

AUSTRALIA
Patents Act 1990

PATENT REQUEST: STANDARD PATENT/PATENT OF ADDITION

We, being the person identified below as the Applicant, request the grant of a patent to the person identified below as the Nominated Person, for an invention described in the accompanying standard complete specification.

Full application details follow.

[71] Applicant: CARRIER CORPORATION
Address: CARRIER PARKWAY, P.O. BOX 4800, SYRACUSE, NEW YORK 13221,
UNITED STATES OF AMERICA

[70] Nominated Person: CARRIER CORPORATION
Address: CARRIER PARKWAY, P.O. BOX 4800, SYRACUSE, NEW YORK 13221,
UNITED STATES OF AMERICA

[54] Invention Title: COUPLING MECHANISM FOR SCROLL MACHINES

[72] Name(s) of actual inventor(s): CHRISTOPHER R. GALANTE AND JAMES W. BUSH

[74] Address for service in Australia: c/o WATERMARK PATENT & TRADEMARK ATTORNEYS, of The Atrium,
290 Burwood Road, Hawthorn, Victoria 3122, Australia
Attorney Code: WM

BASIC CONVENTION APPLICATION(S) DETAILS

[31] Application Number	[33] Country	Country Code	[32] Date of Application
808,821	UNITED STATES OF AMERICA	US	17TH DECEMBER 1991

Drawing number recommended to accompany the abstract

By our Patent Attorneys,
WATERMARK PATENT & TRADEMARK ATTORNEYS

.....
Stephen K. Plymton
Registered Patent Attorney

DATED this 15th day of December 1992.

651509

Section 29 (1)
Regulation 3.1 (2)

AUSTRALIA

Patents Act 1990

NOTICE OF ENTITLEMENT


We, CARRIER CORPORATION, of Carrier Parkway, PO Box 4800, Syracuse, New York 13221, UNITED STATES OF AMERICA, being the applicant in respect of Application No. 30156/92 state the following:-

The Person nominated for the grant of the patent has entitlement from the actual inventors by assignment.

The person nominated for the grant of the patent has entitlement from the applicants of the basic application listed on the patent request form by assignment.

The basic application listed on the request form is the first application made in a Convention country in respect of the invention.

By our Patent Attorneys,
WATERMARK PATENT & TRADEMARK ATTORNEYS

16 May 1994

Stephen K. Plymin

Registered Patent Attorney

AU9230156

**(12) PATENT ABRIDGMENT (11) Document No. AU-B-30156/92
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 651509**

(54) Title
COUPLING MECHANISM FOR SCROLL MACHINES

(55)⁵ International Patent Classification(s)
**F04C 018/02 F01C 001/02 F01C 017/06 F04C 002/02
F04C 029/10 F16D 003/04**

(21) Application No. : **30156/92** (22) Application Date : **16.12.92**

(30) Priority Data

(31) Number **808821** (32) Date **17.12.91** (33) Country **US UNITED STATES OF AMERICA**

(43) Publication Date : **24.06.93**

(44) Publication Date of Accepted Application : **21.07.94**

(71) Applicant(s)
CARRIER CORPORATION

(72) Inventor(s)
CHRISTOPHER R. GALANTE; JAMES W. BUSH

(74) Attorney or Agent
WATERMARK PATENT & TRADEMARK ATTORNEYS, Locked Bag 5, HAWTHORN VIC 3122

(56) Prior Art Documents
US 3874827

(57) Claim

1. A fluid machine comprising:
a first scroll member having a wrap means for limiting said first scroll member to orbiting motion in an orbit having a first diameter;
a second scroll member having a wrap and a base and being operatively engaged with said first scroll member;
radial motion limiting means surrounding said base and coacting therewith to limit radial movement of said base and thereby said second scroll member to a predetermined distance;
means for limiting said second scroll member to orbiting motion in an orbit having a second diameter which is equal to said predetermined distance;
axial compliance means for maintaining said first and second scroll members in engagement, whereby said radial motion limiting means, said means for limiting said second scroll member to orbiting motion and said axial compliance means coact to maintain said second scroll member in axial and radial engagement with said first scroll member.

SUMMARY OF THE INVENTION

It is an object of this invention to couple two components in a fixed angular relationship while allowing one component to orbit about on anti-rotation structure.

5 It is another object of this invention to provide a co-orbiting scroll machine which maintains a fixed angular relationship between the two orbiting members.

With this in mind, the present invention provides in one aspect a fluid machine comprising:

10 a first scroll member having a wrap means for limiting said first scroll member to orbiting motion in an orbit having a first diameter;

a second scroll member having a wrap and a base and being operatively engaged with said first scroll member;

15 radial motion limiting means surrounding said base and coacting therewith to limit radial movement of said base and thereby said second scroll member to a predetermined distance;

means for limiting said second scroll member to orbiting motion in an orbit having a second diameter which is equal to said predetermined distance;

20 axial compliance means for maintaining said first and second scroll members in engagement, whereby said radial motion limiting means, said means for limiting said second scroll member to orbiting motion and said axial compliance means coact to maintain said second scroll member in axial and radial engagement with said first scroll member.

25 According to another aspect of the present invention, there is provided a low side hermetic scroll compressor means comprising:

shell means;

crankcase means fixedly located in said shell means;

30 first scroll means having a wrap and supported by said crankcase means;

first anti-rotation means coacting with said first scroll means to limit movement of said first scroll means to an orbiting motion having a first radius;

AUSTRALIA

Patents Act 1990

65 1509

**ORIGINAL
COMPLETE SPECIFICATION
STANDARD PATENT**

Application Number:

Lodged:

Invention Title: COUPLING MECHANISM FOR SCROLL MACHINES

The following statement is a full description of this Invention, including the best method of performing it known to :-US

COUPLING MECHANISM FOR SCROLL MACHINESBackground Of The Invention

In a scroll machine such as a pump, compressor or expander there is one basic coaction between the scroll elements in that one must orbit with respect to the other. The scroll element orbiting with respect to the other scroll element is generally called the orbiting scroll. In known designs both scroll elements are rotating, both are orbiting, or one is fixed or only capable of axial movement. A design where both scroll elements orbit, but at different radii, is exemplified by U.S. Patent 3,874,827 which discloses a number of embodiments. Basically, however, the disclosed embodiments have a driven orbiting scroll which has a fixed orbit and which, in turn, drives a driven scroll which is able to move in a minor/smaller orbit as well as axially. The driven scroll is acted on by discharge pressure which forces the driven scroll into axial engagement with the driving scroll. The driven scroll is also acted on by a resilient material member which tends to locate the driven scroll at a position corresponding to the center of the minor orbit. The driven scroll moves in an orbiting motion subject to the bias of the resilient material which may make the orbit non-circular. In the disclosed embodiments the compressor is of the open drive type with the motor above the scrolls and, in most embodiments, an anti-rotation device in the discharge chamber of the scrolls.

second scroll means having a wrap and a circular base and operatively engaged with said first scroll means;

5 pilot ring means surrounding said first and second scroll means and having a circular opening which receives said circular base with a radial clearance;

seal plate means overlying said second scroll means;

second anti-rotation means coacting with said second scroll means;

10 means securing said seal plate means, said pilot ring means and said crankcase means together as a unit containing said first and second scroll means and said first and second anti-rotation means;

15 said circular opening of said pilot ring means coacting with said circular base and said second anti-rotation means to limit motion of said second scroll means to an orbital motion having a second radius which corresponds to said radial clearance, whereby when said first scroll means is driven it, in turn, drives said second scroll means with said first and second scroll means moving in orbiting motions of said first and second radii, respectively.

Brief Description Of The Drawings

For a fuller understanding of the present invention, reference should now be made to the following detailed description thereof taken in conjunction with the accompanying drawings wherein:

Figure 1 is a partially cutaway horizontal section taken along line 1-1 of Figure 2; and

Figure 2 is a vertical section taken along a line corresponding to 2-2 of Figure 1.

Description Of The Preferred Embodiment

In the Figures, the numeral 10 generally designates a low side hermetic scroll compressor. Compressor 10 has a shell or casing 12 having a main body 12-1 with an upper cover 12-2. Separator plate 14 divides the shell 12 into a suction plenum 16 and a discharge plenum 17. A crankcase 20 is welded or otherwise suitably secured within main body 12-1 and supports crankshaft 22 and Oldham coupling 24 in a conventional manner. Crankshaft 22 receives hub 26-2 of major or driving scroll 26 in eccentrically located recess 22-1. Major or driving scroll 26 is supported by crankcase 20 and coacts with Oldham coupling 24 in a conventional manner. Crankshaft 22 drives major or driving scroll 26 at a fixed radius. Major or driving scroll 26 has a wrap 26-1 which coacts with wrap 28-1 of minor or driven scroll 28.

Major scroll 26, minor scroll 28 and Oldham coupling 24 are held in place between crankcase 20 and seal plate 30. Specifically, pilot ring 32 surrounds scrolls 26 and 28 and is accurately secured to seal plate 30 by precision dowels 34

so that seal plate 30 and pilot ring 32 are, effectively, an integral structure. Similarly, pilot ring 32 is accurately secured to crankcase 20 by precision dowels 21. If desired, pilot ring 32 and seal plate 30 can be parts of the same member thereby eliminating the need for dowels 34 and their associated bores. Minor scroll 28 has a base 28-2 having a plurality of circular recesses 28-3 formed therein. Preferably, there are three recesses 28-3 spaced 120° apart. Inner and outer annular recesses 28-4 and 28-5, respectively, are formed in the surface of base 28-2 and receive O-rings or other suitable seals 36 and 37, respectively. One or more restricted fluid passages 28-6 extend through base 28-2 from a point located between seals 36 and 37 and a point located between adjacent turns of wrap 28-1. A plurality of axially extending pins 40 corresponding in number and spacing to the centers of recesses 28-3 are located in bores 30-1 of seal plate 30.

In assembling compressor 10, with scroll 26 in place, wrap 28-1 of scroll 28 is placed in engagement with wrap 26-1 of scroll 26. Seals 36 and 37 are put in place. At this time or prior to setting scroll 28 in place, pilot ring 32 is accurately located with respect to crankcase 20 by precision dowels 21. The seal plate 30 is set in place such that pins 40 are received in corresponding recesses 28-3 and is doweled to pilot ring 32 such that bores defined by bores 30-2, 32-2 and 20-1 are aligned to form a continuous bore and bolts 42 are threaded into the continuous bores. Discharge tube 44 is located and sealed in bore 30-3 and separator plate 14 is secured to discharge tube 44 and main body 12-1. Cover 12-2 is then sealed in place. When so assembled, major scroll 26 is capable of orbital movement in a circle having a radius equal to the distance between A-A the axis crankshaft 22 and B-B the axis of hub 26-2. Scroll 28 is capable of orbital

movement through a circle having a diameter equal to the difference in diameters of recess 28-3 and pin 40 and a diameter equal to the difference in diameter between the base 28-2 and the corresponding portion of pilot ring 32 defined by annular surface 32-1.

In operation, a motor (not illustrated) drives crankshaft 22 causing it to rotate about its axis A-A carrying eccentrically located hub 26-2 of major scroll 26. Because major scroll 26 coacts with Oldham coupling 24, major scroll 26 is held to an orbiting motion when driven by crankshaft 22 with the radius of the orbit being equal to the distance between axes A-A and B-B. Wrap 26-1 of major scroll 26 coacts with wrap 28-1 of minor scroll 28 to trap volumes of gas from suction plenum 16 and compress the gas with the resultant compressed gas passing serially through discharge port 28-7, bore 30-3 and discharge tube 44 into discharge plenum 17 from which the compressed gas passes to the refrigeration system via an outlet (not illustrated). As the gas is being compressed the resultant pressure results in a force acting on scrolls 26 and 28 tending to separate them axially and radially. Radial movement of minor scroll 28 is limited by base 28-2 coacting with the inner annular surface 32-1 of pilot ring 32. Additionally, pins 40 limit movement of minor scroll 28 to an orbiting motion. Axial separation of scrolls 26 and 28 is limited by seal plate 30 which is bolted to pilot ring 32 and crankcase 20 by bolts 42. Axial separation of scrolls 26 and 28 is opposed by fluid pressure in annular chamber 50. Annular chamber 50 is located between seal plate 30 and minor scroll 28 with its inner boundary defined by seal 36 and its outer boundary defined by seal 37. Chamber 50 is in fluid communication with a location at an intermediate pressure in the compression process via one or more fluid passages 28-6. As a result, the pressure in

chamber 50 axially forces minor scroll 28 into axial engagement with major scroll 26.

To summarize the operation, major scroll 26 is driven in a fixed orbiting motion. Responsive to the fluid pressure of the compression process, base 28-2 of minor scroll is forced into engagement with surface 32-1 of pilot ring 32 and maintains engagement while being held to a minor orbiting motion by pins 40. Minor scroll 28 is held in axial engagement with major scroll 26 by fluid pressure in chamber 50.

Although a preferred embodiment of the present invention has been illustrated and described, other changes will occur to those skilled in the art. For example, seal plate 30 and pilot ring 32 can be portions of a single member thereby eliminating the need for dowels 34. Also, although the terms major and minor scrolls have been used, their orbits can be the same or the "minor" orbit may be larger than the "major" orbit. Further, chambers 50 can be located in seal plate 30 and pins 40 carried by scroll 28. It is therefore intended that the scope of the present invention is to be limited only by the scope of the appended claims.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A fluid machine comprising:
 - a first scroll member having a wrap means for limiting said first scroll member to orbiting motion in an orbit having a first diameter;
 - a second scroll member having a wrap and a base and being operatively engaged with said first scroll member;
 - radial motion limiting means surrounding said base and coacting therewith to limit radial movement of said base and thereby said second scroll member to a predetermined distance;
 - means for limiting said second scroll member to orbiting motion in an orbit having a second diameter which is equal to said predetermined distance;
 - axial compliance means for maintaining said first and second scroll members in engagement, whereby said radial motion limiting means, said means for limiting said second scroll member to orbiting motion and said axial compliance means coact to maintain said second scroll member in axial and radial engagement with said first scroll member.
2. The fluid machine of claim 1 wherein said axial compliance means includes means overlying said base and defining therewith a fluid pressure chamber and fluid path means connecting said fluid pressure chamber to a pressurized trapped volume defined between said wraps of said first and second scroll members.
3. The fluid machine of claim 2 wherein said means for limiting said second scroll member to orbiting motion is located within said fluid pressure chamber.
4. A low side hermetic scroll compressor means comprising:
 - shell means;
 - crankcase means fixedly located in said shell means;

first scroll means having a wrap and supported by said crankcase means;

first anti-rotation means coacting with said first scroll means to limit movement of said first scroll means to an orbiting motion having a first radius;

second scroll means having a wrap and a circular base and operatively engaged with said first scroll means;

pilot ring means surrounding said first and second scroll means and having a circular opening which receives said circular base with a radial clearance;

seal plate means overlying said second scroll means;

second anti-rotation means coacting with said second scroll means;

means securing said seal plate means, said pilot ring means and said crankcase means together as a unit containing said first and second scroll means and said first and second anti-rotation means;

said circular opening of said pilot ring means coacting with said circular base and said second anti-rotation means to limit motion of said second scroll means to an orbital motion having a second radius which corresponds to said radial clearance, whereby when said first scroll means is driven it, in turn, drives said second scroll means with said first and second scroll means moving in orbiting motions of said first and second radii, respectively.

5. The scroll compressor means of claim 4 further comprising axial compliance means including a fluid pressure chamber defined by said seal plate means and said second scroll means and fluid path means connecting said fluid pressure chamber to a pressurized trapped volume defined between said wraps of said first and second scroll means.

6. The scroll compressor means of claim 4 wherein said second anti-rotation means is located within said fluid pressure chamber.

7. The scroll compressor means of claim 4 wherein said second anti-

rotation means includes a plurality of pins carried by said seal plate and received in corresponding recesses in said base with said pins and said recesses having a difference in diameters which is equal to twice said second radius.

DATED this 16th day of May, 1994.

CARRIER CORPORATION

WATERMARK PATENT &
TRADEMARK ATTORNEYS
THE ATRIUM
290 BURWOOD ROAD
HAWTHORN VICTORIA 3122
AUSTRALIA

COUPLING MECHANISM FOR SCROLL MACHINESABSTRACT OF THE DISCLOSURE

Co-orbiting scroll members are maintained in a fixed angular relationship. Each of the scroll members coacts with anti-rotation structure. The scroll members orbit in orbits of different radii.

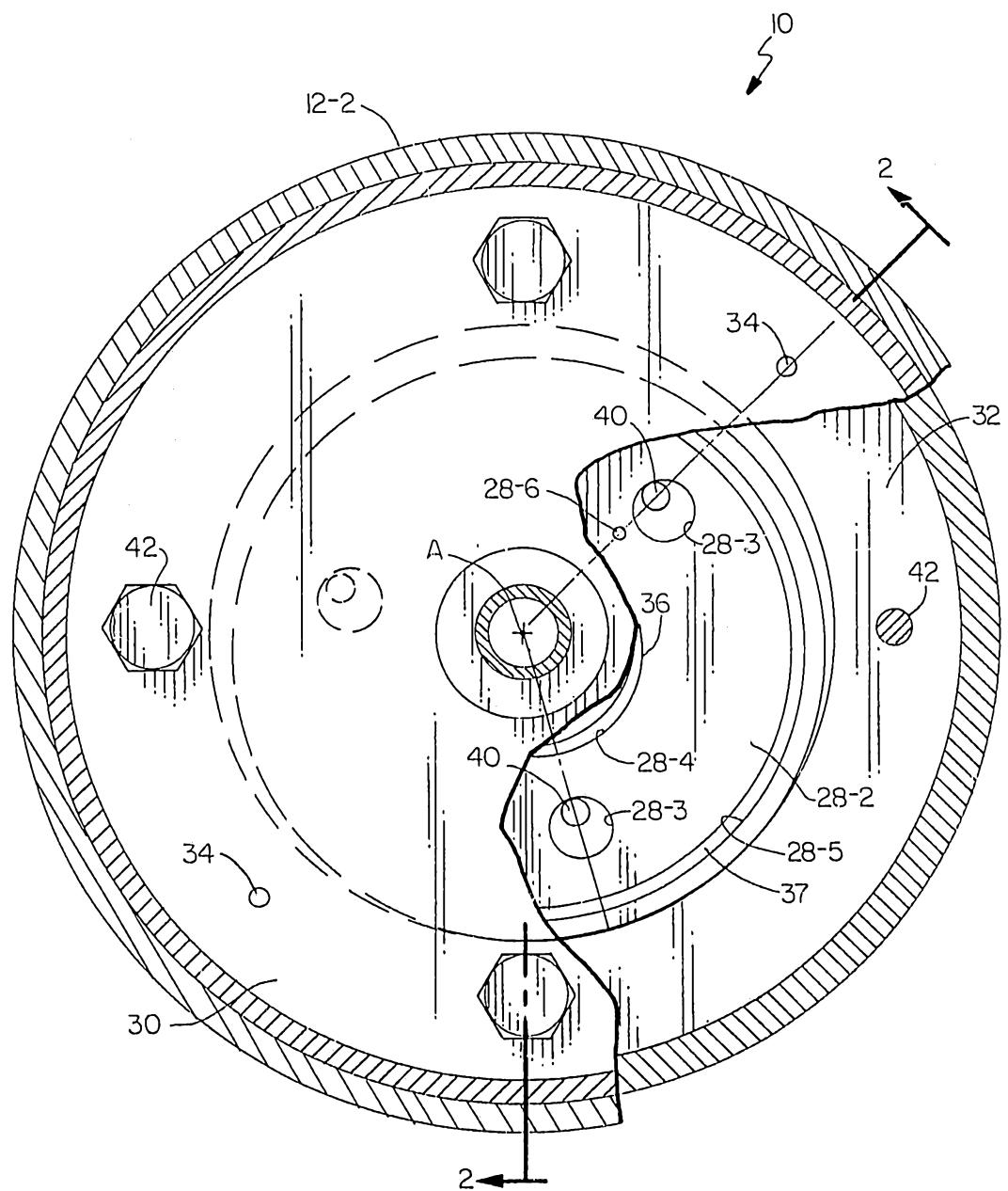
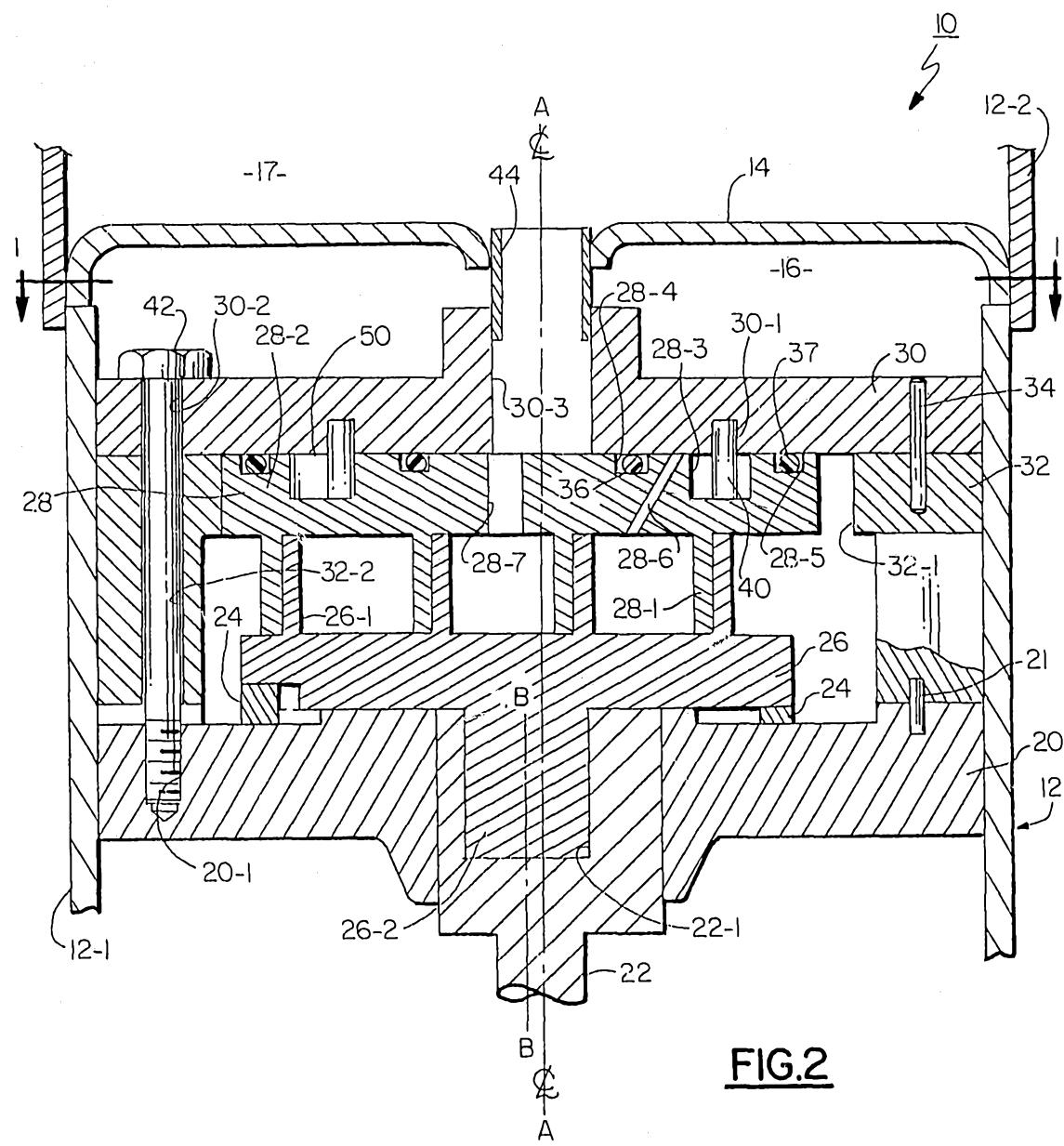



FIG. I

FIG.2