O 02/05134 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 January 2002 (17.01.2002)

PCT

(10) International Publication Number

WO 02/05134 A2

(51) International Patent Classification’: GO6F 17/30

(21) International Application Number: PCT/US01/16520

(22) International Filing Date: 9 July 2001 (09.07.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/216,883 7 July 2000 (07.07.2000) US

(71) Applicant: FITECH LABORATORIES, INC. [US/US];
300 Montgomery Street, Suite 621, San Francisco, CA
94104 (US).

(72) Inventors: ROSEBOROUGH, James; Fitech Laborato-
ries, Inc., 300 Montgomery Street, Suite 621, San Fran-
cisco, CA 94104 (US). KOTHAPALLI, Warlu; Fitech
Laboratories, Inc., 300 Montgomery Street, Suite 621, San
Francisco, CA 94104 (US). MATSUSHIMA, Toshiyuki;
Fitech Laboratories, Inc., 300 Montgomery Street, Suite
621, San Francisco, CA 94104 (US).

(74) Agents: GARRETT, Arthur, S. et al.; Finnegan, Hen-
derson, Farabow, Garrett & Dunner, L.L.P., 1300 I Street,
N.W., Washington, DC 20005-3315 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR A PROVIDING A HIGHLY SCALABLE SYNCHRONOUS DATA CACHE

604 606 Impl Cache
Selector

Key

E
608 oum Cache

il

\ .

606

619 612
Primary Key Record Data
—
Primary Key | Record Data

608
S S e
Qu\e List of records
Ty satisfying query
Query List of records

satisfying query

(57) Abstract: A data caching technique is provided that is highly scalable while being synchronous with an underlying persistent
data source, such as a database management system. Consistent with the present invention, data is partitioned along appropriate lines,
such as by account, so that a data cache stores mostly unique information and receives only the invalidation messages necessary to

maintain that data cache.

w0 02/05134 A2 D000 000 A A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/05134 PCT/US01/16520

METHODS AND SYSTEMS FOR A PROVIDING A HIGHLY SCALABLE
SYNCHRONOUS DATA CACHE
DESCRIPTION OF THE INVENTION
Related Application

This application claims the benefit of U.S. provisional patent application

no. 60/216,883, filed on July 7, 2000, and incorporated herein by reference.
Field of the Invention

This invention relates to caches and, more particularly, to methods and
systems for providing a scalable, synchronized data cache using partitioned
data and invalidation triggers.

Background of the Invention

Online transaction processing involves systems for conducting
transactions, such as stock trades or electronic payments, over a network. A
common architecture to support online transactions includes a user at a
computer in communication with a server via a network. When the user
sends a request for a transaction to the server, the server fulfills the request
and, in some configurations, returns a confirmation to the user. To process
the transaction, the server may ac;:ess data about an account of the user or
products that are available to the request. The server may retrieve such data
from a persistent data source, such as a database.

As more users are added to such a system, additional servers can be
added to process the increased number of requests. However, when these
servers must access the same data source to fulfill the requests, a delay can
result if one server must wait while another server accesses the data source.
As the system grows and servers are added, the delays are compounded and
system performance suffers. As the time required per transaction grows,
users may become frustrated and stop using the online transaction
processing system.

A common solution to this problem is to employ a data cache to store a
temporary copy of data from the data source. If multiple servers are used,
each can maintain a cache of data retrieved from the data source. To

process a request, a server would first search its data cache for the required

-1 -

10

15

20

25

30

WO 02/05134 PCT/US01/16520

data. If the required data is found in the cache, the server can process the
request without accessing the data source. Only if the required data is not
found in the cache must the server access the shared data source. Once the
required data is retrieved from the data source, the server can store the data
in its data cache for future use. CORBA and Enterprise JavaBeans (EJB) are
well-known architectures that provide support for such a distributed
transaction processing system.

Even with the addition of data caching, traditional online transaction
systems suffer problems with scalability and latency. As a system grows very
large and employs many servers, delays will occur as those servers must
access the data source to obtain data not found in a data cache.
Furthermore, successful data caching relies on the accuracy of the data
stored in a data cache. When a data item changes in the data source, delays
in communicating the change to each data cache cause errors if a server
uses outdated data to process a request.

SUMMARY OF THE INVENTION

It is therefore desirable to provide a data cache that is highly scalable
so that performance does not degrade as the size of a data source increases.
It is also desirable to provide a data cache that is synchronous with the data
source so that there is no discrepancy between data in the data source and
the available in the cache.

Methods and systems consistent with the present invention provide a
data caching technique that is highly scalable while being synchronous with a
persistent data source, such as a database management system. Consistent
with the present invention, data is partitioned by, for example, account, so that
a data cache stores mostly unique information and receives only invalidation
messages necessary to maintain that data cache.

In accordance with an aspect of the invention, a system is provided to
process transactions for a user. The system includes at least one application
server that receives a query including an account number from the user via a
request distributor, processes the query to determine a result, and returns the
result to the user via the request distributor. The system further includes at

-2-

10

15

20

25

30

WO 02/05134 PCT/US01/16520

least one data store configured to store account data corresponding to the
account number in a table. The system further includes at least one data
cache that maintains a cache partition corresponding to the account number,
and, in response to the query processed by the at least one application
server, searches for the result in the cache partition. If the result is not found
in the cache partition, the data cache obtains the result from the data store,
stores the result in the cache partition, and returns the result to the application
server.
According to the present invention, a data processing method maintains set of
cache partitions, each identified by an account number. When a query
including a value is received, a particular cache partition corresponding to the
query is identified from among the set of cache partitions, based on a
relationship between the value of the query and the account number used to °
identify each cache partition in the set. A result to the query is provided
based on the determination.
Additional features of the invention will be set forth in part in the description
which follows, and in part will be obvious from the description, or may be
learned by practice of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS

Itis to be understood that both the foregoing general description and
the following detailed description are exemplary and explanatory only and are
not restrictive of the invention, as claimed. The accompanying drawings,
which are incorporated in and constitute a part of this specification, illustrate
several embodiments of the invention and together with the description, serve
to explain the principles of the invention. In the drawings:

Figure 1 is a high level block diagram of an exemplary system for
practicing systems and methods consistent with the present invention:

Figure 2 is a more detailed block diagram of an exemplary system for
practicing systems and methods consistent with the present invention;

Figure 3 is a detailed block diagram of a data source consistent with

the present invention;

10

15

20

25

30

WO 02/05134 PCT/US01/16520

Figure 4 depicts a sample account table consistent with the present
invention;

Figure 5 depicts a sample master table consistent with the present
invention;

Figure 6 is a block diagram showing a data cache consistent with thé
present invention in greater detail;

Figures 7A and 7B depict a flow chart of query processing using data
caching consistent with the present invention;

Figure 8 is a flowchart of a process for updating data caches when
master data in a data source changes, consistent with one embodiment of the
present invention;

Figure 9 is a flowchart of a process for updating data caches when
account data in a data source changes consistent with one embodiment of the
present invention; and

Figure 10 is a flowchart of a process for invalidating a cache in
response to a change in a data source.

DETAILED DESCRIPTION

The following description of embodiments of this invention refers to the
accompanying drawings. Where appropriate, the same reference numbers in
different drawings refer to the same or similar elements.

Figure 1 is a high level block diagram of an exemplary system for
practicing the present invention. As shown, a plurality of users 102 use
computers to communicate with a transaction processing system 104 via a
network 106. Network 106 may be any type of communication medium, such
as the Internet, a wide area network, or a local area network. A user 102 may
submit a request for a transaction to transaction processing system 104. Any -
type of transaction may be processed in accordance with the principles of the
present invention, including a stock trade or an electronic payment. To
process this request, transaction processing system 104 accesses data
stored in a persistent data source 108. Although three users 102 are depicted

in figure 1, any number of users may communicate with transaction

10

15

20

25

30

WO 02/05134 PCT/US01/16520

processing system 104 consistent with the present invention. Similarly, more
than one data source 108 may be used.

Figure 2 is a more detailed block diagram of an exemplary system for
practicing the present invention. Transaction processing system 104 includes
a number of components for processing a request from a user 202. These
components include a request distributor 204, one or more application servers
206, one or more data caches 208, and a data source 108.

Request distributor 204 receives a request from user 202 and assigns
the request to an application server for processing. Request distributor 204
may also return results of the request to user 202. If more than one
application server is used, request distributor 204 performs load balancing by
distributing requests among multiple application servers using known
distribution techniques. Additionally, if request distributor 204 determines that
an application server is not functioning properly, request distributor 204 may
re-route a request to a different application server. One skilled in the art will
recognize that the functions of request distributor 204 may be performed by a
proxy server. In addition, other communication mechanisms between user
202 and transaction processing system 104 may be used consistent with the
present invention.

Transaction processing system 104 uses application servers 206 to
process a user’s request using data from data source 108. To improve
performance, application servers 206 may access one or more data caches
208 to obtain data without having to access data source 108 directly. This
process is described in greater detail below with reference to figures 7A and
7B. One skilled in the art will recognize that one or more data sources, one or
more data caches, and one or more application servers may be used
consistent with the present invention. }

Figure 3 is a detailed block diagram of a data source consistent with
the present invention. Data source 108 stores data necessary to process
requests from users. For example, in an online stock trading system or other
transactional system, a user typically has an account number that is unigue to

that user. In one embodiment of the present invention, data store 108 stores

S5

10

15

20

25

30

WO 02/05134 PCT/US01/16520

data for each account in its own account table 302 based on the unique
account number. Data that applies to all accounts, such as data relating to
products or services, is stored in a master table 304. Although one account
table 302 and one master table 304 are shown in figure 3, one skilled in the
art will understand that multiple account tables and/or master tables can be
used consistent with the present invention.

Data source 108 also includes a table 308 of all running data caches
and an association list 310 that associates accounts with running data
caches. These are used to maintain synchronization with data caches 206,
as described below. 4

In one embodiment of the present invention, data about one account is
stored in one account table and cached in one data cache. To implement this
embodiment, association list 310 stores a list of each account table together
with a reference to the data cache 208 that stores copies of data from that
account table. Association list 310 may then be used to notify the appropriate
data cache when data in an account table changes. Association list 310 can
be updated by request distributor 204 each time an account is assigned to a
data cache. This assignment may begin when a user logs onto the system
and last until the user logs out of the system. Association list 310 may be
accessed by request distributor 204 to determine which cache to route a
query to, as described below with reference to figures 7A and 7B.

Table 308 contains a reference to all data caches that are running in
transaction processing system 104. When data in a master table changes, it
may affect all accounts and therefore such a change can be communicated to
all data caches 208 listed in table 308. Table 308 can be updated by
transaction processing system 104 each time a new data cache is added.
Storing the data in this fashion makes the present invention particularly useful
for transactional systems in which data can be partitioned, for example,
according to account number.

In one embodiment of the present invention, data source 108 includes
a selector lock table that enables the locking of a selector key, such as an

10

15

20

25

30

WO 02/05134 PCT/US01/16520

account number. While a selector key is locked using the selector lock table,
no changes can be made to the data corresponding to the selector key.

Data source 108 uses an inter-process communication channel 306 to
communicate with client processes, such as transaction processing system
104. Inter-process communication channel 306 can be implemented using,
for example, Oracle™ DBMS - PIPE, Java™ RMI, or any other technique
providing for reliable transfer of information between data source 108 and
data caches 208. Additional capabilities of data source 108 can include
storing data in a relational manner, reading committed data, processing
primary key queries, locking a row or table as needed, and generating an
event when data changes. These are well-known capabilities of a number of
database management systems. As such, data source 108 may be -
implemented using available software such as Java™ Database Connectivity
(JDBC), SQL, and Oracle™ Database Management System (DBMS). For
ease of explanation, this description will treat data source 108 as a database
having these features. However, one skilled in the art will recognize that any
persistent data source, such as a remote server conforming to an established
protocol that fulfills these functions, would be sufficient to practice the present
invention.

Figure 4 depicts a sample account table 402 consistent with the
present invention. Data stored in sample account table 402 is organized in
rows, each row identified by a primary key. Corresponding to each primary
key is record data and a row lock. In an account table, a primary key and its
corresponding record data might be defined as follows: primary key = account
number; record data = current balance, bank branch identifier. When the row
lock is enabled, no changes can be made to the information in the row. In an
alternative embodiment, a table lock or a separate lock table may be used or
the row lock may be or omitted altogether. The record data also includes a
selector key that identifies the set of data corresponding to sample account
table 402. For example, in an account-based system, the selector key can be

an account number. In an alternative embodiment, a table may have no

10

15

20

25

30

WO 02/05134 PCT/US01/16520

primary key. In such an embodiment, a data-source-specific identifier can be
used to identify a row in data source 108.

Figure 5 depicts a sample master table consistent with the present
invention. Data stored in sample master table 502 is organized in rows, by a
primary key. Corresponding to each primary key is record data. In a master
table, a primary key and its corresponding record data might be defined as
follows: primary key = product SKU; record data = product name,
manufacturer identifier. Sample master table includes a table lock. When the
table lock is enabled, no changes can be made to the information in the table.
In an aiternative embodiment, the lock may be implemented using row locks,
a separate lock table, or omitted altogether. The record data includes a
selector key that identifies the set of data corresponding to sample master
table 502. In an account-based system, master data can be data that applies
to all accounts. Therefore, for master data, the selector key might be a well-
known number, such as 1 or 0, to indicate that the data applies to all
accounts.

Figure 6 is a block diagram showing a data cache in greater detail.
Data cache 602 is divided into one or more partitions. In one embodiment of
the present invention, each partition corresponds to an account table stored in
data source 108. In this embodiment, a single data cache can support a
number of accounts, and when the system needs to support additional
accounts, additional data caches can be added. Each partition in data cache
602 contains a selector key 604 that identifies the set of data in the partition.
For example, if data corresponding to a user's account is stored in a partition,
the selector key might be an account number. In addition to selector key 604,
each partition of data cache 602 contains two sub-caches: an “Impl” cache
606 and an “Enum” cache 608. These sub-caches store copies of data
retrieved from data source 108.

Entries in Impl cache 606 contain a primary key 610 and corresponding
record data 612. Impl cache 606 can be used to facilitate a request for a data
item without having to access data source 108. For example, if a user

submits a request for his account balance, the application server processing

-8-

10

15

20

25

30

WO 02/05134 PCT/US01/16520

the request searches the appropriate Impl cache 606 for the primary key
“account number” and returns the corresponding record data (e.g., current
balance, bank branch identifier) Query processing is described in greater
detail below with reference to figures 7A and 7B.

Entries in Enum cache 608 contain a query 614 and a corresponding
list 616 of records satisfying the query. Enum cache 608 can be used to
facilitate a more complex query without having to access data source 108.
For example, if a user submits a request for a list of his most recent stock
purchases, the application server processing the request searches the
appropriate Enum cache 608 for the query “recent stock purchases” and
returns the corresponding list of records satisfying the query. Query
processing is described in greater detail below with reference to figures 7A
and 7B.

Figures 7A and 7B depict a flow chart for processing a query using data
caching consistent with the present invention. The process begins when an
application server 206 receives a query containing a selector key from a user
202 (step 702). The query may be sent to application server 206 by request
distributor 204. In one embodiment, request distributor 204 maintains a
record of which application server and/or data cache each account is
assigned to. Then, when request distributor 204 receives a query, request
distributor 204 routes the query to the proper application server and/or data
cache. Alternatively, request distributor 204 and application servers 206 can
access association list 310 in data.store 108. To process the query, an
application server 206 uses the selector key from the query to determine
which data cache might contain the necessary information, i.e., which data
cache stores the subset of data identified by the selector key. In an account-
based implementation, the selector key can be the user's account number
and application server 206 uses the account number to determine which data
cache partition stores data for the user’'s account. Within that data cache,
application server 206 performs one or more searches in the partition

containing the selector key from the query.

10

15

20

25

30

WO 02/05134 PCT/US01/16520

Before query processing begins, a selector lock is acquired for the
selector key (step 703). If the selector lock is not available, i.e., another
process has locked the selector key, the query can be processed using the
data source and the results are not cached. In this way, the query can be
processed even if the cache is unavailable.

If the selector lock is acquired (step 703), then application server 206
searches for the query in the Enum cache within the cache partition
containing the selector key (step 704). If a list of records satisfying the query
is present in the Enum cache (step 706), then application server 206 returns
the list of records to user 202 (step 708). If not, application server 206 must
submit the query to data source 108 (step 710). Data source 108 processes
the query using known database tools and returns one or more primary keys
representing the results ofvthe query (step 712). To complete its processing,
application server 206 must then obtain the record data corresponding to
each of the one or more primary keys.

To do this, application server 206 searches the Impl cache (still within
the cache partition containing the selector key) for the next primary key (step
714). If the next primary key is found in the Impl cache, then application
server 206 adds the corresponding record data from the Impl cache to the
query results (step 716). If the next primary key is not found, application
server 206 must obtain the corresponding record data from data source 108
(step 718). Data source processes the retrieval request using known
database tools and returns the record data corresponding to the next primary
key. Application server 206 then stores the next primary key and its
corresponding record data in the Impl cache (step 720) and adds the record
data to the query resulits (step 716). In this way, the Impl cache is updated to
improve the processing of future queries.

If more primary keys were returned by data source 108 in step 712,
then the process is repeated until record data corresponding to each primary
key has been obtained and added to the query results (step 722). Application
server 206 then adds an entry containing the query and the query results to
the Enum cache (step 724) and returns the query results to user 202 (step

-10 -

10

15

20

25

30

WO 02/05134 PCT/US01/16520

726). In this way, the Enum cache is updated to improve the processing of
future queries. Finally, the selector lock is released (step 727).

As described above, the partitioning of data according to accounts in
data source 108 and data caches 208 enables application server 206 to
process a query very quickly and without knowledge about the underlying
data. Another benefit of this data partitioning is the ability to synchronize data
caches 208 with data source 108 so that any changes to data stored in data
source 108 are shared with data caches 208 in a seamless and efficient
manner, as described below with reference to figures 8, 9, and 10. An
additional benefit is that changes to the data source result in a minimum
number of items being removed from the data caches, as described below
with reference to figure 8.

Figure 8 is a flowchart of a process for updating data caches when
master data in data source 108 changes consistent with one embodiment of
the present invention. The process begins when a process attempts to
change master data (i.e., data that affects all accounts) in a row
corresponding to a primary key in a master table (step 802). This might
occur, for example, when a system administrator adds a new product to the
transaction processing system. Data source 108 locks the table containing
the row that is changing (step 804) and retrieves the selector key from the row
that is changing (step 806). If the lock is not available, the data source can
wait until one is available or can abort the transaction. As explained above,
the selector key for master data may be, for example, a reserved number
such as 0 or -1 to indicate that the data affects all accounts.

To alert data caches 208 of the change, data store 108 sends an
invalidation message to all data caches listed in the table 308 of all running
data caches (step 808). The invalidation message includes the primary key of
the row that is changing, the selector key, and the type of change to the row
(i.e., add, change, or delete). Data store 108 may send the invalidation
message to the data caches via inter-process communication channel 306.
Data store 108 can wait a predetermined amount of time to receive a
response from each of the data caches (step 810). If all of the data caches

-11 -

10

15

20

25

30

WO 02/05134 PCT/US01/16520

respond with success (step 812), then the caches have been invalidated and
data store 108 unlocks the table to permit the change to occur (step 814). If
all of the data caches do not respond with success, then the transaction is
aborted (step 816). A data cache may not respond with success if, for
example, the data cache has crashed.

Figure 9 is a flowchart of a process for updating data caches when
account data in data source 108 changes consistent with one embodiment of
the present invention. The process begins when a process attempts to
change account data in a row corresponding to a primary key in an account
table (step 902). This might occur, for example, when a stock trade is
executed or an electronic payment is dispatched. Data source 108 locks the
row that is changing (step 904) and retrieves the selector key from the row
that is changing (step 906). If a lock is not available, data source 108 can wait
until one is available or can abort the transaction. When a row is locked,
other processes cannot modify the data in the row. Data source 108
determines which data cache corresponds to the selector key (i.e., which data
cache stores data for this account) using association list 310 (step 908).

To alert the appropriate data cache of the change, data store 108
sends an invalidation message to the determined data cache (step 910). The
invalidation message includes the primary key, the selector key, and the type
of change (i.e., add, change, or delete). Data store 108 may send the
invalidation message to the data cache via inter-process communication
channel 306. Data store 108 can wait a predetermined amount of time to
receive a response from the data cache (step 912). If the data cache
responds with success (step 914), then the cache has been invalidated and
data store 108 unlocks the row to permit the change to occur (step 916). If
the data cache does not respond with success, then the transaction is aborted
(step 918). A data cache may not respond with success if, for example, the
data cache has crashed.

Figure 10 is a flowchart of a process for invalidating a cache in
response to a change in a data source. The process begins when an
invalidation message is received by a data cache (step 1002). As described

-12-

10

15

20

25

30

WO 02/05134 PCT/US01/16520

above, the invalidation message indicates that data in the underlying data
source has changed. The invalidation message includes a primary key, a
selector key, and a type of change. If the type of change is either delete or
update (step 1004), then the underlying record data corresponding to the
primary key has been changed and the data cache must remove all outdated
copies of this data. To do so, in the partition of the data cache corresponding
to the selector key, all entries containing the primary key are removed (step
1006). This ensures that the old record data will not be retrieved in any
subsequent request containing the primary key. Furthermore, once
underlying record data has changed, it is possible that any stored query
results will be affected. Therefore, all stored query results in the cache
partition corresponding to the selector key are removed. To do this, all entries
are removed from the Enum cache in the partition of the data cache
corresponding to the selector key (step 1010).

If the type of change is an insert (step 1008), then existing record data
in the Impl cache does not need to be changed, but any stored query results
can no longer be trusted as accurate. Therefore, all stored query results in
the cache partition corresponding to the selector key are removed. To do this,
all entries are removed from the Enum cache in the partition of the data cache
corresponding to the selector key (step 1010).

As described herein, the present invention provides a technique for
caching data that is highly scalable, meaning that performance does not
degrade as data size becomes extremely large. Furthermore, using the
methods described above, a data cache is synchronous with the underlying
data source, so that there is no latency between when data is committed and
when it is first available in the cache.

This technique is particularly useful in a high volume transactional
system such as an online stock trading system where per-user account
information and across-user product information are largely separable.
However, the present invention would also realize benefits in a system for
storing data that is not as easily partitioned.

-13-

10

15

20

25

WO 02/05134 PCT/US01/16520

The foregoing description of an implementation of the invention has
been presented for purposes of illustration and description. It is not
exhaustive and does not limit the invention to the precise form disclosed.
Modifications and variations are possible in light of the above teachings or
may be acquired from practicing of the invention. Additional modifications and
variations of the invention may be, for example, the described implementation
includes software but the present invention may be implemented as a
combination of hardware and software or in hardware alone. The invention
may be implemented with both object-oriented and non-object-oriented
programming systems.

Furthermore, one skilled in the art would recognize the ability to
implement the present invention using various configurations. For example,
the data caches could be combined with the application servers for additional
performance gain. In another implementation, invalidation messages could
be broadcast to all data caches regardless of whether account data or master
data changes. In this case, the use of account-specific partitioning of data
may be unnecessary. In another implementation, simultaneous multiple
partitioning schemes may be used.

Additionally, although aspects of the present invention are described as
being stored in memory, one skilled in the art will appreciate that these
aspects can also be stored on other types of computer-readable media, such
as secondary storage devices, like hard disks, floppy disks, or CD-ROM: a
carrier wave from the Internet or other propagation medium; or other forms of
RAM or ROM. The scope of the invention is defined by the claims and their
equivalents.

-14 -

WO 02/05134 PCT/US01/16520

WHAT IS CLAIMED IS:

1. A system for processing transactions for a user, comprising:

10

15

20

25

at least one application server configured to
receive a query including an account number from
the user via a request distributor,
process the query to determine a result, and
return the result to the user via the request
distributor;
at least one data store configured to
store account data corresponding to the account
number in a table; and
at least one data cache in communication with the at least one
application server and the at least one data store
configured to
maintain a cache partition corresponding to the
account number,
in response to the query processed by the at least
one application server, search for the result
in the cache partition,
if the result is not found in the cache partition,
obtain the result from the data store,
and
store the result in the cache partition,

and

-15-

WO 02/05134 PCT/US01/16520

return the result to the at least one application
server.
2. The system of claim 1, wherein the at least one data cache is further
configured to:
5 store account data items in a first sub-cache in the cache
partition,
store recent query results in a second sub-cache in the cache
partition.
3. The system of claim 1 wherein the at least one data store is further
10 configured to:
store master data corresponding to a plurality of accounts in a
master data table.
4. The system of claim 1, further comprising a request distributor
configured to:
15 receive the request from the user,
assign the request to the at least one application server, and
return a result from the at least one application server to the
user.
5. A method for processing account information using a data cache with
20 multiple partitions, each partition corresponding to an account,
comprising:
receiving a query and an account number from a user;
in a cache partition corresponding to the account number,

searching for the query in a first sub-cache;

-16 -

WO 02/05134 PCT/US01/16520

if the query is not found in the first sub-cache,
submitting the query to a data store,
receiving at least one primary key in response to the
query from the data store, and
5 for each of the at least one primary key,
searching a second sub-cache in the cache
partition for the primary key and
corresponding record data,
if the primary key is not found in the second sub-
10 cache,
obtaining record data corresponding to the
primary key from the data store and
storing the record data and the primary key
in the second sub-cache,
15 returning the record data corresponding to the
primary key to the user, and
storing-the primary key and corresponding record
data together with the query in the first sub-
cache; and
20 if the query is found in the first sub-cache, returning record data
stored together with the query in the first suﬁ-cache to the
user.
6. A method for updating a data cache when master data in a data store

changes, comprising:

-17 -

10

15

20

WO 02/05134 PCT/US01/16520

10.

receiving a request to change master data in the data store, the
request including a primary key and a type of change;
locating a row containing the primary key in a table in the data
store;
retrieving a seleétor key from the row;
locking the table containing the row;
sending a message to each cache server listed in a table of
running cache servers; and
if a positive response is received from each cache server,
unlocking the table containing the row, and
approving the request.
The method of claim 6, wherein the message contains the primary key,
the selector key, and the type of change.
The method of claim 6, further comprising:
waiting a predetermined period to receive a response from each
cache server.
The method of claim 6 wherein the selector key is an account number.
A system for processing transactions, comprising:
a data store comprising:
a memory configured to store:
a plurality of tables, each table containing master
data that applies to a plurality of accounts;

and

-18 -

WO 02/05134 PCT/US01/16520

5
10
15
11.
20 12.
13.

a program configured to perform a method, the
method comprising:
receiving a request to change master data
in the data store, the request
including a primary key and a type of
change,
locating a row containing the primary key in
a table in the data store,
retrieving a selector key from the row,
locking the table containing the row,
sending a message to each cache server
listed in a table of running cache
servérs, and
unlocking the table containing the row upon
receipt of an acknowledgement from
each cache server; and
a processor configured to execute the program.
The system of claim 10, wherein the message contains the primary
key, the selector key, and the type of change.
The system of claim 10, wherein the method further comprises:
waiting a predetermined period to receive a response from each
cache server.

The system of claim 10, wherein the selector key is an account

number.

-19 -

WO 02/05134 PCT/US01/16520

14. A method for updating a data cache when account data in a data store
changes, comprising:

receiving a request to change stored account data, the request

including a primary key and a type of change,
5 locating a row containing the primary key in a table in the data

store,

retrieving a selector key from the row,

locking the row,

determining a data cache corresponding to the selector key,

10 sending a message containing the primary key, the selector key,
and the type of change to the determined data cache,
and

if a positive response is received from the determined server,
unlocking the row and

15 approving the request.

15, The method of claim 14, further comprising:
waiting a predetermined length of time to receive a response
from the determined server.
16. The method of claim 14, wherein the type of change is to delete a

20 record from the data store.

17. The method of claim 14, wherein the type of change is to update a
record in the data store.
18. The method of claim 14, wherein the type of change is to add a record

to the data store.

-20 -

WO 02/05134 PCT/US01/16520

19. A system for processing transactions, comprising:
a data store comprising
a memory configured to store
a plurality of tables, each table corresponding to
5 an account; and
a program configured to perform a method, the
method comprising:
receiving a request to change stored
account data, the request
10 including a primary key and a
type of change,
locating a row containing the primary
key in a table in the data store,
retrieving a selector key from the
15 row,
locking the row,
determining a data cache
corresponding to the selector
key,
20 sending a message containing the
primary key, the selector key,
and the type of change to the

determined data cache, and

-21 -

WO 02/05134 PCT/US01/16520

unlocking the row upon receipt of an
acknowledgement from the
determined server; and
a processor configured to execute the program.
5 20. The system of claim 19, wherein the method further comprises:
waiting a predetermined length of time to receive a response
from the determined sefver. |
21. The system of claim 19, wherein the type of change is to delete a
record from the data store.
10 22. The system of claim 19, wherein the type of change is to update a
record in the data store.
23. The system of claim 19, wherein the type of change is to add a record
to the data store..
24. A data cache with a plurality of partitions, each partition corresponding
15 to an account, comprising:

a first sub-~cache in a partition corresponding to an account
number configured to store at least one query together
with results corresponding to the at least one query;

a second sub-cache in the partition corresponding to the

20 account number configured to store at least one entry
containing a primary key together with record data
corresponding to the primary key; and

a processor configured to

-22.

WO 02/05134

5

10
25.
15 26.
27.

20

PCT/US01/16520

receive a message containing the account number, a
target primary key, and a type of change, and
in the partition corresponding to the account number,
if the type of change is delete, remove entries from
the second sub-cache containing the target
primary key,
if the type of change is update, remove entries
from the second sub-cache containing the
target primary key, and
remove the contents of the first sub-cache.
The data cache of claim 24, wherein the processor is further configured
to
send a success message after the entries have been removed
from the first sub-cache.
The data cache of claim 24, wherein the processor is further configured
to
send a success message after the entries have been removed
from the second sub-cache.
The data cache of claim 24, wherein the processor is further configured
to
send a success message after
the entries have been removed from the first sub-cache,

and

-23-

WO 02/05134 PCT/US01/16520

the entries have been removed from the second sub-
cache.
28. A data processing method, comprising:
maintaining a set of cache partitions, each identified by an
5 account number;
receiving a query including a value;
identifying, from among the set of cache partitions, a particular
cache partition corresponding to the query, based on a
relationship between the value of the query and the
10 account number used to identify each cache partition in
the set; and
providing a result to the query based on the determination.
29. The data processing method of claim 28, wherein the identifying further
includes:
15 determining whether the set includes the particular cache
partition; and
routing the query to the particLlIar cache partition, when it is
determined that the set includes the particular cache
partition.
20 30. A method for updating a data cache when data in a data store
changes, comprising:
storing, in a first sub-cache in a partition corresponding to an
account number, at least one query together with results

corresponding to the at least one query;

-24 -

WO 02/05134 PCT/US01/16520

storing, in a second sub-cache in the partition corresponding to
the account number, at least one entry containing a
primary key together with record data corresponding to
the primary key;
5 receiving a message containing the account number, a target
primary key, and a type of change; and
in the partition corresponding to the account number,
if the type of change is delete, removing entries from the
second sub-cache containing the target primary
10 key,
if the type of change is update, removing entries from the
second sub-cache containing the target primary
key, and
removing the contents of the first sub-cache.
15 31. The method of.claim 30, further comprising:
sending a success message after the entries have been
removed from the first sub-cache.
32. The method of claim 30, further comprising:
sending a success message after the entries have been
20 removed from the second sub-cache.
33. The method of claim 30, further comprising:
sending a success message after
the entries have been removed from the first sub-cache,

and

-25-

WO 02/05134 PCT/US01/16520

34.
5
10
15
35.
36.
20
37.

the entries have been removed from the second sub-
cache.
A method for updating a data cache when master data in a data store
changes, comprising:
receiving a request to change master data in the data store, the
request including a primary key and a type of change;
retrieving a selector key from an entry containing the primary
key in a data structure in the data store;
locking the data structure containing the entry; |
sending a message to each cache server identified in a set of
running cache servers; and
upon receipt of an acknowledgement from each cache server,
unlocking the data structure containing the entry,
and
approving the request.
The method of claim 34, wherein the message contains the primary
key, the selector key, and the type of change.
The method of claim 34, further comprising:
waiting a predetermined period to receive a response from each
cache server.
The method of claim 34, wherein the selector key is an account

number.

-26 -

10

15

20

25

WO 02/05134 PCT/US01/16520

38.

39.

40.

41.

A method for processing account information using a data cache with
multiple partitions, each partition corresponding to an account,
comprising:
receiving a query and an account number from a user;
searching for the query in a cache partition corresponding to the
account number; and
if the query is found in the cache partition corresponding to the
account number, returning record data stored with the
query in the cache partition to the user.
The method of claim 38, further comprising:
submitting the query to a data store, if the query is not found in
the cache partition;
receiving a response to the query from the data store:
returning the response to the user, and
storing the response with the query in the cache partition.
A system for processing transactions for a user, comprising:
at least one data cache configured to
maintain a cache partition corresponding to an account
number;
receive a query containing the account number;
search for the query in the cache partition; and
return a result stored with the query;
The system of claim 40, wherein the data cache is further configured to
obtain the result from a remote data store; and

store the result in the cache partition.
-27 -

PCT/US01/16520

WO 02/05134

111

Y

20Inog
eleqg

walsAg
Buissasold
uonoesuel |

I dNOId

S

801

S

0L

901

PCT/US01/16520

WO 02/05134

2/11

TN

20In0g
eleq

¢ 3dNOld

801

Joingusig
1senbay

ayoen BEYVETS
ejeq uofjeolddy
J/ 90¢
80¢
ayoen JETNETS
eleq uojjeoijddy
/P 90¢
80¢
ayoen SETNETS
eleq uoljeol|ddy
80¢ 90¢

S

¥0c

S

1401

PCT/US01/16520

WO 02/05134

311

8|ge] Junoooy

S

cog

A

a|qe] Jo1sepn

A

sayoe)n
ejeq buiuuny
pue sjunoooy
Jo 1817
uoIeIN0SSY

A

S

ot€

S
90¢

S

¥0¢€

sayoe) ele(
Buiuuny i
jo sjqe].

A

S

80¢

S
/

(7

€ NOI4

uolesIuNwwo)
[~
ssaoo0id-1a)u|

PCT/US01/16520

WO 02/05134

4/11

¥ 34NOld

34007
Moy

(KoY Jo1o9)2g "jouy)
eje(piooay

)Y
Arewid

(ereq wuno29Yy) a|qe aseqejeq ojdwes

PCT/US01/16520

WO 02/05134

511

g 34NOIld

c0S

%007
o|qel

(Ao Jojosjag joul)
eje pJooay

Aoy
Arewid

(ere Jsise|y) s|ge] aseqeleq ajdwes

PCT/US01/16520

WO 02/05134

6/11

-
(o]

9 F4NOId

Aianb Buifjsies

sploogal jo 1St Aiend
Aianb BuiAsies
- Sp10231 JO 1817 Em/zG
S 1
¥19

809

eje(] p1ooay

Aay Aewny

eleq piooay

Aoy Arewing

™~

s

909

N
019

ayoen wnugj

RS
809

ayoe |dwj

RS
909

Aoy
10}08jag

=~

9

WO 02/05134

7M1

(Begin)

y

Receive query and selector key
from user.

A 4

Acquire selector lock for
selector key.

\ 4

In cache corresponding to
selector key, search for
query in Enum cache.

Complete query

Yes

PCT/US01/16520

N
(o=
N

~
O
w

~
o
S

708

Return query

results in Enum
cache?

Submit query to data source.

A

Receive primary key(s) in response
to query from data source.

X

results to user.

End

\l
-
o

~
—
N

FIGURE 7A

WO 02/05134 PCT/US01/16520

8/11
716
¢ c‘l’r re;sp?(ndin(? Yes Add record More 722
o selector key, does S .
impl cache cscl)ntain) data to query primary
record data for next results. keys?
primary
key?
No
Obtain record data In cache corresponding to
corresponding to next primary seloctor ke;) i g
key from data source. (query, query results)
720 to Enum cache.
in cache corresponding to

selector key, add (primary key, —

A 4
record data) to Impl cache.

to user.

A 4

Release selector lock.

End

FIGURE 7B

‘ 726
Return query results /(

WO 02/05134 PCT/US01/16520

9/11

(Begin)

A 4
Process attempts to change master
data in row corresponding to a
primary key.

o
O
N

Y

[es]
(o)
NS

Lock table containing row
that is changing.

v

Retrieve selector key
from row that is changing.

0]
Q
[0}

4

(o]
Q
(o]

Send invalidation message containing
(primary key, selector key, type of
change) to all data caches listed in
Table of All Running Data Caches.

A

810

Time
for response
expired?

(o)
—_
(o))

All
caches
respond

success?

Transaction
aborted.

Yes
814

Caches invalidated; unlock table.

End)« 'FIGURE 8

WO 02/05134

10/11

Process attempts to change account
data row corresponding to a primary
key in account table.

Y

changing (e.g. in
special lock table).

Lock row that is
account table or in

y

Retrieve selector key
from row that is changing.

A 4

Determine data cache corresponding to
selector key in Association List.

Y

Send invalidation message containing
(primary key, selector key, and type of
change) to determined data cache.

-
W

912

No

Time
for response
expired?

Data
cache
responds
success?

Cache invalidated; unlock row.

(e}
(=)
N

PCT/US01/16520

©
Q
H

[(e}
Q
(o>}

©
()
oo

©
—_
o

({e]
—
(e}

(o]
nrd
o0

Transaction
aborted.

End <

FIGURE 9

WO 02/05134 PCT/US01/16520

1111

(Begin)

A 4

L . 1002
Receive invalidation message /(

containing (primary key, selector
key, type of change).

In cache corresponding to| 1006
selector key, remove
entries containing primary
key from Impl cache.

Is type
of change

A

In cache corresponding to 1010

selector key, remove all
entries in Enum cache.

Is type of
change insert?

Yes

A

FIGURE 10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

