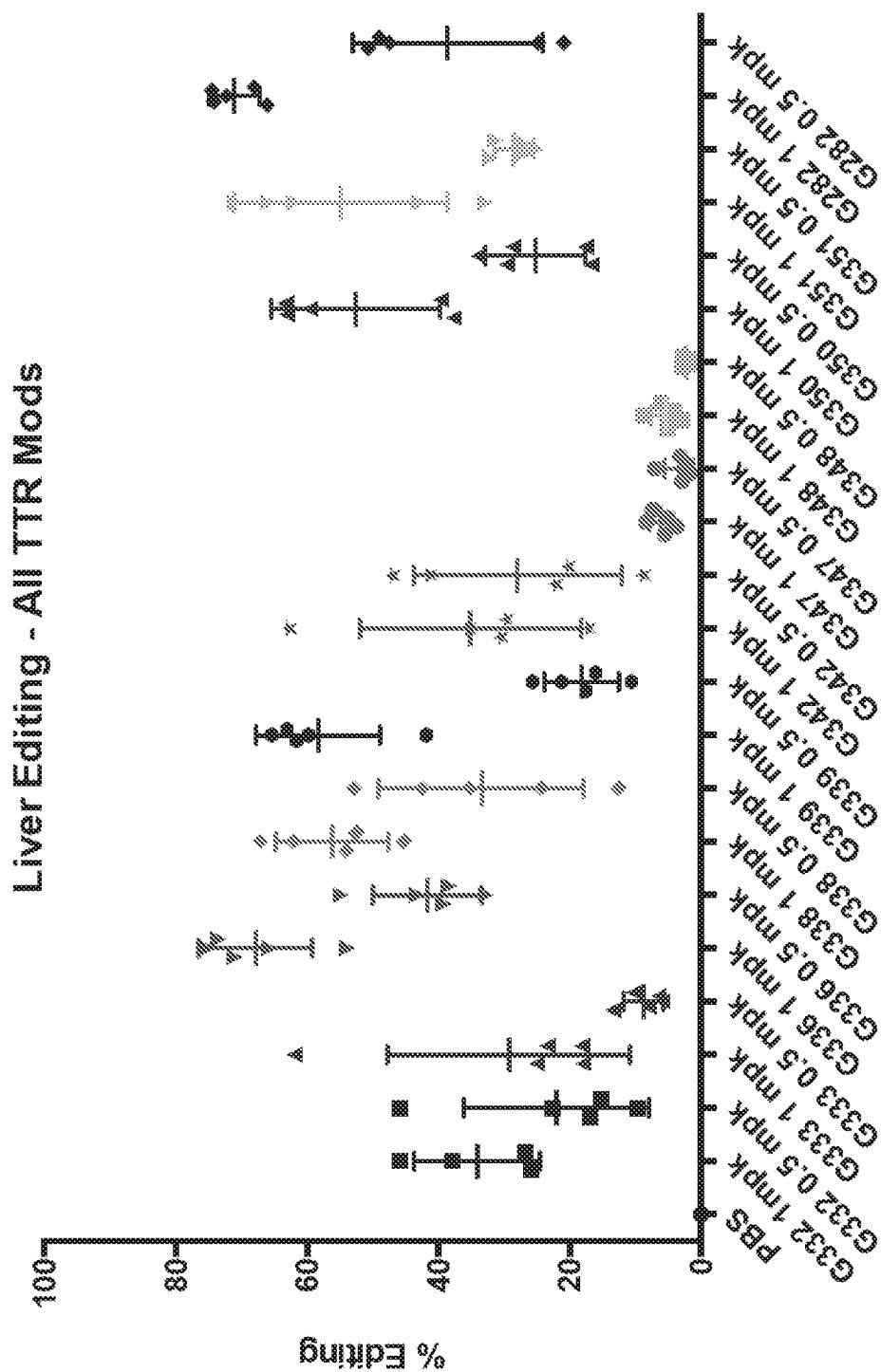
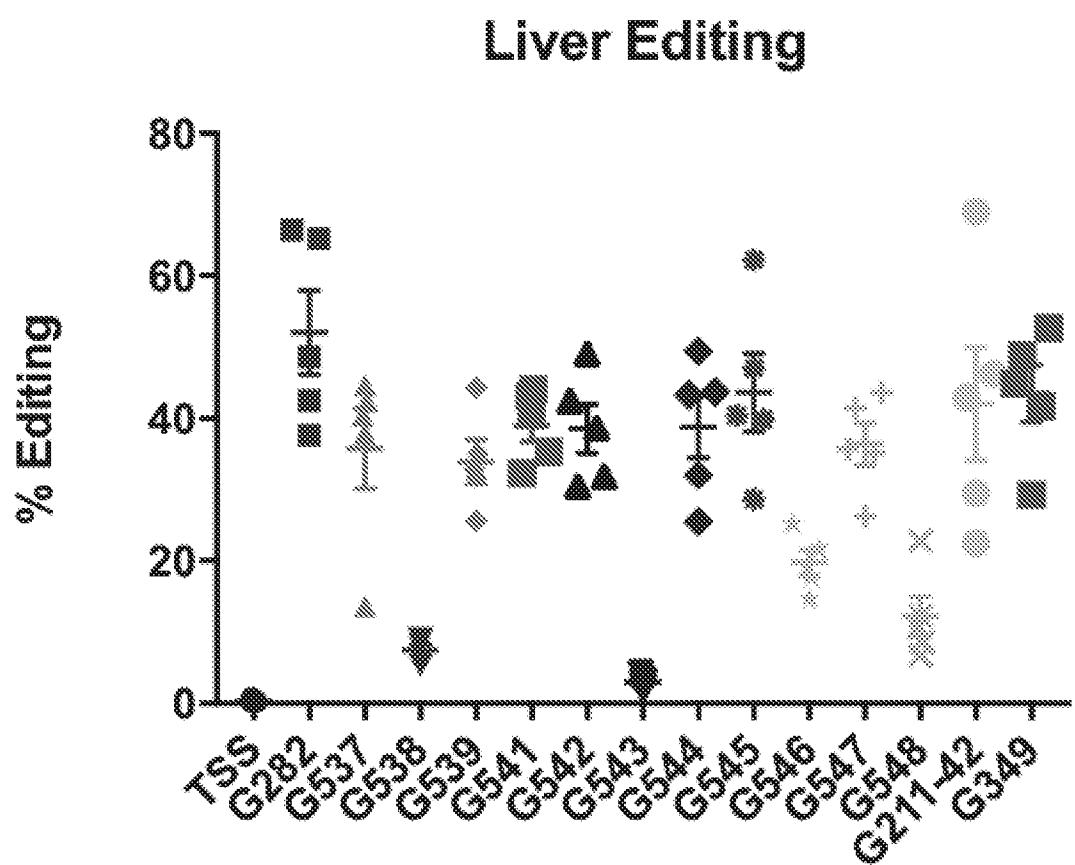


Figure 21C

33 / 41




Figure 22A

Group	Average % Editing	Std. Dev.
PBS	0	0
G332 1mpk	34.14	9.575
G332 0.5 mpk	22.08	14.13
G333 1 mpk	29.28	18.53
G333 0.5 mpk	8.801	3.082
G336 1 mpk	67.92	8.609
G336 0.5 mpk	41.72	8.277
G338 1 mpk	56.25	8.561
G338 0.5 mpk	33.48	15.63
G339 1 mpk	58.36	9.444
G339 0.5 mpk	18.23	5.654
G342 1 mpk	35.12	16.84
G342 0.5 mpk	27.94	15.83
G347 1 mpk	6.073	1.825
G347 0.5 mpk	3.399	2.13
G348 1 mpk	5.464	2.171
G348 0.5 mpk	2.333	0.448
G350 1 mpk	52.66	12.88
G350 0.5 mpk	25.27	7.695
G351 1 mpk	54.94	16.24
G351 0.5 mpk	28.52	3.014
G282 1 mpk	71.08	3.789
G282 0.5 mpk	38.6	14.45

Figure 22B

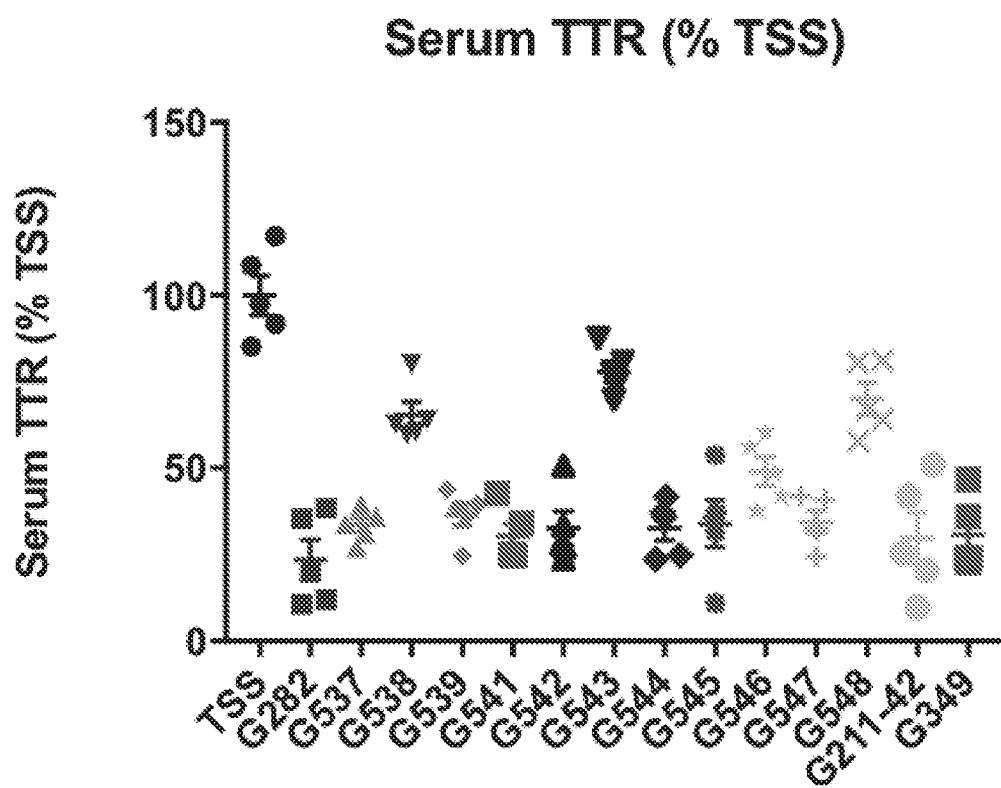

Figure 22C

Figure 23A

Guide	Average % Editing
TSS	0.32
G282	52.06
G537	35.78
G538	7.5
G539	33.9
G541	39.04
G542	38.54
G543	2.96
G544	38.78
G545	43.6
G546	19.74
G547	36.44
G548	12.2
G211-42	42.04
G349	43.48

Figure 23B

Figure 23C

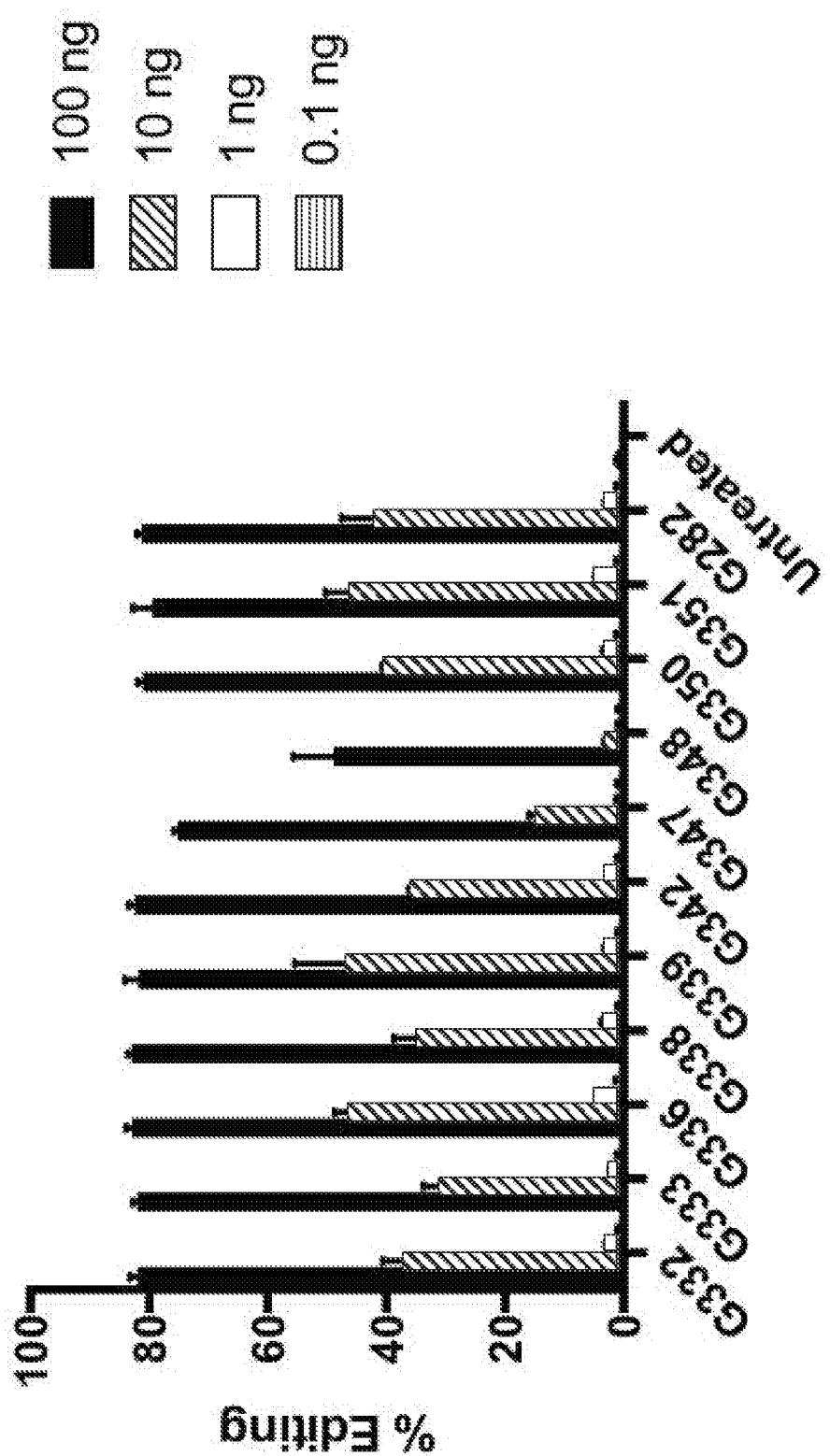
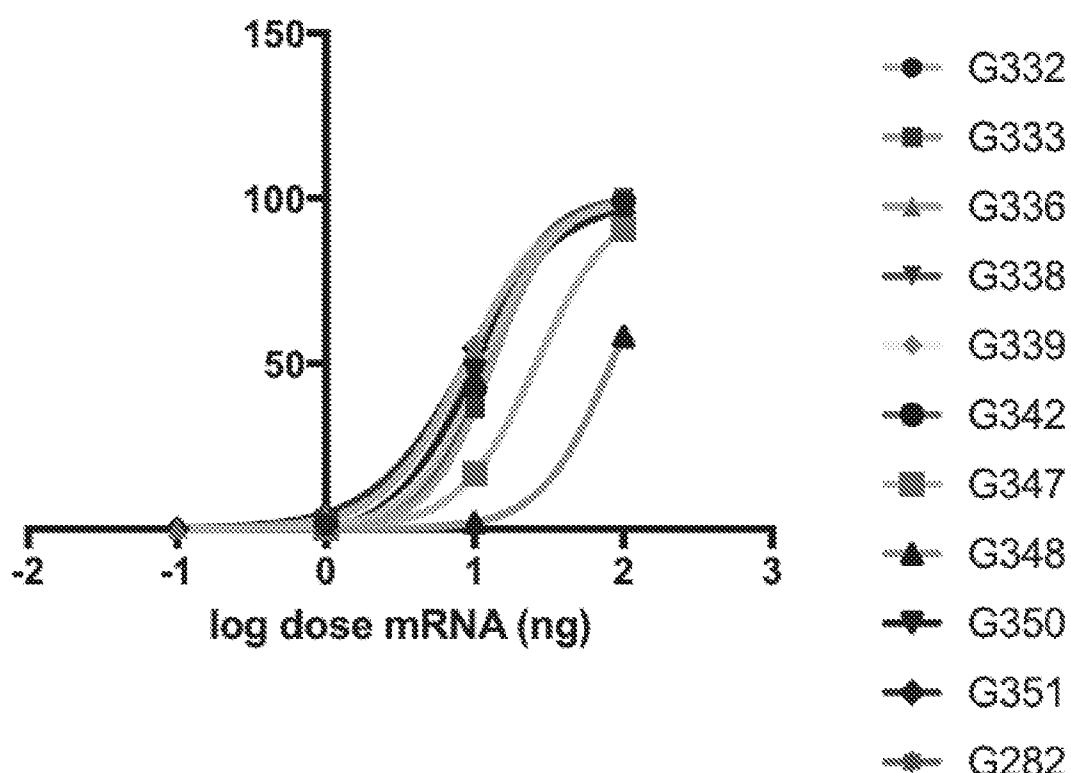



Figure 244

Normalize of Transform of EC50 Calcs

Figure 24B

GUIDE	EC50
G332	11.42
G333	13.07
G336	8.735
G338	11.80
G339	8.778
G342	11.60
G347	26.07
G348	83.09
G350	10.57
G351	8.797
G282	10.04

Figure 24C

01155-0004-00PCT_SeqList (2).txt
SEQUENCE LISTING

<110> INTELLIA THERAPEUTICS, INC.

<120> MODIFIED GUIDE RNAs

<130> 01155-0004-00PCT

<140>

<141>

<150> 62/431,756

<151> 2016-12-08

<160> 360

<170> PatentIn version 3.5

<210> 1

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 1

ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 2

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 2

ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 3

<211> 42

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 3
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 4
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 4
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 5
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 5
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 6
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

01155-0004-00PCT_SeqList (2).txt

oligonucleotide"

<400> 6

ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 7

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 7

ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 8

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 8

ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 9

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 9

ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

01155-0004-00PCT_SeqList (2).txt

<210> 10
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 10
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 11
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 11
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 12
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 12
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 13
<211> 42
<212> RNA
<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 13
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 14
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 14
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 15
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 15
ccaguccagc gaggcaaagg ggcgagagc uaugcuguuu ug

42

<210> 16
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 16
ccaguccagc gaggcaaagg guuuuagagc uaugcuggcg cg

42

01155-0004-00PCT_SeqList (2).txt

<210> 17
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 17
ccaguccagc gaggcaaagg ggcgagac uaugcuggcg cg 42

<210> 18
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 18
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 19
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 19
guuuuagagc uaugcuguuu ug 22

<210> 20
<211> 22
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 20
guuuuagagc uaugcuguuu ug

22

<210> 21
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 21
guuuuagagc uaugcuguuu ug

22

<210> 22
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 22
guuuuagagc uaugcuguuu ug

22

<210> 23
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

01155-0004-00PCT_SeqList (2).txt

<400> 23
guuuuagagc uaugcuguuu ug 22

<210> 24
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 24
guuuuagagc uaugcuguuu ug 22

<210> 25
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 25
guuuuagagc uaugcuguuu ug 22

<210> 26
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 26
guuuuagagc uaugcuguuu ug 22

<210> 27
<211> 22

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 27
guuuuagagc uaugcuguuu ug

22

<210> 28
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 28
guuuuagagc uaugcuguuu ug

22

<210> 29
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 29
guuuuagagc uaugcuguuu ug

22

<210> 30
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

01155-0004-00PCT_SeqList (2).txt

oligonucleotide"

<400> 30
guuuuagagc uaugcuguuu ug 22

<210> 31
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 31
guuuuagagc uaugcuguuu ug 22

<210> 32
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 32
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 33
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 33
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

01155-0004-00PCT_SeqList (2).txt

<210> 34
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 34
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 35
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 35
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 36
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 36
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 37
<211> 42
<212> RNA
<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 37
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 38
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 38
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 39
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 39
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 40
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 40
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

01155-0004-00PCT_SeqList (2).txt

<210> 41
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 41
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 42
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 42
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 43
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 43
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 44
<211> 42
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 44
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 45
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 45
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 46
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 46
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug

42

<210> 47
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

01155-0004-00PCT_SeqList (2).txt

<400> 47
ccaguccagc gaggcaaagg guuuuagagc uaugcuguuu ug 42

<210> 48
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 48
ccaguccagc gaggcaaagg gucucagagc uaugcuguuu ug 42

<210> 49
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 49
ccaguccagc gaggcaaagg gcuuuagagc uaugcuguuu ug 42

<210> 50
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 50
ccaguccagc gaggcaaagg gucuuuagagc uaugcuguuu ug 42

<210> 51
<211> 42

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 51
ccaguccagc gaggcaaagg guucuagagc uaugcuguuu ug

42

<210> 52
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 52
ccaguccagc gaggcaaagg guuucagagc uaugcuguuu ug

42

<210> 53
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 53
guuuuagagc uaugcuguuu ug

22

<210> 54
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

oligonucleotide"

<400> 54

guuuuagagc uaugcuguuu ug

22

<210> 55

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 55

guuuuagagc uaugcuguuu ug

22

<210> 56

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 56

guuuuagagc uaugcuguuu ug

22

<210> 57

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 57

guuuuagagc uaugcuguuu ug

22

01155-0004-00PCT_SeqList (2).txt

<210> 58
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 58
guuuuagagc uaugcuguuu ug 22

<210> 59
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 59
guuuuagagc uaugcuguuu ug 22

<210> 60
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 60
guuuuagagc uaugcuguuu ug 22

<210> 61
<211> 22
<212> RNA
<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 61
guuuuagagc uaugcuguuu ug

22

<210> 62
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 62
guuuuagagc uaugcuguuu ug

22

<210> 63
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 63
guuuuagagc uaugcuguuu ug

22

<210> 64
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 64
guuuuagagc uaugcuguuu ug

22

01155-0004-00PCT_SeqList (2).txt

<210> 65
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 65
guuuuagagc uaugcuguuu ug 22

<210> 66
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 66
guuuuagagc uaugcuguuu ug 22

<210> 67
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 67
guuuuagagc uaugcuguuu ug 22

<210> 68
<211> 22
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 68
guuuuagagc uaugcuguuu ug

22

<210> 69
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 69
gucucagagc uaugcuguuu ug

22

<210> 70
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 70
gcuuuagagc uaugcuguuu ug

22

<210> 71
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

01155-0004-00PCT_SeqList (2).txt

<400> 71
gucuuagagc uaugcuguuu ug 22

<210> 72
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 72
guucuagagc uaugcuguuu ug 22

<210> 73
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 73
guuucagagc uaugcuguuu ug 22

<210> 74
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 74
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 75
<211> 42

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 75
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 76
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 76
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 77
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 77
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 78
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

01155-0004-00PCT_SeqList (2).txt

oligonucleotide"

<400> 78

uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 79

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 79

uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 80

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 80

uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 81

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 81

uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

01155-0004-00PCT_SeqList (2).txt

<210> 82
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 82
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 83
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 83
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 84
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 84
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 85
<211> 42
<212> RNA
<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 85
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 86
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 86
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 87
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 87
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 88
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 88
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

01155-0004-00PCT_SeqList (2).txt

<210> 89
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 89
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 90
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 90
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 91
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 91
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 92
<211> 42
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 92
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 93
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 93
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 94
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 94
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug

42

<210> 95
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

01155-0004-00PCT_SeqList (2).txt

<400> 95
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 96
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 96
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 97
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 97
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 98
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 98
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 99
<211> 42

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 99
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 100
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 100
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 101
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 101
uuacagccac gucuacagca guuuuagagc uaugcuguuu ug 42

<210> 102
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

01155-0004-00PCT_SeqList (2).txt

oligonucleotide"

<400> 102
uuacagccac gucuacagca ggcgagac uaugcuguu ug 42

<210> 103
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 103
uuacagccac gucuacagca guuuuagagc uaugcuggcg cg 42

<210> 104
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 104
guuuuagagc uaugcuguu ug 22

<210> 105
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 105
guuuuagagc uaugcuguu ug 22

01155-0004-00PCT_SeqList (2).txt

<210> 106
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 106
guuuuagagc uaugcuguuu ug 22

<210> 107
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 107
guuuuagagc uaugcuguuu ug 22

<210> 108
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 108
guuuuagagc uaugcuguuu ug 22

<210> 109
<211> 22
<212> RNA
<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 109
guuuuagagc uaugcuguuu ug

22

<210> 110
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 110
guuuuagagc uaugcuguuu ug

22

<210> 111
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 111
guuuuagagc uaugcuguuu ug

22

<210> 112
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 112
guuuuagagc uaugcuguuu ug

22

01155-0004-00PCT_SeqList (2).txt

<210> 113
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 113
guuuuagagc uaugcuguuu ug 22

<210> 114
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 114
guuuuagagc uaugcuguuu ug 22

<210> 115
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 115
guuuuagagc uaugcuguuu ug 22

<210> 116
<211> 22
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 116
guuuuagagc uaugcuguuu ug

22

<210> 117
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 117
guuuuagagc uaugcuguuu ug

22

<210> 118
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 118
guuuuagagc uaugcuguuu ug

22

<210> 119
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

01155-0004-00PCT_SeqList (2).txt

<400> 119
guuuuagagc uaugcuguuu ug 22

<210> 120
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 120
guuuuagagc uaugcuguuu ug 22

<210> 121
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 121
guuuuagagc uaugcuguuu ug 22

<210> 122
<211> 16
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 122
gagcuaugcu guuuug 16

<210> 123
<211> 16

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 123
gagcuaugcu guuuug

16

<210> 124
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 124
guuuuagagc uaugcuguuu ug

22

<210> 125
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 125
guuuuagagc uaugcuguuu ug

22

<210> 126
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

01155-0004-00PCT_SeqList (2).txt

oligonucleotide"

<400> 126

guuuuagagc uaugcuguuu ug

22

<210> 127

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 127

guuuuagagc uaugcuguuu ug

22

<210> 128

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 128

guuuuagagc uaugcuguuu ug

22

<210> 129

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 129

guuuuagagc uaugcuguuu ug

22

01155-0004-00PCT_SeqList (2).txt

<210> 130
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 130
guuuuagagc uaugcuguuu ug 22

<210> 131
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 131
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 132
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 132
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 133
<211> 42
<212> RNA
<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 133
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 134
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 134
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 135
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 135
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 136
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 136
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

01155-0004-00PCT_SeqList (2).txt

<210> 137
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 137
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 138
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 138
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 139
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 139
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 140
<211> 42
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 140
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 141
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 141
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 142
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 142
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 143
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

01155-0004-00PCT_SeqList (2).txt

<400> 143
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 144
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 144
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 145
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 145
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 146
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 146
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug 42

<210> 147
<211> 42

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 147
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 148
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 148
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 149
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 149
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 150
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

01155-0004-00PCT_SeqList (2).txt

oligonucleotide"

<400> 150

cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 151

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 151

cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 152

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 152

cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 153

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 153

cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

01155-0004-00PCT_SeqList (2).txt

<210> 154

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 154

cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 155

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 155

cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 156

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 156

cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 157

<211> 42

<212> RNA

<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 157
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 158
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 158
cagggcucuu gaagaucucc guuuuagagc uaugcuguuu ug

42

<210> 159
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 159
cagggcucuu gaagaucucc ggcgcagagc uaugcuguuu ug

42

<210> 160
<211> 42
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 160
cagggcucuu gaagaucucc guuuuagagc uaugcuggcg cg

42

01155-0004-00PCT_SeqList (2).txt

<210> 161
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 161
guuuuagagc uaugcuguuu ug 22

<210> 162
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 162
guuuuagagc uaugcuguuu ug 22

<210> 163
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 163
guuuuagagc uaugcuguuu ug 22

<210> 164
<211> 22
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 164
guuuuagagc uaugcuguuu ug

22

<210> 165
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 165
guuuuagagc uaugcuguuu ug

22

<210> 166
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 166
guuuuagagc uaugcuguuu ug

22

<210> 167
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

01155-0004-00PCT_SeqList (2).txt

<400> 167
guuuuagagc uaugcuguuu ug 22

<210> 168
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 168
guuuuagagc uaugcuguuu ug 22

<210> 169
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 169
guuuuagagc uaugcuguuu ug 22

<210> 170
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 170
guuuuagagc uaugcuguuu ug 22

<210> 171
<211> 22

01155-0004-00PCT_SeqList (2).txt

<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 171
guuuuagagc uaugcuguuu ug

22

<210> 172
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 172
guuuuagagc uaugcuguuu ug

22

<210> 173
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 173
guuuuagagc uaugcuguuu ug

22

<210> 174
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

oligonucleotide"

<400> 174

guuuuagagc uaugcuguuu ug

22

<210> 175

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 175

guuuuagagc uaugcuguuu ug

22

<210> 176

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 176

guuuuagagc uaugcuguuu ug

22

<210> 177

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 177

guuuuagagc uaugcuguuu ug

22

01155-0004-00PCT_SeqList (2).txt

<210> 178
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 178
guuuuagagc uaugcuguuu ug 22

<210> 179
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 179
guuuuagagc uaugcuguuu ug 22

<210> 180
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 180
guuuuagagc uaugcuguuu ug 22

<210> 181
<211> 22
<212> RNA
<213> Artificial Sequence

<220>

01155-0004-00PCT_SeqList (2).txt

<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 181
guuuuagagc uaugcuguuu ug

22

<210> 182
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 182
guuuuagagc uaugcuguuu ug

22

<210> 183
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 183
guuuuagagc uaugcuguuu ug

22

<210> 184
<211> 22
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 184
guuuuagagc uaugcuguuu ug

22

01155-0004-00PCT_SeqList (2).txt

<210> 185

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 185

guuuuagagc uaugcuguuu ug

22

<210> 186

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 186

guuuuagagc uaugcuguuu ug

22

<210> 187

<211> 22

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 187

guuuuagagc uaugcuguuu ug

22

<210> 188

<211> 74

<212> RNA

<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 188
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu uuuu 74

<210> 189
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 189
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 190
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 190
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 191
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 191
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 192
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 192
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 193
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 193
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 194
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 194
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 195
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 195
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 196
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 196
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 197
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 197
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 198
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 198
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 199
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 199
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 200
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 200
aacagcauag caaguuaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 201
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 201
aacagcauag caaguugcgc uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 202
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 202
gccagcauag caaguuaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 203
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 203
gccagcauag caaguugcgc uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 204
<211> 74
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 204
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu uuuu 74

<210> 205
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 205
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 206
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 206
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 207
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 207
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 208
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 208
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 209
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 209
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 210
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 210
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 211
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 211
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 212
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 212
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 213
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 213
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 214
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 214
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 215
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 215
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 216
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 216
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 217
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 217
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 218
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 218
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 219
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 219
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 220
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
oligonucleotide"

<400> 220
aacagcauag caaguaaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 221
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 221
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 222
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 222
aacagcauag caaguuaaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 223
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 223
aacagcauag caaguugaga uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 224
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 224
aacagcauag caaguuaaaag uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 225
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 225
aacagcauag caaguuaaga uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 226
<211> 71
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 226
aacagcauag caaguuagaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 227
<211> 71
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 227
aacagcauag caaguugaaa uaaggcuagu ccguuaucaa cuugaaaaag uggcaccgag 60
ucggugcuuu u 71

<210> 228
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 228
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 229
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 229
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 230
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 230
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 231
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 231
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 232
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 232
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 233
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 233
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 234
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 234
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 235
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 235
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaaucaac uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 236
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 236
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 237
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 237
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 238
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 238
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 239
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 239
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 240
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 240
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 241
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 241
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 242
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 242
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 243
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 243
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 244
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 244
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 245
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 245
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 246
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 246
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 247
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 247
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 248
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 248
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 249
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 249
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 250
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 250
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 251
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 251
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 252
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 252
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 253
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 253
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 254
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 254
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 255
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 255
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 256
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 256
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 257
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 257
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 258
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 258
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 259
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 259
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 260
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 260
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 261
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 261
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 262
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 262
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 263
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 263
uuacagccac gucuacagca guuuuagagc uagaaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 264
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 264
uuacagccac gucuacagca guuuuagagc uagaaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 265
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 265
guuuuagagc uagaaaauagc aaguuaaaau aaggcuaguc cguuaaucaac uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 266
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 266
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 267
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 267
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 268
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 268
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 269
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 269
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 270
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 270
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 271
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 271
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 272
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 272
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 273
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 273
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 274
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 274
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 275
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 275
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 276
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 276
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 277
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 277
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 278
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 278
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 279
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 279
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 280
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 280
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 281
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 281
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 282
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 282
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 283
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 283
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 284
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 284
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 285
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 285
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 286
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 286
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 287
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 287
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 288
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 288
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 289
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 289
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 290
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 290
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 291
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 291
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 292
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 292
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 293
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 293
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 294
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 294
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 295
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 295
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 296
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 296
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 297
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 297
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 298
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 298
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 299
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 299
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 300
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 300
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 301
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 301
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 302
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 302
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 303
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 303
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 304
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 304
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 305
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 305
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 306
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 306
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 307
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 307
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 308
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 308
cagggcucuu gaagaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 309
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 309
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaaucaac uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 310
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 310
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaaucaac uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 311
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 311
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 312
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 312
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 313
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 313
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 314
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 314
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 315
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 315
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 316
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 316
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 317
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 317
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 318
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 318
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 319
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 319
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 320
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 320
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 321
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 321
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 322
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 322
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 323
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 323
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 324
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 324
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 325
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 325
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 326
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 326
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 327
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 327
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 328
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 328
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 329
<211> 80
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic oligonucleotide"

<400> 329
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucAAC uugaaaaagu 60
ggcacccgagu cggugcuuuu 80

<210> 330
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 330
cccauacucc uacagcacca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcacccgagu cggugcuuuu 100

<210> 331
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 331
cccauacucc uacagcacca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcacccgagu cggugcuuuu 100

<210> 332
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 332
cccauacucc uacagcacca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 333
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic primer"

<400> 333
agtcaataat cagaatcagc aggt 24

<210> 334
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic primer"

<400> 334
gttttgttcc agagtctatc accg 24

<210> 335
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic

01155-0004-00PCT_SeqList (2).txt

primer"

<400> 335
attaccagct tagcatcctg tgaa

24

<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
primer"

<400> 336
agcacatgag actttctgtt tctc

24

<210> 337
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
primer"

<400> 337
agaaggcact tcttctttat ctaaggt

27

<210> 338
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic
primer"

<400> 338
acacgaataa gagcaaatgg gaac

24

01155-0004-00PCT_SeqList (2).txt

<210> 339
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic primer"

<400> 339
acacgggtta tagagcaaga acac 24

<210> 340
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic primer"

<400> 340
gacataggtg tgaccctcac aatc 24

<210> 341
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 341
ccaguccagc gaggcaaagg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 342
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 342
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 343
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 343
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 344
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 344
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 345
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 345
uuacagccac gucuacagca guuuuagagc uagaaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 346
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 346
uuacagccac gucuacagca guuuuagagc uagaaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 347
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 347
uuacagccac gucuacagca guuuuagagc uagaaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 348
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 348
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 349
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 349
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 350
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 350
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 351
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 351
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 352
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 352
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 353
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 353
uuacagccac gucuacagca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 354
<211> 100
<212> RNA
<213> Artificial Sequence

01155-0004-00PCT_SeqList (2).txt

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<220>
<221> misc_feature
<222> (1)..(20)
<223> n is a, c, g, or u

<400> 354
nnnnnnnnnn nnnnnnnnnn guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 355
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 355
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

<210> 356
<211> 80
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<400> 356
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu 60
ggcaccgagu cggugcuuuu 80

01155-0004-00PCT_SeqList (2).txt

<210> 357
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<220>
<221> misc_feature
<222> (1)..(20)
<223> n is a, c, g, or u

<400> 357
nnnnnnnnnn nnnnnnnnnn guuuuagagc uagaaaauagc aaguuaaaaau aaggcuaguc 60
cguuaucAAC uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 358
<211> 100
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: Synthetic polynucleotide"

<220>
<221> modified_base
<222> (1)..(3)
<223> 2'-O-Me modified nucleotides

<220>
<221> misc_feature
<222> (1)..(2)
<223> Phosphorothioate linkage

<220>
<221> modified_base
<222> (1)..(20)

01155-0004-00PCT_SeqList (2).txt

<223> N = any nucleotide

<220>

<221> misc_feature

<222> (2)..(3)

<223> Phosphorothioate linkage

<220>

<221> misc_feature

<222> (3)..(4)

<223> Phosphorothioate linkage

<220>

<221> misc_feature

<222> (5)..(20)

<223> n is a, c, g, or u

<220>

<221> modified_base

<222> (29)..(40)

<223> 2'-O-Me modified nucleotides

<220>

<221> modified_base

<222> (69)..(100)

<223> 2'-O-Me modified nucleotides

<220>

<221> misc_feature

<222> (97)..(98)

<223> Phosphorothioate linkage

<220>

<221> misc_feature

<222> (98)..(99)

<223> Phosphorothioate linkage

<220>

<221> misc_feature

<222> (99)..(100)

<223> Phosphorothioate linkage

<400> 358

nnnnnnnnnn nnnnnnnnnn guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc

60

cguuaucAAC uugaaaaagu ggcaccgagu cggugcuuuu

100

01155-0004-00PCT_SeqList (2).txt

<210> 359
<211> 4514
<212> RNA
<213> Artificial Sequence

<220>
<221> source
<223> /note="Description of Artificial Sequence: mRNA transcript"

<400> 359
gggucccgca gucggcgucc agcggcucug cuuguucgug ugugugucgu ugcaggccuu 60
auucggaucc auggauaaga aguacucaaau cgggcuggau aucggaacua auuccguggg 120
uugggcagug aucacggaug aauacaaagu gccguccaag aaguucaagg uccuggggaa 180
caccgauaga cacagcauca agaaaaaunu caucggagcc cugcuguuug acuccggcga 240
aaccgcagaa gcgacccggc ucaaacguac cgcgaggcga cgcuacaccc ggcggaagaa 300
ucgcaucugc uaucugcaag agaucuuuuc gaacgaaaug gcaaaggucg acgacagcuu 360
cuuccaccgc cuggaagaaau cuuuccuggu ggaggaggac aagaagcaug aacggcaucc 420
uaucuuugga aacaucgucg acgaaguggc guaccacgaa aaguacccga ccaucuacca 480
ucugcggaaag aaguugguug acucaacuga caaggccgac cucagauuga ucuacuuggc 540
ccucgccc au gaucaaaau uccgcccaca cuuccugauc gaaggcgauc ugaacccuga 600
uaacuccgac guggauaagc uuuucauuca acuggugcag accuacaacc aacuguucga 660
agaaaaacca aucaaugcua gcggcguucga ugccaaggcc auccuguccg cccggcuguc 720
gaagucgcgg cgccucgaaa accugaucgc acagcugccg ggagagaaaa agaacggacu 780
uuucggcaac uugaucgcuc ucucacuggg acucacuucc aauuucaagu ccauuuuuga 840
ccuggccgag gacgcgaagc ugcaacucuc aaaggacacc uacgacgacg acuuggacaa 900
uuugcuggca caaaauuggcg aucaguacgc ggaucuguuc cuugccgcua agaaccuuuc 960
ggacgcgauc uugcuguccg auauccugcg cgugaacacc gaaaauacca aagcggcgcu 1020
uagcgccucg augauuaagc gguacgcacga gcaucaccag gaucucacgc ugcucaaagc 1080
gcucgugaga cagcaacugc cugaaaagua caaggagauc uucuucgacc aguccaagaa 1140

01155-0004-00PCT_SeqList (2).txt

uggguacgca	ggguacaucg	auggaggcgc	uagccagggaa	gaguucuaua	aguucaucaa	1200
gccaauccug	gaaaagaugg	acggaaccga	agaacugcug	gucaagcuga	acagggagga	1260
ucugcuccgg	aaacagagaa	ccuuugacaa	cggauccauu	ccccaccaga	uccaucuggg	1320
ugagcugcac	gccaucuugc	ggcgccagga	ggacuuuuac	ccauuccuca	aggacaaccg	1380
ggaaaagauc	gagaaaaauuc	ugacguuccg	caucccguau	uacgugggccc	cacuggcgcg	1440
cggcaauucg	cgcuucgcgu	ggaugacuag	aaaaucagag	gaaaccauca	cuccuuggaa	1500
uuucgagggaa	guuguggaaua	agggagcuuc	ggcacaaagc	uucaucgaac	gaaugaccaa	1560
cuucgacaag	aaucucccaa	acgagaaggu	gcuuccuaag	cacagccucc	uuuacgaaua	1620
cuucacuguc	uacaacgaac	ugacuaaagu	gaaauacguu	acugaaggaa	ugaggaagcc	1680
ggccuuucug	uccggagaac	agaagaaagc	aauugucgau	cugcuguuca	agaccaaccg	1740
caaggugacc	gucaaggcagc	uuaaagagga	cuacuucaag	aagaucgagu	guuucgacuc	1800
aguggaaauc	agcggggugg	aggacagauu	caacgcuucg	cugggaaccu	aucaugaucu	1860
ccugaagauc	aucaaggaca	aggaciuuccu	ugacaacgag	gagaacgagg	acauccugga	1920
agauaucguc	cugaccuuga	ccuuuuucga	ggaucgcgag	augaucgagg	agagccuuaa	1980
gaccuacgcu	caucucuucg	acgauaaggu	caugaaacaa	cucaagcgcc	gccgguacac	2040
ugguuggggc	cgcucucccc	gcaagcugau	caacgguaau	cgcgauaaac	agagccguaa	2100
aacuauccug	gauuuccuca	aaucggauugg	cuucgcuaau	cguacuuca	ugcaauugau	2160
ccacgacgac	agccugaccu	uuaaggagga	cauccaaaaaa	gcacaagugu	ccggacaggg	2220
agacucacuc	caugaacaca	ucgcgaauu	ggccgguuucg	ccggcgauua	agaagggaau	2280
ucugcaaacu	gugaaggugg	ucgacgagcu	ggugaagguc	augggacggc	acaaaccgga	2340
gaauaucgug	auugaaaugg	cccgagaaaaa	ccagacuacc	cagaagggcc	agaaaaacuc	2400
ccgcgaaagg	augaagcgga	ucgaagaagg	aaucaaggag	cugggcagcc	agauccugaa	2460
agagcacccg	guggaaaaca	cgcagcugca	gaacgagaag	cucuaccugu	acuauuugca	2520
aaauggacgg	gacauguacg	uggaccaaga	gcuggacauc	aaucgguugu	cugauuacga	2580

01155-0004-00PCT_SeqList (2).txt

cguggaccac	aucguuccac	aguccuuucu	gaaggaugac	ucgaucgaua	acaagguguu	2640
gacucgcagc	gacaagaaca	gagggaaaguc	agauaaugug	ccaucggagg	aggucgugaa	2700
gaagaugaag	aauuacuggc	ggcagcuccu	gaaugcgaag	cugauuaccc	agagaaaaguu	2760
ugacaaucuc	acuaaaagccg	agcgccggcg	acucucagag	cuggauaagg	cuggauucau	2820
caaacggcag	cuggucgaga	cucggcagau	uaccaagcac	guggcgcaga	ucuuggacuc	2880
ccgcaugaac	acuaaaauacg	acgagaacga	uaagcucauc	cggaaaguga	aggugauuac	2940
ccugaaaagc	aaacuugugu	cggacuuucg	gaaggacuuu	caguuuuaca	aagugagaga	3000
aaucaacaac	uaccaucacg	cgcaugacgc	auaccucaac	gcuguggucg	guaccgccc	3060
gaucaaaaag	uacccuaaac	uugaaucgga	guuuguguac	ggagacuaca	aggucuacga	3120
cgugaggaag	augauagcca	aguccgaaca	ggaaaucggg	aaagcaacug	cggaaauacuu	3180
cuuuuacuca	aacaucauga	acuuuuucaa	gacugaaauu	acgcuggcca	auggagaaaau	3240
caggaagagg	ccacugaucg	aaacuaacgg	agaaaacgggc	gaaaucgugu	gggacaaggg	3300
cagggacuuc	gcaacuguuc	gcaaagugcu	cucuaugccg	caagucaaaua	uugugaagaa	3360
aaccgaagug	caaaccggcg	gauuuucaaa	ggaaucgauc	cucccaaaga	gaaaauagcga	3420
caagcucauu	gcacgcaaga	aagacuggga	cccgaagaag	uacggaggau	ucgauucgccc	3480
gacugucgca	uacuccgucc	ucgugguggc	caagguggag	aagggaaaga	gcggaaauacu	3540
caaauccguc	aaagagcugc	uggggauuac	caucauggaa	cgauccucgu	ucgagaagaa	3600
cccgauugau	uuccucgagg	cgaaggguua	caaggaggug	aagaaggauc	ugaucaucaa	3660
acuccccaag	uacucacugu	ucgaacugga	aaauggucgg	aagcgcaugc	uggcuucggc	3720
cggagaacuc	caaaaaggaa	augagcuggc	cuugccuagc	aaguacguca	acuuccucua	3780
ucuugcuucg	cacuacgaaa	aacucaaagg	gucaccggaa	gauaacgaac	agaaggcagcu	3840
uuucguggag	cagcacaagc	auuaucugga	ugaaaucauc	gaacaaaucu	ccgaguuuuc	3900
aaagcgcgug	auccucgccc	acgccaaccu	cgacaaaguc	cugucggccu	acaauuaagca	3960
uagagauaag	ccgaucagag	aacaggccga	gaacauuauc	cacuuguuca	cccugacuaa	4020

01155-0004-00PCT_SeqList (2).txt

ccugggagcc	ccagccgccu	ucaaguacuu	cgauacuacu	aucgaucgca	aaagauacac	4080
guccaccaag	gaaguucugg	acgcgacccu	gauccaccaa	agcaucacug	gacucuacga	4140
aacuaggauc	gaucugucgc	agcugggugg	cgauggcggu	ggaucuccga	aaaagaagag	4200
aaagguguaa	ugagcuagcc	aucacauuuu	aaagcaucuc	agccuaccau	gagaauuaaga	4260
gaaagaaaaau	gaagaucaau	agcuuauuca	ucucuuuuuc	uuuuucguug	guguaaagcc	4320
aacacccugu	cuaaaaaaca	uaauuuucuu	uaaucauuuu	gccucuuuuuc	ucugugcuuc	4380
aauuaauaaa	aaauggaaag	aaccucgaga	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	4440
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	4500
aaaaaaaaau	cuag					4514

<210> 360

<211> 4603

<212> RNA

<213> Artificial Sequence

<220>

<221> source

<223> /note="Description of Artificial Sequence: mRNA transcript"

<400> 360

gggucccgca	gucggcgucc	agcggcucug	cuuguucgug	ugugugucgu	ugcaggccuu	60
------------	------------	------------	------------	------------	------------	----

auucggaucc	uggauaaga	aguacucaau	cggcugggau	aucggaacua	auuccguggg	120
------------	-----------	------------	------------	------------	------------	-----

uugggcagug	aucacggaug	aauacaaagu	gccguccaag	aaguucaagg	uccuggggaa	180
------------	------------	------------	------------	------------	------------	-----

caccgauaga	cacagcauca	agaaaaaucu	caucggagcc	cugcuguuug	acuccggcga	240
------------	------------	------------	------------	------------	------------	-----

aaccgcagaa	gcgacccggc	ucaaacguac	cgcgaggcga	cgcuacaccc	ggcggaaagaa	300
------------	------------	------------	------------	------------	-------------	-----

ucgcaucugc	uaucugcaag	agaucuuuuuc	gaacgaaaug	gcaaaggugc	acgacagcuu	360
------------	------------	-------------	------------	------------	------------	-----

cuuccaccgc	cuggaagaau	cuuuccuggu	ggaggaggac	aagaagcaug	aacggcaucc	420
------------	------------	------------	------------	------------	------------	-----

uaucuuugga	aacaucgucg	acgaaguggc	guaccacgaa	aaguacccga	ccaucuacca	480
------------	------------	------------	------------	------------	------------	-----

ucugcggaag	aaguugguug	acucaacuga	caaggccgac	cucagauuga	ucuacuuggc	540
------------	------------	------------	------------	------------	------------	-----

ccucgcccau	augaucaaaau	uccgcggaca	cuuccugauc	gaaggcgauc	ugaacccuga	600
------------	-------------	------------	------------	------------	------------	-----

01155-0004-00PCT_SeqList (2).txt

uaacuccgac	guggauaagc	uuuucauuca	acuggugcag	accuacaacc	aacuguucga	660
agaaaaacca	aucaaugcua	gcggcgucga	ugccaaggcc	auccuguccg	cccgccuguc	720
gaagucgcgg	cgccucgaaa	accugaucgc	acagcugccg	ggagagaaaa	agaacggacu	780
uuucggcaac	uugaucgcuc	ucucacuggg	acucacuccc	aauuuaagu	ccaauuuuga	840
ccuggccgag	gacgcgaagc	ugcaacucuc	aaaggacacc	uacgacgacg	acuuggacaa	900
uuugcuggca	caaauuggcg	aucaguacgc	ggaucuguuuc	cuugccgcua	agaaccuuuc	960
ggacgcaauc	uugcuguccg	auauccugcg	cgugaacacc	gaaauaacca	aagcggccgu	1020
uagcgccucg	augauuaagc	gguacgacga	gcaucaccag	gaucucacgc	ugcucaaagc	1080
gcucgugaga	cagcaacugc	cugaaaagua	caaggagauc	uucuucgacc	aguccaagaa	1140
uggguacgca	ggguacaucg	ugggaggcgc	uagccagggaa	gaguucuaua	aguucaucaa	1200
gccaaucug	gaaaagaugg	acggaaccga	agaacugcug	gucaagcuga	acagggagga	1260
ucugcuccgg	aaacagagaa	ccuuugacaa	cggauccauu	ccccaccaga	uccaucuggg	1320
ugagcugcac	gccaucuugc	ggcgccagga	ggacuuuuac	ccauuccuca	aggacaaccg	1380
ggaaaaagauc	gagaaaaauuc	ugacguuccg	caucccgua	uacguggggcc	cacuggcgcg	1440
cggcaauucg	cgcuucgcgu	ggaugacuag	aaaaucagag	gaaaccauca	cuccuuggaa	1500
uuucgaggaa	guugugggaua	agggagcuuc	ggcacaaagc	uucaucgaac	gaaugaccaa	1560
cuucgacaag	aaucuccaa	acgagaaggu	gcuuccuaag	cacagccucc	uuuacgaaua	1620
cuucacuguc	uacaacgaac	ugacuaaagu	gaaauacguu	acugaaggaa	ugaggaagcc	1680
ggccuuucug	uccggagaac	agaagaaagc	aauugucgau	cugcuguuca	agaccaaccg	1740
caaggugacc	gucaaggcagc	uuaaagagga	cuacuucaag	aagaucgagu	guuuucgacuc	1800
aguggaaauc	agcggggugg	aggacagauu	caacgcuucg	cugggaaccc	aucaugaucu	1860
ccugaagauc	aucaaggaca	aggacuuucc	ugacaacgag	gagaacgagg	acauccugga	1920
agauuaucguc	cugaccuuga	cccuuuucga	ggaucgcgag	augaucgagg	agaggcuuaa	1980
gaccuacgcu	caucucuuucg	acgauaaggu	caugaaacaa	cucaagcgcc	gccgguacac	2040

01155-0004-00PCT_SeqList (2).txt

ugguuggggc cgccucuccc gcaagcugau caacgguauu cgcgauaaac agagcgguaa	2100
aacuauccug gauuuccuca aaucggaugg cuucgcuaau cguaacuuca ugcaauugau	2160
ccacgacgac agccugaccu uuaaggagga cauccaaaaa gcacaagugu ccggacaggg	2220
agacucacuc caugaacaca ucgcgaaucu ggccgguucg ccggcgauua agaaggaaau	2280
ucugcaaacu gugaaggugg ucgacgagcu ggugaagguc augggacggc acaaaccgga	2340
gaauaucgug auugaaaugg cccgagaaaaa ccagacuacc cagaaggggcc agaaaaacuc	2400
ccgcgaaagg augaagcgga ucgaagaagg aaucaaggag cugggcagcc agauccugaa	2460
agagcacccg guggaaaaca cgacgcugca gaacgagaag cucuaccugu acuauuugca	2520
aaauggacgg gacauguacg uggaccaaga gcuggacauc aaucgguugu cugauuacga	2580
cguggaccac aucguuccac aguccuuucu gaaggauug acgaucgaua acaagguguu	2640
gacucgcagc gacaagaaca gagggaaaguc agauaaugug ccaucggagg aggucgugaa	2700
gaagaugaag aauuacuggc ggcagcuccu gaaugcgaag cugauuaccc agagaaaguu	2760
ugacaaucuc acuaaagccg agcgcggcgg acucucagag cuggauaagg cuggauucau	2820
caaacggcag cuggucgaga cucggcagau uaccaagcac guggcgcaga ucuuggacuc	2880
ccgcaugaac acuaauuacg acgagaacga uaagcucauc cgaaaaguga aggugauuac	2940
ccugaaaagc aaacuugugu cggacuuucg gaaggacuuu caguuuuaca aagugagaga	3000
aaucacaac uaccaucacg cgcaugacgc auaccuac acuguggucg guaccgccc	3060
gaucaaaaag uacccuaaac uugaaucgga guuuguguac ggagacuaca aggucuacga	3120
cgugaggaag augauagcca aguccgaaca ggaaaucggg aaagcaacug cgaaaacuu	3180
cuuuuacuca aacaucauga acuuuuucaa gacugaaauu acgcuggcca auggagaaa	3240
caggaagagg ccacugaucg aaacuaacgg agaaacgggc gaaaucgugu gggacaaggg	3300
cagggacuuc gcaacuguuc gcaaagugcu cucuaugccg caagucaaaua uugugaagaa	3360
aaccgaagug caaaccggcg gauuuucaaa ggaaucgauc cucccaaaga gaaaauagcga	3420
caagcuauu gcacgcaaga aagacuggga cccgaagaag uacggaggau ucgauucgcc	3480

01155-0004-00PCT_SeqList (2).txt

gacugucgca uacuccgucc ucgugguggc caagguggag aagggaaaga gcaaaaagcu	3540
caaauccguc aaagagcugc uggggauuac caucauggaa cgauccucgu ucgagaagaa	3600
cccgauugau uuccucgagg cgaaggguua caaggagggug aagaaggauc ugaucaucaa	3660
acuccccaaag uacucacugu ucgaacugga aaauggucgg aagcgcaugc ugguuucggc	3720
cggagaacuc caaaaaggaa augagcuggc cuugccuagc aaguacguca acuuuccucua	3780
ucuugcuucg cacuacgaaa aacucaaagg gucaccggaa gauaacgaac agaaggcagcu	3840
uuucguggag cagcacaagc auuaucugga ugaaaaucauc gaacaaaucu ccgaguuuuc	3900
aaagcgcgug auccucgccc acgccaaccu cgacaaaguc cugucggccu acaaauaagca	3960
uagagauaag ccgaucagag aacagggcga gaacauuauc cacuuguuca cccugacuua	4020
ccugggagcc ccagccgccc ucaaguacuu cgauacuacu aucgaucgca aaagauacac	4080
guccaccaag gaaguucugg acgcgacccu gauccaccaa agcaucacug gacucuacga	4140
aacuaggauc gaucugucgc agcugggugg cgauggcucg gcuuacccau acgacgugcc	4200
ugacuacgcc ucgcucggau cgggcucccc caaaaagaaa cggaggugg acggauccccc	4260
aaaaaaagaag agaaaggugg acuccggaug agaauuaugc agucuagcca ucacauuuua	4320
aagcaucuca gcuuaccaug agaauuaagag aaagaaaaaug aagaucaaua gcuuauucau	4380
cucuuuuuuu uuuucguugg uguaaagcca acacccuguc uaaaaaaacau aaauuuucuuu	4440
aaucuuuug ccucuuuuuucu cugugcuuca auuaauaaaa aauggaaaga accucgagaa	4500
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	4560
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa uag	4603