Title: METHOD AND DEVICE FOR LOADING PLANAR ANTENNAS

Abstract: In an RF antenna having a planar radiating element disposed adjacent to a ground plane, one or more metasolenoids are disposed between the radiating element and the ground plane. As such, the magnetic flux through the metasolenoids interacts with the radiating element and the ground plane, widening the bandwidth of the antenna. Each of the metasolenoids comprises a stack of split-ring resonators co-axially aligned. The gap in each split-ring resonator is oriented differently from the gap in the adjacent split-ring resonator. The use of metasolenoids disposed between the radiating element and the ground plane does not increase the volume of the radiating element.
Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
METHOD AND DEVICE FOR LOADING PLANAR ANTENNAS

Field of the Invention

The present invention relates to the loading of RF antennas and, more particularly, to the bandwidth enhancement of planar inverted-F antennas.

Background of the Invention

Mobile phones require a small antenna for signal transmission and reception. Microstrip antennas, including planar inverted-F antennas (PIFAs), are, in general, suitable for that purpose. One of the known features of microstrip antennas is a narrow bandwidth they possess. Several different techniques for widening the bandwidth of PIFAs have been used or proposed. For example, the bandwidth of a PIFA can be altered by changing the size and the shape of the patch. Bandwidth widening can also be achieved by using parasitic patches disposed adjacent to the radiator. Different materials such as dielectrics of photonic bandgap structures (PBGs) have been used to load the radiator. In most cases, implementing the bandwidth widening feature increases the cost of antennas significantly or the volume of the antenna radiator.

It is advantageous and desirable to provide a method and device for efficiently widening the bandwidth of a PIFA in a hand-held electronic device without the disadvantages of the prior art techniques.

Summary of the Invention

The present invention uses one or more metasolenoids disposed between the radiating element and the ground plane of a PIFA antenna to widen the bandwidth of the radiating element. Each of the metasolenoid comprises a stack of split-ring resonators coaxially aligned. The use of metasolenoids disposed between the radiating element and the ground plane does not increase the volume of the radiating element.

The first aspect of the present invention provides a method of increasing a bandwidth of an antenna disposed adjacent to a ground plane, the antenna comprising a radiating element, a grounding pin electrically connecting the radiating element to the ground plane and a feed spaced from the grounding pin. The method comprises:

arranging a plurality of electrically conductive rings in one or more stacks, each ring having a gap and a ring axis, wherein in each of said one or more stacks the
electrically conductive rings are aligned along the ring axes, with each ring adjacent to an adjacent ring having a space therebetween; and

 disposing one or more stacks of the electrically conductive rings between the radiating element and the ground plane.

 According to the present invention, the gap of the ring is oriented differently from the gap of the adjacent ring.

 According to the present invention, the ring axes are substantially parallel to the radiating element, but the ring axes in one stack can be the substantially the same as or different from the ring axes in other of said one or more stacks.

The second aspect of the present invention provides a loading device for use in an antenna comprising a radiating element disposed adjacent to a ground plane, a grounding pin electrically connecting the radiating element to the ground plane and a feed spaced from the grounding pin, the device disposed between the radiating element and the ground plane for loading the antenna. The loading device comprises:

 a plurality of electrically conductive rings, each ring having a gap and a ring axis, wherein the electrically conductive rings are arranged such that each ring is in a close proximity of an adjacent ring having a space therebetween, and that the ring axis of each ring is substantially aligned with the ring axis of another ring; and

 an electrically non-conductive material disposed between the space between two adjacent rings.

 According to the present invention, the device is disposed such that the ring axes are substantially parallel to the radiating element.

The third aspect of the present invention provides an RF antenna for use in a communications device having a ground plane. The antenna comprises:

 a radiating element disposed adjacent to the ground plane,

 a grounding pin electrically connecting the radiating element to the ground plane;

 a feed electrically connecting the radiating element, spaced from the grounding pin, and

 one or more loading components disposed between the radiating element and the ground plane, wherein each of said one or more loading components comprises a plurality of electrically conductive rings, each ring having a gap and a ring axis, and wherein the electrically conductive rings are arranged such that each ring is in a close proximity of an
adjacent ring having a space therebetween, and that the ring axis of each ring is substantially aligned with the ring axis of another ring.

According to the present invention, the radiating element is a planar piece of electrically conductive material, and the ring axes are substantially parallel to the radiating element.

The fourth aspect of the present invention provides a communications device, which comprises:

- a ground plane;
- an antenna for conveying communications signals to and from other communications device, wherein the antenna comprises a radiating element adjacent to the ground plane, a radiating element disposed adjacent to the ground plane, a grounding pin electrically connecting the radiating element to the ground plane, and a feed electrically connecting the radiating element, spaced from the grounding pin; and
- one or more loading components disposed between the radiating element and the ground plane, wherein each of said one or more loading components comprises a plurality of electrically conductive rings, each ring having a gap and a ring axis, and wherein the electrically conductive rings are arranged such that each ring is in a close proximity of an adjacent ring having a space therebetween, and that the ring axis of each ring is substantially aligned with the ring axis of another ring.

The present invention will become apparent upon reading the description taken conjunction with Figures 1 – 6.

Brief Description of the Drawings

- Figure 1 is a schematic representation showing the loading element.
- Figure 2 is a schematic representation showing a PIFA with a loading element, according to the present invention.
- Figure 3a is a schematic representation showing a stack of split-ring resonators for use in the loading element.
- Figure 3b is a schematic representation showing a stack of split-ring resonators having a circular shape, wherein the gap of the ring is oriented opposite to the gap of the adjacent ring.
Figure 3c is a schematic representation showing a stack of split-ring resonators having a circular shape, wherein the gap of the ring is oriented substantially at 120 degrees from the gap of the adjacent ring.

Figure 4 is a schematic representation showing another embodiment of the antenna, according to the present invention.

Figure 5 is a frequency response showing the measurement results on a PIFA with and without loading using the loading element of the present invention.

Figure 6 is a schematic representation showing a hand-held electronic device having an enhanced PIFA, according to the present invention.

Detailed Description of the Invention

The loading element for use in widening the bandwidth of a PIFA, according to the present invention, is a metasolenoid, as shown in Figure 1. The metasolenoid is used as an added-on magnetic resonator for loading the PIFA. With a suitable coupling between the antenna elements and the magnetic resonator, the electrical parameters of the antenna can be controlled in a wider range. As shown in Figure 2, the antenna 10, of the present invention, comprises a radiating element 20 disposed adjacent to a substrate 30. A grounding pin 22 electrically connected between the radiating element 20 and a ground plane 32 on the substrate 30 for providing the short-circuit function. A feeding pin 24 is disposed adjacent to the grounding pin 22 through an aperture 36 on the substrate 30 and the ground plane 32. The structure of a PIFA is known in the art.

In order to widen the bandwidth of the PIFA, a loading element 50 is disposed between the ground plane 32 and the radiating element 20, so that the magnetic flux through the metasolenoid efficiently interacts with the radiating element 20 and the ground plane 32. As shown in Figure 2, using a metasolenoid for loading the PIFA does not increase the volume of the radiating element.

As shown in Figures 1 to 3c, the loading element 50 comprises a metasolenoid 60, embedded or otherwise disposed in a block of dielectric material 54. The metasolenoid 60 comprises a stack of split-ring resonators (SRRs) 62 and 64, co-axially aligned. Each of the SRRs has a gap g. As shown, the SRR 62 and SRR 64 are identical except that their gaps face different directions. The SRRs 62, 64 are alternatively placed along a ring axis 160, spaced apart with a distance d between two adjacent SRRs. In an embodiment of the present invention, the SRRs are rectangular in shaped, with a side length of a, a
base width of \(b \) and a ring width of \(w \), as shown in Figure 3a. However, the SSRs can have a different shape, such as circular, as shown in Figure 3b. The orientation of the gap in an SSR can be opposite to the gap in an adjacent SSR, as shown in Figure 3a and 3b. However, the orientation of the gap in relation to the gap in the adjacent SSR can be different, as shown in Figure 3c.

A measurement has been made to demonstrate the loading effect of a PIFA using two metasolenoids 60, as shown in Figure 4. In particular, in order to remove the effect of the chassis used in the measurement to the radiation characteristics, the ground plane used in the measurement is 30x30cm\(^2\). The size of the radiating element is 20x40mm\(^2\). The width of the grounding pin is 5mm and the distance between the radiating element and the ground plane is 6.5mm. The number of SRRs in each metasolenoid, in this measurement setup, is approximately 60 to 70. The dimensions of SRRs are given below:

\[
\begin{align*}
 a &= b = 3.5 \text{mm} \\
 w &= 0.4 \text{mm} \\
 g &= 1.0 \text{mm} \\
 d &= 0.127 \text{mm}
\end{align*}
\]

The permittivity of the embedding material is 2.20 - 0.001j.

The measurement result is shown in Figure 5. A significant increase in the bandwidth is evidenced. As shown in Figure 1, the \(S_{11} \) curve measured when no loading is used has only one deep minimum, corresponding substantially to the resonant frequency of the PIFA. The \(S_{11} \) curve measured when two metasolenoids are used for loading exhibits three deep minimums, corresponding substantially to the resonant frequencies of the two metasolenoids and that of the radiating element. When the metasolenoids are designed in a way that their resonant frequencies are close to the resonant frequency of the PIFA, by proper adjustment of the metasolenoids under the radiating element, the magnetic flux created by the PIFA excites the metasolenoids. By adjusting the resonant characteristics of the metasolenoids relative to the resonant frequency of the PIFA, one can adjust the widening of the bandwidth of the structure.

The PIFA loaded with one or more loading elements 50, according to the present invention, can be used in a communications device, such as a mobile terminal, a communicator device and the like. Figure 6 is a schematic representation showing a
communications device 1. The device 1 comprises an upper housing part 3 and a lower housing part 5 to implement a printed circuit board (PCB) or a printed-wire board (PWB), which has a substrate 30 for mounting an antenna 10 loaded with one or more loading elements 50. The communications device 1 further comprises a plurality of electronic components 130, which may includes an RF-front end operatively connected to the antenna 50.

It should be noted that when two or more loading elements are used for loading a PIFA antenna, as shown in Figure 4, the ring axes 160 (see Figure 1) are oriented differently. As shown in Figure 4, the ring axes of one loading element 50 is substantially perpendicular to the ring axes of the other loading element 50. However, the loading elements can be co-axially aligned, for example, or they can be arrangement in a different way while keeping the ring axes substantially parallel to the radiating element.

Thus, although the invention has been described with respect to one or more embodiments thereof, it will be understood by those skilled in the art that the foregoing and various other changes, omissions and deviations in the form and detail thereof may be made without departing from the scope of this invention.
What is claimed is:

1. A method of increasing a bandwidth of an antenna disposed adjacent to a ground plane, the antenna comprising a radiating element, a grounding pin electrically connecting the radiating element to the ground plane and a feed spaced from the grounding pin, said method characterized by:
 arranging a plurality of electrically conductive rings in one or more stacks, each ring having a gap and a ring axis, wherein in each of said one or more stacks the electrically conductive rings are aligned along the ring axes, with each ring adjacent to an adjacent ring having a space therebetween; and
 disposing one or more stacks of the electrically conductive rings between the radiating element and the ground plane.

2. The method of claim 1, characterized in that in each of said one or more stacks the gap of the ring is oriented differently from the gap of the adjacent ring.

3. The method of claim 1, characterized in that in each of said one or more stacks the gap of the ring is oriented opposite to the gap of the adjacent ring.

4. The method of claim 1, characterized in that the radiating element is a planar piece of electrically conductive material.

5. The method of claim 1, characterized in that the rings are substantially rectangular in shape.

6. The method of claim 1, characterized in that the rings are substantially circular in shape.

7. The method of claim 1, characterized in that the ring axes are substantially parallel to the radiating element.

8. The method of claim 7, characterized in that the ring axes in one stack is different from the ring axes in other of said one or more stacks.
9. The method of claim 7, characterized in that the ring axes in one stack is perpendicular to the ring axes in at least one of the other stacks.

10. A device for use in an antenna comprising a radiating element disposed adjacent to a ground plane, a grounding pin electrically connecting the radiating element to the ground plane and a feed spaced from the grounding pin, the device disposed between the radiating element and the ground plane for loading the antenna, said device characterized by:

 a plurality of electrically conductive rings, each ring having a gap and a ring axis, wherein the electrically conductive rings are arranged such that each ring is in a close proximity of an adjacent ring having a space therebetween, and that the ring axis of each ring is substantially aligned with the ring axis of another ring; and

 an electrically non-conductive material disposed between the space between two adjacent rings.

11. The device of claim 10, characterized in that the gap of the ring is oriented differently from the gap of the adjacent ring.

12. The device of claim 10, characterized in that the gap of the ring is oriented opposite to the gap of the adjacent ring.

13. The device of claim 10, characterized in that the device is disposed such that the ring axes are substantially parallel to the radiating element.

14. An RF antenna for use in a communications device having a ground plane, said antenna characterized by:

 a radiating element disposed adjacent to the ground plane,

 a grounding pin electrically connecting the radiating element to the ground plane;

 a feed electrically connecting the radiating element, spaced from the grounding pin, and

 one or more loading components disposed between the radiating element and the ground plane, wherein each of said one or more loading components comprises a plurality of electrically conductive rings, each ring having a gap and a ring axis, and wherein the
electrically conductive rings are arranged such that each ring is in a close proximity of an adjacent ring having a space therebetween, and that the ring axis of each ring is substantially aligned with the ring axis of another ring.

15. The antenna of claim 14, characterized in that in each of said one or more stacks the gap of the ring is oriented opposite to the gap of the adjacent ring.

16. The antenna of claim 14, characterized in that the radiating element is a planar piece of electrically conductive material, and the ring axes are substantially parallel to the radiating element.

17. The antenna of claim 16, characterized in that the ring axes in one stack is different from the ring axes in other of said one or more stacks.

18. The antenna of claim 16, characterized in that the ring axes in one stack is perpendicular to the ring axes in at least one of the other stacks.

19. A communications device characterized by:
 a ground plane;
 an antenna for conveying communications signals to and from other communications device, wherein the antenna comprises a radiating element adjacent to the ground plane, a radiating element disposed adjacent to the ground plane, a grounding pin electrically connecting the radiating element to the ground plane, and a feed electrically connecting the radiating element, spaced from the grounding pin; and
 one or more loading components disposed between the radiating element and the ground plane, wherein each of said one or more loading components comprises a plurality of electrically conductive rings, each ring having a gap and a ring axis, and wherein the electrically conductive rings are arranged such that each ring is in a close proximity of an adjacent ring having a space therebetween, and that the ring axis of each ring is substantially aligned with the ring axis of another ring.

20. The communications device of claim 19, characterized in that the gap of the ring is oriented differently from the gap of the adjacent ring.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: H01Q 1/24, H01Q 1/38
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H01Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 20030103010 A1 (BOYLE, K R), 5 June 2003 (05.06.2003), abstract</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 2004038856 A1 (SONY ERICSSON MOBILE COMMUNICATIONS AB), 6 May 2004 (06.05.2004), abstract</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 6542126 B2 (BAHR, A ET AL), 1 April 2003 (01.04.2003), abstract</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>EP 0777295 A2 (NTT MOBILE COMMUNICATIONS NETWORK, INC), 4 June 1997 (04.06.1997), abstract</td>
<td>1-20</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.
 [X] See patent family annex.

* Special categories of cited documents
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 G document member of the same patent family

Date of the actual completion of the international search: 6 Sept 2005
Date of mailing of the international search report: 12-09-2005

Name and mailing address of the ISA/Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Rune Bengtsson /LR
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Country</th>
<th>Application No.</th>
<th>Priority Date</th>
<th>Filing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>20030103010 A1</td>
<td>05/06/2003</td>
<td>05/06/2003</td>
</tr>
<tr>
<td>CN</td>
<td>1596486 A</td>
<td>16/03/2005</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>1451895 A</td>
<td>01/09/2004</td>
<td></td>
</tr>
<tr>
<td>GB</td>
<td>0128418 D</td>
<td>00/00/0000</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>2005510927 T</td>
<td>21/04/2005</td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>03047025 A</td>
<td>05/06/2003</td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>2004038856 A1</td>
<td>06/05/2004</td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>2003274044 A</td>
<td>00/00/0000</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>1414106 A</td>
<td>28/04/2004</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>6542126 B2</td>
<td>01/04/2003</td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>5180801 A</td>
<td>03/01/2002</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>10029733 A</td>
<td>03/01/2002</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>1168495 A</td>
<td>02/01/2002</td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td>0102316 A</td>
<td>29/04/2002</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>2002043833 A</td>
<td>08/02/2002</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20010054979 A</td>
<td>27/12/2001</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>0777295 A2</td>
<td>04/06/1997</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>0777295 T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>2190792 A,C</td>
<td>30/05/1997</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>1084938 B,C</td>
<td>15/05/2002</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>1159664 A</td>
<td>17/09/1997</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>69628392 D,T</td>
<td>11/03/2004</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>3185856 B</td>
<td>11/07/2001</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>9214244 A</td>
<td>15/08/1997</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>5917450 A</td>
<td>29/06/1999</td>
<td></td>
</tr>
</tbody>
</table>