Title: FRICTION FIT TARGET ASSEMBLY

Abstract: A low temperature target and backing plate bonding process and assemblies made thereby. A plurality of male projections (8) are formed in one member (2) of the assembly with a plurality of corresponding female recesses (9) formed in the other member (4). The assembly is bonded by conventional techniques around the peripheral boundary (25) that surrounds the male and female portions (8, 9). The assembly is then pressure consolidated at low temperature so that the projections (8), circumscribed by the bonded zone, are force fit into the female recesses (9).
FRICITON FIT TARGET ASSEMBLY

Background of the Invention

The present application pertains to a low temperature sputter target/backing plate joining technique and to assemblies made thereby.

In my U.S. provisional patent applications 60/099,981, filed September 11, 1998 and 60/129,559, filed April 16, 1999, a target and backing plate are provided wherein the harder material of the two is machined or otherwise formed so as to have a plurality of ridges or other salient surface portions thereof. These ridges or salient portions are formed along the interior surface of the target or backing plate. The ridged surface is then placed alongside the mating surface of the other member of the assembly along the target/backing plate interface wherein joining will occur.

The peripheral portion of the interfacial surface assembly, surrounding the ridges or salient portions, is joined by conventional means such as electron beam welding, TIG welding, friction welding, soldering, brazing, etc., preferably under vacuum. The assembly is then pressed at a low temperature, preferably at room temperature.

The projections or ridges formed along either the target or backing plate bend upon penetration into the mating metal surface along the target/backing plate interface and form an interlocking grip over the softer metal on the opposing mating surface.

Summary of the Invention

In this invention, a target and backing plate are provided wherein both materials are similar in mechanical properties and both are machined or otherwise formed so as to have a plurality of ridges and grooves or other salient surface portions thereof. These ridges or salient portion are formed along the interior surface of the target or backing plate. The ridged surface is then placed alongside the mating surface (having appropriately positioned mating members) of the other member of the assembly along the target/backing plate interface wherein joining will occur.
The peripheral portion of the interfacial surface assembly is joined by conventional means such as electron beam welding, TIG welding, friction welding, soldering, brazing, etc., preferably under vacuum. The assembly is then pressed at a low temperature, preferably at room temperature.

The projections or ridges formed along either the target or backing plate penetrate into the mating members along the target/backing plate interface. The projections penetrate into the grooves on the opposing mating surface.

The projections and grooves have different sizes so that after penetration, a force or friction fit joint will be formed.

Other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.

Brief Description of the Drawings

Fig. 1 is a schematic cross sectional view of a target and backing plate assembly showing the friction fit joining mechanisms in the form of cylindrical male projections ready for insertion into cylindrical bores;

Fig. 2 is a schematic cross section showing another embodiment of the joining members having square male projections in one member and correspondingly square shaped recesses formed in the other member;

Fig. 3 is a schematic cross sectional view of the assembly shown in Fig. 1 in the mating or joined position;

Fig. 4 is a schematic cross sectional view of the assembly shown in Fig. 2 in the mating or joined position;

Fig. 5 is a partially exploded perspective view of the assembly of Fig. 1 before bonding; and

Fig. 6 is a partially exploded perspective view of the assembly of Fig. 2 before bonding.

Detailed Description of the Preferred Embodiment

Turning first to Fig. 1 there is shown a target/backing plate assembly. The assembly comprises a target 2 having a top side 23 carrying metal or metal alloy that, in accordance with conventional sputtering methods, will be ejected from the
target via ionic bombardment and will travel to and coat the desired substrate.

A backing plate 4 is provided under the target, with the bottom side 11 of the target adapted to mate with the top side 13 of the backing plate to define an interfacial surface area 28. Commonly, a heat exchange fluid such as water is circulated adjacent the bottom side 21 of the backing plate so as to cool the assembly during its sputtering operation.

As shown in the Fig. 1 embodiment a plurality of cylindrical male projections 8 are machined into the surface 11. The surface 13 is provided with cylindrical female bore members 9 of smaller diameter than the diameter of the male projections 8.

In some cases, it is desired to provide a filler material 6, such as an Al 4%Si alloy or other suitable alloy, in the form of a ring or the like, adjacent the peripheral border 25 of the assembly between the target and backing plate. The filler material 6 enhances bonding of the target to the backing plate as shall be explained hereinafter.

The assembly is first bonded around the peripheral border 25. This initial bonding along the peripheral border of the assembly may be achieved by conventional means such as by E-beam welding under vacuum conditions, TIG welding, and friction welding and the like. Preferably, the bonding of the peripheral boundaries of the target and backing plate is performed via E-beam welding under vacuum conditions.

After the peripheral bonding, the assembly is consolidated, via pressure application thereto, at pressure of about 50 tons - 5,000 tons; preferably less than about 1,000 tons, under low temperature conditions. The male members 8 are friction fit into the corresponding female bores 9.

After the low temperature pressure consolidation, the assembly may be subjected to a low temperature annealing step conducted at temperatures of about room to 400°C for a period of 0.5 to 4 hours. This will help ensure adequate adhesion of the pressure consolidated surfaces.

The phrase "low temperature pressure consolidation" refers to pressure consolidation that may occur at temperatures of less than about 50% of the melting temperature of the lower melting member of the target and backing plate.
Preferably, this temperature is less than about 200°C; most preferably at about room temperature up to about 38°C.

Turning now to Fig. 2, there is shown another embodiment of the invention wherein the target and backing plate may be joined by low temperature pressure consolidation. Here, the male projections 8 are in the form of elongated square cross sectioned members that are force fit into square recesses 9 formed in the backing plate 4.

Figs. 3 and 4 show the assemblies of Figs. 1 and 2 respectively in their mated positions in which, by reason of the low temperature pressure consolidation, the projecting male members are frictionally free fit in their mating, female recesses and in which the target and backing plate are bondingly joined.

Fig. 5 shows, in perspective, the male and female coupling members of the Fig. 1 embodiment. Male members 8 are in the form of a cylindrical dowel-like projection adapted for mating with the cylindrical bores 9. The bores 9 have a smaller id than the od of the projecting male members 8. As shown, the male members 8 and the bores 9 are arranged in a pattern of concentrically arranged annular rows.

Fig. 6 depicts the male/female mating members shown in the Fig. 2 embodiment. Here, the male members 8 are in the form of elongated square cross-sectioned studs adapted for reception into the smaller openings 9.

In one target/backing plate assembly bonding in accordance with the invention, rectangular cross-sectioned male projections were used and frictionally fit into corresponding rectangular female openings. The target and backing plate were both copper and the female openings were about 0.010" smaller than the male members. The male and female members were machined into the respective surfaces. The target/backing plate assembly was pressed so that the male and female coupling members were friction fit. After pressing, the peripheral portion of the assembly was welded via electron beam. After the welding step, a final machining operation was performed so that the welded area was not removed.

The locking joint of the invention can therefore be described as a friction fit joint formed between a projecting male member disposed on one member and a corresponding female opening formed in the other member.
While the methods described herein, and the target/backing plate assemblies produced in accordance with the methods, have been described with certain specific forms and certain modifications thereof, it will be appreciated that a wide variety of other modifications can be made without departing from the scope and spirit of this invention as defined in the appended claims. It is also to be kept in mind that reference to a metal or metal component herein also includes reference to alloyed forms of the stated metal.

Although copper to copper bonding is specifically mentioned, other metals can benefit from the invention. For example, Al target to Al backing plates may be joined using the methods herein disclosed. Other target to backing plate combinations are possible provide the mechanical characteristics of the metals such as hardness and thermal expansion, are similar.

The present invention provides advantage over diffusion bonding and other joining techniques that require higher temperatures in the consolidation.

Higher temperature conditions sometimes result in undesirable grain growth in the target metal.
--CLAIMS--

1. In a method of preparing a bonded sputter target/backing plate assembly comprising a target composed of a metal or alloy to be sputtered and an underlying metallic backing plate member, an improved method for joining said target and backing plate along mating surfaces thereof, comprising:

 a) forming a plurality of projecting male portions in at least one of said mating surfaces and a plurality of female recesses in said other of said mating surfaces;

 b) positioning said target and backing plate adjacent each other to form an assembly having an interface defined by said mating surfaces;

 c) pressure consolidating said assembly under low temperature conditions so that said male portions are friction fit into said female recesses.

2. Method as recited in claim 1 comprising the additional step of (d) bonding said assembly proximate the peripheral boundary of said assembly.

3. Method as recited in claim 2 wherein said step (d) is performed after said step (b) and before said step (c).

4. Method as recited in claim 3 wherein said step (d) comprises e-beam welding of said assembly.

5. Method as recited in claim 4 wherein said step (d) further comprises interposing a weldable filler material between said target and said backing plate proximate said peripheral boundary.

6. Method as recited in claim 2 wherein said step (d) comprises friction welding.

7. Method as recited in claim 2 wherein said step (d) comprises TIG welding.
8. Method as recited in claim 6 wherein said target comprises Cu.

9. Method as recited in claim 2 wherein said step (d) comprises e-beam welding said target along an annular zone located adjacent said peripheral boundary.

10. Method as recited in claim 1 wherein said step (c) comprises pressure consolidating said assembly at about room temperature.

11. Method as recited in claim 2 further comprising (e) low temperature annealing said pressure consolidated assembly.

12. Method of bonding a sputter target to a backing plate member along a plane defined by mating interfacial surfaces of said target and backing plate, said method comprising:
 a) forming a plurality of projecting male portions in one of said interfacial surfaces, and a plurality of female recesses in said other of said mating surfaces;
 b) positioning said target and backing plate in a position ready for bonding with said interfacial surfaces adjacent each other, and
 c) consolidating said target and backing plate at a temperature of less than about 50% of the melting point of the lower melting member of said target and said backing plate and at a pressure sufficient to force fit said male projections into said female recesses.

13. Method as recited in claim 12 wherein said step (c) is conducted at a temperature of less than 200°C.

14. Method as recited in claim 13 wherein said step (c) is conducted at a temperature of less than about 38°C.

15. Method as recited in claim 14 wherein said step (c) is conducted at about room temperature.
16. Method as recited in claim 15 wherein said target is Cu or Cu alloy.

17. Method as recited in claim 15 further comprising, prior to said step (c), a step (d) of bonding said target and backing plate member around a peripheral boundary portion of said mating interfacial surfaces.

18. Method as recited in claim 17 wherein said step (d) comprises interposing a weldable filler material between said target and said backing plate along said peripheral boundary portion.

19. Method as recited in claim 17 wherein step (d) comprises e-beam welding.

20. Target/Backing plate assembly made by any one of the preceding claims.

21. Combination comprising a sputter target and backing plate, said target and backing plate mating along a plane defined by mating interfacial surfaces of each, a plurality of projecting male portions formed in one of said interfacial surfaces and a plurality of mating female recesses formed in the other of said interfacial surfaces, said male portions being forceably fit into said female recesses.

22. Combination as recited in claim 21 further comprising a peripheral zone formed along said mating surfaces and surrounding said male portions and said female recesses, and a bondable filler material positioned in said peripheral zone.

23. Combination as recited in claim 21 wherein said target comprises Cu.

24. Combination as recited in claim 21 wherein said target comprises Al.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US90/18968

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : Please See Extra Sheet.
US CL : Please See Extra Sheet.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 29/525, 525.14; 219/121.12, 121.13; 228/165, 170, 171; 204/298.12, 298.13

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST search terms: target, backing, plate

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5,836,506 A (HUNT ET AL.) 17 NOVEMBER 1998, see columns 6-8.</td>
<td>1-24</td>
</tr>
<tr>
<td>X</td>
<td>US 5,269,899 A (FAN) 14 DECEMBER 1993, see column 4, lines 4-61.</td>
<td>1, 10, 12, 20, 21, 24</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,143,590 A (STROTHERS ET AL.) 01 SEPTEMBER 1992, see column 2, lines 60-64.</td>
<td>4, 9, 19</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,009,765 A (QAMAR ET AL.) 23 APRIL 1991, see column 4, lines 5-8.</td>
<td>5, 7, 18, 22</td>
</tr>
<tr>
<td>Y</td>
<td>JP 52,036,373 A (MATSUOKA ET AL.) 19 MARCH 1997, see figures 7a-7c.</td>
<td>1-24</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* "A" Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search
27 SEPTEMBER 2000

Date of mailing of the international search report
02 NOV 2000

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
TOM HUGHES

Telephone No. (703) 308-1806

Form PCT/ISA/210 (second sheet) (July 1998)*
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (7):
B23P 11/00, 17/00, 19/02; B23K 15/00, 31/02; B21D 39/00; C23C 14/00; C25B 9/00, 11/00, 13/00

A. CLASSIFICATION OF SUBJECT MATTER:
US CL:
29/525, 525.14; 219/121.12, 121.13; 228/165, 170, 171; 204/298.12, 298.13