HU000035210T2
R

19 HU (1) Lajstromszam: E 035 210 (13 T2
! MAGYARORSZAG
\\\\\\\ Szellemi Tulajdon Nemzeti Hivatala

SZOVEGENEK FORDITASA

(21) Magyar tigyszam: E 14 704714 (51)Int.cl. GO6F 9/38 (2006.01)
(22) A bejelentés napja: 2014. 01. 18. GOG6F 9/345 (2006.01)
(96) Az eurdpai bejelentés bejelentési szama (86) A nemzetkdzi (PCT) bejelentési szam:

EP 20140704714 PCT/US 14/012152
(97) Az eurdpai bejelentés kdzzétételi adatai: (87) A nemzetkdzi kbzzétételi szam:

EP 2946286 A1 2014. 07. 24. WO 14113741
(97) Az eurdpai szabadalom megadasénak meghirdetési adatai:

EP 2946286 B1 2017. 10. 25.
(30) Elsébbségi adatok: (73) Jogosult(ak):

201313746000 2013. 01. 21. us Qualcomm Incorporated, San Diego, CA 92121

(Us)
(72) Feltalalo(k):

GILBERT, Matthew, M., San Diego, CA 92121 (US)
(74) Képvisels:

Danubia Szabadalmi és Jogi Iroda Kift.,

Budapest

(54) Eljaras és berendezés adat-el6toltési kérelmek torlésére egy ciklushoz

Az eurdpai szabadalom ellen, megadasanak az Eurdpai Szabadalmi K6zlonyben valé meghirdetésétél szamitott kilenc hénapon bellil,
felszélalast lehet benyujtani az Eurépai Szabadalmi Hivatalnal. (Eurépai Szabadalmi Egyezmény 99. cikk(1))

A forditast a szabadalmas az 1995. évi XXXIII. térvény 84/H. §-a szerint nyujtotta be. A forditas tartalmi helyességét a Szellemi Tulajdon
Nemzeti Hivatala nem vizsgalta.

EP 2 946 286 B1

(19)

(12)

(45)

(21)

(22)

Eurcpiisches
Patentarni

Eurcpean
Patent Office

Office européen
des brevets

(11) EP 2 946 286 B1

EUROPEAN PATENT SPECIFICATION

Date of publication and mention
of the grant of the patent:
25.10.2017 Bulletin 2017/43
Application number: 14704714.6

Date of filing: 18.01.2014

(51) IntCl.:

GOGF 9/38 (2006.09) GOGF 9/345 (2006.0)

(86) International application number:

PCT/US2014/012152

(87) International publication number:

WO 2014/113741 (24.07.2014 Gazette 2014/30)

(54)

METHODS AND APPARATUS FOR CANCELLING DATA PREFETCH REQUESTS FOR A LOOP

VERFAHREN UND VORRICHTUNG ZUR UNTERDRUCKUNG VON
DATENVORABRUFANFRAGEN FUR EINE SCHLEIFE

PROCEDES ET APPAREIL POUR ANNULER DES REQUETES DE PRELECTURE DE DONNEES

POUR UNE BOUCLE

(84)

(30)

(43)

(73)

(72)

(74)

Designated Contracting States:
AL AT BE BG CH CY CZDE DK EE ES FI FR GB
GRHRHUIEISITLILTLULV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Priority: 21.01.2013 US 201313746000

Date of publication of application:
25.11.2015 Bulletin 2015/48

Proprietor: Qualcomm Incorporated
San Diego, CA 92121 (US)

Inventor: GILBERT, Matthew, M.
San Diego, CA 92121 (US)

Representative: Tomkins & Co
5 Dartmouth Road
Dublin 6 (IE)

(56) References cited:

WO-A1-00/73897
US-B1- 6 260 116
US-B1- 6 775 765

US-A1- 2008 010 444
US-B1- 6 430 680

CHEN WY ET AL: "An Efficient Architecture For
Loop Based Data Preloading”,
MICROARCHITECTURE, 1992. MICRO 25.,
PROCEEDINGS OF THE 25TH ANNUAL INT
ERNATIONAL SYMPOSIUM ON PORTLAND, OR,
USA 1-4 DEC. 1992, LOS ALAMITOS, CA,
USA,IEEE COMPUT. SOC, US, 1 December 1992
(1992-12-01), - 4 December 1992 (1992-12-04),
pages 92-101, XP010094775, DOI:
10.1109/MICRO.1992.697003 ISBN:
978-0-8186-3175-7

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been

paid.

(Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

1 EP 2 946 286 B1 2

Description
Field of the Disclosure

[0001] The present disclosure relates generally to as-
pects of processing systems and in particular to methods
and apparatus to reduce cache pollution caused by data
prefetching.

Background

[0002] Many portable products, such as cell phones,
laptop computers, personal data assistants (PDAs) and
the like, utilize a processing system that executes pro-
grams, such as communication and multimedia pro-
grams. A processing system for such products may in-
clude multiple processors, complex memory systems in-
cluding multi-levels of caches for storing instructions and
data, controllers, peripheral devices such as communi-
cation interfaces, and fixed function logic blocks config-
ured, for example, on a single chip. At the same time,
portable products have a limited energy source in the
form of batteries that are often required to support high
performance operations by the processing system. To
increase battery life, it is desirable to perform these op-
erations as efficiently as possible. Many personal com-
puters are also being developed with efficient designs to
operate with reduced overall energy consumption.

[0003] In order to provide high performance in the ex-
ecution of programs, data prefetching may be used that
is based on the concept of spatial locality of memory ref-
erences and is generally used to improve processor per-
formance. By prefetching multiple data elements from a
cache at addresses that are near to a fetched data ele-
mentor are related by a stride address delta or an indirect
pointer, and that are likely to be used in future accesses,
cache miss rates may be reduced. Cache designs gen-
erally implement a form of prefetching by fetching a cache
line of data for an individual data elementfetch. Hardware
prefetchers may expand on this by speculatively
prefetching one or more additional cache lines of data,
where the prefetch addressing may be formed based on,
sequential, stride, or pointer information. Such hardware
prefetcher operation for memory intensive workloads,
such as processing alarge array ofdata, may significantly
reduce memory latency. However, data prefetching is
not without its drawbacks. For example, in a software
loop used to process an array of data, a data prefetcher
circuit prefetches data to be used in future iterations of
the loop including the last iteration of the loop. However,
the data prefetched for the last iteration of the loop will
not be used and cache pollution occurs by storing this
datathatwillnotbe usedinthe cache. The cache pollution
problem is compounded when loops are unrolled.

[0004] United States Patent No 6,775,765 relates to a
data processing system having instruction folding and a
method thereof. United States Patent No, US 6,260,116
relates to a system and method for prefetching data. "An

10

15

20

25

30

35

40

45

50

55

Efficient Architecture for Loop Based Data Preloading”,
Chen et al, proposes a preloading buffer as an architec-
tural support for preloading.

SUMMARY

[0005] Among its several aspects, the present disclo-
sure recognizes that providing more efficient methods
and apparatuses for prefetching can improve perform-
ance and reduce power requirements in a processor sys-
tem. To such ends, an embodiment of the invention ad-
dresses a method for canceling prefetch requests. Aloop
exit situation is identified based on an evaluation of pro-
gram flow information. Pending cache prefetch requests
are canceled in response to the identified loop exit situ-
ation.

[0006] Another embodiment addresses a method for
canceling prefetch requests. Data is speculatively
prefetched according to a called function. Pending data
prefetch requests are canceled in response to a function
exit from the called function.

[0007] Another embodiment addresses an apparatus
for canceling prefetch requests. A loop data address
monitor is configured to determine a data access stride
based on repeated execution of a memory access in-
struction in a program loop. Data prefetch logic is con-
figured to speculatively issue prefetch requests accord-
ing to the data access stride. A stop prefetch circuit is
configured to cancel pending prefetch requests in re-
sponse to an identified loop exit.

[0008] Another embodiment addresses a computer
readable non-transitory medium encoded with computer
readable program data and code. A loop exit situation is
identified based on an evaluation of program flow infor-
mation. Pending cache prefetch requests are canceled
in response to the identified loop exit situation.

[0009] A further embodiment addresses an apparatus
for canceling prefetch requests. Means is utilized for de-
termining a data access stride based on repeated exe-
cution of a memory access instruction in a program loop.
Means is utilized for speculatively issuing prefetch re-
quests according to the data access stride. Means is also
utilized for canceling pending prefetch requests in re-
sponse to an identified loop exit.

[0010] It is understood that other embodiments of the
present invention will become readily apparent to those
skilled in the art from the following detailed description,
wherein various embodiments of the invention are shown
and described by way of illustration. As will be realized,
the invention is capable of other and different embodi-
ments and its several details are capable of modification
in various other respects, all without departing from the
scope ofthe presentinvention. Accordingly, the drawings
and detailed description are to be regarded as illustrative
in nature and not as restrictive.

3 EP 2 946 286 B1 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Various aspects of the present invention are il-
lustrated by way of example, and not by way of limitation,
in the accompanying drawings, wherein:

FIG. 1 illustrates an exemplary processor system in
which an embodiment of the invention may be ad-
vantageously employed;

FIG. 2A illustrates a process for canceling pending
non-demand data prefetch requests upon detecting
a loop-ending branch; and

FIG. 2B illustrates a process for canceling pending
non-demand data prefetch requests upon detecting
a function return; and

FIG. 3 illustrates a particular embodiment of a port-
able device having a processor complex that is con-
figured to cancel selected pending data prefetch re-
quests to reduce cache pollution.

DETAILED DESCRIPTION

[0012] The detailed description set forth below in con-
nection with the appended drawings is intended as a de-
scription of various exemplary embodiments of the
present invention and is not intended to represent the
only embodiments in which the present invention may be
practiced. The detailed description includes specific de-
tails for the purpose of providing a thorough understand-
ing of the present invention. However, it will be apparent
to those skilled in the art that the present invention may
be practiced without these specific details. In some in-
stances, well known structures and components are
shown in block diagram form in order to avoid obscuring
the concepts of the present invention.

[0013] FIG. 1 illustrates an exemplary processor sys-
tem 100 in which an embodiment of the invention is ad-
vantageously employed. The processor system 100 in-
cludes a processor 110, a cache system 112, a system
memory 114, and an input and output (I/O) system 116.
The cache system 112, for example, comprises a level
1 instruction cache (Icache) 124, a memory controller
126, and a level 1 data cache (Dcache) 128. The cache
system 112 may also include a level 2 unified cache (not
shown) or other cache components as desired for a par-
ticularimplementation environment. The system memory
114 provides access for instructions and data that are
not found in the Icache 124 or Dcache 128. It is noted
that the cache system 112 may be integrated with proc-
essor 110 and may also include multiple levels of caches
in a hierarchical organization. The /O system 116 com-
prises a plurality of I/O devices, such as I/O devices 140
and 142, which interface with the processor 110.
[0014] Embodiments of the invention may be suitably
employed in a processor having conditional branching
instructions. The processor 110 comprises, for example,
an instruction pipeline 120, data prefetch logic 121, pre-
diction logic 122, and a stack logic circuit 123. The in-

10

15

20

25

30

35

40

45

50

55

struction pipeline 120 is made up of a series of stages,
such as, a fetch and prefetch stage 130, decode stage
131, instruction issue stage 132, operand fetch stage
133, execute stage 134, such as for execution of load
(Ld) and store (St) instructions, and completion stage
135. Those skilled in the art will recognize that each stage
130-135 in the instruction pipeline 120 may comprise a
number of additional pipeline stages depending upon the
processor’s operating frequency and complexity of op-
erations required in each stage. For example, the exe-
cute stage 134 may include one or more pipeline stages
corresponding to one or more instruction execution stage
circuits, such as an adder, a multiplier, logic operations,
load and store operations, shift and rotate operations,
and other function circuits of greater or less complexity.
For example, when a load instruction is executed, it re-
quests data from the Dcache 128 and if the requested
datais notpresentinthe Dcache afetchrequestisissued
to the next level of cache or system memory. Such a
fetch request is considered a demand request since it is
in direct response to execution of an instruction, in this
case a load instruction.

[0015] A prefetch request is a request that is made in
response to program flow information, such as detection
of a program loop having one or more load instructions
in the loop with load addresses based on a stride, for
example. The data prefetch logic 121 utilizes such pro-
gram flow information which may be based on a number
of iterations of the detected loop to more accurately iden-
tify a demand use pattern of the operand addresses of
the load instructions before issuing a prefetch request.
Fillrequests are inserted when a pattern is detected. The
processor 110 may operate to differentiate a demand
request from a prefetch request by use of an extra flag
associated with the request that is tracked in the proces-
sor pipeline. This flag could also propagate with the re-
quest to the cache where each outstanding cache line
fill could be identified as either a prefetch or demand fill.
Each of the pipeline stages may have varied implemen-
tations without departing from the prefetch request can-
celing methods and apparatus described herein.

[0016] In order to minimize delays that could occur if
data required by a program were not in the associated
level 1 Dcache 128, the fetch and prefetch stage 130
records program flow information associated with one or
more memory access instructions which execute in a de-
tected program loop. Program information may include
an indication from the decode stage 131 that a load in-
struction has been received and operand address infor-
mation for the load instruction may be available at a pipe-
line stage prior to execution, such as operand fetch stage
133 or at the execute stage 134. The data prefetch logic
121 monitors the load addresses as they become avail-
able to detect a pattern. After the pattern is determined
with an acceptable level of confidence, such as by mon-
itoring load instructions through three or more iterations
of a loop, a prefetch request for expected data is issued
prior to when the load instruction is encountered again

5 EP 2 946 286 B1 6

in the loop. This speculative prefetch request ensures
the required data is available in the level 1 Dcache when
needed by the execute stage 134. The load and store
execute stage 134 is then more likely to access the re-
quired data directly from the level 1 Dcache without hav-
ing to wait to access the data from higher levels in the
memory hierarchy.

[0017] The data prefetch logic 121 may also include a
data cache loop data address monitor to determine a
dataaccess stride. The data prefetch logic 121 then spec-
ulatively issues prefetch requests with operand address-
es set according to the data access stride. For example,
the data prefetch logic 121 may include a stride circuit
119 that is configured to monitor repeated executions of
a load instruction to determine a difference between the
operand address of each execution of the load instruction
that represents a stride value. The stride circuit 119 may
also include an add function that is configured to add the
determined stride value to the operand address of the
most recently executed load instruction to generate the
next operand address. In contrast to the stride value as
apredicted address, afetched conditional branchinstruc-
tion uses branch prediction logic, such as contained in
the prediction logic circuit 122, to predict whether the
conditional branch will be taken and the branch address.
A fetched non-branch instruction proceeds to the decode
stage 131 to be decoded, issued for execution in the in-
structionissue stage 132, executed in execute stage 134,
and retired in completion stage 135.

[0018] The prediction logic circuit 122 comprises a de-
tection logic circuit 146 for monitoring events, afilter 150,
and a conditional history table 152. In one embodiment,
itis assumed that a majority of conditional branch instruc-
tions generally have their conditions resolved to the same
value for most iterations of a software loop.

[0019] The detection logic circuit 146, in one embodi-
ment, acts as a software loop detector that operates
based on the dynamic characteristics of conditional
branch instructions used in software loops as described
with regard to FIG. 2A. The detection logic circuit 146
may also detect exits from called software functions, as
described with regard to FIG. 2B.

[0020] Insoftware loopswith asingle entry and a single
exit, a loop ending branch is generally a conditional
branch instruction which branches back to the start of
the software loop for all iterations of the loop except for
the last iteration, which exits the software loop. The de-
tection logic circuit 146 may have multiple embodiments
for the detection of software loops as described in more
detail below and in U.S. Patent Application, 11/066,508
assigned to the assignee of the present application, en-
titled "Suppressing Update of a Branch History Register
by Loop-Ending Branches".

[0021] According to one embodiment, the detection
logic circuit 146 identifies conditional branch instructions
with a branch target address less than the conditional
branch instruction address, and thus considered a back-
wards branch, and is assumed to mark the end of a soft-

10

15

20

25

30

35

40

45

50

55

ware loop. Since notall backward branches are loop end-
ing branches, there is some level of inaccuracy which
may need to be accounted for by additional monitoring
mechanisms, for example.

[0022] Also, as described with regard to FIG. 2B, a
function return instruction (commonly named RET) can
be detected. According toone embodiment, the detection
of a function return is adapted to trigger prefetch cancel-
lations of any non-demand prefetch requests. Cancella-
tion of a prefetch request is also made in response to
program flow information, such as detection of a loop exit.
[0023] In another embodiment, a loop ending branch
may be detected in simple loops by recognizing repeated
execution of the same branch instruction. By storing the
program counter value for the last backward branch in-
struction in a special purpose register, and comparing
this stored value with the instruction address of the next
backward branch instruction, a loop ending branch may
be recognized when the two instruction addresses
match. Since code may include conditional branch in-
structions within a software loop, the determination of the
loop ending branch instruction may become more com-
plicated. In such a situation, multiple special purposereg-
isters may be instantiated in hardware to store the in-
struction addresses of each conditional branch instruc-
tion. By comparing against all of the stored values, a
match can be determined for the loop ending branch.
Typically, loop branches are conditional backward direct
branches having a fixed offset from the program counter
(PC). These types of branches would not need address
comparisons for detection of a loop exit. Instead, once a
program loop is detected based on a conditional back-
ward direct branch, the loop exit is determined from res-
olution of branch’s predicate. For example, if the predi-
cate resolves to a true condition for returning to the loop,
then the loop exit would be indicated when the predicate
resolves to a false condition. In order for there to be pend-
ing prefetches, a program loop would have already exe-
cuted a few times to trigger the prefetch hardware. The
data prefetch logic 121 requires a few warmup demand
loads to recognize a pattern before it starts prefetching.
[0024] Also, a loop ending branch may be statically
marked by a compiler or assembler. For example, inone
embodiment, a compiler generates a particular type of
branch instruction, by use of a unique opcode or by set-
ting a special format bit field, that is only used for loop
ending branches. The loop ending branch may then be
easily detected during pipeline execution, such as during
a decode stage in the pipeline.

[0025] The predictionlogic circuit 122 comprises afilter
150, a conditional history table (CHT) 152, and associ-
ated monitoring logic. In one embodiment, a monitoring
process saves state information of pre-specified condi-
tion events which have occurred in one or more prior
executions of a software loop having a conditional branch
instruction that is eligible for prediction. In support of the
prediction logic circuit 122, the filter 150 determines
whether a fetched conditional branch instruction has

7 EP 2 946 286 B1 8

been received and the CHT 152 is enabled. An entry in
the CHT 152 is selected to provide prediction information
that is tracked, for example, by the pipeline stages
132-135 as instructions moves through the pipeline.
[0026] The CHT 152 entry records the history of exe-
cution for the fetched instruction eligible for predicted ex-
ecution. For example, each CHT entry may suitably com-
prise a combination of count values from execution status
counters and status bits that are inputs to the prediction
logic. The CHT 152 may also comprise index logic to
allow a fetched conditional branch instruction to index
into an entry in the CHT 152 associated with the fetched
instruction, since multiple conditional branch instructions
may exist in a software loop. For example, by counting
the number of conditional branch instructions from the
top of a software loop, the count may be used as an index
intothe CHT 152. The prediction logic circuit 122 includes
loop counters for counting iterations of software loops
and ensuring that execution status counters have had
the opportunity to saturate at a specified count value that
represents, for example, a strongly not-executed status.
If an execution status counter has saturated, the predic-
tion logic is enabled to make a prediction for branch di-
rection of the associated fetched conditional branch in-
struction on the next iteration of the loop.

[0027] The prediction logic circuit 122 generates pre-
diction information that is tracked at the instruction issue
stage 132, the operand fetch stage 133, the execute
stage 134, and the completion stage 135 in track register
issue (Trl) 162, track register operand fetch 163, track
register execute (TrE) 164, and track register complete
(TrC) 165, respectively. When a conditional backward
branch with a failed predicate indicating the end of the
loop, or a function return, is detected such as during the
execute stage 134 in the processor pipeline, a cancel
pending prefetch requests signal 155 is generated. In
anotherembodiment, pending prefetch requests are can-
celed based on a conditional branch prediction generated
by branch prediction logic. Each conditional branch is
generally predicted by the branch prediction logic to take
or not take the conditional branch. For example, where
the prediction information indicates the conditional
branch is taken, which in this example continues a pro-
gram loop, the instruction fetcher speculatively fetches
instructions on the program loop indicated by the predic-
tion. The prediction information is also coupled to a can-
cel pending prefetch request logic circuit 141 which may
reside in the fetch & prefetch circuit 130. The cancel
pending prefetch request logic circuit 141 may then spec-
ulatively cancel pending prefetch requests based pro-
gram flow information indicating the pending prefetch re-
quests are not needed. For example, the processor may
be configured to not cancel pending prefetch requests
based on a weakly predicted loop exit. By canceling one
or more pending data prefetch requests, data cache pol-
lution is reduced and power utilized to address such pol-
lution is reduced in the processor 110. The cancel pend-
ing prefetch request signal 155 is coupled to the proces-

10

15

20

25

30

35

40

45

50

55

sor instruction pipeline 120 as shown in FIG. 1 and is
accepted by the cancel pending prefetch request logic
circuit 141 which causes prefetch requests that are pend-
ing, exceptfordemand prefetch requests, to be canceled.
Also, processor performance is improved by not storing
unnecessary data in the data cache which may have
evicted data that would have been fetched and now a
miss is generated instead.

[0028] Upon reaching the execute stage 134, if the ex-
ecute condition specified for the loop ending conditional
branch instruction has evaluated opposite to its predic-
tion, any pipeline speculative execution of instructions
on the wrong instruction path are corrected, for example
by flushing the pipeline, and such a correction may in-
clude canceling pending prefetches that are associated
with the wrong instruction path. For example, in one em-
bodiment a correction to the pipeline includes flushing
the instructions in the pipeline beginning at the stage the
prediction was made. In an alternative embodiment, the
pipeline is flushed from the beginning fetch stage where
the loop ending conditional branch instruction was initially
fetched. Also, the appropriate CHT entry may also be
corrected after an incorrect prediction.

[0029] The detection circuit 146, acting as a loop de-
tector, operates to detect a loop ending branch. For ex-
ample, a loop ending branch is generally a conditional
branch instruction which branches back to the start of
the loop for all iterations of the loop except for the last
iteration which exits the loop. Information concerning
each identified loop is passed tofilter circuit 150 and upon
a loop exit situation a cancel pending prefetch request
logic circuit 141 cancels pending non-demand prefetch
requests in response to each identified loop exit.

[0030] In one embodiment, the filter circuit 150, for ex-
ample, is a loop counter which provides an indication that
aset number of iterations of a software loop has occurred,
such as three iterations of a particular loop. For each
iteration of the loop, the filter determines if a conditional
branch instruction is eligible for prediction. If an eligible
conditional branch (CB) instruction is in the loop, the sta-
tus of executing the CB instruction is recorded in the con-
ditional history table (CHT) circuit 152. For example, an
execution status counter may be used to record an exe-
cution history of previous attempted executions of an el-
igible CB instruction. An execution status counter is up-
dated in a one direction to indicate the CB instruction
conditionally executed and in an opposite direction to in-
dicate the CB instruction conditionally did not execute.
For example, a two bit execution status counter may be
used where a not-executed status causes a decrement
of the counter and an executed status causes an incre-
ment of the counter. Output states of the execution status
counter are, for example, assigned an output of "11" to
indicate that previous CB instructions are strongly indi-
cated to have been executed, an outputof"10" to indicate
that previous CB instructions are weakly indicated to
have been executed, an output of "01" to indicate that
previous CB instructions are weakly indicated to have

9 EP 2 946 286 B1 10

been not executed, and an output of "00" to indicate that
previous CB instructions are strongly indicated to have
been not executed. The execution status counter "11"
outputand "00" output would be saturated output values.
An execution status counter would be associated with or
provide status for each CB instruction in a detected soft-
ware loop. However, a particular implementation may
limit the number of execution status counters that are
used in the implementation and thus limit the number of
CB instructions that are predicted. The detection circuit
146 generally resets the execution status counters upon
the first entry into a software loop.

[0031] Alternatively, a disable prediction flag may be
associated with each CB instruction to be predicted rath-
er than an execution status counter. The disable predic-
tionflag is set active to disable prediction if an associated
CB instruction has previously been determined to have
executed. Identifying a previous CB instruction that ex-
ecuted implies that the confidence level for predicting a
not execute situation for the CB instruction would be low-
er than an acceptable level.

[0032] An index counter may also be used with the
CHT 152 to determine which CB instruction is being
counted or evaluated in the software loop. For example,
in a loop having five or more CB instructions, the first CB
instruction could have an index of "000" and the fourth
eligible conditional branch instruction could have an in-
dex of "011". The index represents an address into the
CHT 152 to access the stored execution status counter
values for the corresponding CB instruction.

[0033] The prediction circuit 122 receives the predic-
tion information for a particular CB instruction, such as
execution status counteroutputvalues, and predicts, dur-
ing the decode stage 131 of FIG. 1, for example, that the
CB instruction will generally branch back to the software
loop beginning and not predict a loop exit situation is
reached. In one embodiment, the prediction circuit 122
may predict that the condition specified by the CB instruc-
tion evaluates to a no branch state, code exits or falls
through the loop. The prediction circuit 122 tracks the CB
instruction. If a CB instruction is predicted to branch back
to the loop beginning, the prediction information indicates
such status. If a CB instruction was determined to not
branch back, then a tracking circuit generates a cancel
pending prefetch request signal and a condition evalua-
tion is made to determine if an incorrect prediction was
made. If an incorrect prediction was made, the pipeline
may also be flushed, the appropriate execution status
counters in the CHT 152 are updated, and in one em-
bodimentthe associated CHT entry is marked to indicate
that this particular CB instruction is not to be predicted
from this point on. In another embodiment, the prediction
logic circuit 122 may also change the pre-specified eval-
uation criterion upon determining the CB instruction was
mispredicted, for example, to make the prediction crite-
rion more conservative from this point on.

[0034] It is further recognized that not all loops have
similar characteristics. If a particular loop provides poor

10

15

20

25

30

35

40

45

50

55

prediction results, that loop is marked in the prediction
logic circuit 122 to disable prediction. In a similar manner,
a particular loop may operate with good prediction under
one setof operating scenarios and may operate with poor
prediction under a different set of operating scenarios.
In such a case, recognition of the operating scenarios
allows prediction to be enabled, disabled or enabled but
with different evaluation criterion appropriate for the op-
erating scenario.

[0035] FIG. 2A illustrates a process 200 for canceling
pending non-demand data prefetch requests upon de-
tecting a loop-ending branch. At block 202, processor
code execution is monitored for a software loop. At de-
cision block 204, a determination is made whether a soft-
ware loop has been detected. A software loop may be
determined, for example, by identifying a backward
branch to a location representing the start of the software
loop on a first pass through the software loop, as de-
scribed above. If no software loop has been identified,
the process 200 returns to block 202. If a software loop
has been identified then the process 200 proceeds to
block 206. At this point in the code, a first cycle of the
software loop has already been executed and the next
cycle of the software loop is ready to start.

[0036] In the next cycle of the software loop at block
206, the processor code is monitored for a CB instruction.
At decision step 208 a determination is made whether a
CB instruction has been detected, for example, during a
pipeline decode stage, such as decode stage 131 of FIG.
1. If no CB instruction has been detected, the process
200 returns to block 206. If a CB instruction has been
detected, the process 200 proceeds to decision block
210. At decision block 210, a determination is made
whether the conditional branch (CB) instruction resolved
to end the loop, based on an evaluation of the conditional
predicate, for example. There are a number of types of
CB instruction evaluations that may have been detected.
For example, afirst evaluation of the detected CB instruc-
tion could be resolved that the CB instruction is at the
end of the software loop, but evaluates to continue loop
processing. The backward branching CB instruction that
identified the software loop in the first pass through the
software loop is tagged by its address location in the proc-
essor code, for example. Also, for the case thata number
of specified iterations of the software loop have not been
completed, the CB instruction resolves to branch the
processor back to the beginning of the software loop. A
second evaluation of the detected CB instruction could
be resolved that the CB instruction is at the end of the
software loop and evaluates to end the software loop. A
third evaluation of the detected CB instruction could be
resolved that the CB instruction is within the software
loop, but when evaluated as taken or not taken, the proc-
essor code remains in the software loop. Also, a fourth
evaluation of the CB instruction could be resolved that
the CB instruction is within the software loop, but when
evaluated as taken or not taken, the processor code exits
the software loop. In the fourth evaluation, a CB instruc-

11 EP 2 946 286 B1 12

tion that is within the software loop, but resolves as a
forward branch pastthe address location of the backward
branching CB instruction is considered to have exited the
software loop.

[0037] Returning to decision block 210, if the detected
CB instruction did not resolve to exit the software loop,
as in the first and third evaluations of the CB instruction,
the process 200 proceeds to block 212. At block 212, the
process 200 continues with normal branch processing
and then returns to block 206. If the detected CB instruc-
tion did resolve to exit the software loop, as in the second
and fourth evaluations of the CB instruction, the process
200 proceeds to block 214. At block 214, the process
200 cancels pending data prefetch requests except for
demand data prefetch requests, processes the CB in-
struction, and returns to block 202 to begin searching for
the next software loop.

[0038] FIG. 2B illustrates a process 250 for canceling
pending non-demand data prefetch requests upon de-
tecting a function return. At block 252, processor code
execution is monitored for a software function exit. It is
noted that the software function may be speculatively
executed. Forexample, speculative execution may occur
for a function call in a software loop. In the case of spec-
ulative execution of the software function, the software
function exit, such as execution of a RET instruction, may
also be speculatively executed. At decision block 254, a
determination is made whether a software function exit
has been detected, such as by detecting a return instruc-
tion in a processor’'s execution pipeline. If no software
function exit has been detected, the process 250 returns
to block 252.

[0039] If a software function exit has been detected,
the process 250 proceeds to decision block 256. At de-
cision block 256, a determination is made whether this
detected exit situation is a return from an interruptroutine.
If the detected exit is a return from an interrupt routine,
then the process 250 returns to block 252. If the detected
exit is not a return from an interrupt routine, the process
250 proceeds to block 258. At block 258, the process
250 cancels pending data prefetch requests except for
demand data prefetch requests, processes the return in-
struction, and then returns to block 252 to continue mon-
itoring processor code for a software function exit.
[0040] Frequently, either by hand or through compiler
optimizations, a software loop will be unrolled such that
multiple iterations of the loop are executed sequentially.
This sequential execution of each unrolled iteration be-
comes an additional prefetch candidate. On the last iter-
ation of the loop, each unrolled candidate can then gen-
erate unneeded prefetch requests compounding the
problem of prefetched data cache pollution. An embod-
iment of the invention also applies to loop unrolling by
detecting the exit of the loop, or the return from afunction,
and cancelling allof the unneeded prefetch requests from
each unrolled loop.

[0041] FIG. 3 illustrates a particular embodiment of a
portable device 300 having a processor complex that is

10

15

20

25

30

35

40

45

50

55

configured to cancel selected pending data prefetch re-
quests to reduce cache pollution. The device 300 may
be awireless electronic device and include the processor
complex 310 coupled to a system memory 312 having
software instructions 318. The system memory 312 may
include the system memory 114 of FIG. 1. The processor
complex 310 may include a processor 311, an integrated
memory subsystem 314 having a level 1 data cache (L1
Dcache) 222, alevel 1 instruction cache (L1 Icache) 326,
a cache controller circuit 328, and prediction logic 316.
The processor 311 may include the processor 110 of
FIG. 1. The integrated memory subsystem 314 may also
include alevel 2 unified cache (not shown). The L1 Icache
326 may include the L1 Icache 124 of FIG. 1 and the L1
Dcache 322 may include the L1 Dcache 128 of FIG. 1.
[0042] The integrated memory subsystem 314 may be
included in the processor complex 310 or may be imple-
mented as one or more separate devices or circuitry (not
shown) external to the processor complex 310. In an il-
lustrative example, the processor complex 310 operates
in accordance with any of the embodiments illustrated in
or associated with FIGS. 1 and 2. For example, as shown
in FIG. 3, the L1 Icache 326, the L1 Dcache 322, and the
cache controller circuit 328 are accessible within the
processor complex 310, and the processor 311 is con-
figured to access data or program instructions stored in
the memories of the integrated memory subsystem 314
or in the system memory 312.

[0043] A camera interface 334 is coupled to the proc-
essor complex 310 and also coupled to a camera, such
as a video camera 336. A display controller 340 is cou-
pled to the processor complex 310 and to adisplay device
342. A coder/decoder (CODEC) 344 may also be coupled
to the processor complex 310. A speaker 346 and a mi-
crophone 348 may be coupled to the CODEC 344. A
wireless interface 350 may be coupled to the processor
complex 310 and to a wireless antenna 352 such that
wireless data received via the antenna 352 and wireless
interface 350 can be provided to the processor 311.
[0044] The processor 311 may be configured to exe-
cute software instructions 318 stored in a non-transitory
computer-readable medium, such as the system memory
312, that are executable to cause a computer, such as
the processor 311, to execute a program, such as the
program process 200 of FIG. 2. The software instructions
318 are further executable to cause the processor 311
to process instructions that access the memories of the
integrated memory subsystem 314 and the system mem-
ory 312.

[0045] Ina particular embodiment, the processor com-
plex 310, the display controller 340, the system memory
312, the CODEC 344, the wireless interface 350, and the
camera interface 334 are included in a system-in-pack-
age or system-on-chip device 304. In a particular em-
bodiment, an input device 356 and a power supply 358
are coupled to the system-on-chip device 304. Moreover,
in a particular embodiment, as illustrated in FIG. 3, the
display device 342, the input device 356, the speaker

13 EP 2 946 286 B1 14

346, the microphone 348, the wireless antenna 352, the
video camera 336, and the power supply 358 are external
to the system-on-chip device 304. However, each of the
display device 342, the input device 356, the speaker
346, the microphone 348, the wireless antenna 352, the
video camera 336, and the power supply 358 can be
coupled to a component of the system-on-chip device
304, such as an interface or a controller.

[0046] The device 300 in accordance with embodi-
ments described herein may be incorporated in a variety
of electronic devices, such as a settop box, an entertain-
mentunit, a navigation device, acommunications device,
a personal digital assistant (PDA), a fixed location data
unit, a mobile location data unit, amobile phone, a cellular
phone, a computer, a portable computer, tablets, a mon-
itor, a computer monitor, a television, a tuner, a radio, a
satellite radio, a music player, a digital music player, a
portable music player, avideo player, adigital video play-
er, a digital video disc (DVD) player, a portable digital
video player, any other device that stores or retrieves
data or computer instructions, or any combination there-
of.

[0047] The various illustrative logical blocks, modules,
circuits, elements, or components described in connec-
tion with the embodiments disclosed herein may be im-
plemented or performed with a general purpose proces-
sor, a digital signal processor (DSP), an application spe-
cific integrated circuit (ASIC), a field programmable gate
array (FPGA) or other programmable logic components,
discrete gate or transistor logic, discrete hardware com-
ponents, or any combination thereof designed to perform
the functions described herein. A general purpose proc-
essor may be a microprocessor, but in the alternative,
the processor may be any conventional processor, con-
troller, microcontroller, or state machine. A processor
may also be implemented as a combination of computing
components, for example, a combination of a DSP and
a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core,
or any other such configuration appropriate for a desired
application.

[0048] The methods described in connection with the
embodiments disclosed herein may be embodied directly
in hardware, in a software module executed by a proc-
essor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM mem-
ory, EPROM memory, EEPROM memory, registers, hard
disk, a removable disk, a CD-ROM, or any other form of
non-transitory storage medium known in the art. A non-
transitory storage medium may be coupled to the proc-
essor such that the processor can read information from,
and write information to, the non-transitory storage me-
dium. In the alternative, the non-transitory storage me-
dium may be integral to the processor.

[0049] The processor 110 of FIG. 1 or the processor
311 of FIG. 3, for example, may be configured to execute
instructions including conditional non-branch instruc-
tions under control of a program stored on a computer

10

15

20

25

30

35

40

45

50

55

readable non-transitory storage medium either directly
associated locally with the processor, such as may be
available through an instruction cache, or accessible
through an /O device, such as one of the I/O devices
140 or 142 of FIG. 1, for example. The I/O device also
may access data residing in a memory device either di-
rectly associated locally with the processors, such as the
Dcache 128, or accessible from another processor’s
memory. The computer readable non-transitory storage
medium may include random access memory (RAM), dy-
namic random access memory (DRAM), synchronous
dynamic random access memory (SDRAM), flash mem-
ory, read only memory (ROM), programmable read only
memory (PROM), erasable programmable read only
memory (EPROM), electrically erasable programmable
read only memory (EEPROM), compactdisk (CD), digital
video disk (DVD), other types of removable disks, or any
other suitable non-transitory storage medium.

[0050] While the invention is disclosed in the context
of illustrative embodiments for use in processor systems,
it will be recognized that a wide variety of implementa-
tions may be employed by persons of ordinary skill in the
art consistent with the above discussion and the claims
which follow below. For example, a fixed function imple-
mentation may also utilize various embodiments of the
present invention.

Claims

1. A method (200) for canceling non-demand data
cache prefetch requests, in a processor system
(100) comprising a processor (110) having a cache
system (112) comprising a data cache (124), and
having an instruction pipeline (120), the method
comprising:

determining a data access stride based on re-
peated execution of a memory access instruc-
tion in a program loop;

speculatively issuing data cache prefetch re-
quests according to the data access stride;
identifying (210) a loop exit based on an evalu-
ation of program flow information; and charac-
terized by:

canceling (214) the data cache prefetch re-
quests that are pending non-demand data
cache prefetch requests in response to the
identified loop exit.

2. The method of claim 1, wherein the loop exitis based
on identifying a loop ending branch that evaluates
to exit the program loop.

3. Themethod of claim 1, wherein the loop exitis based
on an incorrect branch prediction which caused
speculative instruction fetch and execution to be can-

15 EP 2 946 286 B1 16

celed.

The method of claim 1, wherein identifying the loop
exit comprises detecting a conditional branch in-
struction has resolved to end the program loop.

The method of claim 1 further comprising:

detecting a conditional branch instruction has
not resolved to end the program loop; and
monitoring (202) for a loop exit.

An apparatus (110) for canceling non-demand data
cache prefetch requests, in a processor system
(100) comprising a processor (110) having a cache
system (112) comprising a data cache (124), and
having an instruction pipeline (120), the apparatus
comprising:

a loop data address monitor configured to de-
termine a data access stride based on repeated
execution of a memory access instruction in a
program loop;

data prefetch logic (121) configured to specula-
tively issue data cache prefetch requests ac-
cording to the data access stride;

means for identifying (210) a loop exit based on
an evaluation of program flow information; and
characterized by:

a stop prefetch circuit configured to cancel
the data cache prefetch requests that are
pending non-demand data cache prefetch
requests in response to the identified loop
exit.

The apparatus of claim 6, wherein the loop data ad-
dress monitor comprises:

a stride circuit (119) configured to monitor re-
peated execution of the memory access instruc-
tion to determine a difference in an operand ad-
dress for each execution of the memory access
instruction, wherein the difference in the oper-
and address is a stride address value; and

an add function circuit configured to add the
stride address value to the operand address of
the most recently executed memory access in-
struction to determine the next operand ad-
dress.

The apparatus of claim 6, wherein the identified loop
exit is based on identifying a loop ending branch that
evaluates to exit the program loop.

The apparatus of claim 6, wherein the identified loop
exitis based on an incorrect branch prediction which
cancels speculative instruction fetch and execution.

10

15

20

25

30

35

40

45

50

55

10.

1.

12.

13.

The apparatus of claim 6, wherein the identified loop
exit is based on detecting a conditional branch in-
struction has resolved to end the program loop.

The apparatus of claim 6, wherein the stop prefetch
circuit is further configured to detect a conditional
branch instruction has not resolved to end the pro-
gram loop and wherein the program loop continues
until the loop exit is identified.

The apparatus of claim 6, wherein the stop prefetch
circuit is further configured to not cancel pending
prefetch requests based on a weakly predicted loop
exit.

A computer readable non-transitory medium encod-
ed with computer readable program data and code,
the program data and code when executed by a proc-
essor operable to perform a method according to
any of claims 1 to 5.

Patentanspriiche

Ein Verfahren (200) zum Unterdriicken von nicht an-
geforderten Datencachevorabrufanfragen in einem
Prozessorsystem (100), das einen Prozessor (110)
aufweist, der ein Cache-System (112) hat, das einen
Datencache (124) aufweist, und der eine Instrukti-
ons- bzw. Befehls-Pipeline (120) hat, wobeidas Ver-
fahren Folgendes aufweist:

Bestimmen eines Datenzugriffsschrittes basie-
rend auf einer wiederholten Ausfiihrung eines
Speicherzugriffsbefehls in einer Programm-
schleife;

spekulatives Ausgeben von Datencachevorab-
rufanfragen gemar dem Datenzugriffsschritt;
Identifizieren (210) eines Schleifenaustritts ba-
sierend auf einer Evaluierung von Programm-
flussinformation; und

das gekennzeichnet ist durch:

Unterdriicken (214) der Datencachevorab-
rufanfragen, die ausstehende nicht ange-
forderte Datencachevorabrufanfragen sind
ansprechend auf den identifizierten Schlei-
fenaustritt.

Verfahren nach Anspruch 1, wobei der Schleifen-
austritt auf Identifizieren eines die Schleife beenden-
den Zweiges basiert, der evaluiert, dass aus der Pro-
grammschleife ausgetreten werden soll.

Verfahren nach Anspruch 1, wobei der Schleifen-
austritt auf einer nicht korrekten Zweigvorhersage
basiert, welche einen spekulativen Befehlsabruf und
eine Ausflhrung verursacht hat, die unterdriickt

7. Vorrichtung

17 EP 2 946 286 B1 18

bzw. geloscht werden sollen.

Verfahren nach Anspruch 1, wobei das Identifizieren
des Schleifenauftrittes Detektieren aufweist, dass
ein konditionaler Zweigbefehl entschieden hat, die
Programmschleife zu beenden.

Verfahren nach Anspruch 1, das weiter Folgendes
aufweist:

Detektieren, dass ein konditionaler Zweigbefehl
nicht entschieden hat, die Programmschleife zu
beenden; und

Uberwachen (202) hinsichtlich eines Schleifen-
austritts.

Eine Vorrichtung (110) zum Léschen bzw. Unterdri-
cken von nicht angeforderten Datencachevorabruf-
anfragen in einem Prozessorsystem (100), das ei-
nen Prozessor (110) aufweist, der ein Cache-Sys-
tem (112) hat, das einen Datencache (124) aufweist,
und der eine Instruktions- bzw. Befehls-Pipeline
(120) hat, wobei die Vorrichtung Folgendes aufweist:

ein Schleifendatenadresseniiberwachungsele-
ment zum Bestimmen eines Datenzugriffs-
schrittes basierend auf einer wiederholten Aus-
fihrung eines Speicherzugriffsbefehls in einer
Programmschleife;

Datenvorabruflogik (121), die konfiguriert ist
zum spekulativen Ausgeben von Datencache-
vorabrufanfragen gemaR dem Datenzugriffs-
schritt;

Mittel zum Identifizieren (210) eines Schleifen-
austritts basierend auf einer Evaluierung von
Programmflussinformation; und

die gekennzeichnet ist durch:

eine Vorabrufstoppschaltung, die konfigu-
riertistzum Unterdriicken bzw. Loschender
Datencachevorabrufanfragen, die ausste-
hende nicht angeforderte Datencachevor-
abrufanfragen sind, ansprechend auf den
identifizierten Schleifenaustritt.
nach Anspruch 6, wobei das
Schleifendatenadresseniiberwachungselement
Folgendes aufweist:

eine Schrittschaltung (119), die konfiguriert ist
zum Uberwachen einer wiederholten Ausfiih-
rung des Speicherzugriffsbefehls zum Bestim-
men einer Differenz in einer Operandenadresse
fir jede Ausflhrung des Speicherzugriffsbe-
fehls, wobei die Differenz in der Operandena-
dresse ein Schrittadressenwert ist; und

eine Funktionshinzufligungsschaltung, die kon-
figuriert ist zum Hinzuflgen des Schrittadres-

10

15

20

25

30

35

40

45

50

55

10

10.

1.

12.

13.

senwertes zu der Operandenadresse des zu-
letzt ausgeflihrten Speicherzugriffsbefehls zum
Bestimmen der nachsten Operandenadresse.

Vorrichtung nach Anspruch 6, wobei der identifizier-
te Schleifenaustritt auf Identifizieren eines die
Schleife beenden Zweiges basiert, der evaluiert,
dassausder Programmschleife ausgetreten werden
soll.

Vorrichtung nach Anspruch 6, wobei der identifizier-
te Schleifenaustritt auf einer inkorrekten Zweigvor-
hersage basiert, welche eine spekulative Befehlsab-
holung und -ausfiihrung unterdriickt bzw. 16scht.

Vorrichtung nach Anspruch 6, wobei der identifizier-
te Schleifenaustritt auf Detektieren basiert, dass ein
konditionaler Zweigbefehl entschieden hat, die Pro-
grammschleife zu beenden.

Vorrichtung nach Anspruch 6, wobei die Vorab-
rufstoppschaltung weiter konfiguriert ist zum Detek-
tieren, dass eines konditionaler Zweigbefehl nicht
entschieden hat, die Programmschleife zu beenden
und wobei die Programmschleife fortfahrt, bis der
Schleifenaustritt identifiziert worden ist.

Vorrichtung nach Anspruch 6, wobei die Vorab-
rufstoppschaltung weiter konfiguriert ist, ausstehen-
de Vorabrufanfragen nicht zu unterdriicken bzw. zu
|I6schen basierend auf einem schwach vorhergesag-
ten Schleifenaustritt.

Ein computerlesbares nicht transitorisches Medium,
das mit computerlesbaren Programmdaten und Co-
de codiert ist, wobei die Programmdaten und der Co-
de, wenn sie durch einen Prozessor ausgefiihrt wer-
den, ausflhrbar sind zum Durchfilhren eines Ver-
fahrens gemaR einem der Anspriiche 1 bis 5.

Revendications

Un procédé (200) pour annuler des requétes de pré-
chargement d’antémémoire de données qui ne
soient pas la conséquence d’'une demande, dans un
systéeme de processeur (100) comprenant un pro-
cesseur (110) ayant un systéme d’antémémoire
(112) comprenant une antémémoire de données
(124), et ayant un pipeline d’instructions (120), le
procédé comprenant les étapes consistanta :

déterminer un intervalle d’adresses (stride)
d’accés aux données en fonction de I'exécution
répétée d’une instruction d’acceés a la mémoire
dans une boucle de programme ;

délivrer spéculativement des requétes de pré-
chargement d’antémémoire de données en

19 EP 2 946 286 B1

fonction de lintervalle d’adresses d’accés aux
données;

identifier (210) une sortie de boucle sur la base
d’une évaluation d’information concernant le
flux de programme ; et caractérisé par I'étape
consistant a :

annuler (214) les requétes de précharge-
ment d’antémémoire de données qui sont
des requétes d’antémémoire de données
en attente quine soient pas laconséquence
d’une demande, en réponse a la sortie de
boucle identifiée.

Le procédé selon la revendication 1, dans lequel la
sortie de boucle est basée sur Iidentification d’un
branchement de fin de boucle qui évalue le fait qu’il
faut sortir de la boucle de programme.

Le procédé selon la revendication 1, dans lequel
lidentification de la sortie de boucle est basée sur
une prédiction de branchement incorrecte qui a pour
effet 'annulation du préchargement et de 'exécution
d’instruction spéculatifs.

Le procédé selon la revendication 1, dans lequel
I'identification de la sortie de boucle comprend I'éta-
pe consistant a détecter le fait qu’une instruction de
branchement conditionnel a décidé de mettre fin a
la boucle de programme.

Le procédé selon larevendication 1, comprenant en
outre les étapes consistant a :

détecter le fait qu’une instruction de branche-
ment conditionnel n’a pas décidé de mettre fin
a la boucle de programme ; et

surveiller (202) la survenue de la sortie de bou-
cle.

Un appareil (110) pour annuler des requétes de pré-
chargement d’antémémoire de données qui ne
soient pas la conséquence d’'une demande, dans un
systéme de processeur (100) comprenant un pro-
cesseur (110) ayant un systéme d’antémémoire
(112) comprenant une antémémoire de données
(124), et ayant un pipeline d’instructions (120),
I'appareil comprenant:

un moniteur d’adresse de données de boucle
configuré pour déterminer un intervalle d’adres-
ses d’accés aux données en fonction de I'exé-
cution répétée d’'une instruction d’accés alamé-
moire dans une boucle de programme ;

une logique de préchargement (121) configurée
pour délivrer spéculativement des requétes de
préchargement d’antémémoire de données en
fonction de l'intervalle d’adresses d’accés aux

10

20

25

30

35

40

45

50

55

11

7.

10.

1.

12.

20

données ;

des moyens pour identifier (210) une sortie de
boucle sur la base d’une évaluation d’informa-
tion concernant le flux de programme ; et carac-
térisé par:

un circuit d’arrét de préchargement confi-
guré pour annuler les requétes de préchar-
gement d’antémémoire de données qui
sont des requétes d’antémémoire de don-
nées en attente qui ne soient pas la consé-
quence d’'une demande, en réponse a la
sortie de boucle identifiée.

Appareil selon la revendication 6, dans lequel le mo-
niteur d’adresse de données de boucle comprend :

un circuit d’intervalle d’adresses (stride) (119)
configuré pour surveiller 'exécution répétée de
Pinstruction d’accés a la mémoire pour détermi-
ner une différence dans une adresse d’opéran-
de pour chaque exécution de l'instruction d’ac-
cés a la mémoire, dans lequel la différence
d’adresse de 'opérande est une valeur d’adres-
se d’un intervalle d’adresses ; et

un circuit ayant une fonction d’addition configuré
pour ajouter la valeur d’adresse d’un intervalle
d’adresses a l'adresse de l'opérande de lins-
truction d’accés a la mémoire exécutée la plus
récemment pour déterminer 'adresse d’opéran-
de suivante.

Appareil selon la revendication 6, dans lequel la sor-
tie de boucle identifiée est basée sur I'identification
d’un branchement de fin de boucle qui évalue le fait
qu’il faut sortir de la boucle de programme.

Appareil selon la revendication 6, dans lequel la sor-
tie de boucle identifiée est basée sur une prédiction
de branchement incorrecte qui annule le précharge-
ment et 'exécution d’instruction spéculatifs.

L’appareil selon la revendication 6, dans lequel la
sortie de boucle identifiée est basée sur le fait qu’une
instruction de branchement conditionnel a décidéde
mettre fin a la boucle de programme.

L’appareil selon la revendication 6, dans lequel le
circuit d’arrét de préchargement est en outre confi-
guré pour détecter le fait qu’une instruction de bran-
chement conditionnel n’a pas décidé de mettre fin a
la boucle de programme et dans lequel la boucle de
programme continue jusqu’a ce que la sortie de bou-
cle soit identifiée.

Appareil selon la revendication 6, dans lequel le cir-
cuit d’arrét de préchargement est en outre configuré
pour ne pas annuler les requétes de préchargement

13.

21 EP 2 946 286 B1

en attente sur la base d’une sortie de boucle faible-
ment prédite.

Un support non transitoire lisible par ordinateur en-
codé avec des données et du code de programme
lisibles par ordinateur, les données et le code du
programme lorsqu’ils sont exécutés par un proces-
seur étant exploitables pour mettre en oeuvre un pro-
cédé selon I'une quelconque des revendications 1 a
5.

10

15

20

25

30

35

40

45

50

55

12

22

EP 2 946 286 B1

KJOWIN WISAS

I~ ["DI4
001 Hl
™ TN g
_ _
[onuo)) e
" ayoed(] £10WON oyoeo| |
P e B
7 48!
yd
s1sanbax yo3oj01d paxpoeq
puBwWIOP-uou JUIPUL}SINO
JO uone[Roued s103310
d
osTe yoeys yur] woiJ dog Do1Np
ST uroped uoym
S€1—{ uonordwo) DIL b-$91 R s3sanba1 {11 SpasUL
3 d
Y SSoIppe 1031e) Soysn pel 1S/PT/XA AL b vor uroped asn
NUI] /M youelg PUBTIOP © 109)0p
cei] umed puesdo 0L | co 0} SpPeo] SIOIUOTA
611~
ctl— oSSl HL =091 d150[yaayaad ereq
oB)S UI
PR ssaIppe 10818} Nal TET— opode(d MNM\
101paad 03 sdod 141 —E I
uononnsul |4y PRI 3 Y14 \om I \@E \Nm I
e os1- mmﬁ I |3992d | LHD
2307 YowIg surpdig uondnsuy A|V 130T uondIPIIY
€21 0z1- w1

13

EP 2 946 286 B1

/202

Monitor processor code

/214

for a software loop

204

software Loop
been detected?

/206

Monitor processor code for a
conditional branch instruction |g—

Cancel pending data
prefetch requests
except for demand
data prefetch requests

208

Has a conditional
branch instruction been
received?

conditional branch
instruction resolve to

Continue with normal

branch processing

FIG. 2A

14

200

EP 2 946 286 B1

250

//

/252

Monitor processor code for

f258

a software function exit

254

Has a
software function
exit been
detected?

Cancel pending data
prefetch requests
except for demand
data prefetch requests

256

Is this exit
a return from
interrupt?

Yes

FIG. 2B

15

16

EP 2 946 286 B1

ATddNS YIMOd ¢ DId
gce
TOVIIAINI 8CE~ INOHJOUDIN
SSHTTIIM LIND¥D .
YATIOUINOD THOVD 8¢
e — —— D9d0D
ﬁma zoﬁo%ﬁmé ——
2z \-oz¢ - opg~
e
WALSASINS
AMOWHAIN Ad.LV¥DALINI T
“ pie-/ 1€ 9OSSADOUd VAINYD VAT OFdiA
(SNOILDMYLSNI “89) 7 7
pEe 9¢¢
TIVMLIOS
DIDOT NOLLDIATYd
e~ o1 YITIOYINOD
AMOWAIN WALSAS AV1dSIa
XATINOD MOSSADONd ,
e 0v€
ore-~
poc~’
HOIAIA LNdNI AV1dSld //oom

9c - e~

EP 2 946 286 B1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

¢ US 6775765 B [0004] ¢ US 066508 A [0020]
¢ US 6260116 B [0004]

17

Biidrdy &t borendards sdatolS1aitds Rérg

s
e
Z
B3
o
Y
/ﬁu
e
o
.
2
-~y
T

“

i
#
2
bl
Es
At
[
£
%
.25

Ssvbadaimi kdnipoitak

S {3 oem Mrolhnsrat wlet gy

"

30 SEOONSSIOraY rondsgerd

fynesitotar readsierral {11 randetkesik, o

adathorsdNrdst Wodskdy meghaldrondedt sgy prograny oikhshen ey mamdriy

sdat gybhrsitdtde aldtiivda béralnek spelidativ Kiboosatdast o adat hovgMdedsi idpdskdrnel wmaghotelfan
gy CiRius befeiveddsy aronositdsdt {2100 srogreoy Tolvam infornidols Bigriekaidse slagién; 8s

a kbvatkeadkkel jsllaman

L0 atal Lroniaidr iRt Méralosk tlrlese {318) sovalpel Tped nemherelmenett adat grarst
thltest kdrelmeN, vélanakdapen v szonosindt okl befelerdlders,

o Az L igdnypont szerintl aljdrds, shol 5 oiklss belajerfdes ey olyan cikiisst bedeierd S szonositssdinalapud,

3o A0 L pdnypontseendtheliinds, shot o tidles Defeivntdds sgy hilds 8¢ olfirsbeisisen alapd, smely spuk

‘<

fathv alasitds lohivdst &s tlendd wigrehaitdst chovatt,

& Av L ipdrypord srerinth ¢hards, ahol g oiblus befeiee@ldoaronositiise tariaimazsr annek detakididsdy hogy

egy fulittelne eligaedd utsitdy wprograny oidus befejersdt dlntddte sl

o & Lodgdovpont ek

alidrds, amehy tariaimaazy tovdbbd:

S GRS e dhmt e el o gragran il

& Bergndesds {110} nam kdrehnesstt adul grorsiidtar ol0tGhdst kfrelmek toridsdre s protasseores rang

segorhan {IOUL soosly ey wlal geuesidtival {1241 & ulasiids plochost (1300 tomalmard svonsfdiss

rendszarrsl {112) rendslbedk, ¢ borendezds tartalman

egyeikie slat ol ragndton, soely Ugy vau konfiguniles, hoge mashatdronon sgy alathorsdforest pdskant

gy progrenrsiiushen mendsly hozedionid ulieldy hndleltwdprahaitdsa nlapidy

Wy

wnady gy van Roerdigurdivg, hogy spalitially mcdon aded grorsitondr oldtiRes

eszkdet sy oiklue boledseddds nronosiassra {3100 a program folysm Informdols Hesndkeldse slapling &

sreat jellemenve, hogy Wwrialmay

sgy ohtitds dll drarmRiel, smely Gay ven konfigurdive

kérsbroekal, amelvek figadben I8vd nem

Lt

yenenitor

3

give

=3
N

Srelt

S

&
&

¥

tasitd

Seia hosafdrdgiy

ysiie 8 e

}

s hapy |

$EH

ERSTRIR

e

sroparanduss

{a kidiiabass

X
2

ahg

N,

. .§

et

s

=8

kit s

R
Q¥

&

<

it

7

3

i
74

GraTandy

soud §g

¥
)

st bete

t
§

k

FARE A

sy oy

288, 8

berenge

3

SERvEant serintl

A B

8

AR

34

o3

kidrtdbell b

sghy

&

¥
¥
H

v atgp,

A

85

¥
e

stheutasiidtishiveg

Wspeky

1
3

N

bR

RN Rigph

i sidrabegst

v hibd §

sadeias, 88

Ehyar

¥int

SEE

pont

doahoel g gl

s
SR

s

G

St hersn

SOVRODL S8

.
&

&
§
2

A

>

i

wel

e

11

§utas®t

N

gand

3

£

wy

¥
o
ko
o

ofaiegd

gt

3

5

S

&

san

HEH

2

SN0

Sdes g

N
REG

efaisy

rarhka

At

3% %

Bdtatheid, hogy

£

B

i

sagram ad

1oa R

%
EIN S

N T
whiadise

iy

$Zay

rraslvike

B

o

QX

ML

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS

