

(43) International Publication Date
10 January 2013 (10.01.2013)

(51) International Patent Classification: *A61B 6/00* (2006.01) *G01N 23/20* (2006.01) (SE). **ÅSLUND, Magnus** [SE/SE]; Västerängsvägen 16, S-182 46 Enebyberg (SE).

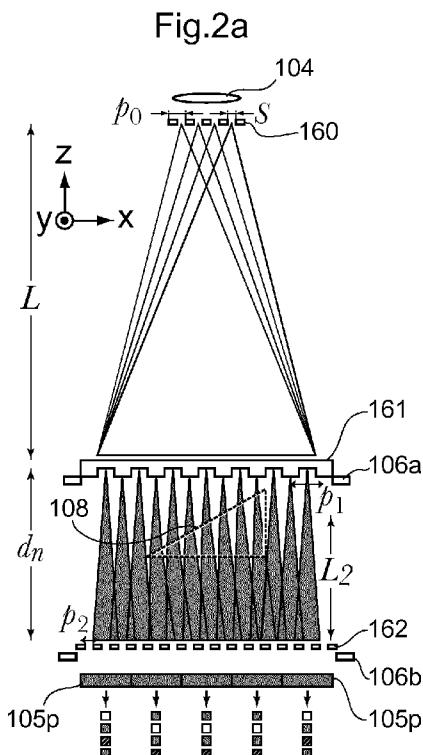
(21) International Application Number: PCT/EP2012/062489 (74) Agent: **VERWEIJ, P., D.**; Philips Intellectual Property & Standards, High Tech Campus 44, NL-5656 AE Eindhoven (NL).

(22) International Filing Date: 27 June 2012 (27.06.2012) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(26) Publication Language: English

(30) Priority Data: 1150622-7 4 July 2011 (04.07.2011) SE
61/504,260 4 July 2011 (04.07.2011) US


(71) Applicant (for all designated States except US): **KONINKLIJKE PHILIPS ELECTRONICS N.V** [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **FREDENBERG, Erik** [SE/SE]; Karlbergsvägen 78, S-113 35 Stockholm

[Continued on next page]

(54) Title: PHASE CONTRAST IMAGING APPARATUS

(57) Abstract: An x-ray imaging system comprising an x-ray source, an x-ray detector comprising a plurality of detector strips arranged in a first direction of the x-ray detector, each detector strip further comprising a plurality of detector pixels arranged in a second direction of the x-ray detector; a phase grating; a plurality of analyzer gratings comprising grating slits; a phase grating, and a plurality of analyzer gratings comprising grating slits, wherein the x-ray source and the x-ray detector are adapted to perform a scanning movement in relation to an object in the first direction, in order to scan the object, wherein the analyzer gratings are arranged between the x-ray source and the x-ray detector, wherein each of the plurality of analyzer gratings (162) is arranged in association with a respective detector strip with the grating slits arranged in the second direction and wherein the grating slits of the analyzer gratings of the detector strips are displaced relative to each other in the second direction.

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, **Published:**
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, — *with international search report (Art. 21(3))*
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

PHASE CONTRAST IMAGING APPARATUS

Technical field

[0001] The present invention relates generally to an improved x-ray imaging apparatus in the field of mammography, tomosynthesis, radiography, wherein phase contrast imaging capabilities have been implemented.

Background art

[0002] In prior art it has been proposed to use phase contrast in x-ray imaging to increase signal-to-noise ratio (SNR) in e.g. mammographic applications. Medical x-ray imaging is often limited by small contrast differences and high noise caused by tight dose restraints. This is particularly true for mammography where low contrast tumors constitute a major detection target, and a large number of tumors are missed or misdiagnosed due to difficulties in detection. The use of phase contrast imaging in medical applications have shown promising in order to increase SNR, since the phase shift in soft tissue is in many cases substantially larger than the absorption.

[0003] International patent application WO 2008/006470 A1 describes the use of interferometers for x-rays wherein x-ray images can be acquired from a scanned object. The set up herein comprises means for evaluating intensities on a pixel 105p basis in order to identify characteristic of the object 108 by characterizing each pixel 105p as being for instance phase contrast or absorption contrast dominated. In one application concerning the investigation of luggage on a moving conveyor belt, a set-up comprising an array of line detector 105s and a number of sub-gratings are arranged between the object 108 and the line detector 105s wherein each of the sub-gratings are shifted in their position perpendicular to the grating lines. In this manner, luggage to be investigated is moved along a direction perpendicular to the grating lines during a scan, wherein one scan movement is required to acquire phase contrast and absorption contrast data.

[0004] There are a number of disadvantages with the art presented above. First of all, the solution requires the manufacturing of physically long sub-gratings $G1_n$ and $G2_n$, which is consumes resources in terms of cost and time.

[0005] Another drawback is that the proposed set up if directly implemented in a mammography application is likely to induce errors in the phase detection due to the direction of the scan vs the direction of phase contrast detection. When a stationary object 108 such as a breast is analyzed, the set up needs to be moved in a scan direction in relation to the object 108 to create an x-ray image of the object, not the other way around as in WO 2008/006470 A1. An example of a scanning x-ray mammographic imaging system with absorption contrast functionality can be seen in document X, by the applicant. In WO 2008/006470 A1, the scan direction is set to be perpendicular to the grating lines of the sub-gratings, and hence perpendicular to the interference fringes 163 to be detected. It is well known that any system, including scanning systems, generally introduce more disturbances in the scan direction since this is the direction of change. Another source of disturbance is the gravity itself on a moving scan arm 103, since a gravity component of the scan arm 103 will induce a torque on a detector 105/analyser grating 162 relative to the beam 122 splitter. Hence, a small shift between the analyser grating 162 and the beam 122 splitter due to gravitation will further induce errors in the phase detection. In conclusion, in order to reduce these disturbances a set up as in the prior art needs have very high requirements on scan precision, which will make the manufacturing of such products more costly as well as time-consuming.

[0006] Yet another drawback of the prior art is that the full potential of using phase contrast, especially sought for in mammographic applications, is not utilized. One of the main advantages of using phase contrast imaging is the reduced noise at high spatial frequencies, i.e. an improved ability to detect small features. In a

scanning system, spatial resolution is generally lower in the scan direction since continuous read out is most often implemented.

Summary of invention

[0007] An object of the present invention is to alleviate some of the disadvantages of the prior art and to provide an improved device for x-ray imaging. According to one embodiment, the x-ray imaging system comprises an x-ray source, an x-ray detector comprising a plurality of detector strips arranged in a first direction of the x-ray detector, each detector strip further comprising a plurality of detector pixels arranged in a second direction of the x-ray detector; a phase grating; a plurality of analyzer gratings comprising grating slits; a phase grating, and a plurality of analyzer gratings comprising grating slits, wherein the x-ray source and the x-ray detector are adapted to perform a scanning movement in relation to an object in the first direction, in order to scan the object, wherein the analyzer gratings are arranged between the x-ray source and the x-ray detector, wherein each of the plurality of analyzer gratings (162) is arranged in association with a respective detector strip with the grating slits arranged in the second direction and wherein the grating slits of the analyzer gratings of the detector strips are displaced relative to each other in the second direction.

[0008] According to another embodiment, the x-ray imaging system (101) comprises an x-ray source (104), an x-ray detector (105) (1comprising a plurality of detector strips (105)a) arranged in a first direction of the x-ray detector (105), each detector strip (105)a further comprising a plurality of detector (105) pixels (105p) arranged in a second direction of the x-ray detector (105); a phase grating (161); and a plurality of analyzer gratings (162) comprising grating slits; wherein the (1)x-ray source (104) and the x-ray detector (105) are adapted to perform a scanning movement in relation to an object (108) in the first direction, in order to scan the object; wherein the analyzer gratings (162) are arranged between the x-

ray source (104) and the x-ray detector (105), wherein a plurality of analyzer gratings (162) is arranged in association with a respective detector strip (105a) with the grating slits arranged in the second direction and wherein the grating slits of the analyzer gratings (162) of the detector strips (105a) are displaced relative to each other in the second direction.

[0009] According to another embodiment, the displacement of grating slits of the analyzer gratings (162) along a plurality of detector strips (105a) samples an entire fringe period (163d) of interference fringes (163) generated by a phase grating and displaced by a phase gradient in the object (108) when the object (108) is scanned.

[0010] According to another embodiment, the grating slits of analyzer gratings of two consecutive detector strips with analyzer gratings in a first direction are displaced relative to each other in the second direction in a systematic manner, wherein the systematic manner comprises a defined displacement distance.

[0011] According to another embodiment, the displacement distance (d) is a fraction of the fringe period p_f , such that $\frac{p_f}{N} < d < p_f$, where N is the number of detector strips such that the entire fringe period 163d is covered.

[0012] According to another embodiment, the displacement distance (d) is between, $\frac{p_f}{3} < d < p_f$, preferably $\frac{p_f}{3}$.

[0013] According to another embodiment, the grating slits of analyzer gratings of two consecutive detector strips are displaced relative to each other in the second direction in an arbitrary manner, wherein the arbitrary manner comprises a random displacement.

[0014] According to another embodiment, the grating slits of the randomly displaced analyzer gratings (162), when summarized, are uniformly distributed over an entire fringe period.

[0015] According to another embodiment, two consecutive detector strips with analyzer gratings in a first direction are two adjacent detector strips.

[0016] According to another embodiment, two consecutive detector strips (105a) with analyzer gratings (162) in a first direction are randomly or arbitrarily displaced among the detector strips (105a) in a first direction.

[0017] According to another embodiment, the system is adapted to be calibrated such that the exact position of the analyzer gratings is established.

[0018] According to another embodiment, analyzer gratings are arranged on all detector strips.

[0019] According to another embodiment, system further comprises a pre-collimator and a post-collimator, wherein the pre-collimator is arranged between the analyzer grating and the phase grating and the post-collimator is arranged between the analyzer grating and the x-ray detector.

[0020] According to another embodiment, the system further comprises a source grating arranged between the x-ray source and the phase grating.

[0021] According to another embodiment, the detector (105) is adapted to count photons impinging on the detector strips (105a) and generate a signal corresponding to the energy of impinging photons, and wherein a control unit (121) is adapted to receive said signals and assign a weight to the phase-contrast image effect in relation to the efficiency at each energy and/or wherein the control unit 121 is adapted to assign a weight to the phase-contrast image effect in relation to the efficiency at each energy.

[0022] According to another embodiment, the control unit (121) is adapted to assign a higher weight of photons within a first energy interval to the phase-contrast image effect wherein phase contrast is more optimal, and/or wherein the control unit is adapted to assign a higher weight of photons within a second energy interval to the absorption contrast effect, wherein absorption contrast is more optimal.

[0023] According to another embodiment, the first and second energy intervals are defined by a first, lower threshold value of the photon energy, and a second, higher threshold value of the photon energy, wherein each detector pixel of each detector strip is connected to a comparator and counter comprising at least two threshold values for comparing the signal with said threshold values and counting said photons within the first and second energy intervals.

[0024] According to another embodiment, that the detector is adapted to count each photon impinging on the detector strips and generate a signal corresponding to the energy of each impinging photon, and wherein photons within an energy interval comprising a lower energy threshold, a higher energy threshold, wherein the interval comprises an optimal energy for phase contrast, are readout to enhance the phase contrast image effect

[0025] According to another embodiment, that the energy distribution depends on the set voltage of the x-ray source or on the breast thickness, wherein the control unit is adapted to receive signals comprising information regarding the set voltage and/or receive signals comprising information regarding the breast thickness, for instance from an automated exposure control which optimizes the voltage based on the thickness of the object, and adapts the lower energy threshold and the higher energy threshold based on this information.

[0026] According to another embodiment, first energy interval contains higher photon energies than the second energy interval.

[0027] According to another embodiment, at least one analyzer grating is arranged in a first crosswise direction over the entire detector.

[0028] According to another embodiment, the system further comprises at least one movable compression paddle, wherein the compression paddle is adapted to move an object, such as a breast, further away from the analyzer grating to increase the phase contrast image effect.

[0029] According to another embodiment, the at least one compression paddle is adapted to move the object within a range between the analyzer grating and the pre-collimator or the phase grating.

[0030] According to another embodiment, the system further comprises a control unit adapted to move the compression paddle into a position wherein the ratio of the phase contrast and absorption contrast is optimized.

[0031] According to another embodiment, the at least one compression paddle is adapted to be arranged below an object.

[0032] According to another embodiment, a scan arm is provided, wherein the x-ray source is arranged in a first position of the scan arm and the x-ray detector is arranged in a second position of the scan arm.

[0033] According to another embodiment, the phase grating is arranged on the scan arm in order to follow the scan arm during the scanning movement in relation to an object in the first direction.

[0034] According to another embodiment, the phase grating is arranged to be stationary wherein the scan arm during the scanning movement is moved in relation to an object and the phase grating in the first direction.

[0035] According to another embodiment, the analyzer grating is arranged on each of a plurality of detector strips.

[0036] According to another embodiment, the analyzer grating is connected to each of a plurality of detector strips by a snap-fit like connection.

[0037] According to another embodiment, the analyzer gratings (162) are arranged directed towards the x-ray source (104), wherein the tilting direction of the analyzer gratings (162) are essentially equal to the tilting angle(s) of the plurality of detector strips (105a) in relation to the x-ray source (104)

[0038] According to another embodiment, each analyzer grating 162 comprises several smaller units, adapted to be connected to each other during the manufacturing of the analyzer gratings 162.

Brief description of drawings

[0039] The invention is now described, by way of example, with reference to the accompanying drawings, in which:

[0040] Fig. 1 shows a perspective view of an x-ray imaging system

[0041] Fig. 2a shows a schematic view of the x-ray imaging system set up in a x-z-plane, corresponding to the phase contrast plane

[0042] Fig 2b shows a schematic view of the x-ray imaging system set up as seen in Fig. 2a in a y-z plane, corresponding to the absorption contrast plane

[0043] Fig. 3a shows a portion of the detector and a systematic displacement of the analyzer grating of adjacent detector strips

[0044] Fig. 3b shows portion of the detector and a systematic displacement of the analyzer grating of non adjacent detector strips

[0045] Fig. 3c shows a portion of the detector and a random displacement of the analyzer gratings 162 of adjacent detector strips

[0046] Fig. 3d shows a portion of the detector and a systematic displacement of the analyzer grating arranged in a perpendicular direction in a cross-wise manner

[0047] Fig. 4a shows the detector and a set up for energy weighting

[0048] Fig. 4b shows energy distribution of photons of an x-ray source

[0049] Fig. 5 shows a compression paddle in two alternative positions.

Description of embodiments

[0050] In the following, a detailed description of the invention will be given.

[0051] Fig. 1 illustrates an x-ray imaging system 101 according to one embodiment, based on a photon-counting detector 105 that scans the image field in one direction. The system according to this embodiment is based on the existing scanning systems for x-ray imaging developed by the applicant, whereby the system have the same external features as are for instance known from document US 7496,176. The system thus comprises an x-ray source 104 arranged in a housing, patient support and pre-collimator 106a housing and compression paddle 107a, 107b. A collimator is arranged in a collimator support, and the patient support comprises a detector 105 comprising a plurality of detector strips 105a. The x-ray source 104 and the detector 105 are arranged essentially in respective ends of a scan arm 103, hence arranged to be displaced radially with the x-ray source 104 in the centre. An image is acquired by scanning the detector 105 across an image field and applying absorption contrast principles. Whenever the detector 105 has scanned a predefined distance, the number of photon counts collected is read-out and the counter is reset. However any other type of x-ray system may implement the

phase contrast imaging capability described herein, preferably systems with a scan movement to cover and generate an image of an object, by irradiating the object with x-ray beams. .

[0052] Fig. 2a, disclosing one embodiment of the invention, shows a schematic view of a cross-section of the x-ray imaging system 101 enabling phase contrast imaging, set up in a x-z plane as defined by the coordinate system seen in the figure. The system according to this embodiment comprises a Talbot interferometer set up, and is thus based on so-called Talbot interferometry, also known as grating interferometry, grating-based phase contrast imaging, or differential phase contrast imaging, wherein phase shift is inferred by intensity differences, generated by placing a number of gratings in the beam 122 path. The scan direction along a radial path, with the x-ray source 104 in the center as seen in Fig. 1, is defined to be in the y-z plane, denoted by the arrow in Fig. 2b. In Fig. 2a the x-ray source 104 is arranged at the uppermost position of the system radiating the detector 105 arranged at the lowermost position in the figure. The x-ray source 104 emits an x-ray radiation beam 122. In one embodiment, a source grating 160 is arranged slightly displaced from the x-ray source 104 in the direction of the x-ray radiation field towards the detector 105. The source grating 160 lines extends in a y-direction. The purpose of the source grating 160 is to generate an array of small x-ray sources 104, which improves photon economy substantially compared to a single small x-ray source 104 without reducing coherence. Further down in the direction of the x-ray radiation field, a phase grating 161, sometimes denoted beam 122 splitter, is arranged with the purpose to introduce an effect known as Talbot self images, which are interference fringes 163 that appear at periodic distances from the grating and parallel with the grating strips, also known as grating lines. A pre-collimator 106a may be arranged essentially adjacent the phase grating 161, as seen in this embodiment to further enhance dose efficiency by illuminating only the parts of the object that can be seen with the detector.. To

facilitate the understanding of the workings of the phase contrast effect, an exemplary triangularly shaped object 108 is arranged between the phase grating 161 and the detector 105 according to this embodiment, however said object 108 but may also be arranged between the x-ray source 104 and the phase grating 161 and achieve similar effects. The object 108 corresponds to e.g. a breast in a mammography application. Slightly above the detector 105 as seen in a direction towards the phase grating 161, an analyzer grating 162 is arranged. The analyzer grating lines 162a extends in first direction corresponding to the scan direction y, whereas a plurality of grating slits, i.e. openings 162b, of the analyzer grating 162 extends in a second direction x, perpendicular to the scan direction, whereas the analyzer grating 162 extends a longer distance in the first direction than in the second direction. The pitch 162d of the analyzer grating 162 is referred to as the distance between the center of two adjacent closures 162c of the grating as can be seen in Fig. 2a, or in other words, as the total length of the width of one opening and one closure 162c in the grating. Between the analyzer grating 162 and the detector 105 a second post-collimator 106b may be arranged to further reduce photon scattering and thereby improve dose efficiency. Thus, as seen in the figure, the phase grating 161 is illuminated by the x-ray source 104 which is covered by a source grating 160 and induces interference fringes 163. The fringes 163 are displaced by the phase gradient, i.e. the derivative of the phase shift, in the object, and the fringe period 163d remains constant. The fine-pitch 162d analyzer grating 162 arranged in association with the detector 105 can be used to derive the fringe displacement and hence the phase shift.

[0053] For a spherical beam 122 induced by a point source, the so-called Talbot distances are:

$$d_n = \frac{D_n L}{L - D_n}, \text{ where } D_n = \frac{n p_1^2}{2 \eta^2 \lambda}, n = 1, 3, 5, \dots$$

[0054] Here, L is the source-to-grating distance, n is the Talbot order, p_1 is the pitch 162d of the phase grating 161, λ is the x-ray wavelength, and η is the parameter that depends on the phase grating 161 type.

[0055] Assuming a π phase-shifting phase grating 161 according to one embodiment, which implies $\eta = 2$. For a $\pi/2$ -shifting phase grating 161, $\eta = 1$.

[0056] The period of the interference fringes 163 is

$$p_f = \frac{P_f L}{L - D_n}, \text{ where } P_f = \frac{p_1}{\eta}$$

[0057] Again, $P_f = p_f(L \rightarrow \infty)$ is the fringe period 163d for a plane incident wave. If the source is covered with a source grating 160 with openings 162b that are s wide and with a pitch 162d of

$$p_0 = p_f \frac{L}{D_n}$$

[0058] The Talbot images generated from the different source slits coincide and generate a higher flux, which is of relevance to keep down the exposure time in phase-contrast imaging.

[0059] When a phase shifting object 108 is introduced in the beam 122, it is refracted an angle $\alpha = \Phi' \lambda / 2\pi$, where Φ' is the differential phase shift of the object. For small α , the refraction causes a fringe displacement

$$\Delta p_f \approx \Lambda d_n \times \alpha = \Lambda d_n \frac{\lambda}{2\pi} \Phi'$$

at a distance Λd_n from the object, where Λ ranges from 0 for an object 108 placed in contact with the detector 105 to 1 for an object 108 at or upstream of the phase grating 161. The fringes 163 are periodic as a function of x , i.e. in the x direction in the set up according to the embodiment. Thus, a phase gradient in the object 108

causes a phase shift of the fringes 163, which can be measured to obtain ϕ' by the intensity variations sensed behind the analyzer gratings 162. The phase shift ϕ may be obtained by integration of ϕ' . The placing of the analyzer gratings 162 before the detector 105 is not theoretically necessary in order for a detector 105 to sense the fringe displacement; however it reduces the resolution requirement of the detector 105. Detectors 105 with enough resolution to detect Δp_f may in fact be difficult and expensive to manufacture. One method used in the past comprising the analyzer grating 162 is the step-wise movement of the analyzer grating 162 in the x-direction until the entire fringe period 163d is covered by the openings 162b of the analyzer grating 162, preferably in at least $M=3$ measurements or steps. Such methods are normally referred to as phase stepping methods.

[0060] Fig. 2b shows a cross-section of the schematic view of the x-ray imaging system 101 set up as seen in Fig. 2a in a y-z plane. From this direction, it is made clear that the set up comprises a multi-slit geometry, according to well-known principles developed by the applicant, wherein the detector 105 comprises a plurality of Si strip detector 105s aligned with each of the plurality of slits of the pre-collimator 106a and post-collimator 106b. According to one embodiment, 21 strip detectors 105 are preferably used in a detector 105. Above and in association to each of a plurality of the detector strips 105a, analyzer gratings 162 have been arranged. As stated earlier, a scanning movement takes place in the y-z plane, essentially in the y-direction, as is also shown by the arrows in the figure. This direction is thus adapted to measure absorption contrast of an object, which will be further described below. According to one embodiment, the analyzer gratings are directed towards the x-ray source to minimize losses caused by the high aspect ratio of the analyzer gratings, i.e. in order to increase the dose efficiency and reduce scatter, the openings of the analyzer gratings are made more aligned with the direction of the x-ray beams. According to one embodiment, such direction may require tilting of the analyzer gratings such that they essentially have their opening

perpendicular to the incident x-ray beams, similar to the direction of the surface of each detector strip 105a.

[0061] According to one embodiment, each analyzer grating 162 comprises several smaller units, adapted to be connected to each other during the manufacturing of the analyzer gratings 162.

[0062] Fig. 3a shows a portion of the detector 105 comprising four detector strips 105a, the figure essentially viewed in a direction of incident x-ray beams 122 towards the detector 105, essentially in a negative z-direction according to the coordinate system of Fig. 2a and Fig. 2b. Four analyzer gratings 162 are arranged in association to these detector strips 105a, i.e. they are arranged in manner along the detector strips 105a in a second direction x to alternately cover and not cover the detector strips 105a with the openings 162b and closures 162c of the analyzer gratings 162. Further, each detector strips 105a are built up by a plurality of detector 105 pixels 105p arranged side-by-side in an x-direction as seen in the figure. To facilitate the illustration of the set up, the pixels have been made essentially rectangular. However, they may have any other type of shape. In one embodiment the analyzer gratings 162 are arranged directly on the detector strips 105a, for instance by a snap-fit connection between the analyzer gratings and the detector strips, but in another embodiment there is a slight distance between the detector strips 105a and the analyzer gratings 162. In yet another embodiment, the analyzer gratings 162 are arranged directly on the post-collimator 106b which in turn is arranged directly on the detector 105. According to the embodiment of Fig. 3a, the analyzer gratings 162 are arranged slightly displaced relative to each other in systematic manner in an x-direction, perpendicular to the scan direction, wherein the displacement is essentially equal for two consecutive detector strips 105a with analyzer gratings 162. The displacement distance d, i.e. the displacement of grating slits of the analyzer gratings 162 along a plurality of detector strips 105a is

defined such that the plurality of detector strips 105a with analyzer gratings 162 samples an entire fringe period 163d of interference fringes 163 generated by a phase grating and displaced by a phase gradient in the object 108 when the object 108 is scanned during the scanning movement in the y-direction. In this manner, no additional scan is required in the x-direction according to e.g. a step-scan approach, since the fringe period 163d in the x-direction is scanned along with the scan movement in the y-z-plane.

[0063] The displacement d is a fraction of the fringe period p_f , the fraction varying essentially between 1 and the number of detector strips 105a with analyzer gratings 162, i.e. such that $\frac{p_f}{N} < d < p_f$, where N is the number of detector strips 105a with analyzer gratings 162. According to one preferred embodiment, the displacement d is between, $\frac{p_f}{3} < d < p_f$, preferably $\frac{p_f}{3}$.

[0064] In Fig. 3a the fringes 163 are represented by the lines in the scan direction y. The darkest sections 163a of the lines represent the fringe maxima 163a of the fringe function and the middle of the white sections 163b represents the fringe minima 163b of the function. The sections surrounding the fringe maxima 163a thus represent an area of increasing/decreasing intensity 163c of the fringes 163. Hence, the fringe period 163d is thus defined as the distance between for instance two fringe maxima 163a. The fringes 163 of Fig. 3a are equal for each detector strip 105, which thus schematically shows each detector strip 105a scanning the same point in the object 108 at different points in time. In reality it is namely unlikely that the object 108 would be phase-homogenous over an area in an object 108 corresponding to four detector strips 105a during a scan. Rather, the fringe pattern will vary between each detector strip 105. According to one embodiment, the period of the analyzer grating 162 is the same as the period of the interference fringes P_f , i.e. wherein the width of the grating openings 162b corresponds to the width of the fringes 163, i.e. half the fringe period 163d,

comprising the fringe maxima 163a and the section surrounding the fringe maxima 163a. The pixels 105p of each detector strip 105a are adapted to sense the intensity of the fringe function and transmit a corresponding signal to a control unit 121. In the figure, such signal may correspond to a sensed fringe maxima 163a as in pixel 105p A in detector strip 105a1, a sensed intensity corresponding anywhere between an intensity maxima and minima as for instance in pixel 105p A and B in detector strip 105a2, or an intensity minima as in for instance in pixel 105p B of detector strip 105a1, as shown in the squares corresponding to the sensed data by the control unit 121. The location of the interference fringes 163 in each pixel is deduced from the detected signals from a number of detector strips at the same point in the object. The displacement of the interference fringes 163 in each pixel can then be calculated by comparing to a reference scan. An example of wherein how this can be illustrated is seen in for instance detector strip 105a1 and detector strip 105a2, wherein both signals relating to intensity maxima and intensity minima are detected from pixels 105p in the same detector strips 105a. Given the constant fringe period 163d along each detector pixel 105p, the only explanation can be that there is a difference in phase shift between the two pixels.. The differential phase shift ϕ' in the object can be calculated according to $\Delta p_f \approx \Lambda d_n \times \alpha = \Lambda d_n \frac{\lambda}{2\pi} \phi'$, with the fringe displacement Δp_f deduced from the displacement of the fringe function over the entire fringe period for a function wherein an object has been scanned, i.e. placed in the x-ray beam, compared to a reference scan, , wherein no object or a homogeneous object has been scanned. The actual phase shift in the object ϕ may then obtained by integration of ϕ' , wherein a phase contrast signal may be calculated for each pixel 105a.

[0065] According to another embodiment, the intensity maxima and minima are simply arranged in an image corresponding to the object wherein phase shift occurs, for the operator of the imaging system to interpret and identify interesting areas by the aid of this information. The absorption contrast is detected in the scan

direction, i.e. by averaging over the number of detector strips 105a required to cover an entire fringe period 163d, wherein the average value of the intensity over the pixels 105p of these detector strips 105a generate the absorption contrast one position of the image.

[0066] Fig. 3b shows a portion of the detector 105 similar to that of Fig. 3a, and a systematic displacement of the analyzer gratings 162 of two consecutive detector strips 105a with associated analyzer gratings 162, where at least one detector strip 105a, is arranged between two consecutive detector strips 105a upon which no analyzer grating 162 has been arranged. Hence, the analyzer gratings 162 does not have to be arranged on every detector strip 105a in the detector 105, i.e. on adjacent detector strips 105a, and the displacement d can thus be measured between two consecutive detector strips 105a upon which an analyzer grating 162 is arranged. Further, the order of consecutive detector strips 105a with analyzer gratings 162 may be random. However, the total number of detector strips 105a with analyzer grating 162 must be sufficient to cover an entire fringe period 163d of interference fringes 163. According to one embodiment, wherein the displacement is set to $\frac{p_f}{3}$, at least three detector strips 105a would be required.

[0067] Fig. 3c shows a portion similar to that of Fig. 3a of the detector 105, but wherein the displacement d between two consecutive detector strips 105a with analyzer gratings 162s, in this case adjacent detector strips 105a, are displaced relative to each other in the second direction in an arbitrary manner, wherein the arbitrary manner comprises a random displacement. The only restriction on the randomness of the displacement is that when the summarizing all strips with analyzer gratings 162 they sample an entire fringe period 163d of interference fringes 163 generated by a phase grating and displaced by a phase gradient in the object 108 when the object 108 is scanned. That is, the random displacement needs to be uniformly distributed and range over the entire fringe period. In order

for phase grating 161 imaging to function for a detector 105 with a random displacement of analyzer gratings 162, the system needs to be calibrated accordingly such that the exact positioning of the analyzer gratings is known by a processing device (not shown) which generates the data necessary for displaying an image. Such calibration may for instance be implemented by the placing of a test object with known phase shift in the x-ray beam. According to one embodiment, any type of placement of analyzer gratings, systematic or random, may preferably be calibrated according to this or other methods. In a similar manner to that of Fig 3b, the random displacement of analyzer gratings 162 may occur on a random or arbitrary order of consecutive detector strips 105a with analyzer gratings 162 as well.

[0068] Fig. 3d shows a portion of the detector 105, wherein only two detector strips are shown. Analyzer gratings 162 have been arranged in a crosswise manner over the entire length of the detector strips 105a2 as seen in the figure, such as the grating lines are arranged in the x-direction to cover the entire image field in this direction. The grating lines between two detector strips 105a2 with crosswise arranged analyzer gratings 162 are displaced a distance d_2 (not shown) over a plurality of detector strips 105a in the scan direction, such that an entire fringe period 163d in the y-direction is covered by the openings 162b of the crosswise analyzer grating 162ds. Preferably, the displacement d_2 is a fraction of the fringe period 163d P_{f2} , in the y-direction similar to the displacement d previously described, wherein the fraction varies essentially between 1 and the number of detector strips 105a2 with crosswise analyzer gratings 162d, i.e. such that $\frac{P_f}{N} < d < P_f$, where N is the number of detector strips 105a with analyzer gratings 162. According to one preferred embodiment, the displacement d is in the range $\frac{P_{f2}}{3} < d < P_{f2}$, preferably $\frac{P_{f2}}{3}$. In order to generate the interference fringes 163 in a y-direction for a detector strip with analyzer gratings in this direction, a

corresponding second phase grating 161 needs to be arranged with grating lines in a y-direction. Hence, the direction of the phase grating(s) need to vary with respect to the direction of the analyzer gratings. According to one embodiment, such second phase grating 161 may be arranged in the proximity to the phase grating 161 as previously described, in a crosswise manner together with a first phase grating wherein a cross pattern of interference fringes are generated (not shown). Thus, by the aid of this set up, in one single scan, phase contrast detection is now possible in two dimensions along with the absorption contrast detection, to further enhance the ability to detect risk areas and abnormalities in a scanned object.

[0069] In Fig. 4a a detector 105 arrangement according to one embodiment of the invention is illustrated for enhancing phase contrast information. As has previously been described, the so-called Talbot distances can be described as:

$$d_n = \frac{D_n L}{L - D_n}, \text{ where } D_n = \frac{np_1^2}{2\eta^2\lambda}, n = 1, 3, 5,$$

[0070] The photon energy is inversely proportional to the x-ray wave length (λ). The relationship between λ and d_n thus implicates that there is an optimal energy E_0 for a given distance between a phase grating 161 and the analyzer grating 162. In a fix system according to one alternative embodiment of the invention, wherein the relative distance between the phase grating 161 and the analyzer gratings 162 is not adjustable, the efficiency of the phase contrast detection varies with the energy spectrum of the photons impinging on the detector 105 due to the varying visibility of the fringe function with the energy. The energy spectrum varies for instance with the setting of the acceleration voltage of the x-ray source 104 by an operator prior to a scan or gradients in breast thickness. Further, variations may also be caused by a so-called automatic exposure control (AEC) when implemented in the system, wherein the x-ray flux is optimized based on the breast thickness, sensed by the

detector 105 during the beginning of scan by adaptively changing the x-ray source 104 acceleration voltage. An AEC is important when acquiring high quality absorption images and must therefore function parallel to a phase contrast detection functionality. The detector 105 assembly according to Fig. 4a proposes a detector 105 with energy weighting capabilities to overcome this limitation. According to a simplified arrangement, the pixels 105p of each detector strip 105a in the detector 105 is connected to an amplification block 164a, a comparator block 164b, and a counter block 164c. As an x-ray source 104 irradiates an object 108 and the detector 105 with an x-ray beam 122. The x-ray beam 122, containing photons with a certain energy spectrum is filtered by the object, and phase shifts of the photons may further occur. Thus, the photons carry relevant information when incident onto the detector 105. A signal is created based on the energy of the photon in the detector pixels. The pixel 105p signals are readout by first being amplified by an amplifier. After amplification the signal may be altered by a band pass filter or shaper, wherein signal to noise ratio is improved by suppressing high frequencies. After being amplified, the amplitude of the signal is compared to threshold levels in a comparator block, whereupon the comparator outputs 1 if the signal is above a threshold, and 0 if the signal is below the threshold. A photon pulse counter then increases its number every time the input changes from 0 to 1. With the aid of comparators, it is possible to count each photon having an energy within a certain energy interval.

[0071] In Fig. 4b a shows the energy spectrum of incident photons on a detector according to one embodiment of the x-ray imaging apparatus. The optimal energy is denoted E_0 a lower threshold is denoted E_1 , a higher threshold is denoted E_2 . Preferably, the photons having an energy within the energy interval E_1 to E_2 relevant for phase contrast is assigned a higher weight for the phase contrast image effect, by either reading out or by using only photons within this energy interval. The setting of the energy interval in the may be adjustable to comply with non-fix systems

wherein the distance d_n is adjustable. However, the width of the energy interval may also depend on the setting of the x-ray source, wherein a higher acceleration leading to a larger flux or intensity of photons, adjusts the energy interval to be more narrow and closer to the optimal energy E_0 . Hence, as the flux increases, a higher amount of photons with energy close to E_0 will impinge the detector such that the quality of the image may increase. If the flux of photons is low, however, photons within a wider energy interval will have to be included to enhance the image quality.

[0072] According to another embodiment, the content of the photon pulse counters may be readout to a control unit 121 for optimally weighting the photons, for image processing and presentation. Preferably, the photons having an energy within the energy interval relevant for phase contrast is assigned a higher weight for the phase contrast image effect, wherein the photons having an energy within the energy interval extra relevant for absorption contrast is assigned a higher weight for the absorption contrast image effect. The weighting is based on pre set criteria in the control unit, for phase contrast photons may be assigned a 1 if inside the interval, and 0 if outside, and for absorption contrast, the photons having energies within the energy interval of extra importance to absorption contrast, are assigned a value higher than 0 according to one embodiment. The setting of the energy intervals may be adjustable to comply with non-fix systems wherein the distance d_n is adjustable. This requires a set up of comparators and counters adapted to count photons within two energy intervals, a first energy interval defined by first lower threshold and a second higher threshold, and a second interval defined by a first lower threshold and a second, higher threshold. Assigning a higher weight, may, especially for the case of phase contrast photons comprise weighting by the factor 1.

[0073] According to another embodiment, three energy levels are used to count and weight photons according to increase phase contrast and absorption contrast effects, essentially dividing the energy spectra into three energy intervals, wherein the upper and lower limits are defined by infinitely high energies and 0 respectively. Preferably, photon with energies within the lower energy interval is filtered out and used for phase contrast. Photons with energies within the middle energy interval is counted and/or weighted positive, i.e. assigned a higher weight for absorption contrast and photons within the upper energy interval is counted and assigned a higher weight for phase contrast. The weighting of phase contrast photons may include weighting with a factor 1.

[0074] Fig. 5 shows a scan arm 103 with an x-ray source 104 and a detector 105 arranged at two positions, 107a1 and 107a2 respectively, essentially in each end of the scan arm 103. As known from previous figures, e.g. Fig. 2a, a phase grating 161 and pre-collimator 106a is arranged between the x-ray source 104 and the detector 105. Further, between the x-ray source 104 and the detector 105 a compression paddle 107a, 107b is arranged to move and/or compress the object 108 such as a breast in a vertical direction. In imaging arrangements to the present date, a compression paddle 107a, 107b is used for pressing the breast towards downwards towards a second compression paddle 107a, 107b, also known as the object 108 table. However, in order to increase the effect of the phase contrast in the x-ray image, the breast needs to be placed as far away from the detector 105. As described, For small α , the refraction causes a fringe displacement

$$\Delta p_f \approx \Lambda d_n \times \alpha = \Lambda d_n \frac{\lambda}{2\pi} \Phi'$$

at a distance Λd_n from the object, where Λ ranges from 0 for an object 108 placed in contact with the detector 105 to 1 for an object 108 at or upstream of the phase

grating 161. Thus, the farther away from the detector 105, the larger the fringe displacement detectable by the detector 105. There is a trade-off between the absorption effect and the phase contrast effect depending on the vertical distance of the scanned object 108 from the analyzer grating 162. An increased distance from the detector 105 will diminish the absorption contrast effect due to scattering effects wherein valuable radiation that has passed the object 108 is lost. Therefore, the height of the compression paddles 107a, 107b should be adjusted based on and prior to the preferred type of scan to be performed. This could be implemented such that the height is automatically adjusted based on the setting by an operator of the x-ray imaging system 101.

In the field of mammography, there is an increasing demand for three-dimensional (3D) information which can reduce distraction by anatomical structures and provide 3D localization. The proposed embodiments disclosed in this application could readily be implemented in known tomosynthesis solutions, wherein projection angles are generated with the purpose to create projection images when the x-ray source 104 irradiates each point in an object 108 from various angles.

The present invention should not be limited to extracting phase-contrast information from the detected signals of the interference fringes. One example of other information that may be available is information about the object scattering ability, so-called dark-field imaging, such as in. In dark-field imaging, the visibility of the detected periodic function, defined as

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

where I_{max} and I_{min} are the intensity maxima and minima respectively, may be compared to the visibility of a reference scan and used to obtain the dark-field image.

- - -

CLAIMS

1. An x-ray imaging system (101) comprising:
 - an x-ray source (104);
 - an x-ray detector (105) comprising a plurality of detector strips (105a) arranged in a first direction of the x-ray detector (105), each detector strip (105a) further comprising a plurality of detector (105) pixels (105p) arranged in a second direction of the x-ray detector (105);
 - a phase grating (161); and
 - a plurality of analyzer gratings (162) comprising grating slits;

characterized in that

the (1)x-ray source (104) and the x-ray detector (105) are adapted to perform a scanning movement in relation to an object (108) in the first direction, in order to scan the object;

wherein the analyzer gratings (162) are arranged between the x-ray source (104) and the x-ray detector (105), wherein each of the plurality of analyzer gratings (162) is arranged in association with a respective detector strip (105a) with the grating slits arranged in the second direction

and wherein the grating slits of the analyzer gratings (162) of the detector strips (105a) are displaced relative to each other in the second direction.
2. An x-ray imaging system (101) according to claim 1, **characterized in that** the displacement of grating slits of the analyzer gratings (162) along a plurality of detector strips (105a) samples an entire fringe period (163d) of interference

fringes (163) generated by a phase grating and displaced by a phase gradient in the object (108) when the object (108) is scanned.

3. An x-ray imaging system (101) according to claim 1 or 2, **characterized in that** the grating slits of analyzer gratings (162) of two consecutive detector strips (105a) with analyzer gratings (162) in a first direction are displaced relative to each other in the second direction in a systematic manner, wherein the systematic manner comprises a defined displacement distance (d).

4. An x-ray imaging system (101) according to claim 3, **characterized in that** the displacement distance (d) is a fraction of the fringe period p_f , such that $\frac{p_f}{N} < d < p_f$, where N is the number of detector strips such that the entire fringe period 163d is covered.

5. An x-ray imaging system (101) according to claim 3 or 4, **characterized in that** the displacement distance (d) is between, $\frac{p_f}{3} < d < p_f$, preferably $\frac{p_f}{3}$.

6. An x-ray imaging system (101) according to any of claims 1-5, **characterized in that** the grating slits of analyzer gratings (162) of two consecutive detector strips (105a) are displaced relative to each other in the second direction in an arbitrary manner, wherein the arbitrary manner comprises a random displacement.

7. An x-ray imaging system (101) according to claim 6, **characterized in that** the grating slits of the randomly displaced analyzer gratings (162), when summarized, are uniformly distributed over an entire fringe period.

8. An x-ray imaging system (101) according to any of claims 1-7, **characterized in that** two consecutive detector strips (105a) with analyzer gratings (162) in a first direction are two adjacent detector strips (105a).

9. An x-ray imaging system (101) according to any of claims 1-8, characterized in that two consecutive detector strips (105a) with analyzer gratings (162) in a first direction are randomly or arbitrarily displaced among the detector strips (105a) in a first direction.

10. An x-ray imaging system (101) according to claim 6 or 9, characterized in that the system is adapted to be calibrated such that the exact positions of the analyzer gratings is established.

11. An x-ray imaging system (101) according to any of claims 1-10, characterized in that analyzer gratings (162) are arranged on all detector strips (105a).

12. An x-ray imaging system (101) according to any of claims 1-11, characterized in that the system further comprises a pre-collimator (106a) and a post-collimator (106b), wherein the pre-collimator (106a) is arranged between the analyzer grating (162) and the phase grating (161) and the post-collimator (106b) is arranged between the analyzer grating (162) and the x-ray detector (105).

13. An x-ray imaging system (101) according to any of claims 1-12, characterized in that the system further comprises a source grating (160) arranged between the x-ray source (104) and the phase grating (161).

14. An x-ray imaging system (101) according to any of claims 1-13, characterized in that the detector (105) is adapted to count photons impinging on the detector strips (105a) and generate a signal corresponding to the energy of impinging photons, and wherein a control unit (121) is adapted to receive said signals and assign a weight to the phase-contrast image effect in relation to the efficiency at each energy and/or wherein the control unit 121 is adapted to assign a weight to the phase-contrast image effect in relation to the efficiency at each energy.

15. An x-ray imaging system (101) according to any of claim 14, **characterized in that** that the control unit (121) is adapted to assign a higher weight of photons within a first energy interval to the phase-contrast image effect wherein phase contrast is more optimal, and/or wherein the control unit is adapted to assign a higher weight of photons within a second energy interval to the absorption contrast effect, wherein absorption contrast is more optimal.

16. An x-ray imaging system (101) according to claim 15, **characterized in that** each of the first and second energy intervals are defined by a first, lower threshold value of the photon energy, and a second, higher threshold value of the photon energy, wherein each detector pixel (105p) of each detector strip (105a) is connected to a comparator and counter comprising at least two threshold values for comparing the signal with said threshold values and counting said photons within the first and second energy intervals.

17. An x-ray imaging system (101) according to any of claims 1-13, **characterized in that** that the detector (105) is adapted to count each photon impinging on the detector strips (105a) and generate a signal corresponding to the energy of each impinging photon, and wherein photons within an energy interval comprising a lower energy threshold (E_1), a higher energy threshold (E_2), wherein the interval comprises an optimal energy (E_0) for phase contrast, are readout to enhance the phase contrast image effect

18. An x-ray imaging system (101) according to claim 17, **characterized in that** that the energy distribution depends on the set voltage of the x-ray source (104) or on the thickness of the object (108), wherein the control unit (121) is adapted to receive signals comprising information regarding the set voltage and/or receive signals comprising information regarding the breast thickness, for instance from an automated exposure control (AEC) which optimizes the voltage based on the

thickness of the object (108), and adapts the lower energy threshold (E_1) and the higher energy threshold (E_2) based on this information.

19. An x-ray imaging system (101) according to claim 15, **characterized in that** first energy interval contains higher photon energies than the second energy interval.

20. An x-ray imaging system (101) according to any of claims 1-19, **characterized in that** at least one analyzer grating (162) is arranged in a first crosswise direction over the entire detector (105).

21. An x-ray imaging system (101) according to any of claims 1-20, **characterized in that** the system further comprises at least one movable compression paddle (107a, 107b), wherein the compression paddle is adapted to move an object (108), such as a breast, further away from the analyzer grating (162) to increase the phase contrast image effect.

22. An x-ray imaging system (101) according to claim 21, **characterized in that** the compression paddle (107a, 107b) is adapted to move the object (108) within a range between the analyzer grating (162) and the pre-collimator (106a) or the phase grating (161).

23. An x-ray imaging system (101) according to claim 21 or 22, **characterized in that** the system further comprises a control unit (121) adapted to move the compression paddle (107a, 107b) into a position wherein the ratio of the phase contrast and absorption contrast is optimized.

24. An x-ray imaging system (101) according to any of claims 20-22, **characterized in that** the compression paddle (107a, 107b) is adapted to be arranged below the object (108).

25. An x-ray imaging system (101) according to any of claims 1-23, **characterized by** a scan arm (103), wherein the x-ray source (104) is arranged in a first position of the scan arm and the x-ray detector (105) is arranged in a second position of the scan arm.
26. An x-ray imaging system (101) according to claim 25, **characterized in that** the phase grating (161) is arranged on the scan arm (103) in order to follow the scan arm (103) during the scanning movement in relation to the object (108) in the first direction.
27. An x-ray imaging system (101) according to claim 25, **characterized in that** the phase grating (161) is arranged to be stationary when the scan arm (103), during the scanning movement, is moved in relation to the object (108) and the phase grating (161) in the first direction.
28. An x-ray imaging system (101) according to any of claims 1-27, **characterized in that** the analyzer grating (162) is arranged on each of the plurality of detector strips (105a).
29. An x-ray imaging system (101) according to any of claims 1-28, **characterized in that** the analyzer grating (162) is connected to each of the plurality of detector strips (105a) by a snap-fit like connection.
30. An x-ray imaging system (101) according to any of claims 1-29, **characterized in that** the analyzer gratings (162) are arranged directed towards the x-ray source (104), wherein the tilting direction of the analyzer gratings (162) are essentially equal to the tilting angle(s) of the plurality of detector strips (105a) in relation to the x-ray source (104).
31. An x-ray imaging system (101) according to any of the previous claims, **characterized in that** each analyzer grating (162) comprises several smaller units,

adapted to be connected to each other during the manufacturing of the analyzer gratings (162).

Fig.1

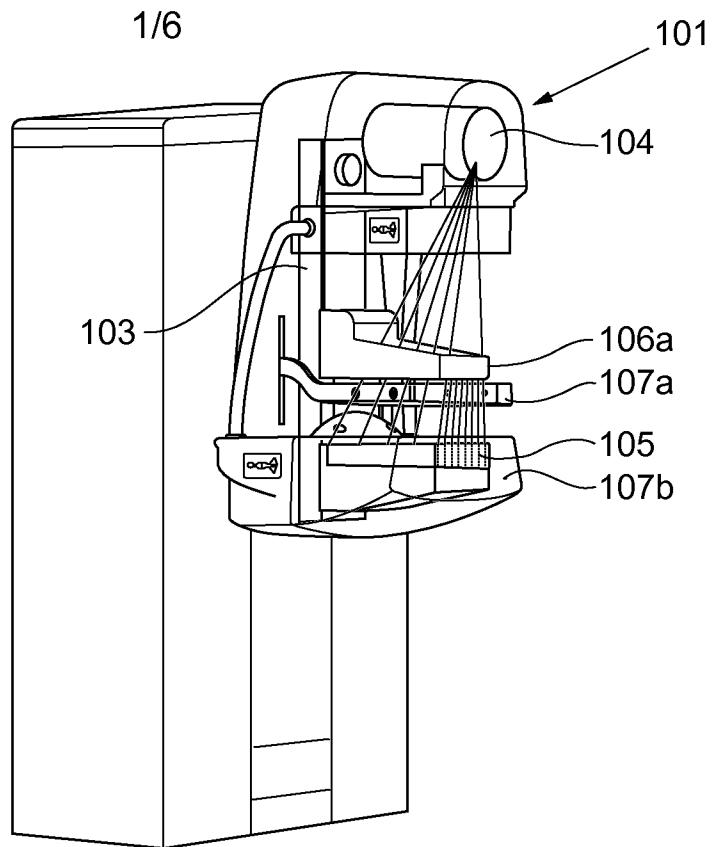


Fig.2a

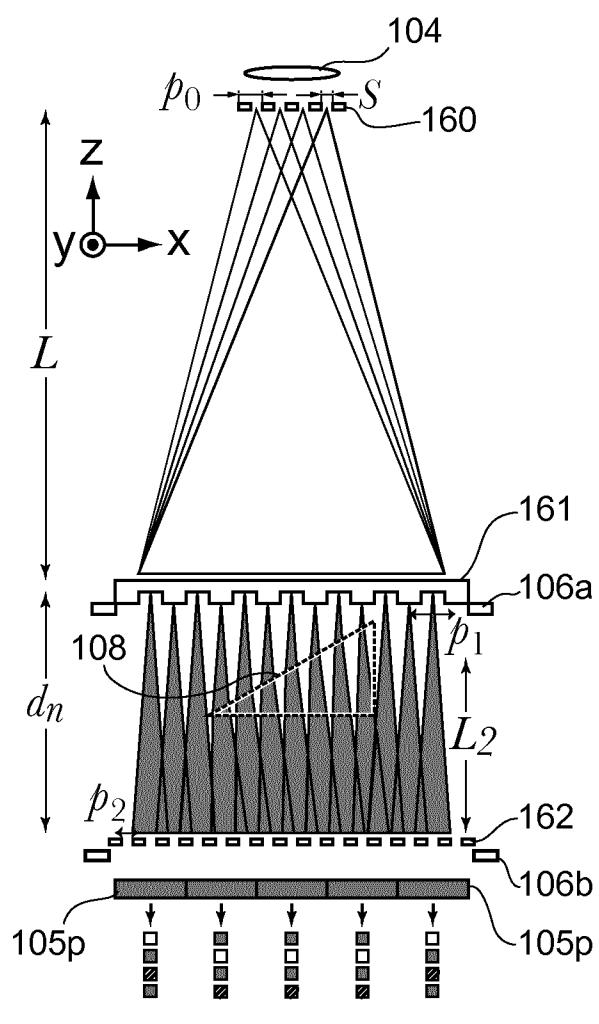


Fig.2b

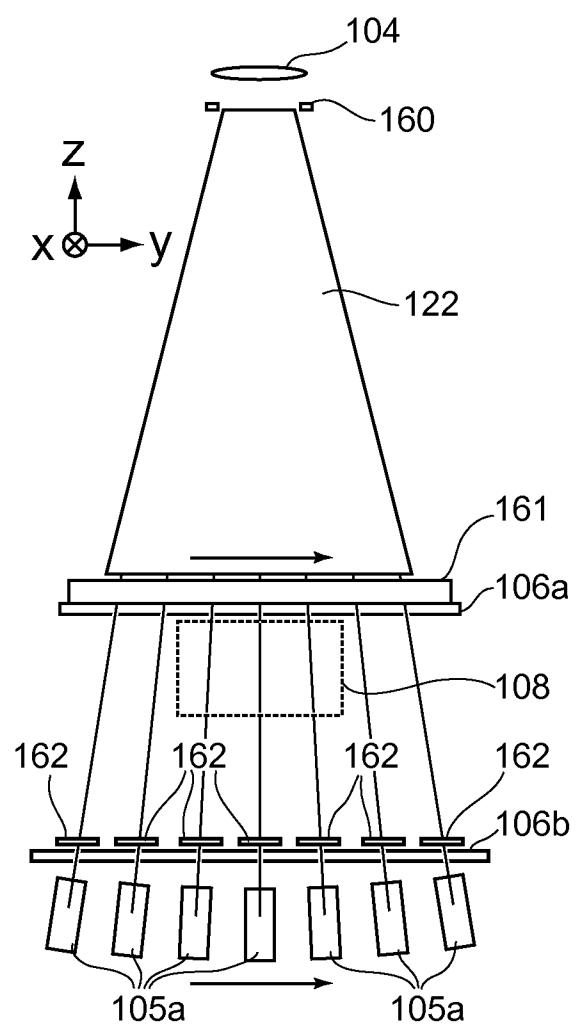


Fig.3a

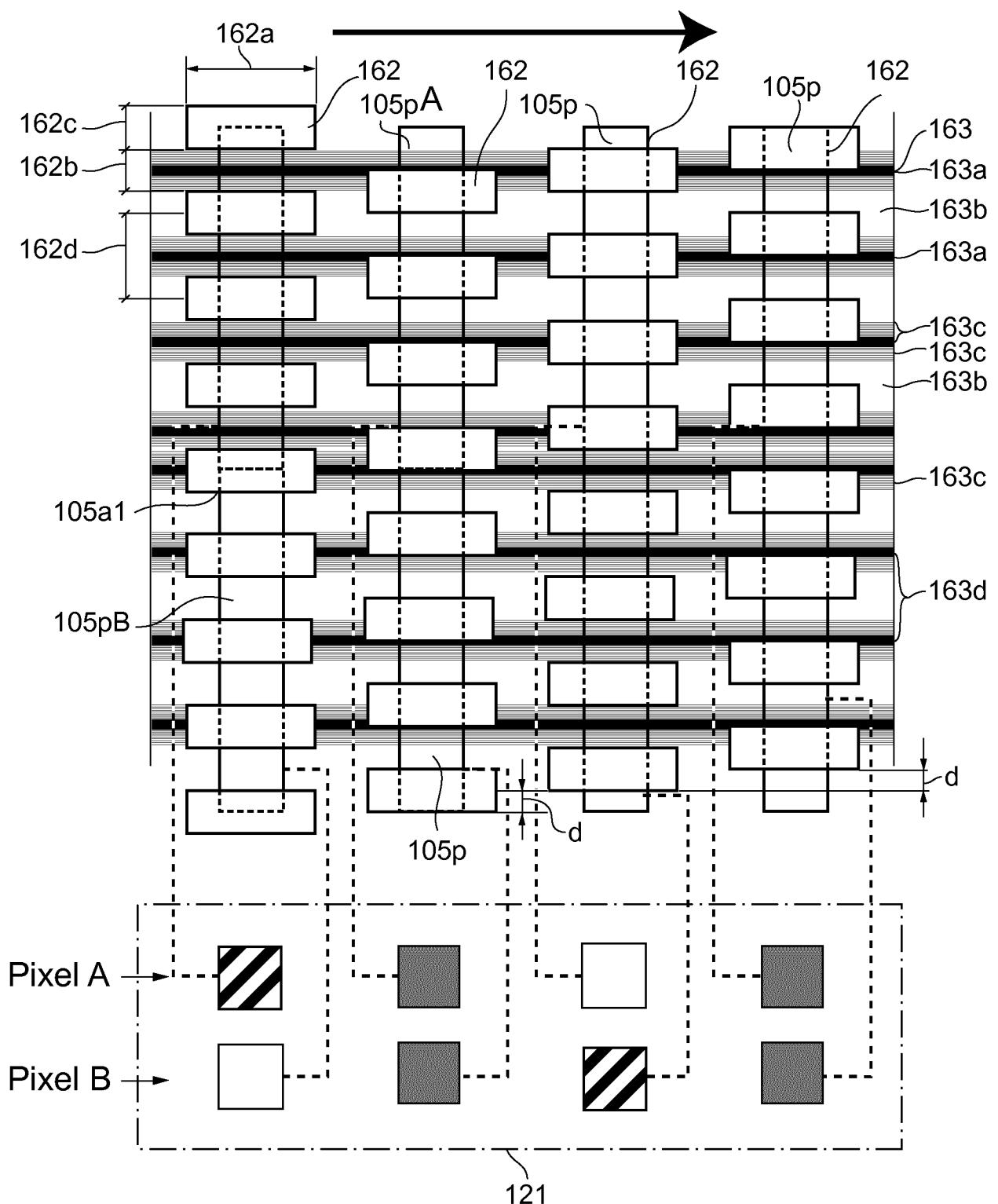


Fig.3b

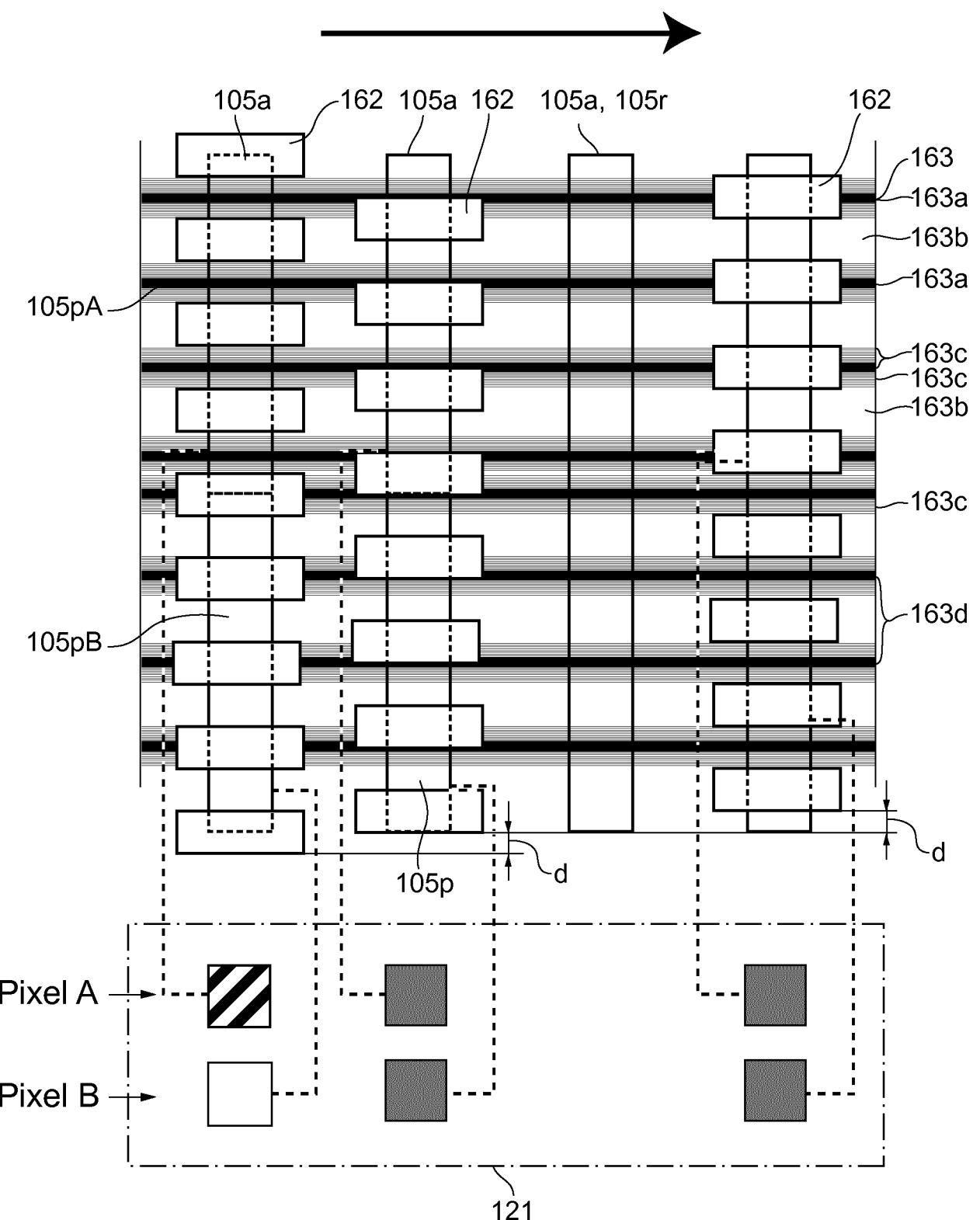
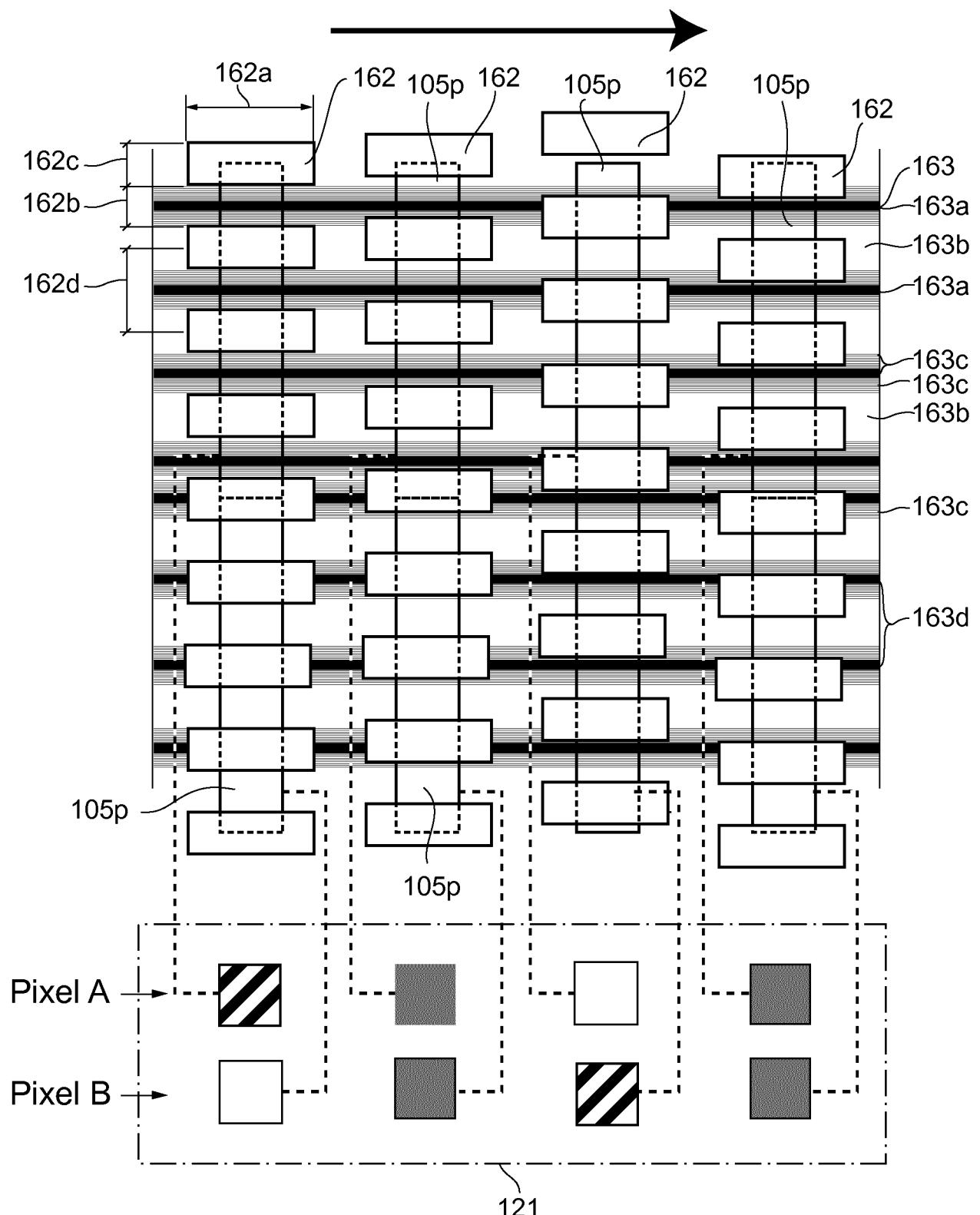



Fig.3c

5/6

Fig.3d

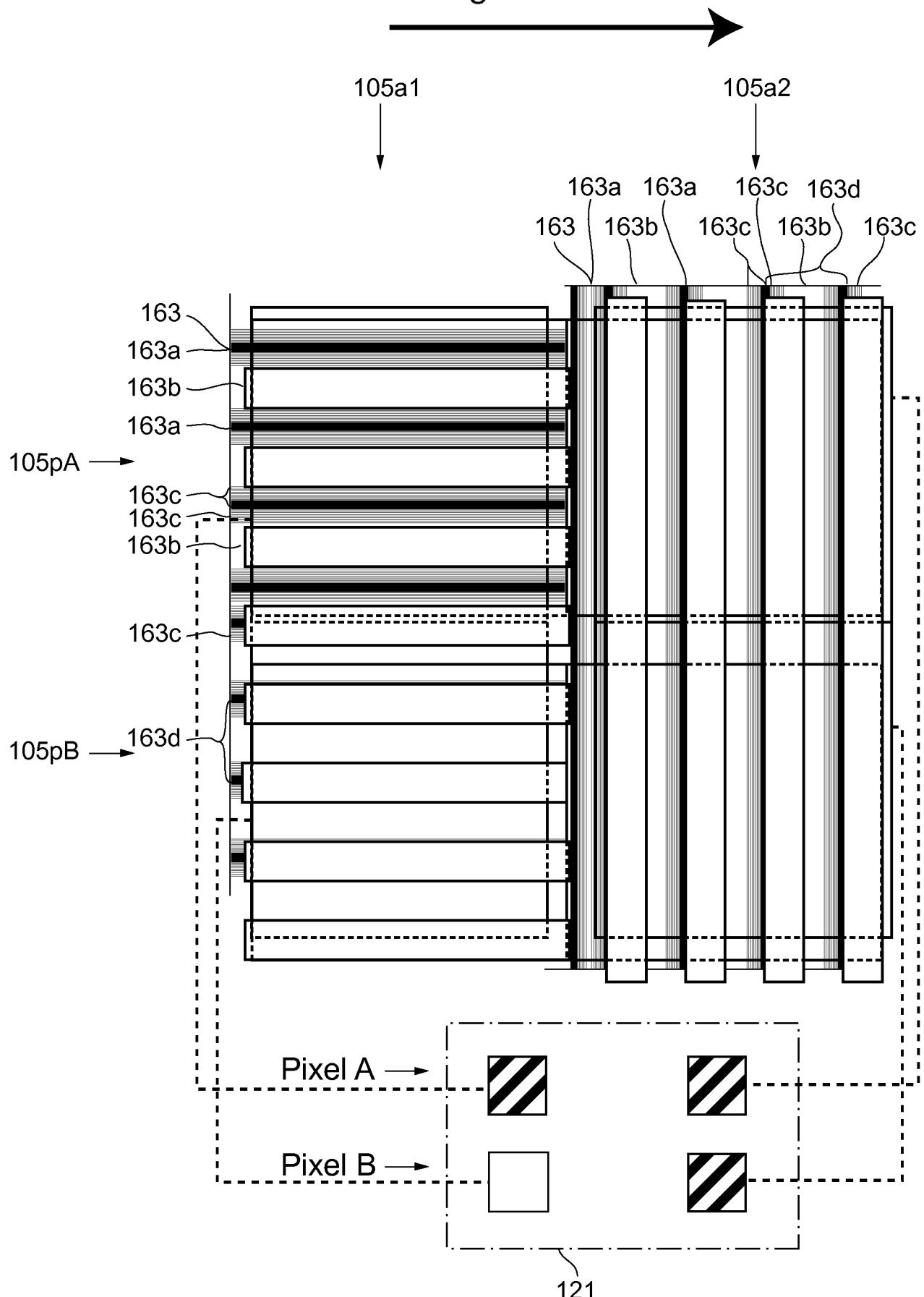


Fig.4a

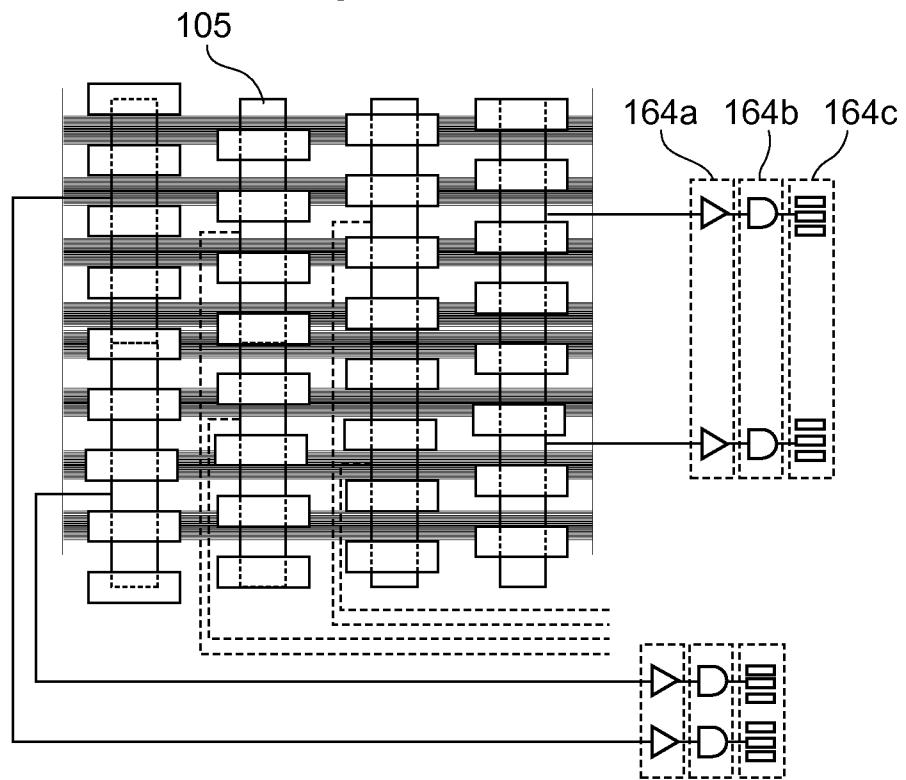


Fig.4b

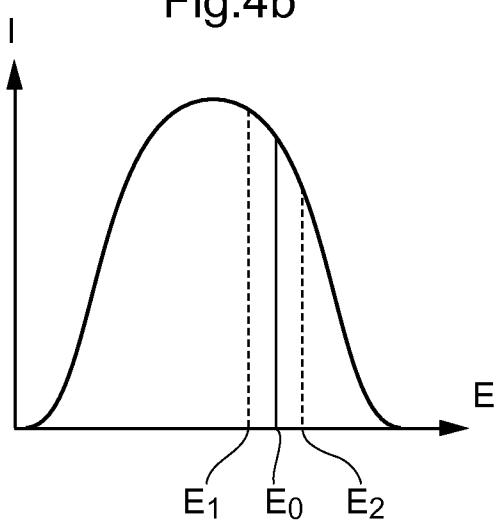
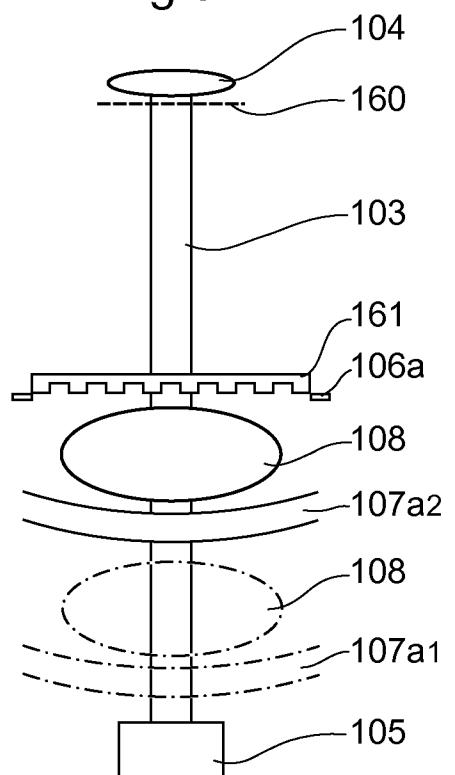



Fig.5

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2012/062489

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61B6/00 G01N23/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61B G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2010/091936 A1 (DAVID CHRISTIAN [DE] ET AL) 15 April 2010 (2010-04-15) abstract figures 1,3,4 paragraph [0050] - paragraph [0061] -----	1-31
A	US 5 812 629 A (CLAUSER JOHN F [US]) 22 September 1998 (1998-09-22) abstract figures 1-21 -----	2-11,20, 28-31
A	US 2010/220832 A1 (NING RUOLA [US] ET AL) 2 September 2010 (2010-09-02) abstract figures 1-10 paragraph [0044] ----- -/-	12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 31 August 2012	Date of mailing of the international search report 06/09/2012
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Moehrs, Sascha

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2012/062489

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KOTTLER C ET AL: "Grating interferometer based scanning setup for hard x-ray phase contrast imaging", REVIEW OF SCIENTIFIC INSTRUMENTS, AIP, MELVILLE, NY, US, vol. 78, no. 4, 30 April 2007 (2007-04-30), pages 43710-43710, XP012103909, ISSN: 0034-6748, DOI: 10.1063/1.2723064 abstract figures 1,2 Section II.A ----- US 2010/080436 A1 (OHARA HIROMU [JP]) 1 April 2010 (2010-04-01) abstract figures 2,3 paragraph [0079] ----- US 7 496 176 B2 (AASLUND MAGNUS [SE]) 24 February 2009 (2009-02-24) cited in the application abstract figures 1,2,8 -----	14-19 21-24 25-27
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2012/062489

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 2010091936	A1 15-04-2010	DE 102009043067 A1 EP 2168488 A1 US 2010091936 A1			22-04-2010 31-03-2010 15-04-2010
US 5812629	A 22-09-1998	AU 6463298 A US 5812629 A WO 9849546 A1			24-11-1998 22-09-1998 05-11-1998
US 2010220832	A1 02-09-2010	CN 102413767 A EP 2403411 A2 US 2010220832 A1 WO 2010101920 A2			11-04-2012 11-01-2012 02-09-2010 10-09-2010
US 2010080436	A1 01-04-2010	US 2010080436 A1 WO 2008102598 A1			01-04-2010 28-08-2008
US 7496176	B2 24-02-2009	DE 112005000280 T5 JP 4717834 B2 JP 2007521911 A SE 528366 C2 SE 0400347 A US 2007165781 A1 WO 2005077277 A1			04-01-2007 06-07-2011 09-08-2007 31-10-2006 11-11-2005 19-07-2007 25-08-2005