

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2021/0369004 A1 Iveson et al.

Dec. 2, 2021 (43) **Pub. Date:**

(54) FUEL STORAGE CONTAINER

(71) Applicants: Adam Iveson, Reno, NV (US); Devan LeBlanc, Reno, NV (US)

Inventors: Adam Iveson, Reno, NV (US); Devan LeBlanc, Reno, NV (US)

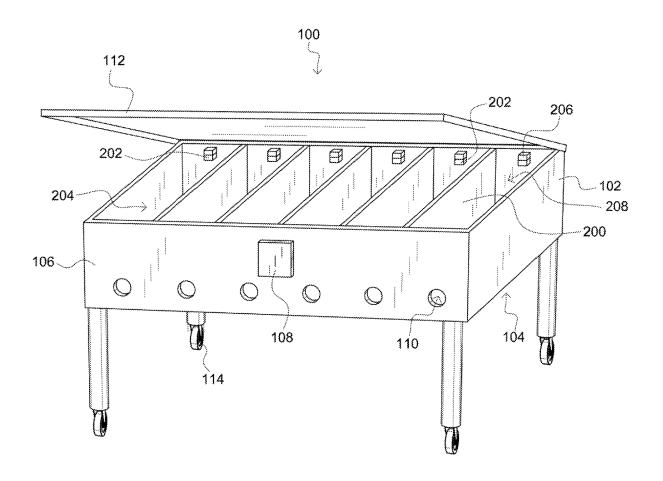
Appl. No.: 17/336,237

(22) Filed: Jun. 1, 2021

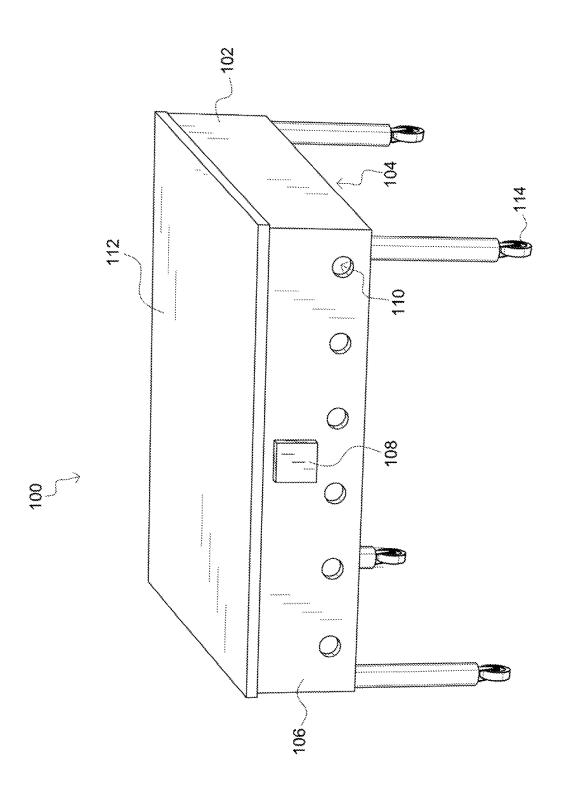
Related U.S. Application Data

Provisional application No. 63/033,065, filed on Jun. 1, 2020.

Publication Classification

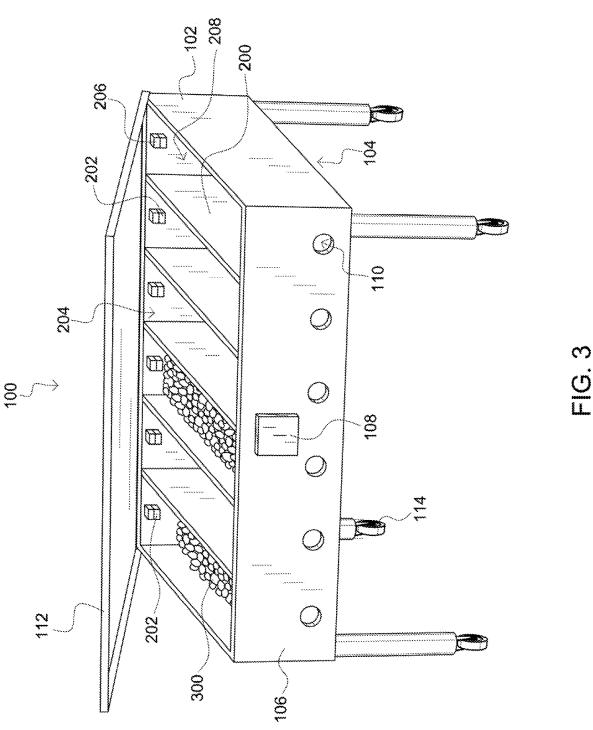

(51) Int. Cl. A47F 1/035 (2006.01)B65D 25/08 (2006.01)B65D 25/06 (2006.01)A47F 3/00 (2006.01)

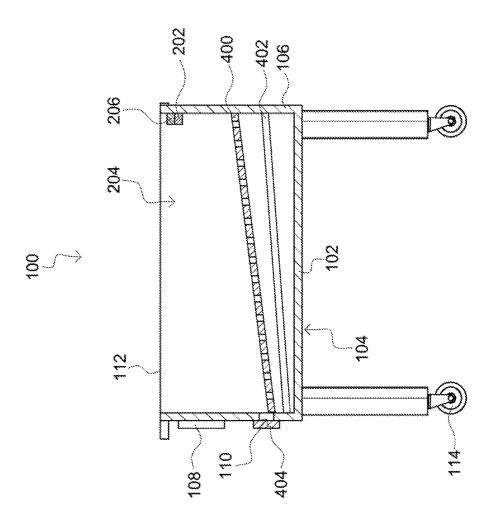
(52) U.S. Cl.

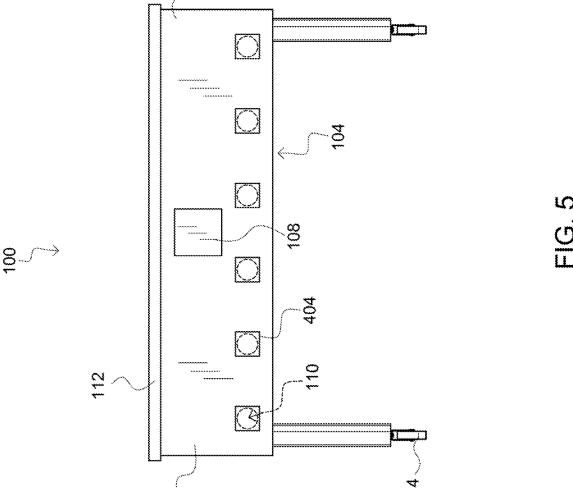

CPC A47F 1/035 (2013.01); B65D 25/08 (2013.01); B65D 2203/04 (2013.01); A47F 3/001 (2013.01); A47F 3/004 (2013.01); B65D 25/06 (2013.01)

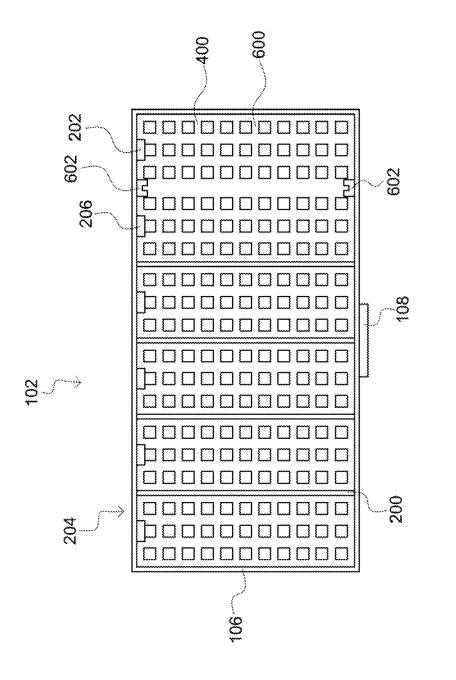
(57)ABSTRACT

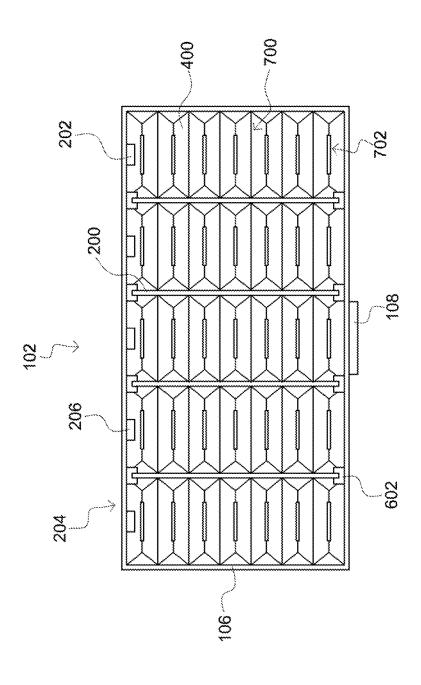

A fuel storage container. There is a container body having a sloped first container floor and container wall coupled; a divider removably disposed within the body, configured to divide the container body into a plurality of compartments; a level sensor coupled to an interior of the container wall and configured to sense cooking fuel; a display device in functional communication with the level sensor such that information from the level sensor is displayed on the display device; an aperture disposed through the container wall; and a perforated screen disposed between an interior region of the container body and the aperture such that cooking fuel disposed within the interior region passes through the screen before exiting the aperture.











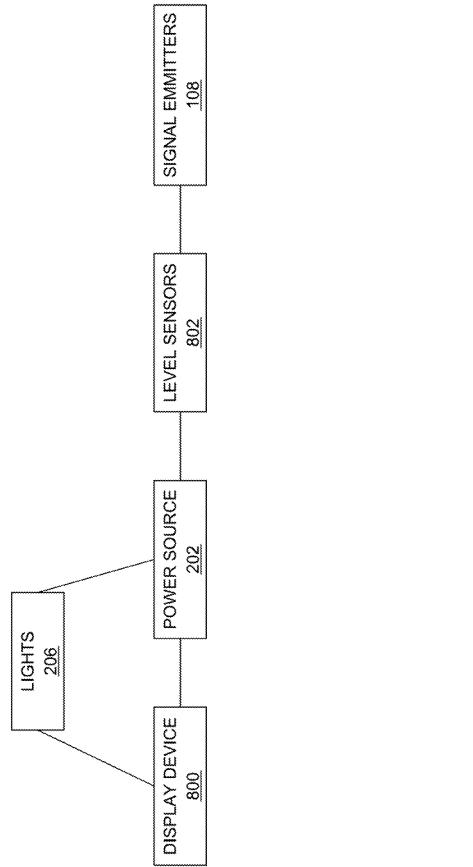
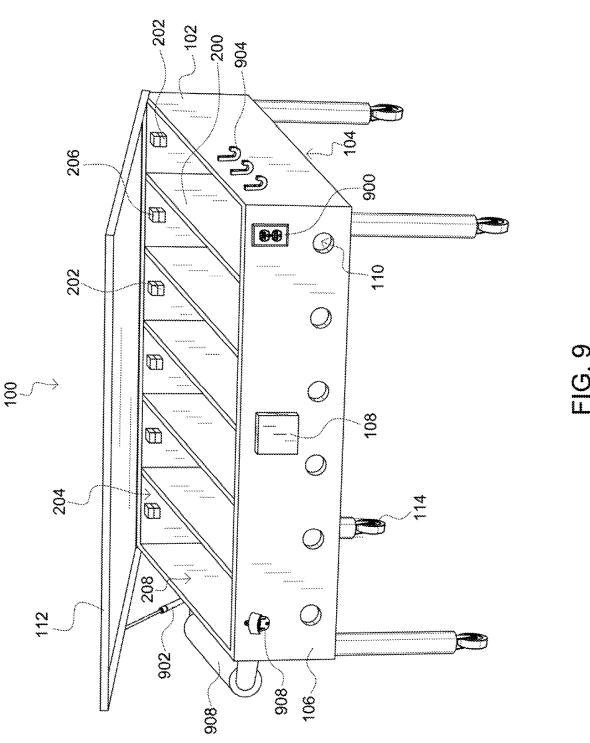



FIG. 8

FUEL STORAGE CONTAINER

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This invention claims priority under 35 U.S.C. § 120, to the U.S. Provisional Patent Application No. 63/033, 065, by Adam Iveson and Devan LeBlanc, filed on Jun. 1, 2020, which is incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present invention relates to storage containers, specifically to containers for storing fuel, such as cooking fuel.

Description of the Related Art

[0003] In the related art, it has been known to use containers to dispense of bulk materials. Several containers are used for dispensing bulk products. Storage containers having a multiplicity of compartments, drawers, or trays therein have been utilized for storing and dispensing products.

[0004] Containers are often used to store and dispense cooking fuel, such as wood pellets, wood, lump coal, charcoal, etc. Flavoring briquettes or pellets are commonly used as cooking fuel due to their ability to impart flavor to food during the cooking process. A pellet imparts flavor when smoke released from the pellet during combustion carries flavor to the food. Pellets comprising mixtures of wood have been manufactured to provide wood flavor during cooking. Generally, wood that imparts flavor, known as flavor wood, and a wood that does not impart flavor, known as base wood, have been combined to produce pellets that impart a wood flavor into the food. These pellets may be stored in containers prior to their use in cooking or smoking. [0005] A conventional bulk container has a lid removable from a wide neck through which a scoop is inserted by hand to remove an amount of the product. When scooping product from containers, a scoop is often overfilled and excess product falls from it as it is removed from the container for depositing the product. Furthermore, the very act of inserting an outside object, such as the scoop, and a person's hand within the container, exposes the container to contamination. There is also the potential exposure to external elements, such as moisture and other weather. Additionally, in use of conventional containers, there may still be some of the product left in the bottom when the supply is replenished. Such product remains there on the bottom and after several times of replenishment, this bottom material is no longer

[0006] Some improvements have been made in the field. Examples of references related to the present invention are described below in their own words, and the supporting teachings of each reference are incorporated by reference herein:

[0007] U.S. Pat. No. 4,349,128, issued to Sanfilippo, discloses a movably mounted supply dispenser for bulk material is provided that has apparatus for mounting a container having inlet and outlet ends on a rack having spaced vertical supports. The mounting apparatus provides translation of a given generally horizontally directed thrust applied against the outlet end of the container into an angular motion of said

container having upward components and horizontal components at both the inlet and outlet ends. The upward motion of the inlet end is greater than the upward motion of the outlet end for the given applied horizontal thrust. A system of such containers may also be provided in a freestanding rack allowing for the dispensing of many different bulk products.

[0008] U.S. Pat. No. 4,577,773, issued to Bitel, discloses a utility box for storing small parts and the like has a container molded from a transparent plastic material exhibiting natural flexural characteristics with a generally rectangular configuration defined by a bottom wall and upwardly extending and outwardly tapering side and end walls. The bottom wall has a multiplicity of transversely extending ribs thereon each formed with concave side surfaces and a planar upper surface with a groove therein. The side walls of the container have pairs of aligned slots therein above the ribs of the bot torn wall and recesses in the outer surface of the side wall above the slots. The side walls are also provided with pairs of aligned ribs extending upwardly from adjacent the bottom wall to the slots to form channels therebetween. A multiplicity of removable compartment dividers Mattingly received are seated within the grooves and channels therein, and arm portions at the upper edges thereof lock into the slots of the side walls.

[0009] U.S. Pat. No. 5,139,173, issued to Evinger, discloses a bulk foodstuff dispenser with a pivotally mounted chute that dispenses product when manually depressed. A combined product ramp and chute spring takes the form of a flexible plastic plate in a product container area that engages and biases the chute upwardly to its product blocking position. When manually depressed the chute flexes the ramp upwardly above a product stop, permitting product to flow over the stop into the chute. A chute safety lever prevents inadvertent product dispensing and is designed to be operated by the same user's hand that pushes the chute downwardly.

[0010] U.S. Pat. No. 8,915,214, issued to Pickens, discloses a feed level sensor for a poultry feeding system is positioned within the drop tube of a control feeder of the feeding system. The sensor comprise a first light emitter/ light detector pair to detect when the level of feed in the drop tube falls below a predetermined "empty' level and a second light emitter/light detector pair to detect when feed in the drop tube is at a predetermined "full level in the drop tube. The sensor emits a "start" signal to activate a drive to deliver feed to the feeders along a feed line when it is detected that feed in the control feeder drop tube falls below the "empty" level and emits a "stop' signal to deactivate the drive when it detects that feed within the drop tube is at the "full level. [0011] U.S. Patent Application Publication No. 2001/ 0030202, by Hammer et al., discloses a dry mix particulate dispenser includes a container con figured to hold a dry mix particulate. The container has a top portion, a bottom portion, and at least one side wall. The container includes a dispenser opening formed in the bottom portion and a sloped interior wall within the container is angled in a direction generally toward the opening. A slide track is positioned adjacent the bottom portion of the container receives an elongate Slider. The Slider including an opening formed therein which can be Selectively aligned with the dispenser opening.

[0012] The inventions heretofore known suffer from a number of disadvantages which include: being harder to take

care of related tools; being harder to keep the space clean; not providing advance warning of low pellets; being less portable; not protecting the pellets; not having better organization; not being easier to use; not being easier to prep food next to a barbecue or smoker; and not being more convenient.

[0013] What is needed is a fuel storage container that solves one or more of the problems described herein and/or one or more problems that may come to the attention of one skilled in the art upon becoming familiar with this specification.

SUMMARY OF THE INVENTION

[0014] The present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available storage containers. Accordingly, the present invention has been developed to provide an fuel storage container for storing cooking fuel. [0015] In one embodiment of the invention, there may be a container body that may have a first container floor that may be disposed along a bottom of the container body and/or a container wall that may be coupled to the bottom of the container body and/or extending upwardly therefrom. The first container floor may be sloped. A divider may be removably disposed within the body, may be interior to the container wall and/or may be configured to divide the container body into a plurality of compartments. A level sensor may be coupled to an interior of the container wall and/or may be configured to sense a characteristic related to an amount of cooking fuel disposed within a compartment. A display device may be in functional communication with the level sensor such that information from the level sensor may be displayed on the display device. An aperture may be disposed through the container wall. A perforated screen may be disposed between an interior region of the container body and/or the aperture such that cooking fuel may be disposed within the interior region and may pass through the screen before exiting the aperture.

[0016] In another embodiment of the invention, the perforated screen may provide a first container floor and/or may form a bottom boundary of the interior region. A second container floor may be positioned below and/or spaced from the first container floor. The first container floor may be rippled and/or may thereby includes peaks and/or valleys.

[0017] Additionally, in one embodiment of the invention the fuel storage container may further comprise a door that may be disposed over the aperture of the container body. The door may provide access to the cooking fuel. The fuel storage container may also comprise an electrical outlet that may be disposed through the container body. A light may also be coupled to an interior of the container wall and/or may be configured to light an interior of the container body. The interior of the wall of the container body may include a track and/or the divider may be slidably coupled to the track. A lid may be disposed over the container body and/or hingedly coupled to the container body. The lid may include gas shocks that may be configured to hold the lid up from the container body. A plurality of casters coupled to a base of the container body.

[0018] In yet another embodiment of the invention, the level sensor may measure a distance to a top surface of fuel disposed within the container body. In an additional embodiment of the invention, the fuel storage container may further

comprise a plurality of level sensors. Each sensor may be associated with a different compartment. Each of the plurality of level sensors may feed into a single display device. [0019] Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment

[0020] Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.

[0021] These features and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] In order for the advantages of the invention to be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawing(s). It is noted that the drawings of the invention are not to scale. The drawings are mere schematics representations, not intended to portray specific parameters of the invention. Understanding that these drawing(s) depict only typical embodiments of the invention and are not, therefore, to be considered to be limiting its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawing(s), in which:

[0023] FIG. 1 is a front perspective view of a fuel storage container with a lid in a closed mode, according to one embodiment of the invention;

[0024] FIG. 2 is a front perspective view of a fuel storage container with a lid in an open mode, according to one embodiment of the invention;

[0025] FIG. 3 is a front perspective view of a fuel storage container with a lid in an open mode showing cooking fuel, according to one embodiment of the invention;

[0026] FIG. 4 is a side sectional view of a fuel storage container with a lid in a closed mode, according to one embodiment of the invention;

[0027] FIG. 5 is a front elevational view of a pellet storage container with a lid in a closed mode, according to one embodiment of the invention;

[0028] FIG. 6 is a top plan view of a pellet storage container with a lid removed, according to one embodiment of the invention;

[0029] FIG. 7 is a top play view of a pellet storage container with a lid removed, according to one embodiment of the invention;

[0030] FIG. 8 illustrates a schematic drawing of power couplings between different power components of a pellet storage container, according to one embodiment of the invention, according to one embodiment of the invention; and

[0031] FIG. 9 is a front perspective view of a fuel storage container with a lid in an open mode, according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0032] For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the exemplary embodiments illustrated in the drawing(s), and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the inventive features illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.

[0033] Reference throughout this specification to an "embodiment," an "example" or similar language means that a particular feature, structure, characteristic, or combinations thereof described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases an "embodiment," an "example," and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, to different embodiments, or to one or more of the figures. Additionally, reference to the wording "embodiment," "example" or the like, for two or more features, elements, etc. does not mean that the features are necessarily related, dissimilar, the same, etc.

[0034] Each statement of an embodiment, or example, is to be considered independent of any other statement of an embodiment despite any use of similar or identical language characterizing each embodiment. Therefore, where one embodiment is identified as "another embodiment," the identified embodiment is independent of any other embodiments characterized by the language "another embodiment." The features, functions, and the like described herein are considered to be able to be combined in whole or in part one with another as the claims and/or art may direct, either directly or indirectly, implicitly or explicitly.

[0035] As used herein, "comprising," "including," "containing," "is," "are," "characterized by," and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional unrecited elements or method steps. "Comprising" is to be interpreted as including the more restrictive terms "consisting of" and "consisting essentially of."

[0036] FIG. 1 is a front perspective view of a fuel storage container with a lid in a closed mode, according to one embodiment of the invention. There is shown a fuel storage container 100 with a container body 102. The container body 102 has a container bottom 104 and a container wall 106. A display device 108 is coupled to the wall 106 of the container body 102. There is also an aperture 110 disposed through the wall 106. A lid 112 is disposed over the container body 102 and wheels, or casters, 114 are coupled to the container bottom 104.

[0037] The illustrated storage container 100 includes a container wall 106 coupled to the bottom 104 of the container body 102 and extending upwardly therefrom. The illustrated container body 102 may be configured to contain wood pellets, charcoal, wood chips, lump fuel, flavor/scent pellets, and the like and combinations thereof (hereinafter pellets are referred to but it is understood that the variety of contained materials is plethoric). As illustrated, the container body 102 is substantially rectangular; however, the container body may have any size and/or shape for containing pellets, such as, but not limited to: square or circular. The container body 102 may be substantially air- and/or water-tight to seal in flavor and/or to prevent excess moisture. As a result, the container body 102 may be comprised of a variety of materials, such as, but not limited to: metals, plastics, rubber and glass.

[0038] An aperture 110 is shown disposed through the container wall 106. As illustrated, there are a plurality of apertures 110 disposed through the container body 102. The apertures 110 function to allow pellets to be drained or emptied from the container body 102. There are six apertures 110 shown; however, there may be any number of apertures 110, such as but not limited to: three, five, and eight. Also, the illustrated apertures 110 are circular, but the apertures 110 may have any shape and/or size for allowing pellets to drain.

[0039] Further shown, disposed over the container body 102 is a lid 112. The lid 112 may be hingedly coupled to the container body 102. The lid 112 may rest along the top of container body 102 and/or the lid may snap- or tension-fit to the container body 102. In one non-limiting embodiment, the lid 112 may be a fixed top with access ports, or apertures 110, disposed therethrough. The lid 112 may provide a work surface and/or a food prep surface for the container body 102. Accordingly, the lid 112 may function as a cutting board or butcher block. In one embodiment, the lid 112 may be magnetic and a magnetic butcher block may be coupled to the lid 112. Accordingly, the lid 112 may be comprised of materials such as, but not limited to: plastic, metal, and wood.

[0040] As shown, a plurality of casters 114 are coupled to the container bottom 104, or base of container body 102. The casters 114 may be wheels and allow one to move the fuel storage container 110 from one location to another by rolling. The casters 114 allow the container body 102 to be moved or transported from one location to another. The casters 114 may be full motion casters 114 and may be coupled to a leg of the container 102 body or directly coupled to the container body 102. Moreover, the casters 114 may be full motion casters 114, partial motion casters 114, direct motion casters 114, pads, rolling balls mounted within mounts, low friction pads and so on. As illustrated, there are four casters 114, but the container body 102 may include any number of casters 114, such as but not limited to: five, six, or ten.

[0041] FIG. 2 is a front perspective view of a fuel storage container with a lid in an open mode, according to one embodiment of the invention. There is illustrated fuel storage container 110 has a container body 102. The container body 102 includes a container bottom 104 and a container wall 106. The container wall 106 is coupled to the container bottom 104 and extends upwardly therefrom. There is also a display device 108 coupled to the container wall 106, and an aperture 110 disposed through the wall 106. Casters 114

are coupled to the bottom 104 of the container body 102, and a lid 112 is disposed over the container body 102. Within the container body 102, a divider 200 is disposed in an interior 204 the container body 102 and thereby divides the interior 204 into compartments 208. A level sensor 202 and a light 206 are also disposed in an interior 204 of the container body.

[0042] As shown, the divider 200 is removably disposed within the body 102 and interior 204 to the container wall 106. The divider 200 is configured to divide the container body 102 into a plurality of compartments 208. A volume of the compartment 208 is defined by the removable divider 200 slidably coupled to the container body 102.

[0043] Further, the illustrated container body 102 includes a plurality of compartments 208 for storing pellets. The illustrated container body 102 may include any number of compartments 208. In addition, the compartments 208 may have any size and/or shape for storing pellets. As illustrated, a size of a compartment 208 is defined by dividers 200 and the container wall 106. The dividers 200 may be removably coupled to an interior 204 of the container body 102. Accordingly, a compartment 208 size may be increased by removing a divider 200 and a compartment 208 size may be decreased by installing a divider 200. In comparison, the number of compartments 208 of the container body 102 may be decreased by removing a divider 200 and the number of compartments 208 of the container body 102 may be increased by installing a divider 200. The dividers 200 may be removably coupled to the container body 102 by sliding. The container body 102 may include coupling structures for removably coupling the dividers 200 to an interior 204 of the container body 102. For example, in one non-limiting embodiment, the coupling structures may be channels, or milled out slots, that function as guides for the dividers 200. Similarly, the coupling structures may be tabs that extend into an interior 204 of the container body 102 to pinch, grasp, or provide support to the dividers 200. The dividers 200 may also couple to an interior 204 of the container body 102 by tension-fitting. In one non-limiting embodiment, the compartments 208 may be pull-out drawers. In another non-limiting embodiment, the compartments 208 may be separate compartments 208 without dividers 200 and/or the compartments 208 may couple to each other.

[0044] Also shown, a level sensor 202 is coupled to the interior 204 of the container wall 106. The level sensor 202 is configured to sense a characteristic related to an amount of cooking fuel disposed within the compartment 208. For instance, the level sensor 202 may be configured to sense a height or a volume of the cooking fuel. In one embodiment, the level sensor 202 measures a distance to a top surface of fuel disposed within the container body 102. In another embodiment, there may be a plurality of level sensors 202 each associated with a different compartment 208 defined by a divider 200, or dividers 200, and the container wall 106. In yet another embodiment, each of the level sensors 202 may feed into the display device 108. Also, it is envisioned that the plurality of level sensors 202 may be coupled to an interior 204 of the container body 102 by sensor mounts. In one embodiment, the sensor mounts may be comprised of a structure inherent to the container body 102, so that the sensors mount to the container body 102 such as how a spark plug plugs in.

[0045] The plurality of level sensors 202 are configured to sense a distance/height/level of fullness of pellets stored

within the container body 102. For instance, the sensors 202 may be such as the feed level sensors with light emitters of U.S. Pat. No. 8,915,214, by Pickents, which is incorporated by reference herein. Similarly, the sensors 202 may be such as the WXS High-Precision Weigh Module of Mettler Toledo, LLC, 1900 Polaris Parkway, Columbus, Ohio 43240, or the Dry Material Rotary Paddle Level Switch or Capacitance Measurement Probes of Omega Engineering, Inc., 800 Connecticut Ave., Suite 5N01, Norwalk, Conn. 08654. The sensors 202 may be such as the Low Material Hopper Alarm Kit of IMS Company, 10373 Stafford Rd., Chagrin Falls, Ohio 44023. Accordingly, the plurality of sensors 202 may be weight sensors, level sensors, light curtain sensors, etc. The plurality of sensors 202 may include lasers such as the Multi-Point Lasers of Keyence Corporation of America, 500 Park Boulevard, Suite 200, Itasca, Ill. 60143.

[0046] The display device 108 is in communication with the level sensor 202 and is coupled to the container body 102. The illustrated display device 108 is in functional communication with the level sensor 202 such that information from the level sensor 202 is displayed on the display device 108. The display device 108 may be in electrical or wireless communication with the sensors 202. The display device 108 displays a pellet level in each compartment 208. The display device 108 may be coupled to the container body 102 for readily displaying levels for viewing. The display device 108 may be such as the CMC Grain Gauge Bin Level Monitor 7600 by Barndoor Ag. of AG Solutions Group LLC, 405 Pikes Peak Rd., Chickasha, Okla. 73018. Moreover, the display device 108 may be an interactive user interface, such as interfaces of smartphones, tablets, or any other interface for human-computer interaction. The display device 108 may employ wireless communication or Bluetooth to communicate with the plurality of sensors 202. Accordingly, the display device 108 may be such as the Hioki CM 7291 Wireless Display Unit with Bluetooth for AC/DC Current Sensors of Hioki.

[0047] Further, a light 206 is shown coupled to the container wall 106 and is configured to light an interior 204 of the container body 102. The container body 102 may include a plurality of lights 206 coupled to an interior 204 of the container body 102. The plurality of lights 206 may include a switch, such as a General Electric Refrigerator Door Switch, General Electric Company, 5 Necco Street, Boston, Mass. 02210. In one non-limiting embodiment, the plurality of lights 206 may be LED lights or strings of lights. For example, the plurality of lights 206 may be such as the SloanLED Vista of SloanLED, 5725 Olivas Park Drive, Ventura, Calif. 93003. As shown, the container body 102 includes one level sensor 202 and light 206 per compartment 208; however, the container body 102 may include any number of level sensors 202 and/or lights 206.

[0048] In operation of one embodiment, one lifts the lid 112 of the fuel storage container 100. Then, one determines a desired size for a compartment 208 disposed within the container body 102. One removes a divider 200 to increase a compartment 208 size, and one inserts a divider 200 to decrease a compartment 208 size and/or to create more compartments 208. A plurality of lights 206 illuminate the compartments 208 when one lifts the lid 112. A level sensor 202 determines a fullness level of each compartment 208 of the container body 102 and sends the fullness level to a display device 108. The display device 108 displays the

fullness level so that one may view it. When a level is low in a particular compartment 208, one fills the compartment 208 with additional pellets. One pours a desired amount of pellets into a compartment 208. When one requires pellets for cooking, one drains pellets from an aperture 110 of a selected compartment 208. As the pellets pour from the aperture 110, pellet particles, dust and debris fall through perforations of a first floor and are collected by a second floor. One cleans the container body 102 by accessing the second floor and removing the collected pellet particles dust and debris. One closes the lid 112 of the container body 102 to utilize the lid 112 as a work surface, such as for food prep. One moves the container body 102 by utilizing casters 114 coupled to the container body 102 to roll the container body 102 to a new location. One stores a plurality of utensils on the container body 102 by placing them on mounting hooks. One stores paper towel on the paper towel holder of the container body 102. One uses a bottle opener coupled to the container body 102 to open a bottle. One uses an electrical outlet of the container body 102 to provide power to an electronic device.

[0049] FIG. 3 is a front perspective view of a fuel storage container with a lid in an open mode showing cooking fuel, according to one embodiment of the invention. There is shown a fuel storage container 100 for storing cooking fuel 300. The container 100 has a body 102 with a bottom 104 and a wall 106. A display device 108 is coupled to the wall 106, and an aperture 110 is disposed through the wall 106. A lid 112 is disposed over the container 100, and casters 114 are coupled to the container 110 opposite the lid 112. Within the container 100, a divider 200 is coupled to an interior 204 of the container 100 and forms a compartment 208 thereby. A level sensor 202 and a light 206 are also coupled to the container wall 106 at an interior 204 of the container 100. Cooking fuel 300 is also disposed in the interior 204 of the container.

[0050] The illustrated fuel storage container 100 is for storing cooking fuel 300. As shown, the compartments 208 of the container body 102 contain cooking fuel 300, or pellets. The compartments 208 may have any size and/or shape for storing cooking fuel 300. The compartments 208 contain a different volume, or level, or fuel 300. The level sensors 202 sense a level of the fuel 300 and communicate the level of fuel 300 sensed to the display device 108. The display device 108 displays the fuel 300 level sensed by the level sensors 202. Accordingly, it may be determined that a fuel 300 level requires adjusting based on a level reading. [0051] The compartments 208 may contain a same kind of pellet, or fuel 300, or a different kind of pellet, or fuel 300. A size, or volume, of each compartment may be adjusted by adding or removing a divider 200. A compartment 208 size may be decreased by adding a divider 200 and a compartment 208 size may be increased by removing a divider 200. The compartments 208 may be comprised of a variety of materials, such as but not limited to, metal and plastic.

[0052] The illustrated dividers 200 function to divide and separate the pellets, or fuel 300. The dividers 200 may be removably coupled to the container body 102 for adding to or removing from an interior 204 of the container body 102. The dividers 200 may be slideably coupled to the container body 102. The container body 102 may contain a track, channel, tabs, protrusions, or other coupling structures for removably coupling to the dividers 200. The dividers 200 may be removably coupled to the container body 102 by

tension- or snap-fit. The container body 102 may have female coupling mechanisms that couple to the dividers 200. [0053] The illustrated container body 102 also includes a plurality of apertures 110 disposed thorough the container body 102. The apertures 110 allow fuel 300 stored within the container body 102 to flow from an interior 204 of the container body 102 to an exterior of the container body 102. The container body 102 may have any number of apertures 110, such as one aperture 110 per compartment 208, as one non-limiting example. The apertures 110 may have any size/and or shape for allowing fuel to flow out from the container body 102.

[0054] FIG. 4 is a side sectional view of a fuel storage container with a lid in a closed mode, according to one embodiment of the invention. There is illustrated a fuel storage container 100. The illustrated container 100 has a container body 102 with a bottom 104 and a wall 106. A display device 108 is coupled to the container wall 106. An aperture 110 is disposed through the container wall 106 and a door 404 is disposed over the aperture 110. Casters 114 are coupled to the container bottom 104 opposite a lid 112. The lid 112 is disposed over an interior 204 of the container body 102. A level sensor 202 and a light 206 are coupled to the container wall 106 in the interior 204 of the container 100. The illustrated container 100 also includes a first container floor 400 and a second container floor 402 disposed below the first container floor 400.

[0055] As shown, the container body 102 has a first container floor 400 disposed along a bottom 104 of the container body 102. The first container floor 400 is sloped. The first container floor 400 may be a perforated screen. The perforated screen may provide a first container floor 400, and may form a bottom boundary of the interior 204. Accordingly, cooking fuel (See e.g., FIG. 3, Item 300) disposed within the interior 204 may pass through the screen before exiting the aperture 110.

[0056] As illustrated, the first floor 400 is sloped. Accordingly, the first floor 400 allows pellets to drain toward the apertures 110 via gravity. The first floor 400 may also be perforated. For instance, the first floor 400 may be such as a grate, strainer, grill, screen, and so on for allowing pellet particulates or dust to fall through the perforations and onto the second floor 402. For example, in one non-limiting embodiment, the first floor 400 may be a screen such as the Perforated Sheet, 3003 Aluminum, Mill Finish, H14 Temper of MSC Industrial Direct Co., Inc., 75 Maxess Road, Melville, N.Y. 11747. The first floor 400 may have peaks and valleys for allowing the particulates to fall to the second floor 402. In another non-limiting embodiment, the first floor 400 may be such as the Compact Sluice Boxes of Stansport, 2801 East 12th Street, Los Angeles, Calif. 90023. Hence, the perforated screen may be such as gold trap channels to trap fine particles in a chute or before a chute. As a result, the first floor 400 functions as a separator to separate pellets from small pellet pieces and pellet dust.

[0057] The second floor 402 functions as a trap to collect the small pellet pieces and pellet dust. Accordingly, the second floor 402 is generally one solid continuous floor. Access to the floors 400 and 402 may be provided by uncoupling a side of the container body 102 from the container body 102. It is also envisioned that a side of the container body 102 may also include a door for accessing the floors 400 and 402. Likewise, the container body 102 may be configured to access the floors from underneath the

container body 102. The second container floor 402 is positioned below and spaced from the first container floor 400

[0058] FIG. 5 is a front elevational view of a pellet storage container with a lid in a closed mode, according to one embodiment of the invention. There is shown a fuel storage container 100 with a container body 102. The container body 102 includes a container bottom 104 and a container wall 106. Coupled to the container wall 106 is a display device 108, and disposed through the container wall 106 is an aperture 110. A door 404 is disposed over the aperture 110. A lid 112 is disposed over the container body 102, and casters are coupled to the container body 102 opposite the lid 112

[0059] The illustrated door 404 is disposed over the aperture 110 of the container body 102. As shown, the door 404 provides access to cooking fuel (See e.g., FIG. 3, Item 300). Accordingly, the doors 404 cover and prevent access to the apertures 110. The doors 404 may be removably coupled, hingedly coupled, slideably coupled, and so on, to the container body 102. The doors 404 may be a flip down door like a mailbox door. The doors 404 may be an auger, a dry pump structure, or may have a chute. In one non-limiting embodiment, there may be a swinging closeable door 404 for each compartment (See e.g., FIG. 2, Item 208) that allows one to extract fuel (See e.g., FIG. 3, Item 300) from an associated compartment (See e.g., FIG. 2, Item 208). The doors 404 may have any size and/or shape for covering the apertures 110 and may be comprised of any material, such as but not limited to: metal, plastic, wood and rubber.

[0060] FIG. 6 is a top plan view of a pellet storage container with a lid removed, according to one embodiment of the invention. There is illustrated a container body 102 with a container wall 102 and a first floor 400 disposed between the wall 102. The illustrated first floor is a perforated screen 600. A display device 108 is coupled to the container body 102. A divider 200, a level sensor 202, and a light 206 are each coupled to an interior 204 of the container body 102. There is illustrated a track 602 for coupling the divider 200 to the container body 102.

[0061] As shown, the first floor 400 is perforated. The perforated first floor 400 filters smaller particles from pellets. The perforations in the first floor 400 are shown as square; however, the perforations may have any shape, such as but not limited to: circles, ovals, rectangles, and regular polygons. Likewise, the perforations may have any size or area for filtering particles form the pellets or fuel (See e.g., FIG. 3, Item 300).

[0062] The first floor 400 may be a perforated screen 600. The perforated screen 600 provides a first container floor 400 and forms a bottom boundary of the interior 204. The first floor 400 may be such as a grate, strainer, grill, screen, and so on for allowing pellet particulates or dust to fall through the perforations. For example, in one non-limiting embodiment, the first floor 400 may be a screen such as the Perforated Sheet, 3003

[0063] Aluminum, Mill Finish, H14 Temper of MSC Industrial Direct Co., Inc., 75 Maxess Road, Melville, N.Y. 11747. The first floor may be comprised of materials, such as but not limited to, metal and plastic. Accordingly, cooking fuel (See e.g., FIG. 3, Item 300) disposed within the interior 204 may pass through the screen 600 before exiting the aperture (See e.g., FIG. 1, Item 110).

[0064] The illustrated interior 204 of the container body 102 also includes a track 602 coupled to the container wall 106. A divider 200 may be slidably coupled to the track 602. The track 602 may be milled into an interior 204 of the container wall 106 or the track 602 may be a coupling device for coupling the track to the container body 102.

[0065] FIG. 7 is a top play view of a pellet storage container with a lid removed, according to one embodiment of the invention. There is shown a container body 102 with a container wall 102 and a first floor 400 disposed between the wall 102. The illustrated first floor includes peaks 700 and valleys 702. A display device 108 is coupled to the container body 102. A divider 200, a level sensor 202, and a light 206 are each coupled to an interior 204 of the container body 102. There is illustrated a track 602 for coupling the divider 200 to the container body 102.

[0066] The illustrated first floor 400 is rippled and thereby contains peaks 700 and valleys 702. The first floor 400 may have peaks and valleys for allowing the particulates to fall. In another non-limiting embodiment, the first floor 400 may be such as the Compact Sluice Boxes of Stansport, 2801 East 12th Street, Los Angeles, Calif. 90023. The illustrated first floor includes peaks and channeled valleys for filtering smaller particles from pellets (See e.g., FIG. 3, Item 300). The peaks and valleys in the first floor 400 are shown as elongated; however, the peaks and channeled valleys may have any size, shape, and/or elevation for filtering particles form the pellets or fuel (See e.g., FIG. 3, Item 300). The first floor 400 may be such as a gold trap. The first floor 400 may be comprised of materials, such as but not limited to, metal, plastic and rubber.

[0067] FIG. 8 illustrates a schematic drawing of power couplings between different power components of a pellet storage container, according to one embodiment of the invention, according to one embodiment of the invention. There is illustrated a power source 800. In communication with the power source 800 are level sensors 202. Lights 206 are in communication with the power source 800 and with the level sensors 202. Signal emitters 802 are in communication with the level sensors 202, and a display device 108 is in communication with the signal emitters 802.

[0068] The power source 800 may be a battery or other device that provides electric power to the lights 206 and the level sensors 202. The power source 800 may be an electric generator. The power source 800 may be solar panels. The power source 800 may be a battery, such as a lithium battery. The power source 800 may be a plurality of lithium batteries. The power source 800 may be a rechargeable battery.

[0069] The lights 206 are in communication with the power source 800 and may be in communication with, or integral to, the sensors 202. The lights 206 may have an on/off switch. The lights 206 may be disposed along an interior or an exterior of the container body (See e.g., FIG. 1, Item 102). The lights 206 may be LED lights or strings of lights. For example, the plurality of lights 206 may be such as the SloanLED Vista of SloanLED, 5725 Olivas Park Drive, Ventura, Calif. 93003.

[0070] The sensors 202 are in communication with the power source 800 and the display device 108. The sensors 202 sense a level of fuel (See e.g., FIG. 3, Item 300). For instance, the sensors 202 may be such as the feed level sensors with light emitters of U.S. Pat. No. 8,915,214, by Pickents, which is incorporated by reference herein. Similarly, the sensors 202 may be such as the WXS High-

Precision Weigh Module of Mettler Toledo, LLC, 1900 Polaris Parkway, Columbus, Ohio 43240, or the Dry Material Rotary Paddle Level Switch or Capacitance Measurement Probes of Omega Engineering, Inc., 800 Connecticut Ave., Suite 5N01, Norwalk, Conn. 08654. The sensors 202 may be such as the Low Material Hopper Alarm Kit of IMS Company, 10373 Stafford Rd., Chagrin Falls, Ohio 44023. [0071] The signal emitters 802 send a signal from the sensors 202 to the display device 108. The signal emitters 802 may communicate with the display device 108 electronically and/or wirelessly, such as vie Bluetooth technology. The signal emitters 802 may be such as the Low Material Hopper Alarm Kit of IMS Company, 10373 Stafford Rd., Chagrin Falls, Ohio 44023.

[0072] The display device 108 displays a sensed level of the container 100. The display device 108 may be such as the CMC Grain Gauge Bin Level Monitor 7600 by Barndoor Ag. of AG Solutions Group LLC, 405 Pikes Peak Rd., Chickasha, Okla. 73018. Moreover, the display device 108 may be an interactive user interface, such as interfaces of smartphones, tablets, or any other interface for human-computer interaction. The display device 108 may employ wireless communication or Bluetooth to communicate with the plurality of sensors. Accordingly, the display device 108 may be such as the Hioki CM 7291 Wireless Display Unit with Bluetooth for AC/DC Current Sensors of Hioki.

[0073] FIG. 9 is a front perspective view of a fuel storage container with a lid in an open mode, according to one embodiment of the invention. There is shown a fuel storage container 100 with a plurality of accessories 900, 902, 904. 906, and 908, coupled to the container 100. The container 100 has a container body 102 with a container bottom 104 and a container wall 106. A display device 108 is coupled to the wall 106, and an aperture 110 is disposed through the wall 106. A lid 112 is disposed over the body 102, and casters 114 are coupled to the bottom 104 opposite the lid 112. Couple to an interior 204 of the container body 102 there is a divider 200. A level sensor 202 and a light 206 are also coupled to the interior 204 of the container body 102. Also coupled to the container body 102 are a plurality of accessories 900, 902, 904, 906, and 908. These accessories include an electrical outlet 900, a gas shock 902, hooks 904, a bottle opener 906, and a paper towel dispenser 908.

[0074] As shown, the illustrated container body 102 includes a plurality of accessories 900, 902, 904, 906, and 908 disposed along the container body 102. The illustrated electrical outlet 900 is disposed through the container body 102. The electrical outlet 900 may be a 110 volt outlet. The electrical outlet 900 may be disposed through the container body 102 to provide access to power. For instance, the electrical outlet 900 may be such as the Dual-USB Outlet of Legrand North America, LLC, 60 Woodlawn Street, West Hartford, Conn. 06110. The electrical outlet 900 may provide power and access to the display device 108.

[0075] As shown, the lid 112 may be hingedly coupled to the container body 102 by gas shocks 902. The gas shocks 902 may help prop the lid 112 up in an open mode. The gas shocks 902 may also help prevent the lid 112 from slamming shut. In one embodiment, the gas shocks 902 may be such as the 5100 Bilstein Shock Absorber of Tyhssenkrupp Bilstein of America, 8685 Bilstein Blvd., Hamilton, Ohio 45015.

[0076] The container body 102 includes a plurality of mounting hooks 904 for coupling tools to the container body

102. The mounting hooks 904 may be hooks, sockets, eyes, magnetic pads, slots, grooves, hook and loop connectors, mounting bars, and so on. The mounting hooks 904 may couple tools such as spatulas, tongs, grill brushes, basting brushes, tongs, and so on to the container body 102. Accordingly, the mounting hooks 904 may be any protrusion or extension of the container body 102 for coupling the tools to the container body 102. More, the container body 102 may have any number of mounting hooks 904.

[0077] The illustrated container body 102 also includes the accessories of a bottle opener 906 a paper towel holder 908 each coupled to the container body 102. The container body 102 may have a plurality of bottle openers 906 coupled to the container body 102 and configured to couple to a variety of bottles. The paper towel holder 908 may be a rod fixedly coupled to the container body 102 and extending therefrom. [0078] In one non-limiting embodiment, there is a fuel storage container 100 for fuel (See e.g., FIG. 3, Item 300) storage. One may store pellets in this container 100. One may store different flavors/brands in different compartments 208. There may be an aperture 110 on the bottom 104 and a lid 112. The container 100 may have a sensor 202 in each compartment 208 that provides the level of pellets (e.g. 0%-10%, . . . , 100%). There may be casters 114 on the bottom 104 so one can move the container 100 around. There may be removable dividers 200 so one may adjust how many compartments 208 there are and how big they are. The container 110 may include a screen (See e.g., FIG. 6, Item 600) in the bottom 104 of the compartments 208 that allows dust/etc. to fall through so that one doesn't dispense

[0079] In another non-limiting embodiment, there may be a container 100 that may be a sheet metal box with a lid 112 on a hinge that extends the whole top. Within the container may be five dividers 200 that compartmentalize each one of the compartments 208. The dividers 200 may slide in and out so one you may reconfigure the compartments 208. At the bottom 104, may be perforated screen (See e.g., FIG. 6, Item 600) that may filter out fine particles. The first floor (See e.g., FIG. 4, Item 400) may also be sloped so that the floor (See e.g., FIG. 4, Item 400) feeds forward towards the apertures 110. There may be legs at the bottom 104 of the container 100 with casters 114 on the bottom of each leg. The sheet metal may be powder coated. There may be mounts for a plurality of sensors 202. The sensors 202 may be laser distance measuring devices that can be programmed/configured to recognize the fullness of each compartment 208. The sensors 208 may be in communication with a display device 108 that displays the levels of fullness of the sensor 202 in each compartment 208. There may be a paper towel holder (e.g. foil roll holder, butcher paper holder) 908, a bottle opener 906, a spatula and tongs hook(s) 904, a light 206 for the work surface, and there may be lights 206 disposed within the compartments 208 to allow one to see what is inside when one lifts the lid 112.

[0080] In a further non-limiting embodiment, there may be a container body 102 with compartments 208 inside and a sloped floor (See e.g., FIG. 4., Item 400). The sloped floor (See e.g., FIG. 4, Item 400) may have a perforated screen (See e.g., FIG. 6, Item 600) over it to filter out fine particles. The container body 102 may have level sensors 202 in each compartment 208 in communication with a display device 108 to display the level of the pellets (See e.g., FIG. 3, Item 300) inside each compartment 208.

[0081] It is understood that the above-described embodiments are only illustrative of the application of the principles of the present invention. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiment is to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

[0082] For example, although the figures show a fuel storage container with legs, the fuel storage container may or may not have legs. Additionally, although the figures illustrate a rectangular fuel storage container, the container may have any shape, such as but not limited to round or oblong. It is also envisioned that the fuel storage container may have any size to accommodate any number of compartments, dividers, sensors, apertures, etc.

[0083] It is expected that there could be numerous variations of the design of this invention. An example is that the container may have any number of compartments and/or dividers. Another example is that the lights, sensors, display device, accessories, etc. may be placed and coupled to the container at any location along the container.

[0084] Finally, it is envisioned that the components of the device may be constructed of a variety of materials, such as but not limited to: metal, plastic, rubber, and glass.

[0085] Thus, while the present invention has been fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made, without departing from the principles and concepts of the invention as set forth in the claims. Further, it is contemplated that an embodiment may be limited to consist of or to consist essentially of one or more of the features, functions, structures, methods described herein.

What is claimed is:

- 1. A fuel storage container for storing cooking fuel comprising:
 - a. a container body having a first container floor disposed along a bottom of the container body and a container wall coupled to the bottom of the container body and extending upwardly therefrom, wherein the first container floor is sloped;
 - a divider removably disposed within the body, interior to the container wall and configured to divide the container body into a plurality of compartments;
 - c. a level sensor coupled to an interior of the container wall and configured to sense a characteristic related to an amount of cooking fuel disposed within a compartment;
 - d. a display device in functional communication with the level sensor such that information from the level sensor is displayed on the display device;
 - e. an aperture disposed through the container wall; and
 - f. a perforated screen disposed between an interior region of the container body and the aperture such that cooking fuel disposed within the interior region passes through the screen before exiting the aperture.

- 2. The fuel storage container of claim 1, wherein the perforated screen provides a first container floor and form a bottom boundary of the interior region and a second container floor is positioned below and spaced from the first container floor.
- 3. The fuel storage container of claim 2, wherein the first container floor is rippled and thereby includes peaks and valleys.
- **4**. The fuel storage container of claim **3**, further comprising a door disposed over the aperture of the container body, wherein the door provides access to the cooking fuel.
- **5**. The fuel storage container of claim **1**, further comprising an electrical outlet disposed through the container body.
- **6**. The fuel storage container of claim **1**, further comprising a light coupled to an interior of the container wall and configured to light an interior of the container body.
- 7. The fuel storage container of claim 1, wherein the interior of the wall of the container body includes a track and the divider is slidably coupled to the track.
- **8**. The fuel storage container of claim **1**, further comprising a lid disposed over the container body and hingedly coupled to the container body, wherein the lid includes gas shocks configured to hold the lid up from the container body.
- **9**. The fuel storage container of claim **1**, further comprising a plurality of casters coupled to a base of the container body.
- 10. The fuel storage container of claim 1, wherein the level sensor measures a distance to a top surface of fuel disposed within the container body.
- 11. The fuel storage container of claim 1, further comprising a plurality of level sensors, each associated with a different compartment, wherein each of the plurality of level sensors feeds into a single display device.
- 12. A fuel storage container for storing cooking fuel comprising:
 - a. a container body having a first container floor disposed along a bottom of the container body and a container wall coupled to the bottom of the container body and extending upwardly therefrom, wherein the first container floor is sloped;
 - a divider removably disposed within the body, interior to the container wall and configured to divide the container body into a plurality of compartments;
 - c. a level sensor coupled to an interior of the container wall and configured to sense a characteristic related to an amount of cooking fuel disposed within a compartment, wherein the level sensor measures a distance to a top surface of fuel disposed within the container body:
 - d. a display device in functional communication with the level sensor such that information from the level sensor is displayed on the display device;
 - e. an aperture disposed through the container wall;
 - f. a perforated screen disposed between an interior region of the container body and the aperture such that cooking fuel disposed within the interior region passes through the screen before exiting the aperture; and
 - g. further comprising a plurality of level sensors, each associated with a different compartment, wherein each of the plurality of level sensors feeds into a single display device.
- 13. The fuel storage container of claim 12, wherein the perforated screen provides a first container floor and form a

bottom boundary of the interior region and a second container floor is positioned below and spaced from the first container floor.

- **14**. The fuel storage container of claim **13**, wherein the first container floor is rippled and thereby includes peaks and valleys.
- 15. The fuel storage container of claim 14, further comprising a door disposed over the aperture of the container body, wherein the door provides access to the cooking fuel.
- 16. The fuel storage container of claim 15, further comprising an electrical outlet disposed through the container body.
- 16. The fuel storage container of claim 16, further comprising a light coupled to an interior of the container wall and configured to light an interior of the container body.
- 18. The fuel storage container of claim 17, wherein the interior of the wall of the container body includes a track and the divider is slidably coupled to the track.
- 19. The fuel storage container of claim 18, further comprising a lid disposed over the container body and hingedly coupled to the container body, wherein the lid includes gas shocks configured to hold the lid up from the container body.
- 20. A fuel storage container for storing cooking fuel comprising:
 - a. a container body having a sloped first container floor disposed along a bottom of the container body and a container wall coupled to the bottom of the container body and extending upwardly therefrom, having an electrical outlet disposed through the container wall, having an aperture disposed through the container wall, including a lid disposed over the container body and hingedly coupled to the container body, wherein the lid

- includes gas shocks configured to hold the lid up from the container body, including a light coupled to an interior of the container wall and configured to light an interior of the container body, including a door disposed over the aperture of the container body, wherein the door provides access to the cooking fuel, and including a second container floor positioned below and spaced from the first container floor;
- b. a divider removably disposed within the body, interior to the container wall and configured to divide the container body into a plurality of compartments, wherein the interior of the wall of the container body includes a track and the divider is slidably coupled to the track:
- c. a plurality of level sensors coupled to an interior of the container wall and configured to sense a characteristic related to an amount of cooking fuel disposed within a compartment, each sensor associated with a different compartment, wherein each level sensor measures a distance to a top surface of fuel disposed within the container body and each of the plurality of level sensors feed into a single display device;
- d. a display device in functional communication with the level sensors such that information from the level sensors are displayed on the display device; and
- e. a rippled perforated screen disposed between an interior region of the container body and the aperture such that cooking fuel disposed within the interior region passes through the screen before exiting the aperture, wherein the perforated screen provides a first container floor.

* * * * *