WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau
WO 99/15963

PCT
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(11) International Publication Number:
1 April 1999 (01.04.99)

Al
(43) International Publication Date:

(81) Designated States: JP, European patent (AT, BE, CH, CY, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(51) International Patent Classification 6

GOGF 9/46
PCT/US98/16802

(21) International Application Number:
(22) International Filing Date: 12 August 1998 (12.08.98)
Published
(30) Priority Data: With international search report.
08/937,059 24 September 1997 (24.09.97) US

MICROSOFT CORPORATION [US/US]; One

(71) Applicant:
Microsoft Way, Redmond, WA 98052 (US).
(72) Inventors: EISLER, Craig, G.; 535 208th Avenue N.E,
Redmond, WA 98053 (US). ENGSTROM, G., Eric; 12415
Holmes Pt. Drive N.E., Kirkland, WA 98034 (US).
MEYER, Joel, R.; Klarquist, Sparkman, Campbell,

(74) Agent:
Leigh & Whinston, LLP, One World Trade Center, Suite
1600, 121 S.W. Salmon Street, Portland, OR 97204 (US).

(54) Title: APPLICATION PROGRAMMING INTERFACE ENABLING APPLICATION PROGRAMS TO CONTROL ALLOCATION

OF PHYSICAL MEMORY IN A VIRTUAL MEMORY SYSTEM
C APP. 1) C APP. 2 1 APP.3
160 N 163

AP| IMPLEMENTATION

MEMORY
MONITOR
84 |

(57) Abstract
An application programming interface (API) enables applica-

tion programs in a multitasking operating environment to control the
allocation of physical memory in a virtual memory system. One API
function enables applications to designate a soft page lock for code
and data. The operating system ensures that the designated code
and data are in physical memory when the application has the focus. 168
When the application loses the focus, the pages associated with the
code or data are released. When the application regains the focus, RARN [o190
the operating system re—loads the pages into physical memory before VIRTUAL JSECTION 18175}
the application begins to execute. The operating system is allowed MEMOF&SPACE ,-” | SECTION 2{SIZE}
to override the soft page lock where necessary. Another API enables APP. 1 /,/ /" SECTION 3(SIZE}
applications to designate code or data that should have high priority -~/ /|SECTION 4(SIZE}
access to physical memory, without using a lock. This API enables 172 / / '
the application to specifically control the likelihood that a piece of / /',/' v
code or data will remain in physical memory by assigning a priority 180 Y 'F-,'gngs o
to the code or data that defines its priority relative to the priority of > / /! |PAGESNTOM
other code or data contending for the same physical memory. e / ’/ 192
I/]"
/I ,’
P PHYSICAL
/] MEMORY
! MANAGER
! 194

'
4
178

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
Cc™M
CN
CuU
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Teeland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/15963 PCT/US98/16802

10

20

25

30

35

APPLICATION PROGRAMMING INTERFACE ENABLING APPLICATION PROGRAMS
TO CONTROL ALLOCATION OF PHYSICAL MEMORY IN A VIRTUAL MEMORY
SYSTEM

FIELD OF THE INVENTION

The invention relates to management of virtual memory in a computer, and more
specifically relates to a method for controiling allocation of physical memory in a computer that uses
virtual memory to enable concurrently executing programs to share physical memory.

BACKGROUND OF THE INVENTION

The term “virtual memory” refers to a method for allowing several concurrently running
application programs to share the physical memory of a computer. The physical memory refers to
the main memory of a computer used to execute computer programs and is typically implemented
with Random Access Memory (RAM). Multitasking operating systems typically use virtual memory
to expand the memory available to each of the application programs executing in the computer.
Virtual memory has the effect of making memory appear much larger to applications. To create this
effect, a virtual memory manager (VMM) allocates memory from a virtual memory space that is
much larger than the size of physical memory. The VMM uses secondary storage space in the
computer such as a hard disk to extend the effective size of physical memory. The VMM only loads
code and data from secondary storage to physical memory when an application actually needs it, e.g.,
to process a read or write request.

When a program makes a read or write request to virtual memory, the virtual memory
manager determines whether the code or data requested is either located in physical memory or in
secondary storage. If it is in physical memory, the virtual memory manager maps the virtual address
into a physical address where it is located in physical memory. On the other hand, if the code or data
is not in physical memory, the virtual memory manager fetches it from the secondary storage device
and places it in physical memory. Thus, the virtual memory manager makes the physical memory
appear larger to the application by swapping program code and data in and out of physical memory
as needed to satisfy memory requests.

To illustrate the concept of virtual memory, consider an example of an operating system
executing on a personal computer with 4 megabytes of physical memory and a hard drive with
additional free memory space. The operating system itself might occupy up to a megabyte of the
physical memory. If the user wishes to launch a game program occupying 2 Megabytes from the
hard drive, then the total memory occupied in physical memory is about 3 Megabytes. Now assume
that the game program attempts to load additional code or data files exceeding 1 Megabyte. Under
these circumstances there is insufficient physical memory to hold the code and data for the currently
executing programs in the computer.

The VMM solves this problem by swapping code and data needed to run the executing

programs back and forth between physical memory and the hard drive. For example, if the

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

instructions of a particular piece of code are to be executed, the piece of code must be loaded into
physical memory of the computer. Other pieces of code can stay on disk until they are needed.
Whenever a piece of code or data is not held in physical memory, the operating system marks its
absence by setting (or clearing) a flag associated with that code or data. Then, if an access to that
code or data is attempted, the processor will generate a not present interrupt that notifies the
operating system of the problem. The operating system then arranges to load the missing code or
data into an available area of physical memory and restarts the program that caused the interrupt.

The swapping of code and data to and from the hard drive and the interrupts are transparent to the
application programs executing in the computer in the sense that the application programs do not
process the interrupt nor manage swapping of data back and forth. Rather, the application program
only deals with a virtual address space of virtual memory, and the operating system maps requests for
virtual memory to physical memory and swaps data back and forth between physical memory and the
hard drive.

In a typical virtual memory system, some operating system components are guaranteed
access to a portion of physical memory and several other software components contend for the
remainder of physical memory. Operating system components that always occupy physical memory
include memory resident components of the operating system kernel and a disk cache. The
remainder of the physical memory is shared among other software such as dynamically loaded
operating system components (DLLs), application program code and data, and dynamically allocated
regions of memory such as Direct Memory Access (DMA) buffers and cache regjons for the
operating system’s file system.

The operating system components that always occupy physical memory have a “lock” on a
portion of the physical memory. A “lock” is an attribute of a memory management system that
commits or reserves a portion of physical memory to a piece of code or data. In many operating
systems, it is typical for a lock to be on a portion of physical memory if that memory contains a piece
of code that must be able to run at interrupt time or a piece of data that needs to be accessible at
interrupt time or that needs to be accessed asynchronously by hardware devices in the computer,

Initially, the operating system allocates virtual memory to the application programs.
However, the operating system will not actually allocate physical memory to an application program
until that program attempts to access memory. As code executing in the system attempts to access
memory allocated to it, the operating system will allocate physical memory until it is filled, and then
start to swap portions of physical memory to the hard drive to accommodate memory accesses.

The virtual memory system typically uses a portion of the hard drive, called a swap file, to
swap code and data to and from physical memory. The operating system loads program code such as
the executable code of an application program (e.g., a .exe file) directly from the hard drive. As an

application requests access to program data, the operating system allocates physical memory, and

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

subsequently, swaps this program data to and from physical memory once physical memory is filled
up.

At run time, an application can either implicitly or explicitly request additional memory. An
implicit request occurs when an application asks the operating system for a resource such as a new
window, and the operating system allocates memory as a side effect to responding to the request for
the resource. An explicit request occurs when the application directly invokes a function to
specifically ask the operating system to allocate extra memory to it. In both cases, the operating
system claims memory for resource allocation from virtual address space.

One form of virtual memory in common use today is referred to as paged virtual memory.
In a paged virtual memory scheme, the operating system carries out all memory allocation, de-
allocation, and swapping operations in units of memory called pages. In a microprocessor
compatible with the 386 architecture from Intel Corporation, for example, a memory page is 4K and
each memory segment is made up of one or more 4K pages. The Windows ® 95 operating system is
one example of an operating system that implements a paged virtual memory system.

Terms commonly used to describe a paged virtual memory scheme include paging, page
file, and page fault. The term “paging” refers to the process of swapping code or data between
physical memory and secondary storage. The term “page file” refers to the swap file maintained in a
secondary storage device to hold pages of code and data swapped to and from the physical memory.
Finally, the term “page fault” refers to an interrupt generated by a microprocessor indicating that the
memory request cannot be satisfied from physical memory because the page containing the requested
code or data is not located in physical memory.

The implementation details of any virtual memory system vary depending on the design and
memory addressing scheme of the processor. One of the most wide spread processor architectures in
the personal computer industry is the 386 architecture from Intel Corp. The basic memory
management features of this architecture are used in 486, Pentium, Pentium II, and Pentium Pro
microprocessors form Intel Corp. The 386 architecture supports three operating modes: real mode,
protected mode, and virtual mode. Real mode refers to a mode used to maintain compatibility with
the 8086 line of processors. This mode has a segmented memory architecture that employs four
segment registers to address up to 1 Megabyte of memory. Each segment register points to a first
byte of a memory segment. The address register stores on offset address to a byte within a memory
segment. The pfocessor combines the contents of a segment register with an address register to form
a complete address.

In protected mode, the processor uses the contents of the segment register to access an 8
byte area of memory called a descriptor. The segment register contains an index into a table of
descriptors. The processor uses the information in the descriptor to form a base address. It then

combines an offset address from the application program to the base address to compute a physical

WO 99/15963 PCT/US98/16802

15

20

25

30

35

memory address. In this mode, the operating system can use any suitable area of physical memory as
asegment. The segments of an application need not be contiguous and can have different sizes.

Virtual mode is similar to protected mode in that it uses the same notion of segments, except
that a single segment can be 4 Gigabytes instead of only one Megabyte, and it enables the operating
system to implement a virtual memory scheme. Like protected mode, a processor in virtual mode
uses the contents of a segment register as an index into a descriptor table. The descriptor table
specifies the base address of a memory segment. The operating system sets up the base register to
point to the first byte of a program’s code or data segment. The processor combines a 32 bit offset
address to the base address to compute a final 32 bit address.

When virtual memory is enabled in the 386 architecture, the processor alters the
interpretation of this final 32 bit address to map it into a 32 bit physical address. During
initialization, the operating system switches the processor into protected mode and then enables
paging. The 32 bit address computed by combining the base address with the offset from the
program is an address in virtual memory space. '

With paging enabled, the processor maps this address in virtual memory space to an address
in physical memory space. Figure 1 is a diagram illustrating how the processor interprets the 32-bit
address from an application. The top 10 bits (31 .. 22) (see 20 in Fig. 1) are an index into a page
table direétory (22 in Fig. 1). Part of each 32-bit quantity in a page table directory points to a page
table (24 in Fig. 1). The next 10 bits of the original address (20 .. 12) (see 26 in Fig. 1) are an index
into the particular page table. Part of each page table entry (28) points to a page of physical memory.
The remaining 12 bits of the virtual address (11 .. 0) (30 in Fig. 1) form an offset within this page of
memory.

The operating system stores the address of the page table directory for the current program
in a special processor register called CR3 (32). Each time the operating system switches tasks, it can
reload CR3 so that it points to the page directory for the new program. The process of mapping a
virtual address into a physical address is performed within the processor. Memory caching
techniques ensure that frequently used page table entries are available with no additional memory
references.

To fully support the virtual memory scheme, page table entries contain more than just a
pointer to a page table or physical address. Figure 2 shows the contents of a single 32-bit word in
both the page table directory and page table entry structures (see items 40 and 42 in Fig. 2). The
page table directory and each page table consume one 4K memory page (1024 entries in each). This
allows the entire 4 GB of a program's address space to be properly addressed. The flag bits in the
page table directory allow the system to store the page tables themselves on disk in the paging file.
Thus, for largé programs (for example, a 1-GB program, which will need 256 page table pages), the

system will swap page tables as well as program code and data pages in and out of physical memory.

WO 99/15963 PCT/US98/16802

15

20

25

30

35

To fully support the virtual memory operations and the 386 memory protection system, the
page directory and page table entries include a number of flag bits. The processor itself modifies
some of these flags directly. The operating system manages others. As shown in Fig. 2, these flags
include the following bits: D, A, U/S, R/W, and P.

Whenever a program modifies the contents of a memory page, the processor sets the
corresponding page table dirty bit (the D bit in Fig. 2). This tells the operating system that if it wants
to remove the page from memory to free up space, then it must first write the page out to disk to
preserve the modifications.

Any reference - read, write, or execute - to a page causes the processor to set the accessed
bit (the A bit in Fig. 2) in the corresponding page table entry. The virtual memory manager can use
this flag to determine how often a page has been accessed. One way to tell how frequently a page
has been accessed is to set and check this bit periodically to determine whether the page has been
accessed. The access bit of a page that is used infrequently will not change if the hardware has not
set the access bit. Removing that page from memory is probably a better choice than removing a
page that was definitely in use during the same time period. The Windows®95 operating system
uses an algorithm known as least recently used (LRU) to determine which page to remove from
memory. The more recently used a page, the less likely it is to be re-allocated.

The present bit (the P bit) is set to 1 only when the page table or memory page addressed by
the table entry is actually present in memory. If a program tries to reference a page or page table that
is not present, the processor generates a not-present interrupt and the operating system must arrange
to load the page iﬂto memory and restart the program that needed the page.

The user/supervisor bit (the U/S bit) is part of the 386's overall protection system. If the
U/S bit is set to 0, the memory page is a supervisor page - that is, it is part of the memory of the
operating system itself and no user-level program can access the page. Any attempted access causes
an interrupt that the operating system must deal with.

The read/write bit (the R/W bit) determines whether a program that is granted access to the
corresponding memory page can modify the contents of the page. A value of 1 allows page content
modification. A value of 0 prevents any program from modifying the data in the page. Normally,
pages containing program code are set up as read-only pages.

The memory addressing scheme described above enables the operating system to implement
a virtual memory system. One limitation of modern operating systems is that they fail to allow
applications the flexibility to control how physical memory is allocated when virtual memory is
enabled. Typically, the application programs only have access to a virtual memory space, and have
little or no control over how the operating system allocates physical memory. In performing a
swapping algorithm, it is typical for virtual memory management systems to load a small number of
pages at a time in response to a page fault. This is inefficient because it tends to cause more page

faults to occur as the application program attempts to access other portions of its virtual memory.

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

Due to the latency in loading data from a hard drive, repeated page faults degrade the performance of
the application as it waits for the operating system to load in the code or data that it needs to run. In
multimedia and highly interactive applications, this latency can manifest itself as stuttering motion of
graphical objects on the display and lack of responsiveness to user input. For example, operation of a
game program will appear to stutter when the operating system is processing page faults.

As noted above, some operating systems, such as the Windows ® 95 Operating System
from Microsoft Corp., implement virtual memory using a LRU algorithm to control swapping of
pages to and from physical memory. As a general rule, this virtual memory system gives the pages
of the operating system’s dynamically loaded components and all of the pages of the application
programs equal priority. Thus, if a game application becomes inactive temporarily, the operating
system is likely to swap its pages out of physical memory. When the application becomes active
again, the motion of objects on the display and responsiveness of the game to user input stutters as
the operating system gradually swaps pages back into physical memory.

One way to address this problem is to lock the physical memory allocated to the application
so that no other code has access to that portion of physical memory. For example, in the Windows ®
Operating system, an application can request a page lock for a piece of physical memory. The page
lock causes the operating system to commit a portion of physical memory and remove it from the
pool of physical memory available to other executing code. This is not an acceptable solution
because it can lead to extremely poor system performance as concurrently executing applications

need access to physical memory but are unable to get it due to another application’s lock on physical

memory.

SUMMARY OF THE INVENTION

The invention is a method for enabling application programs to control allocation of
physical memory in a virtual memory system. One aspect of the invention enables concurrently
executing application programs to request a soft lock on physical memory for code or data that they
designate. A soft lock, in this case, means that the operating system can override the lock under
certain conditions, such as when the application loses the focus or a high priority process like an
operating system component needs access to physical memory.

Another aspect of the invention enables applications to specify the level of priority of its _
code or data to be used to determine the order in which the virtual memory system swap units of
memory (e.g., pages) from physical memory to secondary storage. For example, the application can
specify that a portion of code or a data structure will be frequently used or most frequently used. The
virtual memory system then uses this explicit priority, rather than the priority that it computes, to
determine which units of memory to swap to secondary storage. This is different from a soft lock in

that the units of memory are not removed from the available memory pool. Through this API, the

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

application can override the level of priority computed by the virtual memory system and increase
the chances that the designated code or data will remain in physical memory.

One implementation of the invention is an application programming interface (API) for
virtual memory in a multitasking operating system that allows applications to specify priority of
access to physical memory for code and data. One API function call enables applications to specify
code and data that will have a soft lock on physical memory. While the application that has
requested the soft lock has the focus, the specified code or data will have a lock on physical memory.
When the application loses focus, the API releases the lock on physical memory, but it retains state
information identifying the portions of code or data that held a soft lock on physical memory. When
the application regains the focus, the API causes the physical memory manager to reload the code or
data associated with the soft page lock into physical memory.

While the soft lock is in effect, the operating system can override the lock when
predetermined conditions are detected. These predetermined conditions include cases where the
amount of available physical memory drops below a threshold or a high priority process needs access
to physical memory. A memory monitor is responsible for detecting these conditions and releasing
the soft lock. In one specific implementation, the memory monitor gradually releases the soft lock
by releasing parts.of the portion of memory subject to the soft lock.

A second API function call enables an application to specify code or data that will have a
higher priority to physical memory. This AP is used in connection with the physical memory
manager to make it less likely that certain code or data will be swapped from physical memory back
to secondary storage.

The memory management methods and APIs summarized above provide a number of
advantages. They enable application programs to attain better performance because they can use the
APIs to control allocation of physical memory and reduce the chances of page faults occurring in
response to memory requests. The soft lock prevents one application from degrading the
performance of other applications and operating system components because the operating system
can override it.

Additional features and advantages of the invention will become more apparent from the

following detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a diagram illustrating a virtual memory addressing scheme in the 386 processor
architecture.
Fig. 2 is a diagram illustrating entries in the page table directory and page table shown in
Fig. 1.
‘ Fig. 3 is a diagram illustrating a computer system that serves as an operating environment

for an implementation of the invention.

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

Fig. 4 is a diagram illustrating the operation of a soft lock function that enables application
programs to control physical memory allocation in a virtual memory system.

Fig. 5 is a diagram illustrating the operation of an API implementation that enables
application programs to specify a level of priority to be used in virtual memory management to

determine the order of swapping units of memory to secondary storage.

DETAILED DESCRIPTION

The invention is directed toward a method and system for enabling application programs to
control the allocation of physical memory in a virtual memory system. In one embodiment, the
invention is incorporated in an application programming interface (API) for the Windows ® 95
Operating System, marketed by Microsoft Corporation of Redmond, Washington. Briefly described,
the API provides a series of functions or API calls that allow applications to control how the
operating system manages access to physical memory.

Figure 3 and the following discussion are intended to provide a brief, general description of
a suitable computing environment in which the invention may be implemented. While the invention
will be described in the general context of computer-executable instructions of a computer program
that runs on a personal computer, those skilled in the art will recognize that the invention also may be
implemented in combination with other program modules. Generally, program modules include
routines, programs, components, data structures, etc. that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the invention
may be practiced with other computer system configurations, including hand-held devices,
multiprocessor systems, microprocessor-based or programmable consumer electronics,
minicomputers, mainframe computers, and the like. The invention may also be practiced in
distributed computing environments where tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment, program
modules may be located in both local and remote memory storage devices.

Figure 3 illustrates an example of a computer system that serves as an operating
environment for the invention. The computer system includes a personal computef 120, including a
processing unit 121, a system memory 122, and a system bus 123 that interconnects various system
components including the system memory to the processing unit 121. The system bus may comprise
any of several types of bus structures including a memory bus or memory controller, a peripheral
bus, and a local bus using a bus architecture such as PCI, VESA, Microchannel (MCA), ISA and
EISA, to name a few. The system memory includes read only memory (ROM) 124 and random
access memory (RAM) 125. A basic input/output system 126 (BIOS), containing the basic routines
that help to transfer information between elements within the personal computer 120, such as during
start-up, is stored in ROM 124. The personal computer 120 further includes a hard disk drive 127, a

magnetic disk drive 128, e.g., to read from or write to a removable disk 129, and an optical disk drive

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

130, e.g., for reading a CD-ROM disk 131 or to read from or write to other optical media. The hard
disk drive 127, magnetic disk drive 128, and optical disk drive 130 are connected to the system bus
123 by a hard disk drive interface 132, a magnetic disk drive interface 133, and an optical drive
interface 134, respectively. The drives and their associated computer-readable media provide
nonvolatile storage of data, data structures, computer-executable instructions (program code such as
dynamic link libraries, and executable files), etc. for the personal computer 120. Although the
description of computer-readable media above refers to a hard disk, a removable magnetic disk and a
CD, it can also include other types of media that are readable by a computer, such as magnetic
cassettes, flash memory cards, digital video disks, Bernoulli cartridges, and the like.

A number of program modules may be stored in the drives and RAM 125, including an
operating system 135, one or more application programs 136, other program modules 137, and
program data 138. A user may enter commands and information into the personal computer 120
through a keyboard 140 and pointing device, such as a mouse 142. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other
input devices are often connected to the processing unit 121 through a serial port interface 146 that is
coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game
port or a universal serial bus (USB). A monitor 147 or other type of display device is also connected
to the system bus 123 via an interface, such as a video adapter 148. In addition to the monitor,
personal computers typically include other peripheral output devices (not shown), such as speakers
and printers.

The personal computer 120 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 149. The remote computer
149 may be a server, a router, a peer device or other common network node, and typically includes
many or all of the elements described relative to the personal computer 120, although only a memory
storage device 150 has been illustrated in Figure 3. The logical connections depicted in Figure 3
include a local area network (LAN) 151 and a wide area network (WAN) 152. Such networking
environments are commonplace in offices, enterprise-wide computer networks, intranets and the
Internet. '

When used in a LAN networking environment, the personal cbmputer 120 is connected to
the local network 151 through a network interface or adapter 153. When used in a WAN networking
environment, the personal computer 120 typically includes a modem 54 or other means for
establishing communications over the wide area network 152, such as the Internet. The modem 154,
which may be internal or external, is connected to the system bus 123 via the serial port interface
146. In a networked environment, program modules depicted relative to the personal computer 120,
or portions thereof, may be stored in the remote memory storage device. It will be appreciated that
the network connections shown are exemplary and other means of establishing a communications

link between the computers may be used.

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

-10-

One embodiment of the invention is an API for a multitasking operating system that enables
concurrently executing application programs to control how a virtual memory management system
allocates physical memory. To control how the operating system allocates physical memory, an
application invokes an API function and designates the code or data that it wishes to control and
provides a priority parameter indicating the priority that it will have to physical memory. The
operating system keeps track of the code or data that the application has designated and uses the
priority to determine whether to swap the code or data out of the physical memory and back to the
hard drive.

In the current implementation of the API, there are two levels of priority:

1) soft locked code or data; and
2) frequently used code or data.

Both of these priority levels provide a way for an application to set the level of priority of
access to physical memory relative to other concurrently executing application programs.

The first level of priority, the soft lock, gives the designated code or data a lock on physical
memory that can change depending on the status of the application program that has requested the
lock. Specifically, the operating system allocates and reserves physical memory for the designated
code as long as the application has the focus. The focus refers to the application, executing in the
computer, that is currently active and is responsive to any input from the user. In the Windows ®
Operating System, an application has the focus when one of its windows is active and receiving user
input, such as the press of a key on the keyboard or a click of a mouse button. The user can change
the focus by pressing the Alt and TAB keys at the same time or selecting a new task from a drop-
down menu.

When the application has the focus, the designated code or data has a lock on physical
memory with respect to all other executing application programs. The soft lock precludes the
operating system from swapping the designated code or data that resides in physical memory to the
hard drive in order to allocate physical memory to another application. However, in some
circumstances, the operating system can override the soft lock. The operating system overrides the
soft lock when higher priority code needs access to physical memory.

When the application loses the focus, the operating system releases the locked code or data
in physical memory so that the 6perating system can swap this code or data to the hard drive. To
release the locked code or data, the operating system changes the state information associated with
the pages of memory that store it so that the virtual mermory system will swap these pages to the hard
drive as necessary to allocate physical memory to other code or data.

The implementation of the soft lock API stores a list of the memory sections for which an
application has requested a soft lock. When the application regains the focus, the operating system

uses the list to determine which portions of the designated code and data, if any, to reload into

WO 99/15963 PCT/US98/16802

15

20

25

30

35

-11 -

physical memory. The operating system reloads these portions all at one time, before the application
resumes after re-gaining focus.

The second level of priority is not specifically tied to the focus. When an application
designates the “frequently-used” priority level for code or data, it causes the operating system to
explicitly assign a priority value to the designated code or data. When the operating system needs to
swap a section of physical memory back to the hard drive, it determines which section or sections to
transfer based on their priority value. The frequently-used priority level enables an application to
override the priority that the operating system has computed in the swapping algorithm.

While managing the allocation of physical memory, the operating system assigns a priority
to all code and data that occupies physical memory based on the swapping algorithm used to control
swapping of memory sections to and from the physical memory. In the current implementation for
the Windows ® 95 operating system, the priority of all code and data that forms part of the physical
memory participating in the virtual memory system is assigned based on a Least Recently Used
algorithm. The operating system evaluates how frequently each page is accessed and assigns a
default priority based on this information. If the application designates that pieces of code or data are
frequently used, the operating system overrides the default priority by artificially making it appear
that the designated code or data has been accessed frequently.

While the current implementation enables an application to specify the two levels of priority
described above, it also possible to create additional levels of priority using a similar approach. For
example, in a least recently used scheme, the operating system can alter the priority level of specific
code or data by adjusting the value of the parameter that indicates how recently or how frequently a
piece of virtual memory has been accessed. A sliding scale of priority can be established by making
the priority value adjustable in a range, starting from a low value (meaning least frequently used),
and continuing up to the highest value (most frequently used). The memory manager in the
operating system is most likely to swap pages on the low end of the scale and least likely to swap
pages on the high end of the scale.

In the current implementation, applications designate the priority for specific pieces of code
and data by invoking an API function call and specifying the address and size of the code or data.
For code, the application can specify the name of the function or functions in the source code of the
application, which implicitly provides the address of the executable code. For data, the application
can specify a pointer to a data structure as well as the size of the structure.

Fig. 4 is a diagram illustrating the operation of APIs for controlling memory allocation. The

applications (app. 1-3) (161-163) represent concurrently executing applications in a computer,

sharing physical memory of the computer. These applications can control the allocation of physical

memory by invoking functions of the API implementation 164. A specific example and

accompanying description of the API implementation is provided below.

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

-12-

The APl implementation 164 includes a memory monitor 165 that monitors the focus in the
operating system. It hooks messages (e.g., message 166) from the Windows ® operating system
indicating that the focus has changed from one application to another. One implementation hooks
messages corresponding to user input from the operating system to the application’s window (or
windows). These messages indicate which application is active and currently responsive to user
input. Another implementation uses operating system services, namely a shell hook, to receive
notifications about changes in focus from one application to another.

In the example shown in Fig. 4, the diagram illustrates an example of the virtual address
space 170 allocated to an application (app. 1). The marked sections 172-178 represent pieces of
virtual memory associated with code or data for which the application has requested a soft lock.
When an application requests a soft lock, the API implementation identifies the sections of virtual
memory allocated to the designated code or data. It creates a data structure 190 listing the sections of
virtual memory allocated to the designated code and data. From the structure 190, which stores the
location and size of the designated code and data, the API implementation computes the specific
units of memory that are used to store the code and data. This implementation is designed for the
paging scheme of the 386 architecture, and thus, the units of memory are 4K pages. The API
implementation computes the pages that correspond to the designated code and data.

When the application initially invokes a soft lock, the AP1 implementation instructs a
physical memory manager 194 to allocate physical memory to the designated code and data. The
physical memory manager loads the éorresponding sections of code or data into physical memory
that are not already loaded, using the list of pages 192 computed from the structure 190.

In this implementation, the physical memory manager 194 is part of the Windows ® 95
operating system. It includes a series of functions that enable the memory monitor to lock and
unlock blocks of memory. These blocks of memory correspond to ranges of pages used to store code
or data.

The memory monitor 165 manages a soft lock by monitoring the focus and the state of
physical memory allocation. If application 1 loses the focus, the memory monitor 165 retains the
data structure 190 and the list of pages 192 associated with it. The memory monitor monitors for
changes in focus. If application 1 regains the focus, the memory monitor invokes the appropriate
functions of the physical memory manager 194 to re-load and re-lock the list of pages corresponding
to the memory sections stored in the structure 190. In response, the physical memory manager
checks the status of the pages in the list and re-loads the ones that have been swapped to the hard
drive. It also marks the status of all of the soft-locked pages as locked. Note that the physical
memory manager 194 may have swapped portions of the soft-locked code or data back to secondary
storage (namely, the hard drive in the computer). Other portions may still remain in physical
memory (RAM in the computer). The memory monitor ensures that all of the soft-locked code and

data is back in physical memory and locked before the application resumes execution.

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

-13-

The physical merhory manager in the Windows ® 95 operating system stores a page
descriptor structure for every active page. This structure holds the addresses of routines used to
move the page back and forth between physical memory and the hard disk. The physical memory
manager also includes services (function calls) for locking and unlocking pages. The memory
monitor uses these services of the physical memory manager to load, lock, and unlock pages.

Once the soft-lock is restored, the application resumes executing. As an example, assume
that the application resumes execution at the instruction labeled with reference 180 in Fig. 4. Before
the application resumes execution at this instruction, the memory monitor 165 instructs the physical
memory manager 194 to re-lock sections 1-4. The physical memory manager then loads any pages
in sections 1-4 that are not in physical memory and marks all of the pages in sections 1-4 as locked.
Note that the memory monitor ensures that the soft lock is restored in the same way regardless of
where the application resumes execution. The memory monitor invokes the physical memory
manager to load and lock all of the pages associated with the soft locked code or data, even if the
application resumes execution in a code section that is not soft locked.

The operation of the soft lock when an application regains the focus is an improvement over
conventional operating systems that typically only reload a portion of code near the instruction where
the application resumes executing. This tends to increase the chances of page faults over time as the
application accesses other portions of its code or data not located near this instruction. With the soft
lock, the application is assured of having access to bhysical memory, without a page fault, for an
entire group of designated code and data.

In the current implementation of the soft page lock, the operating system can override the
soft page lock if it deems it necessary to free up additional physical memory for some higher priority
task. The application cannot, therefore, use memory designated with a soft page lock for storing
interrupt services or DMA buffers.

The memory monitor monitors the status of physical memory allocation and manages the
process of releasing a soft-lock when the operating system needs to override the soft-lock. The
physical memory manager 194 notifies the memory monitor 165 of conditions that require a release
of the soft-lock. One way it accomplishes this is by monitoring the amount of available physical
memory and sending a message to the memory monitor when the amount of available memory passes
beyond a predetermined threshold.

Another way is by sending a message. to the memory monitor when a high priority process
has attempted access to memory, and there is insufficient physical memory available to satisfy the
high priority process. The operating system defines whether a process is high priority. Priority can
be pre-assigned or determined dynamically (at run time). One way to assign a priority of a process
is to use its scheduling priority. If the process has high priority in terms of how the scheduler in the
operating system allocates processor time, then it has high priority access to physical memory. For

example, in a preemptive multi-tasking operating system like Windows ® 95, a background process

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

-14 -

may be assigned a high priority so that it gets allocated CPU time. In the current implementation, if a
high priority background process makes a request for physical memory and there is insufficient
physical memory available, the physical memory manager 194 will notify the memory monitor 165.
The memory monitor will then release all or some portion of the soft-locked memory.

To release a portion of the soft locked memory, the memory monitor 165 uses a LRU
algorithm to determine which portions to release first. Note that this is separate from the LRU
algorithm that the physical memory manager uses to swap pages back and forth between physical
memory and secondary storage to implement virtual memory. The memory monitor uses this LRU
scheme to select pages in the pool of soft locked memory to release when the physical memory
manager notifies it to override the soft lock. Since a released page may contain valid code or data, it
is returned to the pool of pages that the physical memory manager can swap back and forth between
physical memory and secondary storage.

While this implementation uses an LRU approach to determine which portions of soft
locked memory to release first, other approaches can be used as well. For example, the memory
monitor can be implemented so that it releases all of the soft-locked memory of the application that
requested the soft lock. In this case, all of the soft locked pages become subject to the virtual
memory scheme and can be swapped to secondary storage as needed to satisfy requests for physical
memory.

The status of physical memory can be classified in two groups: locked and available.
Whenever a piece of code or data has a lock on physical memory, the portion of physical memory
allocated to it is locked. The available memory comprises all of the sections of phys'ical memory that
are not locked and are ready to be allocated to a process that is attempting to lock or access memory.
The physical memory manager determines the amount of physical memory that is available by
determining which portions of physical memory are not locked and assigning this available memory
to an available memory pool.

In a multitasking operating system, it is sometimes necessary to place limits on the amount
of physical memory that an application can lock. Since the impact of an application’s lock on
physical memory varies depending on the type and number of concurrently running applications, it is
useful to enable the end-user to adjust the maximum amount of physical memory that any one
application program can lock. One way to implement this feature in the Windows ® 95 operating
system, for example, is to allow the user to adjust the amount of available physical memory that can
be locked by an application. This adjustable amount can be specified as a percentage of the physical
memory available after the operating system has locked a portion of it for operating system
components. The adjustable amount can also be specified as a maximum amount of RAM in
Megabytes that can be locked by an application. In the Windows ® Operating system, this feature
can be implemented as a graphical control such as slider bar that is responsive to input from a cursor

control device such as a mouse. For example, the user could adjust the maximum pefcentage (or

WO 99/15963 PCT/US98/16802

10

20

25

30

35

-15-

number of Megabytes of RAM) of physical memory that an application can lock by adjusting the
sliding bar with a mouse up or down.

To enforce this limit on locking physical memory, the physical memory manager tracks the
amount of memory that every application has locked and returns an error if the application attempts
to lock more memory than the maximum amount. The physical memory manager tracks the amount
of physical memory allocated to an application by the application’s Process Identifier (PID). It
maintains a structure that stores the amount of memory locked by each process, along with the PID.
Before allowing an application to lock a portion of physical memory, the physical memory manager
determines whether the request will cause the amount of memory locked by the application to exceed
the maximum amount.

The limit on locking physical memory can apply to both a lock and a soft lock. However,
since the operating system can override a soft lock, the physical memory manager can be
implemented so that it does not apply the same limit on a soft lock. For example, if a process
requests a lock and the total amount of memory locked by the process as a result of the lock exceeds
the maximum, then the physical memory manager will return an error. If the same process then
requests a soft lock for the same amount of memory, the physical memory manager will grant the
request, assuming that there is sufficient available physical memory at the time of the request. The
physical memory manager can grant this request because it can override the soft lock if a higher
priority process needs access to physical memory.

Fig. 5 is a diagram illustrating an example of how the implementation of Fig. 4 supports the
“frequently-used” level of priority. An application can request this level of priority for code or data
that it designates in a similar manner to requesting a soft lock. When it invokes the API function
call, the application specifies the level of priority, the location of the code or data and the size of the
code or data. In the example shown in Fig. 5, the application has specified three sections of virtual
memory (200, 202, and 204) that will have the second level of priority. The application gives a
pointer to the start of the code or data that is subject to the call and its size.

In response, the API implementation 164 creates a structure 210 that keeps track of the code
or data that has the second level of priority. From this structure, the API implementation 164 can
compute the units of memory, in this case pages, that correspond to the sections of virtual memory
that store the specified code or data. The result is a list of pages 212 that have the second level of
priority.

The API implementation then causes the physical memory manager to set the priority for
each of the pages in the list 212. As described above, the physical memory manager implements an
LRU scheme for virtual memory. It keeps track of how recently each page is used by keeping a
reference count of memory accesses to each page. When a page is accessed, it receives a reference
count. The physical memory manager uses this reference count to identify pages that are used least

frequently. When no more physical memory is available to satisfy memory requests, the physical

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

40

- 16 -

memory manager frees more physical memory by swapping the least recently used pages to
secondary storage, as indicated by there reference count.

To set a page to the “frequently used” level of priority, the API implementation instructs the
physical memory manager to set the reference count to a predetermined maximum value. This gives
the pages designated by the API implementation a higher priority relative to other pages because they
are least likely to be swapped from physical memory.

A description of one possible implementation of the API called “DirectMemory™ is provided
below. The first and second levels of priority of access to physical memory are implemented in the
LOCK and UNLOCK functions. An application program can specify the soft lock by setting the
SOFTLOCK parameter when invoking the LOCK function. Similarly the application program can
specify the frequently used level of priority by setting the MOSTRECENTLYUSED parameter of the
LOCK function.

DirectMemory::AddMemoryToGroup

HRESULT

DirectMemory::AddMemoryToGroup(dwGroupHandle,dwCount,lplpAddr, IpdwSize)

Purpose

Adds the specified memory blocks to a previously created group.

Parameters
dwGroupHandle
This is the handle used to identify the previously created group.
dwCount
This indicates the number of blocks of memory in the list pointed at by IpipAddr.
IplpAddr
This is an array of pointers to the blocks of memory to be added to this group.
IpdwSize
This is an array of DWORDS which indicate the length of the blocks of memory
pointed to by IplpAddr.
Return Value
DM_OK Operation succeeded.
DMERR_BADGROUP This group was not created by CreateGroup.

DirectMemory::CreateGroup

HRESULT DirectMemory::CreateGroup(dwFlags, IpdwGroupHandle,dwCount,
IplpAddr, IpdwSize)

Purpose

Creates a group that contains sections of memory that should be treated as a single unit for

purpose of virtual memory management. A group will be paged in, paged out,
SOFTLOCKed and reference counted as a single piece.

Parameters
dwFlags
DMGROUP_SOFTLOCK

DMGROUP_PRELOAD

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

40

45

-17-

IpdwGroupHandle
Points to a DWORD where the new group handie will be returned.
dwCount
This is the number of blocks of memory in the list pointed at by IplpAddr.
IplpAddr
This is an array of pointers to the blocks of memory to be addéd to this group as it is
being created.

IpdwSize
This is an array of DWORDS which indicate the length of the blocks of memory
pointed to by IplpAddr.
Return Value
DM_OK Operation was a success.
DMERR_BADDADDRESS Physical address failed.

DirectMemory::DeleteMemoryFromGroup

HRESULT DirectMemory::DeleteMemoryFromGroup(dwGroupHandle,dwCount,
IplpAddr)

Purpose

Deletes the specified memory blocks from a previously created group. This call will fail if
all of the blocks specified are not in the specified group.

Parameters
dwGroupHandle
This is the handle used to identify the previously created group.
dwCount
This is the number of blocks of memory in the list pointed at by IplpAddr.
IplpAddr
This is an array of pointers to the blocks of memory to be added to this group.

Return Value

DM_OK Operation succeeded.

DMERR_BADGROUP This group was not created by CreateGroup.
DMERR_BADBLOCKS Some of the blocks specified are not part of this
group.

DirectMemory::DestroyGroup

HRESULT DirectMemory::DestroyGroup(dwGroupHandle)

Purpose

_ This function destroys a previously created group. All of the pages that are part of this
group are freed. It is not necessary to delete all of the pages from a group before destroying
it.

Parameters
dwGroupHandle
Handle of group that was previously created by CreateGroup.

Return Value

DM_OK Operation was a success.
DMERR_BADGROUP This group handle was not created by
CreateGroup.

WO 99/15963

10

15

20

25

30

35

40

PCT/US98/16802
- 18-

DirectMemory::GetMaxPhysicalMemory

HRESULT DirectMemory::GetMaxPhysicalMemory(dwFlags,lpdwNumPages)

Purpose

Returns to the application the number of pages of physical memory available to an
application in the best case scenario.

Parameters

dwFlags
DMGMPM_EXCLUSIVEMODE The physical memory pages for the application
when it has focus.
DMGMPM_SHARED The physical memory pages for the application
when it does not have focus.

IpdwNumPages
The number of 4K pages of physical memory.

Return Value
DM_OK Operation was successful.

DirectMemory::GetProcessWorkingSetSize

HRESULT DirectMemory::GetProcessWorkingSetSize(dwFlags,I]pdwNumPages)

Purpose

This API returns what the operating system considers an application’s current working set
needs to be.

Parameters
dwFlags
DMSPWS_EXCLUSIVEMODE The working set of the application when it has
focus.
DMSPWS_SHARED The working set of the application when it does

not have focus.
IpdwNumPages

Points to a DWORD where the number of 4K pages of physical memory that this
application has reserved for it.

Return Value
DM_OK Operation was successful.
DMERR_OUTOFMEMORY Requested working set size is beyond the

physical memory limitations of this system. The working set for the application was not
changed.

DirectMemory::SetCooperativeLevel

HRESULT DirectMemory::SetCooperativeLevel(hWnd,dwFlags)

Purpose

To specify the way this application wishes to use DirectMemory and to provide the hWnd
that DirectMemory should use to track the application’s focus.

Parameters
hWnd

WO 99/15963

20

25

30

35

40

45

PCT/US98/16802
-19-

This is the hWnd that represents the applications focus.

dwFlags
DMSCL_PRESERVESTATE If this flag is set the memory state of the
application is preserved when the application loses focus and is restored when the
application regains focus before execution begins.
DMSCL_EXCLUSIVEMODE If this flag is set the LRU status of pages
owned by an application are marked as NOT USED when the application loses focus.
Any SOFTLOCKS are released. SOFTLOCKS will be restored when the application
regains focus.
DMSCL_SHARED If this flag is set the applications
SHAREDSOFTLOCKS are not released when it loses focus. There is less memory
available to an application through SOFTLOCKS when it does not have the focus.
See Lock for ways to specify SOFTLOCKS that survive focus loss.

Return Value

DM_OK Operation was a success.
DMERR_BADHWND The hwnd specified is invalid or of an incorrect
type.

DirectMemory::SetProcessWorkingSetSize

HRESULT DirectMemory::SetProcessWorkingSetSize(dwFlags,dwNumPages)

Purpose

This API allows an application to communicate its working set needs to the operating
system so that amount of physical memory can be kept free for it.

Parameters
dwFlags
DMSPWS_EXCLUSIVEMODE The working set of the application when it has
focus.
DMSPWS_SHARED The working set of the application when it does
not have the focus.
dwNumPages

The number of 4K pages of memory that this application needs to have to avoid
thrashing in normal usage scenarios.

Return Value
DM_OK Operation was successful.
DMERR_OUTOFMEMORY Requested working set size is beyond the

physical memory limitations of this system. The working set for the application was not
changed.

DirectMemory::Lock

HRESULT Lock(dwFlags, IpAddr, dwSize)

Purpose

This API specifies the segment of memory that is to be tracked by DirectMemory. The
segment will either be added to the SOFTLOCK pool or the MOSTRECENTLYUSED pool.
The SOFTLOCK pool is restored and page locked when the application regains focus. The
MOSTRECENTLYUSED pool is restored when the application gains focus. This call can

fail if the amount of physical memory requested exceeds the application physical memory
limitation specified by the end-user.

WO 99/15963 PCT/US98/16802

10

20

25

30

35

40

45

220 -

SOFTLOCK requests are higher priority than MOSTRECENTLYUSED requests.
SOFTLOCK'’s can be overridden when the operating system requires memory.
SOFTLOCK memory should not be used for DMA or Interrupt Service Routines.

Parameters
dwFlags
DMLOCK_SOFTLOCK _ Page lock this memory when the
application has focus.
DMLOCK_SHAREDSOFTLOCK Page lock this memory even when the

application does not have the focus. All other rules for SOFTLOCK’s apply, this
memory may still be reclaimed by the operating system. The amount of memory that
can be SOFTLOCKed by an application that does not have the focus is considerably
more constrained. The application that has focus has priority.
DMLOCK_MOSTRECENTLYUSED

IpAddr
Pointer to the start of the memory to be affected. This pointer is rounded down to the

nearest 4K page boundary on 386 Architecture systems. The dwSize parameter is
rounded up by the same amount.

dwSize
Length of the memory affected. The dwSize parameter is rounded up to the nearest
4K page.
Return Values
DM_OK Operation was a success.
DMERR_OUTOFMEMORY No physical memory left to satisfy this request.

DirectMemory::Unlock
HRESULT DirectMemory::Unlock(IpAddr)

Purpose

To release a SOFTLOCK or MOSTRECENTLYUSED designation on a section of memory
that was previously locked.

Parameters
IpAddr
Pointer that was previously passed to Lock.

Return Values

DM_OK Operation was a success.
DMERR_NOTLOCKED Physical address was never locked.

While the invention is described with reference to a specific impleméntation, it is important
to note that the invention is not limited to this particular implementation. The invention applies to a
variety of multi-tasking operating systems that implement virtual memory and allow changes in focus
among executing programs. The implementation above is designed for a paged virtual memory
scheme, but it also applies to virtual memory schemes that manage virtual memory in other types of
memory units.

In view of the many possible embodiments to which the principles of our invention may be

applied, it should be recognized that the illustrated embodiment is only a preferred example of the

WO 99/15963 PCT/US98/16802
-21 -

invention and should not be taken as a limitation on the scope of the invention. Rather, the scope of
the invention is defined by the following claims. We therefore claim as our invention all that comes

within the scope and spirit of these claims.

WO 99/15963 PCT/US98/16802

10

15

20

25

- 30

35

-2 -

We claim:

1. A method for allowing concurrently executing applications to control allocation of
memory in a virtual memory system, the method comprising:

in response to a request from an application program to designate code or data for a soft
page lock, loading the designated code or data into physical memory and committing a portion of
physical memory to the designated code or data such that the virtual memory system is prevented
from swapping the designated code or data to secondary storage;

monitoring focus among the concurrently executing application programs;

when the application loses focus, releasing at least a part of the portion of physical memory
committed to the code or data so that the portion of physical memory can be used by other
concurrently executing application programs; and

when the application regains the focus, reloading the code or data released from the physical
memory before the application begins executing.

2. The method of claim 1 further including;

monitoring allocation of physical memory to determine how much of the physical memory
is available to be allocated to the concurrently running application programs; and

when the amount of physical memory available to be allocated to the concurrently running
application programs falls below a predetermined threshold, releasing at least a part of the portion of
physical memory committed to the designated code or data so that the portion of physical memory
can be used by other concurrently executing application programs.

3. The method of claim 1 further including:

when a high priority process requests access to the physical memory, overriding the soft
lock by releasing at least a part of the portion of physical memory committed to the designated code
or data so that the portion of physical memory can be used by other concurrently executing
application programs.

4, The method of claim 2 wherein the step of releasing the portion of physical
memory when the predetermined threshold is exceeded includes releasing parts of the portion in least
recently used order.

S. The method of claim 3 wherein the step of overriding the soft lock includes
releasing parts of the portion in least recently used order.

6. The method of claim 1 further including:

in response to a request from an application program to select a priority for physical
memory allocation for a piece of code or data, marking a section of memory associated with the
piece of code or data so that the code or data stored in the section is least likely to be swapped to
secondary storage by the virtual memory system in response to a not present interrupt.

7. The method of claim 1 further including:

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

223 .

displaying an interactive user interface on a display monitor that enables an end-user to
select a maximum amount of physical memory that will be allocated to the application program; and

preventing the application program from locking a portion of physical memory when the
amount of physical memory exclusively allocated to the application program exceeds the maximum.

8. The method of claim 1 wherein virtual memory is allocated in memory units of
pages, and further including:

in response to the request for a soft lock, computing a list of pages corresponding to the
designated code or data; and

using the list to identify pages in the list that need to be re-loaded into the physical memory
when the application regains the focus.

9. A computer readable medium having computer-executable instructions for
performing the steps of claim 1.

10. An operating system comprising:

a physical memory manager for supporting a virtual memory space larger than physical
memory in a computer by swapping code and data between the physical memory and secondary
storage, and for managing a pool of physical memory available to be allocated to concurrently
running application programs, including a function for committing sections of physical memory such
that the committed sections are removed from the available pool and are exclusive to an application
program;

an API implementation for receiving API calls from concurrently executing application
programs, the API implementation including an API function call for requesting a soft lock of a
section of physical memory; and

a memory monitor for monitoring for changes in focus, for instructing the physical memory
manager to release a section of physical memory locked by an application program when the
application loses the focus, and for restoring the section of physical memory when the application
regains the focus.

11. The operating system of claim 10 wherein:

the API implementation includes an API function call for designating a selected piece of
code or data as high priority,

the AP] implementation causes the physical memory manager to assign a high priority to the
selected piece of code or data, and

the physical mémory manager compares the selected priority with dynamically determined
priority based on frequency of access to a piece of code or data to determine which portions of code
or data to swap to secondary storage to process a not present interrupt.

12. The operating system of claim 10 wherein the physical memory manager monitors
the amount of available physical memory and sends a message to the memory monitor when the

amount of available physical memory falls below a threshold; and

WO 99/15963 PCT/US98/16802

10

15

20

25

30

35

-24-

wherein the memory monitor is responsive to the message to release a soft lock requested by
an application program.

13. The operating system of claim 10 wherein the memory monitor is operable to
monitor the amount of physical memory and overrides a soft lock by releasing at least a portion of
soft locked code or data when the amount of available physical memory falls below a predetermined
threshold.

14. The operating system of claim 10 wherein the memory monitor is operable to
monitor for conditions that occur at run time that require release of the soft lock, and in response to
detecting one of the conditions, is operable to release at least a portion of the soft locked code or
data.

15. The operating system of claim 14 wherein the conditions include a high priority
process requesting access to a piece of physical memory.

16. The operating system of claim 10 further including a user interface for prompting
the user to select a maximum amount of memory that can be locked by an application program.

17. A method for allowing concurrently executing applications to control allocation of
memory in a virtual memory system, the method comprising:

in response to a request from an application program to designate a priority for physical
memory allocation of code or data designated by the application, assigning a priority status for the
designated code or data; and ,

using the designated priority in virtual memory management to determine the order in which
units of memory, allocated to physical memory, will be swapped to secondary storage to satisfy a
request for physical memory.

18. The method of claim 17 further including:

managing virtual memory by swapping units of memory from physical memory to
secondary storage in a least recently used order;

assigning a most recently used priority to units of memory used to store the designated code
or data such that the designated code or data has at least as high of a priority to physical memory as
non-designated code or data, which is assigned a priority based on the least recently used order.

19. The method of claim 17 including:

managing virtual memory by swapping units of memory from physical memory to
secondary storage based on a priority assigned to the units dynamically based on accesses to the units
of memory; and

overriding the priority by assigning the priority status designated by the application to units
of memory associated with the designated code or data.

20. The method of claim 17 wherein the application program can specify two or more
different levels of priority of access to physical memory for the designated code or data.

21. The method of claim 20 further including:

WO 99/15963 PCT/US98/16802

10

15

20

25

-25-

managing virtual memory by swapping units of memory from physical memory to
secondary storage based on a priority assigned to the units dynamically based on accesses to the units
of memory; and

overriding the dynamically assigned priority by assigning the priority status designated by
the application to units of memory associated with the designated code or data.

22. The method of claim 21 wherein the priority is assigned dynamically based on how
recently the units of memory are used; and wherein the step of overriding the dynamically assigned
priority includes assigning a predetermined value associated with the level of priority specified by the
application program.

23, A computer readable medium having computer-executable instructions for
performing the steps of claim 17.

24. An operating system comprising:

a physical memory manager for supporting a virtual memory space larger than physical
memory in a computer by swapping code and data between the physical memory and secondary
storage, and for managing a pool of physical memory available to be allocated to concurrently
running application programs,

an APl implementation for receiving API calls from concurrently executing application
programs, the API implementation including an API function call for designating a priority of
specified code or data to be used by the physical memory manager to determine the order in which
units of memory are swapped from physical memory to secondary storage of a computer.

25. The operating system of claim 24 wherein the physical memory manager is
operable to assign a priority to the units of memory based on how recently each unit is used and is
operable to swap units of memory from the physical memory to the secondary storage in least
recently used order; and wherein the API implementation is operable to override the priority assigned
by the physical memory manager based on use and set.the priority based on the priority specified by

an application program in the API function call.

WO 99/15963 PCT/US98/16802

32 BIT LINEAR ADDRESS /26 /30
BITS 31..22 BITS 21...12 BITS 11..0
207 /32
CR3
A\ 4
[24
PAGE TABLE -1
L
28 —

PAGE TABLE £ ! :

| DIRECTORY <« |
24) | I
L
| I
| |

I
| | |
| —i ————— I
|

Fig. 1
(PRIOR ART) .
v v

32-BIT PHYSICAL
ADDRESS

1/5

WO 99/15963 PCT/US98/16802

PAGE TABLE INDEX ola L/J Ff .
BITS 31..12
s|w
ulr
PAGE ADDRESS BITS
31..12 DA I1/71P
s|w
Fig. 2

(PRIOR ART)

2/5

WO 99/15963 PCT/US98/16802
Fig. 3
PERSONAL COMPUTER| ___ 120
PROCESSING | 121 |
UNIT 1" operaTING 1135
| system I
i 122 el et -
L r-r————=—"=—
/ SYSTEM | | APPLICATIONS bk--"13¢
MEMORY) e J
123 ._/125,/’,——’/ /I -~ —— - t/ 137
. RAM - N L MODULES |
P
’ |l P —m— ==
L - 138
ROM | | 124 v | !___DﬁTﬁ__J
//
/
/
132
5] INTERFACE HARD |+ 127
DRIVE
133 FLoPpy | | 128
T DRIVE
»| INTERFACE > 129
DISK ~
— MONITOR |— 147
134 DRIVE |)
»| INTERFACE |» 130 140 __
DIsk . H_{_ KEYBOARD
131
148
| wvibEO |
| ADAPTER MOUSE
B
s 1/54 15\2 142 129
SERIAL / \ R
PORT
INTERFACE || MODEM |+ WAN > REMOTE
COMPUTER
JRETvoRE e
1 _| | sTorAGE
150
151

3/5

WO 99/15963

170

176

178

(wer) (weee

160

166

VIRTUAL
MEMORY SPACE
OF
APP. 1

PCT/US98/16802

APl IMPLEMENTATION

MEMORY)
165

MONITOR
164 } 1
|
|

<190

L

4
SECTION 1{SIZE}

" | SECTION 2{SIZE}

SECTION 3{SIZE}

SECTION 4{SIZE}
|

|
h 4

LIST OF
POINTERS TO
PAGESNTOM

192

A
PHYSICAL
MEMORY
MANAGER

194

Fig. 4

4/5

WO 99/15963

170

PCT/US98/16802

< API IMPLEMENTATION)

VIRTUAL
MEMORY SPACE
OF
APP. 1

164

5/5

1
I
I
|
!
!
|
I
I
|
|
|
I

210
v r's

SECTION 4{SIZE}

SECTION 5{SIZE}

SECTION 6{SIZE}

]
|
|
|
|
I 212
v [

LIST OF
POINTERS TO
PAGESNTOM

A
PHYSICAL
MEMORY

MANAGER

194

Fig. 5

INTERNATIONAL SEARCH REPORT it tional Application No

PCT/US 98/16802

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/46

According to International Patent Classification (IPC) or to both nationai classitication and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

470-472, XP000308947
A see the whole document

30 October 1990
see the whole document

X "METHOD OF EXTENDING 0S/2’S MEMORY
MANAGEMENT TO RECOGNIZE "USER Focus""
IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 35, no. 1A, 1 June 1992, pages

A US 4 967 353 A (BRENNER LARRY B

17,20,23

1,10,18,
19,24,25

ET AL) 1,10,17,
24,25

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
m%ﬂts, ?tuch combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

1 December 1998

Date of mailing of the international search report

09/12/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Michel, T

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Int tional Application No

PCT/US 98/16802

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication.where appropriate, of the reievant passages

Relevant to claim No.

A SOHAL V: "RELIABLE MEMORY MANAGEMENT FOR
REAL-TIME SYSTEMS"

ELECTRONIC DESIGN,

vol. 44, no. 13, 24 June 1996, page 118,
120, 122, 124 XP000625394

see page 120, right-hand column, line 7 -
page 124, left-hand column, line 39

A EP 0 620 523 A (HEWLETT PACKARD CO)
19 October 1994
see the whole document

24,25

1,24

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int

ional Application No

PCT/US 98/16802

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

US 4967353 A 30-10-1990 DE 3888554 D 28-04-1994
DE 3888554 T 27-10-1994
EP 0280019 A 31-08-1988
JP 1811489 C 27-12-1993
JP 5022261 B 29-03-1993
JP 63211041 A 01-09-1988
EP 0620523 A 19-10-1994 us 5535364 A 09-07-1996
JP 6309221 A 04-11-1994

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

