(54) Titre : PROCEDE DE GENERATION D'UNE RESISTANCE A DES AGENTS PATHOGENES DANS DES PLANTES

(54) Title: METHOD FOR OBTAINING THE PATHOGENIC RESISTANCE IN PLANTS

(57) Abrégé/Abstract:
The invention relates to a method for obtaining or increasing the pathogenic resistance in plants by reducing the expression, activity or the functioning of a NADPH oxidase.
GEÄNDERTE FASSUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(51) Internationale Patentklassifikation:
C12N 15/82,
15/24, A01H 5/10

(21) Internationales Aktenzeichen:
PCT/EP2003/007589

(22) Internationales Anmeldedatum:

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
102 33 327.0 22. Juli 2002 (22.07.2002) DE

(72) Erfinder; und

(74) Anwalt: PRESSLER, Uwe, , 67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,

(88) Veröffentlichungsdatum des geänderten internationalen Rechenberichts: 11. März 2004

(15) Informationen zur Berichtigung:

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR OBTAINING THE PATHOGENIC RESISTANCE IN PLANTS

(54) Bezeichnung: VERFAHREN ZUM ERREICHEN EINER PATHOGENRESISTENZ IN PFLANZEN

(57) Abstract: The invention relates to a method for obtaining or increasing the pathogenic resistance in plants by reducing the expression, activity or the functioning of a NADPH oxidase.

(57) Zusammenfassung: Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch Verminderung der Expression, Aktivität oder Funktion einer NADPH Oxidase.
(51) Internationale Patentklassifikation*: C12N 15/82, 15/24, A01H 5/10

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 33 327.0 22. Juli 2002 (22.07.2002) DE

(72) Erfinder; und

(74) Anwalt: PREßLER, Uwe;., 67056 Ludwigshafen (DE).

Veröffentlicht:
— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR OBTAINING THE PATHOGENIC RESISTANCE IN PLANTS

(54) Bezeichnung: VERFAHREN ZUM ERREICHEN EINER PATHOGENRESISTENZ IN PFLANZEN

(57) Abstract: The invention relates to a method for obtaining or increasing the pathogenic resistance in plants by reducing the expression, activity or the functioning of a NADPH oxidase.

(57) Zusammenfassung: Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch Verminderung der Expression, Aktivität oder Funktion einer NADPH Oxidase.
METHOD FOR OBTAINING THE PATHOGENIC RESISTANCE IN PLANTS

The invention relates to methods for generating or increasing a pathogen resistance in plants by reducing the expression, activity or function of an NADPH oxidase.

The aim of plant biotechnology work is the generation of plants with advantageous novel properties, for example for increasing agricultural productivity. The plants' natural defense mechanisms against pathogens are frequently insufficient. Fungal diseases alone result in annual yield losses of many billions of US$. The introduction of foreign genes from plants, animals or microbial sources can increase the defenses. Examples are the protection against feeding damage by insects by expressing Bacillus thuringiensis endotoxins (Vaeeck et al. (1987) Nature 328:33-37) or the protection against fungal infection by expressing a bean chitinase (Brogle et al. (1991) Science 254:1194-1197). However, most of the approaches described only offer resistance to a single pathogen or a narrow spectrum of pathogens.

Only a few approaches exist which impart a resistance to a broader spectrum of pathogens to plants. Systemic acquired resistance (SAR) - a defense mechanism in a variety of plant/pathogen interactions - can be conferred by the application of endogenous messenger substances such as jasmonic acid (JA) or salicylic acid (SA) (Ward, et al. (1991) Plant Cell 3:1085-1094; Uknese, et al. (1992) Plant Cell 4(6):645-656). Similar effects can also be achieved by synthetic compounds such as 2,6-dichloroisonicotinic acid (INA) or S-methyl benzo(1,2,3)thiadiazole-7-thiocarboxylate (BTH; Bion®) (Friedrich et al. (1996) Plant J 10(1):61-70; Lawton et al. (1996) Plant J. 10:71-82). The expression of pathogenesis-related (PR) proteins, which are upregulated in the case of SAR, may also cause pathogen resistance in some cases.

In barley, the Mlo locus has been described as a negative regulator of the defense against pathogens. The loss of the Mlo gene causes an increased and, above all, race-unspecific resistance against a large number of mildew species (Büsches R et al. (1997) Cell 88:695-705; Jorgensen JH (1977) Euphytica 26:55-62; Lyngkjaer MF et al. (1995) Plant Pathol 44:786-790). Mlo-deficient barley varieties obtained by conventional breeding are already being used in agriculture. Despite intensive cultivation, the resistance has proved to be durable, presumably due to the fact that it is recessive. Mlo-like resistances in other plants,
in particular in cereal species, are not described. The Mlo gene and various homologs from other cereal species have been identified and cloned (Buschges R et al. (1997) Cell 88:695-705; WO 98/04586; Schulze-Lefert P, Vogel J (2000) Trends Plant Sci. 5:343-348). Various methods using these genes for obtaining a pathogen resistance are described (WO 98/04586; WO 00/01722; WO 99/47552). The disadvantage is that the Mlo-mediated defense mechanism comprises a spontaneous die-off of leaf cells (Wolter M et al. (1993) Mol Gen Genet 239:122-128). Another disadvantage is that the Mlo-deficient genotypes show hypersensitivity to hemibiotrophic pathogens such as Magnaporthe grisea (M. grisea) and Cochliobolus sativus (Bipolaris sorokiniana) (Jarosch B et al. (1999) Mol Plant Microbe Interact 12:508-514; Kumar J et al. (2001) Phytopathology 91:127-133).

The liberation of reactive oxygen species (ROS; for example superoxide (O_2^-), hydroxyl radicals and H_2O_2) is ascribed an important protection function in the reaction on plant pathogens (Wojtaszek P (1997) Biochem J 322:681-692). A variety of ways of how a cell can produce ROS are known. In the macrophages of mammals, it is in particular the enzyme NADPH oxidase, which is able to transfer electrons to molecular oxygen, which must be mentioned. Homologous enzymes have also been identified in plants (Lamb & Dixon (1997) Annu Rev Plant Physiol Plant Mol Biol 48:251).

It has been shown that mutations in the catalytic subunit of NADPH oxidase in Arabidopsis thaliana show a reduced accumulation of reactive oxygen intermediates (ROI). With regard to the hypersensitive reaction (HR), the results were heterogeneous: while infection with the avirulent and bacterium Pseudomonas syringae showed a reduced HR in a double mutant, the virulent oomycete Peronospora parasitica showed an increased HR. Growth - both of virulent and of avirulent P. syringae strains - was not changed in comparison with wild-type plants, however (Torres MA et al. (2002) Proc Natl Acad Sci USA 99:517-522). Likewise, the inhibition of NADPH oxidase by means of the inhibitor diphenyleneiodonium chloride (DPI) - at physiologically relevant concentrations - had no effect on the development of pathogenic fungi (Huckelhoven R & Kogel KH (1998) Mol Plant Microbe Interact 11:292-300). A cDNA fragment of a phagocytic barley NADPH oxidase (pNAox, homolog of the large subunit gp91phox of a phagocytic NADPH oxidase) is described under the GenBank Acc.-No.: AJ251717).

The present invention aims at providing novel compounds for the defense against pathogens in plants, which compounds bring about an efficient defense against as broad as possible a pathogen spectrum in as many different plant species as possible, prefer-
ably the crop plants used in agriculture. We have found that this object is achieved by the present method.

A first aspect of the invention comprises a method for generating or increasing the resistance to at least one pathogen in plants, which comprises the following operating steps:

a) reduction of the protein quantity, activity or function of an NADPH oxidase in a plant or a tissue, organ, part or cell thereof, and

b) selection of the plants in which — in contrast or in comparison with the starting plant — the resistance to at least one pathogen exists or is increased.

Surprisingly, the reduction of the expression of a barley NADPH oxidase (pNAox) in the epidermal cell by a sequence-specific RNA interference approach using double-stranded pNAox-dsRNA ("gene silencing") shows a significantly reduced disease level following Bgh infection (measured with reference to the formulation of Haustoria). This finding is particularly surprising because the release of reactive oxygen species ("oxidative burst"), which is associated with NADPH oxidase, is generally ascribed a protective function.

Similar to Mlo, the reduction of the NADPH oxidase expression mediates a broad resistance to various isolates of Blumeria graminis f.sp. hordei. In transient gene silencing experiments, the penetration efficiency (development of Haustoria) of Bgh is reduced significantly by more than 35% — an effect which, in its intensity, corresponds to the effect obtained by means of Mlo-dsRNA (Schweizer P et al. (2000) Plant J 24:895-903). In the wild-type barley variety Pallas, approximately 40% of the fungal penetrations result in the development of haustoria, while the penetration rate in the case of reduced NADPH oxidase expression by introduction of a double-stranded RNA of NADPH oxidase (pNAox-dsRNA) only amounts to approximately 25%. The fact that even in pathogen-sensitive wild-type varieties such as Pallas only a penetration rate of approximately 40 to 50% can be observed can be attributed to the basal resistance, which is always present. Owing to these findings, the enzyme NADPH oxidase can be considered a key element for the successful penetration of a pathogen such as Bgh into the plant cell. In addition, the method is superior to all those methods where a pathogen-resistant phenotype is generated by overexpression of a resistance-mediating protein. Switching off a gene can be done without expression of a (foreign) protein. In the ideal case, only the endogenous gene is de-
activated. This has not inconsiderable advantages regarding approval and acceptance by the consumer, who is frequently unsure about plants with foreign proteins. Very especially advantageous in this context is the use of inducible promoters for reducing the NADPH oxidase quantity, activity or function, which, for example in the case of pathogen-inducible promoters, makes possible an expression only when required (i.e. attack by pathogens).

In principle, the method according to the invention can be applied to all plant species, preferably to those in which an NADPH oxidase or a functional equivalent thereof is expressed naturally.

For the purposes of the invention, "plant" means all genera and species of higher and lower plants of the Plant Kingdom. Included in this expression are the mature plants, seed, shoots and seedlings, and parts, propagation material, plant organs, tissues, protoplasts, callus and other cultures, for example cell cultures, derived from them, and all other types of groups of plant cells which give functional or structural units. Mature plants refers to plants at any developmental stage beyond that of the seedling. Seedling means a young, immature plant in an early developmental stage. "Plant" comprises all annual and perennial monocotyledonous and dicotyledonous plants and includes by way of example, but not by limitation, those of the genera Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, Petunia, Digitalis, Majoreana, Cicoria, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaelia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea and Populus.

The term "plant" preferably comprises monocotyledonous crop plants, such as, for example, cereal species such as wheat, barley, millet, rye, triticale, maize, rice, sorghum or oats, and sugar cane.

The term furthermore comprises dicotyledonous crop plants such as, for example

- Brassicaceae such as oilseed rape, canola, cress, Arabidopsis, cabbages or canola, Leguminosae such as soybean, alfalfa, pea, beans or peanut
5 - Solanaceae such as potato, tobacco, tomato, egg plant or paprika, Asteraceae such as sunflower, Tagetes, lettuce or Calendula,

5 - Cucurbitaceae such as melon, pumpkin/squash or zucchini,

and linseed, cotton, hemp, clover, spinach, flax, red pepper, carrot, beet, radish, sugar beet, sweet potato, cucumber, chicory, cauliflower, broccoli, asparagus, onion, garlic, celeriac, strawberry, raspberry, blackberry, pineapple, avocado, and the various tree, bush, nut and vine species. Tree species preferably comprises plum, cherry, peach, nectarine, apricot, banana, paw paw, mango, apple, pear, quince.

Furthermore comprised are ornamental plants, useful or ornamental trees, flowers, cut flowers, shrubs or lawn, by way of example but not by way of limitation, the families of the Rosaceae such as rose, Ericaceae such as rhododendrons and azaleas, Euphorbiaceae such as poinsettias and croton, Caryophyllaceae such as carnations, Solanaceae such as petunias, Gesneriaceae such as African violets, Balsaminaceae such as touch-me-not, Orchidaceae such as orchids, Iridaceae such as gladioli, iris, freesia and crocus, Compositae such as calendula, Geraniaceae such as geraniums, Liliaceae such as dracaena, Moraceae such as ficus, Araceae such as philodendron, and many others.

Preferred for the purposes of the invention are those plants which are employed as food or feedstuff, very especially preferably monocotyledonous genera and species, such as the above-described cereal species.

The method is very especially preferably applied to monocotyledonous plants, most preferably to plants with agricultural importance such as wheat, oats, millet, barley, rye, maize, rice, buckwheat, sorghum, triticale, spelt, linseed or sugar cane.

"Pathogen resistance" denotes the reduction or weakening of disease symptoms of a plant following infection by a pathogen. The symptoms can be manifold, but preferably comprise those which directly or indirectly have an adverse effect on the quality of the plant, the quantity of the yield, the suitability for use as feedstuff or foodstuff, or else which make sowing, planting, harvesting or processing of the crop difficult.

45 "Conferring", "existing", "generating" or "increasing" a pathogen resistance means that the defense mechanisms of a specific plant species or variety is increasingly resistant to one or more
pathogens due to the use of the method according to the invention in comparison with the wild type of the plant ("original plant"), to which the method according to the invention has not been applied, under otherwise identical conditions (such as, for example, climatic conditions, growing conditions, pathogen species and the like). The increased resistance manifests itself preferably in a reduced manifestation of the disease symptoms, disease symptoms comprising - in addition to the abovementioned adverse effects - for example also the penetration efficiency of a pathogen into the plant or plant cells or the proliferation efficiency in or on the same. In this context, the disease symptoms are preferably reduced by at least 10% or at least 20%, especially preferably by at least 40% or 60%, very especially preferably by at least 70% or 80% and most preferably by at least 90% or 95%.

"Selection" with regard to plants in which - as opposed or as compared to the original plant - resistance to at least one pathogen exists or is increased means all those methods which are suitable for recognizing an existing or increased resistance to pathogens. These may be symptoms of pathogen infection (for example the development of haustoria in the case of fungal infection), but may also comprise the above-described symptoms which relate to the quality of the plant, the quantity of the yield, the suitability for use as feedstuff or foodstuff and the like.

"Pathogen" within the scope of the invention means by way of example but not by limitation viruses or viroids, bacteria, fungi, animal pests such as, for example, insects or nematodes. Especially preferred are fungi, such as mildew. However, it can be assumed that the expression of an NADPH oxidase, its activity or its function also brings about resistance to other pathogens. The following pathogens may be mentioned by way of example but not by limitation:

1. Fungal pathogens and fungus-like pathogens:

Fungal pathogens and fungus-like pathogens (such as, for example, Chromista) are preferably from the group comprising Plasmodiophoramyctia, Oomycota, Ascomycota, Chytridiomycetes, Zygomycetes, Basidiomycota and Deuteromycetes (Fungi imperfecti). The pathogens mentioned in Tables 1 and 2 and the diseases with which they are associated may be mentioned by way of example but not by limitation.
Table 1: Fungal plant diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf rust</td>
<td>Puccinia recondita</td>
</tr>
<tr>
<td>Yellow rust</td>
<td>P. striiformis</td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>Erysiphe graminis / Blumeria graminis</td>
</tr>
<tr>
<td>Glume blotch</td>
<td>Septoria nodorum</td>
</tr>
<tr>
<td>Leaf blotch</td>
<td>Septoria tritici</td>
</tr>
<tr>
<td>Ear fusarioses</td>
<td>Fusarium spp.</td>
</tr>
<tr>
<td>Eyespot</td>
<td>Pseudocercospora herpotrichoides</td>
</tr>
<tr>
<td>Smut</td>
<td>Ustilago spp.</td>
</tr>
<tr>
<td>Bunt</td>
<td>Tilletia caries</td>
</tr>
<tr>
<td>Take-all</td>
<td>Gaemannomyces graminis</td>
</tr>
<tr>
<td>Anthrocnose leaf blight</td>
<td>Colletotrichum graminicola (teleomorph: Glomerella graminicola Politis); Glomerella tucumanensis (anamorph: Glomerella falcatum Went)</td>
</tr>
<tr>
<td>Anthracnose stalk rot</td>
<td></td>
</tr>
<tr>
<td>Aspergillus ear and kernel rot</td>
<td>Aspergillus flavus</td>
</tr>
<tr>
<td>Banded leaf and sheath spot</td>
<td>Rhizoctonia solani Kuhn = Rhizoctonia microscerotia J. Matz (teleomorph: Thanatephorus cucumeris)</td>
</tr>
<tr>
<td>Black bundle disease</td>
<td>Acremonium strictum W. Gams = Cephalosporium acremonium Auct. non Corda</td>
</tr>
<tr>
<td>Black kernel rot</td>
<td>Lasiodiplodia theobromae = Botryodiplodia theobromae</td>
</tr>
<tr>
<td>Borde blanco</td>
<td>Marasmiellus sp.</td>
</tr>
<tr>
<td>Brown spot (black spot, stalk rot)</td>
<td>Physoderma maydis</td>
</tr>
<tr>
<td>Cephalosporium kernel rot</td>
<td>Acremonium strictum = Cephalosporium acremonium</td>
</tr>
<tr>
<td>Charcoal rot</td>
<td>Macrophomina phaseolina</td>
</tr>
<tr>
<td>Corticium ear rot</td>
<td>Thanatephorus cucumeris = Corticium sasakii</td>
</tr>
<tr>
<td>Curvularia leaf spot</td>
<td>Curvularia clavata, C. eragrostidis = C. maculans (teleomorph: Cochliobolus eragrostidis), Curvularia inaequalis, C. intermedia (teleomorph: Cochliobolus intermedius), Curvularia lunata (teleomorph: Cochliobolus lunatus), Curvularia pallescens (teleomorph: Cochliobolus pallescens), Curvularia senegalensis, C. tuberculata (teleomorph: Cochliobolus tuberculatus)</td>
</tr>
<tr>
<td>Didymella leaf spot</td>
<td>Didymella exitalis</td>
</tr>
<tr>
<td>Disease</td>
<td>Pathogen</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Diplodia ear rot and stalk rot</td>
<td>Diplodia frumenti (teleomorph: Botryosphaeria festucae)</td>
</tr>
<tr>
<td>Diplodia ear rot, stalk rot, seed rot and seedling blight</td>
<td>Diplodia maydis = Stenocarpella maydis</td>
</tr>
<tr>
<td>Diplodia leaf spot or streak</td>
<td>Stenocarpella macrospora = Diplodia leaf macrospora</td>
</tr>
</tbody>
</table>

Table 2: Downy mildew

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown stripe downy mildew</td>
<td>Sclerophthora rayssiae var. zeae</td>
</tr>
<tr>
<td>Crazy top downy mildew</td>
<td>Sclerophthora macrospora = Sclerospora macrospora</td>
</tr>
<tr>
<td>Green ear downy mildew (graminicola downy mildew)</td>
<td>Sclerospora graminicola</td>
</tr>
<tr>
<td>Java downy mildew</td>
<td>Peronosclerospora maydis = Sclerospora maydis</td>
</tr>
<tr>
<td>Philippine downy mildew</td>
<td>Peronosclerospora philippinensis = Sclerospora philippinensis</td>
</tr>
<tr>
<td>Sorghum downy mildew</td>
<td>Peronosclerospora sorghi = Sclerospora sorghi</td>
</tr>
<tr>
<td>Spontaneum downy mildew</td>
<td>Peronosclerospora spontanea = Sclerospora spontanea</td>
</tr>
<tr>
<td>Sugarcane downy mildew</td>
<td>Peronosclerospora sacchari = Sclerospora sacchari</td>
</tr>
<tr>
<td>Dry ear rot (cob, kernel and stalk rot)</td>
<td>Nigrospora oryzae (teleomorph: Khuskia oryzae)</td>
</tr>
<tr>
<td>Ear rots, minor</td>
<td>Alternaria alternata = A. tenuis, Aspergillus glaucus, A. niger, Aspergillus spp., Botrytis cinerea (teleomorph: Botryotinia fuckeliana), Cunninghamella sp., Curvularia pallescens, Doratomyces stemonitis = Cephalotrichum stemonitis, Fusarium culmorum, Gonatabotrys simplex, Pithomyces maydicus, Rhizopus microsporus Tiegh., R. stolonifer = R. nigricans, Scopulariopsis brumptii</td>
</tr>
<tr>
<td>Ergot (horse’s tooth)</td>
<td>Claviceps gigantea (anamorph: Sphaecelia sp.)</td>
</tr>
<tr>
<td>Eyespot</td>
<td>Aureobasidium zeae = Kabatiella zeae</td>
</tr>
<tr>
<td>Disease</td>
<td>Pathogen</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fusarium ear and stalk rot</td>
<td>Fusarium subglutinans = P. moniliforme var.subglutinans</td>
</tr>
<tr>
<td>Fusarium kernel, root and stalk rot, seed rot and seedling blight</td>
<td>Fusarium moniliforme (teleomorph: Gibberella fujikuroi)</td>
</tr>
<tr>
<td>Fusarium stalk rot, seedling root rot</td>
<td>Fusarium avenaceum (teleomorph: Gibberella avenacea)</td>
</tr>
<tr>
<td>Gibberella ear and stalk rot</td>
<td>Gibberella zeae (anamorph: Fusarium graminearum)</td>
</tr>
<tr>
<td>Gray ear rot</td>
<td>Botryosphaeria zeae = Physalospora zeae (anamorph: Macrophoma zeae)</td>
</tr>
<tr>
<td>Gray leaf spot (Cercospora leaf spot)</td>
<td>Cercospora sorghi = C. sorghi var. maydis, C. zeae-maydis</td>
</tr>
<tr>
<td>Helminthosporium root rot</td>
<td>Exserohilum pedicellatum = Helminthosporium pedicellatum (teleomorph: Setosphaeria pedicellata)</td>
</tr>
<tr>
<td>Hormodendrum ear rot (Cladosporium rot)</td>
<td>Cladosporium cladosporioides = Hormodendrum cladosporioides, C. herbarum (teleomorph: Mycosphaerella tassiana)</td>
</tr>
<tr>
<td>Hyalothyridium leaf spot</td>
<td>Hyalothyridium maydis</td>
</tr>
<tr>
<td>Late wilt</td>
<td>Cephalosporium maydis</td>
</tr>
<tr>
<td>Northern corn leaf blight (white blast, crown stalk rot, stripe)</td>
<td>Setosphaeria turcica (anamorph: Exserohilum turcicum = Helminthosporium turcicum)</td>
</tr>
<tr>
<td>Northern corn leaf spot Helminthosporium ear rot (race 1)</td>
<td>Cochliobolus carbonum (anamorph: Bipolaris zeicola = Helminthosporium carbonum)</td>
</tr>
<tr>
<td>Penicillium ear rot (blue eye, blue mold)</td>
<td>Penicillium spp., P. chrysogenum, P. expansum, P. oxalicum</td>
</tr>
<tr>
<td>Phaeocytostroma stalk rot and root rot</td>
<td>Phaeocytostroma ambiguum, = Phaeocytostromella zeae</td>
</tr>
<tr>
<td>Disease</td>
<td>Pathogen</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Phaeosphaeria leaf spot</td>
<td>Phaeosphaeria maydis = Sphaerulina maydis</td>
</tr>
<tr>
<td>Physalospora ear rot (Botryosphaeria ear rot)</td>
<td>Botryosphaeria festucae = Physalospora zeicola (anamorph: Diplodia frumenti)</td>
</tr>
<tr>
<td>Purple leaf sheath</td>
<td>Hemiparasitic bacteria and fungi</td>
</tr>
<tr>
<td>Pyrenochaeta stalk rot and root rot</td>
<td>Phoma terrestris = Pyrenochaeta terrestris</td>
</tr>
<tr>
<td>Pythium root rot</td>
<td>Pythium spp., P. arrhenomanes, P. graminicola</td>
</tr>
<tr>
<td>Pythium stalk rot</td>
<td>Pythium aphanidermatum = P. butleri L.</td>
</tr>
<tr>
<td>Red kernel disease (ear mold, leaf and seed rot)</td>
<td>Epicoccum nigrum</td>
</tr>
<tr>
<td>Rhizoctonia ear rot (sclerotial rot)</td>
<td>Rhizoctonia zeae (teleomorph: Waitea circinata)</td>
</tr>
<tr>
<td>Rhizoctonia root rot and stalk rot</td>
<td>Rhizoctonia solani, Rhizoctonia zeae</td>
</tr>
<tr>
<td>Rostratum leaf spot (Helminthosporium leaf disease, ear and stalk rot)</td>
<td>Setosphaeria rostrata, (anamorph: Exserohilum rostratum = Helminthosporium rostratum)</td>
</tr>
<tr>
<td>Rust, common corn</td>
<td>Puccinia sorghi</td>
</tr>
<tr>
<td>Rust, southern corn</td>
<td>Puccinia polysora</td>
</tr>
<tr>
<td>Rust, tropical corn</td>
<td>Physopella pallescens, P. zeae = Angiopsora zeae</td>
</tr>
<tr>
<td>Sclerotium ear rot (southern blight)</td>
<td>Sclerotium rolfsii Sacc. (teleomorph: Athelia rolfsii)</td>
</tr>
<tr>
<td>Disease</td>
<td>Pathogen</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Selenophoma leaf spot</td>
<td>Selenophoma sp.</td>
</tr>
<tr>
<td>Sheath rot</td>
<td>Gaemannomyces graminis</td>
</tr>
<tr>
<td>Shuck rot</td>
<td>Myrothecium gramineum</td>
</tr>
<tr>
<td>Silage mold</td>
<td>Monascus purpureus, M ruber</td>
</tr>
<tr>
<td>Smut, common</td>
<td>Ustilago zeae = U. maydis</td>
</tr>
<tr>
<td>Smut, false</td>
<td>Ustilaginoidea virens</td>
</tr>
<tr>
<td>Smut, head</td>
<td>Sphacelotheca reiliana = Sporisorium holcisorghi</td>
</tr>
<tr>
<td>Southern corn leaf blight and stalk rot</td>
<td>Cochliobolus heterosporus (anamorph: Bipolaris maydis = Helminthosporium maydis)</td>
</tr>
<tr>
<td>Southern leaf spot</td>
<td>Stenocarpella macrospora = Diplodia macrospora</td>
</tr>
<tr>
<td>Stalk rots, minor</td>
<td>Cercospora sorghi, Fusarium episphaeria, F. merismoides, F. oxysporum Schlechtend, F. poae, F. roseum, F. solani (teleomorph: Nectria haematoecocca), F. tricinctum, Mariannae elegans, Mucor sp., Rhopogonhae zeae, Spicaria sp.</td>
</tr>
<tr>
<td>Storage rots</td>
<td>Aspergillus spp., Penicillium spp. and other fungi</td>
</tr>
<tr>
<td>Tar spot</td>
<td>Phyllachora maydis</td>
</tr>
<tr>
<td>Trichoderma ear rot and root rot</td>
<td>Trichoderma viride = T. lignorum teleomorph: Hypocrea sp.</td>
</tr>
<tr>
<td>White ear rot, root and stalk rot</td>
<td>Stenocarpella maydis = Diplodia macrospora</td>
</tr>
<tr>
<td>Yellow leaf blight</td>
<td>Ascochyta ischaemi, Phyllosticta maydis (teleomorph: Mycosphaerella zeae-maydis)</td>
</tr>
<tr>
<td>Zonate leaf spot</td>
<td>Gloeocercospora sorghi</td>
</tr>
</tbody>
</table>

The following are especially preferred

- Plasmodiophoromycota such as Plasmodiophora brassicae (clubroot of crucifers), Spongospora subterranea (powdery scab of potato tubers), Polymyxa graminis (root disease of cereals and grasses),

- Oomycota such as Bremia lactucae (downy mildew of lettuce), Peronospora (downy mildew) in snapdragon (P. antirrhini), onion (P. destructor), spinach (P. effusa), soybean (P. manchurica), tobacco ("blue mold"; P. tabacina), alfalfa and clover (P. trifolium), Pseudoperonospora humuli (downy mildew of hops), Plasmopara (downy mildew in grapevines) (P.
viticola) and sunflower (P. halstedii), Sclerophtohra macrospora (downy mildew in cereals and grasses), Pythium (seed rot, seedling damping-off, and root rot of all types of plants, for example damping-off of Beta beet caused by P. debaryanum), Phytophthora infestans (blight in potato, brown rot in tomato and the like), Albugo spec. (white rust on cruciferous plants).

- Ascomycota such as Microdochium nivale (snow mold of rye and wheat), Fusarium graminearum, Fusarium culmorum (partial ear sterility mainly in wheat), Fusarium oxysporum (Fusarium wilt of tomato), Blumeria graminis (powdery mildew of barley (f.sp. hordei) and wheat (f.sp. tritici)), Erysiphe pisi (powdery mildew of pea), Nectria galligena (Nectria canker of fruit trees), Uncinula necator (powdery mildew of grapevine), Pseudopeziza tracheiphila (red fire disease of grapevine), Claviceps purpurea (ergot on, for example, rye and grasses), Gaeumannomyces graminis (take-all on wheat, rye and other grasses), Magnaporthe grisea (rice blast disease), Pyrenophora graminea (leaf stripe of barley), Pyrenophora teres (net blotch of barley), Pyrenophora tritici-repentis (leaf blight of wheat), Venturia inaequalis (apple scab), Sclerotinia sclerotium (stalk break, stem rot). Pseudopeziza medicaginis (leaf spot of alfalfa, white and red clover).

- Basidiomycetes such as Typhula incarnata (typhula blight on barley, rye, wheat), Ustilago maydis (blister smut on maize), Ustilago nuda (loose smut on barley), Ustilago tritici (loose smut on wheat, spelt), Ustilago avenae (loose smut on oats), Rhizoctonia solani (rhizoctonia root rot of potato), Sphacelotheca spp. (head smut of sorghum), Melampsora lini (rust of flax), Puccinia graminis (stem rust of wheat, barley, rye, oats), Puccinia recondita (leaf rust on wheat), Puccinia dispersa (brown rust on rye), Puccinia hordei (leaf rust of barley), Puccinia coronata (crown rust of oats), Puccinia striiformis (yellow rust of wheat, barley, rye and a large number of grasses), Uromyces appendiculatus (brown rust of bean), Sclerotium rolfsii (root and stem rots of many plants).

- Deuteromycetes (Fungi imperfecti) such as Septoria nodorum (glume blotch) of wheat (Septoria tritici), Pseudocercospora herpotrichoides (eyespot of wheat, barley, rye), Rhyhchosporium secalis (leaf spot on rye and barley), Alternaria solani (early blight of potato, tomato), Phoma betae (blackleg on Beta beet), Cercospora beticola (leaf spot on Beta beet), Alternaria brassicae (black spot on
oilseed rape, cabbage and other crucifers), Verticillium dahliae (verticillium wilt), Colletotrichum lindemuthianum (bean anthracnose), Phoma lingam (blackleg of cabbage and oilseed rape), Botrytis cinerea (gray mold of grapevine, strawberry, tomato, hops and the like).

Most preferred are Phytophthora infestans (potato blight, brown rot in tomato and the like), Microdochium nivale (previously Fusarium nivale; snow mold of rye and wheat), Fusarium graminearum, Fusarium culmorum (partial ear sterility of wheat), Fusarium oxysporum (Fusarium wilt of tomato), Blumeria graminis (powdery mildew of barley (f. sp. hordei) and wheat (f. sp. tritici)), Magnaporthe grisea (rice blast disease), Sclerotinia sclerotium (stalk break, stem rot), Septoria nodorum and Septoria tritici (glume blotch of wheat), Alternaria brassicae (black spot of oilseed rape, cabbage and other crucifers), Phoma lingam (blackleg of cabbage and oilseed rape).

2. Bacterial pathogens:

The pathogens and diseases associated with them, all of which are mentioned in table 3, may be mentioned by way of example, but not by limitation.

Table 3: Bacterial diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial leaf blight and stalk rot</td>
<td>Pseudomonas avenae subsp. avenae</td>
</tr>
<tr>
<td>Bacterial leaf spot</td>
<td>Xanthomonas campestris pv. holcicola</td>
</tr>
<tr>
<td>Bacterial stalk rot</td>
<td>Enterobacter dissolvens = Erwinia dissolvens</td>
</tr>
<tr>
<td>Bacterial stalk and top rot</td>
<td>Erwinia carotovora subsp. carotovora, Erwinia chrysanthemi pv. zeeae</td>
</tr>
<tr>
<td>Bacterial stripe</td>
<td>Pseudomonas andropogonis</td>
</tr>
<tr>
<td>Chocolate spot</td>
<td>Pseudomonas syringae pv. coronafaciens</td>
</tr>
<tr>
<td>Goss’s bacterial wilt and blight (leaf freckles and wilt)</td>
<td>Clavibacter michiganensis subsp. nebraskensis = Corynebacterium michiganense pv.nebraskense</td>
</tr>
<tr>
<td>Holcus spot</td>
<td>Pseudomonas syringae pv. syringae</td>
</tr>
<tr>
<td>Purple leaf sheath</td>
<td>Hemiparasitic bacteria</td>
</tr>
<tr>
<td>Seed rot-seedling blight</td>
<td>Bacillus subtilis</td>
</tr>
</tbody>
</table>
Very especially preferred are the following pathogenic bacteria: Corynebacterium sepedonicum (potato bacterial ring rot), Erwinia carotovora (potato bacterial soft rot), Erwinia amylovora (fire blight on pear, apple, quince), Streptomyces scabies (potato scab), Pseudomonas syringae pv. tabaci (tobacco black fire), Pseudomonas syringae pv. phaseolicola (bean grease spot), Pseudomonas syringae pv. tomato (tobacco bacterial speck), Xanthomonas campestris pv. malvacearum (cotton bacterial blight) and Xanthomonas campestris pv. oryzae (bacterial leaf blight on rice and other grasses).

3. Viral pathogens:

"Viral pathogens" includes all plant viruses such as, for example, tobacco or cucumber mosaic virus, ringspot virus, necroses virus, maize dwarf mosaic virus and the like.

Pathogens and the diseases associated with them may be mentioned in table 4 by way of example, but not by limitation.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>American wheat striate (wheat striate mosaic)</td>
<td>American wheat striate mosaic virus (AWSMV)</td>
</tr>
<tr>
<td>Barley stripe mosaic</td>
<td>Barley stripe mosaic virus (BSMV)</td>
</tr>
<tr>
<td>Barley yellow dwarf</td>
<td>Barley yellow dwarf virus (BYDV)</td>
</tr>
<tr>
<td>Brome mosaic</td>
<td>Brome mosaic virus (BMV)</td>
</tr>
<tr>
<td>Cereal chlorotic mottle</td>
<td>Cereal chlorotic mottle virus (CCMV)</td>
</tr>
<tr>
<td>Corn chlorotic vein banding (Brazilian maize mosaic)</td>
<td>Corn chlorotic vein banding virus (CCVBV)</td>
</tr>
<tr>
<td>Corn lethal necrosis</td>
<td>Virus complex of Maize chlorotic mottle virus (MCMV) and Maize dwarf mosaic virus (MDMV) A or B or Wheat streak mosaic virus (WSMV)</td>
</tr>
<tr>
<td>Cucumber mosaic</td>
<td>Cucumber mosaic virus (CMV)</td>
</tr>
<tr>
<td>Cynodon chlorotic streak</td>
<td>Cynodon chlorotic streak virus (CCSV)</td>
</tr>
<tr>
<td>Johnsongrass mosaic</td>
<td>Johnsongrass mosaic virus (JGMV)</td>
</tr>
<tr>
<td>Disease</td>
<td>Pathogen</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Maize bushy stunt</td>
<td>Mycoplasma-like organism (MLO) associated</td>
</tr>
<tr>
<td>Maize chlorotic dwarf</td>
<td>Maize chlorotic dwarf virus (MCDV)</td>
</tr>
<tr>
<td>Maize chlorotic mottle</td>
<td>Maize chlorotic mottle virus (MCMV)</td>
</tr>
<tr>
<td>Maize dwarf mosaic</td>
<td>Maize dwarf mosaic virus (MDMV) strains A, D, E and F</td>
</tr>
<tr>
<td>Maize leaf fleck</td>
<td>Maize leaf fleck virus (MLFV)</td>
</tr>
<tr>
<td>Maize line</td>
<td>Maize line virus (MLV)</td>
</tr>
<tr>
<td>Maize mosaic (corn leaf stripe, enanismo rayado)</td>
<td>Maize mosaic virus (MMV)</td>
</tr>
<tr>
<td>Maize mottle and chlorotic stunt</td>
<td>Maize mottle and chlorotic stunt virus</td>
</tr>
<tr>
<td>Maize pellucid ringspot</td>
<td>Maize pellucid ringspot virus (MPRV)</td>
</tr>
<tr>
<td>Maize raya gruesa</td>
<td>Maize raya gruesa virus (MRGV)</td>
</tr>
<tr>
<td>maize rayado fino (fine striping disease)</td>
<td>Maize rayado fino virus (MRFV)</td>
</tr>
<tr>
<td>Maize red leaf and red stripe</td>
<td>Mollicute</td>
</tr>
<tr>
<td>Maize red stripe</td>
<td>Maize red stripe virus (MRSV)</td>
</tr>
<tr>
<td>Maize ring mottle</td>
<td>Maize ring mottle virus (MRMV)</td>
</tr>
<tr>
<td>Maize rio IV</td>
<td>Maize rio cuarto virus (MRCV)</td>
</tr>
<tr>
<td>Maize rough dwarf (nanismo ruvido)</td>
<td>Maize rough dwarf virus (MRDV) (Cereal tillering disease virus)</td>
</tr>
<tr>
<td>Maize sterile stunt</td>
<td>Maize sterile stunt virus (strains of barley yellow striate virus)</td>
</tr>
<tr>
<td>Maize streak</td>
<td>Maize streak virus (MSV)</td>
</tr>
<tr>
<td>Maize stripe (maize chlorotic stripe, maize hoja blanca)</td>
<td>Maize stripe virus</td>
</tr>
<tr>
<td>Maize stunting</td>
<td>Maize stunting virus</td>
</tr>
<tr>
<td>Maize tassel abortion</td>
<td>Maize tassel abortion virus (MTAV)</td>
</tr>
<tr>
<td>Maize vein enation</td>
<td>Maize vein enation virus (MVEV)</td>
</tr>
<tr>
<td>Maize wallaby ear</td>
<td>Maize wallaby ear virus (MWEV)</td>
</tr>
<tr>
<td>Maize white leaf</td>
<td>Maize white leaf virus</td>
</tr>
<tr>
<td>Maize white line mosaic</td>
<td>Maize white line mosaic virus (MWLMV)</td>
</tr>
<tr>
<td>Millet red leaf</td>
<td>Millet red leaf virus (MRLV)</td>
</tr>
<tr>
<td>Northern cereal mosaic</td>
<td>Northern cereal mosaic virus (NCMV)</td>
</tr>
<tr>
<td>Oat pseudorosette (zakuklivanie)</td>
<td>Oat pseudorosette virus</td>
</tr>
<tr>
<td>Oat sterile dwarf</td>
<td>Oat sterile dwarf virus (OSDV)</td>
</tr>
<tr>
<td>Rice black-streaked dwarf</td>
<td>Rice black-streaked dwarf virus (RBSDV)</td>
</tr>
<tr>
<td>Rice stripe</td>
<td>Rice stripe virus (RSV)</td>
</tr>
<tr>
<td>Disease</td>
<td>Pathogen</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sorghum mosaic</td>
<td>Sorghum mosaic virus (SrMV) (also: sugarcane mosaic virus (SCMV) strains H, I and M)</td>
</tr>
<tr>
<td>Sugarcane Fiji disease</td>
<td>Sugarcane Fiji disease virus (FDV)</td>
</tr>
<tr>
<td>Sugarcane mosaic</td>
<td>Sugarcane mosaic virus (SCMV) strains A, B, D, E, SC, BC, Sabi and MB (formerly MDMV-B)</td>
</tr>
<tr>
<td>Wheat spot mosaic</td>
<td>Wheat spot mosaic virus (WSMV)</td>
</tr>
</tbody>
</table>

4. Animal pests

4.1 Insect pathogens:

Insects such as, for example, beetles, caterpillars, lice or mites may be mentioned by way of example, but not by limitation. Preferred are insects of the genera Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthoptera, Thyssanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, and the like. Especially preferred are Coleoptera and Lepidoptera insects such as, for example, the European corn borer (ECB), Diabrotica barberi (“northern corn rootworm”), Diabrotica undecimpunctata (“southern corn rootworm”), Diabrotica virgifera (“Western corn rootworm”), Agrotis ipsilon (“black cutworm”), Crymodes devastator (“glassy cutworm”), Feltia ducens (“dingy cutworm”), Agrotis gladiaria (“claybacked cutworm”), Melanotus spp., Aeolus mellillus (“wireworm”), Aeolus mancus (“wheat wireworm”), Horistonotus uhleri (“sand wireworm”), Sphenophorus maidis (“maize billbug”), Sphenophorus zeae (“timothy billbug”), Sphenophorus parvulus (“bluegrass billbug”), Sphenophorus callus (“southern corn billbug”), Phyllophaga spp. (“white grubs”), Anuraphis maidiradicus (“corn root aphid”), Delia platura (“seedcorn maggot”), Colaspis brunnea (“grape colaspis”), Stenolophus lecontei (“seedcorn beetle”) and Clivinia impressifrons (“lender seedcorn beetle”).

Others which may be mentioned are: the cereal leaf beetle (Oulema melanopus), the frit fly (Oscinella frit), wireworms (Agrotis lineatus) and aphids (such as, for example, the oat grain aphid Rhopalosiphum padi, the blackberry aphid Sitobion avenae).

4.2 Nematodes:
17
Pathogens and the diseases associated with them may be mentioned by way of example, but not by way of limitation, in table 6.

Table 6: Parasitic nematodes

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pathogenic Nematode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awl</td>
<td>Dolichodorus spp., D. heterocephalus</td>
</tr>
<tr>
<td>Bulb and stem nematode disease; Europe</td>
<td>Ditylenchus dipsaci</td>
</tr>
<tr>
<td>Burrowing</td>
<td>Radopholus similis</td>
</tr>
<tr>
<td>Cyst nematode disease</td>
<td>Heterodera avenae, H. zeae, Punctodera chalcoensis</td>
</tr>
<tr>
<td>Dagger</td>
<td>Xiphinema spp., X. americanum, X. mediterraneum</td>
</tr>
<tr>
<td>False root-knot</td>
<td>Nacobbus dorsalis</td>
</tr>
<tr>
<td>Lance, Columbia</td>
<td>Hoplolaimus columbus</td>
</tr>
<tr>
<td>Lance</td>
<td>Hoplolaimus spp., H. galeatus</td>
</tr>
<tr>
<td>Lesion</td>
<td>Pratylenchus spp., P. brachyurus, P. crenatus, P. hexincisus, P. neglectus, P. penetrans, P. scribneri, P. thornei, P. zeae</td>
</tr>
<tr>
<td>Needle</td>
<td>Longidorus spp., L. breviannulatus</td>
</tr>
<tr>
<td>Ring</td>
<td>Criconemella spp., C. ornata</td>
</tr>
<tr>
<td>Root-knot disease</td>
<td>Meloidogyne spp., M. chitwoodi, M. incognita, M. javanica</td>
</tr>
<tr>
<td>Spiral</td>
<td>Helicotylenchus spp.</td>
</tr>
<tr>
<td>Sting</td>
<td>Belonolaimus spp., B. longicaudatus</td>
</tr>
<tr>
<td>Stubby-root</td>
<td>Paratrichodorus spp., P. christiei, P. minor, Quinisolcius acutus, Trichodorus spp.</td>
</tr>
<tr>
<td>Stunt</td>
<td>Tylenchorhynchus dubius</td>
</tr>
</tbody>
</table>

Very especially preferred are Globodera rostochiensis and G. pallida (cyst eelworm on potato, tomato and other Solanaceae), Heterodera schachtii (beet eelworm on sugar and fodder beet, oilseed rape, cabbage and the like), Heterodera avenae (cereal cyst nematode on oat and other cereal species), Ditylenchus dipsaci (stem or bulb eelworm, stem eelworm of rye, oats, maize, clover, tobacco, beet), Anguina tritici (ear-cockle nematode, cockle disease of wheat (spelt, rye), Meloidogyne hapla (root-knot nematode of carrot, cucumber, lettuce, tomato, potato, sugar beet, alfalfa).
Examples of fungal or viral pathogens which are preferred for the individual varieties are the following:

1. Barley:

- fungal, bacterial and viral pathogens: Puccinia graminis f.sp. hordei (barley stem rust), Blumeria (Erysiphe) graminis f.sp. hordei (Barley Powdery Mildew), barley yellow dwarf virus (BYDV),

Pathogenic insects / nematodes: Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Schizaphis graminum (greenbug); Blissus leucopterus leucopterus (chinch bug); Acrosternum hilare (green stink bug); Euschistus servus (brown stink bug); Deliaplatura (seedcorn maggot); Mayetiola destructor (Hessian fly); Petrobia latens (brown wheat mite).

2. Soybean:

- Fungal, bacterial or viral pathogens: Phytophthora megasperma f.sp. glycinea, Macrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomopsis sojae), Diaporthe phaseolorum var. caulivora, Sclerotium rolfsii, Cercospora kikuchii, Cercospora sojina, Peronospora manchurica, Colletotrichum dematium (Colletotrichum truncatum), Corynespora cassiicola, Septoria glycines, Phyllosticta soicola, Alternaria alternata, Pseudomonas syringae p.v. glycinea, Xanthomonas campestris p.v. phaseoli, Microsphaera diffusa, Fusarium semitectum, Phialophora gregata, Soybean mosaic virus, Glomerella glycines, Tobacco Ring spot virus, Tobacco Streak virus, Phakopsorapachyrhizi, Pythium aphanidermatum, Pythium ultimum, Pythium debaryanum, Tomato spotted wilt virus, Heterodera glycines, Fusarium solani.

Pathogenic insects / nematodes: Pseudoplusia includens (soybean looper); Anticarsia gemmatalis (velvetbean caterpillar); Plathypena scabra (green cloverworm); Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Spodoptera exigua (beet armyworm); Heliothis virescens (cotton bollworm); Helicoverpa zea (cotton bollworm); Epilachna varivestis (Mexican bean beetle); Myzus persicae (green peach aphid); Empoasca fabae (potato leaf hopper); Acrosternum hilare (green stink bug); Melanoplus femurbrum (redlegged grasshopper); Melanoplus differentialis (differential grasshopper); Hylemya platura (seedcorn maggot); Sericothrips variabilis (soybean thrips); Thrips tabaci (onion thrips); Te-
19

Tranynchus turkestani (strawberry spider mite); Tetranychus urticae (two-spotted spider mite).

3. Canola:

Fungal, bacterial or viral pathogens: Albigo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum, Mycosphaerella brassicicola, Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata.

4. Alfalfa:

Fungal, bacterial or viral pathogens: Clavibacter michiganense subsp. insidiosum, Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megasperma, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Leptotricha medicaginis, Fusarium, Xanthomonas campestris p.v. alfalfae, Aphanomyces euteiches, Stemphylium herbarum, Stemphylium alfalfae.

5. Wheat:

Pathogenic insects / nematodes: Pseudoletia unipunctata (armyworm); Spodoptera frugiperda (fall armyworm); Elasmopalpus lignosellus (lesser cornstalk borer); Agrotis orthogonia (western cutworm); Elasmopalpus Zigosellus (lesser cornstalk borer); Oulema melanopus (cereal leaf beetle); Hypera punctata (clover leaf weevil); Diabrotica undecimpunctata howardi (southern corn rootworm); Russian wheat aphid; Schizaphis graminum (greenbug); Macrosiphum avenae (English grain aphid); Melanoplus femurrubrum (redlegged grasshopper); Melanoplus differentialis (differential grasshopper); Melanoplus sanguinipes (migratory grasshopper); Mayetiola destructor (Hessian fly); Sitodiplosis mosellana (wheat midge); Meromyza americana (wheat stem maggot); Hylemya coarctata (wheat bulb fly); Frankliniella fusca (tobacco thrips); Cephus cinctus (wheat stem sawfly); Aceria tulipae (wheat curl mite).

Sunflower:

Pathogenic insects / nematodes: Suleima helianthana (sunflower bud moth); Homoeosoma electellum (sunflower moth); zygo-gramma exclamationis (sunflower beetle); Bothyrus gibbosus (carrot beetle); Neolasioptera murtfeldtiana (sunflower seed midge).

Maize:

Fungal, bacterial or viral pathogens: Fusarium moniliforme var. subglutinans, Erwinia stewartii, Fusarium moniliforme, Gibberella zeae (Fusarium graminearum), Stenocarpella maydi (Diplodia maydis), Pythium irregularare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidermatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus), Helminthosporium carbonum I, II & III (Cochliobolus carbonum), Exserohilum turcicum I, II & III, Helminthosporium pedicellatum, Physoherma maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macro-

Pathogenic insects / nematodes: Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Helicoverpa zea (corn earworm); Spodoptera frugiperda (fall armyworm); Diatraea grandiosella (southwestern corn borer); Elasmopalpus lignosellus (lesser cornstalk borer); Diatraea saccharalis (surgarcane borer); Diabrotica virgifera (western corn rootworm); Diabrotica longicornis barberi (northern corn rootworm); Diabrotica undecimpunctata howardi (southern corn rootworm); Melanotus spp. (wireworms); Cyclocephala borealis (northern masked chafer; white grub); Cyclocephala immaculata (southern masked chafer; white grub); Popillia japonica (Japanese beetle); Chaetocnema plicaria (corn flea beetle); Sphenophorus maidis (maize billbug); Rhopalosiphum maidis (corn leaf aphid); Anuraphis maidaridicis (corn root aphid);
Blissus leucopterus leucopterus (chinsh bug); Melanoplus femurrum (redlegged grasshopper); Melanoplus sanguinipes (migratory grasshopper); Hylemya platura (seedcorn maggot); Agromyza parvicornis (corn blot leafminer); Anaphothrips obscurus (grass thrips); Solenopsis milesta (thief ant); Tetranychus urticae (twospotted spider mite).

8. Sorghum:

Fungal, bacterial or viral pathogens: Exserohilum turcicum, Colletotrichum graminicola (Glomerella graminicola), Cercospora sorghi, Gloecercospora sorghi, Ascochyta sorghina, Pseudomonas syringae p.v. syringae, Xanthomonas campestris p.v. holcicola, Pseudomonas andropogonis, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium moniliforme, Alternaria alternata, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Pseudomonas avenae (Pseudomonas alboprecipitans), Ramulispora

Pathogenic insects / nematodes: Chilo partellus (sorghum borer); Spodoptera frugiperda (fall armyworm); Helicoverpa zea (corn earworm); Elasmopalpus lignosellus (lesser cornstalk borer); Feltia subterranea (granulate cutworm); Phyllaphaga crinita (white grub); Eleodes, Conoderus and Aeolus spp. (wireworm); Oulema melanopus (cereal leaf beetle); Chaetocnema punicaria (corn flea beetle); Sphenophorus maidis (maize billbug); Rhopalosiphum maidis (corn leaf aphid); Siphaflava (yellow sugarcane aphid); Blissus leucopterus leucopterus (chinch bug); Contarinia sorghicola (sorghum midge); Tetranychus cinnabarinus (carmine spider mite); Tetranychus urticae (two-spotted spider mite).

Pathogenic insects / nematodes: Heliothis virescens (cotton budworm); Helicoverpa zea (cotton bollworm); Spodoptera exigua (beet armyworm); Pectinophora gossypiella (pink bollworm); Anthonomus grandis grandis (boll weevil); Aphis gossypii (cotton aphid); Pseudatomoscelis seriatus (cotton fleahopper); Trialeurodes abutilonea (bandedwinged whitefly); Lygus lineolaris (tarnished plant bug); Melanoplus femurrubrum (redlegged grasshopper); Melanoplus differentialis (differential grasshopper); Thrips tabaci (onion thrips); Frankliniella fusca (tobacco thrips); Tetranychus cinnabarinus (carmine spider mite); Tetranychus urticae (twospotted spider mite).

Pathogenic insects / nematodes: Diatraea saccharalis (sugarcane borer); Spodoptera frugiperda (fall armyworm); Helicoverpa zea (corn earworm); Colaspis brunnea (grape colaspis); Lissorhoptrus oryzophilus (rice water weevil); Sitophilus oryzae (rice weevil); Nephotettix nigropictus (rice leafhopper); Blissus leucopterus leucopterus (chinch bug); Acrosternum hilare (green stink bug).
11. Oilseed rape:

Pathogenic insects / nematodes: Brevicoryne brassicae (cabbage aphid); Phylotreta cruciferae (Flea beetle); Mamestra conjugrata (Bertha armyworm); Plutella xylostella (Diamond-back moth); Delia ssp. (Root maggots).

For the purposes of the invention, "NADPH oxidase" means all those enzymes whose essential characteristic is that they are capable, by means of a single electron transfer, of converting molecular oxygen (O₂) into superoxide (O₂⁻). Preferred are those enzymes which are described by the EC class 1.1.1.4. In this context, the NADPH oxidases can consist of one or more polypeptides which may be identical or different.

Preferably, the NADPH oxidase is a flavocytochrome protein and comprises, as prosthetic groups, a cytochrome b and/or an FAD unit. The NADPH oxidase may consist of an αβββ heterodimer, the β subunit being the functional subunit of the flavocytochrome, which may comprise, as glycoprotein, the electron transport components (a hydrophilic, cytosolic, C-terminal domain, comprising NADPH and FAD, and 4 to 6 N-terminal, putative transmembrane α-helices, comprising two histidine-complexed prosthetic heme groups). The α-subunit may comprise a C-terminal, prolin-rich sequence which is capable of binding potential cytosolic, activating factors of the NADPH oxidase. Activation may take place by binding the cytosolic phox proteins (for example p47-phox, p67-phox, p40-phox) and p21rac, a GTP-binding protein.

The skilled worker is familiar with a large number of NADPH oxidases from plant organisms (Torres MA et al. (1998) Plant J 14: 365-370, inter alia). Sequences which may be mentioned by way of example, but not by limitation, are those with the following GenBank Acc. Nos.: AJ251171 (Hordeum vulgare), AP003560 (Oryza sativa var. japonica), AJ320505 (Nicotiana tabacum), AB050660 (Solanum tuberosum), AF088276 (Lycopersicon esculentum), AB008111 (Arabidopsis thaliana; Atrboh F), AF055357 (Arabidopsis thaliana; RbohD), AJ309006 (Nicotiana tabacum; rboh), AP003271 (Oryza sativa cv. japonica), AP055355 (Arabidopsis thaliana; RbohC), AF055353 (Arabidopsis thaliana; RbohA). Especially preferred are the NADPH oxidases which comprise a sequence as shown in SEQ ID: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22.

The sequences from other plants which are homologous to the NADPH oxidase sequences disclosed within the present invention can be found readily for example by database search or by screening genetic libraries using the NADPH oxidase sequences as search se-
sequence or probe. Examples which may be mentioned are sequences with the following GenBank Acc. Nos.: CAC51517.1, AJ251717, T03973, BAB68079.1, AP003560, T02024, CAC87256.1, AJ320505, BAB70750.1, AB050660, AF088276_1, NP_564821.1, NM_105079, T00265
AC007764_16, NP_192862.1, NM_117194, AF147783_1, AAM28891.1, AF506374, CAC84140.1, AJ309006, T51804, NP_199602.1, NM_124165, BAB89740.1, AP003271, AAC39477.1, AF055355, NP_199919.1, NM_124485, AAC39475.1, AF055353, NP_196356.1, NM_120821, NP_194239.1, NM_118641, BAB08369.1, AB015475, AAC39478.1,
AF055356, AC069143_9, NP_173357.1, NM_101781, NP_172383.1, NM_100780, AAB70398.1, AC000106, AAC39476.1, AF055354, BAB70751.1, AB050661, BAB63664.1, AP003275, AAD24966.1, AF109150.

The polypeptide sequence of the NADPH oxidase especially preferably comprises at least one sequence motif selected from the group of sequence motifs consisting of

i) AL(K/R)GL(K/R)
ii) DK(N/D)XDG(R/K)(I/L/V)(T/N/E
iii) LSASAN
iv) IMEELDP
v) K(F/L)NMA(I/L)(I/V)LXPCRN
vi) (E/Q)WHPPSIT
vii) S(A/S)PXDD(Q/Y)(L/I)S(I/V)H(V/I/L)R

The peptide sequence very especially preferably comprises at least 2 or 3, very especially preferably at least 4 or 5, most preferably all of the sequence motifs selected from the group of the sequence motifs i), ii), iii), iv), v), vi), vii), viii), ix) x) and xi). (Letters in brackets mean alternative amino acids which are possible at this position, for example (V/I) means that valine or isoleucine are possible at this position).

NADPH oxidase may also mean any other unit of an NADPH oxidase enzyme complex which is essential for activity of the NADPH oxi-

dase.

"Protein quantity" means the amount of a NADPH oxidase polypeptide in an organism, a tissue, a cell or a cell compartment. "Reduction" of the protein quantity means the quantitative reduction of the amount of an NADPH oxidase in an organism, a tissue, a cell or a cell compartment - for example by one of the methods described hereinbelow - in comparison with the wild-type of the
same genus and species to which this method has not been applied, under otherwise identical conditions (such as, for example, culture conditions, age of the plants and the like). In this context, the reduction amounts to at least 10%, preferably at least 10% or at least 20%, especially preferably by at least 40% or 60%, very especially preferably by at least 70% or 80%, most preferably by at least 90% or 95%.

"Activity" means the ability of an NADPH oxidase of converting molecular oxygen (O₂) into superoxide (O₂⁻). "Reduction" of the activity means the reduction of the total activity of an NADPH oxidase protein in an organism, a tissue, a cell or a cell compartment - for example by one of the methods described hereinbelow - in comparison with the wild type of the same genus and species, to which this method has not been applied, under otherwise identical conditions (such as, for example, culture conditions, age of the plants and the like). In this context, the reduction amounts to at least 10%, preferably at least 10% or at least 20%, especially preferably to at least 40% or 60%, very especially preferably to at least 70% or 80%, most preferably to at least 90% or 95%.

"Function" preferably means the substrate binding capacity of an NADPH oxidase in an organism, a tissue, a cell or a cell compartment. Suitable substrates are low-molecular-weight compounds such as NADPH or FAD, but also the protein interaction partners of an NADPH oxidase.

"Reduction" of the function means, for example, the quantitative reduction of the binding capacity or binding strength of an NADPH oxidase for at least one substrate in an organism, a tissue, a cell or a cell compartment - for example by one of the methods described hereinbelow - in comparison with the wild-type of the same genus and species to which this method has not been applied, under otherwise identical conditions (such as, for example, culture conditions, age of the plants and the like). "Reduction" is also understood as meaning the change in substrate specificity as expressed, for example, by the kcat/Km value. In this context, the reduction amounts to at least 10%, preferably at least 10% or at least 20%, especially preferably to at least 40% or 60%, very especially preferably to at least 70% or 80%, most preferably to at least 90% or 95%. Binding partners for NADPH oxidase can be identified for example by the yeast-2-hybrid system in the manner with which the skilled worker is familiar.
Methods for determining the protein quantity, the activity of NADPH oxidases or the substrate binding capacity are known to the skilled worker. For example, it is possible to measure the NADPH-dependent O₂- or H₂O₂ production which can be inhibited by DPI (for example via Nitro Blue Tetrazolium [NBT] or cytochrome c reduction). The protein quantity can be determined for example immunologically, using suitable antibodies. Suitable methods are described (Yu L et al. (1999) Blood 94(7):2497-504; Doke N (1983a) Physiol Plant Pathol 23:345-357; Levine A et al. (1994) Cell 79:583-593; Tenhaken R et al. (1995) Proc Nat Acad Sci USA 92: 4158-4163; Sagi M & Fluhr R. (2001) Plant Physiol 126(3):1281-90; Hückelhoven R & Kogel KH (1998) Mol Plant Microbe Interact 11:292-300; and references cited in the above papers).

"Functional equivalents" of an NADPH oxidase protein preferably means those sequences which are derived from an NADPH oxidase comprising a polypeptide sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22 which are homologous with the former and which have the same essential characteristics.

In this context, the efficiency of the pathogen resistance may deviate both upwards and downwards in comparison with a value obtained when reducing one of the NADPH oxidases comprising a polypeptide sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22. Preferred functional equivalents are those where the efficiency of the pathogen resistance - measured for example with the aid of the penetration efficiency of a pathogen (development of haustora) - differs by not more than 50%, preferably 25%, especially preferably 10%, from a comparative value obtained by reducing an NADPH oxidase comprising a polypeptide sequence as described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22. Especially preferred are those sequences whose reduction has the result that the efficiency of the pathogen resistance quantitatively exceeds a comparative value obtained by reducing one of the NADPH oxidases comprising a polypeptide sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22 by more than 50%, preferably 100%, especially preferably 500%, very especially preferably 1000%.

The comparison is preferably carried out under analogous conditions. "Analogous conditions" means that all framework conditions such as, for example, culture or growth conditions, assay conditions (such as buffer, temperature, substrates, pathogen concentration and the like) between the experiments to be compared are kept identical and that the set-ups differ only by the sequence of the NADPH oxidases to be compared, their organism of origin and, if appropriate, the pathogen. When selecting the
pathogen for the comparison, the pathogen to be selected for the
comparison is that which is most similar to the corresponding
other pathogen, taking into consideration the species specifici-
ty.

In particular, "functional equivalents" means natural or artifi-
cial mutations of the NADPH oxidases comprising a polypeptide se-
quence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
or 22 and homologous polypeptides from other plants which contin-
ue to have essentially identical characteristics. Homologous
polypeptides from the above-described preferred plants are pre-
ferred. The sequences from other plants (for example Arabidopsis
thaliana) which are homologous to the NAPDH oxidase sequences
disclosed within the scope of the present invention can be found
readily for example by database search or screening genetic li-
braries, using the NADPH oxidase sequences as search sequence or
probe. Such sequences are detailed above by way of example to-
gether with their GenBank Acc No.

Mutations comprise substitutions, additions, deletions, inver-
sions or insertions of one or more amino acid residues. Thus, the
present invention also comprises for example those polypeptides
which are obtained by modification of a polypeptide comprising a
polypeptide sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12,
14, 16, 18, 20 or 22.

Homology between two nucleic acid sequences is understood as
meaning the identity of the two nucleic acid sequences over in
each case the entire sequence length which is calculated by
comparison with the aid of the program algorithm GAP (Wisconsin
Package Version 10.0, University of Wisconsin, Genetics Computer
Group (GCG), Madison, USA), setting the following parameters:

 Gap weight: 50 Length weight: 3
 Average match: 10 Average mismatch: 0

For example a sequence which has at least 80% homology with
sequence SEQ ID NO: 1 at the nucleic acid level is understood as
meaning a sequence which, upon comparison with the sequence SEQ
ID NO: 1 by the above program algorithm with the above parameter
set, has at least 80% homology.

Homology between two polypeptides is understood as meaning the
identity of the two nucleic acid sequences over in each case the
entire sequence length which is calculated by comparison with the
aid of the program algorithm GAP (Wisconsin Package Version 10.0,
28
University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389 et seq.), setting the following parameters:

5 Gap weight: 8	Length weight: 2
Average match: 2,912	Average mismatch: -2,003

For example a sequence which has at least 80% homology with a sequence SEQ ID NO: 2 at the protein level is understood as meaning a sequence which, upon comparison with the sequence SEQ ID NO: 2 by the above program algorithm with the above parameter set, has at least 80% homology.

15 Functional equivalents derived from an NADPH oxidase comprising a polypeptide sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22 by substitution, insertion or deletion have at least 50%, preferably at least 70%, by preference at least 90%, especially preferably at least 95%, very especially preferably at least 98% homology with a polypeptide comprising a polypeptide sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22 and are distinguished by identical essential characteristics as the former.

25 Functional equivalents derived from an NAPDH oxidase nucleic acid sequence comprising a sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 by substitution, insertion or deletion, have at least 50%, preferably at least 70%, by preference at least 90%, especially preferably at least 95%, very especially preferably at least 98% homology with one of the polypeptides according to the invention as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 and encode polypeptides with the same essential characteristics as a polypeptide comprising a sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22.

35 Also, screening cDNA libraries or genomic libraries of other organisms, preferably of the plant species which are mentioned further below as being suitable hosts for the transformation, using the nucleic acid sequences described under SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 or parts of these as probe, is a method known to the skilled worker for identifying homologs in other species. In this context, the probes derived from the nucleic acid sequences as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 have a length of at least 20 bp, preferably at least 50 bp, especially preferably at least 100 bp, very especially preferably at least 200 bp, most preferably at least 400 bp. A DNA strand which is complementary to the sequences de-
scribed under SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 may also be employed for screening the libraries.

Functional equivalents comprises DNA sequences which hybridize under standard conditions with the NAPDH oxidase nucleic acid sequences described under SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21, the nucleic acid sequence complementary thereto or parts of the above and which, as complete sequences, encode proteins which have the same essential characteristics as a polypeptide comprising a sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22.

For example, the conditions during the wash step can be selected from the range of conditions delimited by low-stringency conditions (approximately 2X SSC at 50°C) and high-stringency conditions (approximately 0.2X SSC at 50°C, preferably at 65°C) (20X SSC: 0.3M sodium citrate, 3M NaCl, pH 7.0). In addition, the temperature during the wash step can be raised from low-stringency conditions at room temperature, approximately 22°C, to higher-stringency conditions at approximately 65°C. Both of the parameters, salt concentration and temperature, can be varied simultaneously, or else one of the two parameters can be kept constant while only the other is varied. Denaturants, for example formamide or SDS, may also be employed during the hybridization. In the presence of 50% formamide, hybridization is preferably effected at 42°C. Some examples of conditions for hybridization and wash step are shown hereinbelow:

(1) Hybridization conditions can be selected, for example, from the following conditions:

a) 4X SSC at 65°C (with - optionally - 100 µg/ml denatured fragmented fish sperm DNA)

b) 6X SSC at 45°C (with - optionally - 100 µg/ml denatured fragmented fish sperm DNA),

c) 6X SSC, 0.5% SDS, 50% formamide at 42°C (with - optionally - 100 µg/ml denatured fragmented fish sperm DNA)
d) 4X SSC, 50% formamide at 42°C (with – optionally – 100 µg/ml denatured fragmented fish sperm DNA)
e) 2X or 4X SSC at 50°C (low-stringency condition),
f) 30 to 40% formamide, 2X or 4X SSC at 42°C (low-stringency condition).

(2) Wash steps can be selected, for example, from the following conditions:

a) 0.015 M NaCl/0.0015 M sodium citrate/0.1% SDS at 50°C.
b) 0.1X SSC at 65°C.
c) 0.1X SSC, 0.5% SDS at 68°C.
d) 0.1X SSC, 0.5% SDS, 50% formamide at 42°C.
e) 0.2X SSC, 0.1% SDS at 42°C.
f) 2X SSC at 65°C (low-stringency condition).

The reduction of the expression of an NADPH oxidase protein, the NADPH oxidase activity or the NADPH oxidase function can be performed in many ways.

"Reduction" or "to reduce" in connection with an NADPH oxidase, an NADPH oxidase activity or NADPH oxidase function is to be interpreted in the broad sense and comprises the partial or essentially complete prevention or blocking (due to a variety of cell-biological mechanisms) of the functionality of an NADPH oxidase in a plant or a part, tissue, organ, cells or seed derived therefrom. A reduction for the purposes of the invention also comprises a quantitative reduction of an NADPH oxidase down to an essentially complete absence of the NADPH oxidase (i.e. lack of detectability of NADPH oxidase activity or NADPH oxidase function, or lack of immunological detectability of the NADPH oxidase protein). In this context, one or more essential units of the NADPH oxidase can be reduced. In this context, the expression of a certain NADPH oxidase or the NADPH oxidase activity or NADPH oxidase function in a cell or an organism is reduced by preferably more than 50%, especially preferably more than 80%, very especially preferably more than 90%.

A variety of strategies for reducing the expression of an NADPH oxidase protein, the NADPH oxidase activity or NADPH oxidase function are comprised in accordance with the invention. Strategies which may be mentioned by way of example, but not by limitation, are:
a) Introducing a double-stranded NADPH oxidase RNA nucleic acid sequence (NAox-dsRNA) or (an) expression cassette(s) ensuring its expression;

b) Introducing an NADPH oxidase antisense nucleic acid sequence or an expression cassette ensuring its expression. Comprised are those methods in which the antisense nucleic acid sequence is directed against an NADPH oxidase gene (that is to say, genomic DNA sequences) or an NADPH oxidase gene transcript (that is to say, RNA sequences). Also comprised are α-anomeric nucleic acid sequences.

c) Introducing an NADPH oxidase antisense nucleic acid sequence in combination with a ribozyme or an expression cassette ensuring its expression

d) Introducing NADPH oxidase sense nucleic acid sequences for inducing a cosuppression or an expression cassette ensuring their expression

e) Introducing DNA- or protein-binding factors against NADPH oxidase genes, RNAs or proteins or an expression cassette ensuring their expression

f) Introducing viral nucleic acid sequences and expression constructs bringing about the degradation of NADPH oxidase RNA, or an expression cassette ensuring their expression

g) Introducing constructs for inducing a homologous recombination at endogenous NADPH oxidase genes, for example for the generation of knock-out mutants.

h) Introducing mutations into endogenous NADPH oxidase genes for generating a loss of function (for example generation of stop codons, reading frame shifts and the like)

Here, each and every one of these methods can bring about a reduction of the NADPH oxidase expression, NADPH oxidase activity or NADPH oxidase function in the sense of the invention. A combined use is also feasible. Further methods are known to the skilled worker and can comprise hindering or preventing the processing of the NADPH oxidase protein, the transport of the NADPH oxidase protein or its mRNA, inhibition of the attachment of ribosomes, inhibition of RNA splicing, induction of an NADPH oxidase RNA degrading enzyme and/or inhibition of the translational elongation or termination.
The individual methods which are preferred shall be described briefly hereinbelow:

a) Introducing a double-stranded NADPH oxidase RNA nucleic acid sequence (NAox-dsRNA)

The method of regulating genes by means of double-stranded RNA (double-stranded RNA interference; dsRNAi) has been described many times in animal and plant organisms (for example Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364). The processes and methods described in the abovementioned references are expressly referred to. Efficient gene suppression can also be shown in the case of transient expression or after transient expression, for example as the result of a biolistic transformation (Schweizer P et al. (2000) Plant J 2000 24:895-903). dsRNAi methods are based on the phenomenon that the simultaneous introduction of complementary strand and counterstrand of a gene transcript brings about a highly-efficient suppression of the expression of the gene in question. The phenotype which results is very similar to a corresponding knock-out mutant (Waterhouse PM et al. (1998) Proc Natl Acad Sci USA 95:13959-64).

The dsRNAi method has proved to be particularly efficient and advantageous when reducing the NADPH oxidase expression. As described in WO 99/32619, inter alia, dsRNAi approaches are markedly superior to traditional antisense approaches.

A further aspect of the invention therefore relates to double-stranded RNA molecules (dsRNA molecules) which, when introduced into a plant (or a cell, tissue, organ or seed derived therefrom), bring about the reduction of an NADPH oxidase.

The double-stranded RNA molecule for reducing the expression of an NADPH oxidase protein comprises

a) a sense RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of an NADPH oxidase nucleic acid sequence, and

b) an antisense RNA strand which is essentially completely complementary to the RNA sense strand of a).
In a furthermore preferred embodiment, the double-stranded RNA molecule for reducing the expression of an NADPH oxidase protein comprises

5 a) a sense RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of the sense RNA transcript of a nucleic acid sequence encoding an NADPH oxidase protein, and

10 b) an antisense RNA strand which is essentially - preferably completely - complementary to the RNA sense strand of a).

With regard to the double-stranded RNA molecules, NADPH oxidase nucleic acid sequence preferably means a sequence comprising a sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21.

"Essentially identical" means that the dsRNA sequence may also have insertions, deletions and individual point mutations in comparison with the NADPH oxidase target sequence or a functional equivalent target sequence while still bringing about an efficient reduction of the expression. Preferably, the homology as defined above between the sense strand of an inhibitory dsRNA and at least part of the sense RNA transcript of a nucleic acid sequence encoding an NADPH oxidase protein or functional equivalent thereof (or between the antisense strand of the complementary strand of a nucleic acid sequence encoding an NADPH oxidase protein or a functional equivalent thereof) amounts to at least 75%, preferably at least 80%, very especially preferably at least 90%

25 most preferably 100%.

The length of the part-segment amounts to at least 10 bases, preferably at least 25 bases, especially preferably at least 50 bases, very especially preferably at least 100 bases, most preferably at least 200 bases or at least 300 bases.

Alternatively, an "essentially identical" dsRNA may also be defined as a nucleic acid sequence which is capable of hybridizing with a part of a storage protein gene transcript (for example in 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA at 50°C or 70°C for 12 to 16 h).

"Essentially complementary" means that the antisense RNA strand may also have insertions, deletions and individual point mutations in comparison with the complement of the sense RNA strand. Preferably, the homology between the antisense RNA strand and the complement of the sense RNA strand amounts to at least 80%, pre-
ferably at least 90%, very especially preferably at least 95%, most preferably 100%.

"Part of the sense RNA transcript" of a nucleic acid sequence encoding an NADPH oxidase protein or a functional equivalent thereof of means fragments of an RNA or mRNA transcribed from a nucleic acid sequence encoding an NADPH oxidase protein or a functional equivalent thereof, preferably an NADPH oxidase gene. Here, the fragments preferably have a sequence length of at least 20 bases, preferably at least 50 bases, especially preferably at least 100 bases, very especially preferably at least 200 bases, most preferably at least 500 bases. Also comprised is the complete transcribed RNA or mRNA.

Also comprised is the use of the dsRNA molecules according to the invention in the methods according to the invention for generating a pathogen resistance in plants.

The dsRNA can consist of one or more strands of polymerized ribonucleotides. Furthermore, modifications both of the sugar-phosphate skeleton and of the nucleosides may be present. For example, the phosphodiester bonds of the natural RNA can be modified in such a way that they comprise at least one nitrogen or sulfur heteroatom. Bases can be modified in such a way that the activity of, for example, adenosine deaminase is limited. These and further modifications are described hereinbelow in the methods for stabilizing antisense RNA.

To achieve the same purpose it is, of course, also possible to introduce, into the cell or the organism, a plurality of individual dsRNA molecules, each of which comprises one of the above-defined ribonucleotide sequence segments.

The dsRNA can be produced enzymatically or, fully or in parts, by chemical synthesis.

The double-stranded dsRNA structure can be formed starting from two complementary, separate RNA strands or - preferably - starting from a single, autocomplementary RNA strand.

In the case of a single, autocomplementary strand, sense and antisense sequence can be linked by a linking sequence (linker) and form for example a hairpin structure. Preferably, the linking sequence may be an intron, which is spliced out after the dsRNA has been synthesized.
The nucleic acid sequence encoding a dsRNA may comprise further elements such as, for example transcription termination signals or polyadenylation signals.

If the two strands of the dsRNA are to be combined in a cell or plant, this may take place in various ways, for example:

a) transformation of the cell or plant with a vector which comprises both expression cassettes,

b) cotransformation of the cell or plant with two vectors, where one comprises the expression cassettes with the sense strand and the other comprises the expression cassettes with the antisense strand.

c) hybridizing two plants, each of which has been transformed with a vector, where one comprises the expression cassettes with the sense strand and the other comprises the expression cassettes with the antisense strand.

The formation of the RNA duplex can be initiated either outside the cell or within the same. As in WO 99/53050, the dsRNA may also comprise a hairpin structure by linking sense and antisense strand by a linker (for example an intron). The autocomplementary dsRNA structures are preferred since they merely require the expression of a construct and comprise the complementary strands always in an equimolar ratio.

The expression cassettes encoding the antisense or sense strand of a dsRNA or the autocomplementary strand of the dsRNA are preferably inserted into a vector and, using the methods described hereinbelow, stably (for example using selection markers) inserted into the genome of a plant in order to ensure durable expression of the dsRNA.

The dsRNA can be introduced using such an amount that at least one copy per cell is made possible. Larger amounts (for example at least 5, 10, 100, 500 or 1000 copies per cell) may, if appropriate, bring about a more efficient reduction.

As already described, 100% sequence identity between dsRNA and an NADPH oxidase gene transcript or the gene transcript of a functionally equivalent gene is not necessarily required in order to bring about an efficient reduction of the NADPH oxidase expression. Accordingly, there is the advantage that the method tolerates sequence deviations, as may be present as the result of genetic mutations, polymorphisms or evolutionary divergences. Using
the dsRNA which has been generated starting from the NADPH oxidase sequence of an organism, it is thus, for example, possible to suppress the NAPDH oxidase expression in another organism. The high degree of sequence homology between the NADPH oxidase sequences from rice, maize and barley allows the conclusion that this protein is highly conserved within plants, so that the expression of a dsRNA derived from one of the NADPH oxidase sequences comprising a sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 probably also has an advantageous effect in other plant species.

Owing to the high degree of homology between the individual NADPH oxidase proteins and their functional equivalents, it is also possible to suppress the expression of further homologous NADPH oxidase proteins and/or their functional equivalents of the same organism or else the expression of NAPDH oxidase proteins in other related species, using a single dsRNA which has been generated starting from a specific NADPH oxidase sequence of an organism. For this purpose, the dsRNA preferably comprises sequence regions of NADPH oxidase gene transcripts which correspond to conserved regions. Said conserved regions can be deduced readily from sequence alignments.

The dsRNA can be synthesized either in vivo or in vitro. To this end, a DNA sequence encoding a dsRNA can be introduced into an expression cassette under the control of at least one genetic control element (such as, for example, promoter, enhancer, silencer, splice donor or acceptor, polyadenylation signal). Suitable advantageous constructions are described hereinbelow. A polyadenylation is not necessary, nor do elements for initiating a translation have to be present.

A dsRNA can be synthesized chemically or enzymatically. To this end, cellular RNA polymerases or bacteriophage RNA polymerases (such as, for example, T3, T7 or SP6 RNA polymerase) can be used. Such methods for the in-vitro expression of RNA are described (WO 97/32016; US 5,593,874; US 5,698,425; US 5,712,135, US 5,789,214, US 5,804,693). A dsRNA which has been synthesized in vitro, either chemically or enzymatically, can be isolated fully or in part from the reaction mixture, for example by extraction, precipitation, electrophoresis, chromatography or combination of these methods, before it is introduced into a cell, tissue or organism. The dsRNA can be introduced directly into the cell or else by applied extracellularly (for example into the interstitial space).
However, the plant is preferably transformed stably using an expression construct which brings about the expression of the dsRNA. Suitable methods are described hereinbelow.

5 b) Introduction of an NADPH oxidase antisense nucleic acid sequence

Methods for suppressing a particular protein by preventing the accumulation of its mRNA by antisense technology have been described many times, also in plants (Sheehy et al. (1988) Proc Natl Acad Sci USA 85: 8805-8809; US 4,801,340; Mol JN et al. (1990) FEBS Lett 268(2):427-430). The antisense nucleic acid molecule hybridized with, or binds to, the cellular mRNA and/or genomic DNA encoding the NADPH oxidase target protein to be suppressed, which suppresses the transcription and/or translation of the target protein. The hybridization can be brought about in the traditional manner via the formation of a stable duplex or - in the case of genomic DNA - by binding the antisense nucleic acid molecule with the duplex of the genomic DNA by specific interaction in the large groove of the DNA helix.

An antisense nucleic acid sequence suitable for reducing an NADPH oxidase protein can be derived using the nucleic acid sequence which encodes this protein, for example the nucleic acid sequence comprising a sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21, following the Watson-Crick base pair rules. The antisense nucleic acid sequence can be complementary to all of the transcribed mRNA of said protein, may be limited to the coding region or may consist of one oligonucleotide only, which is complementary to part of the coding or noncoding sequence of the mRNA. Thus, the oligonucleotide may, for example, be complementary to the region which comprises the translation start for said protein. Antisense nucleic acid sequences can have a length of, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides, but may also be longer and comprise at least 100, 200, 500, 1000, 2000 or 5000 nucleotides. Antisense nucleic acid sequences can be expressed recombinantly or synthetized chemically or enzymatically using methods known to the skilled worker. In the case of chemical synthesis, natural or modified nucleotides may be used. Modified nucleotides can impart an increased biochemical stability to the antisense nucleic acid sequence and may lead to an increased physical stability of the duplex formed of antisense nucleic acid sequence and sense target sequence. Nucleotides which can be used are, for example, phosphorothioate derivatives and acridine-substituted nucleotides such as 5-fluourouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthin, xanthin, 4-acetylcytosine, 5-(carboxyhydroxymethyl)uracil,
5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, β-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, β-D-mannosylqueosine, 5′-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methyl ester, uracil-5-oxyacetic acid, 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl)uracil and 2,6-diaminopurine.

In a further preferred embodiment, the expression of an NADPH oxidase protein can be inhibited by nucleotide sequences which are complementary to the regulatory region of an NADPH oxidase gene (for example an NADPH oxidase promoter and/or enhancer) and form triple-helical structures with the DNA double helix therein, so that the transcription of the NADPH oxidase gene is reduced.

In a further embodiment, the antisense nucleic acid molecule can be an α-anomeric nucleic acid. Such α-anomeric nucleic acid molecules form specific double-stranded hybrids with complementary RNA in which — in contrast to the conventional β-nucleic acids — the two strands are parallel to one another (Gautier C et al. (1987) Nucleic Acids Res 15:6625-6641). The antisense nucleic acid molecule can furthermore also comprise 2′-O-methylribonucleotides (Inoue et al. (1987) Nucleic Acids Res 15:6131-6148) or chimeric RNA-DNA analogs (Inoue et al. (1987) FEBS Lett 215:327-330).

c) Introduction of an NADPH oxidase antisense nucleic acid sequence in combination with a ribozyme

The above-described antisense strategy can advantageously be coupled with a ribozyme method. Catalytic RNA molecules or ribozymes can be adapted to any target RNA and cleave the phosphodiester backbone at specific positions, whereby the target DNA is functionally deactivated (Tanner NK (1999) FEBS Microbiol Rev 23(3):257-275). The ribozyme itself is not modified thereby, but is capable of cleaving further target RNA molecules in an analogous manner, whereby it gains the properties of an enzyme. The incorporation of ribozyme sequences into antisense RNAs imparts to these antisense-RNAs this enzyme-like, RNA-cleaving property
and thus increases their efficiency in the inactivation of the target RNA. The preparation and use of suitable ribozyme antisense RNA molecules is described for example by Haseloff et al. (1988) Nature 334:585-591.

d) Introducing an NADPH oxidase sense nucleic acid sequence for inducing a cosuppression

The expression of an NADPH oxidase nucleic acid sequence in sense orientation can lead to a cosuppression of the corresponding homologous, endogenous gene. The expression of sense RNA with homology to an endogenous gene can reduce or switch off the expression of same, similarly to what has been described for antisense approaches (Jorgensen et al. (1996) Plant Mol Biol 31(5):957-973; Goring et al. (1991) Proc Natl Acad Sci USA 88:1770-1774; Smith et al. (1990) Mol Gen Genet 224:447-481; Napoli et al. (1990) Plant Cell 2:279-289; Van der Krol et al. (1990) Plant Cell 2:291-99). Here, the introduced construct can fully or only partly represent the homologous gene to be reduced. The possibility of translation is not required. The application of this technology to plants is described for example by Napoli et al. (1990) The Plant Cell 2: 279-289 and in US 5,034,323.
Preferably, cosuppression is carried out using a sequence which is essentially identical to at least a part of the nucleic acid sequence encoding an NADPH oxidase protein or a functional equivalent thereof, for example the nucleic acid sequence comprising a sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21.

e) Introducing DNA- or protein-binding factors against NADPH oxidase genes, RNAs or proteins

These factors may be selected using any desired portion of an NADPH oxidase gene. Preferably, this segment is located within the promoter region. For gene suppression, however, it may also be located in the region of the coding exons or introns. The corresponding segments are obtainable for the skilled worker by means of database search from the genetic library or - starting from an NADPH oxidase cDNA whose gene is not present in the genetic library, by screening a genomic library for corresponding genomic clones. The methods required for this purpose are known to the skilled worker.

Furthermore, it is possible to introduce, into a cell, factors which inhibit the NADPH oxidase target protein itself. The protein-binding factors may be for example aptamers (Famulok M and
Mayer G (1999) Curr Top Microbiol Immunol 243:123-36) or antibodies or antibody fragments or single-chain antibodies. The way in which these factors are obtained is described and known to the skilled worker. For example, a cytoplasmic scFv antibody has been employed for modulating the activity of the phytochrome A protein in genetically modified tobacco plants (Owen M et al. (1992) Biotechnology (N Y) 10(7):790-794; Franken E et al. (1997) Curr Opin Biotechnol 8(4):411-416; Whitelam (1996) Trend Plant Sci 1:286-272).

f) Introducing viral nucleic acid sequences and expression constructs which bring about the degradation of NADPH oxidase RNA

g) Introducing constructs for the induction of a homologous recombination on endogenous NADPH oxidase genes, for example for the generation of knock-out mutants.

5 To generate a homologously recombinant organism with reduced NADPH oxidase activity, for example a nucleic acid construct is used which comprises at least a part of the endogenous NADPH oxidase gene which is modified by a deletion, addition or substitution of at least one nucleotide in such a way that the functionality is reduced or nullified completely. The modification may also affect the regulatory elements (for example the promoter) of the gene, so that the coding sequence remains unaltered, but expression (transcription and/or translation) does not take place and is reduced.

15 In the case of conventional homologous recombination, the modified region is flanked at its 5' and 3' end by further nucleic acid sequences which must have a sufficient length for making possible the recombination. The length is, as a rule, in the range of from several hundred bases to several kilobases (Thomas KR and Capecchi MR (1987) Cell 51:503; Strepp et al. (1998) Proc Natl Acad Sci USA 95(8):4368-4373). For the homologous recombination, the host organism – for example a plant – is transformed with the recombination construct using the methods described hereinbelow, and clones which have undergone successful recombination are selected using, for example, an antibiotic or herbicide resistance.

Homologous recombination is a relatively rare event in higher eukaryotes, especially in plants. Random integrations into the host genome predominate. A possibility of removing the randomly integrated sequences and thus of enriching cell clones with a correct homologous recombination consists in using a sequence-specific recombination system as described in US 6,110,736, by which unspecifically integrated sequences can be deleted, which facilitates the selection of events which have integrated successfully via homologous recombination. A multiplicity of sequence-specific recombination systems can be used, examples which may be mentioned being the Cre/lox system of the bacteriophage P1, the FLP/FRT system of yeast, the Gin recombinase of the phage Mu, the Pin recombinase from E. coli and the R/RS system of the plasmid pSR1. Preferred are the bacteriophage P1 Cre/lox and the yeast FLP/FRT system. The FLP/FRT and cre/lox recombinase system has already been employed in plant systems (Odell et al. (1990) Mol Gen Genet 223: 369-378)
h) Introducing mutations into endogenous NADPH oxidase genes for generating a loss of function (for example generation of stop codons, reading frame shifts and the like)

The methods of dsRNAi, cosuppression by means of sense RNA and VIGS (virus-induced gene silencing) are also referred to as post-transcriptional gene silencing (PTGS). PTGS methods, including the reduction of the NADPH oxidase function or activity with dominant-negative NADPH oxidase variants are especially advantageous since the requirements to the homology between the endogenous gene to be suppressed and the transgenically expressed sense or dsRNA nucleic acid sequence (or between the endogenous gene and its dominant-negative variant, respectively) are lower than, for example in the case of a traditional antisense approach. Suitable homology criteria are mentioned in the description of the dsRNAi method and applied generally to PTGS methods or dominant-negative approaches. Owing to the high degree of homology between the NADPH oxidase proteins from maize, rice and barley, a high degree of conservation of these protein in plants can be deduced. Thus, using the NADPH oxidase nucleic acid sequences from barley, maize or rice, it is probably also possible efficiently to suppress the expression of homologous NADPH oxidase proteins in other species, without the isolation and structural elucidation of the NADPH oxidase homologs in these species being necessarily required. This substantially reduces the labor involved. Analogously, using dominant-negative variants of an NADPH oxidase protein from rice, maize or barley, it is presumably also possible efficiently to reduce or suppress the function/activity of its homolog in other plant species.

All substances and compounds which directly or indirectly bring about a reduction of the protein quantity, RNA quantity, gene activity or protein activity of an NADPH oxidase protein, shall hereinbelow be grouped together under the term "anti-NADPH oxi-
dase" compounds. The term "anti-NADPH oxidase" compound explicitly includes the nucleic acid sequences, peptides, proteins or other factors employed in the above-described methods.

For the purposes of the invention, "introduction" comprises all those methods which are suitable for introducing an anti-NADPH oxidase compound directly or indirectly into a plant or a cell, compartment, tissue, organ or seed thereof, or generating it therein. Direct and indirect methods are comprised. The introduction can lead to a transient presence of an anti-NADPH-oxidase compound (for example a dsRNA) or else to a stable presence.

In accordance with the different nature of the above-described approaches, the anti-NADPH-oxidase compound can exert its function directly (for example by insertion into an endogenous NADPH oxidase gene). However, the function can also be exerted indirectly after transcription into an RNA (for example in the case of antisense approaches) or after transcription and translation into a protein (for example binding factors). Both directly and indirectly acting anti-NADPH-oxidase compounds are comprised in accordance with the invention.

"Introducing" comprises for example methods such as transfection, transduction or transformation.

Thus, for example, anti-NADPH-oxidase compounds also comprise recombinant expression constructs which bring about an expression (i.e. transcription and, if appropriate, translation) of, for example, an NADPH oxidase dsRNA or an NADPH oxidase antisense RNA — preferably in a plant or a part, tissue, organ or seed thereof.

In said expression constructs, a nucleic acid molecule whose expression (transcription and, if appropriate, translation) generates an anti-NADPH-oxidase compound, is preferably in functional linkage with at least one genetic control element (for example a promoter) which ensures expression in an organism, preferably in plants. If the expression construct is to be introduced directly into the plant and the anti-NADPH-oxidase compound (for example the NADPH oxidase dsRNA) is to be generated therein in plantae, then plant-specific genetic control elements (for example promoters) are preferred. However, the anti-NADPH-oxidase compound can also be generated in other organisms or in vitro and then be introduced into the plant (as described in Example 6 and 7). Here, preferred control elements are all those prokaryotic or eu-

karyotic genetic control elements (for example promoters) which
permit the expression in the organism selected in each case for
the production.

Functional linkage is to be understood as meaning, for example,
the sequential arrangement of a promoter with the nucleic acid
sequence to be expressed (for example an anti-NAox compound) and, if
appropriate, further regulatory elements such as, for example, a
terminator in such a way that each of the regulatory elements
can fulfill its function when the nucleic acid sequence is
expressed recombinantly depending on the arrangement of the
nucleic acids into sense on antisense RNA. To this end, direct
linkage in the chemical sense is not necessarily required.
Genetic control sequences such as, for example, enhancer
sequences, can also exert their function on the target sequence
from positions which are further away, or indeed from other DNA
molecules. Preferred arrangements are those in which the nucleic
acid sequence to be expressed recombinantly is positioned behind
the sequence acting as promoter, so that the two sequences are
linked covalently to each other.

Here, the distance between the promoter sequence and the nucleic
acid sequence to be expressed recombinantly is less than 200 base
pairs, especially preferably less than 100 base pairs, very
especially preferably less than 50 base pairs.

Functional linkage, and an expression cassette, can be generated
by means of customary recombination and cloning techniques as are
described, for example, in Maniatis T, Fritsch EF and Sambrook J
Laboratory, Cold Spring Harbor (NY), in Silhavy TJ, Berman ML and
Harbor Laboratory, Cold Spring Harbor (NY), in Ausubel FM et al.
Assoc. and Wiley Interscience and in Gelvin et al. (1990) In:
Plant Molecular Biology Manual. However, further sequences which,
for example, act as a linker with specific cleavage sites for
restriction enzymes or as a signal peptide, may also be
positioned between the two sequences. The insertion of sequences
may also lead to the expression of fusion proteins. Preferably,
the expression cassette, consisting of a linkage of promoter and
nucleic acid sequence to be expressed, can exist in a
vector-integrated form and be inserted into a plant genome, for
example by transformation.

However, an expression cassette also denotes those constructions
in which a promoter is placed behind an endogenous NADPH oxidase
gene - for example by a homologous recombination - and the
reduction according to the invention, of an NADPH oxidase protein, is brought about by expressing an antisense NADPH oxidase RNA. Analogously, an anti-NADPH-oxidase compound (for example a nucleic acid compound encoding an NADPH oxidase dsRNA or an NADPH oxidase antisense RNA) can be placed behind an endogenous promoter in such a way that the same effect occurs. Both approaches lead to expression cassettes in the sense of the invention.

The term plant-specific promoters is understood as meaning, in principle, any promoter which is capable of governing the expression of genes, in particular foreign genes, in plants or plant parts, plant cells, plant tissues, or plant cultures. Here, expression may be, for example, constitutive, inducible or development-dependent.

The following are preferred:

a) Constitutive promoters

Preferred vectors are those which make possible a constitutive expression in plants (Benfey et al. (1989) EMBO J 8:2195-2202). "Constitutive" promoter is understood as meaning those promoters which ensure expression in a large number of, preferably all, tissues over a substantial period of plant development, preferably at all stages of plant development. In particular a plant promoter or a promoter derived from a plant virus are preferably used. Particularly preferred is the promoter of the CaMV cauliflower mosaic virus 35S transcript (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228) or the 19S CaMV promoter (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202). Another suitable constitutive promoter is the Rubisco small subunit (SSU) promoter (US 4,962,028), the leguminB promoter (GenBank Acc. No. X03677), the Agrobacterium nopaline synthase promoter, the TR dual promoter, the Agrobacterium OCS (octopine synthase) promoter, the ubiquitin promoter (Holmorf S et al. (1995) Plant Mol Biol 29:637-649), the ubiquitin 1 promoter (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (US 5,683,439), the promoters of the ATPase subunits or the promoter of a proline-rich protein from wheat (WO 91/13991), and further promoters of genes whose constitutive expression in plants is known to the skilled worker. Especially preferred as constitutive promoter is the promoter of the nitrilase-1 (nit1)

b) Tissue-specific promoters

Preferred are furthermore promoters with specificity for the anthers, ovaries, flower, leaves, stems, roots and seeds.

Seed-specific promoters comprise, for example, the phaseolin promoter (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), the 2S albumin promoter (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), the legumin promoter (Shirsat A et al. (1989) Mol Gen Genet 215(2): 326-331), the USP (unknown seed protein) promoter (Bäumlein H et al. (1991) Mol Gen Genet 225(3):459-467, the napin promoter (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), the sucrose binding protein promoter (WO 00/26388), the legumin B4 promoter (LeB4; Bäumlein H et al. (1991) Mol Gen Genet 225: 121-128; Bäumlein H et al. (1992) Plant J 2(2):233-239; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), the Arabidopsis oleosin promoter (WO 98/45461), the Brassica Bce4 promoter (WO 91/13980). Further suitable seed-specific promoters are those of the genes encoding the high-molecular-weight glutenin (HMWG), gliadin, branching enzyme, ADP glucose pyrophosphatase (AGPase) or starch synthase. Furthermore preferred promoters are those which permit seed-specific expression in monocots such as maize, barley, wheat, rye, rice and the like. The following can be employed advantageously: the promoter of the lpt2 or lpt1 gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the cryzyn gene, the prolamin gene, the gliadin gene, the glutelin gene, the zein gene, the kasirin gene, or the secalin gene).

Tuber-, storage-root- or root-specific promoters comprise, for example, the class I patatin promoter (B33), the potato cathepsin D inhibitor promoter.

Leaf-specific promoters comprise the potato cytosolic FBPase promoter (WO 97/05900), the Rubisco (ribulose-1,5-bisphosphate carboxylase) SSU (small subunit) promoter or the ST-LSI promoter from potato (Stockhaus et al. (1989) EMBO J 8:2445-2451). Very especially preferred are epidermis-specific promoters such as, for example, the OXLP gene (oxalate-oxidase-like protein) promoter (Wei et al. (1998) Plant Mol Biol 36:101-112).
Flower-specific promoters comprise, for example, the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene (WO 98/22593).

Anther-specific promoters comprise, for example, the 5126 promoter (US 5,689,049, US 5,689,051), the glob-1 promoter and the γ-zein promoter.

c) Chemically inducible promoters

The expression cassettes can also comprise a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), by which the expression of the exogenous gene in the plant at a particular point in time can be controlled. Examples which may be mentioned are the PRP1 promoter (Ward et al. (1993) Plant Mol Biol 22:361-366), a salicylic-acid-inducible promoter (WO 95/19443), a benzenesulfonamide-inducible promoter (EP 0 388 186), a tetracyclin-inducible promoter (Gatz et al. (1992) Plant J 2:397-404), an abscisic-acid-inducible promoter (EP 0 335 528) or an ethanol- or cyclohexanone-inducible promoter (WO 93/21334).

d) Stress- or pathogen-inducible promoters

Further preferred promoters are those which are induced by biotic or abiotic stress such as, for example, the pathogen-inducible promoter of the PRP1 gene (or gst1 promoter), for example from potato (WO 96/28561; Ward et al. (1993) Plant Mol Biol 22:361-366), the tomato high-temperature-inducible hsp70 or hsp80 promoter (US 5,187,267), the potato low-temperature-inducible alpha-amylase promoter (WO 96/12814) or the light-inducible PPDK promoter. Further pathogen-inducible promoters comprise the flax Fis1 promoter (WO 96/34949), the Vst1 promoter (Schubert et al. (1997) Plant Mol Biol 34:417-426) and the tobacco EAS4 sesquiterpene cyclase promoter (US 6,100,451).

A source of further pathogen-inducible promoters is the PR gene family. A series of elements in these promoters has proved to be advantageous. Thus, the region -364 to -288 in the promoter of PR-2d mediates salicylate specificity (Buchel et al. (1996) Plant Mol Biol 30, 493-504). The sequence 5′-TCATCTTCTT-3′ occurs repeatedly in the promoter of the barley β-1,3-glucanase and in more than 30 further stress-induced genes. In tobacco, this region binds a nuclear protein whose abundance is increased by salicylate. The PR-1 promoters from tobacco and Arabidopsis (EP-A 0 332 104, WO 98/03536) are likewise suitable as pathogen-inducible promoters. Preferred, since especially specifically pathogen-induced, are the acidic PR-5 (aPR5) promoters from barley (Schweizer et al. (1997) Plant Physiol 114:79-88) and wheat (Rebmann et al. (1991) Plant Mol Biol 16:329-331). aPR5 proteins accumulate in approximately 4 to 6 hours after pathogen attack and show only very little background expression (WO 99/66057). An approach for achieving an increased pathogen-induced specificity is the generation of synthetic promoters from combinations of known pathogen-responsive elements (Rushton et al. (2002) Plant Cell 14, 749-762; WO 00/01830; WO 99/66057). Further pathogen-inducible promoters from different species are known to the skilled worker (EP-A 1 165 794; EP-A 1 062 356; EP-A 1 041 148; EP-A 1 032 684).

e) Development-dependent promoters

Further suitable promoters are, for example, fruit-maturation-specific promoters such as, for example, the tomato fruit-maturation-specific promoter (WO 94/21794, EP 409 625). Development-dependent promoters comprise partly the tissue-specific promoters since individual tissues develop by nature in a development-dependent fashion.
Especially preferred are constitutive promoters and also leaf- and/or stem-specific, pathogen-inducible and epidermis-specific promoters, with pathogen-inducible and epidermis-specific promoters being most preferred.

Furthermore, further promoters may be linked functionally to the nucleic acid sequence to be expressed, which promoters make possible an expression in further plant tissues or in other organisms, such as, for example, E. coli bacteria. Suitable plant promoters are, in principle, all of the above-described promoters.

The nucleic acid sequences present in the expression cassettes according to the invention can be linked operably to further genetic control sequences in addition to a promoter. The term “genetic control sequences” is to be understood in the broad sense and refers to all those sequences which have an effect on the generation or the function of the expression cassette according to the invention. For example, genetic control sequences modify the transcription and translation in prokaryotic or eukaryotic organisms. Preferably, the expression cassette according to the invention comprise the promoter with specificity for the embryonal epidermis and/or the flower 5′-upstream of the nucleic acid sequence in question to be expressed recombinantly, and 3′-downstream a terminator sequence as additional genetic control sequence and, if appropriate, further customary regulatory elements, in each case linked functionally to the nucleic acid sequence to be expressed recombinantly.

Genetic control sequences also comprise further promoters, promoter elements or minimal promoters, all of which can modify the expression-governing properties. Thus, for example, the tissue-specific expression may additionally depend on certain stress factors, owing to genetic control sequences. Such elements have been described, for example, for water stress, abscisic acid (Lam E and Chua NH (1991) J Biol Chem 266(26): 17131-17135) and heat stress (Schoffl F et al. (1989) Mol Gen Genetics 217(2-3):246-53).

In principle, all natural promoters together with their regulatory sequences such as those mentioned above may be used for the method according to the invention. In addition, synthetic promoters may also be used advantageously.

Genetic control sequences furthermore also comprise the 5′-untranslated regions, introns or noncoding 3′-region of genes, such as, for example, the actin-1 intron, or the Adh1-S introns.
51
1, 2 and 6 (general reference: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). It has been demonstrated that they may play a significant role in the regulation of gene expression. Thus, it has been demonstrated that 5′-untranslated sequences can enhance the transient expression of heterologous genes. Examples of translation enhancers which may be mentioned are the tobacco mosaic virus 5′ leader sequence (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) and the like. Furthermore, they may promote tissue specificity (Rouster J et al. (1998) Plant J 15:435-440).

The expression cassette may advantageously comprise one or more of what are known as enhancer sequences, linked functionally to the promoter, which make possible an increased recombinant expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, may also be inserted at the 3′ end of the nucleic acid sequences to be expressed recombinantly. One or more copies of the nucleic acid sequences to be expressed recombinantly may be present in the gene construct.

Polyadenylation signals which are suitable as control sequences are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular to gene 3 of the T-DNA (octopine synthase) of the Ti plasmid pTiACHS (Gielen et al. (1984) EMBO J 3:835 et seq.) or functional equivalents thereof. Examples of terminator sequences which are especially suitable are the OCS (octopine synthase) terminator and the NOS (nopaline synthase) terminator.

Control sequences are furthermore to be understood as those which make possible homologous recombination or insertion into the genome of a host organism or which permit removal from the genome. Upon homologous recombination, for example the natural promoter of a particular gene can be exchanged to a promoter with specificity for the embryonal epidermis and/or the flower. Methods such as the cre/lox technology permit a tissue-specific, if appropriate inducible, removal of the expression cassette from the genome of the host organism (Sauer B (1998) Methods. 14(4):381-92). Here, certain flanking sequences (lox sequences), which later make possible a removal by means of the cre recombinase, are added to the target gene.

An expression cassette and vectors derived therefrom may comprise further functional elements. The term functional element is to be understood in the broad sense and refers to all those elements
which have an effect on the generation, amplification or function of the expression cassettes, vectors or transgenic organisms according to the invention. The following may be mentioned by way of example, but not by limitation:

a) Selection markers which confer a resistance to metabolism inhibitors (such as 2-deoxyglucose-6-phosphate (WO 98/45456)), antibiotics or biocides, preferably herbicides, such as, for example, kanamycin, G 418, bleomycin, hygromycin or phosphinothricin etc. Especially preferred selection markers are those which confer resistance to herbicides. Examples which may be mentioned are: DNA sequences which encode phosphinothricin acetyl transferases (PAT) and which inactivate glutamin synthase inhibitors (bar and pat genes), 5-enolpyruvylshikimate-3-phosphate synthase genes (EPSP synthase genes), which confer resistance to Glyphosate® (N-(phosphonomethyl)glycine), the gox gene, which encodes Glyphosate®-degrading enzymes (glyphosate oxidoreductase), the deh gene (encoding a dehalogenase which inactivates Dalapon), sulfonylurea- and imidazolinone-inactivating acetolactate synthases, and bxm genes, which encode bromoxynil-degrading nitrilase enzymes, the aasa gene, which confers resistance to the antibiotic apectinomycin, the streptomycin phosphotransferase (spt) gene, which allows resistance to streptomycin, the neomycin phosphotransferase (nptII) gene, which confers resistance to kanamycin or geneticin, the hygromycin phosphotransferase (hpt) gene, which mediates resistance to hygromycin, the acetolactate synthase gene (ALS), which confers resistance to sulfonylurea herbicides (for example mutated ALS variants with, for example, the S4 and/or Hra mutation).

c) Origins of replication, which ensure amplification of the expression cassettes or vectors according to the invention in, for example, E. coli. Examples which may be mentioned are ORI (origin of DNA replication) the pBR322 ori or the P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

d) Elements which are necessary for Agrobacterium-mediated plant transformation, such as, for example, the right or left border of the T-DNA or the vir region.

The introduction of an expression cassette according to the invention into an organism or cells, tissues, organs, parts or seeds thereof (preferably into plants or plant cells, tissue, organs, parts or seeds) can be effected advantageously using vectors which comprise the expression cassettes. The expression cassette can be introduced into the vector (for example a plasmid vector) via a suitable restriction cleavage site. The plasmid formed is first introduced into E. coli. Correctly transformed E. coli are selected, grown, and the recombinant plasmid is obtained by the methods familiar to the skilled worker. Restriction analysis and sequencing may serve to verify the cloning step.

Examples of vectors may be plasmids, cosmids, phages, viruses or else agrobacteria. In an advantageous embodiment, the expression cassette is introduced by means of plasmid vectors. Preferred vectors are those which make possible a stable integration of the expression cassette into the host genome.

The generation of a transformed organism (or of a transformed cell or tissue) requires that the DNA, RNA or protein in question is introduced into the corresponding host cell.
A multiplicity of methods are available for this procedure, which is termed transformation (or transduction or transfection) (Keown et al. (1990) Methods in Enzymology 185:527-537). For example, the DNA or RNA can be introduced directly by microinjection or by bombardment with DNA-coated microparticles. Also, the cell can be permeabilized chemically, for example using polyethylene glycol, so that the DNA can enter the cell by diffusion. The DNA can also be introduced by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes. Another suitable method of introducing DNA is electroporation, where the cells are permeabilized reversibly by an electrical pulse. Suitable methods have been described (for example by Bilang et al. (1991) Gene 100:247-250; Scheid et al. (1991) Mol Gen Genet 228:104-112; Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al. (1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature 327:70-73; Howell et al. (1980) Science 208:1265; Horsch et al. (1985) Science 227:1229-1231; DeBlock et al. (1989) Plant Physiology 91:694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press Inc. (1989)).

In plants, the above-described methods of transforming and regenerating plants from plant tissues or plant cells are exploited for transient or stable transformation. Suitable methods are especially protoplast transformation by polyethylene-glycol-induced DNA uptake, the biolistic method with the gene gun, what is known as the particle bombardment method, electroporation, incubation of dry embryos in DNA-containing solution, and microinjection.

In addition to these "direct" transformation techniques, transformation can also be effected by bacterial infection by means of Agrobacterium tumefaciens or Agrobacterium rhizogenes. The Agrobacterium-mediated transformation is best suited to dicotyledonous plant cells. The methods are described, for example, by Horsch RB et al. (1985) Science 225: 1229f.

When agrobacteria are used, the expression cassette must be integrated into specific plasmids, either into a shuttle or intermediate vector, or into a binary vector. If a Ti or Ri plasmid is to be used for the transformation, at least the right border, but in most cases the right and left border, of the Ti or Ri plasmid T-DNA is linked to the transgenic expression construct to be introduced in the form of a flanking region.
Binary vectors are preferably used. Binary vectors are capable of replication both in E. coli and in Agrobacterium. As a rule, they comprise a selection marker gene for the selection of transformed plants (see above) and a linker or polylinker flanked by the right and left T-DNA border sequence. They can be transformed directly into Agrobacterium (Holsters et al. (1978) Mol Gen Genet 163:181-187). Apart from the T-DNA region, they can additionally comprise elements such as a selection marker gene for the selection of transformed E. coli or agrobacteria (e.g. the nptIII gene). The Agrobacterium which acts as host organism in this case should already contain a plasmid with the vir region. The latter is required for transferring the T-DNA to the plant cell. An Agrobacterium transformed in this way can be used for transforming plant cells. The use of T-DNA for transforming plant cells has been studied and described intensively (EP 120 516; Hoekema, In: The Binary Plant Vector System, Osssetdrukkerij Kanters B.V., Alblaserdam, Chapter V; An et al. (1985) EMBO J 4:277-287). Various binary vectors are known, some of which are commercially available such as, for example, pBII01.2 or pBIN19 (Clontech Laboratories, Inc. USA).

Direct transformation techniques are suitable for any organism and cell type.

The plasmid used need not meet any particular requirements in the case of the injection or electroporation of DNA or RNA into plant cells. Simple plasmids such as those of the pUC series can be used. If complete plants are to be regenerated from the transformed cells, it is advantageous for an additional selectable marker gene to be located on the plasmid.

Stably transformed cells, i.e. those which contain the introduced DNA integrated into the DNA of the host cell, can be selected from untransformed cells when a selectable marker is part of the DNA introduced. Examples of genes which can act as markers are all those which are capable of conferring resistance to a biocide (for example an antibiotic, herbicide or a metabolism inhibitor such as 2-deoxyglucose-6-phosphate WO 98/45456) (see above). Transformed cells which express such marker genes are capable of surviving in the presence of concentrations of a corresponding antibiotic or herbicide which kill an untransformed wild type. Examples are mentioned above and preferably comprise the bar
gene, which confers resistance to the herbicide phosphinothricin (Rathore RS et al. (1993) Plant Mol Biol 21(5):871-884), the nptII gene, which confers resistance to kanamycin, the hpt gene, which confers resistance to hygromycin, or the EPSP gene, which confers resistance to the herbicide glyphosate. The selection marker permits the selection of transformed cells from untransformed cells (McCormick et al. (1986) Plant Cell Reports 5:81-84). The resulting plants can be bred and hybridized in the customary fashion. Two or more generations should be grown in order to ensure that the genomic integration is stable and hereditary.

As soon as a transformed plant cell has been generated, a complete plant can be obtained using methods known to the skilled worker. For example, callus cultures are used as starting material. The development of shoot and root can be induced from this as yet undifferentiated cell biomass in a known fashion. The shoots obtained can be planted out and bred.

The method according to the invention can advantageously be combined with further methods which bring about a pathogen resistance (for example against insects, fungi, bacteria, nematodes and the like), stress resistance or another improvement of the plant's properties. Examples are mentioned in Dunwell JM, Transgenic approaches to crop improvement, J Exp Bot. 2000;51 Spec No; pages 487-96, inter alia.

With regard to, for example, a nucleic acid sequence, an expression cassette or a vector comprising said nucleic acid sequence or an organism transformed with said nucleic acid sequence, expression cassette or vector, "transgenic" means all those
constructs which have been generated by recombinant methods in which either

a) the NADPH oxidase nucleic acid sequence, or

b) a genetic control sequence which is functionally linked with the NADPH oxidase nucleic acid sequence, for example a promoter, or

c) (a) and (b)

are not located in their natural genetic environment or have been modified by recombinant methods, an example of a modification being a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. Natural genetic environment refers to the natural chromosomal locus in the source organism, or to the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably at least partially retained. The environment flanks the nucleic acid sequence at at least one side and has a sequence length of at least 50 bp, preferably at least 500 bp, especially preferably at least 1000 bp, very especially preferably at least 5000 bp. A naturally occurring expression cassette - for example the naturally occurring combination of the NADPH oxidase promoter and the corresponding NADPH oxidase gene - becomes a transgenic expression cassette when the latter is modified by nonnatural, synthetic ("artificial") methods such as, for example, mutagenization. Suitable methods are described (US 5,565,350; WO 00/15815; see also above).

Another aspect of the invention relates to transgenic organisms transformed with at least one nucleic acid sequence, expression cassette or vector according to the invention, and to cells, cell cultures, tissues, parts - such as, for example in the case of plant organisms, leaves, roots and the like - or propagation material derived from such organisms. Organism is to be understood in the broad sense and means prokaryotic and eukaryotic organisms, preferably bacteria, yeasts, fungi, animal and plant organisms.

The following are preferred:

a) fungi such as Aspergillus, Eremothecium, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria or further fungi described in Indian Chem Eng. Section B. Vol 37, No 1,2 (1995) on page 15,
table 6. Especially preferred is the filamentous Hemiascomycete Ashbya gossypii or Eremothecium ashbyii,

b) yeasts such as Candida, Saccharomyces, Hansenula or Pichia, with Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178) being especially preferred,

c) plants in accordance with the abovementioned definition for "plants",

d) vertebrates and invertebrates. Especially preferred vertebrates are nonhuman mammals such as dogs, cats, sheep, goats, chickens, mice, rats, cattle or horses. Preferred animal cells comprise CHO, COS, HEK293 cells. Preferred invertebrates comprise insect cells such as Drosophila S2 and Spodoptera Sf9 or Sf21 cells,

e) prokaryotic organisms such as Gram-positive or Gram-negative bacteria such as Acetobacter, Gluconobacter, Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanobacterium, Escherichia (especially Escherichia coli), Serratia, Staphylococcus, Aerobacter, Alcaligenes, Penicillium or Klebsiella.

Host or starting organisms which are preferred as transgenic organisms are especially plants in accordance with the abovementioned definition. Included within the scope of the invention are all genera and species of higher and lower plants of the Plant Kingdom. Furthermore included are the mature plants, seeds, shoots and seedlings, and parts, propagation materials and culture derived from them, for example cell cultures. Mature plants means plants at any developmental stage beyond the seedling stage. Seedling means a young immature plant in an early developmental stage. Plants which are especially preferred as host organisms are plants to which the method according to the invention for obtaining a pathogen resistance in accordance with the abovementioned criteria can be applied. Very especially preferred are monocotyledonous plants such as wheat, oats, millet, barley, rye, maize, rice, buckwheat, sorghum, triticale, spelt, linseed, sugar cane, and dicotyledonous crop plants such as oilseed rape, canola, cress, Arabidopsis, cabbages, soybeans, alfalfa, pea, bean plants, peanut, potato, tobacco, tomato, egg plant, capsicum, sunflower, tagetes, lettuce, Calendula, melon, pumpkin/squash or zucchini.
The transgenic organisms can be generated with the above-described methods for the transformation or transfection of organisms.

5 A further aspect of the invention relates to the use of transgenic organisms according to the invention and of the cells, cell cultures, parts - such as for example in the case of transgenic plant organisms roots, leaves and the like - and transgenic propagation material such as seeds or fruits derived from these organisms for the production of foodstuffs, feedstuffs, pharmaceuticals or fine chemicals.

Furthermore preferred is a method for the recombinant production of pharmaceuticals or fine chemicals in host organisms, where a host organism is transformed with one of the above-described expression cassettes and this expression cassette comprises one or more structural genes which encode the desired fine chemical or catalyze the biosynthesis of the desired fine chemical, the transformed host organism is cultured, and the desired fine chemical is isolated from the culture medium. This method can be applied widely for fine chemicals such as enzymes, vitamins, amino acids, sugars, fatty acids, natural and synthetic flavorings, aroma substances and colorants. Especially preferred is the production of tocopherols and tocotrienols and of carotenoids. Culturing the transformed host organisms, and the isolation from the host organisms or from the culture medium, are carried out with methods known to the skilled worker. The production of pharmaceuticals, such as, for example, antibodies or vaccines, is described by Hood EE, Jilka JM (1999) Curr Opin Biotechnol 10(4):382-6; Ma JK, Vine ND (1999) Curr Top Microbiol Immunol 236:275-92.

Sequences

35 1. SEQ ID NO: 1 nucleic acid sequence encoding a barley (Hordeum vulgare) NADPH oxidase.

2. SEQ ID NO: 2 amino acid sequence encoding a barley (Hordeum vulgare) NADPH oxidase.

3. SEQ ID NO: 3 nucleic acid sequence encoding a rice (Oryza sativa var. japonica) NADPH oxidase
4. SEQ ID NO: 4 amino acid sequence encoding a rice (Oryza sativa var. japonica) NADPH oxidase

5. SEQ ID NO: 5 nucleic acid sequence encoding a Nicotiana tabacum NADPH oxidase

6. SEQ ID NO: 6 amino acid sequence encoding a Nicotiana tabacum NADPH oxidase

7. SEQ ID NO: 7 nucleic acid sequence encoding a potato (Solanum tuberosum) NADPH oxidase

8. SEQ ID NO: 8 amino acid sequence encoding a potato (Solanum tuberosum) NADPH oxidase

9. SEQ ID NO: 9 nucleic acid sequence encoding a tomato (Lycopersicon esculentum) NADPH oxidase

10. SEQ ID NO: 10 amino acid sequence encoding a tomato (Lycopersicon esculentum) NADPH oxidase

11. SEQ ID NO: 11 nucleic acid sequence encoding a NADPH oxidase aus Arabidopsis thaliana (RbohF)

12. SEQ ID NO: 12 amino acid sequence encoding a NADPH oxidase aus NADPH oxidase Arabidopsis thaliana (RbohF)

13. SEQ ID NO: 13 nucleic acid sequence encoding an Arabidopsis thaliana (RbohD) NADPH oxidase

14. SEQ ID NO: 14 amino acid sequence encoding an Arabidopsis thaliana (RbohD) NADPH oxidase

15. SEQ ID NO: 15 nucleic acid sequence encoding a Nicotiana tabacum (rboh) NADPH oxidase

16. SEQ ID NO: 16 amino acid sequence encoding a Nicotiana tabacum (rboh) NADPH oxidase
61
17. SEQ ID NO: 17 nucleic acid sequence encoding a
rice (Oryza sativa var. japonica)
NADPH oxidase

5 18. SEQ ID NO: 18 amino acid sequence encoding a
rice (Oryza sativa var. japonica)
NADPH oxidase

19. SEQ ID NO: 19 nucleic acid sequence encoding an
Arabidopsis thaliana (RbohC) NADPH oxidase

20. SEQ ID NO: 20 amino acid sequence encoding an
Arabidopsis thaliana (RbohC) NADPH oxidase

15 21. SEQ ID NO: 21 nucleic acid sequence encoding an
Arabidopsis thaliana (RbohA) NADPH oxidase

22. SEQ ID NO: 22 amino acid sequence encoding an
Arabidopsis thaliana (RbohA) NADPH oxidase

20 23. SEQ ID NO: 23 oligonucleotide primer 5’ NAOX
5’-GARCAAGGCTCTTTTGATTG-3’

24. SEQ ID NO: 24 oligonucleotide primer 3’ Naox
5’-GAAATGCTCCTTATGGAATTG-3’

Figures

Fig. 1: RNA interference with pNAox-dsRNA reduces the penetration
efficiency of powdery mildew of barley BghA6 in barley.

The relative penetration efficiency (RPE) was determined in five
individual experiments with inoculation with Bgh from barley cv
Pallas. The RPE is calculated as the difference between the pene-
tration efficiency of pNAox-dsRNA-transformed cells and the pene-
tration efficiency of control-dsRNA-transformed cells (here: aver-
age penetration efficiency 38.74%). The percent RPE (% RPE) is
calculated from the RPE minus 1, multiplied by 100.

\[\text{RPE} = \frac{\text{PE in pNAox-dsRNA-transformed cells}}{\text{PE in control-dsRNA transformed cells}} \]

\[\% \text{ RPE} = 100 \times (\text{RPE}-1) \]

The columns (1) to (5) represent the % RPE (i.e. the deviation of
the penetration efficiency from the average of the penetration
efficiency of the control) when evaluating at least 100 interac-
tion sites for in each case one independent experiment. The column (m) represents the average % RPE of the experiments. The error bar indicates the standard error.

"Control dsRNA" represents the parallel experiments with a control dsRNA. "pNAox" dsRNA represents the experiments with the dsRNA of the barley NADPH oxidase.

In cells which have been bombarded with pNAox-dsRNA, the % RPE was markedly (significance p=0.0054) reduced in comparison with cells bombarded with a control dsRNA (TR: human thyroid receptor dsRNA).

Examples

General methods:

The chemical synthesis of oligonucleotides can be effected for example in the known manner by the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The cloning steps carried out within the scope of the present invention, such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking DNA fragments, transformation of E. coli cells, bacterial cultures, phage multiplication and sequence analysis of recombinant DNA, are carried out as described by Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6. Recombinant DNA molecules are sequenced with a laser fluorescence DNA sequencer from MWG Licor following the method of Sanger (Sanger et al. (1977) Proc Natl Acad Sci USA 74:5463-5467).

Example 1: Plants, pathogens and inoculation

The variety Pallas was provided by Lisa Munk, Department of Plant Pathology, Royal Veterinary and Agricultural University, Copenhagen, Denmark. Its production is described (Kölster P et al. (1986) Crop Sci 26: 903-907).

Unless otherwise described, the seed, which had been pregerminated for 12 to 36 hours in the dark on damp filter paper, was placed at a rate of 5 kernels along the edge of a square pot (8 × 8 cm) in Fruehstorfer soil, type P, covered with soil and watered regularly with tap water. All plants were grown in controlled-environment cabinets or chambers at 16 to 18°C, 50 to 60% relative atmospheric humidity and a 16-hour-light/8-hour-dark photoperiod at 3000 or 5000 lux (photon flux density 50 or
60 μmol·m⁻² for 5 to 8 days and used in the experiments during the seedling stage. In experiments in which primary leaves were treated, the latter were fully developed.

Prior to carrying out the transient transfection experiments, the plants were grown in controlled environment cabinets or chambers at 24°C daytime temperature, 20°C nighttime temperature, 50 to 60% relative atmospheric humidity and a 16-hour-light/8-hour-dark photoperiod at 30 000 lux.

Powdery mildew of barley Blumeria graminis (DC) Speer f.sp. hordae Em. Marchal race A6 (Wiberg A (1974) Hereditas 77: 89-148) (BghA6) was used for the inoculation of barley plants. The fungus was provided from the Department of Biometry, JLU Gießen. The inoculum was propagated in controlled-environment chambers under identical conditions as described above for the plants by transferring the conidia of infected material to regularly grown 7-day-old barley plants cv. Golden Promise at a density of 100 conidia/mm².

The inoculation with BghA6 was carried out using 7-day-old seedlings by shaking off the conidia from infected plants in an inoculation tower at approximately 100 conidia/mm² (unless otherwise specified).

Example 2: Cloning of the barley pNAox cDNA sequence

The cDNA fragments required for the isolation of the HvpNAox cDNA, its cloning, sequencing and generation of probes were obtained by RT-PCR using the "One Step RT-PCR Kit" (Life Technologies, Karlsruhe, Germany, or Qiagen, Hilden, Germany). To this end, a total RNA from barley seedlings was used as template. The RNA was isolated from Pallas 3, 5 and 7 days after germination. In addition, RNA was isolated from Pallas and from the backcrossed lines with mlo5, Mlg or Mla12 1, 2 and 5 days after inoculation with BghA6 on day 7 after germination. The RT-PCR was carried out using primers which are derived from conserved regions of the gp91phox homologs from rice and Arabidopsis thaliana (GenBank Acc. No.: X93301 and AB008111):

5' NAOX: 5'-GARCAAGGCTCTTTTGTATTG-3' (SEQ ID NO: 23) and

3' NAOX: 5' GAAATGCTCTTTATGGAATTG 3' (SEQ ID NO: 24)
In each case 1000 ng of total DNA, 0.4 mM dNTPs, in each case 0.6 mM OPN-1 and OPN-2 primer, 10 µl of RNase inhibitor and 1 µl of enzyme mix in 1x RT buffer (one step RT-PCR Kit, Qiagen, Hilden) were employed for the reaction.

The following temperature program is used (PTC-100™ model 96V; MJ Research, Inc., Watertown, Massachusetts):

1 cycle of 30 minutes at 50°C
1 cycle of 150 seconds at 94°C
30 cycles of 94°C for 45 seconds, 55°C for 1 minute and 72°C for 2 minutes
1 cycle of 72°C for 7 minutes

The PCR products were separated by means of 2% w/v agarose gel electrophoresis. This gave a 378 bp RT-PCR product (SEQ ID NO: 1) which encodes a part of the open reading frame of the barley NADPH oxidase. The corresponding cDNA was isolated from an agarose gel and cloned in the pGEM-T vector (Promega, Mannheim, Germany) by means of T-overhang ligation. The cDNAs were sequenced starting from the plasmid DNA using the “Thermo Sequenase Fluorescent Labeled Primer Cycle Sequencing Kit” (Amersham, Freiburg, Germany). The construct was named pGEM-T-pNAox.

Example 3: In-vitro synthesis of the pNAox dsRNA

The plasmid, which had been employed for the in-vitro RNA transcription, comprises the T7 and SP6 promoters at the respective ends of the inserted nucleic acid sequence, which makes possible the synthesis of sense RNA and antisense RNA. The plasmid can be linearized with suitable restriction enzymes (ApaI for SP6 polymerase and PstI for T7 polymerase) in order to ensure correct transcription of the inserted nucleic acid sequence and to prevent read-through into vectorial sequences. To this end, in each case 10 µg of pGEM-T-pNAox plasmid DNA were cut with ApaI for SP6 polymerase and with and PstI for T7 polymerase. The cut plasmids are extracted in 200 µl of water with the same volume phenol/chloroform/isooamy1 alcohol, transferred into a fresh Eppendorf vessel (RNAase-free) and centrifuged for 5 minutes at 20 000 g.

180 µl of the plasmid solution were treated with 420 µl of ethanol, placed on ice and subsequently precipitated by centrifugation for 30 minutes at 20 000 g and -4°C. The precipitate was taken up in 10 µl of TE buffer. The preparations in question were employed directly in an in-vitro transcription with T7-RNA polymerase and with SP6-RNA polymerase, respectively. RNA polymerases were obtained from Roche Molecular Biology, Mannheim, Germany.
Each transcription mixture contained the following in a volume of 40 μl:

2 μl linearized plasmid DNA (1 μg)
2 μl NTPs (25 mM) (1.25 mM of each NTP)
4 μl 10x reaction buffer (Roche Molecular Biology),
1 μl RNAsin RNAsin (27 units; Roche Molecular Biology),
2 μl RNA polymerase (40 units)
29 μl DEPC water

After 2 hours of incubation at 37°C, in each case some of the reaction mixtures from the transcription of the sense and antisense strands were mixed, denatured for 5 minutes at 95°C and thereafter hybridized with one another (annealed) by cooling over 30 minutes to a final temperature of 37°C. As an alternative, the mixture of sense and antisense strand can also be cooled for 30 minutes at -20°C after the denaturation. The protein precipitate which formed during denaturation and hybridization was removed by briefly centrifuging at 20,800 g, and the supernatant was used directly for coating tungsten particles (see hereinbelow). For the analysis, in each case 1 μl of each RNA strand and of the dsRNA were separated on a non-denaturing agarose gel. Successful hybridization is evident by a band shift towards higher molecular weight in comparison with the individual strands.

4 μl of the dsRNA were precipitated with ethanol (by addition of 6 μl of water, 1 μl of 3M sodium acetate solution and 25 μl of ethanol, and centrifugation for at least 5 minutes at 20,000 g and 4°C) and resuspended in 500 μl of water. The absorption spectrum between 230 and 300 nm was measured or the absorption at 280 and 260 nm was determined to determine the purity and the concentration of the dsRNA. As a rule, 80 to 100 μg of dsRNA with an OD260/OD280 ratio of 1.80 to 1.95 were obtained. If desired, a digestion with DNase I may be carried out, but this has no substantial effect on subsequent results.

The dsRNA of the human thyroid receptor (starting vector pT7betaSal (Norman C et al. (1988) Cell 55(6):989-1003), provided by Dr. Baniahmad, Department of Genetics, Gießen, Germany; the sequence of the insert is described under the GenBank Acc. No.: NM_000461) acted as control dsRNA. The plasmid was digested with PvuII to generate the sense RNA and with HindIII to generate the antisense RNA, and the RNA was then transcribed using T7 or SP6 RNA polymerase. The individual process steps for the generation of the control dsRNA are carried out analogously to those described above for the pNAox-dsRNA.
Example 4: Transient transformation, RNAi and evaluation of the
development of the fungal pathogen

Barley cv Pallas leaf segments were transformed with a pNAox
dsRNA together with a GFP expression vector. Thereafter the leaves
were inoculated with Bgh and the result was analyzed after 48 h
by means of light and fluorescence microscopy. The penetration
into GFP-expressing cells was assessed by detecting haustoria in
live cells and by assessing the fungal development in precisely
those cells. In all five experiments, the bombardment of barley
cv Pallas with pNAox dsRNA resulted in a reduced number of cells
which were successfully penetrated by Bgh in comparison with
cells which had been bombarded with foreign control dsRNA (human
thyroid hormone receptor dsRNA, TR). The resistance-inducing ef-
fect of the pNAox dsRNA resulted in an average reduction of the
Bgh penetration efficiency by 35% (Fig. 4).

A method which had already been described for the biolistic
introduction of dsRNA into epidermal cells of barley leaves was
employed for the transient transformation (Schweizer P et al.
diameter (particle density 25 mg/ml) were coated with dsRNA
(preparation see above) together with plasmid DNA of the vector
pgFP (GFP under the control of the CaMV 35S promoters) as trans-
formation marker. To this end, the following amounts of dsRNA and
reporter plasmid were used for the coating per shot: 1 μg pgFP
and 2 μg dsRNA. Double-stranded RNA was synthesized by annealing
sense and antisense RNA in vitro (see above).

To prepare microcarriers, 55 mg of tungsten particles (M 17, di-
ameter 1.1 μm; Bio-Rad, Munich) were washed twice with 1 ml of
autoclave-distilled water and once with 1 ml of absolute ethanol,
dried and taken up in 1 ml of 50% strength glycerol (approximate-
ly 50 mg/ml stock solution). The solution was diluted with 50%
glycerol to 25 mg/ml, mixed thoroughly prior to use and suspended
in an ultrasonic bath. To coat microcarriers, 1 μg of plasmid,
2 μg of dsRNA (1 μl), 12.5 μl of tungsten particle suspension
(25 mg/ml), 12.5 μl of 1 M Ca(NO3)2 solution (pH 10) per shot were
combined dropwise with constant mixing, left to stand for 10 min-
utes at RT, centrifuged briefly, and 20 μl of the supernatant
were removed. The remainder with the tungsten particles is resus-
spended (ultrasonic bath) and employed in the experiment.

Barley primary leaf segments approximately 4 cm in length were
used. The tissues were placed on 0.5% Phytagar (GibcoBRL™ Life
Technologies™, Karlsruhe) supplemented with 20 μg/ml benzimida-
zole in Petri dishes (diameter 6.5 cm) and, immediately before the particle bombardment, the edges were covered with a stencil with a rectangular opening of dimensions 2.2 cm × 2.3 cm. One after the other, the dishes were placed on the bottom of the vacuum chamber (Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54) over which a nylon mesh (mesh size 0.2 mm, Millipore, Eschborn) had been inserted on a perforated sheet to act as diffusor (5 cm above the bottom, 11 cm underneath the macrocarriers, see hereinbelow) in order to diffuse particle clumps and to slow down the particle stream. The macrocarrier attached at the top of the chamber (plastic sterile filter holder, 13 mm, Gelman Sciences, Swinney, UK) was loaded with 5.8 μl of DNA-coated tungsten particles per shot (microcarriers, see hereinbelow). Using a diaphragm vacuum pump (Vacuubrand, Wertheim), the pressure in the chamber was reduced by 0.9 bar, and the tungsten particles were fired at the surface of the plant tissue at a helium-gas pressure of 9 bar. Immediately thereafter, the chamber was aerated. To label transformed cells, the leaves were bombarded with the plasmid (pGFP; vector on pUC18-basis, CaMV 35S promoter/terminator cassette with inserted GFP gene; Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54; provided by Dr. P. Schweizer, Department of Plant Genetics IPK, Gatersleben, Germany). Each time a different plasmid was used for the bombardments, the macrocarrier was cleaned thoroughly with water beforehand. After incubation for four hours after the bombardment with slightly open Petri dishes at RT and with daylight, the leaves were incubated with 100 conidia/mm² of powdery mildew of barley (race A6) and incubated under identical conditions for a further 40 to 48 hours.

Leaf segments were bombarded with the coated particles using a particle inflow gun. For each shot, 312 μg of tungsten particles were applied. 4 hours after the bombardment, the leaves were inoculated with Blumeria graminis f.sp. hordei mildew (race A6) and, after a further 40 hours, evaluated for symptoms of infection. The result (for example the penetration efficiency, defined as percentage of attacked cells with a mature haustorium and a secondary elongating hypha were analyzed by means of fluorescence and light microscopy. An inoculation with 100 conidia/mm² results in an infection frequency of approximately 50% of the transformed cells. A minimum of 100 interaction sites was evaluated for each individual experiment. Transformed (GFP-expressing) cells were identified under excitation with blue light. Three different categories of transformed cells were distinguished:
1. Penetrated cells containing a readily recognizable haustorium. A cell with more than one haustorium was considered as one cell.

2. Cells which, while attacked by a fungal appressorium, contain no haustorium. A cell which has been attacked more than once by Bgh, but which contains no haustorium, was considered as one cell.

3. Cells which are not infected by Bgh.

Stomatal cells and guard cells were excluded from the assessment. Surface structures of Bgh were analyzed by means of light microscopy or fluorescence staining of the fungus with 0.1% Calcofluor (w/v in water) for 30 seconds. The fungal development can be evaluated readily by fluorescence microscopy following staining with Calcofluor. In pNAox-dsRNA-transformed cells, the fungus develops a primary and apressorial germ tube, but no haustorium. The development of a haustorium is a condition for the development of a secondary hypha.

The relative penetration efficiency (RPE) is calculated as the difference between the penetration efficiency of transformed cells (transformation with pNAox or control dsRNA) and the penetration efficiency of untransformed cells (here: average penetration efficiency 38.74%). The percent RPE (% RPE) is calculated from the RPE minus 1, multiplied by 100.

\[
\text{RPE} = \frac{[\text{PE in pNAox-dsRNA-transformed cells}]}{[\text{PE in control-dsRNA transformed cells}]} \]

\[
\% \text{ RPE} = 100 \times (\text{RPE}-1) \]

The % RPE value (deviation of the average penetration efficiency of the control) is used to determine the susceptibility of cells transfected with pNAox-dsRNA (fig. 4).

In the case of the control dsRNA, five different experiments reveal no difference between the transfection with the control dsRNA and water with regard to the penetration efficiency of Bgh.

To rule out an effect of the dsRNA and the transformation rate or survival rate of the attacked cells, the number of GFP-expressing cells in control experiments and pNAox-dsRNA experiments was compared. The pNAox-dsRNA had no effect on the total number or the number of the attacked GFP-expressing cells.
Example 5: NADPH oxidase inhibition with diphenyleneiodonium chloride

The results were supported by further experiments with the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI; table 1). In general, the experiments were carried out as described by Hückelhoven and Kogel, 1998.

Tab. 1: Effect of DPI on the defense against pathogens in Palulas

<table>
<thead>
<tr>
<th>Type of interaction</th>
<th>Interactions (%) ± standard error</th>
<th>Control</th>
<th>200 μM DPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetration</td>
<td>68.25 ± 9.9</td>
<td>16.25 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>Nonpenetration</td>
<td>24.25 ± 6.3</td>
<td>67.5 ± 9.5</td>
<td></td>
</tr>
<tr>
<td>HR (Hypersensitive response)</td>
<td>7.5 ± 3.7</td>
<td>16.25 ± 9.3</td>
<td></td>
</tr>
</tbody>
</table>

a The DPI treatment was carried out 12 hours after inoculation with the pathogen and the evaluation 36 hours after inoculation.

b Control with 10 mM potassium phosphate buffer, pH 7.8, with DMSO content as in the DPI treatment.

c DPI dissolved in 10 mM potassium phosphate buffer, pH 7.8, starting from a 10 mg/ml DPI stock solution in DMSO.
SEQUENCE LISTING

BASF Plant Science GmbH
Method for obtaining a pathogen resistance in plants
AE20020416
DNA
Hordeum vulgare
CDS
(2) . (337)
coding for NADPH oxidase (fragment)

1
g ttt aaa gga atc atg aat gag att gct gaa cta gat caa agg aat atc 49
 Phe Lys Gly Ile Met Asn Glu Ile Ala Glu Leu Asp Gln Arg Asn Ile
 1 5 10 15
 att gag atg cac aac tat ctc aca aat gtt tat gag gaa ggg gat gct
 Ile Glu Met His Asn Tyr Leu Thr Ser Val Tyr Glu Glu Gly Asp Ala
 20 25 30
 cgg tca gca ctc atc aca atg ctg cca gct ctc aac cat gcc aag aat
 Arg Ser Ala Leu Ile Thr Met Leu Gln Ala Leu Asn His Ala Lys Asn
 35 40 45
 ggt gtc gat gta gtg tct gcm act cga gtc cgg aca cat ttt gca aga
 Gly Val Asp Val Val Ser Xaa Thr Arg Val Arg Thr His Phe Ala Arg
 50 55 60
 cca aat ttt aag agg gtt ctg tct aag gta gcc gcc aca cat ttt tct cat
 Pro Asn Phe Lys Arg Val Leu Ser Lys Val Ala Ala Lys His Pro Tyr
 65 70 75 80
 gcc aag ata gga gtt tct tat tgc gga gct cca gtt ctg gcg cag gaa
 Ala Lys Ile Gly Val Phe Tyr Cys Gly Ala Pro Val Leu Ala Gln Glu
 85 90 95
 cta agc aac ctt tgc cat gag ttc aat gcc aaa tgc acg aca aaa ttc
 Leu Ser Asn Leu Cys His Glu Phe Asn Gly Lys Cys Thr Thr Lys Phe
 100 105 110

2
112
PRT
Hordeum vulgare
2
Phe Lys Gly Ile Met Asn Glu Ile Ala Glu Leu Asp Gln Arg Asn Ile
 1 5 10 15
 Ile Glu Met His Asn Tyr Leu Thr Ser Val Tyr Glu Glu Gly Asp Ala
 20 25 30
 Arg Ser Ala Leu Ile Thr Met Leu Gln Ala Leu Asn His Ala Lys Asn
 35 40 45
Gly Val Asp Val Val Ser Xaa Thr Arg Val Arg Thr His Phe Ala Arg
 50 55 60
Pro Asn Phe Lys Arg Val Leu Ser Lys Val Ala Ala Lys His Pro Tyr
 65 70 75 80
Ala Lys Ile Gly Val Phe Tyr Cys Gly Ala Pro Val Leu Ala Gln Glu
 85 90 95
Leu Ser Asn Leu Cys His Glu Phe Asn Gly Lys Cys Thr Thr Lys Phe
 100 105 110

<210> 3
<211> 2832
<212> DNA
<213> Oryza sativa
<220>
<221> CDS
<222> {1}..{2829}
<223> coding for NADPH oxidase
<400> 3
atg agg ggc ggc tcc tcg gga ccc cag cga tgg ggc tcg ggc ggg
Met Arg Gly Gly Ala Ser Ser Gly Pro Gln Arg Trp Gly Ser Ala Gly
 1 5 10 15
acg aca ccc cgg tcg tcg agc acg ggc tcg tcg cgc ggg tcc gac
Thr Thr Pro Ser Leu Ser Thr Gly Ser Ser Pro Arg Gly Ser Asp
 20 25 30
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

ggc ctc cgc ttc atc agc agc aac aag gcc aac aac gcc tgg atg gag 576
Gly Leu Arg Phe Ile Ser Ser Asn Lys Ala Asn Asn Ala Trp Met Glu
180 185 190

gtg cag gcc aac ttc gac cgc ctc gcc ggc gac ggc tac ctc tcc cgc 624
Val Gln Ala Asn Phe Asp Arg Leu Arg Asp Gly Tyr Leu Ser Arg
195 200 205

tcc gag ttc gcc gaa tgc atc ggg atg acg gaa tcg aag gag ttc gcc 672
Ser Asp Phe Ala Glu Cys Ile Gly Met Thr Glu Ser Lys Glu Phe Ala
210 215 220

ctc gag ctc gac acg ctc cgc gca cga cga cag atg aag gtt gac 720
Leu Glu Leu Phe Asp Thr Leu Ser Arg Arg Gin Met Val Asp
225 230 235 240

aac att aac aag gat gaa ctc ggc gag atc tgg cag cag atc acc gat 768
Thr Ile Asn Lys Asp Glu Leu Arg Glu Ile Trp Gln Gln Ile Thr Asp
245 250 255

aac agc ttc gac tcc cgt ctc caa atc ttc ttc gaa atg gtt gat aag 816
Asn Ser Phe Asp Ser Arg Leu Gin Ile Phe Phe Glu Met Val Asp Lys
260 265 270

aac gcg gac gcc cgg att acg gag gcg gag gtt aaa gag att att atg 864
Asn Ala Asp Gly Arg Ile Thr Glu Ala Glu Val Lys Glu Ile Ile Met
275 280 285

ttg agc gcg tct gcc aat aaa ctc tcg agg ctt aag gag cca gca gaa 912
Leu Ser Ala Ser Ala Lys Leu Ser Arg Leu Lys Glu Gln Ala Glu
290 295 300

gag tac gcc gct ttg atc atg gag gag ctt gat cct gaa ggg ctc ggc 960
Glu Tyr Ala Ala Leu Ile Met Glu Leu Asp Pro Glu Gly Leu Gly
305 310 315 320

tac att gag cta tgg cca ttg gag aca ctt ctt ttg cag aaa gat acc 1008
Tyr Ile Glu Leu Trp Gln Leu Thr Leu Leu Glu Gln Ile Thr Asp Thr
325 330 335

tat atg aac tat agt cag gcc ctt agt tac aca agc caa gca ctt agc 1056
Tyr Met Asn Tyr Ser Gin Ala Leu Ser Tyr Thr Ser Gin Ala Leu Ser
340 345 350

cag aat ctt gca ggg ctt agg aag aag agt tca atc cgc aaa ata agc 1104
Gln Asn Leu Ala Gly Leu Arg Lys Ser Ser Ile Arg Lys Ile Ser
355 360 365

acc tct tta agc tac tat ttc gag gac aac tgg aaa cgt tta tgg gtt 1152
Thr Ser Leu Ser Tyr Phe Glu Asp Asn Trp Lys Arg Leu Trp Val
370 375 380

cct tga tgg att ggg ata atg gct gga ctt tcc acc tgg aaa ttc 1200
Leu Ala Leu Trp Ile Gly Ile Met Ala Gly Leu Phe Thr Trp Lys Phe
385 390 395 400

atg cag tat cgt aac cga tat gtc ttt gat gtt atg ggc tac tgg gtc 1248
Met Gln Tyr Arg Asn Arg Tyr Val Phe Asp Asp Val Met Gly Tyr Cys Val
405 410 415

aca aca gca aag ggt gct gct gaa acc cta aag ctt aat agt gca att 1296
Thr Thr Ala Lys Gly Ala Ala Glu Thr Leu Lys Leu Asn Met Ala Ile
420 425 430

ata ctc ctt cca gta tgg cgt aac att act tgg tgg cga agt aca 1344
Ile Leu Leu Pro Val Cys Arg Asn Thr Thr Thr Leu Arg Ser Thr
435 440 445
agg gct gca cgg gca cta cct ttt gat gac aac atc aac ttc cac aag 1392
Arg Ala Ala Arg Ala Leu Pro Phe Asp Asp Asn Ile Asn Phe His Lys 450 455 460

act att gca gca gca att tgt tgt tgt atc ctc cat gca ggg aac 1440
Thr Ile Ala Ala Ala Ile Val Val Gly Ile Leu His Ala Gly Asn 465 470 475 480

cac ctt gta tgc gat ttt cca cgg tta ata aaa tca tca gat gag aag 1488
His Leu Val Cys Asp Phe Pro Arg Leu Ile Lys Pro Ser Ser Asp Glu Lys 485 490 495

tat gct cct ttg ggc cag tat ttt ggg gaa ata aag cca aka tat ttt 1536
Tyr Ala Pro Leu Gly Gln Tyr Phe Gly Glu Ile Lys Pro Thr Tyr Phe 500 505 510

aca tgt gtc aaa gga tgt gag ggc atc act ggg gta atc atg gtt gta 1584
Thr Leu Val Lys Gly Val Glu Gly Ile Thr Gly Val Ile Met Val Val 515 520 525

tgc atg ata att gct ttt act cta gca acc cgg tgg ttc cgc cgt agc 1632
Cys Met Ile Ile Ala Phe Thr Leu Ala Thr Arg Trp Phe Arg Arg Ser 530 535 540

(ttg gtt aag ctt cca agg cca ttt gac aha ctg act ggc ttc aat gcc 1680
Leu Val Lys Leu Pro Arg Pro Phe Asp Lys Leu Thr Gly Phe Asn Ala 545 550 555 560

(ttt tgt tat tct cat cat ctc tgc att gtt atc atg cgc ctc att 1728
Phe Trp Tyr Ser His His Phe Ile Ile Val Tyr Ile Ala Leu Ile 565 570 575

gtt cat gga gag tgt cta tac ctt att cat gtc tgg tac aga aga acg 1776
Val His Gly Glu Cys Leu Tyr Leu Val Ile Val Tyr Arg Arg Thr 580 585 590

aca tgg atg tat ctt tca gtt cct tgt tgc tgt tat gta ggg gag agg 1824
Thr Trp Met Tyr Leu Ser Val Pro Val Cys Leu Tyr Val Gly Glu Arg 595 600 605

att cta agg ttc cgg cct ggt atg tat ctc ctc ggc cta tgg aag 1872
Ile Leu Arg Phe Phe Arg Ser Gly Ser Tyr Ser Val Arg Leu Leu Lys 610 615 620

gtt gcc ata tat cca ggt aat tgt tgg aca ctc gaa atg tcc aag cct 1920
Val Ala Ile Tyr Pro Gly Asn Val Leu Thr Leu Gln Met Ser Lys Pro 625 630 635 640

ccc acg ttc cgt tac aag agt gga cca tat atg ttt gtt cca tgt cca 1968
Pro Thr Phe Arg Tyr Lys Ser Gly Gln Tyr Met Phe Val Gln Cys Pro 645 650 655

gca gtt tct ccc ttt gaa tgg cat ccc ttc tca att act tca gca cct 2016
Ala Val Ser Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro 660 665 670

ggg gat gac tac ctc acg att cat gtt cga cca ctt ggt gat tgt aca 2064
Gly Asp Asp Phe Pro Ring Ser His Val Arg Gln Leu Gly Asp Trp Thr 675 680 685

cga gaa ctc aag aga gta ttt gct gca gct tgt gag ccc cca ggc ggt 2112
Arg Glu Leu Lys Arg Val Phe Ala Ala Ala Cys Glu Pro Pro Ala Gly 690 695 700

utt aaa agc gcc ctt ctt agg gca gat gag aga act aag aaa atc tta 2160
Gly Lys Ser Gly Leu Arg Ala Asp Glu Thr Thr Lys Lys Ile Leu 705 710 715 720
ccc aag ctt ctg att gat gga cgc tat gtt tct cct gct cag gat tac
Pro Lys Leu Leu Ile Asp Gly Pro Tyr Gly Ser Pro Ala Gln Asp Tyr
725 730 735
agc aag tat gat gtt tta tta ctt gtt gga tta gga att gtt gcg aca
Ser Lys Tyr Asp Val Leu Leu Val Gly Leu Gly Ile Gly Ala Thr
740 745 750
ccc ttt att agc ata tta aaa gat ctt ctg aat aac atc atc aaa atg
Pro Phe Ile Ser Ile Leu Lys Asp Leu Leu Asn Asn Ile Ile Lys Met
755 760 765

gag gaa gag gag gat gct tct act gat ctt tat cca cca atg ggt cgg
Glu Glu Glu Glu Ala Ser Thr Ala Ser Tyr Pro Pro Met Gly Arg
770 775 780
aat aag cca cat gtt ctc ggc aca ctt atg acc att acc tca aga
Asn Lys Pro His Val Asp Leu Gly Thr Leu Met Thr Ile Thr Ser Arg
785 790 795 800
cca aag aag atc ttg aag acc aca aat gct tac ttt tac tgg gtc aca
Pro Lys Lys Ile Leu Lys Thr Thr Asn Ala Tyr Phe Tyr Trp Val Thr
805 810 815
cgt gag caa ggc tct ttt gat tgg ttc aaa gga gtc atg aat gaa att
Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly Val Met Asn Glu Ile
820 825 830
gct gag ttc gat cca agg aat atc att gag atg cac aac tac cta aca
Ala Asp Leu Asp Gln Arg Asn Ile Ile Glu Met His Asn Tyr Leu Thr
835 840 845
agc gtc tat gag ggg gag gcc agg tca gca ctc atc acc atg ctc
Ser Val Tyr Glu Gly Ala Ser Ala Leu Ile Thr Met Leu
850 855 860
caa gct ctc aac cat gcc aag aat gga gtt gat att gtc tct ggg aca
Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Thr
865 870 875 880
aaa gtc cgg aca cat ttt gca cga cca aat tgg aga aag gtc ctt tct
Lys Val Arg Thr His Phe Ala Arg Pro Asn Trp Arg Lys Val Leu Ser
885 890 895
aaa att tcc tcc aag cat cca tat gcc aaa ata ggt gta ttc tac tgt
Lys Ile Ser Ser Lys His Pro Tyr Ala Lys Ile Gly Val Phe Tyr Cys
900 905 910
gga gct cca gtc cgg cca cca gaa cta agc aaa ctt tgc cat gaa ttc
Gly Ala Pro Val Leu Ala Gln Glu Leu Ser Lys Leu Cys His Glu Phe
915 920 925
aac ggg aaa tgc aca aag agg gaa ttc gaa ttc cat aag gag cat ttc tga
Asn Gly Lys Cys Thr Thr Lys Phe Glu Phe His Lys Glu His Phe
930 935 940

<210> 4
<211> 943
<212> PRT
<213> Oryza sativa
<400> 4
Met Arg Gly Gly Ala Ser Ser Gly Pro Glu Arg Trp Gly Ser Ala Gly
1 5 10 15
Thr Thr Pro Arg Ser Leu Ser Thr Gly Ser Ser Pro Arg Gly Ser Asp
20 25 30
Asp Arg Ser Ser Asp Asp Gly Glu Glu Leu Val Glu Val Thr Leu Asp 35 40 45
Leu Gln Asp Asp Thr Ile Val Leu Arg Ser Val Glu Pro Ala Ala 50 55 60
Ala Ala Ala Ala Gly Val Gly Ala Gly Ala Gly Ala Gly Ala Ser Ala Arg 65 70 75 80
Gly Glu Leu Thr Gly Gly Pro Ser Ser Ser Ser Ser Ser Arg Ser Arg Ser 85 90 95
Pro Ser Ile Arg Arg Ser Ser Ser His Arg Leu Leu Gln Phe Ser Gln 100 105 110
Glu Leu Lys Ala Glu Ala Met Ala Arg Ala Arg Gln Phe Ser Gln Asp 115 120 125
Leu Thr Lys Arg Phe Gly Arg Ser His Ser Arg Ser Glu Ala Gln Ala 130 135 140
Pro Ser Gly Leu Glu Ser Ala Leu Ala Ala Arg Ala Ala Arg Gln 145 150 155 160
Arg Ala Gln Leu Asp Arg Thr Arg Ser Gly Ala His Lys Ala Leu Arg 165 170 175 180
Gly Leu Arg Phe Ile Ser Ser Asn Lys Ala Asn Asn Ala Trp Met Glu 185 190
Val Gln Ala Asn Phe Asp Arg Leu Ala Arg Asp Gly Tyr Leu Ser Arg 195 200 205
Ser Asp Phe Ala Glu Cys Ile Gly Met Thr Glu Ser Lys Glu Phe Ala 210 215 220
Leu Glu Leu Phe Asp Thr Leu Ser Arg Arg Arg Gln Met Lys Val Asp 225 230 235 240
Thr Ile Asn Lys Asp Glu Leu Arg Glu Ile Trp Gln Gln Ile Thr Asp 245 250 255 260
Asn Ser Phe Asp Ser Arg Leu Gln Ile Phe Phe Glu Met Val Asp Lys 265 270
Asn Ala Asp Gly Arg Ile Thr Glu Ala Glu Val Lys Glu Ile Ile Met 275 280 285
Leu Ser Ala Ser Ala Asn Lys Leu Ser Arg Leu Lys Glu Gln Ala Glu 290 295 300
Glu Tyr Ala Ala Leu Ile Met Glu Glu Leu Asp Pro Glu Gly Leu Gly 305 310 315 320
Tyr Ile Glu Leu Trp Gln Leu Glu Thr Leu Leu Gln Lys Asp Thr 325 330 335
Tyr Met Asn Tyr Ser Gln Ala Leu Ser Tyr Thr Ser Gln Ala Leu Ser 340 345 350 355 360 365
Gln Asn Leu Ala Gly Leu Arg Lys Lys Ser Ser Ile Arg Lys Ile Ser 370 375 380 385 390 395 400
Thr Ser Leu Ser Tyr Tyr Phe Glu Asp Asn Trp Lys Arg Leu Trp Val 390 405 410 415
Thr Thr Ala Lys Gly Ala Ala Glu Thr Leu Lys Leu Asn Met Ala Ile 420
Ile Leu Leu Pro Val Cys Arg Asn Thr Ile Thr Trp Leu Arg Ser Thr 435
Arg Ala Ala Arg Ala Leu Pro Phe Asp Asp Asn Ile Asn Phe His Lys 450
Thr Ile Ala Ala Ala Ile Val Val Gly Ile Ile Leu His Ala Gly Asn 465
His Leu Val Cys Asp Phe Pro Arg Leu Ile Lys Ser Ser Asp Glu Lys 485
Tyr Ala Pro Leu Gly Glu Tyr Phe Gly Glu Ile Lys Pro Thr Tyr Phe 500
Thr Leu Val Lys Gly Val Glu Gly Ile Thr Gly Val Ile Met Val Val 515
Cys Met Ile Ile Ala Phe Thr Leu Ala Thr Arg Trp Phe Arg Arg Ser 530
Leu Val Lys Leu Pro Arg Pro Phe Asp Lys Leu Thr Gly Phe Asn Ala 545
Phe Trp Tyr Ser His His Leu Phe Ile Ile Val Tyr Ile Ala Leu Ile 565
Val His Gly Glu Cys Leu Tyr Leu Ile His Val Trp Tyr Arg Arg Thr 580
Thr Trp Met Tyr Leu Ser Val Pro Val Cys Leu Tyr Val Gly Glu Arg 595
Ile Leu Arg Phe Phe Arg Ser Gly Ser Tyr Ser Val Arg Leu Leu Lys 610
Val Ala Ile Tyr Pro Gly Asn Val Leu Thr Leu Glu Met Ser Lys Pro 625
Pro Thr Phe Arg Tyr Lys Ser Gly Glu Tyr Met Phe Val Glu Cys Pro 645
Ala Val Ser Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro 660
Gly Asp Asp Tyr Leu Ser Ile His Val Arg Glu Leu Gly Asp Trp Thr 675
Arg Glu Leu Lys Arg Val Phe Ala Ala Ala Cys Glu Pro Pro Ala Gly 690
Gly Lys Ser Gly Leu Arg Ala Ala Asp Glu Thr Thr Lys Lys Ile Leu 705
Pro Lys Leu Leu Ile Asp Gly Pro Tyr Gly Ser Pro Ala Glu Asp Tyr 725
Ser Lys Tyr Asp Val Leu Leu Leu Val Gly Leu Gly Ile Gly Ala Thr 740
Pro Phe Ile Ser Ile Leu Lys Asp Leu Leu Asn Asn Ile Ile Lys Met 755
Glu Glu Glu Glu Ala Ser Thr Asp Leu Tyr Pro Pro Met Gly Arg 770
Asn Lys Pro His Val Asp Leu Gly Thr Leu Met Thr Ile Thr Ser Arg 785
Pro Lys Lys Ile Leu Lys Thr Thr Thr Asn Ala Tyr Phe Tyr Trp Val Thr 805 810 815
Arg Glu Glu Gly Ser Phe Asp Trp Phe Lys Gly Val Met Asn Glu Ile 820 825 830
Ala Asp Leu Asp Gln Arg Asn Ile Ile Glu Met His Asn Tyr Leu Thr 835 840 845
Ser Val Tyr Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met Leu 850 855 860
Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Thr 865 870 875 880
Lys Val Arg Thr His Pro Ala Arg Pro Trp Arg Lys Val Leu Ser 885 890 895
Lys Ile Ser Ser Lys His Pro Tyr Ala Lys Ile Gly Val Phe Tyr Cys 900 905 910
Gly Ala Pro Val Leu Ala Gln Glu Leu Ser Lys Leu Cys His Glu Phe 915 920 925
Asn Gly Lys Cys Thr Thr Lys Phe Glu Phe His Lys Glu His Phe 930 935 940

<210> 5
<211> 2889
<212> DNA
<213> Nicotiana tabacum
<220>
<221> CDS
<222> (1) .. (2886)
<223> coding for NADPH oxidase

<400> 5
atg agg ggt tta cct ggg cat gaa cgc cgg tgg aca tcc gat acg gta 48
Met Arg Gly Leu Pro Gly His Glu Arg Arg Trp Thr Ser Asp Thr Val 1 5 10 15
tct tcc gag aag gat ttt agt ggt gaa tta tgc ccc gga gct gat tcc 96
Ser Ser Asp Lys Asp Phe Ser Gly Glu Leu Ser Pro Gly Ala Asp Ser 20 25 30
ggc tat aat tcc ggt ttt gct tcc gat gac gag gtt gaa gtc acg ctt 144
Gly Tyr Asn Ser Gly Phe Ala Ser Gly Phe Val Gly Val Thr Leu 35 40 45
gat ctt cag gat gat gat gac att att cta cgg agc gtt gaa ccg gct 192
Asp Leu Gln Asp Asp Thr Ile Ile Leu Arg Ser Val Gly Pro Ala 50 55 60
act gtt att aac att gac gct cct gat ctt ccc ggc gga gct gtt att 240
Thr Val Ile Asn Ile Asp Ala Pro Asp Leu Pro Ala Gly Val Gly Ile 65 70 75 80
tcc gga gtt cta ctt gaa act ccc cag gag tca tgc ctc gga gtt tcc 288
Ser Gly Val Ser Ile Gly Thr Pro Thr Ser Ala Ser Val Ser Gly Ser 85 90 95
cga tcc cag acg atc cgc cgg agt tca tct ctc cta aag ctt gct cag ttt 336
Arg Ser Pro Thr Ile Arg Arg Ser Ser Ser Lys Leu Arg Glu Phe 100 105 110
tca cag gag ttg aaa gct gag gcc gtt gcc aag gcg arg cag ttt tca 384
Ser Glu Glu Leu Lys Ala Glu Ala Val Ala Lys Ala Arg Glu Phe Ser
115 120 125

caag gag ctc aag gcc gag tta agg aga ttc tca tgg agc cat ggg cat 432
Gln Glu Leu Ala Glu Leu Arg Phe Ser Pro Ser His Gly His
130 135 140

gcg tct cgc ggc ttt tcg ctc tcg ttt ttt taa aac gcc gtc gtt 480
Ala Ser Arg Ala Phe Pro Ser Ch Asp Ala Lys Ala Arg Leu Arg
145 150 155 160

gga aca ggt aac ggc gtc gac tcg gct tta ggc gca cgt gca tta cgt 528
Gly Thr Gly Asn Gly Val Asp Ser Ala Arg Ala Arg Ser Ala His Arg Ala
165 170 175

cgg caa cgc ggc gag ctt gat cgg act cg t cc aag chr cgc cat aga gct 576
Arg Glu Arg Ala Glu Leu Asp Arg Thr Arg Ser Ser Ala His Arg Ala
180 185 190

cct cgt aga ct gaa ttc att agc aat aac aaa acc aat gga tgg aat 624
Leu Arg Arg Leu Lys Phe Ile Ser Asn Asn Lys Thr Asn Gly Trp Asn
195 200 205

gaa gtt gaa aac aat ttc tca aag ctc gct aac gac ggt tat ctt tac 672
Glu Val Glu Asn Asp Ser Lys Leu Ala Lys Asp Gly Tyr Leu Tyr
210 215 220

cgt tcc gat ttc gca caa tgc ata ggt atg aag gat tcc aag gaa ttt 720
Arg Ser Asp Phe Ala Glu Cys Ile Gly Met Lys Asp Ser Lys Glu Phe
225 230 235 240

gca ttg gaa tta ttt gat gct tgg aag gta aag aga aga tta aag gtt 768
Ala Leu Glu Leu Phe Asp Ala Arg Leu Arg Arg Ser Leu Arg Leu Val
245 250 255

gat aaa att agc aag gag gaa ttg tat gat tac tgg tct caa atc acc 816
Asp Lys Ile Ser Lys Glu Glu Leu Tyr Glu Tyr Trp Ser Glu Ile Thr
260 265 270

gat cag aeg ttc gat tct cgg ctt cag atc tcc tct gac atg gtt gac 864
Asp Gln Ser Phe Asp Ser Arg Leu Glu Ile Ser Phe Asp Met Val Asp
275 280 285

aag aat gaa gat ggt cga att gct gaa gag gaa gta aas gaa gtc atc 912
Lys Asn Glu Asp Gly Arg Ile Ala Glu Glu Val Lys Glu Ile Ile
290 295 300

atg cta ggt ctc gca aac gaa tta tca aga tta aaa gaa caa gca 960
Met Leu Ser Ala Ser Ala Lys Leu Ser Arg Leu Lys Glu Glu Ala
305 310 315 320

gag gag tat gca gct tta atc atg gaa tta gat cct gaa aga ctc 1008
Glu Tyr Ala Ala Leu Ile Met Glu Leu Asp Pro Glu Arg Leu
325 330 335

ggc tac att gag cta tgg cag ctt gaa aca ctt ctc ctc cca aag gac 1056
Gly Tyr Ile Glu Leu Trp Glu Glu Thr Leu Leu Leu Glu Lys Asp
340 345 350

act tac ctc aac tac ag tca gga ctc atc agc aag cca gca ttg 1104
Thr Tyr Leu Asn Tyr Ser Glu Ala Leu Ser Tyr Thr Ser Glu Ala Leu
355 360 365

agc caa aac ctt cac gga tta agg aag aad aag agc cca ata aac aga atg 1152
Ser Glu Asn Leu His Gly Leu Arg Lys Ser Pro Ile Lys Arg Met
370 375 380
AGC ACA AAA CTT GTC TAT TCA TTT CAA GAA AAC TGG AAG AGA ATT TGG
Ser Thr Lys Leu Val Tyr Ser Leu Gln Glu Asn Trp Lys Arg Ile Trp
385 390 395 400

GTT CTC ACT TTA TGG ATT TGG ATA ATG ATT GGG CTT TTT CTT TGG AAG
Val Leu Thr Leu Trp Ile Leu Ile Met Ile Gly Leu Leu Trp Lys
405 410 415

TTC TAT CAG TAC AAA AAC AAG AGT GCA TTC CGT GTC ATG GGT TAT TGC
Phe Tyr Gln Tyr Lys Asn Lys Ser Ala Phe Arg Val Met Gly Tyr Cys
420 425 430

CTT GTC ACG GCT AAG GGC GCT GCT GAG ACT CTC AAG TAC ATG GCT
Leu Val Thr Ala Lys Gly Ala Ala Glu Thr Leu Lys Phe Asn Met Ala
435 440 445

CTT ATA TTA TGG CCA GTA TGC AGA AAC ACT ATT ACA TGG CTC AGG TCC
Leu Ile Leu Leu Pro Val Cys Arg Asn Thr Ile Thr Trp Leu Arg Ser
450 455 460

ACC AAG TTG AGC CAT TTT GTA CCC TTT GAC GAC AAC ATC AAC TTT CAC
Thr Lys Leu Ser His Phe Val Pro Phe Asp Asp Asn Ile Asn Phe His
465 470 475 480

AAG ACT GTC GCT GCA GCC ATT GTC ACT GGT ATC ATA CTC CAT GCT GGT
Lys Thr Val Ala Ala Ile Val Thr Gly Ile Ile Leu His Ala Gly
485 490 495

AAC CAT CTT GTA GTG GAT TTC CCA AGG CTT ATA CAT GCA GAT GAT CAA
Asn His Leu Val Leu Cys Arg Pro Arg Leu Ile His Ala Asp Asp Gln
500 505 510

GAT TAT CAA AGT TTT TTT TCG AAT GAT TTT GGC CAA AGT AAG CCT GGA
Asp Tyr Gln Ser Phe Leu Ser Asn Phe Gly Glu Ser Lys Pro Gly
515 520 525

TAC ATA GAC CTT GTT AAA GGA GTG GAG GTG ACG GGA ATA ATA ATG
Tyr Ile Asp Leu Val Lys Gly Val Glu Gly Val Thr Gly Ile Met
530 535 540

GTA ATC CTT ATG GCC ATT GCT TTC ACT CTT GCT ACA CGA TGG TTT AGA
Val Ile Leu Met Ala Ile Ala Phe Thr Leu Ala Thr Arg Trp Phe Arg
545 550 555 560

CGG AGC CTC ATT AAG TTG CCC AAA CCT TTT GAT AGA CTC ACT GGC TTC
Arg Ser Leu Ile Lys Leu Pro Lys Pro Phe Asp Arg Leu Thr Gly Phe
565 570 575

AAT GCA TTC TGG TAT TCA CAC CAC CTT CTT GTC ATT GTC TAC ATC CTA
Asn Ala Phe Thr Tyr Ser His His Leu Leu Val Ile Val Tyr Ile Leu
580 585 590

CTG ATC ATC CAT GCC AGC TCG TTC TTC CTT GTG CAT AAA TGG TAC TCC
Leu Ile Ile His Gly Thr Leu Leu Leu Val His Lys Trp Tyr Ser
595 600 605

AAG ACG AGG TGG ATG TAT CTA GCA GTT CTT CTT CTC TAC GCA GGG
Lys Thr Thr Trp Met Tyr Leu Val Leu Tyr Leu Tyr Ala Gly
610 615 620

GAA AGA ACT AGA TCT TCC CGG TCA GCC TGG TAC ACT GTC CGG TCT
Glu Arg Thr Leu Arg Phe Phe Arg Ser Gly Leu Tyr Thr Val Arg Leu
625 630 635 640

CTG AAA GTA GCA ATA TAT CCT GGA AAT GTC CTC ACT CTA CAA ATG TCT
Leu Lys Val Ala Ile Tyr Pro Gly Asn Val Leu Thr Leu Gln Met Ser
645 650 655
aag cct cct caa ttt cga tac aaa aqt gga caa tat atg ttt gtc cag
Lys Pro Pro Glu Phe Arg Tyr Lys Ser Gly Gln Tyr Met Phe Val Gln
660 665 670

tgt cca gct gtt tct cca ttc gag tgg cat cca ttt tcc att act tca
Cys Pro Ala Val Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser
675 680 685

gct cct ggg gat gac tac ttg agc att cac atc cgg caa ctt ggt gac
Ala Pro Gly Asp Asp Tyr Leu Ser Ile His Ile Arg Glu Leu Gly Asp
690 700

tgg act caa gaa ctc aag cgg gtc ttt tct gag gct tgc gag cgg cca
Trp Thr Gln Glu Leu Lys Arg Val Phe Ser Ala Cys Glu Arg Pro
705 710 715 720

gag gct gga aag aqt ggc ctg ctc aga gct gac gaa aac act aag aaa
Glu Ala Gly Lys Ser Gly Leu Leu Arg Ala Asp Glu Asn Thr Lys Lys
725 730 735

agt ttg cca aag cta tta ata gat gga cct tac gga gct cca gca caa
Ser Leu Pro Lys Leu Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln
740 745 750

gat tac cga aaa tat gat gtc ttg ctt gtt ggt ctt ggc att gga
Asp Tyr Arg Lys Tyr Asp Val Leu Leu Val Gly Leu Gly Ile Gly
755 760 765

gca acg cgg ttc ata agt atc ctg aaa gag ttg ctt gtt aac atc ctg
Ala Thr Pro Phe Ile Ser Ile Leu Lys Asp Leu Leu Val Asn Ile Val
770 775 780

aaa atg gag gag caa gca gat tta gcc tca gat ttc aqt ggg aac tca
Lys Met Glu Glu Gln Ala Asp Leu Ala Ser Asp Phe Ser Gly Asn Ser
785 790 795 800

gac atg agc gtt gcc aca aqt gaa caa cca gct ctc aac aag att tct
Asp Met Ser Val Ala Thr Ser Glu Gln Pro Ala Leu Asn Lys Ile Ser
805 810 815

c tg aaa agg aga aag agc act cta aga acc aca aat gca tat ttt tat
Leu Lys Arg Arg Lys Ser Thr Leu Arg Thr Thr Asn Ala Tyr Phe Tyr
820 825 830

tgg gtg acc cgg gag caa gga tca ttt gat tgg ttc aaa ggc gtt atg
Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly Val Met
835 840 845

aac gaa g tg gct gaa ctt gat caa agg ggg gtc atc gag atg cat aac
Asn Glu Val Ala Glu Leu Asp Gln Arg Gly Val Ile Glu Met His Asn
850 855 860

tac tgc acgagt g ttt tat gag gaa ggg gat gct cgt tca gct ctc att
Tyr Leu Thr Ser Val Tyr Glu Gly Asp Ala Arg Ser Ala Leu Ile
865 870 875 880

acc atg gtc cag gca ctt aac cat gct aag aat ggg gtt gat att gta
Thr Met Val Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile Val
885 890 895

tca gcc acc agg gtg agg aca cat ttt gct agg cca aat tgg aag aaa
Ser Gly Thr Arg Val Arg Thr His Phe Ala Arg Pro Asn Trp Lys Lys
900 905 910

gta ttt cca aag acc tta acc aag cat gca aat gca aga at a ggg gtt
Val Phe Ser Lys Thr Leu Thr Lys His Ala Asn Ala Arg Ile Gly Val
915 920 925
ttc tac tgt ggt gca ccc gta tta gca aaa gaa ctc agc aaa ctc tgc 2832

Phe Tyr Cys Gly Ala Pro Val Leu Ala Lys Glu Leu Ser Lys Leu Cys
930 935 940

aaa gag tat aat caa aag ggt gca aca aag ttc gag ttt cac aaa gaa 2880

Lys Glu Tyr Asn Gln Lys Gly Ala Thr Lys Phe Glu Phe His Lys Glu
945 950 955 960

cat ttt tag

His Phe

<210> 6
<211> 962
<212> PRT
<213> Nicotiana tabacum

<400> 6
Met Arg Gly Leu Pro Gly His Glu Arg Arg Trp Thr Ser Asp Thr Val
1 5 10 15

Ser Ser Asp Lys Asp Phe Ser Gly Glu Leu Ser Pro Gly Ala Asp Ser
20 25 30

Gly Tyr Asn Ser Gly Phe Ala Ser Glu Glu Phe Val Glu Val Thr Leu
35 40 45

Asp Leu Gln Asp Asp Thr Ile Ile Leu Arg Ser Val Glu Pro Ala
50 55 60

Thr Val Ile Asn Ile Asp Ala Pro Asp Leu Pro Ala Gly Val Gly Ile
65 70 75 80

Ser Gly Val Ser Ile Glu Thr Pro Thr Ser Ala Ser Val Ser Glu Ser
85 90 95

Arg Ser Pro Thr Ile Arg Arg Ser Ser Ser Ser Lys Leu Arg Gln Phe
100 105 110

Ser Gln Glu Leu Lys Ala Glu Ala Val Ala Lys Ala Arg Gln Phe Ser
115 120 125

Gln Glu Leu Lys Ala Glu Leu Arg Arg Phe Ser Trp Ser His Gly His
130 135 140

 Ala Ser Arg Ala Phe Ser Pro Ser Ser Phe Phe Gln Asn Ala Val Val
145 150 155 160

Gly Thr Gly Asn Gly Val Asp Ser Ala Leu Ala Ala Arg Ala Leu Arg
165 170 175

Arg Gln Arg Ala Gln Leu Asp Arg Thr Arg Ser Ser Ala His Arg Ala
180 185 190

Leu Arg Arg Leu Lys Phe Ile Ser Asn Asn Lys Thr Asn Gly Trp Asn
195 200 205

Glu Val Glu Asn Phe Ser Lys Leu Ala Lys Asp Gly Tyr Leu Tyr
210 215 220

Arg Ser Asp Phe Ala Gln Cys Ile Gly Met Lys Asp Ser Lys Glu Phe
225 230 235 240

Ala Leu Glu Leu Phe Asp Ala Leu Ser Arg Arg Arg Arg Leu Lys Val
245 250 255

Asp Lys Ile Ser Lys Glu Glu Leu Tyr Glu Tyr Trp Ser Gln Ile Thr
260 265 270

Asp Gln Ser Phe Asp Ser Arg Leu Gln Ile Ser Phe Asp Met Val Asp
275 280 285
Lys Asn Glu Asp Gly Arg Ile Ala Glu Glu Glu Val Lys Glu Ile Ile
 290 295 300
Met Leu Ser Ala Ser Ala Asn Lys Leu Ser Arg Leu Lys Glu Gln Ala
 305 310 315 320
Glu Glu Tyr Ala Ala Leu Ile Met Glu Glu Leu Asp Pro Glu Arg Leu
 325 330 335
Gly Tyr Ile Glu Leu Trp Gln Leu Glu Thr Leu Leu Leu Gln Lys Asp
 340 345 350
Thr Tyr Leu Asn Tyr Ser Gln Ala Leu Ser Tyr Thr Ser Gln Ala Leu
 355 360 365
Ser Gln Asn Leu His Gly Leu Arg Lys Lys Ser Pro Ile Lys Arg Met
 370 375 380
Ser Thr Lys Leu Val Tyr Ser Leu Gln Glu Asn Trp Lys Arg Ile Trp
 385 390 395 400
Val Leu Thr Leu Trp Ile Leu Ile Met Ile Gly Leu Phe Leu Trp Lys
 405 410 415
Phe Tyr Gln Tyr Lys Asn Lys Ser Ala Phe Arg Val Met Gly Tyr Cys
 420 425 430
Leu Val Thr Ala Lys Gly Ala Ala Glu Thr Leu Lys Phe Asn Met Ala
 435 440 445
Leu Ile Leu Leu Pro Val Cys Arg Asn Thr Ile Thr Trp Leu Arg Ser
 450 455 460
Thr Lys Leu Ser His Phe Val Pro Phe Asp Asp Asn Ile Asn Phe His
 465 470 475 480
Lys Thr Val Ala Ala Ile Val Thr Gly Ile Ile Leu His Ala Gly
 485 490 495
Asn His Leu Val Cys Asp Phe Pro Arg Leu Ile His Ala Asp Asp Gln
 500 505 510
Asp Tyr Gln Ser Phe Leu Ser Asn Asp Phe Gly Gln Ser Lys Pro Gly
 515 520 525
Tyr Ile Asp Leu Val Lys Gly Val Glu Glu Val Thr Gly Ile Ile Met
 530 535 540
Val Ile Leu Met Ala Ile Ala Phe Thr Leu Ala Thr Arg Trp Phe Arg
 545 550 555 560
Arg Ser Leu Ile Lys Leu Pro Lys Pro Phe Asp Arg Leu Thr Gly Phe
 565 570 575
Asn Ala Phe Trp Tyr Ser His His Leu Leu Val Ile Val Tyr Ile Leu
 580 585 590
Leu Ile Ile His Gly Thr Phe Leu Phe Leu Val His Lys Trp Tyr Ser
 595 600 605
Lys Thr Thr Trp Met Tyr Leu Ala Val Pro Val Leu Leu Tyr Ala Gly
 610 615 620
Glu Arg Thr Leu Arg Phe Phe Arg Ser Gly Leu Tyr Thr Val Arg Leu
 625 630 635 640
Leu Lys Val Ala Ile Tyr Pro Gly Asn Val Leu Thr Leu Gln Met Ser
 645 650 655
Lys Pro Pro Gln Phe Arg Tyr Lys Ser Gly Gln Tyr Met Phe Val Gln
 660 665 670
tattatatata ttgtgctttg atttgggaca a atg agg ggt tta cct ggg cat
Met Arg Gly Leu Pro Gly His
1 5

112

160

Glu Arg Arg Thr Ser Asp Thr Val Ser Ser Gly Lys Asp Leu Ser
10 15 20

160

Gly Glu Ser Ser Pro Gly Thr Asp Ser Gly Asn Ile Ser Gly Phe Ala
25 30 35

208

tcc gag gag ttt gtt gaa gtt ata ctt gat ctt cag gat gat gac
Ser Glu Glu Phe Val Glu Val Ile Leu Asp Leu Gln Asp Asp Thr
40 45 50 55

256

att att cta cgg agc gtt gaa ccg gct act gta atc aac att gat gct
Ile Ile Leu Arg Ser Val Glu Pro Ala Thr Val Ile Asn Ile Asp Ala
60 65 70

304

tct gat cct gct acc gga gtc gtt att ggt gga gta tcg att gaa act
Ser Asp Pro Ala Thr Gly Val Gly Ile Gly Gly Val Ser Ile Glu Thr
75 80 85

352

ccg tcg ctg act tcg acg tcg gga act cga tcg ccc acg atg cgt
Pro Ala Ser Leu Thr Ser Thr Ser Gly Thr Arg Ser Pro Thr Met Arg
90 95 100

400

cgg agt aca tcg aat aaa tta cgt cag ttt tca cag gag ttg aaa gct
Arg Ser Thr Ser Asn Lys Leu Gln Pro Ala Thr Val Lys Ala
105 110 115

448

gag gct gtc gcc aaa gcg aag cat ttc tcg cca gag ctt aaa gcg gag
Glu Ala Val Ala Lys Ala Lys His Phe Ser Gln Leu Lys Ala Glu
120 125 130 135

496

tca agg aga ttc tca tcg ggc cag gcg act gta gaa ccc cgt
cgg gtc cag ttc ccc cca aac gcc gtc gtt aca gcc aac ggt gta
Pro Ala Ser Phe Phe Gln Asn Ala Val Val Gly Thr Gly Asn Gly Val
140 145 150 155 160 165

592

gat tcg gct tta gca gct cga gca tta cag ccc cgg cgg cgt cag ctc
Asp Ser Ala Leu Ala Ala Arg Ala Leu Arg Asp Gln Gln Ala Gln Leu
170 175 180

640

gat cgg act cgt tcc agc gct cac aag gct ctt cgt gga ctc aaa ttc
Asp Arg Thr Arg Ser Ser Ala Leu Arg Gly Leu Lys Phe
185 190 195 200 205 210 215

736

atc agc aat aac aac cag gga tgg aat gaa gtt gaa aac aat ttt
Ile Ser Asn Asn Lys Thr Asn Gly Trp Asn Glu Val Glu Asn Phe
200 205 210 215

784

gct aag ctc gct aaa gac ggt tac ctt tat cgc tcc gat ttc gca caa
Ala Lys Leu Ala Lys Asp Gly Tyr Leu Tyr Arg Ser Asp Phe Ala Gln
220 225 230

832

tgc atc ggt agt aag gat tca aag gaa ttt gca tgg gaa tgt ttt gat
Cys Ile Gly Met Lys Asp Ser Lys Glu Phe Ala Leu Glu Leu Phe Asp
235 240 245 250 255 260

880
gaa ttg tat gag tat tgg tct caa atc acc gat cag agt ttc gat tct
Glu Leu Tyr Glu Tyr Trp Ser Gln Ile Thr Asp Gln Ser Phe Asp Ser
265 270 275

cgg ctt cag atc ttc ttc gac atg gtt gac aag aat gaa gat ggt cga
Arg Leu Gln Ile Phe Phe Asp Met Val Asp Lys Asn Glu Asp Gly Arg
280 285 290 295

att ggt gaa gaa gta aaa gag atc atc atg cta agt gcc tct gca
Ile Gly Glu Glu Glu Val Lys Glu Ile Ile Met Leu Ser Ala Ser Ala
Ile Met Glu Leu Asp Pro Glu Arg Leu Gly Tyr Ile Glu Leu Trp
300 305 310

aac aaa tta cta aga tta aaa gaa caa gca gag gag tat gca gct cta
Asn Lys Leu Ser Arg Leu Lys Glu Ala Glu Glu Tyr Ala Ala Leu
315 320 325

atc atg gaa gaa tta gat cct gaa aga ctt ggc tac att gag cta tgg
Ile Met Glu Leu Asp Pro Glu Arg Leu Gly Tyr Ile Glu Leu Trp
330 335 340

cag ctg gaa acg ctt ctc ctc caa aag gac act tac ctc aac tac agt
Gln Leu Glu Thr Leu Leu Leu Gln Lys Asp Thr Tyr Leu Asn Tyr Ser
345 350 355

ca gca cta agc tac aca agc caa gct ttg agc caa aac ctg caa ggg
Gln Ala Leu Ser Tyr Thr Ser Gln Ala Leu Ser Gln Asn Leu Gln Gly
360 365 370 375

ttg agg aag aga agc cca ata aga aga atg agc aca aaa ctt gtc tat
Leu Arg Lys Arg Ser Pro Ile Arg Arg Met Ser Thr Tyr Leu Val Tyr
380 385 410

tca ctg caa gag aat tgg aag aga att tgg gtt ctc gtc tgg att
Ser Leu Gln Asp Trp Lys Arg Ile Trp Val Leu Val Leu Trp Ile
395 400 405

ttg ata atg att gga ctt ttt ctt tgg aag ttc tat ctc tac aaa cag
Leu Ile Met Ile Gly Leu Phe Leu Trp Lys Phe Tyr Leu Tyr Lys Gln
410 415 420

aaa agt gca tgt caa gtt atg ggt tat tgc ctt cta aca gct aag ggt
Lys Ser Ala Phe Gln Val Met Gly Tyr Cys Leu Leu Thr Ala Lys Gly
425 430 435

gct gct gag act cta aag ttc aac atg gct ttg ata tgg ttg cca gtt
Ala Ala Glu Thr Leu Lys Phe Asn Met Ala Leu Ile Leu Leu Pro Val
440 445 450 455

tgc agg aac acc att aca ttc agg tct act aca tgg agt tgt ttt
Cys Arg Asn Thr Ile Thr Phe Leu Arg Ser Thr Lys Leu Ser Cys Phe
460 465 470

gta ccc ttt gat gac aac atc aac ttc cac aag act gtt gct gca gcc
Val Pro Phe Asp Asn Ile Phe His Lys Thr Val Ala Ala Leu
475 480 485

att ggt act atc ata ctc cat gcc ggt aat cat ctt gta tgt gat
Ile Val Thr Gly Ile Ile His Ala Gly Asn His Leu Val Cys Asp
490 495 500

ttc cca aag ctt ata cat gca aat aat acg aat tat cag aaa tat ttg
Phe Pro Lys Leu Ile His Ala Asn Thr Asn Tyr Glu Lys Tyr Leu
505 510 515

gtg aat gat ttt ggc cca agc cag cct cag tac ata gat ctt gtt aaa
Val Asn Asp Phe Gly Pro Ser Gln Pro Gln Pro Tyr Ile Asp Leu Val Lys
520 525 530 535
PF 53765

Gly Val Gly Val Thr Gly Ile Ile Met Val Ile Leu Met Ala Ile
540 545 550

Gly Val Val Thr Gly Ile Ile Met Val Ile Leu Met Ala Ile
555 560 565

Pro Lys Pro Phe Asp Arg Leu Thr Gly Phe Asn Ala Phe Trp Tyr Ser
570 575 580

Hist His Leu Leu Ile Ile Val Tyr Ile Val Leu Ile Ile His Gly Thr
585 590 595

Leu Ala Val Pro Val Leu Leu Tyr Ala Gly Glu Arg Thr Leu Arg Phe
620 625 630

Pro Gly Asn Val Leu Thr Gly Met Ser Thr Tyr Thr Trp Met Tyr
650 655 660

Tyr Lys Ser Gly Glu Tyr Met Phe Val Gln Cys Ala Ser Val Pro Ser
665 670 675

Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gly Asp Asp Tyr
680 685 690 695

Arg Val Phe Ser Glu Ala Cys Glu Gln Pro Glu Ala Gly Lys Ser Gly
710 715 720 725

Leu Ala Arg Ala Gly Asn Thr Lys Pro Leu Asp Leu Thr Tyr Ala
730 735 740

Arg Val Leu Leu Gly Leu Gly Ile Gly Thr Pro Phe Ile Ser
760 765 770 775

Arg Val Leu Leu Gly Leu Gly Ile Gly Thr Pro Phe Ile Ser
790 795 800 805

Glu Val Val Thr Gly Ile Ile Met Val Ile Leu Met Ala Ile
1744

Gly Val Val Thr Gly Ile Ile Met Val Ile Leu Met Ala Ile
1792

Phe Leu Tyr Leu Val His Asn Trp Tyr Ser Lys Thr Thr Trp Met Tyr
1936

Tyr Lys Ser Gly Glu Tyr Met Phe Val Gln Cys Ala Ser Val Pro Ser
2128

Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gly Asp Asp Tyr
2176

Arg Val Phe Ser Glu Ala Cys Glu Gln Pro Glu Ala Gly Lys Ser Gly
2224

Arg Val Leu Leu Gly Leu Gly Ile Gly Thr Pro Phe Ile Ser
2272

Arg Val Leu Leu Gly Leu Gly Ile Gly Thr Pro Phe Ile Ser
2320

Arg Val Leu Leu Gly Leu Gly Ile Gly Thr Pro Phe Ile Ser
2368

Arg Val Leu Leu Gly Leu Gly Ile Gly Thr Pro Phe Ile Ser
2416

Glu Val Val Thr Gly Ile Ile Met Val Ile Leu Met Ala Ile
2464

Glu Val Val Thr Gly Ile Ile Met Val Ile Leu Met Ala Ile
2512
agt gaa caa cca gct ctc aac aag att tct cca aaa aag aag aag agt 2560
Ser Glu Gln Pro Ala Leu Asn Lys Ile Ser Pro Lys Lys Arg Lys Ser
810 815 820
act cta aaa acc aca aat gca tat ttt tat tgg gtt acc cgg gag caa 2608
Thr Leu Lys Thr Thr Asn Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln
825 830 835
gga tca ttt gat tgg ttc aaa ggt gtt atg aac gaa gta gct gaa ctt 2656
Gly Ser Phe Asp Trp Phe Lys Gly Val Met Asn Glu Val Ala Glu Leu
840 845 850 855
gat caa agg ggg gtc atc gag atg cat aac tac tta acg aag agt gtt tat 2704
Asp Gln Arg Gly Val Ile Glu Met His Asn Tyr Ser Leu Val Ser Tyr
860 865 870
gag gaa ggg gat gca cggt cgt ctc att acc atg gtc cag ggc ctt 2752
Glu Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met Val Gln Ala Leu
875 880 885
aac cat gct aag aat ggg gtt gat att gta tca ggc acc aag agt gtt agg 2800
Asn His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Thr Ser Val Arg
890 895 900
aca cat ttt gcc aga ccc aat tgg agg aaa gta ttt tcc aag acc tta 2848
Thr His Phe Ala Arg Pro Asn Trp Arg Lys Val Phe Ser Lys Thr Leu
905 910 915
acc aag cat gca aat gca aga ata gga gtt ttc ttc tac tgc ggt gca ccc 2896
Thr Lys His Ala Asn Ala Arg Ile Gly Val Phe Tyr Cys Gly Ala Pro
920 925 930 935
ata tta gct aaa gaa ctc agc aaa ctc tgc aaa gag ttt aac cca aag 2944
Ile Leu Ala Glu Leu Ser His Leu Cys Gly Phe Asn Gln Lys
940 945 950
ggc aca acg aag ttc gag ttt cac aaa gaa cat ttt tagaagccc 2990
Gly Thr Thr Lys Phe Glu Phe His Lys Glu His Phe 955 960
ttgagtacaa ttaatctttgc atcaacggta cacacatcgg taaaccagta tttaccacat 3050
tcatctttgg taccttgtatt gatgatttca ctgaaagcat aacatttga aggaataag 3110
cagagacaaa ttgtacataa tagaggaag cacatttaca gagaaaatc ataccaat 3170
gtatgtgta tagtggttggt atacctagtct acacctacaa cttcagac 3230
ccaaagggga gactctgttct tgggtctgtg ctgttagata tagggagggaa aaaaagacga 3290
caatgaatct gtgacgtgctat ctagagtaa tggagagagc taaaaagtaa 3350
ttgacctgct tggatagaagc aactatagaa aatggcaagc atggggagc agacacat 3410
gcttggtagc ggaggagca ataaaatgttt ggaagagaag aagagaaaat aagaggg 3470
gtgggacgact gatagcttgat ttggtggagc tataatggat gctagagggc ccctccaa 3530
aaatgctctat gtagaactat ctttccccct cttgtgtgtg atatatagat gggatatttt 3590
atatatact atatttataa gaggatagaa aatactgtgta tatgcaattc ttatattgtaa 3650
agtatctctg ttagtagtcttt ttaatcttgg aagaaggtact atcaagaggaa atatctctac 3710
gaaaaaaaaaaaaaaaaaaa aaaaaaa 3733

<210> 8
<211> 963
<212> PRT
<213> Solanum tuberosum
Met Arg Gly Leu Pro Gly His Glu Arg Arg Trp Thr Ser Asp Thr Val
1 5 10 15
Ser Ser Gly Lys Asp Leu Ser Gly Glu Ser Ser Pro Gly Thr Asp Ser
20 25 30
Gly Asn Ile Ser Gly Phe Ala Ser Glu Glu Phe Val Glu Val Ile Leu
35 40 45
Asp Leu Gln Asp Asp Thr Ile Ile Leu Arg Ser Val Glu Pro Ala
50 55 60
Thr Val Ile Asn Ile Asp Ala Ser Asp Pro Ala Thr Gly Val Gly Ile
65 70 75 80
Gly Gly Val Ser Ile Glu Thr Pro Ala Ser Leu Thr Ser Thr Ser Gly
85 90 95
Thr Arg Ser Pro Thr Met Arg Arg Ser Thr Ser Asn Lys Leu Arg Gln
100 105 110
Phe Ser Gln Glu Leu Lys Ala Glu Ala Val Ala Lys Ala Lys His Phe
115 120 125
Ser Gln Glu Leu Lys Ala Glu Leu Arg Arg Phe Ser Trp Ser His Gly
130 135 140
His Ala Ser Arg Thr Phe Ser Pro Ala Ser Phe Phe Gln Asn Ala Val
145 150 155 160
Val Gly Thr Gly Asn Gly Val Asp Ser Ala Leu Ala Ala Arg Ala Leu
165 170 175
Arg Arg Gln Arg Ala Gln Leu Asp Arg Thr Arg Ser Ser Ala His Lys
180 185 190
 Ala Leu Arg Gly Leu Lys Phe Ile Ser Asn Asn Lys Thr Asn Gly Trp
195 200 205 210 215 220
Asn Glu Val Glu Asn Phe Ala Lys Leu Ala Lys Asp Gly Tyr Leu
225 230 235 240
Tyr Arg Ser Asp Phe Ala Gln Cys Ile Gly Met Lys Asp Ser Lys Glu
250 255
Phe Ala Leu Glu Leu Phe Asp Ala Leu Ser Arg Arg Arg Arg Leu Lys
260 265 270
Val Asp Lys Ile Ser Lys Glu Leu Tyr Glu Tyr Trp Ser Gln Ile
275 280 285 290 295 300
Thr Asp Gln Ser Phe Asp Ser Arg Leu Gln Ile Phe Phe Asp Met Val
305 310 315 320
Asp Lys Asn Glu Asp Gly Arg Ile Gly Glu Glu Val Lys Glu Ile
325 330 335 340 345 350
Ile Met Leu Ser Ala Ser Ala Asn Lys Leu Ser Arg Leu Lys Glu Gln
355 360 365
21

Gln Asp Tyr Arg Lys Tyr Asp Val Leu Leu Leu Val Gly Leu Gly Ile 755 760 765
Gly Ala Thr Pro Phe Ile Ser Ile Leu Lys Asp Leu Leu Lys Asn Ile 770 775 780
Val Thr Met Glu Glu Gln Ala Asp Leu Val Ser Asp Phe Ser Gly Asn 785 790 795 800
Ser Asp Met Ser Ala Ala Thr Ser Glu Gln Pro Ala Leu Asn Lys Ile 805 810 815
Ser Pro Lys Lys Arg Lys Ser Thr Leu Lys Thr Thr Asn Ala Tyr Phe 820 825 830 835
Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly Val 840 845
Met Asn Glu Val Ala Glu Leu Asp Gln Arg Gly Val Ile Glu Met His 850 855 860
Asn Tyr Leu Thr Ser Val Tyr Glu Gly Asp Ala Arg Ser Ala Leu 865 870 875 880
Ile Thr Met Val Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile 885 890 895
Val Ser Gly Thr Ser Val Arg Thr His Phe Ala Arg Pro Asn Trp Arg 900 905 910
Lys Val Phe Ser Lys Thr Leu Thr Lys His Ala Asn Ala Arg Ile Gly 915 920 925
Val Phe Tyr Cys Gly Ala Pro Ile Leu Ala Lys Glu Leu Ser Lys Leu 930 935 940
Cys Lys Glu Phe Asn Gln Lys Gly Thr Thr Lys Phe Glu Phe His Lys 945 950 955 960
Glu His Phe

<210> 9
<211> 3316
<212> DNA
<213> Lycopersicon esculentum

<220>
<221> CDS
<222> (146) .. (3112)
<223> coding for NADPH oxidase

<400> 9
cgccactctgt gccgaatctcg gcacgaggct ctgaaaaact ttctcatcaca agcctaattctta 60
tttctctctt ttctttttgg tcaggtctct acagaaaaact ctgttttcaa cgtatatatta 120
tttatgtcca ttgatgttgg gacag atg agg ggt tta cct ggg cat gaa cgc 172
 Met Arg Gly Leu Pro Gly His Glu Arg 1 5

cgg tgg acg tcg gat acg gtt tct tcc ggg aag gat tta aag gtt gag 220
Arg Trp Thr Ser Asp Thr Val Ser Ser Gly Lys Asp Leu Ser Gly Glu 10 15 20 25
 Arg Trp Thr Ser Asp Thr Val Ser Ser Gly Lys Asp Leu Ser Gly Glu 10 15 20 25
tca tcg cg gga act gat tcc ggg aat aat tcc ggt ttt gct tcg gag 268
 Ser Ser Pro Gly Thr Asp Ser Gly Asn Ile Ser Gly Phe Ala Ser Glu 30 35 40
22

gag ttt gtt gaa gtt ata ctt gat ctt cag gat gat gat acg att att 316
Glu Phe Val Glu Val Ile Leu Asp Leu Gln Asp Asp Asp Thr Ile Ile
 45 50 55

tta cgg agc gtt gaa ccc gct act gta atc aac att gat ggt tct gat 364
Leu Arg Ser Val Glu Pro Ala Thr Val Val Asn Ile Asp Gly Ser Asp
 60 65 70

cct gct tcc gga gtt att ggt gga gca tcc att gaa act ccg gcg 412
Pro Ala Ser Gly Val Gly Ile Gly Gly Ala Ser Ile Thr Pro Ala
 75 80 85
tcg gtg acg tcg acg tcg gaa act cga tcc cgg atg atg ctt cgg atg 460
Ser Val Thr Ser Thr Ser Thr Arg Ser Pro Met Met Arg Arg Ser
 90 95 100 105

aca tct aat aag ttt cgt cag ttt tca cag gag ttg aaa gct gat gct 508
Thr Ser Asn Lys Phe Arg Gln Phe Ser Gin Glu Leu Lys Ala Glu Ala
 110 115 120

gtt gcg aaa gcg aag cat ttc tcg caa gag ctt aaa gcg gcg ctt cag 556
Val Ala Lys Ala Lys His Phe Ser Gin Glu Leu Lys Ala Glu Leu Arg
 125 130 135

aga ttc tca tgg agc cat gga cat gcg tct cgt gct ttt tcg cgg gcg 604
Arg Phe Ser Trp Ser His Gly His Ala Ser Arg Ala Phe Ser Pro Ala
 140 145 150

tcg ttt ttc cca aac gct gtc gtc gga aca ggc aac ggt gta gac tcc 652
Ser Phe Phe Gin Asn Val Val Gly Thr Gly Asn Gly Val Asp Ser
 155 160 165

gct tta gcg gct cga gca tta cgt cgg cag cgt gct cag ctc gac cgg 700
Ala Leu Ala Ala Arg Ala Leu Arg Gin Ala Gin Leu Gin Gin Gin Arg
 170 175 180 185

act cgt tcc agc gca cac aag gct ctt cgt gga ctc cgg cta act cgc 748
Thr Arg Ser Ser Ala His Lys Ala Leu Arg Gin Leu Lys Phe Ile Ser
 190 195 200

aat aac aaa act aac gga tgg aat gaa gtt gaa aac aat ttc gct aag 796
Asn Asn Lys Thr Asn Gly Trp Asn Gin Val Glu Asn Asn Phe Ala Lys
 205 210 215

ctc gct aaa gac ggt tac ctt tat cgt tcc gat ttc gcg cca tgc atc 844
Leu Ala Lys Gin Tyr Leu Tyr Arg Ser Gin Phe Gin Gin Cys Ile
 220 225 230

ggt cag tac tca cgg cgg cga tca tca cag ttt aat tat aga tta att 892
Gly Gin Tyr Ser Arg Gin Arg Ser Leu Gin Phe Asn Tyr Arg Leu Ile
 235 240 245

aca tta att ttg att aat tat ttc gtt aaa ggt atg aag gat tca aag 940
Thr Leu Ile Leu Ile Asn Tyr Leu Val Lys Gin Met Lys Gin Arg Ser Lys
 250 255 260 265

aga gtt gaa att agc caa gaa gtt tat gtt tat cag tgg tcc cta 988
Glu Phe Ala Leu Gin Gin Tyr Leu Val Tyr Leu Tyr Arg Gin Arg Gin Gin
 270 275 280

aag gtt gat aag att agc caa gaa gtt tat ggt tat tgg tcc cta 1036
Lys Val Gin Gin Gin Gin Gin Tyr Gin Tyr Gin Gin Gin Gin
 285 290 295

atc acc gat cag aag gtt gat ttc gat tcc cgg ctt cag atc ttc ttc gac atg 1084
Ile Thr Gin Ser Phe Gin Ser Arg Leu Gin Ile Phe Phe Gin Met
gtg gac aag aat gaa gat ggt cga att ggt gaa gaa gaa gta aaa gag
Val Asp Lys Asn Glu Asp Gly Arg Ile Gly Glu Glu Glu Val Lys Glu
315 320 325
atc atc atg cta agt gcc tct gca aac aaa tta tca aga tta aaa gaa
Ile Ile Met Leu Ser Ala Ser Ala Asn Lys Leu Ser Arg Leu Lys Glu
330 335 340 345
caa gca gag gag tag gcc gct ctc gcc atc agt gaa gaa tta gat cct gaa
Gln Ala Glu Glu Tyr Ala Glu Ile Met Glu Leu Asp Pro Glu
350 355 360
aga ctt ggc tac att gag cta tgg cag ctc gaa aca ctt ctc ctc cca
Arg Leu Gly Tyr Ile Glu Leu Trp Glu Glu Thr Leu Leu Gln
365 370 375
aag gac act tac ctc aac tac agt cca gca cta agc tac aca aca aag cca
Lys Asp Thr Tyr Leu Asn Tyr Ser Gln Ala Leu Ser Tyr Thr Ser Gln
380 385 390
gct tgg agc cca aat ctc cca ggg tgg agg aag aag aag gag cca ata aag
Ala Leu Ser Gln Asn Leu Glu Gly Leu Arg Lys Arg Ser Pro Ile Arg
395 400 405
aga atg agc aca aaa ctt gtc tat tca ctc gcc gag aag atg tgg aag aag
Arg Met Ser Thr Lys Leu Val Tyr Ser Leu Gln Glu Asn Trp Lys Arg
410 415 420 425
att tgg ctc gtc tgg att tgg ata atg att gga ctt ttt ctt
Ile Trp Val Leu Leu Val Leu Trp Ile Ile Met Ile Gly Leu Phe Leu
430 435 440
tgg aag ttc tat cag tac aaa cac aaa aat gca ttt cca aag ctc atg ggt
Trp Lys Phe Tyr Glu Tyr Glu Lys Ser Ala Phe Gln Val Met Gln
445 450 455
tat tgc ctt cta aca gct aag ggt gct gct gag act ctc aag ttc aac
Tyr Cys Leu Leu Thr Ala Lys Gly Ala Ala Glu Thr Leu Lys Phe Asn
460 465 470
atg gct tta ata tgg ttc cca gta tgg aag aac acc att aca ttc ctc
Met Ala Leu Ile Leu Leu Pro Val Cys Arg Asn Thr Ile Thr Phe Leu
475 480 485
agg tct act aac ttc tgg agc ttt gta ccc aat ttc gag gac aac ata aac
Arg Ser Thr Lys Ser Leu Cys Phe Val Pro Phe Asp Asn Ile Asn
490 495 500 505
ttt cac aag act gtt gct gcc gcc att gtc act gtt atc ata ctc cat
Phe His Lys Thr Val Ala Ala Ala Ile Val Thr Gly Ile Ile Leu His
510 515 520
gcc ggt aat cac ctt gta tgt gat ttc cca aag cct ata cat gcc aat
Ala Gly Asn His Leu Val Ala Asp Phe Pro Lys Leu Ile His Ala Asn
525 530 535
agt acg aat tat cag aat tgg gat gaa gaa ttt gcc cca aag cag
Ser Thr Asn Tyr Gln Lys Tyr Thr Leu Asp Phe Gly Pro Ser Gln
540 545 550
cct cag tac ata gat ctt cga gaa gcc cca aag att ggt gag ctt act gga ata
Pro Gln Tyr Ile Asp Leu Val Lys Gly Val Glu Gly Val Thr Gly Ile
555 560 565
gtt atg gta atc ctc atg gcc att gct ttc act ctt gca aag cga tgg
Val Met Val Ile Leu Met Ala Ile Ala Phe Thr Leu Ala Thr Arg Trp
570 575 580 585
24

```
ttt agg cgg agc ctc att aag tta ccc aaa cct ttt gat aga ctc act 1948
Phe Arg Arg Ser Leu Ile Lys Leu Pro Lys Pro Phe Asp Arg Leu Thr
590 595

ggt ttc aat gcg ttc tgg tac tcg cac cac ctt ctc atc att gtc tac 1996
Gly Phe Asn Ala Phe Trp Tyr Ser His His Leu Leu Ile Ile Val Tyr
605 610 615

atc gta ctg atc atc cat ggc aca ttc ctc tac ctt gtt cat aac tgg 2044
Ile Val Leu Ile Ile His Gly Thr Phe Tyr Leu Tyr Val His Asn Trp
620 625 630

tac tcc aaa acg acu tgg atg tat ata gca gtt cct gta ctt ctt tac 2092
Tyr Ser Lys Thr Thr Thr Met Tyr Ile Ala Val Pro Val Leu Tyr
635 640 645

```

```
gca ggg gaa aga act ctt aga ttc ttc cga tca ggc tta tac agt gtc 2140
Ala Gly Glu Arg Thr Leu Arg Phe Phe Arg Ser Gly Leu Tyr Ser Val
650 655 660 665

cgg ctt cta aaa gta gca ata tat cct gga aat gtc ctt act ctt caa 2188
Arg Leu Leu Lys Val Ala Ile Tyr Pro Gly Asn Val Leu Thr Leu Gln
670 675 680

atg tct aag cct cgc caa ttt cga tac aag agt gga cag tat atg ttt 2236
Met Ser Lys Pro Pro Gln Phe Arg Tyr Lys Ser Gly Glu Tyr Met Phe
685 690 695

```

gtc cag tgt cca gct gtt tct cca ttc gag tgg cat cca ttt tcc att 2284
Val Gln Cys Pro Ala Ser Pro Phe Glu Trp His Pro Phe Ser Ile
700 705 710

```
act tca gct cct ggg gat gac tac ttg agc att cat atc cga caa ctt 2332
Thr Ser Ala Pro Gly Asp Tyr Ser Leu Ile Tyr His His Arg Leu
715 720 725

ggt gac tgg act cca gaa ctc aag cga gtt ttt tcc gag gct tgc gag 2380
Gly Asp Trp Thr Gln Glu Leu Lys Arg Val Phe Ser Glu Ala Cys Glu
730 735 740 745

cag cca gag gct gga aag agt ggc ctc aga gct gac gga aac acc 2428
Gln Pro Glu Ala Gly Lys Ser Gly Leu Leu Arg Ala Asp Glu Asn Thr
750 755 760

```
aaa cca agt tgt cca aagctaatta gat gga cct tat gga gct cca 2476
Lys Thr Ser Leu Pro Lys Leu Leu Ile Asp Gly Pro Tyr Gly Ala Pro
765 770 775

gca cca gat tac cgg aag tat gat gtc tta ctg ctt gtt ggt ctt ggc 2524
Ala Gln Asp Tyr Lys Arg Tyr Lys Pro Leu Tyr Leu Val Gly Leu Gly
780 785 790

```
att gga gca act ccc ttt ata agt atc ctg aaa gac tgg ctc aaa aac 2572
Ile Gly Ala Thr Pro Phe Ile Leu Ser Leu Leu Asp Leu Leu Lys Asn
795 800 805

```
atc gtc gca atg gag gag cca gca gat tta gtc tcg gat ttc agt gga 2620
Ile Val Ala Met Glu Glu Gln Ala Asp Leu Val Ser Asp Phe Ser Gly
810 815 820 825

```
aac tcg gac atg gct gca aca agt gaa cca cca gct ctc aac aag 2668
Asn Ser Asp Met Ser Ala Ala Thr Ser Glu Gln Pro Ala Leu Asn Lys
830 835 840

```
att tct cca aaa aag aga aag agt act cta aaa acc aca aat gca tat 2716
Ile Ser Pro Lys Lys Arg Lys Ser Thr Leu Lys Thr Thr Asn Ala Tyr
845 850 855
```
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Arg</td>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Arg</td>
<td>Gly</td>
<td>His</td>
<td>Glu</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Ser</td>
<td>Asp</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Gly</td>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>Gly</td>
<td>Asn</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Phe</td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Phe</td>
<td>Glu</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Asp</td>
<td>Thr</td>
<td>Ile</td>
<td>Leu</td>
</tr>
<tr>
<td>Asp</td>
<td>Gln</td>
<td>Asp</td>
<td>Thr</td>
<td>Ile</td>
<td>Leu</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Ile</td>
<td>Asp</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Ile</td>
<td>Asp</td>
<td>Ser</td>
<td>Gly</td>
<td>Asp</td>
</tr>
<tr>
<td>Thr</td>
<td>Arg</td>
<td>Ser</td>
<td>Pro</td>
<td>Met</td>
<td>Arg</td>
</tr>
<tr>
<td>Thr</td>
<td>Arg</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
<td>Asn</td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
<td>Pro</td>
<td>Met</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Ser</td>
<td>Asn</td>
<td>Lys</td>
<td>Phe</td>
</tr>
<tr>
<td>Pro</td>
<td>Met</td>
<td>Arg</td>
<td>Arg</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Gln</td>
<td>Glu</td>
<td>Ala</td>
<td>Glu</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Ala</td>
<td>Val</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>His</td>
<td>Phe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2764
2812
2860
2908
2956
3004
3052
3100
3152
3212
3272
3316

<210> 10
<211> 989
<212> PRT
<213> Lycopersicon esculentum

<400> 10
<table>
<thead>
<tr>
<th>Ser Gln Glu Leu Lys Ala Glu Leu Arg Arg Phe Ser Trp Ser His Gly</th>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>His Ala Ser Arg Ala Phe Ser Pro Ala Ser Phe Phe Gln Asn Ala Val</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Val Gly Thr Gly Asn Gly Val Asp Ser Ala Leu Ala Ala Arg Ala Leu</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Arg Arg Gln Arg Ala Gln Leu Asp Arg Thr Arg Ser Ser Ala His Lys</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Ala Leu Arg Gly Leu Lys Phe Ile Ser Asn Asn Lys Thr Asn Gly Trp</td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Asn Glu Val Glu Asn Phe Ala Lys Leu Ala Lys Asp Gly Tyr Leu</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Tyr Arg Ser Asp Phe Ala Gln Cys Ile Gly Gln Tyr Ser Arg Arg Arg</td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Ser Leu Gln Phe Asn Tyr Arg Leu Ile Thr Leu Ile Leu Ile Asn Tyr</td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Leu Val Lys Gly Met Lys Asp Ser Lys Glu Phe Ala Leu Glu Leu Phe</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Asp Ala Leu Ser Arg Arg Arg Leu Lys Val Asp Lys Ile Ser Gln</td>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Glu Leu Tyr Glu Tyr Glu Tyr Trp Ser Ser Gln Ile Thr Asp Gln Ser Phe Asp</td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Ser Arg Leu Gln Ile Phe Phe Asp Met Val Asp Lys Asn Glu Asp Gly</td>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Arg Ile Gly Glu Glu Glu Val Lys Glu Ile Ile Met Leu Ser Ala Ser</td>
<td>325</td>
<td>330</td>
<td>335</td>
</tr>
<tr>
<td>Ala Asn Lys Leu Ser Arg Leu Lys Glu Gln Ala Ala Glu Tyr Ala Ala</td>
<td>340</td>
<td>345</td>
<td>350</td>
</tr>
<tr>
<td>Leu Ile Met Glu Leu Asp Pro Glu Arg Leu Gly Tyr Ile Glu Leu</td>
<td>355</td>
<td>360</td>
<td>365</td>
</tr>
<tr>
<td>Trp Gln Leu Glu Thr Leu Leu Gln Lys Asp Thr Tyr Leu Asn Tyr</td>
<td>370</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td>Ser Gln Ala Leu Ser Tyr Thr Ser Gln Ala Leu Ser Gln Asn Leu Gln</td>
<td>385</td>
<td>390</td>
<td>395</td>
</tr>
<tr>
<td>Gly Leu Arg Lys Arg Ser Pro Ile Arg Arg Met Ser Thr Lys Leu Val</td>
<td>405</td>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>Tyr Ser Leu Gln Glu Asn Trp Lys Arg Ile Trp Val Leu Val Leu Trp</td>
<td>420</td>
<td>425</td>
<td>430</td>
</tr>
<tr>
<td>Ile Leu Ile Met Ile Gly Leu Phe Leu Trp Lys Phe Tyr Gln Tyr Lys</td>
<td>435</td>
<td>440</td>
<td>445</td>
</tr>
<tr>
<td>Gln Lys Ser Ala Phe Gln Val Met Gly Tyr Cys Leu Leu Thr Ala Lys</td>
<td>450</td>
<td>455</td>
<td>460</td>
</tr>
<tr>
<td>Gly Ala Ala Glu Thr Leu Lys Phe Asn Met Ala Leu Ile Leu Leu Pro</td>
<td>465</td>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>Val Cys Arg Asn Thr Ile Thr Phe Leu Arg Ser Thr Lys Leu Ser Cys</td>
<td>485</td>
<td>490</td>
<td>495</td>
</tr>
<tr>
<td>Phe Val Pro Phe Asp Asp Asn Ile Asn Phe His Lys Thr Val Ala Ala</td>
<td>500</td>
<td>505</td>
<td>510</td>
</tr>
<tr>
<td>Residue</td>
<td>Ala</td>
<td>Ile</td>
<td>Val</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Position</td>
<td>515</td>
<td>520</td>
<td>525</td>
</tr>
<tr>
<td>Residue</td>
<td>Asp</td>
<td>Phe</td>
<td>Pro</td>
</tr>
<tr>
<td>Position</td>
<td>530</td>
<td>535</td>
<td>540</td>
</tr>
<tr>
<td>Residue</td>
<td>Leu</td>
<td>Val</td>
<td>Asn</td>
</tr>
<tr>
<td>Position</td>
<td>545</td>
<td>550</td>
<td>555</td>
</tr>
<tr>
<td>Residue</td>
<td>Lys</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>Position</td>
<td>565</td>
<td>570</td>
<td>575</td>
</tr>
<tr>
<td>Residue</td>
<td>Ile</td>
<td>Ala</td>
<td>Phe</td>
</tr>
<tr>
<td>Position</td>
<td>580</td>
<td>585</td>
<td>590</td>
</tr>
<tr>
<td>Residue</td>
<td>Leu</td>
<td>Pro</td>
<td>Lys</td>
</tr>
<tr>
<td>Position</td>
<td>595</td>
<td>600</td>
<td>605</td>
</tr>
<tr>
<td>Residue</td>
<td>Ser</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td>Position</td>
<td>610</td>
<td>615</td>
<td>620</td>
</tr>
<tr>
<td>Residue</td>
<td>Thr</td>
<td>Phe</td>
<td>Leu</td>
</tr>
<tr>
<td>Position</td>
<td>625</td>
<td>630</td>
<td>635</td>
</tr>
<tr>
<td>Residue</td>
<td>Tyr</td>
<td>Ile</td>
<td>Ala</td>
</tr>
<tr>
<td>Position</td>
<td>645</td>
<td>650</td>
<td>655</td>
</tr>
<tr>
<td>Residue</td>
<td>Phe</td>
<td>Phe</td>
<td>Arg</td>
</tr>
<tr>
<td>Position</td>
<td>660</td>
<td>665</td>
<td>670</td>
</tr>
<tr>
<td>Residue</td>
<td>Tyr</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Position</td>
<td>675</td>
<td>680</td>
<td>685</td>
</tr>
<tr>
<td>Residue</td>
<td>Arg</td>
<td>Tyr</td>
<td>Lys</td>
</tr>
<tr>
<td>Position</td>
<td>690</td>
<td>695</td>
<td>700</td>
</tr>
<tr>
<td>Residue</td>
<td>Pro</td>
<td>Phe</td>
<td>Glu</td>
</tr>
<tr>
<td>Position</td>
<td>705</td>
<td>710</td>
<td>715</td>
</tr>
<tr>
<td>Residue</td>
<td>Tyr</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Position</td>
<td>725</td>
<td>730</td>
<td>735</td>
</tr>
<tr>
<td>Residue</td>
<td>Lys</td>
<td>Arg</td>
<td>Val</td>
</tr>
<tr>
<td>Position</td>
<td>740</td>
<td>745</td>
<td>750</td>
</tr>
<tr>
<td>Residue</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>Position</td>
<td>755</td>
<td>760</td>
<td>765</td>
</tr>
<tr>
<td>Residue</td>
<td>Leu</td>
<td>Ile</td>
<td>Asp</td>
</tr>
<tr>
<td>Position</td>
<td>770</td>
<td>775</td>
<td>780</td>
</tr>
<tr>
<td>Residue</td>
<td>Asp</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td>Position</td>
<td>785</td>
<td>790</td>
<td>795</td>
</tr>
<tr>
<td>Residue</td>
<td>Ser</td>
<td>Ile</td>
<td>Leu</td>
</tr>
<tr>
<td>Position</td>
<td>805</td>
<td>810</td>
<td>815</td>
</tr>
<tr>
<td>Residue</td>
<td>Ala</td>
<td>Asp</td>
<td>Leu</td>
</tr>
<tr>
<td>Position</td>
<td>820</td>
<td>825</td>
<td>830</td>
</tr>
<tr>
<td>Residue</td>
<td>Thr</td>
<td>Ser</td>
<td>Glu</td>
</tr>
<tr>
<td>Position</td>
<td>835</td>
<td>840</td>
<td>845</td>
</tr>
<tr>
<td>Residue</td>
<td>Ser</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Position</td>
<td>850</td>
<td>855</td>
<td>860</td>
</tr>
<tr>
<td>Residue</td>
<td>Gln</td>
<td>Gly</td>
<td>Ser</td>
</tr>
<tr>
<td>Position</td>
<td>865</td>
<td>870</td>
<td>875</td>
</tr>
<tr>
<td>Residue</td>
<td>Leu</td>
<td>Asp</td>
<td>Gln</td>
</tr>
<tr>
<td>Position</td>
<td>885</td>
<td>890</td>
<td>895</td>
</tr>
</tbody>
</table>
<210> 11
<211> 3080
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (15) .. (2846)
<223> coding for NADPH oxidase
<400> 11

ccgacctttgg atct atg aaa ccg ttc tca aag aac gat cgg cga cgg tgg
         1      5    10
Met Lys Pro Phe Ser Lys Asn Asp Arg Arg Arg Trp

tca ttt gat tca gtt tcc gcc gga aaa acc gcc gtc gga aqt gca tca
         15     20    25
Ser Phe Asp Ser Val Ser Ala Gly Lys Thr Ala Val Gly Ser Ala Ser

act tca ccg gga act gaa tac tcc att aac ggt gat caa gag ttc gtt
        30    35    40
Thr Ser Pro Gly Thr Glu Tyr Ser Ile Asn Gly Asp Gln Glu Phe Val

gaa gtc aca atc gat ctt cca gac gat gac aca atc gtt ctt cgt agc
        45   50    55    60
Glu Val Thr Ile Asp Leu Gln Asp Asp Thr Ile Val Leu Arg Ser

gtc gag cca gca acc gcc att aat gtc atc gga gat atc tcc gag gac
        65   70    75
Val Glu Pro Ala Thr Ala Ile Asn Val Ile Gly Asp Ile Ser Asp

aac acc gga ata atg act ccg gtt tcg att tcg aga tct ccg acg atg
        80   85    90
Asn Thr Gly Ile Met Thr Pro Val Ser Ile Ser Arg Ser Pro Thr Met

aaa cga act tca tct aat ccg ttc cga caa ttc cca cag cgg ttt aaa
        95  100   105
Lys Arg Thr Ser Ser Asn Arg Phe Arg Gln Phe Ser Gln Glu Leu Lys

gcc gaa gct gtg gcg aaa ggg aaa cag tta tct cag gag ttg aaa cga
        110  115  120
Ala Glu Ala Val Ala Lys Ala Lys Gln Leu Ser Gln Glu Leu Lys Arg

ttc tca tgg tct cgt tct ttc ggt aac tta acc act act aqt acc
        125  130   135   140
Phe Ser Trp Ser Arg Ser Phe Ser Gly Asn Leu Thr Thr Thr Ser Thr

gcc gct aat cca aqc ggc gct ggt ggt ggt gtg ttg gtg aac tcc gct
        145  150  155
Ala Ala Asn Gln Ser Gly Gly Ala Gly Gly Gly Leu Val Asn Ser Ala
29

tta gaa gcg cga gcg ttg cga aag caa cgt gct cag tta gat cgg act 530
Leu Glu Ala Arg Ala Leu Arg Lys Gln Arg Ala Gln Leu Asp Arg Thr
160 165 170

cgg tct agt gct caa aga gct ctt cgt ggt ttg aga ttc att agc aat 578
Arg Ser Ser Ala Gln Arg Ala Leu Arg Gly Leu Arg Phe Ile Ser Asn
175 180 185

aag caa aag aac gtt gat ggt tgg aac gat gtt cca tca aat ttc gaa 626
Lys Gln Lys Asn Val Asp Gly Trp Asn Asp Val Gln Ser Asn Phe Glu
190 195 200

aaa ttc gaa aaa aat gtt tac atc tat cgc tcc gat ttc gct caa tgc 674
Lys Phe Glu Lys Asn Gly Tyr Ile Tyr Arg Ser Asp Phe Ala Gln Cys
205 210 215 220

ata gga atg aaa gag ttc gaa aaa tgg gaa tct ttc gat gca 722
Ile Gly Met Lys Asp Ser Lys Glu Phe Ala Leu Glu Leu Phe Asp Ala
225 230 235

ttg agt aga aga aga tta aaa gta gag aaa atc aat cac gat gag 770
Leu Ser Arg Arg Arg Leu Lys Val Glu Lys Ile Asn His Asp Glu
240 245 250

ctt tat gag tat tgg tca cca atc aac gac gag agt ttc gat tct cgt 818
Leu Tyr Glu Tyr Trp Ser Gln Ile Asn Asp Glu Ser Phe Asp Ser Arg
255 260 265

ctc cag atc ttc gac ata gtg gac aag aat gaa gat ggg aga att 866
Leu Gln Ile Phe Phe Asp Ile Val Asp Lys Asp Gly Arg Ile
270 275 280

aca gaa gag gaa gta aaa gag ata ata atg ttc agt gca tct gca aat 914
Thr Glu Glu Glu Val Lys Ile Ile Met Leu Ser Ala Ser Ala Asn
285 290 295 300

aag cta tca aga tta aag gaa cca gca gag gaa tat gca gct ttt att 962
Lys Leu Ser Arg Leu Lys Gln Ala Glu Glu Tyr Ala Ala Leu Ile
305 310 315

atg gaa gag tta gat cct gaa aga ctt gcc tac ata gag cta tgg caa 1010
Met Glu Glu Leu Asp Pro Glu Arg Leu Gly Tyr Ile Glu Leu Trp Gln
320 325 330

cta gag act ttg ctt cta cca aaa gag aca tac ctc aat tac agt caa 1058
Leu Glu Thr Leu Leu Gln Lys Asp Thr Tyr Leu Asn Tyr Ser Gln
335 340 345

gca ttg agc tat acg aqc cca gca ttg agc cca aac ctt cca ggg tta 1106
Ala Leu Ser Tyr Thr Gln Ala Leu Ser Gln Asn Leu Gln Gly Leu
350 355 360

agg gga aag agt cga ata cat aga atg agt tgc gat ttc gtc tac att 1154
Arg Gly Lys Ser Arg Ile His Arg Met Ser Ser Asp Phe Val Tyr Ile
365 370 375 380

atg caa gag aat tgg aaa agg ata tgg gtt ttc tta tgg atc atg 1202
Met Gln Glu Asn Trp Lys Arg Ile Trp Val Leu Ser Leu Trp Ile Met
385 390 395

atc atg atc gga tta ttc ttg tgg aaa ttc ttc tca aag cca aag 1250
Ile Met Ile Gly Leu Phe Leu Trp Lys Phe Phe Glu Tyr Lys Gln Lys
400 405 410

gat gca ttt cat gtg atg gga tat tgt tta ctc aca gcc aaa gga gca 1298
Asp Ala Phe His Val Met Gly Tyr Cys Leu Leu Thr Ala Lys Gly Ala
415 420 425
PF 53765

30

gct gaa aca ctt aac ttc aac atg gct cta ata ctt ttc cca gtt tgc
Ala Glu Thr Leu Lys Phe Asn Met Ala Leu Ile Leu Phe Pro Val Cys
430  435  440

aga aac acc att act tgg ctt aga tcc aca aga ctc tct tac ttc gtt
Arg Asn Thr Ile Thr Trp Leu Arg Ser Thr Arg Leu Ser Tyr Phe Val
445  450  455  460

cct ttt gat gat aat atc aac ttc cac aag aca att gct gga gcc att
Pro Phe Asp Asp Ile Asn Phe His Lys Thr Ile Gly Ala Ile
465  470  475

gta gct gtt gtc ctt cat att gga gac cat ctt gct tgt gat ttc
Val Val Ala Val Ile Leu His Ile Gly Asp His Leu Ala Cys Asp Phe
480  485  490

cct aga att gtt aga gcc acc gaa tac gat tac aat cgg tat ctt tgt
Pro Arg Ile Val Arg Ala Thr Glu Tyr Asp Tyr Asn Arg Tyr Leu Phe
495  500  505

cat tac ttt cca aca aaa cag cca aca tac ttc gac ctc gtt aag gga
His Tyr Phe Gln Thr Lys Gln Pro Thr Tyr Phe Asp Leu Val Lys Gly
510  515  520

cct gaa gga atc act ggg att tta atg gtc att tgt atg att att tca
Pro Glu Gly Ile Thr Gly Ile Leu Met Val Ile Leu Met Ile Ile Ser
525  530  535  540

ttc aca tta gca aca aga tgg ttt agg cgt aac cta gtc aag ctt cct
Phe Thr Leu Ala Thr Pro Phe Arg Arg Asn Val Leu Val Leu Pro
545  550  555

aag cca ttt gat cga cta acc ggt ttc aac gcc ttt tgg tat tcg cat
Lys Pro Phe Asp Leu Thr Gly Phe Asn Ala Pro Phe Thr Tyr Ser His
560  565  570

cat tgg ttt gtc att gtt tat atc tgg ctt att ctt cat ggt atc ttc
His Leu Phe Val Ile Val Tyr Ile Leu Leu Ile His Gly Ile Phe
575  580  585

ctc tat ttc gcc aag cct tgg tat gtt cgt aac aca tgg atg tat ctt
Leu Tyr Phe Ala Lys Pro Trp Tyr Val Arg Thr Thr Trp Met Tyr Leu
590  595  600

gca gta cca gtt tta ctc tat ggt gga gaa aga aca ctt agg tac ttc
Ala Val Pro Val Leu Tyr Gly Gly Glu Arg Thr Leu Arg Tyr Phe
605  610  615  620

cgt cct gtt tct tat tgc gtt cga ctt ctt ctt aag gtt gct ata tat cct
Arg Ser Gly Ser Tyr Ser Val Arg Leu Leu Lys Val Ala Ile Tyr Pro
625  630  635

ggt aat gtt cta acg cta cca atg tcg aaa cca act cca ttt cgt tac
Gly Asn Val Leu Thr Leu Lys Met Ser Lys Pro Thr Gln Phe Arg Tyr
640  645  650

aaa agc gga cca tac atg ttt gtc cca ttt gtt gct gtt cca ttc
Lys Ser Gly Gln Tyr Met Phe Val Gln Cys Pro Ala Val Ser Pro Phe
655  660  665

gag tgg cat cca ttc tca att act tcc gca cct gaa gat gat tat atc
Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Glu Asp Asp Tyr Ile
670  675  680

agc att cac att aga cca ctt ggt gat tgg act cca gaa ctc aaa aga
Ser Ile His Ile Arg Gln Leu Gly Asp Trp Thr Gln Glu Leu Lys Arg
685  690  695  700
31
gta ttc tct gaa gtt tgt gag cca ccg gtt ggc ggt aaa agc gga ctt 2162
Val Phe Ser Glu Val Cys Glu Pro Pro Val Gly Gly Lys Ser Gly Leu 705
Val Gly 710 715
ctc aga gcc gac gaa aca aac aag aaa agt ttg cca aag cta tgg ata 2210
Leu Arg Ala Asp Glu Thr Thr Lys Ser Leu Pro Lys Leu Leu Ile 720
Leu Leu 725 730
gat gga ccg tac ggt gca cca gca caa gat tat agg aaa tat gat gtt 2258
Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asp Tyr Arg Lys Tyr Asp Val 735
Asp Asp 740 745
ctc tta gtt ggt ctt ggc att ggt gca act cca ttt atc agt atc 2306
Leu Leu Leu Val Gly Leu Gly Ile Gly Ala Thr Pro Phe Ile Ser Ile 750
Val Val 755 760
ttg aac gat ttc ctt aac aac att gtt aax atg gaa gag cat ggc gag 2354
Leu Lys Asp Leu Leu Asn Asn Ile Val Lys Met Glu Glu His Ala Asp 765
Leu Leu 770 775 780
tcg tcc tgc gat aga tca tca gaa tac agc aca gga agc ac 2402
Ser Ile Ser Asp Phe Ser Arg Ser Ser Glu Tyr Ser Thr Gly Ser Asn 785
Leu Leu 790 795
ggt gac acc cca aga cga aag aqa ata cta aax acc aca aat gct tat 2450
Gly Asp Thr Pro Arg Arg Lys Arg Ile Leu Lys Thr Thr Asn Ala Tyr 800
Gly Asp 805 810
ttc tac tgg gtc aca aga gaa cca ggg tgt ctt gtt gat ggg tgg tcc aag 2498
Phe Tyr Trp Val Thr Arg Glu Gly Ser Phe Asp Trp Phe Lys Gly 815
Phe Phe 820 825

gtc atg aac gaa gtt gca gaa ctt gac cca ccg gtt gttg aag atg 2546
Val Met Asn Glu Ala Glu Ala Asp Gly Arg Glu Ala Glu Val Ile Glu Met 830
Val Leu 835 840
cat aac tat tta aca agt tgt tat gaa gaa ggt gat gct cgt ctt ctt 2594
His Asn Tyr Leu Thr Ser Val Tyr Glu Gly Asp Ala Arg Ser Ala 845
His Leu 850 855 860
ctc att aca atg gtt cca gct ctt aat cat gcc aaa aat ggt gtc gac 2642
Leu Ile Thr Met Val Glu Ala Leu Asn His Ala Lys Asn Gly Val Asp 865
Leu Gly 870 875
att gtc tct ggc act agg gtc aca aca cac ctt gca aga cct aat tgg 2690
Ile Val Ser Gly Thr Arg Val Arg Thr His Phe Ala Arg Pro Asn Trp 880
Leu Gly 885 890
aag aag gtt ctc aca aag cta aag tcc aag cat tgc aat gca aca aca 2738
Lys Lys Val Leu Thr Lys Leu Ser Ser Ser Lys His Cys Asn Ala Arg Thr 895
Lys Leu 900 905
gga gtt ttt tat tgc gga gta ccg gtt tta ggg aag gag ctt agc aa 2786
Gly Val Phe Tyr Cys Gly Val Pro Val Leu Gly Lys Glu Leu Ser Lys 910
Gly Gly 915 920
coa ctc aca aac ttc aat cca aac ggt tca acc aag ggg aag cca 2834
Leu Alsln Thr Phe Glu Gly Lys Ser Leu Phe Phe His Asn Ala Arg Thr 925
Leu Leu 930 935 940
aag gag cat ttc taaaagcaca gaaggaaga gccaagagcc ctctagatctc 2886
Lys Glu His Phe

ttaaatctt caaatattlc gactattagct aataaagccaa tctcttcact attaattc 2946
aaggtattaa acgttaacac actgtcacaag gtggagtgtgt taacgttttag ctcacacggt 3006
tctaggttata ttaatacgcgag ggcatacggt gaaatatacg agacagaga aatcagggg 3066
| Residue | 1 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | 225 | 230 | 235 | 240 | 245 | 250 | 255 | 260 | 265 | 270 | 275 | 280 | 285 | 290 | 295 | 300 | 305 | 310 | 315 | 320 | 325 | 330 | 335 |
|---------|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
Glu Thr Thr Lys Lys Ser Leu Pro Lys Leu Leu Ile Asp Gly Pro Tyr
725 730 735
Gly Ala Pro Ala Gln Asp Tyr Arg Lys Tyr Asp Val Leu Leu Leu Val
740 745 750
Gly Leu Gly Ile Gly Ala Thr Pro Phe Ile Ser Ile Leu Lys Asp Leu
755 760 765
Leu Asn Asn Ile Val Lys Met Glu Glu His Ala Asp Ser Ile Ser Asp
770 775 780
Phe Ser Arg Ser Ser Glu Tyr Ser Thr Gly Ser Asn Gly Asp Thr Pro
785 790 795 800
Arg Arg Lys Arg Ile Leu Lys Thr Thr Asn Ala Tyr Phe Tyr Trp Val
805 810 815
Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly Val Met Asn Glu
820 825 830
Val Ala Glu Leu Asp Glu Arg Gly Val Ile Glu Met His Asn Tyr Leu
835 840 845
Thr Ser Val Tyr Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met
850 855 860
Val Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile Val Ser Gly
865 870 875 880
Thr Arg Val Arg Thr His Phe Ala Arg Pro Asn Trp Lys Lys Val Leu
885 890 895
Thr Lys Leu Ser Ser Lys His Cys Asn Ala Arg Thr Gly Val Phe Tyr
900 905 910
Cys Gly Val Pro Val Leu Gly Lys Leu Ser Lys Leu Cys Asn Thr
915 920 925
Phe Asn Gln Lys Gly Ser Thr Phe Phe Glu Phe His Lys Glu His Phe
930 935 940

<210> 13
<211> 3035
<212> DNA
<213> Arabidopsis thaliana
<220> 13
<221> CDS
<222> (132) . . (2894)
<223> coding for NADPH oxidase
<400> 13
tccaacacct tttgagagcg gtatatatat ctctataaac taatacagta accttacggg 60
tgttatattg tatagacattc tgggttttgc ttgcccaact ctagtggagtt cttttctcgt 120
tctcgaattc g atg aaa atg aga cga ggc aat tca aat tca aac gac cat gaa 170
Met Lys Met Arg Gly Asp Ser Ser Asp His Glu
1 5 10
ctt ggg att cta cga gga gct aac tcg gac acc aac tcg gac acg gag 218
Leu Gly Ile Leu Arg Gly Ala Asn Ser Asp Thr Asn Ser Asp Thr Glu
15 20 25
agc atc gct agc gac cgt ggt gcc ttt agc ggt ccc ttg ggc cgg cct 266
Ser Ile Ala Ser Asp Arg Gly Ala Phe Ser Gly Pro Leu Gly Arg Pro
30 35 40 45
aaa cgt gcg tcc aag aea aac gca aga ttc gcc gac gat ctt ccc aag 314
Lys Arg Ala Ser Lys Lys Asn Ala Arg Phe Ala Asp Asp Leu Pro Lys
50 55 60
aga agc aat agt gtt gct gcc gcc cgt ggt gat gac gag gat gag tac gtt
Arg Ser Asn Ser Val Ala Gly Gly Arg Arg Asp Asp Glu Tyr Val
65 70 75

gag atc acg cta gag atc agg gag gac gac tcg gtt gcc gtc cat agt gtc
Glu Ile Thr Leu Asp Ile Arg Asp Ser Val Ala Val His Ser Val
80 85 90
caa caa gca gct gga ggt gga ggc cac ctg gag gac ccg gag cta gcc
Gln Gln Ala Ala Gly Gly Gly Gly His Leu Glu Pro Glu Leu Leu Ala
95 100 105

cgg ctt acg aag aag act ctc gag agc agc ctc aac aac acc acc ccc
Leu Leu Thr Lys Lys Thr Leu Glu Ser Ser Leu Asn Asn Thr Thr Ser
110 115 120 125
tta tct ttc ttc cga agc acc tcc tca cgc atc aag aac ggc tcc cgc
Leu Ser Phe Phe Arg Ser Thr Ser Ser Arg Ile Lys Asn Ala Ser Arg
130 135 140

gag ctc cgc cgc gtt ttc tct aga cgt ccc tcc ccc ggc gtc cgg cgg
Glu Leu Arg Arg Val Phe Ser Arg Arg Pro Ser Pro Ala Val Arg Arg
145 150 155
ttt gag cgc acg agc tcc ggc gcc atc cac cca ttc aac ggt ctc aag
Phe Asp Arg Thr Ser Ser Ala Ala Ile His Ala Leu Lys Gly Leu Lys
160 165 170
ttc att gcc acc aag acg gcc gca tgg cgg gcc gtc gac cca cgt ttc
Phe Ile Ala Thr Lys Thr Lys Thr Ala Ala Pro Ala Ala Val Asp Gln Arg Phe
175 180 185
gat aea ctc tcc gct gat tcc aac ggc ctc tta ctc tct gcc aag ttt
Asp Lys Leu Ser Ala Asp Ser Asn Gly Leu Leu Leu Ser Ala Lys Phe
190 195 200 205
tgg gaa tgt tga agt aag gaa tct aac gac ttc gct gac cag
Trp Glu Cys Leu Gly Met Asn Lys Glu Ser Lys Asp Phe Ala Asp Gln
210 215 220
ttc ttt cga taa gct cgc cgg aat aac gtc tcc ggc gat gca atc
Leu Phe Arg Ala Leu Ala Arg Arg Asn Val Ser Gly Asp Ala Ile
225 230 235
aca aag gaa cag ctt agg ata ttc tgg gaa cag atc tca gac gaa agc
Thr Lys Glu Gln Leu Arg Ile Phe Trp Glu Gln Ile Ser Asp Glu Ser
240 245 250
ttt gat gcc aea ctc cca gtc ttt ttt gac atg gtt gac aac gat gaa
Phe Asp Ala Leu Lys Leu Val Phe Phe Asp Met Val Asp Lys Asp Glu
255 260 265
gat ggg cga ata aca gaa gaa gag gtg gct gat att att agt ctt aag
Asp Arg Val Thr Glu Glu Val Ala Glu Ile Ile Ser Leu Ser
270 275 280 285
gct ctc gca aac aag ctc cta aat att cca aag cca ggc aca gaa tat
Ala Ser Ala Asn Leu Ser Asn Ile Gln Lys Glu Ala Lys Glu Tyr
290 295 300
gcg gca ctg ata atg gaa gag ttg gac cca gac aat gct ggg ttt att
Ala Ala Leu Ile Met Glu Glu Leu Asp Pro Asp Asn Ala Gly Phe Ile
305 310 315
```plaintext
atg atc gaa aac tgt gaa atg tgt cta tta caa gca ccg aac cag tcg
Met Ile Glu Asn Leu Glu Met Leu Leu Leu Leu Gln Ala Pro Asn Gln Ser
320 325 330

gtg cgg atg gga gag aag cag ata ctt aat cag atg tta aag cag aag
Val Arg Met Gly Asp Ser Arg Ile Leu Ser Gln Met Leu Ser Gln Lys
335 340 345

cct aag ccc gca aaa gag agc aac cct tta tgt aag tgg tcg gag aaa
Leu Arg Pro Ala Lys Glu Ser Asn Pro Leu Leu Arg Trp Ser Gln Lys
350 355 360 365

att aac tat ttc ata ctt gat aat tgg cag aca tta tgt atg aca tgg
Ile Lys Tyr Phe Ile Leu Asp Trp Gln Arg Leu Arg Trp Ile Met Met
370 375 380

tta tgt gct gcc atc tgt ggt ggc ctc ttt act tat aca ttc att cag
Leu Trp Leu Gly Ile Cys Gly Gly Leu Phe Thr Tyr Lys Phe Ile Gln
385 390 395

tac aag aac aag gct gcc tat ggt tgt aag tgt tact tgt tgt gtc
Tyr Lys Asn Ala Ala Tyr Gly Val Met Gly Tyr Cys Val Cys Val
400 405 410

gcc aag gga gcc gag act ctc aca aac aag ctc att ctc aag gcc
Ala Lys Gly Ala Glu Thr Leu Lys Phe Asn Met Ala Leu Ile Leu
415 420 425

ttg cct gtt tgt cga aac acc atc act tgt ctt aag aac aag acc aag
Leu Pro Val Cys Arg Asn Thr Ile Thr Trp Leu Arg Asn Lys Thr Lys
430 435 440 445

cct gtt act gtc gtt cct ttt gat gat agt ctc aac ttc cac aag gtt
Leu Gly Thr Val Pro Asp Pro Arg Leu Ala Ala Ala Asp Glu Thr Tyr
450 455 460

att gca agc ggg ata gtc gtc ggt tgt ctc cat gcc ggt gcc cat
Ile Ala Ser Gly Ile Val Gly Val Leu Leu His Ala Gly Ala His
465 470 475

tta acg tgt gat ttt cca cgt tta att gcc gcg gat gag gac acc tat
Leu Thr Cys Asp Phe Pro Arg Leu Ala Ala Ala Asp Glu Thr Tyr
480 485 490

gag ccc atg gaa aac tac ttt ggg gat cua ccc act aac cag tac tgg tgt
Glu Pro Met Glu Lys Tyr Phe Gly Asp Gln Pro Thr Ser Tyr Trp Trp
495 500 505

ttt gtt aca gga gta gga tgg act gcc att gtt atg gtt gtt gct atg
Phe Val Lys Gly Val Gly Trp Thr Gly Ile Val Met Val Val Leu
510 515 520 525

atg gct atg gcc ttt aca ctc gcg ccc ctt tgg cca ctt aac gac
Met Ala Ile Ala Phe Thr Leu Ala Thr Pro Thr Phe Arg Arg Asn Lys
530 535 540

cct aac ttt act ctc aag aag ctt acc ggt ttc aac gcc ttt
Leu Asn Leu Pro Asn Phe Leu Lys Leu Thr Gly Phe Asn Ala Phe
545 550 555

tgg tac acc cca tgt ttc att gtt ttt atg ctt ctc att gtc
Trp Tyr Thr His Leu Phe Ile Ile Val Tyr Ala Leu Leu Ile Val
560 565 570

cat ggt atc aag ctc tac ctc aca aag att tgt tat cag aag cag aca
His Gly Ile Lys Leu Tyr Leu Thr Lys Ile Trp Tyr Glu Lys Thr Thr
575 580 585
```
tgg atg tat ctt gct gta ccc atc ctt cta tat gca tct gag agg ctg
Trp Met Tyr Leu Ala Val Pro Ile Leu Leu Tyr Ala Ser Glu Arg Leu
590 600 605

ctt cgt gct ttc aga tca agc atc aaa ccc gtt aag atg atc aag gtg
Leu Arg Ala Phe Arg Ser Ser Ile Lys Pro Val Lys Met Ile Lys Val
610 615 620

gct gtt tac ccc ggg aac gtg ttg tct cta cac atg aag aag cca cca
Ala Val Tyr Pro Gly Asn Val Leu Ser Leu His Tyr Lys Pro Gln
625 630 635

gga ttc aaa tac aaa ggt gga cag ttc atg ttg gtt aac tgc cga gcc
Gly Phe Lys Tyr Lys Ser Gly Phe Met Leu Val Asn Cys Arg Ala
640 645 650

gta tct cca ttc gaa tgg cat cct ttc tca atc aca tca gct ccc gga
Val Ser Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gly
655 660 665

gac gat tac ctg agc gta cat atc cgc act ctc ggt gac tgg aca cgt
Asp Asp Tyr Leu Ser Val His Ile Arg Thr Leu Gly Asp Trp Thr Arg
670 675 680 685

aag ctc agg acc gtt ttc tcc gag gtt tgc aaa cct cct acc gcc gtt
Lys Leu Arg Thr Val Phe Ser Glu Val Cys Lys Pro Pro Thr Ala Gly
690 695 700

aaa agc ggt ctt ctc cga gca gac gqa gqa gat gga aac ctc ccq ttc
Lys Ser Gly Leu Leu Arg Ala Asp Gly Gly Asp Gly Asn Leu Pro Phe
705 710 715

ccg aag gtc ctt atc gac ggt cca tac ggt ccc gca cca gac tac
Pro Lys Val Leu Ile Pro Gly Tyr Pro Gly Ala Pro Ala Gln Asp Tyr
720 725 730

aag aaa tac gac gtt gta ctc ctc gta ggt ccc ctc ggc att gga gcc acg
Lys Lys Tyr Asp Val Val Leu Leu Val Gly Leu Gly Ile Gly Ala Thr
735 740 745

cct atg atc atg atc ctt aag gac atc atc aac aac atg aaa ggt cct
Pro Met Ile Ser Ile Leu Lys Asp Ile Ile Asn Met Asn Met Gln Val Glu
750 755 760 765


gac cgc gac agc gag att gag aac aat aac aag aat aag aat aaa
Asp Arg Asp Ser Ser Ile Glu Asn Asn Ser Asn Asn Ser Asn Ser Lys
770 775 780

ggg ttt aag aca agg aaa gct tat ttc tac tgg gtt act agg gaa cca
Gly Phe Lys Thr Arg Lys Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln
785 790 795

gga tca ttc gog tgg ttc aag gga atg gac gag att tcg gag tta
Gly Ser Phe Glu Trp Phe Lys Gly Ile Met Asp Glu Ile Ser Glu Leu
800 805 810

gac gag gaa gga atc atc gag ccc cac aat tat tcg aac aag aag gtt gac
Asp Glu Glu Gly Ile Glu Leu His Asn Tyr Cys Thr Ser Val Tyr
815 820 825

gag gaa gtt gat gca gga gtt ggc gtt gtc ctt att gcc atg ctc cag tca ttg
Glu Glu Gly Asp Ala Arg Val Ala Leu Ile Ala Met Leu Glu Ser Leu
830 835 840 845

csa sac gct aag aac ggt gtt gtg tgg tgg act gca cgt gtc aag
Gln His Ala Lys Asn Gly Val Asp Val Val Ser Gly Thr Arg Val Lys
850 855 860

37
tcc cac ttc gct aca cta aca gaa cca gtc tac aag aag atc gct
Ser His Phe Ala Lys Pro Asn Trp Arg Gln Val Tyr Lys Lys Ile Ala
865 870

gtt caa cat ccc gcc aaa aga ata gga gtc ttc tac tgt gga atg cca
Val Gln His Pro Gly Lys Arg Ile Gly Val Phe Tyr Cys Gly Met Pro
880 885 890

gga atg ata aag gaa tta aaa aat cta gct ttt gat ttt tct cga aag
Gly Met Ile Lys Glu Leu Lys Asn Leu Ala Leu Asp Phe Ser Arg Lys
895 900 905

aca act acc aag ttt gac ttc cac aaa gag aac ttc tagattaatt
Thr Thr Thr Lys Phe Asp Phe His Lys Glu Asn Phe
910 915 920

atatagttg tagaaaaata aaaaaagaaa caactataca aataaatatt tattttatat
atatatgtaaa ttatagtgaat tatctcttat tacatatatat gttttatat aaaaaaaaaaa
a
3024

<210> 14
<211> 921
<212> PRT
<213> Arabidopsis thaliana

<400> 14
Met Lys Met Arg Arg Gly Asn Ser Ser Asn Asp His Glu Leu Gly Ile
1 5 10 15
Leu Arg Gly Ala Asn Ser Asp Thr Asn Ser Asp Thr Glu Ser Ile Ala
20 25 30
Ser Asp Arg Gly Ala Phe Ser Gly Pro Leu Gly Arg Pro Lys Arg Ala
35 40 45
Ser Lys Lys Asn Ala Arg Phe Ala Asp Leu Pro Lys Arg Ser Asn
50 55 60
Ser Val Ala Gly Gly Arg Gly Asp Asp Glu Tyr Val Glu Ile Thr
65 70 75 80
Leu Asp Ile Arg Asp Ser Val Ala Val His Ser Val Gln Gln Ala
85 90 95
Ala Gly Gly Gly His Leu Glu Asp Pro Glu Leu Ala Leu Leu Leu Thr
100 105 110
Lys Lys Thr Leu Glu Ser Ser Leu Asn Asn Thr Thr Ser Leu Ser Phe
115 120 125
Phe Arg Ser Thr Ser Ser Arg Ile Lys Asn Ala Ser Arg Glu Leu Arg
130 135 140
Arg Val Phe Ser Arg Arg Pro Ser Pro Ala Val Arg Arg Phe Asp Arg
145 150 155 160
Thr Ser Ser Ala Ala Ile His Ala Leu Lys Gly Leu Lys Phe Ile Ala
165 170 175
Thr Lys Thr Ala Ala Trp Pro Ala Val Asp Gln Arg Phe Asp Lys Leu
180 185 190
Ser Ala Asp Ser Asn Gly Leu Leu Leu Ser Ala Lys Phe Trp Glu Cys
195 200 205
Leu Gly Met Asn Lys Glu Ser Lys Asp Phe Ala Asp Gln Leu Phe Arg
210 215 220
Ala Leu Ala Arg Arg Arg Asn Asn Val Ser Gly Asp Ala Ile Thr Lys Glu
225 230 235 240
Gln Leu Arg Ile Phe Trp Glu Gln Ile Ser Asp Glu Ser Phe Asp Ala
245 250 255
Lys Leu Gln Val Phe Phe Asp Met Val Asp Lys Asp Glu Asp Gly Arg
260 265 270
Val Thr Glu Glu Glu Val Ala Glu Ile Ile Ser Leu Ser Ala Ser Ala
275 280 285
Asn Lys Leu Ser Asn Ile Gln Lys Gln Ala Lys Glu Tyr Ala Ala Leu
290 295 300
Ile Met Glu Leu Asp Pro Asp Asn Ala Gly Phe Ile Met Ile Glu
305 310 315 320
Asn Leu Glu Met Leu Leu Gln Ala Pro Asn Gln Ser Val Arg Met
325 330 335
Gly Asp Ser Arg Ile Leu Ser Gln Met Leu Ser Gln Lys Leu Arg Pro
340 345 350
Ala Lys Glu Ser Asn Pro Leu Leu Arg Trp Ser Glu Lys Ile Lys Tyr
355 360 365
Phe Ile Leu Asp Asn Trp Gln Arg Leu Trp Ile Met Met Leu Trp Leu
370 375 380
Gly Ile Cys Gly Gly Leu Phe Thr Tyr Lys Phe Ile Gln Tyr Lys Asn
385 390 395 400
Lys Ala Ala Tyr Gly Val Met Gly Tyr Cys Val Cys Val Ala Lys Gly
405 410 415
Gly Ala Glu Thr Leu Lys Phe Asn Met Ala Leu Ile Leu Leu Pro Val
420 425 430
Cys Arg Asn Thr Ile Thr Trp Leu Arg Asn Lys Thr Lys Leu Gly Thr
435 440 445
Val Val Pro Phe Asp Asp Ser Leu Asn Phe His Lys Val Ile Ala Ser
450 455 460
Gly Ile Val Gly Val Leu Leu His Ala Gly Ala His Leu Thr Cys
465 470 475 480
Asp Phe Pro Arg Leu Ile Ala Ala Asp Glu Asp Thr Tyr Glu Pro Met
485 490 495
Glu Lys Tyr Phe Gly Asp Gln Pro Thr Ser Tyr Trp Trp Phe Val Lys
500 505 510
Gly Val Glu Gly Trp Thr Gly Ile Val Met Val Val Leu Met Ala Ile
515 520 525
Ala Phe Thr Leu Ala Thr Pro Trp Phe Arg Arg Asn Lys Leu Asn Leu
530 535 540
Pro Asn Phe Leu Lys Leu Thr Gly Phe Asn Ala Phe Trp Tyr Thr
545 550 555 560
His His Leu Phe Ile Val Tyr Ala Leu Leu Ile Val His Gly Ile
565 570 575
Lys Leu Tyr Leu Thr Lys Ile Trp Tyr Glu Lys Thr Thr Trp Met Tyr
580 585 590
Leu Ala Val Pro Ile Leu Leu Tyr Ala Ser Glu Arg Leu Leu Arg Ala
595 600 605
Phe Arg Ser Ser Ile Lys Pro Val Lys Met Ile Lys Val Ala Val Tyr
610 615 620
Pro Gly Asn Val Leu Ser Leu His Met Thr Lys Pro Gln Gly Phe Lys
625 630 635 640
Tyr Lys Ser Gly Gln Phe Met Leu Val Asn Cys Arg Ala Val Ser Pro
645 650 655
Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gly Asp Asp Tyr
660 665 670
Leu Ser Val His Ile Arg Thr Leu Gly Asp Trp Thr Arg Lys Leu Arg
675 680 685
Thr Val Phe Ser Glu Val Cys Lys Pro Pro Thr Ala Gly Lys Ser Gly
690 695 700
Leu Leu Arg Ala Asp Gly Gly Asp Gly Asn Leu Pro Phe Pro Lys Val
705 710 715 720
Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asp Tyr Lys Tyr
725 730 735
Asp Val Val Leu Leu Val Gly Leu Gly Ile Gly Ala Thr Pro Met Ile
740 745 750
Ser Ile Leu Lys Asp Ile Ile Asn Asn Met Lys Gly Pro Asp Arg Asp
755 760 765
Ser Asp Ile Glu Asn Asn Asn Ser Asn Asn Asn Ser Lys Gly Phe Lys
770 775 780
Thr Arg Lys Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe
785 790 795 800
Glu Trp Phe Lys Gly Ile Met Asp Glu Ile Ser Glu Leu Asp Glu Glu
805 810 815
Gly Ile Ile Glu Leu His Asn Tyr Cys Thr Ser Val Tyr Glu Gly Glu
820 825 830
Asp Ala Arg Val Ala Leu Ile Ala Met Leu Gln Ser Leu Gln His Ala
835 840 845
Lys Asn Gly Val Asp Val Val Ser Gly Thr Arg Val Lys Ser His Phe
850 855 860
Ala Lys Pro Asn Trp Arg Gln Val Tyr Lys Ile Ala Val Gln His
865 870 875 880
Pro Gly Lys Arg Ile Gly Val Phe Tyr Cys Gly Met Pro Gly Met Ile
885 890 895
Lys Glu Leu Lys Asn Leu Ala Leu Asp Phe Ser Arg Lys Thr Thr Thr
900 905 910
Lys Phe Asp Phe His Lys Glu Asn Phe
915 920

<210> 15
<211> 3338
<212> DNA
<213> Nicotiana tabacum
<220>
<221> CDS
<222> (313)...(3129)
<223> coding for NADPH oxidase
tgg gac caa gtt gct gac caa agt ttt gat tct cgc ctt caa aca ttt
  Trp Asp Glu Val Ala Asp Glu Ser Phe Asp Ser Arg Leu Gln Thr Phe  1071
             240       245       250

  ttt gac atg gtt gat aaa gat gct gat ggt aga att aca gaa gaa gaa
  Phe Asp Met Val Asp Lys Asp Ala Asp Gly Arg Ile Thr Glu Glu Glu  1119
             255       260       265

  gtc aga gag att ata gcc ctt agc gcc tgt gcc aac agg ctt tca aca
  Val Arg Glu Ile Ile Gly Leu Ser Ala Ser Ala Asn Arg Leu Ser Thr  1167
             270       275       280       285

  atc cag aaa caa gct gat gaa tac gca gca atg atc atg gaa gag tgt
  Ile Gln Lys Gln Ala Asp Glu Tyr Ala Ala Met Ile Met Glu Leu  1215
             290       295       300

  gat cct aac aac ctc gga tac att atg att gag aac ttt gaa atg ctt
  Asp Pro Asn Asn Leu Gly Tyr Ile Met Ile Glu Asn Leu Met Leu  1263
             305       310       315

  tta ctt caa gca cca aat caa tca gtt caa aca gaa gga gcc gaa aag cgg
  Leu Glu Leu Ala Pro Asn Glu Ser Val Glu Arg Gly Gly Glu Ser Arg  1311
             320       325       330

  aac ttg agt caa atg cta agt caa aaa cta aag cat aca caa gag aga
  Asn Leu Ser Glu Met Leu Ser Glu Lys Leu Lys His Thr Gln Glu Arg  1359
             335       340       345

  aat cca ata gta aga tgt tac aag agt ttc atg tac ttt tgg ctt gat
  Asn Pro Ile Val Arg Trp Tyr Lys Ser Phe Met Tyr Phe Leu Leu Asp  1407
             350       355       360       365

  aat tgt gca aag aqa gtt tgt gta tgt tta ctg tgt att gga att atg gct
  Asn Trp Glu Val Trp Val Trp Leu Leu Met Ile Gly Ile Met Ala  1455
             370       375       380

  ggt cta ttt aca tgt aca tat ata cag tat aaa gaa aca gaa gat cca tat
  Gly Leu Phe Thr Trp Lys Tyr Ile Glu Tyr Lys Glu Gly Ala Ala Tyr  1503
             385       390       395

  aaa gtc atg ggt ccc tgt tgt tgt tcc gcc aac gag gct gct gaa gaa
  Lys Val Met Gly Pro Cys Val Cys Phe Ala Lys Gly Ala Ala Glu Thr  1551
             400       405       410

  ctc aag ctc aac atg gca att att tta ttt cgg gtt tgg aga aac acg
  Leu Lys Leu Asn Met Ala Ile Ile Leu Phe Pro Val Cys Arg Asn Thr  1599
             415       420       425

  atc aca tgt cta gca aat aag acc aga tta ggt gct gct gtt cct ttt
  Ile Thr Trp Leu Arg Asn Lys Thr Arg Leu Gly Ala Ala Val Pro Phe  1647
             430       435       440       445

  gat gat aac ctt aat ttt cac aaa gtg ata gca gtg gca att gct ctt
  Asp Asp Leu Asn Leu Phe His Lys Val Ile Ala Val Ala Ile Ala Leu  1695
             450       455       460

  ggg gtt gga ata cac gga cta tct cac tgt aca tgt at ttt cct cgg
  Gly Val Gly Ile His Gly Leu Ser His Leu Thr Cys Asp Phe Pro Arg  1743
             465       470       475

  ctt tta aat gct aat gaa gaa tat gaa cca atg aag tac tat ttt
  Leu Leu Asn Ala Ser Glu Glu Glu Tyr Glu Pro Met Lys Tyr Tyr Phe  1791
             480       485       490

  gga gat cag cca gaa agc tat tgg tgt ttt ata aca gaa gta gaa ggg
  Gly Asp Gln Pro Glu Ser Tyr Trp Trp Phe Ile Lys Gly Val Glu Gly  1839
             495       500       505
43

gta act gga att ata atg tgg tta atg gca ata gca ttt act cta 1887
Val Thr Gly Ile Ile Met Val Val Leu Met Ala Ala Phe Thr Leu
510  515  520  525

gca acc cca tgg ttt aga agg aat aga gtt agt ttg cca aae cca ttt 1935
Ala Thr Pro Trp Phe Arg Arg Asn Arg Val Ser Leu Pro Lys Pro Phe
530  535  540

cac aaa ctc act gga tnt aat gcc ttt tgg tac tct cac cat ctc ttt 1983
His Lys Leu Thr Gly Xaa Ala Phe Thr Tyr Ser His His Leu Phe
545  550  555

gtt atc gtc tac act ctc att gtt cat ggt gaa aag cta tac att 2031
Val Ile Val Tyr Thr Leu Phe Ala His Gly Lys Tyr Leu Tyr Ile
560  565  570

acc aaa gat tgg tac aag aga acc gac atg gat gta ctt tta act atc 2079
Thr Lys Asp Trp Tyr Lys Arg Thr Asp Met Asp Val Leu Thr Tyr Ile
575  580  585

cca atc ata ctc tat gct agt gaa agg ttg att agg gca ttc agg tca 2127
Pro Ile Ile Leu Tyr Ala Ser Glu Arg Leu Ile Arg Ala Phe Arg Ser
590  595  600  605

agc att aaa gct gtt aag att tgg aag gtc gca gta tat cca gga aat 2175
Ser Ile Lys Ala Val Lys Ile Leu Lys Val Ala Val Tyr Pro Gly Asn
610  615  620

gtg gca ctt cac atg tca aaa cca cag ggc tac aaa tac aaa agt 2223
Val Leu Ala Leu His Met Tyr Tyr Lys Tyr Lys Tyr Ser
625  630  635

ogg cca tac atg ttt gtc aac ttt gct gca gtt tct cca ttt gag tgg 2271
Gly Gln Tyr Met Phe Asn Cys Ala Ala Val Ser Pro Phe Gly Trp
640  645  650

cat cca ttt tca att act tcg gcc cca gga gat gac tat ctc agt gtc 2319
His Phe Ser Ile Thr Ser Ala Pro Gly Asp Asp Tyr Ser Val
655  660  665

cat att cga act ctt ggt gat tgg acc agg caa ctt aaa act gtt ttc 2367
His Ile Arg Thr Leu Gly Asp Trp Thr Arg Glu Leu Lys Thr Val Phe
670  675  680  685

tcc gag gtt tgc cag cca cca cct aat gga aat gga ctc ctc aca 2415
Ser Glu Val Cys Gln Pro Pro Pro Asn Gly Lys Ser Gly Leu Arg
690  695  700

gct gac tac tgg cca gga gag aat aat cct aat ttc cca agg gtg tta 2463
Ala Asp Tyr Leu Glu Gly Asn Pro Asn Phe Pro Arg Val Leu
705  710  715

ata gat gga cca tat gga cca cca gca cca gac tac aag aae tat gag 2511
Ile Asp Gly Pro Gly Tyr Ala Pro Ala Glu Asp Tyr Lys Tyr Glu
720  725  730

gtt gtt tgg gta ggt ctt gga att gga gct aca cca atg atc agt 2559
Val Val Leu Val Gly Leu Val Gly Ala Thr Pro Met Ile Ser
735  740  745

att gtt aaa gag att gtc aac aac atg aag gca atg gac gaa gaa gaa 2607
Ile Val Lys Asp Ile Val Asn Asn Met Lys Ala Met Asp Glu Glu Glu
750  755  760  765

aat tcc tgg gaa gat gga ccc aat aat atg gca cca aat tct agc 2655
Asn Ser Leu Glu Asp Gly His Asn Asn Met Ala Pro Asn Ser Ser
770  775  780
PF 53765
CA 02492784 2005-01-17

44

ccc aat att gca aaa aat aag ggt aat aaa tca ggt tca gca agt gga 2703
Pro Asn Ile Ala Lys Asn Lys Gly Asn Lys Ser Gly Ser Ala Ser Gly 785 790 795

gga aat att ttc aat aca agg aga gca tat ttc tat tgg gtt act aga 2751
Gly Asn Phe Asn Thr Arg Ala Tyr Phe Tyr Trp Val Thr Arg 800 805 810

gaa cca ggt tca ttt gat tgg ttc aaa ggt ata atg aat gaa gct gct 2799
Glu Gln Gly Ser Asp Trp Phe Lys Gly Ile Met Asn Glu Ala Ala 815 820 825

gaa atg gac cat aag gga gta att gaa atg cat aat tat tgt act agt 2847
Glu Met Asp His Lys Gly Val Ile Glu Met His Asn Tyr Cys Thr Ser 830 835 840 845

gtt tat gaa gaa ggt gat gct cgt tct gct ctt att act atg ctt cag 2895
Val Tyr Glu Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met Leu Gln 850 855 860

tct ctt cac cat gcc aaa aat ggt gtt gac att gtc tct ggc acc aga 2943
Ser Leu His His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Thr Arg 865 870 875

gtt aag tca cat ttt gct aaa cct aat tgg cgt aat gtc tac aaa cgc 2991
Val Lys Ser His Phe Ala Lys Pro Asn Trp Arg Asn Val Tyr Lys Arg 880 885 890

<210> 16
<211> 939
<212> PRT
<213> Nicotiana tabacum

<400> 16
Met Gln Asn Ser Glu Asn His His Pro His His Gln His His His Ser
1 5 10 15
Asp Thr Glu Ile Ile Gly Asn Asp Arg Ala Ser Tyr Ser Gly Pro Leu
20 25 30
Ser Gly Pro Leu Asn Lys Arg Gly Gly Lys Ser Ala Arg Phe Asn
35 40 45
Ile Pro Glu Ser Thr Asp Ile Gly Thr Ser Val Gly Thr Gly Gly Lys
50 55 60
Ser Asn Asp Asp Ala Tyr Val Glu Ile Thr Leu Asp Val Arg Glu Asp
65 70 75 80

tgagcaaaaaga atagaccatt aagcagagca ttaaaaatttc atcaaacaag ctaaggacac 3189
aggttgttattatagaggct ccacacctct cctatttgtt acagataagt tttgcaacttca 3249
agttgatatag ttgttgttgct tttgatgtgcta gtattcaca aataataaag attatatatataa 3309
ttgttagtaa aaaaaaaaaa aaaaaaaa 3338
<table>
<thead>
<tr>
<th>Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile His Gly Leu Ser His Leu Thr Cys Asp Phe Pro Arg Leu Leu Asn</td>
</tr>
<tr>
<td>Ala Ser Glu Glu Glu Tyr Glu Pro Met Lys Tyr Tyr Phe Gly Asp Gln</td>
</tr>
<tr>
<td>Pro Glu Ser Tyr Trp Trp Phe Ile Lys Gly Val Glu Gly Val Thr Gly</td>
</tr>
<tr>
<td>Ile Ile Met Val Val Leu Met Ala Ile Ala Phe Thr Leu Ala Thr Pro</td>
</tr>
<tr>
<td>Trp Phe Arg Arg Asn Arg Val Ser Leu Pro Lys Pro Phe His Lys Leu</td>
</tr>
<tr>
<td>Thr Gly Xaa Asn Ala Phe Trp Tyr Ser His His Leu Phe Val Ile Val</td>
</tr>
<tr>
<td>Tyr Thr Leu Phe Ile Val His Gly Glu Lys Leu Tyr Ile Thr Lys Asp</td>
</tr>
<tr>
<td>Trp Tyr Lys Arg Thr Asp Met Asp Val Leu Leu Thr Ile Pro Ile Ile</td>
</tr>
<tr>
<td>Leu Tyr Ala Ser Glu Arg Leu Ile Arg Ala Phe Arg Ser Ser Ile Lys</td>
</tr>
<tr>
<td>Ala Val Lys Ile Leu Lys Val Ala Val Tyr Pro Gly Asn Val Leu Ala</td>
</tr>
<tr>
<td>Leu His Met Ser Lys Pro Gln Gly Tyr Lys Tyr Lys Ser Gly Gln Tyr</td>
</tr>
<tr>
<td>Met Phe Val Asn Cys Ala Ala Val Ser Pro Phe Glu Trp His Pro Phe</td>
</tr>
<tr>
<td>Ser Ile Thr Ser Ala Pro Gly Asp Asp Tyr Leu Ser Val His Ile Arg</td>
</tr>
<tr>
<td>Thr Leu Gly Asp Trp Thr Arg Gln Leu Lys Thr Val Phe Ser Glu Val</td>
</tr>
<tr>
<td>Cys Gln Pro Pro Pro Asn Gly Lys Ser Gly Leu Leu Arg Ala Asp Tyr</td>
</tr>
<tr>
<td>Leu Gln Gly Glu Asn Asn Pro Asn Phe Pro Arg Val Leu Ile Asp Gly</td>
</tr>
<tr>
<td>Pro Tyr Glu Ala Pro Ala Gln Asp Tyr Lys Tyr Glu Val Leu</td>
</tr>
<tr>
<td>Leu Val Gly Leu Gly Ile Gly Ala Thr Pro Met Ile Ser Ile Val Lys</td>
</tr>
<tr>
<td>Asp Ile Val Asn Asn Met Lys Ala Met Asp Glu Glu Glu Asn Ser Leu</td>
</tr>
<tr>
<td>Glu Asp Gly His Asn Asn Met Ala Pro Asn Ser Ser Pro Asn Ile</td>
</tr>
<tr>
<td>Ala Lys Asn Lys Gly Asn Lys Ser Gly Ser Ala Ser Gly Gly Asn Asn</td>
</tr>
<tr>
<td>Phe Asn Thr Arg Arg Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln Gly</td>
</tr>
<tr>
<td>Ser Phe Asp Trp Phe Lys Gly Ile Met Asn Glu Ala Ala Glu Met Asp</td>
</tr>
<tr>
<td>His Lys Gly Val Ile Glu Met His Asn Tyr Cys Thr Ser Val Tyr Glu</td>
</tr>
</tbody>
</table>
Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met Leu Gln Ser Leu His 850 855 860
His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Thr Arg Val Lys Ser 865 870 875 880
His Phe Ala Lys Pro Asn Trp Arg Asn Val Tyr Lys Arg Ile Ala Leu 885 890 895
Asn His Pro Glu Ala Lys Val Gly Val Phe Tyr Cys Gly Ala Pro Ala 900 905 910
Leu Thr Lys Glu Leu Arg Gln His Ala Leu Asp Phe Ser His Lys Thr 915 920 925
Ser Thr Lys Phe Asp Phe His Lys Glu Asn Phe 930 935

<210> 17
<211> 2532
<212> DNA
<213> Oryza sativa
<220>
<221> CDS
<222> (1)..(2529)
<223> coding for NADPH oxidase
<400> 48
atg gcg tcg ccg tac gac cac cac ttg tcg tcg ccg ccg cat gcg cag cac ccg tcg
Met Ala Ser Pro Tyr Asp His Gln Ser Pro His Ala Gln His Pro Ser 1 5 10 15
49
ggg ttg ccg agg ccg ccg ggg gcg ggg gcg ggg gtt gcg gcg gcg ggg
Gly Leu Pro Arg Pro Pro Gly Ala Gly Ala Gly Ala Ala Gly Gly 20 25 30
50
ttc gcg ccg ggg ctg atg aag cag ccg tcg ccg tcg ctg ggc ggg tgg
Phe Ala Arg Gly Leu Met Lys Gln Pro Ser Arg Leu Ala Ser Gly Val 35 40 45
51
agg cag ttc gcg tcg agg gtt gcg atg aag gtt ccc gcg gag ggg gtt ggg
Arg Gln Phe Ala Ser Arg Val Ser Met Lys Pro Glu Gly Val Gly 50 55 60
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

47
48

ttc tgg gag gag atg acc gac cac aac ttc gac tcg cgg ctt cgc att
Phe Trp Glu Glu Met Thr Asp Gln Asn Phe Asp Ser Arg Leu Arg Ile 165 170 175

ttc ttt gac atg tcg gac aag aat ggq gat ggg atg ctc acg gaa gat
Phe Phe Asp Met Cys Asp Lys Asn Gly Asp Gly Met Thr Glu Asp 180 185 190

gag gtc aag gag gtt att ata ctg agt gcq tcg gcq aac aag ctg gcq
Glu Val Lys Glu Val Ile Ile Leu Ser Ala Ser Ala Asn Lys Leu Ala 195 200 205

aag ctg aag gga cac gcg gcg acg tac gcg tcg ctg atc ctg gag gag
Lys Leu Lys Gly His Ala Ala Thr Tyr Ala Ser Leu Ile Met Glu Glu 210 215 220

ctg gac ccg gac gcg ggc tac atc gac atc tcg cag ctg gag acg
Leu Asp Pro Asp Asp Arg Gly Tyr Ile Glu Ile Trp Glu Leu Thr 225 230 235 240

ctg ctg gcg ggc atg gtg agc gcg cac gcg gcg ccg gcg gag aag atg aag
Leu Leu Arg Gly Met Val Ser Ala Gln Ala Ala Ala Pro Glu Lys Met Lys 245 250 255

cgg acg acg tcg agc ctc gcg agq acg atq atc ccg tcg ccg tac cgg
Arg Thr Thr Ser Ser Leu Ala Arg Thr Met Ile Pro Ser Arg Tyr Arg 260 265 270

agc ccg ctg aag ccg cac gtg tcc agq acg gtg gac ttg gtg cac gag
Ser Pro Leu Lys Arg His Val Ser Ser Arg Thr Val Asp Phe Val His Glu 275 280 285

aac tgg aag ccg atc tgg ctc gtc gcg tgt tgg ctc gcg gtc gtc aac gtc
Asn Trp Lys Arg Ile Trp Leu Trp Leu Ala Leu Val Asn Val 290 295 300

ggc ctc ttc gcc tac aag ttg gag cag tac gac gcg ccc gcg gcc gcg tcc
Gly Leu Phe Ala Tyr Lys Phe Glu Gln Tyr Glu Arg Ala Ala Phe 305 310 315 320

cag tgt atg gcc cac tgt gtc gtg gcc gag aag gcc gcc gcg gag gtg
Gln Val Met Gly His Cys Val Cys Val Ala Lys Gly Ala Glu Val 325 330 335

ctc aag ctc aac atg gcg ctc atc ctc ctc ccc gcg tgt gcg gac aac acg
Leu Lys Leu Asn Met Ala Leu Ile Leu Leu Pro Val Cys Arg Asn Thr 340 345 350

ctc acc acg ctc agq ctc ctc gcg ctc atc atc ctc gcg ctc tcc gac
Leu Thr Thr Leu Arg Ser Thr Ala Leu Ser His Val Ile Pro Phe Asp 355 360 365

gac aac atc aac tcc cac aag gtg atc gcg gcg acc atc gcc gcc gcc
Asp Asn Ile Asn Phe His Lys Val Ile Ala Thr Ile Ala Ala Ala 370 375 380

acc gcg tgt gcc acc gcg aag gcg tgc gac ttc cgg agg ctg
Thr Ala Val His Thr Leu Ala His Val Thr Cys Asp Phe Pro Arg Leu 385 390 395 400

atc aac tgt gcc acc gcg aag tgc gtg gcq acg ctc gtg ggg gcq aac ttc
Ile Asn Cys Pro Ser Asp Lys Phe Met Ala Thr Leu Gly Pro Asn Phe 405 410 415

ggg tac agg cag ccc acg tac gcc gac ccq ctc gtg gac agc gcc ccc gcc
Gly Tyr Arg Glu Pro Thr Tyr Ala Asp Leu Leu Glu Ser Ala Pro Gly 420 425 430
gtc acc ggc atc ctc atg atc atc atg tcc tcc tcc ttc acg ctg
Val Thr Gly Ile Leu Met Ile Ile Ile Met Ser Phe Ser Phe Thr Leu
435 440 445

gcc acq cac tcc ttc cgc cgg agc gtc aag ctg ccg tcc ccc ctg
Ala Thr His Ser Phe Arg Arg Ser Val Val Lys Leu Pro Ser Pro Leu
450 455 460

cac cac tct gcc gcc ttc aac gcc ttc tgg tac gcg cac cac ctc ctg
His His Leu Ala Gly Phe Asn Ala Phe Trp Tyr Ala His His Leu
465 470 475 480

gtg ctc gcc tac gtc ctc gtc gtc cac tcc tac ttc ata ttc ctc
Val Leu Ala Tyr Val Leu Val Leu His Ser Tyr Phe Ile Leu
485 490 495

acc agg gag tgg tac aag aaa acg aca tgg atg tac ctg ata gtc cca
Thr Arg Glu Trp Tyr Lys Thr Thr Trp Met Tyr Leu Ile Val Pro
500 505 510

gtg ctc ttc tat gca tgc gag aga acg atc aga aaa gtt cga gag aac
Val Leu Phe Tyr Ala Cys Glu Arg Thr Ile Arg Lys Val Arg Glu Asn
515 520 525

aac tac cgcgtagc atc aag gcag ccg att tac cca gga aat gtg
Asn Tyr Arg Val Ser Ile Val Lys Ala Ala Ile Tyr Pro Gly Asn Val
530 535 540

cac ctc ctt cac atg aag aag ccc ccg gtg ttc aag tac aag agc ggg
Leu Ser Leu His Met Lys Pro Pro Gly Phe Lys Tyr Lys Ser Gly
545 550 555 560

atg tac ctg ttt gtg aag tgc cct gat gtc tct ctc ttc gaa tgg cat
Met Tyr Leu Phe Val Lys Pro Asp Val Ser Pro Gly Phe Glu Trp His
565 570 575

ccc ttc ccc atc act tct gcc cct gga gat gac tac ctg aag tgc cat
Pro Phe Ser Ile Thr Ser Ala Pro Gly Asp Tyr Leu Ser Val His
580 585 590

atc cgt aca cta ggt gag tgg acg act gaa ctc aga aac ctc ttt ggg
Ile Arg Thr Leu Gly Asp Trp Thr Thr Glu Leu Arg Asn Leu Phe Gly
595 600 605

aag gct tgc gag gca cag gtt act tct aag aag gct acc tct tca aga
Lys Ala Cys Glu Ala Gln Val Thr Ser Lys Lys Ala Thr Leu Ser Arg
610 615 620

ctt gaa act aca gtt gtc gcc gac gct cag aca gag gat act aag ttt
Leu Glu Thr Val Thr Val Ala Asp Ala Gln Thr Glu Asp Thr Arg Phe
625 630 635 640

ctt aag gtc ctt att gat ggg ccc tat ggt gca ccc gcg cca aac tac
Pro Lys Val Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asn Tyr
645 650 655

aag aag tat gac att ctt ttg ctt att ggt ctt gga att ggt gct act
Lys Lys Tyr Asp Ile Leu Leu Ile Gly Leu Gly Ile Gly Ala Thr
660 665 670

cct ttc atc agc att ctg aag gat ctg ttg aac aac att aaa tcc aac
Pro Phe Ile Ser Leu Lys Asp Leu Asn Asn Ile Lys Ser Asn
675 680 685

gaa gag gtc gaa agc ata cat ggt ttc gat gtt aca gcc agc ttc aag aac
Glu Glu Val Glu Ser Ile His Gly Ser Glu Ile Gly Ser Phe Lys Asn
690 695 700
PF 53765

50

aat ggg cca gga aga gct tac ttc tac tgg gtg acc aga gag caa ggg 2160
Asn Gly Pro Gly Arg Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln Gly
705 710 715 720

tcc ttc gag tgg ttt aaa gga gtc atg aac gat gtc gct gaa agt gat 2208
Ser Phe Glu Trp Phe Lys Gly Val Met Asn Asp Val Ala Glu Ser Asp
725 730 735 740

cac aat aat att aag atg cac aat tac ctg acc agc gtg tat gaa 2256
His Asn Asn Ile Ile Glu Met His Asn Tyr Leu Thr Ser Val Tyr Glu
740 745 750

gaa gcc gac gca agg tca gct tgg att gcc atg gtt cag tca ctt caa 2304
Glu Gly Asp Ala Arg Ser Ala Leu Ile Ala Met Val Glu Ser Leu Gln
755 760 765 770

cat gcc aaa aat ggt gtg gat atc gtc tcc ggc agc agg att cgc aca 2352
His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Ser Arg Ile Arg Thr
770 775 780

cat ttt ggc agg cct aac tgg aga aag gtg ttc tct gac tgg gcg aat 2400
His Phe Ala Arg Pro Asn Trp Arg Lys Val Phe Ser Asp Leu Ala Asn
785 790 795 800

gcc cac aaa aac tca cgc ata ggt gtt ttc tat tgt gga tcc cct aca 2448
Ala His Lys Asn Ser Arg Ile Gly Val Phe Tyr Cys Gly Ser Pro Thr
805 810 815

cct acg aaa caa ctc aag gat ctt tca aaa gaa ttc agc cag aca acc 2496
Leu Thr Lys Gln Leu Lys Asp Leu Ser Lys Glu Phe Ser Gln Thr Thr
820 825 830 840

<210> 18
<211> 843
<212> Oryza sativa
<400> 18
Met Ala Ser Pro Tyr Asp His Gln Ser Pro His Ala Gln His Pro Ser
1  5  10  15
Gly Leu Pro Arg Pro Pro Gly Ala Gly Ala Ala Ala Gly Gly 20  25  30
Phe Ala Arg Gly Leu Met Lys Gln Pro Ser Arg Leu Ala Ser Gly Val
35  40  45
Arg Gln Phe Ala Ser Arg Val Ser Met Lys Val Pro Glu Gly Val Gly
50  55  60
Gly Met Arg Pro Gly Gly Gly Arg Met Thr Arg Met Gln Ser Ser Ala
65  70  75  80
Gln Val Gly Leu Arg Gly Leu Arg Phe Leu Asp Lys Thr Ser Gly Gly
85  90  95
Lys Glu Gly Trp Lys Ser Val Glu Arg Arg Phe Asp Glu Met Asn Arg
100 105 110
Asn Gly Arg Leu Pro Lys Glu Ser Phe Gly Lys Cys Ile Gly Met Gly
115 120 125
Asp Ser Lys Glu Phe Ala Gly Glu Leu Phe Val Ala Leu Ala Arg Arg
130 135 140
Asn Tyr Arg Val Ser Ile Val Lys Ala Ala Ile Tyr Pro Gly Asn Val
530 535 540
Leu Ser Leu His Met Lys Lys Pro Pro Gly Phe Lys Tyr Lys Ser Gly
545 550 555 560
Met Tyr Leu Phe Val Lys Cys Pro Asp Val Ser Pro Phe Glu Trp His
565 570 575
Pro Phe Ser Ile Thr Ser Ala Pro Gly Asp Asp Tyr Leu Ser Val His
580 585 590
Ile Arg Thr Leu Gly Asp Trp Thr Thr Glu Leu Arg Asn Leu Phe Gly
595 600 605
Lys Ala Cys Glu Ala Gln Val Thr Ser Lys Lys Ala Thr Leu Ser Arg
610 615 620
Leu Glu Thr Thr Val Val Ala Asp Ala Gln Thr Glu Asp Thr Arg Phe
625 630 635 640
Pro Lys Val Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asn Tyr
645 650 655
Lys Lys Tyr Asp Ile Leu Leu Leu Ile Gly Leu Gly Ile Gly Ala Thr
660 665 670
Pro Phe Ile Ser Ile Leu Lys Asp Leu Leu Asn Asn Ile Lys Ser Asn
675 680 685
Glu Glu Val Glu Ser Ile His Gly Ser Glu Ile Gly Ser Phe Lys Asn
690 695 700
Asn Gly Pro Gly Arg Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln Gly
705 710 715 720
Ser Phe Glu Trp Phe Lys Gly Val Met Asn Asp Val Ala Glu Ser Asp
725 730 735
His Asn Asn Ile Ile Glu Met His Asn Tyr Leu Thr Ser Val Tyr Glu
740 745 750
Glu Gly Asp Ala Arg Ser Ala Leu Ile Ala Met Val Gln Ser Leu Gln
755 760 765
His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Ser Arg Ile Arg Thr
770 775 780
His Phe Ala Arg Pro Asn Trp Arg Lys Val Phe Ser Asp Leu Ala Asn
785 790 795 800
Ala His Lys Asn Ser Arg Ile Gly Val Phe Tyr Cys Gly Ser Pro Thr
805 810 815
Leu Thr Lys Gln Leu Lys Asp Leu Ser Lys Glu Phe Ser Gln Thr Thr
820 825 830
Thr Thr Arg Phe His Phe His Lys Glu Asn Phe
835 840

<210> 19
<211> 2604
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (1) .. (2601)
<223> coding ' for NADPH oxidase
<400> 19
agt tct aga gtg agt ttt gaa gtg tca gga ggc tat cac tct gat gca
Met Ser Arg Val Ser Phe Glu Val Ser Gly Gly Tyr His Ser Asp Ala
1 5 10 15

gaa gcc gga aac aqc gga cca atg aqc gtg qtt caa tta cca ccg atc
Glu Ala Gly Asn Ser Gly Pro Met Ser Gly Gly Gln Leu Pro Pro Ile
20 25 30

tat aaa aaa ccc ggg aac tcc aga ttc act gct gag aac aqc cag aga
Tyr Lys Lys Pro Gly Asn Ser Arg Phe Thr Ala Glu Asn Ser Gln Arg
35 40 45

aca cgt agc gca cca tac gtg gag ctc agc gta gat gta caa gac gat
Thr Arg Thr Ala Pro Tyr Val Asp Leu Thr Val Asp Val Gln Asp Asp
50 55 60

aca gtc tct gta cat agc ttg aaa atg gaa gtg gga tct agc gtt gaa
Thr Val Ser Val His Ser Leu Met Gly Ser Leu Ser Val Glu
65 70 75 80

gag aqc cgg gag ctt act ttg cta aca cga aac cgt ctt gag aag aaa
Glu Ser Pro Glu Leu Thr Leu Leu Lys Arg Asn Arg Leu Glu Lys Lys
85 90 95

aca acg gtg gtg aaa cgt ttg gcc tct gtg tct cac gag ctt aac aat gct
Thr Thr Val Val Lys Arg Leu Ala Ser Val Ser His Glu Leu Lys Arg
100 105 110

ttg aca tct gtt tct ggt gtt att gtt gga aag cca cct cga ccc
Leu Thr Ser Val Ser Gly Gly Ile Gly Gly Arg Lys Pro Pro Arg Pro
115 120 125

gct aag tta gac cgg act aca ttc gcc gcc agt caa ggc ttg aag gga
Ala Lys Leu Asp Arg Thr Lys Ser Ala Ala Ser Gln Ala Leu Lys Gly
130 135 140

cat aac tct att aag aaa acc gag ggt gcc ggc ggt tgg tct gcc gtt
Leu Lys Phe Ile Ser Thr Asp Gly Ala Gly Trp Ser Ala Val
145 150 155 160

gag aag cgg ttt aat cag att acc ggc act acc ggt gga cta ctt ctt
Glu Lys Arg Phe Asn Gln Ile Thr Ala Thr Thr Gly Leu Leu Leu
165 170 175

cgg aca aag ttc gtt gaa tgc ata gga atg act tca aag gat ttt gct
Arg Thr Lys Phe Gly Glu Cys Ile Gly Met Thr Ser Lys Asp Phe Ala
180 185 190

ttg gaa ctt gtt gat gca tgg gct aga aga agg aat ata aca ggg gaa
Leu Glu Leu Asp Ala Leu Ala Arg Arg Arg Asn Ile Thr Gly Glu
195 200 205

gtg att gat ggg gat caa cta aag gag ttt tgg gaa caa att aat gat
Val Ile Asp Gly Asp Leu Glu Leu Phe Trp Glu Gln Ile Asn Asp
210 215 220

caa agt ttt gat tct cgg ctt aag aca ttc ttt gac atg gtt gat aaa
Gln Ser Phe Asp Ser Arg Leu Lys Thr Phe Asp Met Val Asp Lys
225 230 235 240

gat ctt gat ggt aca gtt aca gaa gtc aga gtt gga tgg gag agt
Asp Ala Asp Gly Arg Leu Thr Glu Asp Glu Val Arg Glu Leu Glu Ser
245 250 255

cct gag act ctt ctt tgg caa gcc gca aca cag tct gtt ata aca agt
Leu Glu Thr Leu Leu Leu Gln Ala Ala Thr Glu Ser Val Ile Thr Ser
260 265 270
act ggg gag aga aag aat ctg agt cat atg atg agt cag agg ctt aag
Thr Gly Glu Arg Lys Asn Leu Ser His Met Met Ser Gln Arg Leu Lys
275 280 285

cct acq ttt aac cgc aac ccq aag ccg cta tgc ggt ctt aga
Pro Thr Phe Asn Arg Asn Pro Leu Lys Arg Trp Tyr Arg Gly Leu Arg
290 295 300

ttc ttc ttg tta gag aac tcg cag aag tgg gtt ata gtg cta tgg
Phe Phe Leu Leu Asp Asn Trp Gln Arg Cys Thr Val Ile Val Leu Trp
305 310 315 320

ttc ata gtt atg gct ata ctc ttc acc tac aaa tat atc caa tac agg
Phe Ile Val Met Ala Ile Leu Phe Thr Tyr Lys Tyr Ile Gln Tyr Arg
325 330 335

cgt agc cct gtg tat cca gtc gat agt gtt gat tgg tgc atg gct aag
Arg Ser Pro Val Tyr Pro Val Met Gly Asp Cys Val Cys Met Ala Lys
340 345 350

ggt gct gca gaa aca gtg aag ctc cag atg gct tgg att ctc tta cct
Gly Ala Ala Glu Thr Val Lys Leu Asn Met Ala Leu Ile Leu Leu Pro
355 360 365

gtt tgt aga aac acc atc aca tgg ctt aga aat aag acc agg tgt ggt
Val Cys Arg Asn Thr Ile Thr Trp Leu Arg Asn Lys Thr Arg Leu Gly
370 375 380

cgt gtt gtc cca ttt gat gac aat ctc aac ttc cac aag gtt ata ggc
Arg Val Val Pro Phe Asp Asn Leu Asn Phe His Lys Val Ile Ala
385 390 395 400

gtg ggg att ata gtt gga atc acg atg ctc gag gcc ggc caa cat tta ggc
Val Gly Ile Ile Val Gly Val Thr Met His Ala Gly Ala His Leu Ala
405 410 415

tgt gat ttc ccc ggg tta cta cat gca act cca gag gca tat agg cct
Cys Asp Phe Pro Arg Leu Leu His Ala Thr Pro Glu Ala Tyr Arg Pro
420 425 430

tta aga cag ttt ttt ggg gat gag cca cca aag aac tac tgg cat ttt
Leu Arg Glu Phe Phe Gly Asp Glu Glu Pro Lys Ser Tyr Trp His Phe
435 440 445

gta aac tcc gtt gaa ggt ata acc gga ctt gtt atg tgg tta atg
Val Asn Ser Val Glu Gly Ile Thr Gly Leu Val Met Val Leu Met
450 455 460

gcg aag gtc tcc aca ccg acc cct tgt aga aag ggg aag cta
Ala Ile Ala Phe Thr Leu Ala Thr Pro Trp Phe Arg Arg Gly Lys Leu
465 470 475 480

aac tat ctt cca gga cca tta aag aaa cta gct agc ttc aat gcc tcc
Asn Tyr Leu Pro Gly Pro Leu Leu Lys Ala Ser Phe Asn Ala Phe
485 490 495

tgg tac act cat cat tgg ttt gtc ata gtc tac att ctt ctt gtt gct
Trp Tyr Thr His Leu Phe Val Ile Val Tyr Leu Leu Leu Ala
500 505 510

cat gga tac tgg ttt ctc acc aga gac tgt cac aat aas aac act
His Gly Tyr Tyr Leu Tyr Leu Thr Arg Asp Trp His Asn Lys Thr Thr
515 520 525

tgg atg tat tgg gta cca gtc gtt cta ctc ggc tgt gaa agg tgg
Trp Met Tyr Leu Val Val Pro Val Val Leu Tyr Ala Cys Glu Arg Leu
530 535 540
ata aga gca ttc agg tcg agc atc aag gcc ggt gtc act att agg aaa gta
545
1680

Ile Arg Ala Phe Arg Ser Ser Ile Lys Ala Val Thr Ile Arg Lys Val
550
555
560

gca gtt tat cca gga aac gtt tgt gca att cac tgg tca aag cct caa
565
1728

Tyr Val Pro Gly Asn Val Leu Ala His Leu Ser Arg Pro Gln
570
575

aac ttc aaa tac aag tgt cca taa tac atg tgt ttt gtt aac tgt gct gct
580
1776

Asn Phe Lys Tyr Lys Ser Gly Gln Tyr Met Phe Val Asn Cys Ala Ala
585
590

gtt tct cca ttt gaa tgg cat cca ttt tca atc aca tct gca cca cca
595
1824

Val Ser Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gln
600
605

420
425

gat gat tac cta aag tgt cac att aag gtt ctg ggg gat tgg aca cga
610
1872

Asp Asp Tyr Leu Ser Val His Ile Arg Val Leu Gly Asp Trp Thr Arg
615
620

440
445

gtt ctc aaa gga gtc ttc tct gag gtt tgt aag cca cca ccc cca gca gga
625
1920

Ala Leu Lys Gly Val Phe Ser Glu Val Cys Lys Pro Pro Pro Ala Gly
630
635
640

gtt aag gtt ctc tgt ctc aag gcc gac atg tgt ctc ggg att gta
645
1968

Val Ser Gly Leu Leu Arg Ala Asp Met Leu His Gly Ala Asn Asn Pro
650
655

460
465

gtt gac aca cca atg ctc aag aag tgt gtt caa att gtt aag gtt gtt gcc
670
2016

Asp Pro Phe Pro Lys Val Leu Asp Gly Pro Gly Tyr Gly Ala Pro Ala Gln
675
680
685

490
495

gac aca gtt aag aag aag gcc gtc agg ctc aag atg aag cca aca cca gca
700
2112

Tyr Lys Tyr Glu Val Pro Gly Tyr Glu Tyr Lys Ala Leu Ser Arg Met Ile Ser Ile Val Lys Asp Ile Val Asn Asn Ile Lys
705
710
715
720

510
515

gac cca cca aag aag cca cca cca aac cca atg gat gaa gaa aca aac gca
725
2160

Ala Lys Glu Gln Ala Lys Leu Asn Arg Met Glu Asn Gly Thr Ser Glu
730
735

530
535

ttt aag gtt aag aag aag cca aag gcc gtc agg ctc agg cca gtt tac tgt
745
2208

Pro Gln Arg Ser Lys Glu Ser Phe Arg Thr Arg Arg Ala Tyr Phe
750

550
555

570
575

590
595

610
615
620

630
635
640

650
655

670
675
680
685

690
695
700

710
715
720

725
730
735

745
750

760
765

770
775
780

785
790
795
800

805
810
815

2304

Met Asn Glu Val Ala Glu Arg Asp Ala Asn Arg Val Ile Glu Met His
755

2352

Asn Tyr Cys Thr Ser Val Tyr Glu Gly Asp Ala Arg Ser Ala Leu
770

2400

His Met Leu Glu Ser Leu Asn His Ala Lys Asn Gly Val Asp Ile
785

2448

Val Ser Gly Thr Arg Val Met Ser His Phe Ala Lys Pro Asn Trp Arg
800

815
<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu Ala Gly Asn Ser Gly Pro Met Ser Gly Gly Gln Leu Pro Pro Ile</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Tyr Lys Lys Pro Gly Asn Ser Arg Phe Thr Ala Glu Asn Ser Gln Arg</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Thr Arg Thr Ala Pro Tyr Val Asp Leu Thr Val Asp Val Gln Asp Asp</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Thr Val Ser Val His Ser Leu Lys Met Gly Gly Gly Ser Ser Val Glu</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Glu Ser Pro Glu Leu Thr Leu Leu Lys Arg Asn Arg Leu Glu Lys Lys Lys</td>
<td>85</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Thr Thr Val Val Lys Arg Leu Ala Ser Val Ser His Glu Leu Lys Arg</td>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Leu Thr Ser Val Ser Gly Gly Ile Gly Gly Arg Lys Pro Pro Pro Arg Pro</td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Ala Lys Leu Asp Arg Thr Lys Ser Ala Ala Ser Gln Ala Leu Lys Gly</td>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>Leu Lys Phe Ile Ser Lys Thr Asp Gly Gly Ala Gly Trp Ser Ala Val</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Glu Lys Arg Phe Asn Gln Ile Thr Ala Thr Thr Gly Gly Leu Leu Leu</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Arg Thr Lys Phe Gly Cys Ile Gly Met Thr Ser Lys Asp Phe Ala</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Leu Glu Leu Phe Asp Ala Leu Ala Arg Arg Arg Asn Ile Thr Gly Glu</td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Val Ile Asp Gly Asp Gln Leu Lys Glu Phe Trp Glu Gln Ile Asn Asp</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Gln Ser Phe Asp Ser Arg Leu Lys Thr Phe Phe Asp Met Val Asp Lys</td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Asp Ala Asp Gly Arg Leu Thr Glu Asp Glu Val Arg Glu Leu Glu Ser</td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
</tbody>
</table>
57

Leu Glu Thr Leu Leu Leu Leu Gln Ala Ala Thr Gln Ser Val Ile Thr Ser
  260  265  270
Thr Gly Glu Arg Lys Asn Leu Ser His Met Met Ser Gln Arg Leu Lys
  275   280  285
Pro Thr Phe Asn Arg Asn Pro Leu Lys Arg Trp Tyr Arg Gly Leu Arg
  290   295  300
Phe Phe Leu Leu Asp Trp Gln Arg Cys Trp Val Ile Val Leu Trp
  305   310  315  320
Phe Ile Val Met Ala Ile Leu Phe Thr Tyr Lys Tyr Ile Gln Tyr Arg
  325   330  335
Arg Ser Pro Val Tyr Pro Val Met Gly Asp Cys Val Cys Met Ala Lys
  340   345  350
Gly Ala Ala Glu Thr Val Lys Leu Asn Met Ala Leu Ile Leu Leu Pro
  355   360  365
Val Cys Arg Asn Thr Ile Thr Trp Leu Arg Asn Lys Thr Arg Leu Gly
  370   375  380
Arg Val Val Pro Phe Asp Asn Leu Asn Phe His Lys Val Ile Ala
  385   390  395  400
Val Gly Ile Ile Val Gly Val Thr Met His Ala Gly Ala His Leu Ala
  405   410  415
Cys Asp Phe Pro Arg Leu Leu His Ala Thr Pro Glu Ala Tyr Arg Pro
  420   425  430
Leu Arg Gln Phe Phe Gly Asp Glu Gln Pro Lys Ser Tyr Trp His Phe
  435   440  445
Val Asn Ser Val Glu Gly Ile Thr Gly Leu Val Met Val Leu Leu Met
  450   455  460
Ala Ile Ala Phe Thr Leu Ala Thr Pro Trp Phe Arg Arg Gly Lys Leu
  465   470  475  480
Asn Tyr Leu Pro Gly Pro Leu Lys Leu Ala Ser Phe Asn Ala Phe
  485   490  495
Trp Tyr Thr His Leu Phe Val Ile Val Tyr Ile Leu Leu Val Ala
  500   505  510
His Gly Tyr Tyr Leu Tyr Leu Thr Arg Asp Trp His Asn Lys Thr Thr
  515   520  525
Trp Met Tyr Leu Val Val Val Leu Tyr Ala Cys Glu Arg Leu
  530   535  540
Ile Arg Ala Phe Arg Ser Ser Ile Lys Ala Val Thr Ile Arg Lys Val
  545   550  555  560
Ala Val Tyr Pro Gly Asn Val Leu Ala Ile His Leu Ser Arg Pro Gln
  565   570  575
Asn Phe Lys Tyr Lys Ser Gly Gln Tyr Met Phe Val Asn Cys Ala Ala
  580   585  590
Val Ser Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gln
  595   600  605
Asp Asp Tyr Leu Ser Val His Ile Arg Val Leu Gly Asp Trp Thr Arg
  610   615  620
Ala Leu Lys Gly Val Phe Ser Glu Val Cys Lys Pro Pro Pro Ala Gly
  625   630  635  640
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val Ser Gly Leu Leu Arg Ala Asp Met Leu His Gly Ala Asn Asn Pro</td>
<td>645 650 655</td>
</tr>
<tr>
<td>Asp Phe Pro Lys Val Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln</td>
<td>660 665 670</td>
</tr>
<tr>
<td>Asp Tyr Lys Tyr Glu Val Val Leu Leu Val Gly Leu Gly Ile Gly</td>
<td>675 680 685</td>
</tr>
<tr>
<td>Ala Thr Pro Met Ile Ser Ile Val Lys Asp Ile Val Asn Asn Ile Lys</td>
<td>690 695 700</td>
</tr>
<tr>
<td>Ala Lys Glu Gln Ala Gln Leu Asn Arg Met Glu Asn Gly Thr Ser Glu</td>
<td>705 710 715 720</td>
</tr>
<tr>
<td>Pro Gln Arg Ser Lys Glu Ser Phe Arg Thr Arg Arg Ala Tyr Phe</td>
<td>725 730 735</td>
</tr>
<tr>
<td>Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Asn Ile</td>
<td>740 745 750</td>
</tr>
<tr>
<td>Met Asn Glu Val Ala Glu Arg Asp Ala Asn Arg Val Ile Glu Met His</td>
<td>755 760 765</td>
</tr>
<tr>
<td>Asn Tyr Cys Thr Ser Val Tyr Glu Gly Asp Ala Arg Ser Ala Leu</td>
<td>770 775 780</td>
</tr>
<tr>
<td>Ile His Met Leu Gln Ser Leu Asn His Ala Lys Asn Gly Val Asp Ile</td>
<td>785 790 795 800</td>
</tr>
<tr>
<td>Val Ser Gly Thr Arg Val Met Ser His Phe Ala Lys Pro Asn Trp Arg</td>
<td>805 810 815</td>
</tr>
<tr>
<td>Asn Val Tyr Lys Arg Ile Ala Met Asp His Pro Asn Thr Lys Val Gly</td>
<td>820 825 830</td>
</tr>
<tr>
<td>Val Phe Tyr Cys Gly Ala Pro Ala Leu Thr Lys Glu Leu Arg His Leu</td>
<td>835 840 845</td>
</tr>
<tr>
<td>Ala Leu Asp Phe Thr His Lys Thr Ser Thr Arg Phe Ser Phe His Lys</td>
<td>850 855 860</td>
</tr>
<tr>
<td>Glu Asn Phe</td>
<td>865</td>
</tr>
</tbody>
</table>

\[<210> 21\]
\[<211> 2709\]
\[<212> DNA\]
\[<213> Arabidopsis thaliana\]
\[<220>\]
\[<221> CDS\]
\[<222>(1)...(2706)\]
\[<223> coding for NADPH oxidase\]
\[<400> 21\]

<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Met Asn Arg Ser Glu Met Gln Lys Leu Gly Phe Glu His Val Arg</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>Tac Tac Aca Gag Tcg Ccg Tac Aac Aga Gqa Gag Tcc Tcg Gcg Aac Gtg</td>
<td>96</td>
</tr>
<tr>
<td>Tyr Tyr Thr Glu Ser Pro Tyr Asn Arg Gly Glu Ser Ser Ala Asn Val</td>
<td>20 25 30</td>
</tr>
<tr>
<td>Gcg ACG Aca ACG Aac Tat Tac Ggt Gaa Gat Gaa Cca Tac Gtg Gag Atd</td>
<td>144</td>
</tr>
<tr>
<td>Ala Thr Thr Ser Asn Tyr Tyr Gly Glu Asp Glu Pro Tyr Val Glu Ile</td>
<td>35 40 45</td>
</tr>
</tbody>
</table>
acg cta gat atc cac gac gat tcc gtc tcc tgc tac ggc ttg aag tca 192
Thr Leu Asp Ile His Asp Asp Ser Val Ser Val Tyr Gly Leu Lys Ser
50
ccg aac cat cga ggg gcc ggg tct aat tat gag gat caa tgc ctt ttc 240
Pro Asn His Arg Gly Ala Gly Ser Tyr Gly Asp Gln Ser Leu Leu
65
aga caa ggt cgt tca ggg agg agt aac tcg gta tgg aaa cgc tgg gct 288
Arg Gln Gly Arg Ser Gly Arg Ser Val Leu Lys Arg Leu Ala
85
tct tct gtt tcc acc gga ata aca cga gtt gct tct tct gtt tct tgg 336
Ser Ser Val Ser Thr Gly Ile Thr Val Asp Ala Ser Val Ser Ser Ser
100
tct tcc gcg aga aaa cca ccc cgq cqq cag ctt gct aag ctg cgc gtt 384
Ser Ser Ala Arg Lys Pro Pro Arg Pro Gln Leu Ala Lys Leu Arg Arg
115
tcg aaa tct aga gca gag cta gct ctc aaa ggt ctt aaa ttc atc acc 432
Ser Lys Ser Arg Ala Glu Leu Ala Leu Lys Gly Leu Lys Phe Ile Thr
130
aag act gat ggt gtc act ggt tgg cct gaa gtt gag aag cgg ttt tat 480
Lys Thr Asp Gly Val Thr Gly Trp Pro Glu Val Glu Lys Arg Phe Tyr
145
gtg atg cta atg act aat aac gga tta tta cac cga tcc aga ttc ggt 528
Val Met Thr Met Thr Asn Asn Gly Leu Leu His Arg Ser Arg Phe Gly
165
gaa tgt ata ggg atg aac tcg acg gag ttt gcg tgg gca tgg ttc gat 576
Glu Cys Ile Gly Met Lys Ser Thr Glu Phe Ala Leu Leu Phe Asp
180
gct tta gcg agg agg gaa aac gta agc gga gat tca atg ctt aat ctt 624
Ala Leu Ala Arg Arg Glu Asn Val Ser Gly Asp Ser Ile Asn Met Asn
195
gag ctt aaa gag ttc tgg aag cag atc act gat caa gag ttt gat tca 672
Glu Leu Lys Glu Phe Trp Lys Gln Ile Thr Asp Gln Asp Phe Asp Ser
210
agg cta cga act ttc ttc gcc atg gtc gat aag gat tcg gat ggg cgg 720
Arg Leu Arg Thr Phe Ala Met Val Asp Lys Asp Ser Asp Gly Arg
225
ttg aat gaa gcc gaa gta aga gag att ata act tta agt gct tct gca 768
Leu Asn Glu Ala Glu Val Arg Glu Ile Ile Thr Leu Ser Ala Ser Ala
245
aac gag tgt gat aac att cgg aga caa gct gat gaa tat gct gct tgt 816
Asn Glu Leu Asp Asp Ile Asp Ala Glu Ala Glu Tyr Ala Ala Leu
260
att atg gaa ctc gat cct tat cat tat gga tac atc atg ata gag 864
Ile Met Glu Leu Leu Pro Tyr His Tyr Gly Tyr Ile Met Ile Glu
275
aat ctc gat atg cta tgg cca gcc ccg atg cag gat gtt gca gat 912
Asn Leu Glu Ile Leu Leu Leu Glu Ala Pro Met Glu Asp Val Arg Asp
290
gga gag gtt aat cag gat aaag atc ttc tgg gca gct gat gtt aag gat 960
Gly Glu Ser Lys Lys Ser Ile Ser Lys Met Leu Ser Glu Asn Leu Met Val
60
ccg cag agt agg aat ctc ggg gca gct ttt tgc aga ggg atg aag tatt
Pro Gln Ser Arg Asn Leu Gly Ala Arg Phe Cys Arg Gly Met Lys Tyr
325 330 335

ttt tgt ttt gat aag aag aag gtt ggg gtt atg gct cta tgg ata
Phe Leu Phe Asp Asn Trp Lys Arg Val Thr Val Met Ala Leu Thr Ile
340 345 350

gtg gct atg gcg gtt tgt tgg trc acg aag tgg atg gct cta tgg ata
Gly Ala Met Ala Gly Leu Phe Thr Trp Lys Phe Gly Tyr Arg Lys
355 360 365

aga tcc gct tac gaa gtc atg gaa gtt tgt tgt tga ata gct aaa gga
Arg Ser Ala Tyr Glu Val Met Gly Val Cys Val Cys Ala Ala Gly
370 375 380

gct gca gag acg ctt aat aac atg gct atg att tgt tta cca gtt
Ala Ala Glu Thr Leu Lys Leu Arg Met Ala Met Ile Leu Leu Pro Val
385 390 395 400

tgt agg aac acc act act tgt cgg aac AAA acc aag tta agg gct
Cys Arg Asn Thr Ile Thr Trp Leu Arg Thr Lys Thr Lys Leu Ser Ala
405 410 415

att gtt cct ttc gtt gac gaa ctc aat ttt cac aag gtt ata gct ata
Ile Val Pro Phe Asp Asp Ser Leu Asn Phe His Lys Val Ile Ala Ile
420 425 430

gga att tca gtt gga gtt gga atc cat gct aca tct ctc ata cca gag tgt
Gly Ile Ser Val Gly Val Gly His Ala Thr Ser His Leu Ala Cys
435 440 445

gat ttc ccc gca ctc ata gct gca gac gaa gat cat tat gac cca atg
Asp Phe Pro Arg Leu Ile Ala Ala Ala Asp Glu Gly Pro Gly Glu Met
450 455 460

gag aag tat ttt ggg cca cag aca aag aga tat tgt gac ttt gtt caa
Glu Lys Tyr Phe Gly Pro Gln Thr Lys Arg Tyr Leu Asp Phe Val Glu
465 470 475 480

tcg gta gaa gga gtt acc ggg att gga atg gtt gta cta atg acc ata
Ser Val Glu Gly Val Thr Gly Ile Gly Met Val Val Leu Met Thr Ile
485 490 495

gcc ttt aca ttg gct aca aca aca aca tg ctt aca cg ttt atg aag ctt
Ala Phe Thr Leu Ala Thr Thr Thr Phe Arg Arg Asn Lys Leu Asn Leu
500 505 510

cct gga cca ctc aag aca ata aca ggc ttc aat gct tgg tac tct
Pro Gly Pro Leu Lys Ile Gly Met Val Tyr Ser Thr Leu Val Ala Phe Trp Tyr Ser
515 520 525

cac cac tta ttt gtt atc gtc tac tgg ctt gtt gtt cat gga ttc
His His Leu Phe Val Ile Val Tyr Ser Leu Val Val His Gly Phe
530 535 540

tac gta tac ctc atc tac atg gag cca ttg tac aag aag aa acg cca tgg atg
Tyr Val Tyr Leu Ile Ile Glu Pro Trp Tyr Lys Thr Thr Trp Met
545 550 555 560

tat ttg atg gta ccc gtt gtt ttg tgg gaa agg ctt atg gct
Tyr Leu Met Val Pro Val Val Leu Tyr Leu Cys Glu Arg Leu Ile Arg
565 570 575

gca ttc agg tca agc gtc gag gct gtt tca gtt ctc atg gtt gct gtt
Ala Phe Arg Ser Ser Val Glu Ala Val Ser Val Leu Lys Val Ala Val
580 585 590
tta cca ggg aat gtc ttg tgc ctt cac ttg tca aga cca agc aac ttc 1824
Leu Pro Gly Asn Val Leu Ser Leu His Leu Ser Arg Pro Ser Asn Phe
595 600 605
aga tac aag agt gga cca tac atg tat ctc aac tgt tct gca gtt tct 1872
Arg Tyr Lys Ser Gly Gln Tyr Met Tyr Leu Asn Cys Ser Ala Val Ser
610 615 620
aca tta gaa tgt cat cca ttc tca att acc tca gct cca gga gat gac 1920
Thr Leu Glu Trp His Pro Phe Ser Ile Thr Ser Ala Gly Asp Asp
625 630 635 640
tac ctc agt gtc cac atc agg gtt tta gga gac tgt act aag cca tta 1968
Tyr Leu Ser Val His Ile Arg Val Leu Gly Asp Trp Thr Lys Glu Leu
645 650 655
aga tca tta ttc tct gag gtt tgt ccc aag cca cgc cct cct gat gaa cac 2016
Arg Ser Leu Phe Ser Glu Val Cys Lys Pro Arg Pro Pro Asp Glu His
660 665 670
aga ctt aag aca gcc gac tgg aag cac tgg gat tac atc cct gac ttt 2064
Arg Leu Asn Arg Ala Asp Ser Lys His Trp Asp Tyr Ile Pro Asp Phe
675 680 685
cca aag atc cta att gat gtt cca tat gga gca cca gca cca gac tac 2112
Pro Arg Ile Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asp Tyr
690 695 700
aag aag ttt gaa gtt tgt ctc ata tgt ggt ctc gaa atc ggt gcc act 2160
Lys Lys Phe Pro Val Leu Val Leu Leu Gly Glu Ile Gly Ala Thr
705 710 715 720
ccg atg atc agc ata gtt gat gac ata atc aat aac tgt aac ggc gtg 2208
Pro Met Ile Ser Val Ser Asp Ile Ile Asn Leu Lys Gly Val
725 730 735
gaa gaa gcc agt aac cga aga cag tca ccc atc cat aat atg gtc aca 2256
Glu Glu Gly Ser Asn Arg Arg Gln Ser Pro Ile His Asn Met Val Thr
740 745 750
cct cct gtt tct cca tca aga aac ggt gac agc ttt aga acc aag aga 2304
Pro Pro Val Ser Pro Ser Arg Lys Ser Glu Thr Phe Arg Thr Lys Arg
755 760 765
gct tac ttc tac tgg gtc aca aag gag cag ggg tgg tct gtt gtc tgg ttt 2352
Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe
770 775 780
aag aac gtt atg gac gaa gtt act gaa aca gag cgc aac aac gta att 2400
Lys Asn Val Met Asp Glu Val Thr Glu Thr Asp Arg Lys Asn Val Ile
785 790 795 800
gag ctt cat aat tac tgt acc agc gtt tac gag gaa ggg gac gcc agg 2448
Glu Leu His Asn Tyr Cys Thr Ser Val Ser Val Gly Glu Asp Ala Arg
805 810 815
tct gca ctt atc acg atg ctc cag tct cta aac cat gct aag cat gga 2496
Ser Ala Leu Ile Thr Met Leu Gln Ser Leu Asn His Ala Lys His Gly
820 825 830
gtt gac gtt tga aca cgt gtc atg tcc cat ttc gtt agg cca 2544
Val Asp Val Val Ser Gly Thr Arg Val Met Ser His Phe Ala Arg Pro
835 840 845
aac tgt aac gtt ttc aca gtt atc gct gtt atc cct aag act 2592
Asn Trp Arg Ser Val Phe Lys Arg Ile Ala Val Asn His Pro Lys Thr
850 855 860
aga gtc gga gtg ttt tat tgt gga gca gct ggg tta gtg aaa gag tta
Arg Val Gly Val Phe Tyr Cys Gly Ala Ala Gly Leu Val Lys Glu Leu
865 870 875 880

cga cac tta tca ctg gat ttc tct cat aag acc tcc acc aag ttc atc
Arg His Leu Ser Leu Asp Phe Ser His Lys Thr Ser Thr Lys Phe Ile
885 890 895

ttc cat aat gaa gat ttc taa
Phe His Lys Glu Asn Phe
900

<210> 22
<211> 902
<212> PRT
<213> Arabidopsis thaliana

<400> 22
Met Met Asn Arg Ser Glu Met Gln Lys Leu Gly Phe Glu His Val Arg
1  5 10 15
Tyr Tyr Thr Glu Ser Pro Tyr Asn Arg Gly Glu Ser Ser Ala Asn Val
20 25 30
Ala Thr Thr Ser Asn Tyr Tyr Gly Glu Asp Glu Pro Tyr Val Glu Ile
35 40 45
Thr Leu Asp Ile His Asp Ser Ser Val Ser Tyr Gly Leu Lys Ser
50 55 60
Pro Asn His Arg Gly Ala Gly Ser Asn Tyr Glu Asp Gln Ser Leu Leu
65 70 75 80
Arg Gln Gly Arg Ser Gly Arg Ser Asn Ser Val Leu Lys Arg Leu Ala
85 90 95
Ser Ser Val Ser Thr Gly Ile Thr Arg Val Ala Ser Ser Val Ser Ser
100 105 110
Ser Ser Ala Arg Lys Pro Pro Arg Pro Glu Leu Ala Lys Leu Arg Arg
115 120 125
Ser Lys Ser Arg Ala Glu Leu Ala Leu Lys Gly Leu Lys Phe Ile Thr
130 135 140
Lys Thr Asp Gly Val Thr Gly Trp Pro Glu Val Glu Lys Arg Phe Tyr
145 150 155 160
Val Met Thr Met Thr Asn Asn Gly Leu Leu His Arg Ser Arg Phe Gly
165 170 175
Glu Cys Ile Gly Met Lys Ser Thr Glu Phe Ala Leu Ala Leu Phe Asp
180 185 190
Ala Leu Ala Arg Arg Glu Asn Val Ser Gly Asp Ser Ile Asn Met Asn
195 200 205
Glu Leu Lys Glu Phe Trp Lys Gln Ile Thr Asp Gln Asp Phe Asp Ser
210 215 220
Arg Leu Arg Thr Phe Phe Ala Met Val Asp Lys Asp Ser Asp Gly Arg
225 230 235 240
Leu Asn Glu Ala Glu Val Arg Glu Ile Ile Thr Leu Ser Ala Ser Ala
245 250 255
Asn Glu Leu Asp Asn Ile Arg Arg Gln Ala Asp Glu Tyr Ala Ala Leu
260 265 270
63

Ile Met Glu Glu Leu Asp Pro Tyr His Tyr Gly Tyr Ile Met Ile Glu
275  280  285
Asn Leu Glu Ile Leu Leu Leu Gln Ala Pro Met Gln Asp Val Arg Asp
290  295  300
Gly Glu Ser Lys Leu Ser Lys Met Leu Ser Gln Asn Leu Met Val
305  310  315  320
Pro Gln Ser Arg Asn Leu Gly Ala Arg Phe Cys Arg Gly Met Lys Tyr
325  330  335
Phe Leu Phe Asp Asn Trp Lys Arg Val Trp Val Met Ala Leu Trp Ile
340  345  350
Gly Ala Met Ala Gly Leu Phe Thr Trp Lys Phe Met Glu Tyr Arg Lys
355  360  365
Arg Ser Ala Tyr Glu Val Met Gly Val Cys Val Cys Ile Ala Lys Gly
370  375  380
Ala Ala Glu Thr Leu Lys Leu Asn Met Ala Met Ile Leu Leu Pro Val
385  390  395  400
Cys Arg Asn Thr Ile Thr Trp Leu Arg Thr Lys Thr Lys Leu Ser Ala
405  410  415
Ile Val Pro Phe Asp Asp Ser Leu Asn Phe His Lys Val Ile Ala Ile
420  425
Gly Ile Ser Val Gly Val Gly Ile His Ala Thr Ser His Leu Ala Cys
435  440  445
Asp Phe Pro Arg Leu Ile Ala Ala Asp Glu Asp Gln Tyr Glu Pro Met
450  455  460
Glu Lys Tyr Phe Gly Pro Glu Thr Lys Arg Tyr Leu Asp Phe Val Gln
465  470  475  480
Ser Val Glu Gly Val Thr Gly Ile Gly Met Val Val Leu Met Thr Ile
485  490  495
Ala Phe Thr Leu Ala Thr Thr Trp Phe Arg Arg Asn Lys Leu Asn Leu
500  505  510
Pro Gly Pro Leu Lys Ile Thr Gly Phe Asn Ala Phe Trp Tyr Ser
515  520  525
His His Leu Phe Val Ile Val Tyr Ser Leu Leu Val Val His Gly Phe
530  535  540
Tyr Val Tyr Leu Ile Ile Glu Pro Trp Tyr Lys Thr Thr Trp Met
545  550  555  560
Tyr Leu Met Val Pro Val Val Leu Tyr Leu Cys Glu Arg Leu Ile Arg
565  570  575
Ala Phe Arg Ser Ser Val Glu Ala Val Ser Leu Lys Val Ala Val
580  585  590
Leu Pro Gly Asn Val Leu Ser Leu His Leu Ser Arg Pro Ser Asn Phe
595  600  605
Arg Tyr Lys Ser Gly Gln Tyr Met Tyr Leu Asn Cys Ser Ala Val Ser
610  615  620
Thr Leu Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gly Asp Asp
625  630  635  640
Tyr Leu Ser Val His Ile Arg Val Leu Gly Asp Trp Thr Lys Gln Leu
645  650  655
Arg Ser Leu Phe Ser Glu Val Cys Lys Pro Arg Pro Pro Asp Glu His
   660       665       670
Arg Leu Asn Arg Ala Asp Ser Lys His Trp Asp Tyr Ile Pro Asp Phe
   675       680       685
Pro Arg Ile Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asp Tyr
   690       695       700
Lys Lys Phe Glu Val Val Leu Leu Val Gly Leu Gly Ile Gly Ala Thr
   705       710       715       720
Pro Met Ile Ser Ile Val Ser Asp Ile Ile Asn Asn Leu Lys Gly Val
   725       730       735
Glu Glu Gly Ser Asn Arg Arg Gln Ser Pro Ile His Asn Met Val Thr
   740       745       750
Pro Pro Val Ser Pro Ser Arg Lys Ser Glu Thr Phe Arg Thr Lys Arg
   755       760       765
    770       775       780
    785       790       795       800
    810       815
    820       825       830
    835       840       845
    850       855       860
    865       870       875       880
    885       890       895
    900

<210> 23
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence:
    oligonucleotide primer
<400> 23
garcaaggct ctttgtgattg
<210> 24
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence:
    oligonucleotide primer
<400> 24
gaaatgcctc ttatggaatt c
We claim

1. A method for generating or increasing the resistance to at least one pathogen in plants, which comprises the following operating steps

   a) reduction of the protein quantity, activity or function of an NADPH oxidase in a plant or a tissue, organ, part or cell thereof, and

   b) selection of the plants in which - in contrast or in comparison with the starting plant - the resistance to at least one pathogen exists or is increased.

2. The method according to claim 1, wherein the NADPH oxidase is encoded by

   a) polypeptide sequences comprising a sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22, or

   b) polypeptide sequences of a functional equivalent of a polypeptide comprising a sequence as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22.

3. The method according to claim 2, wherein the functional equivalent has at least 50% homology with one of the polypeptides as shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or 22.

4. The method according to any of claims 1 to 3, wherein the reduction of the protein quantity, activity or function of an NADPH oxidase is ensured by applying a method selected from the group consisting of

   a) introducing a double-stranded NADPH oxidase RNA nucleic acid sequence or (an) expression cassette(s) ensuring its expression,

   b) introducing an NADPH oxidase antisense nucleic acid sequence or an expression cassette ensuring its expression,
71
c) introducing an NADPH oxidase antisense nucleic acid sequence in combination with a ribozyme or an expression cassette ensuring its expression,
d) introducing NADPH oxidase sense nucleic acid sequences for inducing a cosuppression or an expression cassette ensuring their expression,
e) introducing DNA- or protein-binding factors against NADPH oxidase genes, RNAs or proteins or an expression cassette ensuring their expression,
f) introducing viral nucleic acid sequences and expression constructs bringing about the degradation of NADPH oxidase RNA, or an expression cassette ensuring their expression,
g) introducing constructs for inducing a homologous recombination at endogenous NADPH oxidase genes, and
h) introducing mutations into an endogenous NADPH oxidase gene.

5. The method according to any of claims 1 to 4, comprising

(i) the stable transformation of a plant cell with a recombinant expression cassette comprising, in functional linkage with a promoter which is active in plants, a nucleic acid sequence encoding

a) a double-stranded NADPH oxidase RNA ribonucleic acid sequence or

b) an NADPH oxidase antisense nucleic acid sequence or

c) an NADPH oxidase antisense nucleic acid sequence in combination with a ribozyme or

d) an NADPH oxidase sense nucleic acid sequence for inducing a cosuppression or

e) DNA- or protein-binding factors against NADPH oxidase genes, RNAs or proteins

f) viral nucleic acid sequences which bring about the degradation of NADPH oxidase RNA,
(ii) regeneration of the plant from the plant cell, and

(iii) expression of said nucleic acid sequence in such a quantity and for such a time as suffices for generating or increasing a pathogen resistance in said plant.

6. The method according to any of claims 1 to 5, wherein the pathogen is selected from the group consisting of bacteria, fungi, insects, viruses and nematodes.

7. The method according to any of claims 1 to 6, wherein the pathogen is selected from the group of the fungi consisting of Plasmodiophoromycota, Oomycota, Ascomycota, Chytridiomycetes, Zygomycetes, Basidiomycota and Deuteromyceten.

8. The method according to any of claims 1 to 7, wherein the plant is selected from among the monocotyledonous and dicotyledonous plants.

9. The method according to any of claims 1 to 8, wherein the plant is selected from the group of the monocotyledonous plants consisting of wheat, oats, millet, barley, rye, maize, rice, buckwheat, sorghum, triticale, spelt, linseed or sugar cane.

10. A double-stranded RNA molecule for reducing the expression of an NADPH oxidase protein comprising

a) a sense RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of the sense RNA transcript of a nucleic acid sequence encoding an NADPH oxidase, and

b) an antisense RNA strand which is essentially complementary to the RNA sense strand of a).

11. The double-stranded RNA molecule according to claim 10, wherein the two RNA strands of the double-stranded RNA are bonded covalently with one another.

12. The double-stranded RNA molecule according to either of claims 10 or 11, wherein one of the two RNA strands is encoded by at least a part of the nucleic acid sequence encoding an NADPH oxidase sequence as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 or a functional equivalent thereof.
13. A transgenic expression cassette comprising, in functional linkage with a promoter which is functional in plant organisms, a nucleic acid sequence encoding a double-stranded RNA molecule according to one of Claims 10 to 12.

14. A transgenic expression cassette comprising at least a part of a nucleic acid sequence encoding an NADPH oxidase as shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 or 21 or a functional equivalent thereof, where said nucleic acid sequence is linked functionally in antisense orientation with a promoter which is functional in plant organisms.

15. The transgenic expression cassette according to claim 13 or 14, wherein the promoter which is functional in plants is a pathogen-inducible promoter.

16. A transgenic vector comprising an expression cassette according to any of claims 13 to 15.

17. A transgenic organism comprising a double-stranded RNA molecule according to any of claims 10 to 12, an expression cassette according to any of claims 13 to 15 or a vector according to claim 16.

18. The transgenic organism according to claim 17, selected from the group consisting of bacteria, yeasts, animals and plants.

19. The transgenic organism according to claim 17 or 18, selected from the group of the plants consisting of wheat, oats, millet, barley, rye, maize, rice, buckwheat, sorghum, triticale, spelt, linseed, sugar cane, oilseed rape, canola, cress, Arabidopsis, cabbages, soybeans, alfalfa, pea, beans, peanut, potato, tobacco, tomato, egg plant, capsicum, sunflower, Tagetes, lettuce, Calendula, melon, pumpkin/squash and zucchini.

20. A tissue, organ, part, cell, cell culture or propagation material derived from a transgenic organism according to either of claims 18 or 19.
Fig. 1