

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/106600 A1

(43) International Publication Date
14 June 2018 (14.06.2018)

(51) International Patent Classification:
G05F 1/618 (2006.01) *H03M 1/12* (2006.01)

(21) International Application Number:
PCT/US2017/064528

(22) International Filing Date:
04 December 2017 (04.12.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
15/369,225 05 December 2016 (05.12.2016) US

(71) Applicant: TEXAS INSTRUMENTS INCORPORATED [US/US]; P.O. Box 655474, Mail Station 3999, Dallas, TX 75265-5474 (US).

(71) Applicant (for JP only): TEXAS INSTRUMENTS JAPAN LIMITED [JP/JP]; 24-1, Nishi-shinjuku 6-chome, Shinjuku-ku, Tokyo 160-8366 (JP).

(72) Inventor: HSIEH, Tien-ling; 1016 Carson Drive, Allen, TX 75002 (US).

(74) Agent: DAVIS, Michael, A. et al.; Texas Instruments Incorporated, P.O. Box 655474, Mail Station 3999, Dallas, TX 75265-5474 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

(54) Title: VOLTAGE CLAMP CIRCUIT

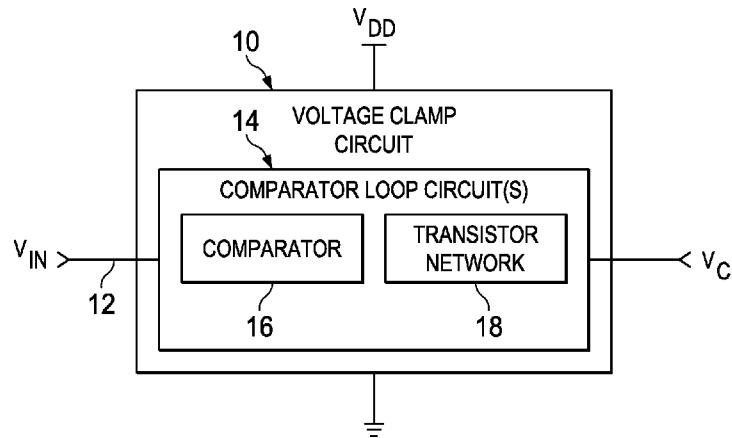


FIG. 1

(57) **Abstract:** One example includes a voltage clamp circuit (10). The voltage clamp circuit (10) includes a comparator loop circuit (14). The comparator loop circuit (14) includes a comparator (16) configured to compare an input voltage provided at an input node (12) with a clamping voltage. The comparator loop circuit (14) also includes a transistor network (18) interconnecting a voltage rail and the input node (12). The comparator (16) can be configured to activate the transistor network (18) to set the input voltage to be approximately equal to the clamping voltage in response to the input voltage exceeding the corresponding clamping voltage.

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

VOLTAGE CLAMP CIRCUIT

[0001] This relates generally to electronic circuits, and more particularly to a voltage clamp circuit.

BACKGROUND

[0002] Analog and digital circuits are often implemented together in electronic devices that employ thin-oxide gate materials are typically used in a variety of switching applications. One such application is in analog-to-digital converters (ADCs) that can generate a digital signal in response to an analog input signal. While thin-oxide gate materials can be implemented to fabricate electronic devices at smaller sizes, such thin-oxide devices can be stressed by large voltage swings, which can result in reliability and longevity issues of the electronic devices that implement the thin-oxide devices. As a result, clamp circuits can be used to clamp the amplitudes of the voltages that can be provided to such thin-oxide devices. As a result, the amplitudes of the voltages that are provided to such devices can be limited to safe levels, thus mitigating damage to the devices.

SUMMARY

[0003] One example includes a voltage clamp circuit. The voltage clamp circuit includes a comparator loop circuit. The comparator loop circuit includes a comparator configured to compare an input voltage provided at an input node with a clamping voltage. The comparator loop circuit also includes a transistor network interconnecting a voltage rail and the input node. The comparator can be configured to activate the transistor network to set the input voltage to be approximately equal to the clamping voltage in response to the input voltage exceeding the corresponding clamping voltage.

[0004] Another example includes a voltage clamp circuit. The circuit includes a first comparator loop circuit comprising a first comparator configured to compare an input voltage with a low clamping voltage and to assert an output in response to the input voltage decreasing less than the low clamping voltage to activate at least one first transistor to set the input voltage approximately equal to the low clamping voltage. The circuit also includes a second comparator loop circuit comprising a second comparator configured to compare the input voltage with a high

clamping voltage and to assert an output in response to the input voltage increasing greater than the high clamping voltage to activate at least one second transistor set the input voltage approximately equal to the high clamping voltage.

[0005] Another example includes an analog-to-digital converter (ADC) system. The system includes an input resistor interconnecting an analog voltage input and an ADC input node and a voltage clamp circuit coupled to the ADC input node. The voltage clamp circuit includes a comparator loop circuit that includes a comparator configured to compare an input voltage provided at an input node with a clamping voltage. The comparator loop circuit also includes a transistor network interconnecting a voltage rail and the input node. The comparator can be configured to activate the transistor network to set the input voltage to be approximately equal to the clamping voltage in response to the input voltage exceeding the corresponding clamping voltage. The system further includes an ADC coupled to the ADC input node and being configured to generate a digital signal based on the input voltage.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0006] FIG. 1 illustrates an example of a voltage clamp circuit.
- [0007] FIG. 2 illustrates another example of a voltage clamp circuit.
- [0008] FIG. 3 illustrates yet another example of a voltage clamp circuit.
- [0009] FIG. 4 illustrates yet another example of a voltage clamp circuit.
- [0010] FIG. 5 illustrates an example of an analog-to-digital converter system.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

[0011] In this description, a voltage clamp circuit is configured to receive an input voltage and to provide amplitude clamping of the input voltage with respect to at least one clamping voltage. The voltage clamp circuit includes at least one comparator loop circuit. The at least one comparator loop circuit includes one or more respective comparators configured to compare the input voltage provided at an input node with a respective at least one clamping voltage. The comparator loop circuit is also configured to activate a transistor network to set the input voltage approximately equal to one of the clamping voltage(s) in response to the input voltage exceeding an amplitude of the respective at least one clamping voltage (e.g., increasing in amplitude greater than a high clamping voltage or decreasing in amplitude less than a low clamping voltage). As an example, the at least one comparator loop circuit can include a first comparator loop circuit configured to compare the input voltage with a high clamping voltage and to set the input voltage

approximately equal to the high clamping voltage in response to the input voltage increasing more than the high clamping voltage, and can include a second comparator loop circuit configured to compare the input voltage with a low clamping voltage and to set the input voltage approximately equal to the low clamping voltage in response to the input voltage decreasing less than the low clamping voltage.

[0012] As an example, the comparator(s) can be configured as a self-biasing common-gate arrangement of transistors. For example, the comparator(s) can include a first pair of transistors comprising common-coupled control terminals (e.g., gate terminals of field-effect transistors (FETs)) corresponding to an output of the respective at least one comparator. The output can be coupled to a transistor network associated with the comparator loop circuit that is configured to couple the input node to a respective one of a high-voltage rail or a low-voltage rail in response to activation of the respective comparator based on the amplitude of the input voltage. The first pair of transistors can also include first terminals coupled to the input node and one of the respective at least one clamping voltage, respectively. The comparator(s) can also include a second pair of transistors arranged as a current-mirror controlled by a static current source and further comprising respective first terminals coupled to a voltage rail and second terminals coupled to second respective terminals of the first pair of transistors. The pairs of transistors can thus conduct current based on a relative amplitude of the input voltage and the respective clamping voltage, such that the current flow through the arrangement of transistors can control activation and deactivation of the transistors associated with the comparator loop circuit. Accordingly, the transistor network associated with the comparator loop circuit can provide current to and from the input node to clamp the input voltage at approximately the amplitude of a respective one of the clamping voltage(s).

[0013] FIG. 1 illustrates an example of a voltage clamp circuit 10. The voltage clamp circuit 10 can be configured to clamp an input voltage V_{IN} that is provided at an input node 12 at an amplitude that is approximately equal to one of at least one clamping voltage V_C . As an example, the clamping voltage(s) V_C can be programmable (e.g., via a voltage provided to a pin, a variable resistor, or a variety of other ways), and thus can vary from one application to another. For example, the clamping voltage(s) V_C can include a high clamping voltage V_{CH} and a low clamping voltage V_{CL} , such that the voltage clamp circuit 10 can be configured to limit the amplitude of the input voltage V_{IN} to be between the high and low clamping voltages V_{CH} and

V_{CL} . As an example, additional circuitry can be coupled to the input node 12, such as an analog-to-digital converter (ADC) that may benefit from limiting the amplitude of the input voltage V_{IN} .

[0014] The voltage clamp circuit 10 is demonstrated between a high-voltage rail V_{DD} and a low-voltage rail, demonstrated in the example of FIG. 1 as ground. The voltage clamp circuit 10 includes at least one comparator loop circuit 14 that is configured to compare the amplitude of the input voltage V_{IN} with the respective clamping voltage(s) V_C via a comparator 16. In response to the input voltage V_{IN} having an amplitude that exceeds one of the respective clamping voltage(s) V_C , the respective one of the comparator loop circuit(s) 14 can activate an output via the respective comparator 16 to activate a transistor network 18 to set the input voltage V_{IN} approximately equal to the respective clamping voltage V_C .

[0015] As an example, the transistor network 18 can be configured to couple the input node 12 to a voltage source, such as corresponding to a rail voltage (e.g., the high-voltage rail V_{DD} or ground) or the respective clamping voltage V_C . As a result, the transistor network 18 can provide current from the voltage (e.g., the rail voltage or the respective clamping voltage V_C) to the input node 12, such as in response to the input voltage decreasing less than a low clamping voltage. Similarly, the transistor network 18 can provide current from the input node 12 to the voltage source, such as in response to the input voltage V_{IN} increasing greater than the clamping voltage V_C . Accordingly, the amplitude of the input voltage V_{IN} can be clamped at approximately the amplitude of the respective clamping voltage V_C between clamping voltages V_{CH} and V_{CL} .

[0016] FIG. 2 illustrates another example of a voltage clamp circuit 50. The voltage clamp circuit 50 can be configured to clamp an input voltage V_{IN} that is provided at an input node 52 at an amplitude that is approximately equal to one of a high clamping voltage V_{CH} and a low clamping voltage V_{CL} . As an example, the clamping voltages V_{CH} and V_{CL} can each be programmable, and thus can vary from one application to another. Therefore, the voltage clamp circuit 50 can be configured to limit the amplitude of the input voltage V_{IN} to be between the high and low clamping voltages V_{CH} and V_{CL} . As an example, additional circuitry can be coupled to the input node 52, such as an ADC that may benefit from limiting the amplitude of the input voltage V_{IN} .

[0017] The voltage clamp circuit 50 is demonstrated between a high-voltage rail V_{DD} and a

low-voltage rail, demonstrated in the example of FIG. 2 as ground. The voltage clamp circuit 50 includes a first comparator loop circuit 54 and a second comparator loop circuit 56. The first comparator loop circuit 54 includes a comparator 58 that receives the input voltage V_{IN} at an inverting input and the low clamping voltage V_{CL} at a non-inverting input, and which provides an output signal CL1. The first comparator loop circuit 54 also includes a first N-channel field effect transistor (FET) N_1 (e.g., an N-channel metal oxide semiconductor field effect transistor (MOSFET)) having a gate that is coupled to the output of the comparator 58, having a drain coupled to a control node 60, and having a source that is coupled to the input node 52. The first comparator loop circuit 54 also includes a first P-FET (e.g., MOSFET) P_1 having a gate that is provided a static bias voltage V_{B1} , a drain coupled to the control node 60, and a source that is coupled to the high-voltage rail V_{DD} . Also, the first comparator loop circuit 54 includes a second P-FET P_2 having a gate that is coupled to the control node 60, having a drain coupled to the input node 52, and having a source that is coupled to the high-voltage rail V_{DD} . The N-FET N_1 , the P-FET P_1 , and the P-FET P_2 can correspond to the transistor network 18 of the first comparator loop circuit 54. As an example, the second P-FET P_2 can have a gate size (e.g., gate width and/or gate width to length ratio) that is substantially greater than the gate size (e.g., gate width and/or gate width to length ratio) of each of the N-FET N_1 and the P-FET P_1 .

[0018] The comparator 58 is configured to compare the amplitude of the input voltage V_{IN} with the low clamping voltage V_{CL} . During a steady state, and thus based on the input voltage V_{IN} having an amplitude that is greater than the low clamping voltage V_{CL} , the static bias voltage V_{B1} holds the P-FET P_1 in a weakly activated state (e.g., based on a low gate-source voltage to provide operation of the P-FET P_1 in the linear mode) and the output signal CL1 has a logic-low state, thus holding the N-FET N_1 in a deactivated state. As a result, the control node 60 has a voltage that is insufficient to activate the P-FET P_2 . However, in response to the input voltage V_{IN} having an amplitude that decreases less than the low clamping voltage V_{CL} , the comparator 58 can assert the output signal CL1 to activate the N-FET N_1 . In response to activation of the N-FET N_1 , the control node 60 is coupled to the input node 52 via the N-FET N_1 to sink the voltage of the control node 60 to approximately the amplitude of the input voltage V_{IN} . Therefore, the P-FET P_2 becomes activated to provide current from the high-voltage rail V_{DD} to the input node 52. Accordingly, the current flow from the high-voltage rail V_{DD} to the input node 52 can clamp the amplitude of the input voltage V_{IN} to approximately the amplitude of the

low clamping voltage V_{CL} . Accordingly, the input node 52, the comparator 58, and the P-FET P_2 can operate as a loop circuit to maintain the input voltage V_{IN} at approximately the amplitude of the low clamping voltage V_{CL} based on the output signal CL1 of the comparator 58 when the input voltage is less than the low clamping voltage. In response to the amplitude of the input voltage V_{IN} increasing from the low clamping voltage V_{CL} , the comparator 58 de-asserts the output signal CL1 to deactivate the N-FET N_1 , thus deactivating the P-FET P_2 . Accordingly, the first comparator loop circuit 54 deactivates to cease clamping the input voltage V_{IN} at the amplitude of the low clamping voltage V_{CL} .

[0019] The second comparator loop circuit 56 is configured substantially similar to the first comparator loop circuit 54. In the example of FIG. 2, the second comparator loop circuit 56 includes a comparator 62 that receives the input voltage V_{IN} at an inverting input and the high clamping voltage V_{CH} at a non-inverting input, and which provides an output signal CL2. The first comparator loop circuit 56 also includes a first P-FET P_3 having a gate that is coupled to the output of the comparator 62, having a drain coupled to a control node 64, and having a source that is coupled to the input node 52. The second comparator loop circuit 56 also includes a first N-FET N_2 having a gate that is provided a static bias voltage V_{B2} , a drain coupled to the control node 64, and a source that is coupled to the low-voltage rail. Also, the second comparator loop circuit 56 includes a second N-FET N_3 having a gate that is coupled to the control node 64, having a drain coupled to the input node 52, and having a source that is coupled to the low-voltage rail. The P-FET N_3 , the N-FET N_2 , and the N-FET N_3 can correspond to the transistor network 18 of the second comparator loop circuit 56. As an example, the second N-FET N_3 can have a gate size that is substantially greater than the gate size of each of the N-FET N_2 and the P-FET P_3 .

[0020] The comparator 62 is configured to compare the amplitude of the input voltage V_{IN} with the high clamping voltage V_{CH} . During a steady state, and thus based on the input voltage V_{IN} having an amplitude that is less than the high clamping voltage V_{CH} , the static bias voltage V_{B2} holds the N-FET N_2 in a weakly activated state and the output signal CL2 has a logic-low state, thus holding the P-FET P_3 in a deactivated state. As a result, the control node 64 has a voltage that is insufficient to activate the N-FET N_3 . However, in response to the input voltage V_{IN} having an amplitude that increases greater than the high clamping voltage V_{CH} , the comparator 62 can assert the output signal CL2 to activate the P-FET P_3 . In response to

activation of the P-FET P_3 , the control node 64 is coupled to the input node 52 via the P-FET P_3 to source the voltage of the control node 64 from the input voltage V_{IN} . Therefore, the N-FET N_3 becomes activated to provide current from the input node 52 to the low-voltage rail. Accordingly, the current flow from the input node 52 to the low-voltage rail can clamp the amplitude of the input voltage V_{IN} to approximately the amplitude of the high clamping voltage V_{CH} . Accordingly, the input node 52, the comparator 62, and the N-FET N_3 can operate as a loop circuit to maintain the input voltage V_{IN} at approximately the amplitude of the high clamping voltage V_{CH} based on the output signal CL2 of the comparator 62 when the input voltage is greater than the low clamping voltage. In response to the amplitude of the input voltage V_{IN} decreasing from the high clamping voltage V_{CH} , the comparator 62 de-asserts the output signal CL2 to deactivate the N-FET N_3 , thus deactivating the P-FET P_3 . Accordingly, the second comparator loop circuit 56 deactivates to cease clamping the input voltage V_{IN} at the amplitude of the high clamping voltage V_{CH} .

[0021] The voltage clamp circuit 50 can thus provide an effective and efficient manner of clamping the input voltage V_{IN} to the high clamping voltage V_{CH} and the low clamping voltage V_{CL} to maintain the input voltage V_{IN} between the amplitudes of the high clamping voltage V_{CH} and the low clamping voltage V_{CL} . As described hereinabove, the high clamping voltage V_{CH} and the low clamping voltage V_{CL} can be programmable, and can thus provide a dynamic manner of setting the clamping amplitudes of the input voltage V_{IN} , in contrast to conventional clamping circuits that implement diode-connections. Also, the arrangement of the first and second comparator loop circuits 54 and 56 is such that only the P-FET P_2 and the N-FET N_3 are sized and configured to be able to handle large current flow, and conduct approximately zero current in a non-clamping condition to substantially mitigate leakage current of the voltage clamp circuit 10. Furthermore, the voltage clamp circuit 50 is exhibited as a high impedance node when the voltage clamp circuit 50 deactivated (i.e., the input signal IN has an amplitude between the high clamping voltage V_{CH} and the low clamping voltage V_{CL}). Therefore, the voltage clamp circuit 50 does not distort the input signal IN in the deactivated state.

[0022] As an example, the comparators 58 and 62 can be configured as self-biasing common-gate arrangements of transistors. FIG. 3 illustrates yet another example of a voltage clamp circuit 100. As described herein, the voltage clamp circuit 100 can correspond to the voltage clamp circuit 50 in the example of FIG. 2, and can thus be configured to clamp an input

voltage V_{IN} that is provided at an input node 102 at an amplitude that is approximately equal to one of a high clamping voltage V_{CH} and a low clamping voltage V_{CL} . As an example, the clamping voltages V_{CH} and V_{CL} can each be programmable, and thus can vary from one application to another.

[0023] The voltage clamp circuit 100 is demonstrated between a high-voltage rail V_{DD} and a low-voltage rail, demonstrated in the example of FIG. 3 as ground. The voltage clamp circuit 100 includes a first comparator loop circuit 104 and a second comparator loop circuit 106. The first comparator loop circuit 104 includes a comparator 108 that is configured as a self-biasing common-gate arrangements of transistors. The comparator 108 includes a first pair of transistors, demonstrated in the example of FIG. 3 as an N-FET N_4 and an N-FET N_5 . The N-FETs N_4 and N_5 include common-coupled gates that are likewise coupled to the gate of the N-FET N_1 . Therefore, the common-coupled gates of the N-FETs N_4 and N_5 correspond to the output of the comparator 108 on which the output signal $CL1$ is provided. The N-FET N_4 has a source that is coupled to the input node 102, and the N-FET N_5 has a source that is coupled to the low clamping voltage V_{CL} . Also, the N-FET N_5 is diode-connected.

[0024] The comparator 108 also includes a second pair of transistors, demonstrated in the example of FIG. 3 as a P-FET P_4 and a P-FET P_5 that include common-coupled gates, and are arranged as a current-mirror. In the example of FIG. 3, the P-FETs P_4 and P_5 have gates that are controlled by a static current source 110 to provide a very small amplitude current I_{B1} (e.g., approximately $1\mu A$) that flows from the gates to ground to provide a substantially weak activation of the P-FETs P_4 and P_5 . The P-FETs P_4 and P_5 have sources that are coupled to the high-voltage rail V_{DD} , and have drains that are coupled to the respective drains of the N-FETs N_4 and N_5 . The current-mirror configuration of the P-FETs P_4 and P_5 is such that the current flow through the respective P-FETs P_4 and P_5 is driven to be approximately equal.

[0025] The comparator 108 operates similar to as described in the example of FIG. 2 to compare the amplitude of the input voltage V_{IN} with the low clamping voltage V_{CL} . During a steady state, and thus based on the input voltage V_{IN} having an amplitude that is greater than the low clamping voltage V_{CL} , the N-FET N_4 has a smaller gate-source voltage than the N-FET N_5 . Therefore, a current I_1 , having a relatively small amplitude based on a relatively small gate-source voltage of the N-FET N_4 , flows from the high-voltage rail V_{DD} to the input node 102 through the P-FET P_4 and the N-FET N_4 . The current I_1 is thus mirrored as a current I_2 , having a

current amplitude that is approximately equal to the current I_1 , that flows through the P-FET P_5 and the N-FET N_5 based on the current-mirror configuration of the P-FETs P_4 and P_5 . As described hereinabove, the current-mirror configuration of the N-FETs N_4 and N_5 is such that the current flow through the respective N-FETs N_4 and N_5 is driven to be approximately equal. Thus, based on the relatively small amplitude of the current I_2 , the drain-gate voltage of the N-FET N_5 decreases to adjust the gate-source voltage of the N-FET N_5 to maintain the current I_2 to be approximately equal to the relatively small amplitude of the current I_1 . Therefore, as a result of the relatively small amplitude of the current I_1 , and thus also the current I_2 , the N-FET N_5 is driven to have a decreased gate-source voltage. The decrease of the amplitude of the drain voltage of the N-FET N_5 therefore likewise results in a decrease in the amplitude of the gate voltage of all of the N-FETs N_1 , N_4 , and N_5 . The gate voltage of the N-FET N_4 thus decreases the amplitude of the current I_1 more, and thus likewise decreases the current I_2 . As a result, the continued decrease in the amplitude of the gate voltages of the N-FETs N_1 , N_4 , and N_5 corresponds to a logic-low state of the output signal $CL1$, which thus corresponds to deactivation of the N-FET N_1 . Accordingly, the first comparator loop circuit 104 can operate in the steady state while the input voltage V_{IN} has an amplitude that is greater than the low clamping voltage V_{CL} .

[0026] In response to the input voltage V_{IN} decreasing less than the low clamping voltage V_{CL} , the N-FET N_4 has a larger gate-source voltage than the N-FET N_5 . Therefore, the current I_1 that flows from the high-voltage rail V_{DD} to the input node 102 through the P-FET P_4 and the N-FET N_4 increases in amplitude relative to the steady-state. The current I_1 is thus mirrored as the current I_2 having a likewise increased current amplitude relative to the steady-state, and therefore flows through the P-FET P_5 and the N-FET N_5 based on the current-mirror configuration of the P-FETs P_4 and P_5 . Thus, the N-FET N_5 is driven to have a gate-source voltage that is approximately equal to the relatively larger gate-source voltage of the N-FET N_4 . Based on the diode-connected configuration and constant source voltage of the N-FET N_5 , the increase of the gate-source voltage of the N-FET N_5 results in an increase of the amplitude of the drain voltage of the N-FET N_5 , and thus an increase in the amplitude of the gate voltage of the N-FETs N_1 , N_4 , and N_5 . The gate voltage of the N-FET N_4 thus increases the amplitude of the current I_1 more, and thus likewise increases the current I_2 . As a result, the continued increase in the amplitude of the gate voltages of the N-FETs N_1 , N_4 , and N_5 corresponds to a logic-high state of the output

signal CL1, which thus activates the N-FET N₁. Accordingly, the N-FET N₁ and the P-FET P₂ can thus activate to provide current flow to the input node 102 as described hereinabove. Based on the current-mirror configuration of the P-FETs P₄ and P₅ to maintain the currents I₁ and I₂ to be approximately equal, the comparator 108 can maintain the gate-source voltages of the respective N-FETs N₄ and N₅ to be approximately equal to clamp the input voltage V_{IN} at approximately the amplitude of the low clamping voltage V_{CL}.

[0027] The second comparator loop circuit 106 includes a comparator 112 that is configured as a self-biasing common-gate arrangements of transistors. The comparator 112 includes a first pair of transistors, demonstrated in the example of FIG. 3 as a P-FET P₆ and a P-FET P₇. The P-FETs P₆ and P₇ include common-coupled gates that are likewise coupled to the gate of the P-FET P₃. Therefore, the common-coupled gates of the P-FETs P₆ and P₇ correspond to the output of the comparator 112 on which the output signal CL2 is provided. The P-FET P₆ has a source that is coupled to the input node 102, and the P-FET P₇ has a source that is coupled to the high clamping voltage V_{CH}. Also, the P-FET P₇ is diode-connected.

[0028] The comparator 112 also includes a second pair of transistors, demonstrated in the example of FIG. 3 as an N-FET N₆ and an N-FET N₇ that include common-coupled gates, and are thus arranged as a current-mirror. In the example of FIG. 3, the N-FETs N₆ and N₇ have gates that are controlled by a static current source 114 to provide a very small amplitude current I_{B2} (e.g., approximately 1 μ A) that flows to the gates from the high-voltage rail V_{DD} to provide a substantially weak activation of the N-FETs N₆ and N₇. The N-FETs N₆ and N₇ have sources that are coupled to the low-voltage rail, and have drains that are coupled to the respective drains of the P-FETs P₆ and P₇. The current-mirror configuration of the N-FETs N₆ and N₇ is such that the current flow through the respective N-FETs N₆ and N₇ is driven to be approximately equal.

[0029] The comparator 112 operates similar to as described in the example of FIG. 2 to compare the amplitude of the input voltage V_{IN} with the high clamping voltage V_{CH}. During a steady state, and thus based on the input voltage V_{IN} having an amplitude that is less than the high clamping voltage V_{CH}, the P-FET P₆ has a smaller gate-source voltage than the P-FET P₇. Therefore, a current I₃, having a relatively small amplitude, based on a relatively small gate-source voltage of the P-FET P₆, flows from the input node 102 to the low-voltage rail through the N-FET N₆ and the P-FET P₆. The current I₃ is thus mirrored as a current I₄, having a current amplitude that is approximately equal to the current I₃, that flows through the N-FET N₇.

and the P-FET P_7 based on the current-mirror configuration of the N-FETs N_6 and N_7 . As described hereinabove, the current-mirror configuration of the N-FETs N_6 and N_7 is such that the current flow through the respective P-FETs P_6 and P_7 is driven to be approximately equal. Thus, based on the relatively small amplitude of the current I_4 , the drain-gate voltage of the P-FET P_7 increases to adjust the gate-source voltage of the P-FET P_7 to maintain the current I_4 to be approximately equal to the relatively small amplitude of the current I_3 . Therefore, as a result of the relatively small amplitude of the current I_3 , and thus also the current I_4 , the P-FET P_7 is driven to have an increased gate-source voltage. The increase of the amplitude of the drain voltage of the P-FET P_7 therefore likewise results in an increase in the amplitude of the gate voltage of all of the P-FETs P_3 , P_6 , and P_7 . The gate voltage of the P-FET P_6 thus decreases the amplitude of the current I_3 more, and thus likewise decreases the current I_4 . As a result, the continued increase in the amplitude of the gate voltages of the P-FETs P_3 , P_6 , and P_7 corresponds to a logic-high state of the output signal $CL2$, which thus corresponds to deactivation of the P-FET P_3 . Accordingly, the second comparator loop circuit 106 can operate in the steady state while the input voltage V_{IN} has an amplitude that is less than the high clamping voltage V_{CH} .

[0030] In response to the input voltage V_{IN} increasing greater than the high clamping voltage V_{CH} , the P-FET P_6 has a larger gate-source voltage than the P-FET P_7 . Therefore, the current I_3 that flows from the input node 102 to the low-voltage rail through the N-FET N_6 and the P-FET P_6 increases in amplitude relative to the steady-state. The current I_3 is thus mirrored as the current I_4 having a likewise increased current amplitude relative to the steady-state, and therefore flows through the N-FET N_7 and the P-FET P_7 based on the current-mirror configuration of the N-FETs N_6 and N_7 . Based on the diode-connected configuration and constant source voltage of the P-FET P_7 , the decrease of the gate-source voltage of the P-FET P_7 results in a decrease of the amplitude of the drain voltage of the P-FET P_7 , and thus a decrease in the amplitude of the gate voltage of the P-FETs P_3 , P_6 , and P_7 . The gate voltage of the P-FET P_6 thus increases the amplitude of the current I_3 more, and thus likewise increases the current I_4 . As a result, the continued decrease in the amplitude of the gate voltages of the P-FETs P_3 , P_6 , and P_7 corresponds to a logic-low state of the output signal $CL2$, which thus activates the P-FET P_3 . Accordingly, the N-FET N_3 and the P-FET P_3 can thus activate to provide current flow from the input node 102 as described hereinabove. Based on the current-mirror configuration of the N-FETs N_6 and N_7 to maintain the currents I_3 and I_4 to be approximately equal, the comparator 112 can maintain

the gate-source voltages of the respective P-FETs P_6 and P_7 to be approximately equal to clamp the input voltage V_{IN} at approximately the amplitude of the high clamping voltage V_{CH} .

[0031] Based on the comparators 108 and 112 being arranged as self-biasing common-gate arrangements of transistors, the voltage clamp circuit 100 can be a more effective voltage clamp circuit relative to conventional voltage clamp circuits. For example, the self-biasing architecture can facilitate operation of the voltage clamp circuit 100 in low voltage environments to facilitate rapid voltage clamping of the input voltage V_{IN} in thin-oxide devices. Also, the self-biasing architecture also provides that the N-FET N_1 and the P-FET P_1 are deactivated during a non-clamping condition to provide substantially zero nonlinear current flow through the N-FET N_1 and the P-FET P_1 , respectively. Furthermore, the use of the static biasing currents I_{B1} and I_{B2} with respect to the P-FETs P_4 and P_5 and the N-FETs N_6 and N_7 , respectively, provides for substantially more rapid clamping with substantially minimal overshoot of the clamping with respect to the input voltage V_{IN} . Accordingly, the voltage clamp circuit 100 can provide significant benefits over conventional clamping circuits, such as those that implement diode-based clamping.

[0032] FIG. 4 illustrates yet another example of a voltage clamp circuit 150. The voltage clamp circuit 150 can be configured to clamp an input voltage V_{IN} that is provided at an input node 152 at an amplitude that is approximately equal to one of a high clamping voltage V_{CH} and a low clamping voltage V_{CL} . The voltage clamp circuit 150 can be configured similar to the voltage clamp circuits 50 and 100 in the examples of FIGS. 2 and 3, respectively.

[0033] The voltage clamp circuit 150 is demonstrated between a high-voltage rail V_{DD} (e.g., approximately 1.8 volts) and a low-voltage rail, demonstrated in the example of FIG. 4 as ground. The voltage clamp circuit 150 includes a first voltage generator 154 coupled to the low-voltage rail and being configured to generate the low clamping voltage V_{CL} (e.g., approximately 0.55 volts), such as based on the high-voltage rail V_{DD} . The voltage clamp circuit 150 also includes a second voltage generator 156 coupled to the high-voltage rail V_{DD} and being configured to generate the low clamping voltage V_{CH} (e.g., approximately 1.55 volts), such as based on the high-voltage rail V_{DD} . Accordingly, for example, the voltage clamp circuit 150 can be implemented in any of a variety of submicron CMOS technologies that include dual power supplies.

[0034] The voltage clamp circuit 150 includes a first comparator loop circuit 158 and a second

comparator loop circuit 160. The first comparator loop circuit 158 includes a comparator 162 that receives the input voltage V_{IN} at an inverting input and the low clamping voltage V_{CL} at a non-inverting input, and which provides an output signal CL1. The first comparator loop circuit 158 also includes a first N-FET (e.g., MOSFET) N_1 having a gate that is coupled to the output of the comparator 162, having a drain coupled to a control node 164, and having a source that is coupled to the input node 152. The first comparator loop circuit 158 also includes a first P-FET (e.g., MOSFET) P_1 having a gate that is provided a static bias voltage V_{B1} , a drain coupled to the control node 164, and a source that is coupled to the second voltage generator 156, and therefore the high clamping voltage V_{CH} . Also, the first comparator loop circuit 158 includes a second P-FET P_2 having a gate that is coupled to the control node 164, having a drain coupled to the input node 152, and having a source that is coupled to the second voltage generator 156, and therefore the high clamping voltage V_{CL} . As an example, the second P-FET P_2 can have a gate size that is substantially greater than the gate size of each of the N-FET N_1 and the P-FET P_1 .

[0035] The comparator 162 is configured to compare the amplitude of the input voltage V_{IN} with the low clamping voltage V_{CL} . During a steady state, and thus based on the input voltage V_{IN} having an amplitude that is greater than the low clamping voltage V_{CL} , the static bias voltage V_{B1} holds the P-FET P_1 in a weakly activated state and the output signal CL1 has a logic-low state, thus holding the N-FET N_1 in a deactivated state. As a result, the control node 164 has a voltage that is insufficient to activate the P-FET P_2 . However, in response to the input voltage V_{IN} having an amplitude that decreases less than the low clamping voltage V_{CL} , the comparator 162 can assert the output signal CL1 to activate the N-FET N_1 . In response to activation of the N-FET N_1 , the control node 164 is coupled to the input node 152 via the N-FET N_1 to sink the voltage of the control node 164 to approximately the amplitude of the input voltage V_{IN} . Therefore, the P-FET P_2 becomes activated to provide current from the high clamping voltage V_{CH} to the input node 152. Accordingly, the current flow from the high clamping voltage V_{CH} to the input node 152 can clamp the amplitude of the input voltage V_{IN} to approximately the amplitude of the low clamping voltage V_{CL} . Accordingly, the input node 152, the comparator 162, and the P-FET P_2 can operate as a loop circuit to maintain the input voltage V_{IN} at approximately the amplitude of the low clamping voltage V_{CL} based on the output signal CL1 of the comparator 162.

[0036] The second comparator loop circuit 160 is configured substantially similar to the first

comparator loop circuit 158. In the example of FIG. 4, the second comparator loop circuit 160 includes a comparator 166 that receives the input voltage V_{IN} at an inverting input and the high clamping voltage V_{CH} at a non-inverting input, and which provides an output signal CL2. The first comparator loop circuit 160 also includes a first P-FET P_3 having a gate that is coupled to the output of the comparator 166, having a drain coupled to a control node 168, and having a source that is coupled to the input node 152. The second comparator loop circuit 160 also includes a first N-FET N_2 having a gate that is provided a static bias voltage V_{B2} , a drain coupled to the control node 168, and a source that is coupled to the first voltage generator 154, and therefore the low clamping voltage V_{CL} . Also, the second comparator loop circuit 160 includes a second N-FET N_3 having a gate that is coupled to the control node 168, having a drain coupled to the input node 152, and having a source that is coupled to the first voltage generator 154, and therefore the low clamping voltage V_{CL} . As an example, the second N-FET N_3 can have a gate size that is substantially greater than the gate size of each of the N-FET N_2 and the P-FET P_3 .

[0037] The comparator 166 is configured to compare the amplitude of the input voltage V_{IN} with the high clamping voltage V_{CH} . During a steady state, and thus based on the input voltage V_{IN} having an amplitude that is less than the high clamping voltage V_{CH} , the static bias voltage V_{B2} holds the N-FET N_2 in a weakly activated state and the output signal CL2 has a logic-low state, thus holding the P-FET P_3 in a deactivated state. As a result, the control node 168 has a voltage that is insufficient to activate the N-FET N_3 . However, in response to the input voltage V_{IN} having an amplitude that increases greater than the high clamping voltage V_{CH} , the comparator 166 can assert the output signal CL2 to activate the P-FET P_3 . In response to activation of the P-FET P_3 , the control node 168 is coupled to the input node 152 via the P-FET P_3 to source the voltage of the control node 168 from the input voltage V_{IN} . Therefore, the N-FET N_3 becomes activated to provide current from the input node 152 to the low clamping voltage V_{CL} . Accordingly, the current flow from the input node 152 to the low clamping voltage V_{CL} can clamp the amplitude of the input voltage V_{IN} to approximately the amplitude of the high clamping voltage V_{CH} . Accordingly, the input node 152, the comparator 166, and the N-FET N_3 can operate as a loop circuit to maintain the input voltage V_{IN} at approximately the amplitude of the high clamping voltage V_{CH} based on the output signal CL2 of the comparator 166.

[0038] FIG. 5 illustrates an example of an ADC system 200. The ADC system 200 can be implemented in any of a variety of applications to convert an analog voltage V_A to a digital

signal DIG. The ADC system 200 includes a resistor R_{IN} that separates a first node 202 on which the analog voltage V_A is provided and an input node 204 that can correspond to the input node 12, 52, 102, and 152 in the respective examples of FIGS. 1-4. Thus, the input node 204 has a voltage V_{IN} that can correspond to the voltage V_{IN} in the respective examples of FIGS. 1-4. Therefore, the input voltage V_{IN} can be converted to the digital signal DIG via an ADC 206.

[0039] The ADC system 200 can also include a voltage clamp circuit 208 that is configured to clamp the input voltage V_{IN} to between the high clamping voltage V_{CH} and the low clamping voltage V_{CL} , such as being programmable or generated via respective voltage generators (e.g., the voltage generators 154 and 156 in the example of FIG. 4). Thus, while the analog voltage V_A can be provided to have a maximum amplitude of V_{MAX} and a minimum amplitude of V_{MIN} , the voltage clamp circuit 208 can be configured to clamp the input voltage to have a maximum amplitude that is approximately equal to the high clamping voltage V_{CH} and to have a minimum that is approximately equal to the high clamping voltage V_{CL} . Accordingly, the voltage clamp circuit 208 can substantially protect the ADC 206 from damage, such as resulting from voltage swings between the maximum voltage V_{MAX} and the minimum voltage V_{MIN} of the analog voltage V_A .

[0040] Modifications are possible in the described embodiments, and other embodiments are possible, within the scope of the claims.

CLAIMS

What is claimed is:

1. A voltage clamp circuit comprising:
 - a comparator loop circuit comprising:
 - a comparator configured to compare an input voltage provided at an input node with a clamping voltage; and
 - transistor network interconnecting a voltage rail and the input node, the comparator being configured to activate the transistor network to set the input voltage to be approximately equal to the clamping voltage in response to the input voltage exceeding the corresponding clamping voltage.
2. The circuit of claim 1, wherein each of the at least one comparator is configured as a self-biasing common-gate arrangement of transistors.
3. The circuit of claim 1, wherein the comparator comprises:
 - a first pair of transistors comprising common-coupled control terminals corresponding to the output of the comparator, wherein one of the first pair of transistors comprises a terminal coupled to the input node and the other of the first pair of transistors comprises a terminal coupled to the clamping voltage; and
 - a second pair of transistors arranged as a current-mirror controlled by a static current source, wherein each of the second pair of transistors comprises a first terminal coupled to the voltage rail and a second terminal coupled to a second respective terminal of each of the first pair of transistors.
4. The circuit of claim 1, wherein the transistor network comprises:
 - a first transistor activated by the output of the comparator;
 - a second transistor interconnecting the input node and the voltage rail and being controlled by the first transistor.
5. The circuit of claim 4, wherein the transistor network comprises a third transistor that is coupled to the voltage rail and the first transistor, the third transistor being controlled via a first bias voltage to cooperate with the first transistor to control the second transistor.
6. The circuit of claim 1, wherein the clamping voltage is programmable, and wherein the comparator loop circuit is configured to couple the input node to the voltage rail in response to the input voltage exceeding the clamping voltage to set the input voltage approximately equal to

the clamping voltage.

7. The circuit of claim 1, further comprising a voltage generator coupled between the voltage rail and the comparator loop circuit, the voltage generator being configured to generate the clamping voltage, wherein the comparator loop circuit is configured to couple the input node to the clamping voltage of the voltage generator based on the comparator detecting that the input voltage exceeds the clamping voltage to set the input voltage approximately equal to the clamping voltage.

8. The circuit of claim 1, wherein the clamping voltage comprises a low clamping voltage and a high clamping voltage, wherein the comparator loop circuit comprises:

a first comparator loop circuit comprising:

a first comparator configured to compare the input voltage with the low clamping voltage and to assert an output of the first comparator in response to the input voltage decreasing less than the low clamping voltage; and

a first transistor network interconnecting the input node and the high voltage rail, the first comparator being configured to activate the first transistor network to set the input voltage to be approximately equal to the low clamping voltage in response to the input voltage decreasing less than the low clamping voltage; and

a second comparator loop circuit comprising:

a second comparator configured to compare the input voltage with the high clamping voltage and to assert an output of the second comparator in response to the input voltage increasing greater than the high clamping voltage; and

a second transistor network interconnecting the input node and the low voltage rail, the first comparator being configured to activate the first transistor network to set the input voltage to be approximately equal to the high clamping voltage in response to the input voltage increasing greater than the high clamping voltage.

9. An analog-to-digital converter (ADC) system comprising the voltage clamp circuit of claim 1, the ADC system further comprising:

an input resistor connected between an analog voltage input and the input node, the input voltage being generated at the input node based on an analog voltage provided at the analog voltage input; and

an ADC coupled to the input node and being configured to generate a digital signal based

on the input voltage.

10. A voltage clamp circuit comprising:

a first comparator loop circuit comprising a first comparator configured to compare an input voltage with a low clamping voltage and to assert an output in response to the input voltage decreasing less than the low clamping voltage to activate a first transistor network to set the input voltage approximately equal to the low clamping voltage; and

a second comparator loop circuit comprising a second comparator configured to compare the input voltage with a high clamping voltage and to assert an output in response to the input voltage increasing greater than the high clamping voltage to activate a second transistor network set the input voltage approximately equal to the high clamping voltage.

11. The circuit of claim 10, wherein each of the first comparator and the second comparator is configured as a self-biasing common-gate arrangement of transistors.

12. The circuit of claim 10, wherein the first transistor network comprises a first transistor arrangement activated by the first comparator and being configured to control a second transistor interconnecting the input node and a high-voltage rail, wherein the second transistor network comprises a third transistor activated by the second comparator and being configured to control a fourth transistor interconnecting the input node and a low-voltage rail.

13. The circuit of claim 12, wherein the second transistor is further controlled by a fifth transistor that is coupled to the high-voltage rail and is controlled via a first bias voltage, and wherein the fourth transistor is further controlled by a sixth transistor that is coupled to the low-voltage rail and is controlled via a second bias voltage.

14. The circuit of claim 10, wherein each of the high and low clamping voltages are programmable, and wherein the first comparator loop circuit is configured to couple the input node to a high-voltage rail in response to the input voltage decreasing less than the low clamping voltage to set the input voltage approximately equal to the low clamping voltage, and wherein the second comparator loop circuit is configured to couple the input node to a low-voltage rail in response to the input voltage increasing greater than the high clamping voltage to set the input voltage approximately equal to the high clamping voltage.

15. The circuit of claim 10, further comprising:

a first voltage generator coupled to a low-voltage rail and configured to generate the low clamping voltage; and

a second voltage generator coupled to a high-voltage rail and configured to generate the high clamping voltage;

wherein the first comparator loop circuit is configured to couple the input node to the second voltage generator in response to the input voltage decreasing less than the low clamping voltage to set the input voltage approximately equal to the low clamping voltage, and wherein the second comparator loop circuit is configured to couple the input node to the first voltage generator in response to the input voltage increasing greater than the high clamping voltage to set the input voltage approximately equal to the high clamping voltage.

16. An analog-to-digital converter (ADC) system comprising the voltage clamp circuit of claim 11, the ADC system further comprising:

an input resistor interconnecting an analog voltage input and the input node, the input voltage being generated based on an analog voltage provided at the analog voltage input; and

an ADC coupled to the input node and being configured to generate a digital signal based on the input voltage.

17. An analog-to-digital converter (ADC) circuit system comprising:

an input resistor connected between an analog voltage input and an ADC input node;

a voltage clamp circuit coupled to the ADC input node, the voltage clamp circuit comprising a comparator loop circuit, the comparator loop circuit comprising:

a comparator configured to compare an input voltage provided at an input node with a clamping voltage; and

transistor network interconnecting a voltage rail and the input node, the comparator being configured to activate the transistor network to set the input voltage to be approximately equal to the clamping voltage in response to the input voltage exceeding the corresponding clamping voltage; and

an ADC coupled to the ADC input node and being configured to generate a digital signal based on the input voltage.

18. The ADC circuit system of claim 17, wherein the transistor network comprises a first transistor activated by the comparator and being configured to control a second transistor interconnecting the input node and the voltage rail.

19. The ADC circuit system of claim 17, further comprising a voltage generator coupled to the voltage rail and configured to generate the clamping voltage, wherein the comparator loop

circuit is configured to couple the input node to the voltage generator in response to the input voltage exceeding the clamping voltage to set the input voltage approximately equal to the clamping voltage.

20. The ADC circuit system of claim 17, wherein the clamping voltage comprises a low clamping voltage and a high clamping voltage, wherein the comparator loop circuit comprises:

a first comparator loop circuit comprising:

a first comparator configured to compare the input voltage with the low clamping voltage and to assert an output of the first comparator in response to the input voltage decreasing less than the low clamping voltage; and

a first transistor network interconnecting the input node and the high voltage rail, the first comparator being configured to activate the first transistor network to set the input voltage to be approximately equal to the low clamping voltage in response to the input voltage decreasing less than the low clamping voltage; and

a second comparator loop circuit comprising:

a second comparator configured to compare the input voltage with the high clamping voltage and to assert an output of the second comparator in response to the input voltage increasing greater than the high clamping voltage; and

a second transistor network interconnecting the input node and the low voltage rail, the first comparator being configured to activate the first transistor network to set the input voltage to be approximately equal to the high clamping voltage in response to the input voltage increasing greater than the high clamping voltage.

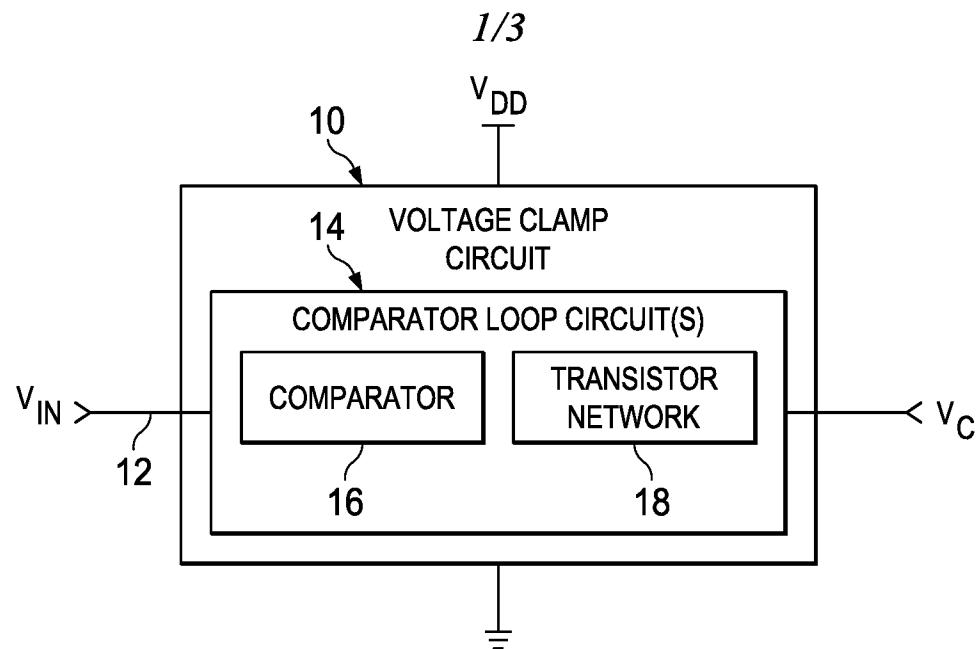


FIG. 1

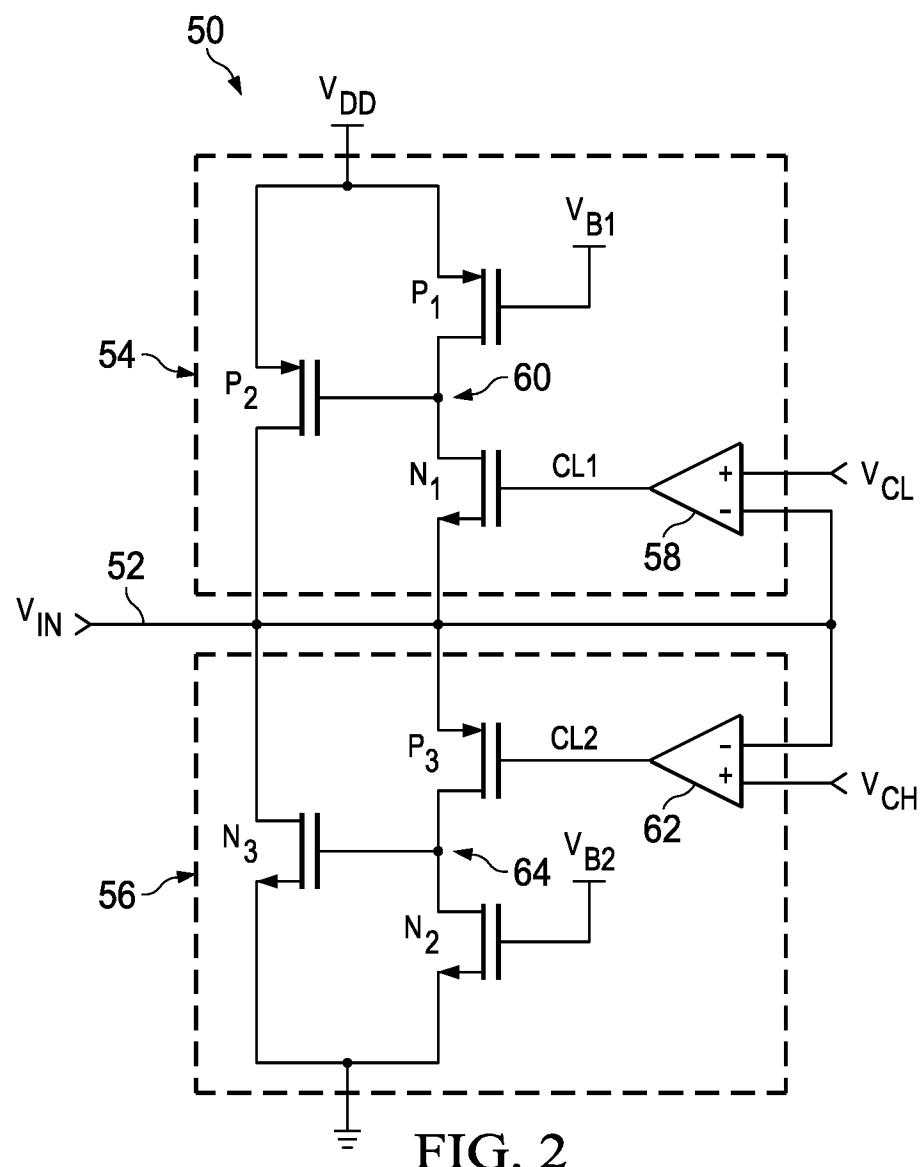


FIG. 2

2/3

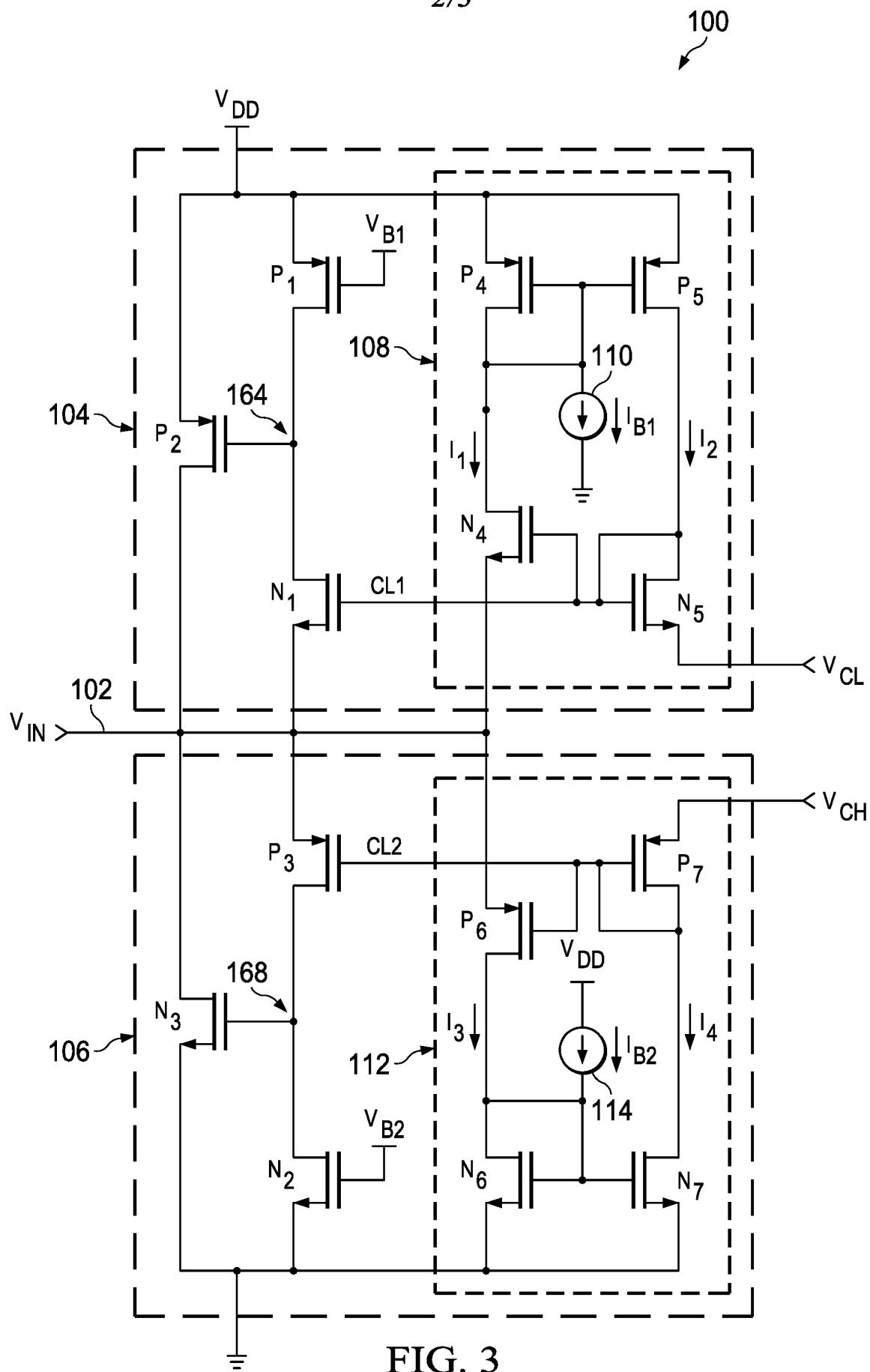


FIG. 3

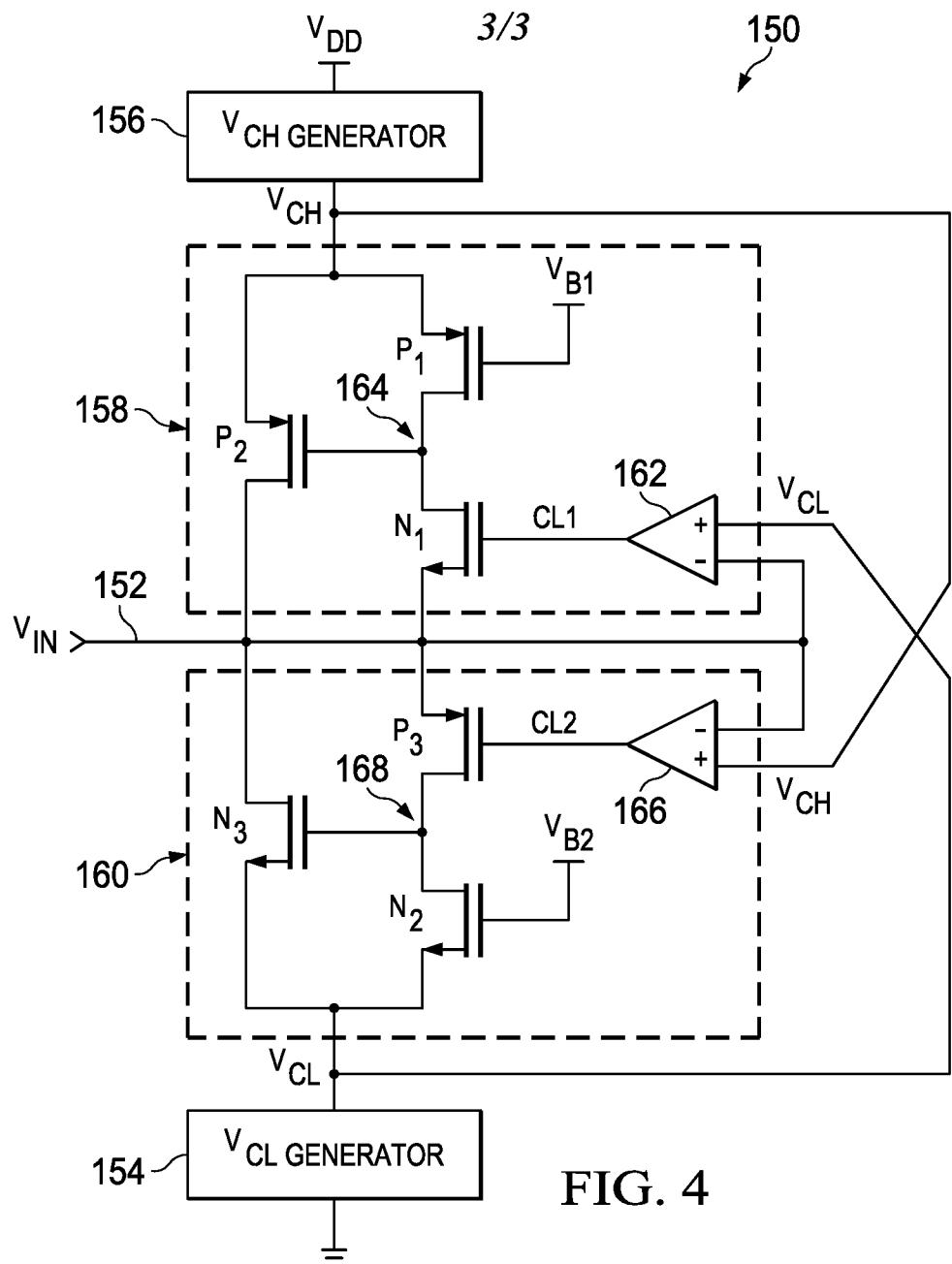


FIG. 4

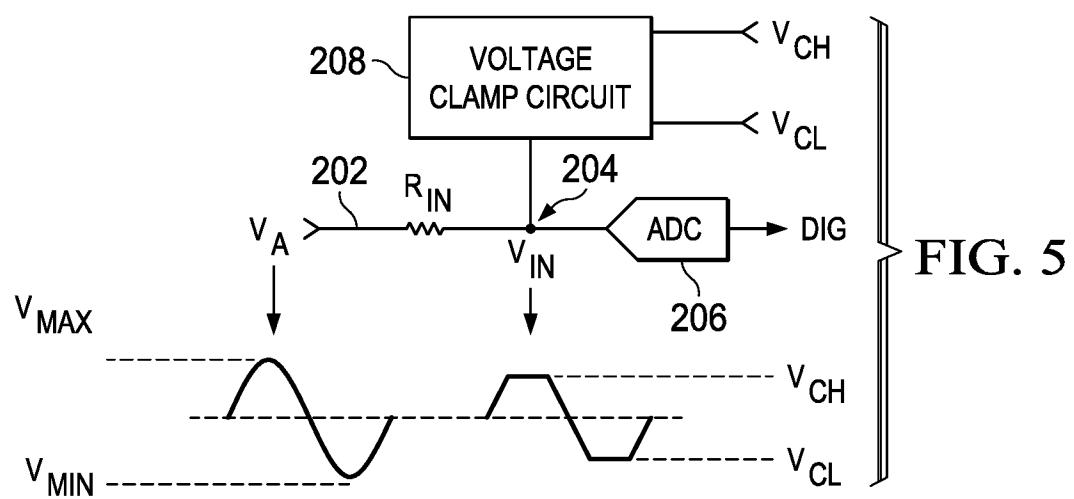


FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2017/064528

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 16
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

Claim 16 is not correct and clear. It does not contain all the features characterizing an analog-to-digital converter.

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2017/064528

A. CLASSIFICATION OF SUBJECT MATTER

G05F 1/618 (2006.01)
H03M 1/12 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G05F 1/613,1/618, H02M 1/12,1/48, H03K 5/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSearch (RUPTO internal), USPTO, PAJ, Esp@cenet, DWPI, EAPATIS, PATENTSCOPE, Information Retrieval System of FIPS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Додик С.Д. Источники электропитания на полупроводниковых приборах, проектирование и расчет. Советское радио, Москва, 1969, pages 98, 99, fig.111.1, 111.2 (в), non-official translation, (Dodik S.D. Power sources on semiconductor devices, design and calculation. Soviet radio, Moscow)	1
Y		2, 4-6, 9, 17-18
A		3, 7-8, 10-15, 19-20
Y	SU 1027814 A (SOKOLOV V.N) 07.07.1983, fig.1, col 3, lines 28-40	9, 17, 18
Y	US 5070259 A (LINEAR TECHNOLOGY CORPORATION) 03.12.1991, abstract, fig. 4, col. 3, lines 1-20	2

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E"	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L"	"&"	document member of the same patent family
"O"		
"P"		

Date of the actual completion of the international search

02 April 2018 (02.04.2018)

Date of mailing of the international search report

19 April 2018 (19.04.2018)

Name and mailing address of the ISA/RU:

Federal Institute of Industrial Property,
Berezhkovskaya nab., 30-1, Moscow, G-59,
GSP-3, Russia, 125993

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer

I. Golovinova

Telephone No. (499) 240-25-91

INTERNATIONAL SEARCH REPORT		International application No. PCT/US 2017/064528
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	RU 162000 U1 (FEDERALNOE GOSUDARSTVENNOE BUDZHETNOE OBRAZOVATELNOE UCHREZHDENIE VYSSHEGO OBRAZOVANIYA "STAVROPOLSKY GOSUDARSTVENNY AGRARNY UNIVERSITET") 20.05.2016, fig.1	4-5, 18
Y	US 4751405 A (GOULD INC.) 14.06.1988, col. 1, lines 31-35, 50-53	6