

(19) United States

(12) Reissued Patent

Inagaki et al.

US RE46,375 E (10) Patent Number:

(45) Date of Reissued Patent: Apr. 25, 2017

(54) 6,7-UNSATURATED-7-CARBAMOYL SUBSTITUTED MORPHINAN DERIVATIVE

(71) Applicant: SHIONOGI & CO., LTD., Osaka-shi,

Osaka (JP)

(72) Inventors: Masanao Inagaki, Toyonaka (JP);

Shin-ichiro Hara, Toyonaka (JP); Nobuhiro Haga, Osaka (JP); Yoshinori Tamura, Toyonaka (JP); Yoshihisa Goto, Amagasaki (JP); Tsuyoshi Hasegawa, Toyonaka (JP)

(73) Assignee: Shionogi & Co., Ltd., Osaka (JP)

(21) Appl. No.: 15/064,538

(22) Filed: Mar. 8, 2016

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 8.536,192 Sep. 17, 2013 Issued: 13/308,483 Appl. No.: Nov. 30, 2011 Filed:

U.S. Applications:

(63) Continuation of application No. 11/920,851, filed as application No. PCT/JP2006/310454 on May 25, 2006, now Pat. No. 8,084,460.

(30)Foreign Application Priority Data

May 25, 2005	(JP)	2005-151864
Mar. 10, 2006	(JP)	2006-065762
May 23, 2006	(WO)	PCT/JP2006/310231

(51) Int. Cl. C07D 489/00 (2006.01)C07D 489/08 (2006.01)A01N 43/42 (2006.01)A61K 31/44 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC C07D 489/08 USPC 514/282 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

4,272,541	A	6/1981	Kotick et al.	
4,275,205	A	6/1981	Kotick et al.	
4,347,361	A	8/1982	Quick et al.	
4,370,333	A	1/1983	Ghosh et al.	
4,440,932	A	4/1984	Kotick et al.	
4,443,605	A	4/1984	Kotick et al.	
6,177,438	B1	1/2001	Nagase et al.	
9,108,975	B2	8/2015	Tamura et al.	
2004/0019071	A1	1/2004	Sakami et al.	
2004/0024004	A1	2/2004	Sherman et al.	
2004/0122230	A1*	6/2004	Welsh	C07D 498/03
				546/3:
2004/0157784	Al	8/2004	Chopdekar et al.	2 10/2.

2005/0038061 A1 2/2005 Schutz et al. 2006/0052409 A1 3/2006 Kawai et al. 2009/0203723 A1 8/2009 Inagaki et al.

FOREIGN PATENT DOCUMENTS

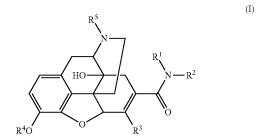
EP	1 522 542 A1	4/2005
EP	1 889 848	2/2008
JP	56-15290	2/1981
	(Con	tinued)

OTHER PUBLICATIONS

B. D. Anderson et al., "Preparation of Water-Soluble Compounds Through Salt Formation", C. G. Wermuth editors, The Practice of Medicinal Chemistry, vol. 2 (Technomic Inc.), pp. 739-741, 750-753, 831-833, (1996).

D. C. Butler et al., "Synthesis of isocyanates from carbamate esters employing boron trichloride", Chem. Commun., pp. 2575-2576

(1998).
Caira, Mino R., Crystalline Polymorphism of Organic Compounds;
Topics in Current Chemistry, 1998 vol. 198, p. 166.
M. J. Duggan et al., "Copper(I) Chloride Catalyzed Addition of
Alcohols to Alkyl Isocyanates. A Mild and Expedient Method for
Alkyl Carbamate Formation", Synthesis, vol. 2, pp. 131-132 (1989). English Translation of International Preliminary Report on Patentability issued by the Japanese Patent Office in International Application No. PCT/JP2011/076034), mailed May 23, 2013 (10 pages). International Search Report issued by the Japanese Patent Office in International Application No. PCT/JP2011/076034, mailed Dec. 13, 2011 (9 pages).


(Continued)

Primary Examiner — Alan Diamond (74) Attorney, Agent, or Firm — Finnegan, Henderson, Farabow, Garrett & Dunner, LLP

(57)ABSTRACT

A novel compound which is useful as an agent for treating and/or preventing emesis, vomiting and/or constipation. A compound represented by the formula (I):

[Chemical Formula 1]

wherein R¹ and R² are each independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted cycloalkyl, optionally substituted aryl etc., R³ is hydrogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy etc., R⁴ is hydrogen or lower alkyl, R⁵ is hydrogen, lower alkyl, cycloalkyl lower alkyl or lower

or a pharmaceutically [acceptably] acceptable salt, or a solvate thereof is provided.

37 Claims, No Drawings

(56) References Cited

FOREIGN PATENT DOCUMENTS

JР	58-8067	1/1983
JР	2000/503019	3/2000
JP	2003/528819	9/2003
JP	2004-501094	1/2004
JР	2004/522706	7/2004
JP	2006/502190	1/2006
WO	WO 95/13071 A2	5/1995
WO	WO 97/25331 A1	7/1997
WO	WO 01/02375 A1	1/2001
WO	WO 01/37785 A2	5/2001
WO	WO 01/37785 A3	5/2001
WO	WO 01/37785 A9	5/2001
WO	WO 01/85150 A2	11/2001
WO	WO 01/85150 A3	11/2001
WO	WO 01/85257 A2	11/2001
WO	WO 01/85257 A3	11/2001
WO	WO 02/36573 A2	5/2002
WO	WO 02/42309 A1	5/2002
WO	WO 2004/005294 A2	1/2004
WO	WO 2004/007503	1/2004
WO	WO 2004/026819 A2	4/2004
WO	WO 2005/105093 A2	11/2005
WO	WO 2005/105093 A3	11/2005
WO	WO 2005/117589 A1	12/2005
WO	WO 2006/034039 A2	3/2006
WO	WO 2006/034039 A3	3/2006
WO	WO 2006/126637 A1	11/2006

OTHER PUBLICATIONS

- S Morissette et al., "High-throughput Crystallization: Polymorphs, Salts, Co-Crystals and Solvates of Pharmaceutical Solids," Adv Drug Deliv Rev, vol. 56, pp. 275-300 (2004).
- T. Okano, "Forms of powder and granular substances", New General Pharmacy (revised 3rd edition), pp. 109-111, 254-259, 327 (1987).
- T. Okano, "Chemical structure and solubility", New General Pharmacy (revised 3rd edition), pp. 26, 111, 256-258 (1987).
- R. Poulain et al., "Parallel synthesis of 1,2,4-oxediazoles from carboxylic acids using an improved, uronium-based, activation", Tetrahedron Letters, 42, pp. 1495-1498 (2001).
- S.R. Vippagunta et al., "Crystalline Solids," Adv Drug Deliv Rev, vol. 48(1), pp. 3-26 (2001).
- Amendment and Response to Office Action, filed Jun. 29, 2011, for U.S. Appl. No. 11/920,851 (45 pages).
- Ananthan et al., "Synthesis, Opioid Receptor Binding, and Biological Activities of Naltrexone-Derived Pyrido- and Pyrimidomorphinans," J. Med. Chem., 42: 3527-3538 (1999).
- Boche et al.; "Electrophilic Amination of Acyl Anion Equivalents: Mild Oxidation of Aldehydes to Amides Via 0-(Trimehylsilyl)Aldehyde Cyanohydrin Anions," Tetrahedron Letters, 23(32): 3255-3256 (1982).
- Brandt; "A Uniform Molecular Model of δ Opioid Agonist and Antagonist Pharmacophore Conformations," J. Computer-Aided Molecular Design, 12: 615-621 (1998).
- Chun-Su et al., "Clinical Status of Methylnaltrexone, A New Agent to Prevent and Manage Opioid-Induced Side Effects," J. Supportive Oncology, 2(2): 111-122 (2004).
- Dalzell et al.; "4,5-Alpha-Epoxy-3-Hydroxy- 7,17-DI:Substd.-Morphinan-6-One(s)—Useful as Analgesics and/or Narcotic," Abstract of JP 57-122088, Jul. 29, 1982.
- Fujii et al.; "The First Example of the Steroselective Synthesis of 7β -Carbamoyl-4,5 α -Epoxymorphinan Via a Novel and Reactive γ -Lactone," Chem. Pharm. Bull., 52(6): 747-750 (2004).
- Gao et al.: "Monophenylation of Morphinan-6-Ones With Diphenyliodonium Iodide," J. Org. Chem., 60: 2276-2278 (1995). Gao et al.: "Synthesis of 7-Arylmorphinans. Probing the "Address" Requirements for Selectivity At Opioid δ Receptors," J. Med. Chem., 41: 3091-3098 (1998).

Herlihy et al.; "Novel Opiates and Antagonists. 5. 7-Carbethoxy-N-(Cycloalkylmethyl)-3-Hydroxymorphinan-6-Ones

and -Isomorphinan-6-Ones," J. Med. Chem., 25; 986-990 (1982). Hernández-Gallegos et al.; "A Free-Wilson/Fujita-Ban Analysis and Prediction of the Analgesic Potency of Some 3-Hydroxy- and 3-Methoxy-N-Alkylmorphinan-6-One Opioids," J. Med. Chem., 33: 2813-2817 (1990).

Ohkawa et al.; "7-Arylidenenaltrexones As Selective δ_1 Opioid Receptor Antagonists," J. Med. Chem., 41.4177-4180 (1998).

Leland et al.; "Analgesic Narcotic Antagonists. 5. 7,7-Dimethyldihydrocodeinones and 7,7-

Dimethyldihydromorphinones," J. Med. Chem., 24: 717-721(1981). Kotick et al.; "Analgesic Narcotic Antagonists. 8. 7α-Alkyl-4,5α-Epoxymorphinan-6-Ones," J. Med. Chem., 24: 1445-1450 (1981). Kotick et al.; "Analgesic Narcotic Antagonists. 15. Potent Narcotic Agonist 7β-(Arylalkyl)-4,5α-Epoxymorphinans," J. Med. Chem.,

26: 1050-1056 (1983).Koolpe et al.; "Opioid Agonists and Antagonists. 6-Desoxy-6-Substituted Lactone, Epdxide, and Glycidate Ester Derivatives of

Naltrexone and Oxymorphone," J. Med. Chem., 28: 949-957 (1985).

Interview Summary, mailed May 3, 2011, for U.S. Appl. No,

11/920,851 (2 pages). Nagase et al.; "Facile Intramolecular O-14→C-7 Acetyl Transfer in

Opiate 14-Acetate Esters," J. Org. Chem., 55: 365-367 (1990). Portoghese, "The Role of Concepts in Structure-Activity Relationship Studies of Opioid Ligands," J. Med. Chem., 35(11): 1927-1937

(1992). Supplementary European Search Report mailed Jul. 11, 2011, in European Application No. EP 06746833.0.

West, Solid State Chemistry and Its Applications, Wiley, New York, 1988, pp. 358 and 365.

Yuan et al., The Journal of Supportive Oncology, vol. 2, No. 2 (2004), pp. 111-122.

Yuan et al., The Journal of Supportive Oncology, vol. 2, No. 2, (2004), pp. 111-122.*

Ohkawa et al.; "7-Arylidenenaltrexones As δ1 Selective Opioid Receptor Antagonists," J. Med. Chem., 41: 4177-4180 (1998).

Fujii et al.; "The First Example of the Steroselective Synthesis of 7β -Carbomoyl-4,5α-Epoxymorphinan via a Novel and Reactive γ-Lactone," Chem. Pharm. Bull., 52(6): 747-750 (2004).

Leland et al.; "Analgesic Narcotic Antagonists. 5. 7,7-Dimethyldihydrocodeinones and 7,7-Dimethyldihydromorphinones," J. Med. Chem., 24: 717-721 (1981).

Herlihy et al.; "Novel Opiates and Antagonists. 5. 7-Carbethoxy-N-(Cycloalkylmethyl)-3-Hydroxymorphinan-6-Ones and-Isomorphinan-6-Ones," J. Med. Chem., 25: 986-990 (1982).

Kotick et al; "Analgesic Narcotic Antagonists. 15. Potent Narcotic Agonist 7 β -(Arylalkyl)-4,5 α -Epdxymorphinans," J. Med. Chem., 26: 1050-1056 (1983).

Koolpe et al.; "Opioid Agonists and Antagonists. 6-Desoxy-6-Substituted Lactone, Epdxide, and Glycidate Ester Derivatives of Naltrexone and Oxymorphone," J. Med. Chem. 28: 949-957 (1985). Hernández-Gallegos et al.; "A Free-Wilson/Fujita-Ban Analysis and Prediction of the Analgesic Potency of Some 3-Hydroxy- and 3-Methoxy-N-Alkylmorphinan-6-One-Opioids," J. Med. Chem., 33: 2813-2817 (1990).

Portoghese et al.; "Synthesis of Naltrexone-Derived δ-Opioid Antagonists. Role of Conformation of the δ Address Moiety," J. Med. Chem., 37: 579-585 (1994).

Gao et al.; "Synthesis of 7-Arylmorphinans. Probing the "Address" Requirements for Selectivity At Opioid δ Receptors," J. Med. Chem., 41: 3091-3098 (1998).

Ananthan et al., "Synthesis, Opioid Receptor Binding, and Biological Activities of Naltrexone-Derived Pyrido- and Pyrimidomorphinans," J. Med. Chem., 42: 3527-3538 (1999).

Nagase et al., "Facile Intramolecular O-14→C-7 Acetyl Transfer in Opiate 14-Acetate Esters," J. Org. Chem., 55: 365-367 (1990). Leland et al.; "7α- or 7β-(4-Phenylbutyl)Dihydrocodeine Deriva-

tives," J. Org. Chem., 48: 1813-1819 (1983). Gao et al.; "Monophenylation of Morphinan-6-Ones With

Gao et al.; "Monophenylation of Morphinan-6-Ones With Diphenyliodonium Iodide," J. Org. Chem., 60: 2276-2278 (1995).

(56) References Cited

OTHER PUBLICATIONS

Gao et al.; "Boron Tribromide-Catalyzed Rearrangement of 7,7-Diphenylhydromorphone to 6,7-Diphenylmorphine: A Novel Conversion of Ketones to Allylic Alcohols," J. Org. Chem., 61: 2466-2469 (1996).

Brandt; "A Uniform Molecular Model δ Opioid Agonist and Antagonist Pharmacophore Conformations," J. Computer-Aided Molecular Design, 12: 615-621 (1998).

Ronzoni et al.; "Synthesis and NMR Characterization of a Novel Class of Thienomorphinans," Organic Letters, 1(3): 513-515 (1999).

Lester et al.; "Vilsmeier Reactions With 14-Hydroxy-Dihydrocodeinone and Derived Enol Ethers," Tetrahedron, 20: 1407-1417 (1964).

Lester et al.; "Vilsmeier Reactions With Cyclic Ketals of 14-Hydroxy-Dihydrocodeinone and Some New Cyclic Derivatives of 14-Hydroxy-Dihydrocodeinone," Tetrahedron, 21: 771-778 (1965).

Boche et al.; "Electrophilic Amination of Acyl Anion Equivalents: Mild Oxidation of Aldehydes to Amides Via 0-(Trimethylsilyl)Aldehyde Cyanohydrin Anions," Tetrahedron Letters, 23(32): 3255-3256 (1982).

"Persistently Low Natural Killer Cell Activity," Life Science, 48(2): 111-116 (1991).

Munson et al.; "Ligand: A Versatile Computerized Approach for Characterization of Ligand-Binding Systems," Analytical Biochemistry, 107(1): 220-239 (1980).

Dalzell et al.; "4,5-Alpha-Epoxy-3-Hydroxy- 7,17-DI:Substd.-Morphinan-6-One(s)—Useful As Analgesics and/or Narcotic," Abstract of JP 57-122088, Jul. 29, 1982.

Supplementary European Search Report mailed Jul. 11, 2001, in European Application No. EP 06746833.0.

International Search Report mailed Jun. 20, 2006, for Application No. PCT/JP2006/310454.

International Preliminary Report on Patentability issued Nov. 29, 2007, for Application No. PCT/JP2006/310454.

West, Solid State Chemistry and Its Applications, Wiley, New York, 1988, pp. 358 and 365.

Chun-Su et al., "Clinical Status of Methylnaltrexone, A New Agent to Prevent and Manage Opioid-Induced Side Effects," J. Supportive Oncology, 2(2): 111-122 (2004).

Portoghese, "The Role of Concepts in Structure-Activity Relationship Studies of Opioid Ligands," J. Med. Chem. 35(11): 1927-1937 (1992).

Notice of Allowance, mailed Aug. 18, 2011, for U.S. Appl. No. 11/920,851 (9 pages).

Amendement and Response to Office Action, filed Jun. 29, 2011, for U.S. Appl. No. 11/920,851 (45 pages).

Interview Summary, mailed May 3, 2011, for U.S. Appl. No. 11/920,851 (2 pages).

Office Action, mailed Mar. 29, 2011, for U.S. Appl. No. 11/920,851 (10 pages).

Response to Restriction Requirement, filed Feb. 2, 2011, for U.S. Appl. No. 11/920,851 (5 pages).

Office Action (Restriction Requirement), mailed Jan. 3, 2011, for U.S. Appl. No. 11/920,851 (11 pages).

* cited by examiner

6.7-UNSATURATED-7-CARBAMOYL SUBSTITUTED MORPHINAN DERIVATIVE

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue; a claim printed with strikethrough indicates that the claim was canceled, disclaimed, or held invalid by a prior post-patent action or proceeding.

This is a continuation of U.S. patent application Ser. No. 11/920,851, whose 35 U.S.C. §371(c) date is Mar. 10, 2009, which is the National Stage Application of PCT Application No. PCT/JP2006/310454, filed May 25, 2006, now International Publication No. WO 2006/126637, which claims priority from Japanese Patent Application No. 2005-151864, filed May 25, 2005, Japanese Patent Application No. 2006-065762, filed Mar. 10, 2006, and International Application 20 No. PCT/JP2006/310231, filed May 23, 2006, now International Publication No. WO 2006/126529, each of which is herein incorporated by reference for all purposes.]

TECHNICAL FIELD

The present invention relates to a 6,7-unsaturated-7-carbamoyl-substituted morphinan derivatives, which are useful as an agent for treating and/or preventing nausea, emesis, vomiting and/or constipation, particularly as an agent for alleviating and/or preventing a side effect (emesis, vomiting and/or constipation etc.) induced by a compound having the opioid receptor (e.g. opioid µ receptor) agonistic activity.

BACKGROUND ART

An opioid receptor agonist such as morphine and the like which is used as an analgesic is very effective in a patient having cancer pain, but as a side effect, induces severe nausea, emesis, vomiting, constipation, anuresis, and itching. Various antiemetics and anti-constipation agents are 40 a group represented by the formula: clinically used, but it can not be said that any of them exhibits the sufficient effect, and an excellent side effect alleviating agent is also demanded for improving QOL of a

Patent Literatures 1 and 2, and Non-patent Literature 1 45 describe to the effect that a morphinan derivative is effective in treating or preventing emesis and vomiting induced by an opioid μ agonist, and Non-Patent Literature 2 describes that a 6,7-saturated-7-carbamoyl-substituted-morphinan derivatives have the opioid δ receptor antagonism. However, none 50 of them describes or suggests the present compound.

[Patent Literature 1] International Patent Application Publication WO 2004-007503

[Patent Literature 2] International Patent Application Publication WO 95/13071

[Non-Patent Literature 1] Journal of Medicinal Chemistry 41, 4177-4180 (1998)

[Non-Patent Literature 2] Chemical and Pharmaceutical Bulletin, 52 (66) 747-750 (2004)

DISCLOSURE OF INVENTION

Problems to be Solved by the Invention

We found 6,7-unsaturated-7-carbamoyl-substituted mor- 65 phinan derivatives useful as a composition for treating and/or preventing emesis, vomiting and/or constipation.

2

Means to Solve the Problems

The present invention provides:

(1) a compound represented by the formula (I):

[Chemical formula 1]

$$\begin{array}{c} R^{5} \\ N \\ R^{1} \\ N \\ R^{2} \\ \end{array}$$

wherein R¹ and R² are each independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylsulfonyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl, an optionally substituted heterocyclic group, or optionally substituted arylsulfonyl, or R¹ and R² are taken together with the nitrogen atom to which they are attached to form optionally substituted heterocycle;

R³ is hydrogen, hydroxy, optionally substituted lower alkyl, lower optionally substituted lower alkenyl, optionally substituted lower alkynyl optionally substituted lower alkoxy, mercapto, optionally substituted lower alkylthio, optionally substituted amino, optionally substituted carbamoyl, optionally substituted acyl, optionally substituted acyloxy, optionally substituted aryl, or an optionally substituted heterocy-

[Chemical formula 2]

60

wherein ring A or ring B are each independently optionally substituted nitrogen-containing heterocycle optionally containing additional nitrogen atom, an oxygen atom, and/or a sulfur atom in the ring;

broken line indicates the presence or the absence of a bond; 5 when a broken line indicates the presence of a bond, p is 0; when a broken line indicates the absence of a bond, p is 1; R^a is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkynyl; 10 lower alkynyl; 11

and R^b is hydrogen or oxo;

R⁴ is hydrogen or lower alkyl;

 R^5 is hydrogen, lower alkyl, cycloalkyl lower alkyl or lower alkenyl,

or a pharmaceutically acceptable salt, or a solvate thereof, 15 (1') a compound represented by the formula (I):

[Chemical formula 3]

$$R^{5}$$
 R^{1}
 R^{2}
 R^{4}
 R^{3}

wherein R^1 and R^2 are each independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted cycloalkyl, optionally substituted aryl, or an optionally substituted heterocyclic group, or R^1 and R^2 are taken together with the nitrogen atom to which they are attached to form optionally substituted heterocycle; R^3 is hydrogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted lower alkoxy, mercapto, optionally substituted lower alkylthio, optionally substituted aryl, or an optionally substituted heterocyclic group; R^4 is hydrogen or lower alkyl;

and \mathbb{R}^s is hydrogen, lower alkyl, cycloalkyl lower alkyl or lower alkenyl;

or a pharmaceutically acceptable salt, or a solvate thereof, (2) the compound according to (1) or (1'), wherein R³ is hydroxy.

or a pharmaceutically acceptable salt, or a solvate thereof, (3) the compound according to (1) or (1'), wherein R³ is 50 optionally substituted amino,

or a pharmaceutically acceptable salt, or a solvate thereof, (4) the compound according to (1) or (1'), wherein R³ is amino substituted with optionally substituted arylsulfonyl, or a pharmaceutically acceptable salt, or a solvate thereof, 55 (5) the compound according to any one of (1) to (4), and (1'), wherein R¹ is hydrogen or lower alkyl, R² is optionally substituted lower alkyl, optionally substituted phenyl, optionally substituted cycloalkyl, or an optionally substituted heterocyclic group, and R⁵ is cyclopropylmethyl; 60 or a pharmaceutically acceptable salt, or a solvate thereof,

(6) the compound according to any one of (1) to (5), and (1'), wherein R¹ is hydrogen, R² is lower alkyl optionally substituted with a heterocyclic group or lower alkoxy optionally substituted with aryl, phenyl optionally substituted with 65 lower alkyl or lower alkoxy, cycloalkyl substituted with lower alkylcarbonyl, or a heterocyclic group substituted

4

with lower alkoxy or aryl, R⁴ is hydrogen, and R⁵ is cyclopropylmethyl, or a pharmaceutically acceptable salt, or a solvate thereof.

(7) a pharmaceutical composition containing the compound according to any one of (1) to (6), and (1'), or a pharmaceutically acceptable salt, or a solvate thereof,

(8) a composition having opioid receptor antagonistic activity containing the compound according to (1) to (6), and (1'), or a pharmaceutically acceptable salt, or a solvate thereof, (9) a composition for treating and/or preventing emesis, vomiting and/or constipation containing the compound according to any one of (1) to (6), and (1'), or a pharmaceutically acceptable salt, or a solvate thereof,

(10) a composition for alleviating and/or preventing a side effect induced by a compound having the opioid receptor agonistic activity, containing the compound according to any one of (1) to (6), and (1'), or a pharmaceutically acceptable salt, or a solvate thereof,

(11) a composition for treatment and/or prevention according to (10), wherein the side effect is emesis, vomiting and/or constipation,

(12) an agent for treatment and/or prevention according to (10) or (11), wherein the compound having the opioid receptor agonistic activity is morphine, oxycodone, or a pharmaceutically acceptable salt, or a solvate thereof,

(13) use of the compound according to any one of (1) to (6), and (1'), or a pharmaceutically acceptable salt, or solvate thereof for producing a medicament for treating and/or preventing emesis, vomiting and/or constipation,

(14) use of the compound according to any one of (1) to (6), and (1'), or a pharmaceutically acceptable salt, or solvate thereof, for producing a medicament for alleviating and/or preventing a side effect induced by a compound having the opioid receptor agonistic activity,

(15) a method for treating and/or preventing emesis, vomiting and/or constipation, comprising administering the compound according to any one of (1) to (6) and (1'), or a pharmaceutically acceptable salt, or a solvate thereof,

(16) a method for alleviating and/or preventing a side effect induced by a compound having the opioid receptor agonistic activity, comprising administering the compound according to any one of (1) to (6) and (1'), its pharmaceutically acceptable salt, or a solvate thereof,

(17) a composition for analgesic containing

a compound having an opioid receptor agonistic activity, and an effective amount of compound according to any one of (1) to (6) and (1'), or a pharmaceutically acceptable salt, or a solvate thereof, for alleviating and/or preventing a side effect induced by administration of the compound having an opioid receptor agonistic activity,

(18) a composition for analgesic containing a compound having an opioid receptor agonistic activity, and an effective amount of compound according to any one of (1) to (6) and (1'), or a pharmaceutically acceptable salt or a solvate thereof, for treating and/or preventing emesis, vomiting and/or constipation induced by administration of the compound having an opioid receptor agonistic activity, (19) the analgesic according to (17) or (18), wherein the compound having the opioid receptor agonistic activity, is morphine, oxycodone, its pharmaceutically acceptable salt, or a solvate thereof.

Effect of the Invention

The compound (I) of the present invention has the activity of treating/or preventing emesis, vomiting and/or constipation, particularly emesis, vomiting and/or constipation

induced by a compound having the opioid receptor (e.g. opioid µ receptor) agonistic activity, and is useful as a composition for alleviating a side effect of a patient to whom a compound having the opioid receptor agonistic activity is administered or is in the middle of administration.

BEST MODE FOR CARRYING OUT THE **INVENTION**

As used herein, the "halogen" includes fluorine, chlorine, 10 bromine and iodine. A halogen part of the "halogeno lower alkyl", the "halogeno lower alkoxy", and the "halogeno lower alkylthio" is the same.

The "lower alkyl" includes a straight or branched alkyl of a carbon number of 1 to 10, preferably a carbon number of 15 1 to 6, further preferably 1 to 3, and examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, secbutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl, isooctyl, n-nonyl and n-decyl. Preferable are methyl, ethyl, isopropyl, n-butyl, 20 sec-butyl, tert-butyl, and 1-ethylpropyl.

Examples of a substituent of the "optionally substituted lower alkyl" include halogen, hydroxy, lower alkoxy, halogeno lower alkoxy, hydroxy lower alkoxy, lower alkylthio, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, cyanocarbamoyl, lower alkylsulfonylcarbamoyl, arylsulfonylcarbamoyl, sulfamoyl, lower alkylsulfamoyl, lower alkylsulfonyl, cycloalkyl optionally substituted with one or more substituents selected from Substituent group α 30 (wherein Substituent group α is halogen, hydroxy, lower alkyl, halogeno lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl, carboxy lower alkyl, lower alkoxycarbonyl lower alkyl, amino lower alkyl, lower alkylamino lower alkyl, acylamino lower alkyl, cyano lower alkyl, 35 lower alkoxy, halogeno lower alkoxy, hydroxy lower alkoxy, lower alkylthio, halogeno lower alkylthio, acyl, acyloxy, amino, lower alkylamino, acylamino, cyano, carboxy, lower alkoxycarbonyl, carbamoyl, lower alkylcarbamoyl, arylcarbamoyl, cyanocarbamoyl, lower alkylsulfonylcarbamoyl, 40 sulfamoyl, lower alkylsulfamoyl, lower alkylsulfonyl, aryl optionally substituted with lower alkylenedioxy, and a heterocyclic group), cycloalkenyl optionally substituted with one or more substituents selected from Substituent group α , aryl optionally substituted with one or more substituents 45 selected from Substituent group a, aryloxy optionally substituted with one or more substituents selected from Substituent group α , arylthio optionally substituted with one or more substituents selected from Substituent group α , a heterocyclic group optionally substituted with one or more 50 substituents selected from Substituent group α , and heterocyclic oxy optionally substituted with one or more substituents selected from Substituent group α .

A lower alkyl part of the "halogeno lower alkyl", the "hydroxy lower alkyl", the "amino lower alkyl", the "acy- 55 lamino lower alkyl", the "acyloxy lower alkyl", the "cycloalkyl lower alkyl", the "lower alkoxy", the "halogeno lower alkoxy", the "hydroxy lower alkoxy", the "lower alkoxy lower alkyl", the "lower alkoxycarbonyl", the "carboxy lower alkyl", the "lower alkoxycarbonyl lower alkyl", 60 the "lower alkylthio", the "halogeno lower alkylthio", the "lower alkylamino", the "lower alkylamino lower alkyl", the "lower alkylcarbamoyl", the "lower alkylsulfamoyl", the "lower alkylsulfonyl", the "aryl lower alkyl", the "tri lower alkylsilyl", the "lower alkyldiarylsilyl", the "triaryl lower 65 alkylsilyl", the "lower alkoxy lower alkoxy lower alkyl", the "lower alkylthio lower alkyl", the "aryl lower alkoxy lower

alkyl", the "lower alkylsulfonyl", the "lower alkylsulfonylcarbamoyl", the "lower alkylcarbonyl", the "cyano lower alkyl", the "lower alkoxycarbonylamino", the "lower alkylenedioxy", and the "heterocyclic lower alkyl" is the same as that of the aforementioned "lower alkyl".

A substituent of the "optionally substituted lower alkoxy". the "optionally substituted lower alkylthio", and the "optionally substituted lower alkylsulfonyl" is the same as the aforementioned substituent of the "optionally substituted lower alkyl".

The "lower alkenyl" includes a straight or branched alkenyl of a carbon number of 2 to 10, preferably a carbon number of 2 to 8, further preferably a carbon number of 3 to 6 having one or more double bonds at an arbitrary position. Specifically, examples include vinyl, allyl, propenyl, isopropenyl, butenyl, isobutenyl, prenyl, butadienyl, pentenyl, isopentenyl, pentadienyl, hexenyl, isohexenyl, hexadienyl, heptenyl, octenyl, nonenyl and decenyl. The lower alkenyl in R⁵ is preferably allyl.

The substituent of the "optionally substituted lower alkenyl" is the same as that of the "optionally substituted lower alkyl".

The "lower alkynyl" includes straight or branched alkynyl lower alkylamino, acylamino, acyl, acyloxy, cyano, carboxy, 25 of a carbon number of 2 to 10, preferably a carbon number of 2 to 8, further preferably a carbon number of 3 to 6 having one or more triple bonds at an arbitrary position. Specifically, examples include ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, and decynyl. These may further have a double bond at an arbitrary position.

> The substituent of the "optionally substituted lower alkynyl" is the same as that of the "optionally substituted lower alkyl".

> Examples of the substituent of the "optionally substituted amino" include lower alkyl optionally substituted with one or more substituents selected from Substituent group α, cycloalkyl optionally substituted with one or more substituents selected from Substituent group a, acyl optionally substituted with one or more substituents selected from Substituent group α , amino optionally substituted with one or more substituents selected from Substituent group α , aryl optionally substituted with one or more substituents selected from Substituent group α , sulfamoyl, lower alkylsulfamoyl optionally substituted with one or more substituents selected from Substituent group α, arylsulfamoyl optionally substituted with one or more substituents selected from Substituent group α , lower alkylsulfonyl optionally substituted with one or more substituents selected from Substituent group α , arylsulfonyl optionally substituted with one or more substituents selected from Substituent group α , arylamino optionally substituted with one or more substituents selected from Substituent group α , and a heterocyclic group optionally substituted with one or more substituents selected from Substituent group a.

> The substituent of the "optionally substituted carbamoyl" is the same as that of the "optionally substituted amino".

> The "cycloalkyl" is a carbocyclic group of a carbon number of 3 to 10, preferably a carbon number of 3 to 8, more preferably a carbon number of 4 to 8 and, for example, includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl and cyclodecyl. These may be further condensed with "aryl" described later or "heterocyclic group" described later at an arbitrary position.

> As the "cycloalkyl" in R¹ and R², cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl are preferable.

A cycloalkyl part of the "cycloalkyl lower alkyl" and the "cycloalkylcarbonyl" is the same as the aforementioned "cycloalkyl".

As the "cycloalkyl lower alkyl" in R⁵, cyclopropylmethyl is preferable."

Examples of the substituent of the "optionally substituted cycloalkyl" include on or more substituents selected from the aforementioned Substituent group α . The substituent can replace at an arbitrary position, and may replace at a carbon atom having a bond of cycloalkyl.

The "cycloalkenyl" includes cycloalkenyl having one or more double bonds at an arbitrary position in a ring of the aforementioned cycloalkyl, and examples include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptyl, cyclooctynyl and cyclohexadienyl.

As the "cycloalkenyl" in R¹ or R², cyclopropenyl, cyclobutenyl, cyclopentenyl, and cyclohexenyl are preferable

A cycloalkenyl part of the "cycloalkenylcarbonyl" is the same as the aforementioned "cycloalkenyl".

The substituent of the "optionally substituted cycloalkenyl" is the same as that of the aforementioned "optionally substituted cycloalkyl".

The "aryl" includes phenyl, naphthyl, anthryl and phenanthryl, and phenyl is particularly preferable.

An aryl part of the "aryloxy", the "arylthio", the "aryl lower alkyl", the "lower alkyldiarylsilyl", the "triaryl lower alkylsilyl", the "aryl-sulfonyl", the "arylsofamoyl", the "arylsofamoyl", the "arylsofamoyl" is the same as 30 the aforementioned "aryl".

Examples of the substituent of the "optionally substituted aryl", the "optionally substituted phenyl", and the "optionally substituted arylsulfonyl", include the Substituent group α , phenyl substituted with one or more groups selected from 35 Substituent group α , phenoxy substituted with one or more groups selected from Substituent group α , and lower alkylenedioxy.

The "heterocyclic group" includes a heterocyclic group having one or more heteroatoms arbitrarily selected from O, 40 S and N in a ring, and specifically includes a 5- to 6-membered heteroaryl such as pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiazolyl, thiadiazolyl, furyl and thienyl; a bicyclic 45 condensed heterocyclic group such as indolyl, isoindolyl, indazolyl, indolidinyl, indolinyl, isoindolinyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, naphthridinyl, quinoxalinyl, purinyl, pteridinyl, benzopyranyl, benzimidazolyl, benzisoxazolyl, benzoxazolyl, benzoxadiazolyl, 50 nyl. benzoisothiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, isobenzofuryl, benzothienyl, benzotriazolyl, imidazopyridyl, triazolopyridyl, imidazothiazolyl, pyrazinopyridazinyl, quinazolinyl, quinolyl, isoquinolyl, naphthyridinyl, dihydropyridyl, tetrahydroquinolyl, and tet- 55 rahydrobenzothienyl; a tricyclic condensed heterocyclic group such as carbazolyl, acridinyl, xanthenyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, and dibenzofuryl; a nonaromatic heterocyclic group such as dioxanyl, thiiranyl, thioranyl, thietanyl, oxilanyl, oxetanyl, oxathioranyl, aze- 60 tidinyl, thianyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, morpholinyl, morpholino, thiomorpholinyl, thiomorpholino, dihydropyridyl, dihydrofuryl, tetrahydrofuryl, tetrahydropyranyl, tetrahydrothiazolyl, and tetrahydroisothiazolyl. Preferable is a 5- to 6-membered heteroaryl or a non-aromatic heterocyclic group.

As the "heterocyclic group" in R¹ and R², pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, isoxazolyl, thiazolyl, thiadiazolyl, furyl, thienyl, indolyl, indazolyl, quinolyl, isoquinolyl, benzoxazolyl, benzothiazolyl, oxetanyl, tetrahydrofuryl, and tetrahydropyranyl are preferable. Pyridyl, pyridazinyl, pyrimidinyl, and pyrazinyl are more preferable. Pyridyl and pyrimidinyl are particularly preferable.

As the heterocyclic group of the "optionally substituted lower alkyl" in R^1 and R^2 , isoxazolyl, oxazolyl, and oxadiazolyl are preferable. Oxadiazolyl is particularly preferable.

A heterocyclic part of the "heterocyclic oxy" and the "heterocyclic lower alkyl" is the same as the aforementioned "heterocyclic group".

Examples of the substituent of the "optionally substituted heterocyclic group" include one or more groups selected from the group consisting of the Substituent group α and oxo. The substituent can replace at an arbitrary position, or may replace at a carbon atom or a nitrogen atom having a bond of the heterocyclic group.

The "acyl" includes straight or branched chain-like aliphatic acyl of a carbon number of 1 to 10, preferably a carbon number of 1 to 6, further preferably a carbon number of 1 to 4, cyclic aliphatic acyl of a carbon number of 4 to 9, preferably a carbon number of 4 to 7, aroyl and heterocyclic carbonyl. Herein, the "chain-like aliphatic" includes the aforementioned "lower alkyl", the aforementioned "lower alkenyl", and the aforementioned "lower alkynyl". The "cyclic aliphatic" includes the aforementioned "cycloalkyl" and the aforementioned "cycloalkenyl". A heterocyclic part of the heterocyclic carbonyl is the same as the aforementioned "heterocyclic group". Examples of the acyl include formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, acryloyl, propioloyl, methacryloyl, crotonoyl, cyclopropylcarbonyl, cyclohexylcarbonyl, cyclooctylcarbonyl, benzoyl, pyridine carbonyl, piperidinecarbonyl, piperazinecarbonyl, morpholinocarbonyl, and the like.

An acyl part of the "acyloxy", the "acylamino", the "acylamino lower alkyl" and the "acyloxy lower alkyl" is the same as the aforementioned "acyl".

The substituent of the "optionally substituted acyl" or the "optionally substituted" is the same as the substituent of the aforementioned "optionally substituted lower alkyl" when the "acyl" is chain-like aliphatic acyl, and includes one or more groups selected from the Substituent group α when the "acyl" is cyclic aliphatic acyl, aroyl or heterocyclic carbonyl.

The "optionally substituted heterocycle" formed when R^1 and R^2 are taken together with the nitrogen atom to which they are attached, includes a 5-membered or 6-membered heterocycle containing the nitrogen atom to which R^1 and R^2 are attached and, further, optionally containing one or more heteroatoms selected from N, S and O. For example, the case where

[Chemical formula 4]

is a saturated heterocycle group such as

15

-continued

$$R^6$$
 R^7 ,
 R^6
 R^7 ,
 R^6
 R^7 ,
 R^7 ,
 R^6
 R^7 ,
 R^7 ,
 R^8
 R^7 ,
 R^8
 R^7 ,
 R^8
 R^7 ,
 R^8

or an unsaturated heterocycle group such as

$$R^6$$
 R^7 , R^6
 R^7 , R^8
 R^7 , R^8
 R^8
 R^7 , R^8
 R^8

wherein R^6 , R^7 and R^8 are each independently hydrogen, halogen, hydroxy, lower alkyl, lower alkoxy, lower alkylthio, acyl, acyloxy, amino, lower alkylamino, acylamino, $_{55}$ lower alkoxycarbonylamino, carboxy or lower alkoxycarbonyl,

is included and the preferable is a saturated heterocycle group such as morpholine ring, pyrrolidine ring, piperidine ring, piperazine ring, and the like optionally substituted with hydrogen, halogen, hydroxy or lower alkyl.

The substituent of the "optionally substituted heterocycle, which is formed when R^1 and R^2 are taken together with the nitrogen atom to which they are attached" is the same as the $_{65}$ substituent of the "optionally substituted heterocyclic group".

includes, for example, the following:

-continued

wherein R^a is as defined above, and R is hydrogen or a group selected from Substituent group α .

Herein, the "solvate" includes, for example, a solvate with an organic solvent, a hydrate and the like. When a hydrate is formed, any number of water molecules may be coordi-65 nated.

The compound (I) includes a pharmaceutically acceptable salt. Examples include salts with alkali metals (lithium,

-continued

sodium or potassium), alkaline earth metals (magnesium or calcium), ammonium, organic bases or amino acids, and salts with inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid and hydroiodic acid), or organic acids (acetic acid, trifluoroacetic acid, citric acid, lactic acid, tartaric acid, oxalic acid, maleic acid, fumaric acid, mandelic acid, glutaric acid, malic acid, benzoic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, or ethanesulfonic acid. Particularly, hydrochloric acid, phosphoric acid, 10 tartaric acid, or methanesulfonic acid is preferable. These salts can be formed by a conventional method.

In addition, the compound (I) is not limited to a specific isomer, but includes all possible isomers and racemates. For example, when R³ of the compound (I) is hydroxy, the 15 compound (I) includes other tautomer, that is, the following compound (I').

wherein R^A is an ester residue, R^B is hydrogen or hydroxy protecting group, and other symbols are as defined above.

[Chemical formula 7]

$$R^{5}$$
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

The present compound (I) can be produced by the following process.

(A Process)

Herein, the ester residue includes lower alkyl such as methyl, ethyl and the like, aryl lower alkyl such as benzyl, phenethyl and the like, acyloxy lower alkyl such as acety-loxymethyl and the like, etc.

The hydroxy protecting group is not limited to, but includes lower alkyl (methyl, tert-butyl etc.), aryl lower alkyl (triphenylmethyl, benzyl etc.), tri lower alkylsilyl (trimethylsilyl, tert-butyldimethylsilyl, triethylsilyl, triisopropylsilyl etc.), lower alkyldiarylsilyl (tert-butyldiphenylsilyl etc.), triaryl lower alkylsilyl (tribenzylsilyl etc.), lower alkoxy lower alkyl (methoxymethyl, 1-ethoxyethyl, 1-methyl-1-methoxyethyl etc.), lower alkoxy lower alkoxy lower alkyl (methoxyethoxymethyl etc.), lower alkylthio lower alkyl (methylthiomethyl etc.), optionally substituted tetrahydropyranyl (tetrahydropyran-2-yl, 4-methoxytetrahydropyran-4-yl etc.), tetrahydrothiopyranyl (tetrahydrothiopyran-2-yl etc.), tetrahydrofuranyl (tetrahydrofuran-2-yl etc.), tetrahydrothiofuranyl (tetrahydrothiofuran-2-yl etc.), aryl lower alkyloxy lower alkyl (benzyloxymethyl etc.), lower alkylsulfonyl (methanesulfonyl, ethanesulfonyl etc.), ₅₅ acyl (acetyl etc.) and arylsulfonyl (p-toluenesulfonyl etc.). (First Step)

First, the known compound or compound (IV) derived therefrom is deprotected by a conventional method.

For example, when a protecting group is benzyl, the compound is dissolved or suspended in a suitable solvent (ethyl acetate, methanol, ethanol, tetrahydrofuran, dioxane, dimethylformamide, acetic acid, dilute hydrochloric acid, or a mixture thereof), and a hydrogenation reaction using a palladium catalyst (palladium hydroxide, palladium-carbon, palladium-barium sulfate, palladium-aluminum oxide, palladium black etc.) affords compound (III). A reaction may be performed at about 0° C. to about 100° C., preferably about

[Chemical formula 8]

$$R^{5}$$
N
COOR⁴
 R^{8} O
(IV)

20° C. to about 50° C. for about 15 minutes to about 24 hours, preferably about 1 hour to about 5 hours. (Second Step)

Then, the resulting compound (III) is directly amidated to obtain compound (Ia).

For example, compound (III) and compound (II) may be reacted by heating in a suitable solvent (methanol, ethanol, tetrahydrofuran, dimethylformamide, diethyl ether, dichloromethane, dichloroethane, toluene, xylene, chlorobenzene, orthodichlorobenzene, 2-methoxyethanol or diethylene glycol dimethyl ether or a mixture thereof) or without a solvent at about 0° C. to about 250° C., preferably about 80° C. to about 200° C for about 30 minutes to about 24 hours, preferably about 1 to 12 hours in the presence or the absence of an amine compound (ammonia, dimethylamine, triethylamine, pyridine, dimethylamiline, dimethylaminopyridine, lutidine etc.).

In order to effectively carry a reaction forward, the reaction may be performed by microwave irradiation. A 20 reaction temperature, and an irradiation time are not particularly limited, but are about 100° C. to about 200° C. and about 5 minutes to about 5 hours, preferably about 10 minutes to about 1 hour. It is preferable to use, as a solvent, a polar solvent such as methanol, ethanol, 1-propanol, 25 ethylene glycol, glycerin, 2-methoxyethanol, 2-ethoxyethanol, N,N-dimethylformamide, diethylene glycol dimethyl ether and the like.

When R⁴ of objective compound (I) is lower alkyl, an objective compound can be obtained by the conventional 30 etherization reaction at an arbitrary stage.

(B Process)

[Chemical formula 9] 35

$$R^{B}O$$
 $R^{B}O$
 $R^{B}O$

-continued R^5 R^1 N-R R^3 R^3 R^3

wherein R^{3a} is hydroxy, or optionally substituted lower alkoxy, and other symbols are as defined above.

(First Step)

When R³ of objective compound (I) is optionally substituted lower alkoxy, first, the known compound (IV) is etherized by a conventional method.

For example, the compound is reacted with an alkylating agent or an alcohol having a R^{3a} group corresponding to an objective compound in the presence of a base (sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, cesium carbonate, sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium bicarbonate or metal sodium), or under the condition of Mitsunobu reaction in a suitable solvent (N,N-dimethylformamide, dimethyl sulfoxide, toluene, benzene, xylene, a mixture thereof, or the like) cyclohexane, hexane, dichloromethane, 1,2-dichloroethane, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, acetonitrile, water or a mixture thereof) to obtain compound (VII). The reaction may be performed at -70 to 180° C., preferably about 0 to 150° C. for about 15 minutes to about 40 24 hours, preferably about 1 hour to about 5 hours.

(Second Step)

Then, compound (VII) is hydrolyzed to obtain compound (VI). The reaction may be performed under ice-cooling to at a reflux temperature of a solvent for about 15 minutes to about 24 hours, preferably, 1 hour to about 5 hours using an inorganic base (sodium hydroxide, lithium hydroxide or potassium hydroxide) in a suitable solvent (methanol, ethanol, tetrahydrofuran, dioxane, dimethylformamide or a mixture thereof).

(Third Step and Fourth Step)

Then, compound (VI) is amidated, and the resulting compound (V) is deprotected to obtain objective compound (Ib). These reactions may be performed by the same methods as those of the second step and the first step in A process, respectively. In an amidation step, the reaction may be performed, if necessary, in the presence of a condensing agent (N,N'-dicyclohexylcarbodiimide, N-dimethylamino-propyl-N'-ethylcarbodiimide, diethyl phosphoryl cyanide, diphenyl phosphoryl azide etc.).

In addition, when R⁴ of objective compound (I) is lower alkyl, an etherization reaction may be performed at an arbitrary stage as described above.

(C Process)

[Chemical formula 10]

(IV)

$$R^{S}O$$
 $COOR^{4}$
 $R^{S}O$
 $R^{S}O$

wherein L is a leaving group, R^{3b} is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylthio, optionally substituted amino, optionally substituted carbamoyl, optionally substituted aryl, or optionally substituted carbamoyl, optionally substituted aryl, or optionally substituted heterocyclic group, and other symbols are as defined above.

(First Step)

When R^3 of objective compound (I) is the R^{3b} , a leaving group L (e.g. trifluoromethanesulfonyl, methanesulfonyl, phosphoric acid ester etc.) is introduced into the known compound (IV). For example, the compound is reacted with trifluoromethanesulfonic anhydride, trifluoromethanesulfonyl chloride, methanesulfonyl chloride, methanesulfonic anhydride, p-toluenesulfonyl chloride, N-phenyltrifluoromethanesulfonimide or various phosphoric acid esterifying reagents in the presence of a base (pyridine, triethylamammonia, dimethylamine, dimethylaniline, dimethylaminopyridine, 2,6-lutidine or 2,6-di-tert-butylpyridine) using dichloromethane, chloroform, tetrahydrofuran, benzene, toluene, dimethylformamide, ethyl acetate or a mixture thereof as a solvent.

¹⁵ (Second Step)

The thus obtained compound (VIII) is subjected to the known substituent introducing reaction to obtain compound (IX).

(Third Step, Fourth Step and Fifth Step)

The compound (IX) is hydrolyzed, amidated, and deprotected by the same methods as those of the second step in B process, the second step in A process and the first step in A step, respectively, to obtain objective the compound (Ic).

In addition, when R⁴ of the objective compound (I) is lower alkyl, an etherization reaction may be performed at an arbitrary stage as described above.

(D Process)

compound (VIII) is obtained by the first step in C process, amidated according to the method of the fourth step in C process, and subjected to introduction of a substituent R^{3b}, deprotection, and a hydrolysis reaction according to the methods of the second step, third step and fifth step in C process, respectively, thereby, objective compound (I) may be also obtained.

All of thus obtained present compounds have the opioid receptor antagonistic activity, and are useful as a drug, and among compounds represented by the formula (I), the following compounds are particularly preferable.

a) a compound in which R¹ is hydrogen or lower alkyl,

b) a compound in which R¹ is hydrogen or C1-C3 alkyl,

c) a compound in which R² is:

(c-i) lower alkyl optionally substituted with one or more groups selected from Substituent group β (herein, Substituent group β is cycloalkyl optionally substituted with hydroxy, halogen, hydroxy, lower alkoxy, halogeno lower alkoxy, lower alkylthio, amino, lower alkylamino, carboxy, lower alkoxycarbonyl, cyano, lower alkylsulfonyl, aryl, aryloxy and lower alkylenedioxy),

(c-ii) phenyl optionally substituted with one or more groups selected from group consisting of Substituent group β , lower alkyl and halogeno lower alkyl.

(c-iii) aryl lower alkyl optionally substituted with one or more groups selected from Substituent group β ,

(c-iv) cycloalkyl optionally substituted with one or more groups selected from Substituent group β ,

(c-v) heterocyclic group optionally substituted with one or more groups selected from Substituent group β, or

(c-vi) heterocyclic lower alkyl optionally substituted with one or more groups selected from Substituent group $\beta,\,$

d) a compound in which R² is:

(d-i) lower alkyl optionally substituted with hydroxy, cycloalkyl optionally substituted with hydroxy, lower alkoxy, lower alkylthio, lower alkylamino or aryloxy,

(d-ii) phenyl optionally substituted with halogen, lower alkyl, halogeno lower alkyl, lower alkoxy, halogeno lower alkoxy, lower alkylthio, amino, lower alkylamino, cyano, lower alkylsulfonyl or lower alkylenedioxy,

AG

ΑK

AL

AM

AN

AO

ΑP

AQ

19

(d-iii) aryl lower alkyl optionally substituted with lower alkoxy or lower alkylthio,

(d-iv) cycloalkyl optionally substituted with lower alkyl, carboxy or lower alkoxycarbonyl,

(d-v) a heterocyclic group optionally substituted with lower balkyl, lower alkoxy or phenyl, or

(d-vi) heterocyclic lower alkyl optionally substituted with lower alkyl or aryl,

e) a compound in which R^1 and R^2 are taken together with a N atom to which they bind to form a 5-membered or 6-membered saturated heterocycle,

f) a compound in which R³ is hydroxy or lower alkoxy,

g) a compound in which R³ is hydroxy,

h) a compound in which R^3 is amino optionally substituted with one or more groups selected from Substituent group α , i) a compound in which R^3 is halogen, lower alkyl, or amino substituted with arylsulfonyl optionally substituted with lower alkoxy,

j) a compound in which R⁴ is hydrogen or methoxy,
 k) a compound in which R⁵ is cycloalkyl lower alkyl or lower alkenyl,

a compound in which R⁵ is cyclopropylmethyl or allyl,
 a compound in which R⁵ is cyclopropylmethyl,

n) a compound in which R^1 is hydrogen or lower alkyl, R^2 ²⁵ is the (d-i), R^3 is hydroxy or lower alkoxy, R^4 is hydrogen, and R^5 is cycloalkyl lower alkyl or lower alkenyl,

o) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-i), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cyclopropylmethyl,

p) a compound in which R^1 is hydrogen or lower alkyl, R^2 is the (d-i), R^3 is halogen, lower alkyl, or amino substituted with arylsulfonyl optionally substituted with lower alkoxy, R^4 is hydrogen, and R^5 is cycloalkyl lower alkyl or lower alkenyl.

q) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-i), R³ is halogen, lower alkyl, or amino substituted with arylsulfonyl optionally substituted with lower alkoxy, R⁴ is hydrogen, and R⁵ is cyclopropylmethyl,

r) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-ii), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cycloalkyl lower alkyl or lower alkenyl,

s) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-ii), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, 45 and R⁵ is cyclopropylmethyl,

t) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-iii), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cycloalkyl lower alkyl or lower alkenyl,

u) a compound in which R¹ is hydrogen or lower alkyl, R² 50 is the (d-iii), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cyclopropylmethyl,

v) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-iv), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cycloalkyl lower alkyl or lower alkenyl,

w) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-iv), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cyclopropylmethyl,

x) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-v), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, 60 and R⁵ is cycloalkyl lower alkyl or lower alkenyl,

y) a compound in which R^1 is hydrogen or lower alkyl, R^2 is the (d-v), R^3 is hydroxy or lower alkoxy, R^4 is hydrogen, and R^5 is cyclopropylmethyl,

z) a compound in which R¹ is hydrogen or lower alkyl, R² 65 is the (d-vi), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cycloalkyl lower alkyl or lower alkenyl,

20

aa) a compound in which R¹ is hydrogen or lower alkyl, R² is the (d-vi), R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cyclopropylmethyl,

ab) a compound in which R¹ and R² are taken together with a N atom to which they bind to form a 5-membered or 6-membered saturated heterocycle, R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cycloalkyl lower alkyl group or lower alkenyl.

ac) a compound in which R¹ and R² are taken together with a N atom to which they bind to form a 5-membered or 6-membered saturated heterocycle, R³ is hydroxy or lower alkoxy, R⁴ is hydrogen, and R⁵ is cyclopropylmethyl, or a pharmaceutically acceptable salt or a solvate thereof.

In a compound represented by the formula (I), a compound in which R⁴ is hydrogen, R⁵ is cyclopropylmethyl, and a combination of NR¹R² and R³ (NR¹R², R³) is the following.

TABLE 1

	HO R ¹ N	\mathbb{R}^2
	NR1R2	CR9R10
AA	—NHiPr	_
AB	—N————————————————————————————————————	_
AC	-4-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(_
AD		_
A E	HOOC	_
AF	HOOC F	_

-NHCR9R10CONH2

-NHCR9R10CONH2 -NHCR9R10CONH2

NHCR9R10CONH2

NHCR9R10CONH2

NHCR9R10CONH2

NHCR9R10CONH2

NHCR9R10CONH2

NHCR9R10CONH2

NHCR9R10CONH2

NHCR9R10CONH2

-NHCR9R10CONH2

Rf

Rg

Ri

Rj

Rk

22
TABLE 2-continued

TABLE 1-continued				TABLE 2-continued	
\sim				NR1R2	CR9R10
			CX	-NHCR9R10COOMe	Rj
/ ^N ¬		5	CY	-NHCR9R10COOMe	Rk
\longrightarrow \mathbb{R}^1			CZ	—NHCR9R10COOMe	R1
/ \	\		DA	-NHCR9R10COOMe	Rm
\longrightarrow	$N-R^2$		DB	-NHCR9R10COOMe	Rn
			DC	—NHCR9R10COOMe	Ro
\\	١	10	DD DE	—NHCR9R10COOMe —NHCR9R10COOMe	Rp Rq
	Ö	10	DF	-NHCR9R10COOMe	Rr
$_{\rm HO}$ $_{\rm R}^{3}$			DG	-NHCR9R10COOMe	Rs
HO K			DH	-NHCR9R10COOMe	Rt
NR1R2	CR9R10		DI	-NHCR9R10COOEt	Ra
THE	CIORIO	_	DJ	-NHCR9R10COOEt	Rb
-NHCR9R10CONH2	Rm	15	DK	-NHCR9R10COOEt	Rc
—NHCR9R10CONH2	Rn		DL	—NHCR9R10COOEt	Rd
—NHCR9R10CONH2	Ro		DM	—NHCR9R10COOEt	Re
—NHCR9R10CONH2	Rp		DN	—NHCR9R10COOEt	Rf
—NHCR9R10CONH2	Rq		DO DP	—NHCR9R10COOEt	Rg Rh
—NHCR9R10CONH2	Rr		DQ	—NHCR9R10COOEt —NHCR9R10COOEt	Ri
—NHCR9R10CONH2 —NHCR9R10CONH2	Rs Rt	20	DR	—NHCR9R10COOEt	Ri
—NHCR9R10CONMe2	Ra		DS	-NHCR9R10COOEt	Rk
—NHCR9R10CONMe2 —NHCR9R10CONMe2	Rb		DT	-NHCR9R10COOEt	RI
—NHCR9R10CONMe2	Rc		DU	—NHCR9R10COOEt	Rm
—NHCR9R10CONMe2	Rd		DV	—NHCR9R10COOEt	Rn
-NHCR9R10CONMe2	Re		DW	—NHCR9R10COOEt	Ro
—NHCR9R10CONMe2	Rf	25	DX	—NHCR9R10COOEt	Rp
—NHCR9R10CONMe2	Rg		DY	—NHCR9R10COOEt	Rq
—NHCR9R10CONMe2	Rh		DZ	—NHCR9R10COOEt	Rr
—NHCR9R10CONMe2	Ri		EA EB	—NHCR9R10COOEt —NHCR9R10COOEt	Rs Rt
—NHCR9R10CONMe2 —NHCR9R10CONMe2	Rj Rk		EC	—NHCR9R10COOEt —NHCR9R10COOiPr	Ra
—NHCR9R10CONMe2 —NHCR9R10CONMe2	RI	30	ED	—NHCR9R10COOiPr	Rb
—NHCR9R10CONMe2	Rm	30	EE	-NHCR9R10COOiPr	Rc
—NHCR9R10CONMe2	Rn		EF	—NHCR9R10COOiPr	Rd
—NHCR9R10CONMe2	Ro		EG	—NHCR9R10COOiPr	Re
-NHCR9R10CONMe2	Rp		EH	—NHCR9R10COOiPr	Rf
-NHCR9R10CONMe2	Rq		EI	—NHCR9R10COOiPr	Rg
—NHCR9R10CONMe2	Rr	35	EJ	—NHCR9R10COOiPr	Rh
—NHCR9R10CONMe2	Rs		EK	—NHCR9R10COOiPr	Ri
—NHCR9R10CONMe2	Rt		EL	—NHCR9R10COOiPr	Rj
—NHCR9R10COOH	Ra		EM EN	—NHCR9R10COOiPr —NHCR9R10COOiPr	Rk Rl
—NHCR9R10COOH	Rb		EO	—NHCR9R10COOiPr —NHCR9R10COOiPr	Rm
—NHCR9R10COOH —NHCR9R10COOH	Rc Rd		EP	—NHCR9R10COOiPr	Rn
—NHCR9R10COOH	Re	40	EQ	—NHCR9R10COOiPr	Ro
-NHCR9R10COOH	Rf		ER	-NHCR9R10COOiPr	Rp
—NHCR9R10COOH	Rg		ES	-NHCR9R10COOiPr	Rq
—NHCR9R10COOH	Rh		ET	—NHCR9R10COOiPr	Rr
—NHCR9R10COOH	Ri		EU	—NHCR9R10COOiPr	Rs
—NHCR9R10COOH	Rj	45	EV	—NHCR9R10COOiPr	Rt
—NHCR9R10COOH	Rk	45	EW	-NHCR9R10CONHMe	Ra
—NHCR9R10COOH	RI D		EX	—NHCR9R10CONHMe	Rb Ro
—NHCR9R10COOH	Rm		EY EZ	—NHCR9R10CONHMe —NHCR9R10CONHMe	Rc Rd
—NHCR9R10COOH	Rn		FA	—NHCR9R10CONHMe	Re
—NHCR9R10COOH	Ro		FB	—NHCR9R10CONHMe	Rf
—NHCR9R10COOH —NHCR9R10COOH	Rp Ro	50	FC	-NHCR9R10CONHMe	Rg
—NHCR9R10COOH —NHCR9R10COOH	Rq Pr	~~	FD	—NHCR9R10CONHMe	Rh
—NHCR9R10COOH —NHCR9R10COOH	Rr Rs		FE	-NHCR9R10CONHMe	Ri
—NHCR9R10COOH —NHCR9R10COOH	Rs Rt		FF	—NHCR9R10CONHMe	Rj
—NHCR9R10COOMe	Ra		FG	—NHCR9R10CONHMe	Rk
—NHCR9R10COOMe —NHCR9R10COOMe	Rb		FH	—NHCR9R10CONHMe	RI
—NHCR9R10COOMe —NHCR9R10COOMe	Rc	55	FI	-NHCR9R10CONHMe	Rm
—NHCR9R10COOMe	Rd		FJ EV	—NHCR9R10CONHMe —NHCR9R10CONHMe	Rn
MICIORIOCOGNIC	Au	_	FK FL	—NHCR9R10CONHMe	Ro Rp
			FM	—NHCR9R10CONHMe	Rq
			FN	—NHCR9R10CONHMe	Rr Rr
TABLE 2			FO	—NHCR9R10CONHMe	Rs
IADLE 2		60	FP	-NHCR9R10CONHMe	Rt
NR1R2	CR9R10		FQ	—NHCR9R10CONHiPr	Ra
INIX	CIOKIO	_	FR	—NHCR9R10CONHiPr	Rb
CS —NHCR9R10COOMe	Re		FS	—NHCR9R10CONHiPr	Rc
CT —NHCR9R10COOMe	Rf		FT	—NHCR9R10CONHiPr	Rd
CU —NHCR9R10COOMe	Rg		FU	—NHCR9R10CONHiPr	Re
CV —NHCR9R10COOMe	Rh	65	FV FW	—NHCR9R10CONHiPr	Rf
CW —NHCR9R10COOMe	Ri			—NHCR9R10CONHiPr	Rg

24 TABLE 3-continued

	NR1R2	CR9R10	_		NR1R2	CR9R10
FX	—NHCR9R10CONHiPr	Rh	_	IP	—NHCR9R10CONHSO2Me	D
FY	—NHCR9R10CONHiPr	Ri	5			Rr
FZ	—NHCR9R10CONHiPr	Rj		IQ	-NHCR9R10CONHSO2Me	Rs
GA	—NHCR9R10CONHiPr	Rk		IR	-NHCR9R10CONHSO2Me	Rt
GB	—NHCR9R10CONHiPr	R1		IS	-NHCR9R10CH2OMe	Ra
GC	—NHCR9R10CONHiPr	Rm		IT	-NHCR9R10CH2OMe	Rb
GD	—NHCR9R10CONHiPr	Rn		IU	—NHCR9R10CH2OMe	Rc
GE	—NHCR9R10CONHiPr	Ro	10			
GF	—NHCR9R10CONHiPr	Rp		IV	—NHCR9R10CH2OMe	Rd
GG	—NHCR9R10CONHiPr	Rq		IW	—NHCR9R10CH2OMe	Re
GH	—NHCR9R10CONHiPr	Rr		IX	-NHCR9R10CH2OMe	Rf
GI	—NHCR9R10CONHiPr	Rs		IY	-NHCR9R10CH2OMe	Rg
GJ	—NHCR9R10CONHiPr	Rt		IZ	—NHCR9R10CH2OMe	Rh
GK	—NHCR9R10CONHPh	Ra	15			
GL	—NHCR9R10CONHPh	Rb		JA	—NHCR9R10CH2OMe	Ri
GM	—NHCR9R10CONHPh	Rc		JB	—NHCR9R10CH2OMe	Rj
GN	—NHCR9R10CONHPh	Rd		JC	-NHCR9R10CH2OMe	Rk
GO	—NHCR9R10CONHPh	Re		JD	-NHCR9R10CH2OMe	RI
GP	—NHCR9R10CONHPh	Rf		JE	—NHCR9R10CH2OMe	Rm
GQ	—NHCR9R10CONHPh	Rg	20			
GR	—NHCR9R10CONHPh	Rh	20	IF	—NHCR9R10CH2OMe	Rn
GS	-NHCR9R10CONHPh	Ri		JG	—NHCR9R10CH2OMe	Ro
GT	—NHCR9R10CONHPh	Rj		JН	-NHCR9R10CH2OMe	Rp
GU	—NHCR9R10CONHPh	Rk		JI	—NHCR9R10CH2OMe	Rq
GV	—NHCR9R10CONHPh	RI				-
GW	—NHCR9R10CONHPh	Rm		JJ	—NHCR9R10CH2OMe	Rr
			25	JK	—NHCR9R10CH2OMe	Rs
GX	—NHCR9R10CONHPh	Rn		JL	-NHCR9R10CH2OMe	Rt
GY	—NHCR9R10CONHPh	Ro			Title College	140
GZ	—NHCR9R10CONHPh	Rp				
HA	—NHCR9R10CONHPh	Rq		JM	O	Ra
HB	—NHCR9R10CONHPh	Rr			NHODOD10 / N	
HC	-NHCR9R10CONHPh	Rs	30		—NHCR9R10—	
$^{ m HD}$	—NHCR9R10CONHPh	Rt	50		N n	
	TABLE 3		_	JN	— NHCR9R10 — N	Rb
	TABLE 3 NR1R2	CR9R10	— 35	JN	,0~ _N	Rb
	NR1R2		— 35 —	JN	-NHCR9R10	Rb
HE	NR1R2 —NHCR9R10CONHCN	Ra	35	JN	-NHCR9R10	Rb Rc
HE HF	NR1R2 —NHCR9R10CONHCN —NHCR9R10CONHCN	Ra Rb	35		-NHCR9R10 -NHCR9R10 Ph	
HE HF HG	NR1R2 —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN	Ra Rb Rc	_		-NHCR9R10	
HE HF HG HH	NR1R2 —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN	Ra Rb Rc Rd	35		-NHCR9R10 Ph	
HE HF HG HH HI	NR1R2 —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN	Ra Rb Rc Rd Re	_		-NHCR9R10 -NHCR9R10 Ph	
HE HF HG HH HI HI	NR1R2 —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf	_		-NHCR9R10 Ph	
HE HF HG HH HI HI HK	NR1R2 —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN —NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg	_	JO	-NHCR9R10 Ph	Rc
HE HF HG HH HI HI HK HL	NR1R2 NHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh	_		-NHCR9R10 Ph	
HE HF HG HH HI HI HK HL HM	NR1R2 NHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri	_	JO	-NHCR9R10 Ph	Re
HE HF HG HH HI HI HK HL HM HN	NR1R2 NHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCNNHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj	_	JO	-NHCR9R10 Ph	Re
HE HF HG HH HI HI HK HL HM HN HO	NR1R2 -NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj	40	JO	-NHCR9R10 Ph	Rc
HE HF HG HH HI HI HI HK HL HM HN HO	NR1R2 —NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk	40	JO	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc
HE HF HG HH HI HI HK HL HM HN HO HP	NR1R2 NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk Rl	40	1b 10	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HI HK HL HM HN HO HP HQ HR	NR1R2 -NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk Rl Rm	40	JO	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc
HE HF HG HH HI HI HK HL HM HO HP HQ HR HS	NR1R2 —NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk Rl Rm Rn	40	1b 10	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HI HI HK HL HM HN HO HP HQ HR HS HT	NR1R2 -NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk Rl Rm Rn Ro Rp	40	1b 10	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HI HK HL HM HN HO HP HQ HR HS HT HU	NR1R2 —NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk Rl Rm Rn Ro Rp	40	1b 10	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HK HL HM HN HO HR HS HT HU HV	NR1R2 -NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk Rl Rm Rn Ro Rp Rq	40	1b 10	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HI HK HL HM HN HO HP HQ HR HS HT HU HV HW	NR1R2 -NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rj Rk Ri Rn Rn Rn Ro Rp Rq Rr	40	JO JO	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HI HN HN HO HP HQ HR HS HT HU HW HX	NR1R2 —NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk RI Rm Ro Rp Rq Rr Rs	40	1b 10	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HK HL HM HN HO HP HQ HR HS HT HU HV HW HX HY	NR1R2 -NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Ri Ri Rk Rl Rm Rn Ro Rp Rq Rr Rs Rt Rs	40	JO JO	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd
HE HF HG HH HI HI HK HL HM HN HO HP HQ HR HS HT HU HV HW HX HY HZ	NR1R2 —NHCR9R10CONHCN	Ra Rb Rc Rd Re Rf Rg Rh Ri Rl Rm Rn Ro Rp Rq Rr Rs Rt	40 45 50	JO JO	- NHCR9R10	Rc Rd
HE HF HG HH HI HIK HL HM HN HO HP HQ HR HS HT HU HW HX HY HX HY LA	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me -NHCR9R10CONHSO2Me -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk RI Rm Ro Rp Rq Rr Rs Rt Rs	40	JO JO	- NHCR9R10	Rc Rd
HE HF HG HH HI HI HK HL HM HO HP HQ HR HS HT HU HV HW HX HY LA IB	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me -NHCR9R10CONHSO2Me -NHCR9R10CONHSO2Me -NHCR9R10CONHSO2Me -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk Rm Rn Ro Rp Rq Rr Rs Rt Rs	40 45 50	JO JO	- NHCR9R10	Rc Rd Re
HE HF HG HH HI HK HL HM HO HP HQ HR HS HT HU HW HX HY HZ LA B IC	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Rm Rn Ro Rp Rq Rr Rs Rt Rs Rt Rs	40 45 50	JO JP JQ	- NHCR9R10	Rc Rd Re
HE HF HG HH HI HI HK HL HM HN HO HP HQ HR HS HT HU HW HX HY HZ IA IB IC	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Ri Rn Rn Rn Rn Rn Rn Ro Rp Rq Rr Rs Rt	40 45 50	JO JO	- NHCR9R10	Rc Rd Re
HE HIG HH HI HIK HL HM HNO HP HQ HR HS HT HU HV HW HXY HZ IA IB IC ID IE	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Ri Rn Rn Rn Rn Ro Rp Rt	40 45 50	JO JP JQ	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd Re
HE HIG HH HI HI HK HL HM HN HO HR HS HT HU HW HX HY HZ IA IB IC ID IE IF	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk RI Rn Rn Ro Rp Rq Rr Rs Rt Ra Rb Rc Rd Re Rf	40 45 50 55	JO JP JQ	- NHCR9R10	Rc Rd Re
HE HIG HHI HI HIK HL HMN HOO HR HS HT HUV HWW HX HY HZ IB IC ID IE IF IG	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Rm Rn Ro Rp Rq Rr Rs Rt Rs Rt Ra Rb Rc Rd Rc Rd Rc Rd	40 45 50	JO JP JQ	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd Re
HE HF HG HH HI HK HL HM HN HO HP HQ HR HS HT HU HW HX HY HZ IA IB IC ID IE IF IG IH	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Rn Rn Rn Ro Rp Rq Rr Rs Rt Rs Rt Rd Rc Rd Rc Rd Rc Rd Rc	40 45 50 55	JO JP JQ	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd Re
HE HIG HH HI HIK HL HM HNO HR HST HU HV HW HX IA IB IC ID IE IF IG IH II	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Rn Rn Rn Rn Rn Ro Rp Rr Rs Rt Rd Rb Rc Rd Rd Re Rd Rd Re Rd	40 45 50 55	JO JP JQ JR	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd Rf
HE HIG HH HI HK HM HN HO HR HS H HU HW HXY HX LA IB IC ID IE IF IG H II II	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Rj Rk RI Rm Ro Rp Rq Rr Rs Rt Ra Rb Rc Rd Re Rd Re Rf Rd Re Rf Rd Re Rf	40 45 50 55	JO JP JQ	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd Re
HE HIG HHI HI HK HL HMN HO HR SHT HUV HW HX HZ IA IB IC ID IE IF IG IH II II IK	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Rm Rn Ro Rp Rq Rr Rs Rt Ra Rb Rc Rd Rc Rd Rc Rd Re Rf Rg Rh	40 45 50 55	JO JP JQ JR	-NHCR9R10 NHCR9R10	Rc Rd Rf
HE HIG HH HI HK HL HMN HO HR SHT HU HWN HY HZ A B IC ID IE IF IG HI II IK IL	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Rm Rn Ro Rp Rq Rr Rs Rt Ra Rb Rc Rd Rc Rd Rd Rd Rd Rd Rd Rd Rn	40 45 50 55	JO JP JQ JR	-NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10 NHCR9R10	Rc Rd Rf
HE HIG HHI HI HK HL HMN HO HR SHT HUV HW HX HZ IA IB IC ID IE IF IG IH II II IK	NR1R2 -NHCR9R10CONHCN -NHCR9R10CONHSO2Me	Ra Rb Rc Rd Re Rf Rg Rh Ri Ri Rm Rn Ro Rp Rq Rr Rs Rt Ra Rb Rc Rd Rc Rd Rc Rd Re Rf Rg Rh	40 45 50 55	JO JP JQ JR	-NHCR9R10 NHCR9R10	Rc Rd Rf

TABLE	

TABLE 4-continued

	NR1R2	CR9R10			NR1R2	CR9R10
U	-NHCR9R10 N Ph	Ri	5	KI	-NHCR9C10 NM Me	Rc
JV	$ \text{NHCROR10} - \bigvee_{N}^{O} \bigvee_{Ph}^{N}$	Rj	10	KJ	-NHCR9C10 N Me	Rd
JW	-NHCR9R10 N Ph	Rk	15	KK	-NHCR9C10 N Me	Re
JX	-NHCR9R10 NhCR9R10 Ph	Rl	20	KL	NHCR9C10 N Me	Rf
ЈҮ	$ \text{NHCR9R10} - \bigvee_{N}^{O} \bigvee_{Ph}^{N}$	Rm	25	KM	-NHCR9C10 N Me	Rg
JZ	-NHCR9R10 NhCR9R10 Ph	Rn	23	KN	-NHCR9C10 N Me	Rh
KA	-NHCR9R10 N Ph	Ro	30	КО	-NHCR9C10 N Me	Ri
КВ	-NHCR9R10 N Ph	Rp	35	KP	-NHCR9C10 N Me	Rj
KC	-NHCR9R10 N Ph	Rq	40	KQ	-NHCR9C10 N Me	Rk
KD	-NHCR9R10 N Ph	Rr	45	KR	-NHCR9C10 N Me	RI
KE	-NHCR9R10 N Ph	Rs	50	KS	-NHCR9C10 N Me	Rm
KF	-NHCR9R10 N Ph	Rt	55	KT	-NHCR9C10 N Me	Rn
KG	-NHCR9C10 NM Me	Ra	60	KU	-NHCR9C10 N Me	Ro
КН	NHCR9C10 NHCR9C10 Me	Rb	65	KV	NHCR9C10 N Me	Rp

28
TABLE 5-continued

	TABLE 4-continued		_		TABLE 3-continued	
	NR1R2	CR9R10			NR1R2	CR9R10
KW	-NHCR9C10 NMe	Rq	5	LJ	-NHCR9C10 NHCR9C10	Rj
KX	-NHCR9C10 N Me	Rr	10	LK	-NHCR9C10 NHCR9C10	Rk
KY	NHCR9C10 N Me	Rs	15	LL	-NHCR9C10 NHCR9C10	RI
KZ	NHCR9C10 N Me	Rt	20	LM	-NHCR9C10 NHCR9C10	Rm
	TABLE 5		_	LN	-NHCR9C10	Rn
	NR1R2	CR9R10	- 25		N Ph	
LA	-NHCR9C10 NHCR9C10	Ra	30	LO	-NHCR9C10 N	Ro
LB	-NHCR9C10	Rb	30	LP	-NHCR9C10 NHCR9C10	Rp
LC	NHCR9C10—NHCR9C10	Rc	35	LQ	-NHCR9C10 NHCR9C10	Rq
LD	NHCR9C10 NHCR9C10	Rd	40	LR	-NHCR9C10 NHCR9C10	Rr
LE	NHCR9C10	Re	45	LS	-NHCR9C10	Rs
LF	NHCR9C10 NHCR9C10	Rf	50	LT	N NHCR9C10	Rt
LG	NHCR9C10 NHCR9C10	Rg	55	LU	NHCR9C10	Ra
LH	NHCR9C10 NHCR9C10	Rh	60	LV	N N Me	Rb
LI	NHCR9C10	Ri		LW	N Me	e Rc

30
TABLE 6-continued

	TABLE 5-continued		_		TABLE 6-continued	
	NR1R2	CR9R10	_		NR1R2	CR9R10
LX	-NHCR9C10 NHCR9C10 Me	Rd	5	MK — N	VHCR9C10	Rq
LY	—NHCR9C10	Re	10	ML	N Me	Rr
LZ	NHCR9C10	Rf	15		NHCR9C10 NHCR9C10 Me	
MA	N Me NHCR9C10	Rg	20	MM —N	NHCR9C10 NHCR9C10 Me	Rs
МВ	N Me NHCR9C10	Rh	25	MN	NHCR9C10 N	Rt
МС	NHCR9C10 NHCR9C10	Ri	30	In the above Table ing symbol.	s, CR ⁹ CR ¹⁰ is represented	d by the follow-
MD	NHCR9C10	Rj	30	Ra	TABLE 7 CR9R10 Me Me	
ME	NHCR9C10	Rk	35	ка	No de la companya de	
MF	N Me NHCR9C10	RI	40	Rb	Ret Et Et	
	TABLE 6		- 45	Rc	Volonia Propries	
MG	NR1R2 NHCR9C10	CR9R10 Rm	50	Rd	No. of the second secon	
МН	NHCR9C10 O	Rn	55	Re	\dagger \dagge	
MI	NHCR9C10 O	Ro	60	Rf	VVAVV AAAA	
МЈ	NHCR9C10 Me	Rp	65		Young of the second of the sec	

32
TABLE 7-continued

11115	EE / continued			TIMBE / Continued
	CR9R10			CR9R10
Rg	Me Me	5	Ro	S S S S S S S S S S S S S S S S S S S
	Sold of the second of the seco	10	Rp	ν _σ , , , , , , , , , , , , , , , , , , ,
Rh	No.	15	n.	Solve of the second of the sec
Ri	Me Me	20	Rq	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
	John John John John John John John John	25	Rr	A. L.
Rj	o o o o o o o o o o o o o o o o o o o	30	Rs	Me New Me
Rk	~~	35	Rt	Me OMe
RI	York of the state	40		TABLE 8
A.	No N	45	VA VB VC	R3 H Me OH
Rm	O Me	50	VD VE VF VG VH VI VJ	OH OMe CONH2 CONHiPr NH2 NHAC NHSO2Me Ph
	Solve Contract	55	VK	
Rn	O Me S O	60	VL	N
	No N	65	VM	$ \begin{bmatrix} C - N \end{bmatrix}$

TABLE 8-continued

TABLE 6 continued	
	R3
VN	
VO	$-\frac{H}{N}$ S Me
VP	$-\frac{H}{N}$ S CF_3
VQ	—H_S_OOMe
VR	$-\frac{H}{N}$ s CI
VS	NHSO2Ph
VT	NHCOPh
VU	CONHMe
VV VW	CONMe2 NHMe
VX VX	NHiPr
VY	NHPh
VZ	N
WA	N
WB	$-\frac{H}{N}$
WC	$-\frac{H}{N}$ OMe

(AA,VA), (AA,VB), (AA,VC), (AA,VD), (AA,VE), (AA, 50 VF), (AA,VG), (AA,VH), (AA,VI), (AA,VJ), (AA,VK), (AA,VL), (AA,VM), (AA,VN), (AA,VO), (AA,VP), (AA, VQ), (AA,VR), (AA,VS), (AA,VT), (AA,VU), (AA,VV), (AA,VW), (AA,VX), (AB,VY), (AA,VZ), (AA,WA), (AA, WB), (AA,WC), (AB,VA), (AB,VB), (AB,VC), (AB,VD), 55 (AB,VE), (AB,VF), (AB,VG), (AB,VH), (AB,VI), (AB,VJ), (AB,VK), (AB,VL), (AB,VM), (AB,VN), (AB,VO), (AB, VP), (AB,VQ), (AB,VR), (AB,VS), (AB,VT), (AB,VU), (AB,VV), (AB,VW), (AB,VX), (AB,VY), (AB,VZ), (AB, WA), (AB,WB), (AB,WC), (AC,VA), (AC,VB), (AC,VC), 60 (AC,VD), (AC,VE), (AC,VF), (AC,VG), (AC,VH), (AC, VI), (AC,VJ), (AC,VK), (AC,VL), (AC,VM), (AC,VN), (AC,VO), (AC,VP), (AC,VQ), (AC,VR), (AC,VS), (AC, VT), (AC,VU), (AC,VV), (AC,VW), (AC,VX), (AC,VY), (AC,VZ), (AC,WA), (AC,WB), (AC,WC), (AD,VA), (AB, 65 VB), (AD,VC), (AD,VD), (AD,VE), (AC,VF), (AD,VG), (AD,VH), (AD,VI), (AD,VJ), (AD,VK), (AD,VL), (AD,

VM), (AD,VN), (AD,VO), (AD,VP), (AD,VQ), (AD,VR), (AD, VS), (AD, VT), (AD, VU), (AD, VV), (AD, VW), (AC, VX), (AD, VY), (AD, VZ), (AD, WA), (AD, WB), (AD, WC), (AE, VA), (AE, VB), (AB, VC), (AE, VD), (AE, VE), (AE, VF), (AE, VG), (AE, VH), (AE, VI), (AE, VJ), (AE, VK), (AE, VL), (AE,VM), (AE,VN), (AE,VO), (AE,VP), (AE,VQ), (AE,VR), (AE,VS), (AE,VT), (AE,VU), (AE,VV), (AE, VW), (AE,VX), (AB,VY), (AB,VZ), (AE,WA), (AE,WB), (AA,WC), (AF,VA), (AF,VB), (AF,VC), (AF,VD), (AF,VE), 10 (AF,VF), (AF,VG), (AF,VH), (AF,VI), (AF,VJ), (AF,VK), (AF,VL), (AF,VM), (AF,VN), (AF,VO), (AF,VP), (AF,VQ), (AF,VR), (AF,VS), (AF,VT), (AF,VU), (AF,VV), (AF,VW), (AF,VX), (AF,VY), (AF,VZ), (AF,WA), (AF,WB), (AF, WC), (AG,VA), (AG,VB), (AB,VC), (AG,VD), (AG,VE), 15 (AG,VF), (AG,VG), (AG,VH), (AG,VI), (AB,VJ), (AG, VK), (AG,VL), (AB,VM), (AG,VN), (AG,VO), (AG,VP), (AG,VQ), (AG,VR), (AC,VS), (AG,VT), (AG,VU), (AG, VV), (AG,VW), (AF,VX), (AG,VY), (AG,VZ), (AG,WA), (AG, WB), (AA, WC), (AH, VA), (AH, VB), (AB, VC), (AH, 20 VD), (AH,VE), (AH,VF), (AH,VG), (AH,VH), (AH,VI), (AH, VJ), (AH, VK), (AH, VL), (AH, VM), (AH, VN), (AH, VO), (AH,VP), (AH,VQ), (AH,VR), (AH,VS), (AH,VT), (AH,VU), (AH,VV), (AH,VW), (AH,VX), (AH,VY), (AH, VZ), (AH,WA), (AH,WB), (AA,WC), (AI,VA), (AI,VB), 25 (AI,VC), (AI,VD), (AI,VE), (AI,VF), (AI,VG), (AI,VH), (AI,VI), (AI,VJ), (AI,VK), (AI,VL), (AI,VM), (AI,VN), (AI,VO), (AI,VP), (AI,VQ), (AI,VR), (AI,VS), (AI,VT), (AI,VU), (AI,VV), (AI,VW), (AI,VX), (AI,VY), (AI,VZ), (AI,WA), (AI,WB), (AI,WC), (AJ,VA), (AJ,VB), (AJ,VC), 30 (AJ,VD), (AJ,VE), (AJ,VF), (AJ,VG), (AJ,VH), (AJ,VI), (AJ,VJ), (AJ,VK), (AJ,VL), (AJ,VM), (AJ,VN), (AJ,VO), (AJ,VP), (AJ,VQ), (AJ,VR), (AJ,VS), (AJ,VT), (AJ,VU), (AJ,VV), (AJ,VW), (AF,VX), (AJ,VY), (AJ,VZ), (AJ,WA), (AJ,WB), (AJ,WC), (AK,VA), (AK,VB), (AB,VC), (AK, 35 VD), (AK,VE), (AK,VF), (AK,VG), (AK,VH), (AK,VI), (AK,VJ), (AK,VK), (AK,VL), (AK,VM), (AK,VN), (AK, VO), (AK,VP), (AK,VQ), (AK,VR), (AK,VS), (AK,VT), (AK,VU), (AK,VV), (AH,VW), (AK,VX), (AK,VY), (AK, VZ), (AK,WA), (AK,WB), (AK,WC), (AL,VA), (AL,VB), 40 (AB,VC), (AL,VD), (AL,VE), (AL,VF), (AL,VG), (AL, VH), (AL,VI), (AL,VJ), (AL,VK), (AL,VL), (AL,VM), (AL,VN), (AL,VO), (AL,VP), (AL,VQ), (AL,VR), (AL, VS), (AL,VT), (AL,VU), (AL,VV), (AL,VW), (AF,VX), (AL, VY), (AL, VZ), (AL, WA), (AL, WB), (AL, WC), (AM, 45 VA), (AM,VB), (AM,VC), (AM,VD), (AM,VE), (AM,VF), (AM,VG), (AM,VH), (AM,VI), (AM,VJ), (AK,VK), (AM, VL), (AM,VM), (AM,VN), (AM,VO), (AM,VP), (AM, VQ), (AM,VR), (AM,VS), (AM,VT), (AM,VU), (AM,VV), (AM,VW), (AM,VX), (AM,VY), (AM,VZ), (AM,WA),(AM, WB), (AM, WC), (AN, VA), (AN, VB), (AN, VC), (AN, VD), (AN, VE), (AN, VF), (AN, VG), (AN, VH), (AN, VI), (AN,VJ), (AN,VK), (AN,VL), (AN,VM), (AN,VN), (AN, VO), (AN, VP), (AN, VQ), (AN, VR), (AN, VS), (AN, VT), (AN, VU), (AN, VV), (AN, VW), (AN, VX), (AN, VY), (AN, VZ), (AN,WA), (AN,WB), (AN,WC), (AO,VA), (AO,VB), (AO,VC), (AO,VD), (AO,VE), (AO,VF), (AO,VG), (AO, VH), (AO,VI), (AO,VJ), (AO,VK), (AO,VL), (AO,VM), (AO, VN), (AO, VO), (AO, VP), (AO, VQ), (AO, VR), (AO, VS), (AO,VT), (AO,VU), (AO,VV), (AO,VW), (AO,VX), (AO, VY), (AO, VZ), (AO, WA), (AO, WB), (AO, WC), (AP, VA), (AP,VB), (AP,VC), (AP,VD), (AP,VE), (AP,VF), (AP, VG), (AP,VH), (AP,VI), (AP,VJ), (AP,VK), (AP,VL), (AP, VM), (AP,VN), (AP,VO), (AP,VP), (AP,VQ), (AP,VR), (AP, VS), (AP,VT), (AP,VU), (AP,VV), (AP,VW), (AP,VX), (AP, VY), (AP,VZ), (AP,WA), (AP,WB), (AP,WC), (AQ,VA), (AQ,VB), (AQ,VC), (AQ,VD), (AQ,VE), (AQ,VF), (AQ,

VG), (AQ,VH), (AQ,VI), (AQ,VJ), (AQ,VK), (AQ,VL),

VR), (AQ,VS), (AQ,VT), (AQ,VU), (AQ,VV), (AQ,VW),

(AQ,VX), (AQ,VY), (AQ,VZ), (AQ,WA), (AQ,WB), (AQ,VX)WC), (AR,VA), (AR,VB), (AR,VC), (AR,VD), (AR,VE), (AR,VF), (AR,VG), (AR,VH), (AR,VI), (AR,VJ), (AR, 5 VK), (AR,VL), (AR,VM), (AR,VN), (AR,VO), (AR,VP), (AR,VQ), (AR,VR), (AR,VS), (AR,VT), (AR,VU), (AR, VV), (AR,VW), (AR,VX), (AR,VY), (AR,VZ), (AR,WA), (AR, WB), (AR, WC), (AS, VA), (AS, VB), (AS, VC), (AS, VD), (AS,VE), (AS,VF), (AS,VG), (AS,VH), (AS,VI), (AS, 10 VJ), (AS,VK), (AS,VL), (AS,VM), (AS,VN), (AS,VO), (AS,VP), (AS,VQ), (AS,VR), (AS,VS), (AS,VT), (AS,VU), (AS,VV), (AS,VW), (AS,VX), (AS,VY), (AS,VZ), (AS, WA), (AS,WB), (AS,WC), (AT,VA), (AT,VB), (AT,VC), (AT,VD), (AT,VE), (AT,VF), (AT,VG), (AT,VH), (AT,VI), 15 (AT,VJ), (AT,VK), (AT,VL), (AT,VM), (AT,VN), (AT,VO), (AT,VP), (AT,VQ), (AT,VR), (AT,VS), (AT,VT), (AT,VU), (AT,VV), (AT,VW), (AT,VX), (AT,VY), (AT,VZ), (AT,WA), (AT,WB), (AT,WC), (AU,VA), (AU,VB), (AU,VC), (AU, VD), (AU,VE), (AU,VF), (AU,VG), (AU,VH), (AU,VI), 20 (AU,VJ), (AU,VK), (AU,VL), (AU,VM), (AU,VN), (AU, VO), (AU,VP), (AU,VQ), (AU,VR), (AU,VS), (AU,VT), (AU,VU), (AU,VV), (AU,VW), (AU,VX), (AU,VY), (AU, VZ), (AU,WA), (AU,WB), (AU,WC), (AV,VA), (AV,VB), (AV,VC), (AV,VD), (AV,VE), (AV,VF), (AV,VG), (AV,VH), 25 (AV,VI), (AV,VJ), (AV,VK), (AV,VL), (AV,VM), (AV,VN), (AV,VO), (AV,VP), (AV,VQ), (AV,VR), (AV,VS), (AV,VT), (AV,VU), (AV,VV), (AV,VW), (AV,VX), (AV,VY), (AV,VZ), (AV, WA), (AV, WB), (AV, WC), (AW, VA), (AW, VB), (AW, VC), (AW,VD), (AW,VE), (AW,VF), (AW,VG), (AW,VH), 30 (AW,VI), (AW,VJ), (AW,VK), (AW,VL), (AW,VM), (AW, VN), (AW,VO), (AW,VP), (AW,VQ), (AW,VR), (AW,VS), (AW,VT), (AW,VU), (AW,VV), (AW,VW), (AW,VX), (AW, VY), (AW,VZ), (AW,WA), (AW,WB), (AW,WC), (AX,VA), (AX,VB), (AX,VC), (AX,VD), (AX,VE), (AX,VF), (AX, 35 VG), (AX,VH), (AX,VI), (AX,VJ), (AX,VK), (AX,VL), (AX,VM), (AX,VN), (AX,VO), (AX,VP), (AX,VQ), (AX, VR), (AX,VS), (AX,VT), (AX,VU), (AX,VV), (AX,VW), (AX,VX), (AX,VY), (AX,VZ), (AX,WA), (AX,WB), (AX, WC), (AY,VA), (AY,VB), (AY,VC), (AY,VD), (AY,VE), 40 (AY,VF), (AY,VG), (AY,VH), (AY,VI), (AY,VJ), (AY,VK), (AY,VL), (AY,XM), (AY,VN), (AY,VO), (AY,VP), (AY,VQ), (AY,VR), (AY,VS), (AY,VT), (AY,VU), (AY,VV), (AY,VW), (AY,VX), (AY,VY), (AY,VZ), (AY,WA), (AY,WB), (AY, WC), (AZ,VA), (AZ,VB), (AZ,VC), (AZ,VD), (AZ,VE), 45 (AZ,VF), (AZ,VG), (AZ,VH), (AZ,VI), (AZ,VJ), (AZ,VK), (AZ,VL), (AZ,VM), (AZ,VN), (AZ,VO), (AZ,VP), (AZ,VP)VQ), (AZ,VR), (AZ,VS), (AZ,VT), (AZ,VU), (AZ,VV), (AZ,VW), (AZ,VX), (AZ,VY), (AZ,VZ), (AZ,WA), (AZ,VZ)WB), (AZ,WC), (BA,VA), (BA,VB), (BA,VC), (BA,VD), (BA,VE), (BA, VF), (BA,VG), (BA,VH), (BA,VI), (BA,VJ), (BA,VK), (BA,VL), (BN,VM), (BA,VN), (BA,VO), (BA,VP), (BA, VQ), (BA,VR), (BA,VS), (BA,VT), (BA,VU), (BA,VV), (BA,VW), (BA,VX), (BA,VY), (BA,VZ), (BA,WA), (BA, 55 WB), (BA, WC), (BB, VA), (BB, VB), (BB, VC), (BB, VD), (BB,VE), (BB,VF), (BB,VG), (BB,VH), (BB,VI), (BB,VJ), (BB,VK), (BB,VL), (BB,VM), (BB,VN), (BB,VO), (BB, VP), (BB,VQ), (BB,VR), (BB,VS), (BB,VT), (BB,VU), (BB,VV), (BB,VW), (BB,VX), (BB,VY), (BB,VZ), (BB, 60 WA), (BB,WB), (BB,WC), (BC,VA), (BC,VB), (BC,VC), (BC,VD), (BC,VE), (BC,VF), (BC,VG), (BC,VH), (BC,VI), (BC,VJ), (BC,VK), (BC,VL), (BC,VM), (BC,VN), (BC, VO), (BC,VP), (BC,VQ), (BC,VR), (BC,VS), (BC,VT), (BC,VU), (BC,VV), (BC,VW), (BC,VX), (BC,VY), (BC, 65 VZ), (BC,WA), (BC,WB), (BB,WC), (BD,VA), (BD,VB), (BD,VC), (BD,VD), (BD,VE), (BD,VF), (BD,VG), (BD,

VH), (BD,VI), (BD,VJ), (BD,VK), (BD,VL), (BD,VM), (BD,VN), (BD,VO), (BD,VP), (BD,VQ), (BD,VR), (BD, VS), (BD,VT), (BD,VU), (BD,VV), (BD,VX), (BD,VY), (BD,VZ), (BD,WA), (BD,WB), (BD,WC), (BE, VA), (BE,VB), (BE,VC), (BE,VD), (BE,VE), (BE,VF), (BE,VG), (BE,VH), (BE,VI), (BE,VJ), (BE,VK), (BE,VL), (BE,VM), (BE,VN), (BE,VO), (BE,VP), (BE,VQ), (BE, VR), (BE,VS), (BE,VT), (BE,VU), (BE,VV), (BE,VW), (BE,VX), (BE,VY), (BE,VZ), (BE,WA), (BE,WB), (BE, WC), (BF,VA), (BF,VB), (BF,VC), (BF,VD), (BF,VE), (BF, VF), (BF,VG), (BF,VH), (BF,VI), (BF,VJ), (BF,VK), (BF, VL), (BF,VM), (BF,VN), (BF,VO), (BF,VP), (BF,VQ), (BF, VR), (BF, VS), (BF, VT), (BF, VU), (BF, VV), (BF, VW), (BF, VX), (BF,VY), (BF,VZ), (BF,WA), (BF,WB), (BF,WC), (BG,VA), (BG,VB), (BG,VC), (BG,VD), (BG,VE), (BG, VF), (BG,VG), (BG,VH), (BG,VI), (BG,VJ), (BG,VK), (BG,VL), (BN,VM), (BG,VN), (BG,VO), (BG,VP), (BG, VQ), (BG,VR), (BG,VS), (BG,VT), (BG,VU), (BE,VV), (BG,VW), (BG,VX), (BG,VY), (BG,VZ), (BG,WA), (BG, WB), (BG,WC), (BH,VA), (BH,VB), (BH,VC), (BH,VD), (BH, VE), (BH, VF), (BH, VG), (BH, VH), (BH, VI), (BH, VJ), (BH, VK), (BH, VL), (BH, VM), (BH, VN), (BH, VO), (BH, VP), (BH,VQ), (BH,VR), (BH,VS), (BH,VT), (BH,VU), (BH, VV), (BH, VW), (BH, VX), (BH, VY), (BH, VZ), (BH, WA), (BH,WB), (BH,WC), (BI,VA), (BI,VB), (BI,VC), (BI,VD), (BI,VE), (BI,VF), (BI,VG), (BI,VH), (BI,VI), (BI, VJ), (BI,VK), (BI,VL), (BI,VM), (BI,VN), (BI,VO), (BI, VP), (BI,VQ), (BI,VR), (BI,VS), (BI,VT), (BI,VU), (BI, VV), (BI,VW), (BI,VX), (BI,VY), (BI,VZ), (BI,WA), (BI, WB), (BI, WC), (BJ, VA), (BJ, VB), (BJ, VC), (BJ, VD), (BJ, VE), (BJ,VF), (BJ,VG), (BJ,VH), (BJ,VI), (BJ,VJ), (BJ, VK), (BJ,VL), (BJ,VM), (BJ,VN), (BJ,VO), (BJ,VP), (BJ, VQ), (BJ,VR), (BJ,VS), (BJ,VT), (BJ,VU), (BJ,VV), (BJ, VW), (BJ,VX), (BJ,VY), (BJ,VZ), (BJ,WA), (BJ,WB), (BJ, WC), (BK,VA), (BK,VB), (BK,VC), (BK,VD), (BK,VE), (BK,VF), (BK,VG), (BK,VH), (BK,VI), (BK,VJ), (BK, VK), (BK,VL), (BN,VM), (BK,VN), (BK,VO), (BK,VP), (BK,VQ), (BK,VR), (BK,VS), (BK,VT), (BK,VU), (BK, VV), (BK,VW), (BK,VX), (BK,VY), (BK,VZ), (BK,WA), (BK, WB), (BK, WC), (BL, VA), (BL, VB), (BL, VC), (BL, VD), (BL, VE), (BL, VF), (BL, VG), (BL, VH), (BL, VI), (BL, VJ), (BL,VK), (BL,VL), (BL,VM), (BL,VN), (BL,VO), (BL,VP), (BL,VQ), (BL,VR), (BL,VS), (BL,VT), (BL,VU), (BL,VV), (BL,VW), (BL,VX), (BL,VY), (BL,VZ), (BL, WA), (BL, WB), (BL, WC), (BM, VA), (BM, VB), (BM, VC), (BM,VD), (BM,VE), (BM,VF), (BM,VG), (BM,VH), (BM, VI), (BM,VJ), (BM,VK), (BM,VL), (BM,VM), (BM,VN), (BM, VO), (BM, VP), (BM, VQ), (BM, VR), (BM, VS), (BM, VT), (BM,VU), (BM,VV), (BM,VX), (BM,VY), (BM, VZ), (BM, WA), (BM, WB), (BM, WC), (BN, VA), (BN, VB), (BN,VC), (BN,VD), (BN,VE), (BN,VF), (BN,VG), (BN,VH), (BN,VI), (BN,VJ), (BN,VK), (BN,VL), (BN, VM), (BN,VN), (BN,VO), (BN,VP), (BN,VQ), (BN,VR), (BN,VS), (BN,VT), (BN,VU), (BN,VV), (BN,VW), (BN, VX), (BN,VY), (BN,VZ), (BN,WA), (BN,WB), (BN,WC), (BO,VA), (BO,VB), (BO,VC), (BO,VD), (BO,VE), (BO, VF), (BO,VG), (BO,VH), (BO,VI), (BO,VJ), (BO,VK), (BO, VL), (BO, VM), (BO, VN), (BO, VO), (BO, VP), (BO, VQ), (BO,VR), (BO,VS), (BO,VT), (BO,VU), (BO,VV), (BO,VW), (BO,VX), (BO,VY), (BO,VZ), (BO,WA), (BO, WB), (BO, WC), (BP, VA), (BP, VB), (BP, VC), (BP, VD), (BP, VE), (BP,VF), (BP,VG), (BP,VH), (BP,VI), (BP,VJ), (BP, VK), (BP,VL), (BP,VM), (BP,VN), (BP,VO), (BP,VP), (BP, VQ), (BP,VR), (BP,VS), (BP,VT), (BP,VU), (BP,VV), (BP, VW), (BP,VX), (BP,VY), (BP,VZ), (BP,WA), (BP,WB), (BP,WC), (BQ,VA), (BQ,VB), (BQ,VC), (BQ,VD), (BQ, VE), (BQ,VF), (BQ,VG), (BQ,VH), (BQ,VI), (BQ,VJ),

(BQ,VK), (BQ,VL), (BQ,VM), (BQ,VN), (BQ,VO), (BQ, VP), (BQ,VQ), (BQ,VR), (BQ,VS), (BQ,VT), (BQ,VU), (BQ,VV), (BQ,VW), (BQ,VX), (BQ,VY), (BQ,VZ), (BQ, WA), (BQ,WB), (BQ,WC), (BR,VA), (BR,VB), (BR,VC), (BR,VD), (BR,VE), (BR,VF), (BR,VG), (BR,VH), (BR,VI), (BR,VJ), (BR,VK), (BR,VL), (BR,VM), (BR,VN), (BR, VO), (BR,VP), (BR,VQ), (BR,VR), (BR,VS), (BR,VT), (BR,VU), (BR,VV), (BR,VW), (BR,VX), (BR,VY), (BR, VZ), (BR,WA), (BR,WB), (BR,WC), (BS,VA), (BS,VB), (BS,VC), (BS,VD), (BS,VE), (BS,VF), (BS,VG), (BS,VH), (BS,VI), (BS,VJ), (BR,VK), (BS,VL), (BS,VM), (BS,VN), (BS,VO), (BR,VP), (BS,VQ), (BS,VR), (BS,VS), (BS,VT), (BS,VU), (BS,VV), (BS,VW), (BS,VX), (BS,VY), (BS, VZ), (BS,WA), (BS,WB), (BP,WC), (BT,VA), (BT,VB), (BT,VC), (BT,VD), (BT,VE), (BT,VF), (BT,VG), (BT,VH), 15 (BT,VI), (BT,VJ), (BT,VK), (BT,VL), (BT,VM), (BT,VN), (BT,VO), (BT,VP), (BT,VQ), (BT,VR), (BT,VS), (BT,VT), (BT,VU), (BT,VV), (BT,VW), (BT,VX), (BT,VY), (BT,VZ), (BT,WA), (BT,WB), (BT,WC), (BU,VA), (BU,VB), (BU, VC), (BU,VD), (BU,VE), (BR,VF), (BU,VG), (BU,VH), 20 (BU,VI), (BU,VJ), (BU,VK), (BU,VL), (BU,VM), (BR, VN), (BU,VO), (BU,VP), (BU,VQ), (BU,VR), (BU,VS), (BU,VT), (BU,VU), (BU,VV), (BU,VW), (BU,VX), (BU, VY), (BU,VZ), (BU,WA), (BU,WB), (BU,WC), (BV,VA), (BR,VB), (BV,VC), (BV,VD), (BV,VE), (BV,VF), (BV,VG), 25 (BV,VH), (BV,VI), (BV,VJ), (BV,VK), (BV,VL), (BV,VM), (BV,VN), (BV,VO), (BV,VP), (BV,VQ), (BV,VR), (BR,VS), (BV,VT), (BV,VU), (BV,VV), (BV,VW), (BV,VX), (BV, VY), (BV,VZ), (BV,WA), (BV,WB), (BV,WC), (BW,VA), (BW,VB), (BW,VC), (BW,VD), (BW,VE), (BW,VF), (BW, 30 VG), (BW,VH), (BW,VI), (BW,VJ), (BW,VK), (BW,VL), (BW,VM), (BW,VN), (BW,VO), (BW,VP), (BW,VQ), (BW, VR), (BW,VS), (BW,VT), (BW,VU), (BW,VV), (BW,VW), (BW, VX), (BW, VY), (BW, VZ), (BW, WA), (BW, WB), (BW, WC), (BX,VA), (BX,VB), (BX,VC), (BX,VD), (BX,VE), 35 (BX,VF), (BX,VG), (BX,VH), (BX,VI), (BX,VJ), (BX, VK), (BX,VL), (BX,VM), (BX,VN), (BX,VO), (BX,VP), (BX,VQ), (BX,VR), (BX,VS), (BX,VT), (BX,VU), (BX, VV), (BX,VW), (BX,VX), (BX,VY), (BX,VZ), (BX,WA), (BX,WB), (BX,WC), (BY,VA), (BY,VB), (BY,VC), (BY, 40 VD), (BY,VE), (BY,VF), (BY,VG), (BY,VH), (BY,VI), (BY, VJ), (BY,VK), (BY,VL), (BY,VM), (BX,VN), (BY,VO), (BY,VP), (BY,VQ), (BY,VR), (BY,VS), (BY,VT), (BY,VU), (BY,VV), (BY,VW), (BY,VX), (BY,VY), (BY,VZ), (BY, WA), (BY, WB), (BY, WC), (BZ, VA), (BZ, VB), (BZ, VC), 45 (BZ,VD), (BZ,VE), (BZ,VF), (BZ,VG), (BZ,VH), (BZ,VI), (BZ,VJ), (BZ,VK), (BZ,VL), (BZ,VM), (BZ,VN), (BZ, VO), (BZ,VP), (BZ,VQ), (BZ,VR), (BZ,VS), (BZ,VT), (BZ,VU), (BZ,VV), (BZ,VW), (BZ,VX), (BZ,VY), (BZ, VZ), (BZ,WA), (BZ,WB), (BZ,WC), (CA,VA), (CA,VB), 50 (CA,VC), (CA,VD), (CA,VE), (CA,VF), (CA,VG), (CA, VH), (CA,VI), (CA,VJ), (CA,VK), (CA,VL), (CA,VM), (CA,VN), (CA,VO), (CA,VP), (CA,VQ), (CA,VR), (CA, VS), (CA,VT), (CA,VU), (CA,VV), (CA,VW), (CA,VX), (CA,VY), (CA,VZ), (CA,WA), (CA,WB), (CA,WC), (CB, 55 VA), (CB,VB), (CB,VC), (CB,VD), (CB,VE), (CB,VF), (CB,VG), (CB,VH), (CB,VI), (CB,VJ), (CB,VK), (CB,VL), (CB,VM), (CB,VN), (CB,VO), (CB,VP), (CB,VQ), (CB, VR), (CB,VS), (CB,VT), (CB,VU), (CB,VV), (CB,VW), (CB,VX), (CB,VY), (CB,VZ), (CB,WA), (CB,WB), (CB, 60 WC), (CC,VA), (CB,VB), (CC,VC), (CA,VD), (CC,VE), (CC,VF), (CC,VG), (CC,VH), (CC,VI), (CC,VJ), (CC,VK), (CC,VL), (CC,VM), (CC,VN), (CC,VO), (CC,VP), (CC, VQ), (CC,VR), (CC,VS), (CC,VT), (CC,VU), (CC,VV), (CC,VW), (CC,VX), (CC,VY), (CC,VZ), (CC,WA), (CC, 65 WB), (CC, WC), (CD, VA), (CD, VB), (CD, VC), (CD, VD), (CD,VE), (CD,VF), (CD,VG), (CD,VH), (CD,VI), (CD,VJ),

(CD,VK), (CD,VL), (CD,VM), (CD,VN), (CD,VO), (CD, VP), (CD,VQ), (CD,VR), (CD,VS), (CD,VT), (CD,VU), (CD, VV), (CD, VW), (CD, VX), (CD, VY), (CD, VZ), (CD, WA), (CD, WB), (CD, WC), (CE, VA), (CE, VB), (CE, VC), (CE,VD), (CE,VE), (CE,VF), (CE,VG), (CE,VH), (CE,VI), (CE,VJ), (CE,VK), (CE,VL), (CE,VM), (CE,VN), (CE, VO), (CE,VP), (CE,VQ), (CE,VR), (CE,VS), (CE,VT), (CE,VU), (CE,VV), (CE,VX), (CE,VY), (CE, VZ), (CE,WA), (CE,WB), (CE,WC), (CF,VA), (CF,VB), (CF,VC), (CF,VD), (CF,VE), (CF,VF), (CF,VG), (CF,VH), (CF,VI), (CF,VJ), (CF,VK), (CF,VL), (CF,VM), (CF,VN), (CF,VO), (CF,VP), (CF,VQ), (CF,VR), (CF,VS), (CF,VT), (CF,VIJ), (CF,VV), (CF,VW), (CF,VX), (CF,VY), (CF,VZ), (CF,WA), (CF,WB), (CF,WC), (CG,VA), (CG,VB), (CG, VC), (CG,VD), (CG,VE), (CG,VF), (CG,VG), (CG,VH), (CG,VI), (CG,VJ), (CG,VK), (CG,VL), (CG,VM), (CG, VN), (CG,VO), (CG,VP), (CG,VQ), (CG,VR), (CG,VS), (CG,VT), (CG,VU), (CG,VV), (CG,VW), (CG,VX), (CG, VY), (CG, VZ), (CG, WA), (CG, WB), (CG, WC), (CH, VA), (CH.VB), (CH.VC), (CH.VD), (CH.VE), (CH.VF), (CH. VG), (CH,VH), (CH,VI), (CH,VJ), (CH,VK), (CH,VL), (CH,VM), (CH,VN), (CH,VO), (CH,VP), (CH,VQ), (CH, VR), (CH,VS), (CH,VT), (CH,VU), (CH,VV), (CH,VW), (CH,VX), (CH,VY), (CH,VZ), (CH,WA), (CH,WB), (CH, WC), (CI,VA), (CI,VB), (CI,VC), (CI,VD), (CI,VE), (CI, VF), (CI,VG), (CI,VH), (CI,VJ), (CI,VK), (CI,VL), (CI, VM), (CI,VN), (CI,VO), (CI,VP), (CI,VQ), (CI,VR), (CI, VS), (CI,VT), (CI,VU), (CI,VV), (CI,VW), (CI,VX), (CI, VY), (CI,VZ), (CI,WA), (CI,WB), (CI,WC), (CJ,VA), (CJ, VB), (CJ,VC), (CJ,VD), (CJ,VE), (CJ,VF), (CJ,VG), (CJ, VH), (CJ,VI), (CJ,VJ), (CJ,VK), (CJ,VL), (CJ,VM), (CJ, VN), (CJ,VO), (CJ,VP), (CJ,VQ), (CJ,VR), (CJ,VS), (CJ, VT), (CJ,VU), (CJ,VV), (CJ,VW), (CJ,VX), (CJ,VY), (CJ, VZ), (CJ,WA), (CJ,WB), (CJ,WC), (CK,VA), (CK,VB), (CK,VC), (CK,VD), (CK,VE), (CK,VF), (CK,VG), (CK, VH), (CK,VI), (CK,VJ), (CK,VK), (CK,VL), (CK,VM), (CK,VN), (CK,VO), (CK,VP), (CK,VQ), (CK,VR), (CK, VS), (CK,VT), (CK,VU), (CK,VV), (CK,VW), (CK,VX), (CK,VY), (CK,VZ), (CK,WA), (CK,WB), (CK,WC), (CL, VA), (CL,VB), (CL,VC), (CL,VD), (CL,VE), (CL,VF), (CL,VG), (CL,VH), (CL,VI), (CL,VJ), (CL,VK), (CL,VL), (CL,VM), (CL,VN), (CL,VO), (CL,VP), (CL,VQ), (CL, VR), (CL,VS), (CL,VT), (CL,VU), (CL,VV), (CL,VW), (CL,VX), (CL,VY), (CL,VZ), (CL,WA), (CL,WB), (CL, WC), (CM,VA), (CM,VB), (CM,VC), (CM,VD), (CM,VE), (CM,VF), (CM,VG), (CM,VH), (CM,VI), (CM,VJ), (CM, VK), (CM,VL), (CM,VM), (CM,VN), (CM,VO), (CM,VP), (CM, VQ), (CM, VR), (CM, VS), (CM, VT), (CM, VU), (CM, VV), (CM,VW), (CM,VX), (CM,VY), (CM,VZ), (CM, WA), (CM, WB), (CM, WC), (CN, VA), (CN, VB), (CN, VC), (CN,VD), (CN,VE), (CN,VF), (CN,VG), (CN,VH), (CN, VI), (CN, VJ), (CN, VK), (CN, VL), (CN, VM), (CN, VN), (CN, VO), (CN, VP), (CN, VQ), (CN, VR), (CN, VS), (CN, VT), (CN,VU), (CN,VV), (CN,VW), (CN,VX), (CN,VY), (CN, VZ), (CN, WA), (CN, WB), (CN, WC), (CO, VA), (CO, VB), (CO,VC), (CO,VD), (CO,VE), (CO,VF), (CO,VG), (CO,VH), (CO,VI), (CO,VJ), (CO,VK), (CO,VL), (CO, VM), (CO,VN), (CO,VO), (CO,VP), (CO,VQ), (CO,VR), (CO,VS), (CO,VT), (CO,VU), (CO,VV), (CO,VW), (CO, VX), (CO,VY), (CO,VZ), (CO,WA), (CO,WB), (CO,WC), (CP,VA), (CP,VB), (CP,VC), (CP,VD), (CP,VE), (CP,VF), (CP,VG), (CP,VH), (CP,VI), (CP,VJ), (CP,VK), (CP,VL), (CP,VM), (CP,VN), (CP,VO), (CP,VP), (CP,VQ), (CP,VR), (CP,VS), (CP,VT), (CP,VU), (CP,VV), (CP,VW), (CP,VX), (CP,VY), (CP,VZ), (CP,WA), (CP,WB), (CP,WC), (CQ,VA), (CQ,VB), (CQ,VC), (CQ,VD), (CQ,VE), (CQ,VF), (CQ, VG), (CQ,VH), (CQ,VI), (CQ,VK), (CQ,VL),

VR), (CQ,VS), (CQ,VT), (CK,VU), (CQ,VV), (CQ,VW),

(CQ,VX), (CQ,VY), (CQ,VZ), (CQ,WA), (CQ,WB), (CQ,VX)WC), (CR,VA), (CR,VB), (CR,VC), (CR,VD), (CR,VE), (CR,VF), (CR,VG), (CR,VH), (CR,VI), (CR,VJ), (CR,VK), (CR,VL), (CR,VM), (CR,VN), (CR,VO), (CR,VP), (CR, VQ), (CR,VR), (CR,VS), (CR,VT), (CR,VU), (CR,VV), (CR,VW), (CR,VX), (CR,VY), (CR,VZ), (CR,WA), (CR, WB), (CR,WC), (CS,VA), (CS,VB), (CS,VC), (CS,VD), (CS,VE), (CS,VF), (CS,VG), (CS,VH), (CS,VI), (CS,VJ), (CS,VK), (CS,VL), (CS,VM), (CS,VN), (CS,VO), (CS,VP), (CS,VQ), (CS,VR), (CR,VS), (CS,VT), (CS,VU), (CS,VV), (CS,VW), (CS,VX), (CS,VY), (CS,VZ), (CS,WA), (CS, WB), (CR,WC), (CT,VA), (CT,VB), (CT,VC), (CT,VD), (CT,VE), (CT,VF), (CT,VG), (CT,VH), (CT,VI), (CT,VJ), 15 (CT,VK), (CT,VL), (CT,VM), (CT,VN), (CT,VO), (CT,VP), (CT,VQ), (CT,VR), (CT,VS), (CT,VT), (CT,VU), (CT,VV), (CT,VW), (CT,VX), (CT,VY), (CT,VZ), (CT,WA), (CT, WB), (CT,WC), (CU,VA), (CU,VB), (CU,VC), (CU,VD), (CU.VE), (CU.VF), (CU.VG), (CU,VH), (CU,VI), (CU,VJ), 20 (CU,VK), (CU,VL), (CU,VM), (CU,VN), (CU,VO), (CU, VP), (CU,VQ), (CU,VR), (CU,VS), (CU,VT), (CU,VU), (CU,VV), (CU,VW), (CU,VX), (CU,VY), (CU,VZ), (CU, WA), (CU, WB), (CU, WC), (CV, VA), (CV, VB), (CR, VC), (CV,VD), (CV,VE), (CV,VF), (CV,VG), (CV,VH), (CV,VI), 25 (CV,VJ),(CV,VK),(CV,VL),(CV,VM),(CV,VN),(CV,VO),(CT,VP), (CV,VQ), (CV,VR), (CR,VS), (CR,VT), (CV,VU), (CV,VV), (CV,VW), (CV,VX), (CV,VY), (CV,VZ), (CV, WA), (CV, WB), (CV WC), (CW, VA), (CW, VB), (CW, VC), (CW,VD), (CW,VE), (CW,VF), (CW,VG), (CW,VH), (CW, 30 VI), (CW,VJ), (CW,VK), (CW,VL), (CW,VM), (CW,VN), (CW,VO), (CW,VP), (CW,VQ), (CW,VR), (CW,VS), (CW, VT), (CW,VU), (CW,VV), (CW,VW), (CW,VX), (CW,VY), (CW,VZ), (CW,WA), (CW,WB), (CW,WC), (CX,VA), (CX, VB), (CX,VC), (CX,VD), (CX,VE), (CX,VF), (CX,VG), 35 (CX,VH), (CX,VI), (CX,VJ), (CX,VK), (CX,VL), (CX,VL)VM), (CX,VN), (CX,VO), (CX,VP), (CX,VQ), (CX,VR), (CX,VS), (CX,VT), (CX,VU), (CX,VV), (CX,VW), (CX,VW)VX), (CX,VY), (CX,VZ), (CX,WA), (CX,WB), (CX,WC), (CY,VA), (CY,VB), (CY,VC), (CY,VD), (CY,VE), (CY,VF), 40(CY,VG), (CY,VH), (CY,VI), (CY,VJ), (CY,VK), (CY,VL), (CY,VM), (CY,VN), (CY,VO), (CY,XP), (CY,VQ), (CY,VQ)VR), (CY,VS), (CY,VT), (CY,VU), (CY,VV), (CY,VW), (CY,VX), (CY,VY), (CY,VZ), (CY,WA), (CY,WB), (CY, WC), (CZ,VA), (CZ,VB), (CZ,VC), (CZ,VD), (CZ,VE), 45 (CZ,VF), (CZ,VG), (CZ,VH), (CZ,VI), (CZ,VJ), (CZ,VK), (CZ,VL), (CZ,VM), (CZ,VN), (CZ,VO), (CZ,VP), (CZ,VP)VQ), (CZ,VR), (CZ,VS), (CZ,VT), (CZ,VU), (CZ,VV), (CZ,VW), (CZ,VX), (CZ,VY), (CZ,VZ), (CZ,WA), (CZ,VZ)WB), (CZ,WC), (DA,VA), (DA,VB), (DN,VC), (DN,VD), (DA,VE), (DA, VF), (DA,VG), (DA,VH), (DA,VI), (DA,VJ), (DA,VK), (DA, VL), (DA, VM), (DA, VN), (DA, VO), (DA, VP), (DA, VQ), (DA,VR), (DA,VS), (DA,VT), (DA,VU), (DA,VV), (DA,VW), (DA,VX), (DA,VY), (DA,VZ), (DA,WA), (DA, 55 WB), (DA, WC), (DB, VA), (DB, VB), (DB, VC), (DB, VD), (DB,VE), (DB,VF), (DB,VG), (DB,VH), (DB,VI), (DB,VJ), (DB,VK), (DB,VL), (DB,VM), (DB,VN), (DB,VO), (DB, VP), (DB,VQ), (DB,VR), (DB,VS), (DB,VT), (DB,VU), (DB,VV), (DB,VW), (DB,VX), (DB,VY), (DB,VZ), (DB, 60 WA), (DB, WB), (DB, WC), (DC, VA), (DC, VA), (DC, VB), (DC,VB), (DC,VC), (DC,VD), (DC,VE), (DC,VF), (DC, VG), (DC,VH), (DC,VI), (DC,VJ), (DC,VK), (DC,VL), (DC,VM), (DC,VN), (DC,VO), (DC,VP), (DC,VQ), (DC, VR), (DC,VS), (DC,VT), (DC,VU), (DC,VV), (DC,VW), 65 (DC,VX), (DC,VY), (DC,VZ), (DC,WA), (DC,WB), (DC, WC), (DD,VC), (DD,VD), (DD,VE), (DD,VF), (DD,VG),

(DD,VH), (DD,VI), (DD,VJ), (DD,VK), (DD,VL), (DD, VM), (DD,VN), (DD,VO), (DD,VP), (DD,VQ), (DD,VR), (DD, VS), (DD, VT), (DD, VU), (DD, VV), (DD, VW), (DD, VX), (DD, VY), (DD, VZ), (DD, WA), (DD, WB), (DD, WC), (DE,VA), (DE,VB), (DE,VC), (DE,VD), (DE,VE), (DE, VF), (DE,VG), (DE,VH), (DE,VI), (DE,VJ), (DE,VK), (DE, VL), (DE,VM), (DE,VN), (DE,VO), (DE,VP), (DE,VQ), (DE,VR), (DE,VS), (DE,VT), (DE,VU), (DE,VV), (DE, VW), (DE,VX), (DE,VY), (DE,VZ), (DE,WA), (DE,WB), (DE, WC), (DF, VA), (DF, VB), (DF, VC), (DF, VD), (DF, VE), (DF,VF), (DF,VG), (DF,VH), (DF,VI), (DF,VJ), (DF,VK), (DF,VL), (DF,VM), (DF,VN), (DF,VO), (DF,VP), (DF,VQ), (DF,VR), (DF,VS), (DF,VT), (DF,VU), (DF,VV), (DF,VW), (DF,VX), (DF,VY), (DF,VZ), (DF,WA), (DF,WB), (DF, WC), (DG,VA), (DG,VB), (DG,VC), (DG,VD), (DG,VE), (DG,VF), (DG,VG), (DG,VH), (DG,VI), (DG,VJ), (DG, VK), (DG,VL), (DG,VM), (DG,VN), (DG,VO), (DG,VP), (DG,VQ), (DG,VR), (DG,VS), (DG,VT), (DG,VU), (DG, VV), (DG,VW), (DG,VX), (DG,VY), (DG,VZ), (DG,WA), (DG, WB), (DG, WC), (DH, VA), (DH, VB), (DH, VC), (DH, VD), (DH,VE), (DH,VF), (DH,VG), (DH,VH), (DH,VI), (DH,VJ), (DH,VK), (DH,VL), (DH,VM), (DH,VN), (DH, VO), (DH,VP), (DH,VQ), (DH,VR), (DH,VS), (DH,VT), (DH, VU), (DH, VV), (DH, VW), (DH, VX), (DH, VY), (DH, VZ), (DH, WA), (DH, WB), (DH, WC), (DI, VA), (DI, VB), (DI,VC), (DI,VE), (DI,VF), (DI,VG), (DI,VH), (DI,VJ), (DI,VK), (DI,VL), (DI,VM), (DI,VN), (DI,VO), (DI,VP), (DI,VQ), (DI,VR), (DI,VS), (DI,VT), (DI,VU), (DI,VV), (DI,VW), (DI,VX), (DI,VY), (DI,VZ), (DI,WA), (DI,WB), (DI,WC), (DJ,VA), (DJ,VB), (DJ,VC), (DJ,VD), (DJ,VE), (DJ,VF), (DJ,VG), (DJ,VH), (DJ,VI), (DJ,VJ), (DJ,VK), (DJ,VL), (DJ,VM), (DJ,VN), (DJ,VO), (DJ,VP), (DJ,VQ), (DJ,VR), (DJ,VS), (DJ,VT), (DJ,VU), (DJ,VV), (DJ,VW), (DJ,VX), (DJ,VY), (DJ,VZ), (DJ,WA), (DJ,WB), (DJ,WC), (DK,VA), (DK,VB), (DN,VC), (DN,VD), (DK,VE), (DK, VI), (DK,VG), (DK,VH), (DK,VI), (DK,VJ), (DK,VK), (DK, VL), (DK, VM), (DK, VN), (DK, VO), (DK, VP), (DK, VQ), (DK,VR), (DK,VS), (DK,VT), (DK,VU), (DK,VV), (DK,VW), (DK,VX), (DK,VY), (DK,VZ), (DK,WA), (DK, WB), (DK,WC), (DL,VA), (DL,VB), (DL,VC), (DL,VD), (DL, VE), (DL, VF), (DL, VG), (DL, VH), (DL, VI), (DL, VJ), (DL,VK), (DL,VL), (DL,VM), (DG,VN), (DL,VO), (DL, VP), (DL,VQ), (DL,VR), (DL,VS), (DL,VT), (DL,VU), (DL,VV), (DL,VW), (DL,VX), (DL,VY), (DL,VZ), (DL, WA), (DL, WB), (DL, WC), (DM, VA), (DM, VB), (DM, VC), (DM,VD), (DM,VE), (DM,VF), (DM,VG), (DM,VH), (DM,VI), (DM,VJ), (DM,VK), (DM,VL), (DM,VM), (DM, VN), (DM, VO), (DM, VP), (DM, VQ), (DM, VR), (DM, VS), (DM,VT), (DM,VU), (DM,VV), (DM,VW), (DM,VX), (DM,VY), (DM,VZ), (DM,WA), (DM,WB), (DM,WC), (DN,VA), (DN,VB), (DN,VC), (DN,VD), (DN,VE), (DN, VF), (DN,VG), (DN,VH), (DN,VI), (DN,VJ), (DN,VK), (DN, VL), (DN, VM), (DN, VN), (DN, VO), (DN, VP), (DN, VQ), (DN,VR), (DN,VS), (DN,VT), (DN,VU), (DN,VV), (DN,VW), (DN,VX), (DN,VY), (DN,VZ), (DN,WA), (DN, WB), (DN,WC), (DO,VA), (DO,VB), (DO,VC), (DO,VD), (DO, VE), (DO, VF), (DO, VG), (DO, VH), (DO, VI), (DO, VJ), (DO,VK), (DO,VL), (DO,VM), (DO,VN), (DO,VO), (DO, VP), (DO, VQ), (DO, VR), (DO, VS), (DO, VT), (DO, VU), (DO, VV), (DO, VW), (DO, VX), (DO, VY), (DO, VZ), (DO, WA), (DO, WB), (DO, WC), (DP, VA), (DP, VB), (DP, VC), (DP,VD), (DP,VE), (DP,VF), (DP,VG), (DP,VH), (DP, VI), (DP,VJ), (DP,VK), (DP,VL), (DP,VM), (DP,VN), (DP, VO), (DP, VP), (DP, VQ), (DP, VR), (DP, VS), (DP, VT), (DP, VU), (DP,VV), (DP,VW), (DP,VX), (DP,VY), (DP,VZ), (DP,WA), (DP,WB), (DP,WC), (DQ,VA), (DQ,VB), (DQ, VC), (DQ,VD), (DQ,VE), (DQ,VF), (DQ,VG), (DQ,VH),

(DQ,VI), (DQ,VJ), (DQ,VK), (DQ,VL), (DQ,VM), (DQ, VN), (DQ,VO), (DQ,VP), (DQ,VQ), (DQ,VR), (DQ,VS), (DQ,VT), (DQ,VU), (DQ,VV), (DQ,VW), (DQ,VX), (DQ, VY), (DQ,VZ), (DQ,WA), (DQ,WB), (DQ,WC), (DR,VA), (DR,VB), (DR,VC), (DR,VD), (DR,VE), (DR,VF), (DR, 5 VG), (DR,VH), (DR,VI), (DR,VJ), (DR,VK), (DR,VL), (DR,VM), (DR,VN), (DR,VO), (DR,VP), (DR,VQ), (DR, VR), (DR,VS), (DR,VT), (DR,VU), (DR,VV), (DR,VW), (DR,VX), (DR,VY), (DR,VZ), (DR,WA), (DR,WB), (DR, WC), (DS,VA), (DS,VB), (DS,VC), (DS,VD), (DS,VE), 10 (DS,VF), (DS,VG), (DS,VH), (DS,VI), (DS,VJ), (DS,VK), (DS,VL), (DS,VM), (DS,VN), (DS,VO), (DS,VP), (DS, VQ), (DS,VR), (DS,VS), (DS,VT), (DS,VU), (DS,VV), (DS,VW), (DS,VX), (DS,VY), (DS,VZ), (DS,WA), (DS, WB), (DS,WC), (DT,VA), (DT,VB), (DT,VC), (DT,VD), 15 (DT,VE), (DT,VF), (DT,VG), (DT,VH), (DT,VI), (DT,VJ), (DT,VK), (DT,VL), (DT,VM), (DT,VN), (DT,VO), (DT, VP), (DT,VQ), (DS,VR), (DT,VS), (DT,VT), (DT,VU), (DT, VV), (DT,VW), (DT,VX), (DT,VY), (DT,VZ), (DT,WA), (DT,WB), (DT,WC), (DO,VA), (DO,VB), (DO,VC), (DO, 20 VD), (DU,VE), (DO,VF), (DU,VG), (DO,VH), (DO,VI), (DO,VJ), (DO,VK), (DO,VL), (DO,VM), (DO,VN), (DU, VO), (DU,VP), (DO,VQ), (DN,VR), (DN,VS), (DN,VT), (DU,VU), (DU,VV), (DN,VW), (DU,VX), (DU,VY), (DN, VZ), (DU,WA), (DO,WB), (DN,WC), (DV,VA), (DV,VB), 25 (DV,VC), (DV,VD), (DV,VE), (DV,VF), (DV,VG), (DV, VH), (DV,VI), (DV,VJ), (DV,VK), (DV,VL), (DV,VM), (DV,VN), (DV,VO), (DV,VP), (DV,VQ), (DS,VR), (DT, VS), (DV,VT), (DV,VU), (DV,VV), (DV,VW), (DV,VX), (DR, VY), (DV, VZ), (DV, WA), (DR, WB), (DR, WC), (DW, 30 VA), (DW,VB), (DW,VC), (DW,VD), (DW,VE), (DW,VF), (DW,VG), (DW,VH), (DW,VI), (DW,VJ), (DW,VK), (DW, VL), (DW,VM), (DW,VN), (DW,VO), (DW,VP), (DW,VQ), (DW, VR), (DW, VS), (DW, VT), (DW, VU), (DW, VV), (DW, VW), (DW,VX), (DW,VY), (DW,VZ), (DW,WA), (DW, 35 WB), (DW, WC), (DX, VA), (DX, VB), (DX, VC), (DX, VD), (DX,VE), (DX,VF), (DX,VG), (DX,VH), (DX,VI), (DX, VJ), (DX,VK), (DX,VL), (DX,VM), (DX,VN), (DX,VO), (DX,VP), (DX,VQ), (DX,VR), (DX,VS), (DX,VT), (DX, VU), (DX,VV), (DX,VW), (DX,VX), (DX,VY), (DX,VZ), 40 (DX,WA), (DX,WB), (DX,WC), (DY,VA), (DY,VB), (DY, VC), (DY,VD), (DY,VE), (DY,VF), (DY,VG), (DY,VH), (DY,VI), (DY,VJ), (DY,VK), (DY,VL), (DS,VM), (DY,VN), (DY,VO), (DY,VP), (DY,VQ), (DY,VR), (DY,VS), (DY, VT), (DY,VU), (DY,VV), (DY,VW), (DY,VX), (DY,VY), 45 (DY,VZ), (DY,WA), (DY,WB), (DY,WC), (DZ,VA), (DZ, VB), (DZ,VC), (DZ,VD), (DZ,VE), (DZ,VF), (DZ,VG), (DZ,VH), (DZ,VI), (DZ,VJ), (DZ,VK), (DZ,VL), (DZ,VM), (DZ,VN), (DZ,VO), (DZ,VP), (DZ,VQ), (DZ,VR), (DZ, VS), (DZ,VT), (DZ,VU), (DZ,VV), (DZ,VW), (DZ,VX), 50 (DZ,VY), (DZ,VZ), (DZ,WA), (DZ,WB), (DZ,WC), (EA,VA), (EA,VB), (EA,VC), (EA,VD), (EA,VE), (EA, VF), (EA,VG), (EA,VH), (EA,VI), (EA,VJ), (EA,VK), (EA, VL), (EA,VM), (EA,VN), (EA,VO), (EA,VP), (EA,VQ), (EA,VR), (EA,VS), (EA,VT), (EA,VU), (EA,VV), (EA, 55 VW), (EA,VX), (EA,VY), (EA,VZ), (EA,WA), (EA,WB), (EA, WC), (EB, VA), (EB, VB), (EB, VC), (EB, VD), (EB, VE), (EB,VF), (EB,VG), (EB,VH), (EB,VI), (EB,VJ), (EB, VK), (EB,VL), (EB,VM), (EB,VN), (EB,VO), (EB,VP), (EB,VQ), (EB,VR), (EB,VS), (EB,VT), (EB,VU), (EB,VV), 60 (EB,VW), (EB,VX), (EB,VY), (EB,VZ), (EB,WA), (EB, WB), (EB,WC), (EC,VA), (EC,VA), (EC,VB), (EC,VB), (EC,VC), (EC,VD), (EC,VE), (EC,VF), (EC,VG), (EC,VH), (EA,VI), (EC,VJ), (EC,VK), (EC,VL), (EC,VM), (EC,VN), (EC,VO), (EC,VP), (EC,VQ), (EC,VR), (EC,VS), (EC,VT), (EC,VU), (EC,VV), (EC,VW), (EC,VX), (EC,VY), (EC, VZ), (EC,WA), (EC,WB), (EC,WC), (ED,VC), (ED,VD),

(ED, VE), (ED, VF), (ED, VG), (ED, VH), (ED, VI), (ED, VJ), (ED,VK), (ED,VL), (ED,VM), (EA,VN), (ED,VO), (ED, VP), (EA,VQ), (ED,VR), (ED,VS), (ED,VT), (ED,VU), (ED,VV), (ED,VW), (ED,VX), (ED,VY), (ED,VZ), (ED,VZ)WA), (ED, WB), (ED, WC), (EE, VA), (EE, VB), (EE, VC), (EE,VD), (EE,VE), (EE,VF), (EE,VG), (EE,VH), (EE,VI), (EE, VJ), (EE, VK), (EE, VL), (EE, VM), (EE, VN), (EE, VO), (EE, VP), (EE, VQ), (EE, VR), (EE, VS), (EE, VT), (EE, VU), (EE,VV), (EE,VW), (EE,VX), (EE,VY), (EE,VZ), (EE, WA), (EE, WB), (EE, WC), (EF, VA), (EF, VB), (EF, VC), (EF, VD), (EF, VE), (EF, VF), (EF, VG), (EF, VH), (EF, VI), (EF, VJ), (EF,VK), (EF,VL), (EF,VM), (EF,VN), (EF,VO), (EF, VP), (EF,VQ), (EF,VR), (EF,VS), (EF,VT), (EF,VU), (EF, VV), (EF,VW), (EF,VX), (EF,VY), (EF,VZ), (EF,WA), (EF, WB), (EF, WC), (EB, VA), (EB, VB), (EB, VC), (EB, VD), (EB,VE), (EB,VF), (EA,VG), (EA,VH), (EA,VI), (EG,VJ), (EA,VK), (EA,VL), (EA,VM), (EG,VN), (EG,VO), (EA, VP), (EG,VQ), (EA,VR), (EA,VS), (EA,VT), (EG,VU), (EG,VV), (EA,VW), (EG,VX), (EA,VY), (EA,VZ), (EA, WA), (EB, WB), (EA, WC), (EH, VA), (EH, VB), (EH, VC), (EH, VD), (EH, VE), (EH, VF), (EH, VG), (EH, VH), (EH, VI), (EH,VJ), (EH,VK), (EH,VL), (EH,VM), (EH,VN), (EH, VO), (EH,VP), (EH,VQ), (EH,VR), (EH,VS), (EH,VT), (EH, VU), (EH, VV), (EH, VW), (EH, VX), (EH, VY), (EH, VZ), (EH, WA), (EH, WB), (EH, WC), (EI, VA), (EI, VB), (EI, VC), (EI, VD), (EI, VE), (EI, VF), (EI, VG), (EI, VH), (EI, VI), (EI,VJ), (EI,VK), (EI,VL), (EI,VM), (EI,VN), (EI,VO), (EI,VP), (EI,VQ), (EI,VR), (EI,VS), (EI,VT), (EI,VU), (EI, VV), (EI,VW), (EI,VX), (EI,VY), (EI,VZ), (EI,WA), (EI, WB), (EI, WC), (EJ, VA), (EJ, VB), (EJ, VC), (EJ, VD), (EJ, VE), (EJ,VF), (EJ,VG), (EJ,VH), (EJ,VI), (EJ,VJ), (EJ,VK), (EJ,VL), (EJ,VM), (EJ,VN), (EJ,VO), (EJ,VP), (EJ,VQ), (EJ,VR), (EJ,VS), (EJ,VT), (EJ,VU), (EJ,VV), (EJ,VW), (EJ,VX), (EJ,VY), (EJ,VZ), (EJ,WA), (EJ,WB), (EJ,WC), (EB,VA), (EB,VB), (EB,VC), (EB,VD), (EB,VE), (EB,VF), (EA,VG), (EA,VH), (EA,VI), (EK,VJ), (EA,VK), (EA,VL), (EA,VM), (EA,VN), (EK,VO), (EA,VP), (EK,VQ), (EA, VR), (EA,VS), (EA,VT), (EK,VU), (EK,VV), (EA,VW), (EK,VX), (EA,VY), (EA,VZ), (EA,WA), (EB,WB), (EA, WC), (EL, VA), (EL, VB), (EL, VC), (EF, VD), (EL, VE), (EL, VF), (EL,VG), (EL,VH), (EL,VI), (EL,VJ), (EL,VK), (EL, VL), (EL,VM), (EL,VN), (EL,VO), (EL,VP), (EL,VQ), (EL, VR), (EL, VS), (EL, VT), (EL, VU), (EL, VV), (EL, VW), (EL,VX), (EL,VY), (EL,VZ), (EL,WA), (EL,WB), (EL, WC), (EM,VA), (EM,VB), (EM,VC), (EM,VD), (EM,VE), (EM,VF), (EM,VG), (EM,VH), (EM,VI), (EM,VJ), (EM, VK), (EM, VL), (EM, VM), (EM, VN), (EM, VO), (EM, VP), (EM, VQ), (EM, VR), (EM, VS), (EM, VT), (EM, VU), (EM, VV), (EM,VW), (EM,VX), (EM,VY), (EM,VZ), (EM,WA), (EM, WB), (EM, WC), (EN, VA), (EN, VB), (EN, VC), (EN, VD), (EN,VE), (EN,VF), (EN,VG), (EN,VH), (EN,VI), (EN,VJ), (EN,VK), (EN,VL), (EN,VM), (EN,VN), (EN, VO), (EN, VP), (EN, VQ), (EN, VR), (EN, VS), (EN, VT), (EN,VU), (EN,VV), (EN,VW), (EN,VX), (EN,VY), (EN, VZ), (EN,WA), (EN,WB), (EN,WC), (EO,VA), (EO,VB), (EO, VC), (EO, VD), (EO, VE), (EO, VF), (EO, VG), (EO, VH), (EO,VI), (EO,VJ), (EO,VK), (EO,VL), (EO,VM), (EO,VN), (EO,VO), (EO,VP), (EO,VQ), (EO,VR), (EO, VS), (EO,VT), (EO,VU), (EO,VV), (EO,VW), (EO,VX), (EO,VY), (EO,VZ), (EO,WA), (EO,WB), (EO,WC), (EP, VA), (EP,VB), (EP,VC), (EP,VD), (EP,VE), (EP,VF), (EP, VG), (EP,VH), (EP,VI), (EP,VJ), (EP,VK), (EP,VL), (EP, VM), (EP,VN), (EP,VO), (EP,VP), (EP,VQ), (EP,VR), (EP, VS), (EP,VT), (EP,VU), (EP,VV), (EP,VW), (EP,VX), (EP, VY), (EP, VZ), (EP, WA), (EP, WB), (EP, WC), (EQ, VA), (EQ, VB), (EQ,VC), (EQ,VD), (EQ,VE), (EQ,VF), (EQ,VG), (EQ,VH), (EQ,VI), (EQ,VJ), (EQ,VK), (EQ,VL), (EQ,VM),

(EQ,VN), (EQ,VO), (EQ,VP), (EQ,VQ), (EQ,VR), (EQ, VS), (EQ,VT), (EQ,VU), (EQ,VV), (EQ,VW), (EQ,VX), (EQ,VY), (EQ,VZ), (EQ,WA), (EQ,WB), (EQ,WC), (ER, VA), (ER,VB), (ER,VC), (ER,VD), (ER,VE), (ER,VF), (ER, VG), (ER, VH), (ER, VI), (ER, VJ), (ER, VK), (ER, VL), (ER,VM), (ER,VN), (ER,VO), (ER,VP), (ER,VQ), (ER, VR), (ER, VS), (ER, VT), (ER, VU), (ER, VV), (ER, VW), (ER,VX), (ER,VY), (ER,VZ), (ER,WA), (ER,WB), (ER, WC), (ES,VA), (ES,VB), (ES,VC), (ES,VD), (ES,VE), (ES, VF), (ES,VG), (ES,VH), (ES,VI), (ES,VJ), (ES,VK), (ES, VL), (ES,VM), (ES,VN), (ES,VO), (ES,VP), (ES,VQ), (ES, VR), (ES, VS), (ES, VT), (ES, VU), (ES, VV), (ES, VW), (ES, VX), (ES,VY), (ES,VZ), (ES,WA), (ES,WB), (ES,WC), (ET,VA), (ET,VB), (ET,VC), (ET,VD), (ET,VE), (ET,VF), (ET,VG), (ET,VH), (ET,VI), (ET,VJ), (ET,VK), (ET,VL), 15 (ET,VM), (ET,VN), (ET,VO), (ET,VP), (ET,VQ), (ET,VR), (ET,VS), (ET,VT), (ET,VU), (ET,VV), (ET,VW), (ET,VX), (ET, VY), (ET, VZ), (ET, WA), (ET, WB), (ET, WC), (EU, VA), (EU,VB), (EU,VC), (EU,VD), (EU,VE), (EU,VF), (EU, VG), (EU,VH), (EU,VI), (EU,VJ), (EU,VK), (EU,VL), 20 (EU,VM), (EU,VN), (EU,VO), (EU,VP), (EU,VQ), (EU, VR), (EU,VS), (EU,VT), (EU,VU), (EU,VV), (EU,VW), (EU,VX), (EU,VY), (EU,VZ), (EU,WA), (EU,WB), (EU, WC), (EV,VA), (EV,VB), (EV,VC), (EV,VD), (EV,VE), (EV, VF), (EV,VG), (EV,VH), (ET,VI), (EV,VJ), (EV,VK), (EV, 25 VL), (EV,VM), (EV,VN), (EV,VO), (EVXP), (ET,VQ), (EV, VR), (EV,VS), (EV,VT), (EV,VU), (EV,VV), (EV,VW), (EV, VX), (ET,VY), (EV,VZ), (EV,WA), (EV,WB), (EV,WC), (EW, VA), (EW, VB), (EW, VC), (EW, VD), (EW, VE), (EW, VF), (EW,VG), (EW,VH), (EW,VI), (EW,VJ), (EW,VK), (EW, VL), (EW, VM), (EW, VN), (EW, VO), (EW, VP), (EW, VQ), (EW,VR), (EW,VS), (EW,VT), (EW,VU), (EW,VV), (EW,VW), (EW,VX), (EW,VY), (EW,VZ), (EW,WA), (EW, WB), (EW, WC), (EX, VA), (EX, VB), (EX, VC), (EX, VD), (EX,VE), (EX,VF), (EX,VG), (EX,VH), (EX,VI), (EX,VJ), 35 (EX,VK), (EX,VL), (EX,VM), (EX,VN), (EX,VO), (EX, VP), (EX,VQ), (EX,VR), (EX,VS), (EX,VT), (EX,VU), (EX,VV), (EX,VW), (EX,VX), (EX,VY), (EX,VZ), (EX, WA), (EX, WB), (EX, WC), (EY, VA), (EY, VB), (EY, VC), (EY,VD), (EY,VE), (EY,VF), (EY,VG), (EY,VH), (EY,VI), 40 (EY,VJ), (EY,VK), (EY,VO, (EY,VM), (EY,VN), (EY,VO), (EY,VP), (EY,VQ), (EY,VR), (EY,VS), (ET,VT), (EY,VU), (EY,VV), (EY,VW), (EY,VX), (EY,VY), (EY,VZ), (EY, WA), (EY,WB), (EY,WC), (EZ,VA), (EZ,VB), (EZ,VC), (EZ,VD), (EZ,VE), (EZ,VF), (EZ,VG), (EZ,VH), (EZ,VI), 45 (EZ,VJ), (EZ,VK), (EZ,VL), (EZ,VM), (EZ,VN), (EZ,VO), (EZ,VP), (EZ,VQ), (EZ,VR), (EZ,VS), (EZ,VT), (EZ,VU), (EZ,VV), (EZ,VW), (EZ,VX), (EZ,VY), (EZ,VZ), (EZ, WA), (EZ,WB), (EZ,WC), (FA,VA), (FA,VB), (FA,VC), (FA,VD), (FA,VE), (FA,VF), 50 (FA,VG), (FA,VH), (FA,VI), (FA,VJ), (FA,VK), (FA,VL), (FA,VM), (FA,VN), (FA,VO), (FA,VP), (FA,VQ), (FA,VR), (FA,VS), (FA,VT), (FA,VU), (FA,VV), (FA,VW), (FA,VX), (FA,VY), (FA,VZ), (FA,WA), (FA,WB), (FA,WC), (FB, VA), (FB,VB), (FB,VC), (FB,VD), (FB,VE), (FB,VF), (FB, 55 VG), (FB,VH), (FB,VI), (FB,VJ), (FB,VK), (FB,VL), (FB, VM), (FB,VN), (FB,VO), (FB,VP), (FB,VQ), (FB,VR),

(FB,VS), (FB,VT), (FB,VU), (FB,VV), (FB,VW), (FB,VX), (FB,VY), (FB,VZ), (FB,WA), (FB,WB), (FB,WC), (FC, VA), (FC,VA), (FC,VB), (FC,VB), (FC,VC), (FC,VD), (FC, 60 VE), (FC,VF), (FC,VG), (FC,VH), (FC,VI), (FC,VJ), (FC, VK), (FC,VL), (FC,VM), (FC,VN), (FC,VO), (FC,VP), (FC,VQ), (FC,VR), (FC,VS), (FC,VT), (FC,VU), (FC,VV), (FC,VW), (FA,VX), (FC,VY), (FC,VZ), (FC,WA), (FC, WB), (FC,WC), (FD,VC), (FD,VD), (FD,VE), (FD,VF), 65 (FD,VG), (FD,VH), (FD,VI), (FD,VJ), (FD,VK), (FD,VL), (FD,VM), (FD,VN), (FD,VO), (FD,VP), (FD,VQ), (FD,

VR), (FD, VS), (FD, VT), (FD, VU), (FD, VV), (FD, VW), (FD,VX), (FD,VY), (FD,VZ), (FD,WA), (FD,WB), (FD, WC), (FE, VA), (FE, VB), (FE, VC), (FE, VD), (FE, VE), (FE, VF), (FE, VG), (FE, VH), (FE, VI), (FE, VJ), (FE, VK), (FE, VL), (FE,VM), (FE,VN), (FE,VO), (FE,VP), (FE,VQ), (FE, VR), (FE, VS), (FE, VT), (FE, VU), (FE, VV), (FE, VW), (FE, VX), (FE,VY), (FE,VZ), (FE,WA), (FE,WB), (FE,WC), (FF,VA), (FF,VB), (FF,VC), (FF,VD), (FF,VE), (FF,VF), (FF,VG), (FF,VH), (FF,VI), (FF,VJ), (FF,VK), (FF,VL), (FF,VM), (FF,VN), (FF,VO), (FF,VP), (FF,VQ), (FF,VR), (FF,VS), (FF,VT), (FF,VU), (FF,VV), (FF,VW), (FF,VX), (FF,VY), (FF,VZ), (FF,WA), (FF,WB), (FF,WC), (FG,VA), (FG,VB), (FG,VC), (FG,VD), (FG,VE), (FG,VF), (FG,VG), (FG,VH), (FG,VI), (FG,VJ), (FG,VK), (FG,VL), (FG,VM), (FG,VN), (FG,VO), (FG,VP), (FD,VQ), (FG,VR), (FG,VS), (FG,VT), (FG,VU), (FG,VV), (FG,VW), (FG,VX), (FG, VY), (FG,VZ), (FG,WA), (FG,WB), (FG,WC), (FH,VA), (FH,VB), (FH,VC), (FH,VD), (FH,VE), (FH,VF), (FH,VG), (FH,VH), (FH,VI), (FH,VJ), (FH,VK), (FH,VL), (FH,VM), (FH.VN), (FH.VO), (FH.VP), (FH.VO), (FH.VR), (FH.VS), (FH,VT), (FH,VU), (FH,VV), (FH,VW), (FH,VX), (FH, VY), (FH,VZ), (FH,WA), (FH,WB), (FH,WC), (FI,VA), (FI,VB), (FI,VC), (FI,VD), (FI,VE), (FI,VF), (FI,VG), (FI, VH), (FI,VJ), (FI,VK), (FI,VL), (FI,VM), (FI,VN), (FI,VO), (FI,VP), (FI,VQ), (FI,VR), (FI,VS), (FI,VT), (FI,VU), (FI, VV), (FI,VW), (FI,VX), (FI,VY), (FI,VZ), (FI,WA), (FI, WB), (FI WC), (FJ,VA), (FJ,VB), (FJ,VC), (FJ,VD), (FJ, VE), (FJ,VF), (FJ,VG), (FJ,VH), (FJ,VI), (FJ,VJ), (FJ,VK), (FJ,VL), (FJ,VM), (FJ,VN), (FJ,VO), (FJ,VP), (FJ,VQ), (FJ,VR), (FJ,VS), (FJ,VT), (FJ,VU), (FJ,VV), (FJ,VW), (FJ,VX), (FJ,VY), (FJ,VZ), (FJ,WA), (FJ,WB), (FJ,WC), (FK,VA), (FK,VB), (FK,VC), (FK,VD), (FK,VE), (FK,VF), (FK,VG), (FK,VH), (FK,VI), (FK,VJ), (FK,VK), (FK,VL), (FK,VM), (FK,VN), (FK,VO), (FK,VP), (FK,VQ), (FK, VR), (FK,VS), (FK,VT), (FK,VU), (FK,VV), (FK,VW), (FK,VX), (FK,VY), (FK,VZ), (FK,WA), (FK,WB), (FK, WC), (FL, VA), (FL, VB), (FL, VC), (FL, VD), (FL, VE), (FL, VF), (FL,VG), (FL,VH), (FL,VI), (FL,VJ), (FL,VK), (FL, VL), (FL,VM), (FL,VN), (FL,VO), (FL,VP), (FL,VQ), (FL, VR), (FL,VS), (FL,VT), (FL,VU), (FL,VV), (FL,VW), (FL, VX), (FL,VY), (FL,VZ), (FL,WA), (FL,WB), (FL,WC), (FM,VA), (FM,VB), (FM,VC), (FM,VD), (FM,VE), (FM, VF), (FM,VG), (FM,VH), (FM,VI), (FM,VJ), (FM,VK), (FM,VL), (FM,VM), (FM,VN), (FM,VO), (FM,VP), (FM, VQ), (FM,VR), (FM,VS), (FM,VT), (FM,VU), (FM,VV), (FM,VW), (FM,VX), (FM,VY), (FM,VZ), (FM,WA), (FM, WB), (FM, WC), (FN, VA), (FN, VB), (FN, VC), (FN, VD), (FN,VE), (FN,VF), (FN,VG), (FN,VH), (FN,VI), (FN,VJ), (FN,VK), (FN,VL), (FN,VM), (FN,VN), (FN,VO), (FN, VP), (FD,VQ), (FN,VR), (FN,VS), (FN,VT), (FN,VU), (FN,VV), (FN,VW), (FN,VX), (FN,VY), (FN,VZ), (FN, WA), (FN, WB), (FN, WC), (FO, VA), (FO, VB), (FO, VC), (FO, VD), (FO, VE), (FO, VF), (FO, VG), (FO, VH), (FO, VI), (FO,VJ), (FO,VK), (FO,VL), (FO,VM), (FO,VN), (FO, VO), (FO,VP), (FO,VQ), (FO,VR), (FO,VS), (FO,VT), (FO,VU), (FO,VV), (FO,VW), (FO,VX), (FO,VY), (FO, VZ), (FO,WA), (FO,WB), (FO,WC), (FP,VA), (FP,VB), (FP,VC), (FP,VD), (FP,VE), (FP,VF), (FP,VG), (FP,VH), (FP,VI), (FP,VJ), (FP,VK), (FP,VL), (FP,VM), (FP,VN), (FP, VO), (FP,VP), (FP,VQ), (FP,VR), (FP,VS), (FP,VT), (FP, VU), (FP,VV), (FP,VW), (FP,VX), (FP,VY), (FP,VZ), (FP, WA), (FP,WB), (FP,WC), (FQ,VA), (FQ,VB), (FQ,VC), (FQ,VD), (FQ,VE), (FQ,VF), (FQ,VG), (FQ,VH), (FQ,VI), (FQ,VJ), (FQ,VK), (FQ,VL), (FQ,VM), (FQ,VN), (FQ, VO), (FQ,VP), (FQ,VQ), (FQ,VR), (FQ,VS), (FQ,VT), (FQ,VU), (FQ,VV), (FQ,VW), (FQ,VX), (FQ,VY), (FQ, VZ), (FQ,WA), (FQ,WB), (FQ,WC), (FR,VA), (FR,VB),

(FR, VC), (FR, VD), (FR, VE), (FR, VF), (FR, VG), (FR, VH), (FR,VI), (FR,VJ), (FR,VK), (FR,VL), (FR,VM), (FR,VN), (FR, VO), (FR, VP), (FR, VQ), (FR, VR), (FR, VS), (FR, VT), (FR,VU), (FR,VV), (FR,VW), (FR,VX), (FR,VY), (FR, VZ), (FR,WA), (FR,WB), (FR,WC), (FS,VA), (FS,VB), 5 (FS,VC), (FS,VD), (FS,VE), (FS,VF), (FS,VG), (FS,VH), (FS,VI), (FS,VJ), (FS,VK), (FS,VL), (FS,VM), (FS,VN), (FS,VO), (FS,VP), (FS,VQ), (FS,VR), (FS,VS), (FS,VT), (FS,VU), (FS,VV), (FS,VW), (FS,VX), (FS,VY), (FS,VZ), (FS, WA), (FS, WB), (FS, WC), (FT, VA), (FT, VB), (FT, VC), (FP,VD), (FT,VE), (FT,VF), (FT,VG), (FT,VH), (FT,VI), (FT,VJ), (FT,VK), (FT,VL), (FT,VM), (FT,VN), (FT,VO), (FT,VP), (FT,VQ), (FT,VR), (FT,VS), (FT,VT), (FT,VU), (FT,VV), (FT,VW), (FT,VX), (FT,VY), (FT,VZ), (FT,WA), (FT,WB), (FT,WC), (FU,VA), (FU,VB), (FU,VC), (FU, 15 VD), (FU,VE), (FU,VF), (FU,VG), (FU,VH), (FU,VI), (FU, VJ), (FU,VK), (FU,VL), (FU,VM), (FU,VN), (FU,VO), (FU,VP), (FU,VQ), (FU,VR), (FU,VS), (FU,VT), (FU,VU), (FU,VV), (FU,VW), (FU,VX), (FU,VY), (FU,VZ), (FU, WA), (FU,WB), (FU,WC), (FV,VA), (FV,VB), (FV,VC), 20 (FV,VD), (FV,VE), (FV,VF), (FV,VG), (FV,VH), (FV,VI), (FV,VJ), (FV,VK), (FV,VL), (FV,VM), (FV,VN), (FV,VO), (FV,VP), (FV,VQ), (FV,VR), (FV,VS), (FV,VT), (FV,VU), (FV,VV), (FV,VW), (FV,VX), (FV,VY), (FV,VZ), (FV,WA), (FV,WB), (FV,WC), (FW,VA), (FW,VB), (FW,VC), (FW, 25 VD), (FW,VE), (FW,VF), (FW,VG), (FW,VH), (FW,VI), (FW,VJ), (FW,VK), (FW,VL), (FW,VM), (FW,VN), (FW, VO), (FW,VP), (FW,VQ), (FW,VR), (FW,VS), (FW,VT), (FW, VU), (FW, VV), (FW, VW), (FW, VX), (FW, VY), (FW, VZ), (FW,WA), (FW,WB), (FW,WC), (FX,VA), (FX,VB), 30 (FX,VC), (FX,VD), (FX,VE), (FX,VF), (FX,VG), (FX,VH), (FX,VI), (FX,VJ), (FX,VK), (FX,VL), (FX,VM), (FX,VN), (FX,VO), (FX,VP), (FX,VQ), (FX,VR), (FX,VS), (FX,VT), (FX,VU), (FX,VV), (FX,VW), (FX,VX), (FX,VY), (FX, VZ), (FX,WA), (FX,WB), (FX,WC), (FY,VA), (FY,VB), 35 (FY,VC), (FY,VD), (FY,VE), (FY,VF), (FY,VG), (FY,VH), (FY,VI), (FY,VJ), (FY,VK), (FY,VL), (FY,VM), (FY,VN), (FY,VO), (FY,VP), (FY,VQ), (FY,VR), (FY,VS), (FY,VT), (FY,VU), (FY,VV), (FY,VW), (FY,VX), (FY,VY), (FY,VZ), (FY,WA), (FY,WB), (FY,WC), (FZ,VA), (FZ,VB), (FZ,VC), 40 (FZ,VD), (FZ,VE), (FZ,VF), (FZ,VG), (FZ,VH), (FZ,VI), (FZ,VJ), (FZ,VK), (FZ,VL), (FZ,VM), (FZ,VN), (FZ,VO), (FZ,VP), (FZ,VQ), (FZ,VR), (FZ,VS), (FZ,VT), (FZ,VU), (FZ,VV), (FZ,VW), (FZ,VX), (FZ,VY), (FZ,VZ), (FZ,WA), (FZ,WB), (FZ,WC), (GA,VA), (GA,VB), (GA,VC), (GA, 45 VD), (GA,VE), (GA,VF), (GA,VG), (GA,VH), (GA,VI), (GA,VJ), (GA,VK), (GA,VL), (GA,VM), (GA,VN), (GA, VO), (GA,VP), (GA,VQ), (GA,VR), (GA,VS), (GA,VT), (GA,VU), (GA,VV), (GA,VW), (GA,VX), (GA,VY), (GA, VZ), (GA,WA), (GA,WB), (GA,WC), (GB,VA), (GB,VB), 50 (GB,VC), (GB,VD), (GB,VE), (GB,VF), (GB,VG), (GB, VH), (GB,VI), (GB,VJ), (GB,VK), (GB,VL), (GB,VM), (GB,VN), (GB,VO), (GB,VP), (GB,VQ), (GB,VR), (GB, VS), (GB,VT), (GB,VU), (GB,VV), (GB,VX), (GB,VY), (GB,VZ), (GB,WA), (GB,WB), (GB,WC), (GC, 55 VA), (GC, VA), (GC, VB), (GC, VB), (GC, VC), (GB, VD), (GC,VE), (GC,VF), (GC,VG), (GC,VH), (GC,VI), (GC,VJ), (GC,VK), (GC,VL), (GC,VM), (GC,VN), (GC,VO), (GC, VP), (GC,VQ), (GC,VR), (GC,VS), (GC,VT), (GC,VU), (GC,VV), (GC,VW), (GC,VX), (GC,VY), (GC,VZ), (GC, 60 WA), (GC, WB), (GC, WC), (GD, VC), (GD, VD), (GD, VE), (GD,VF), (GD,VG), (GD,VH), (GD,VI), (GD,VJ), (GD, VK), (GD,VL), (GD,VM), (GD,VN), (GD,VO), (GD,VP), (GD,VQ), (GD,VR), (GD,VS), (GD,VT), (GD,VU), (GD, VV), (GD,VW), (GD,VX), (GD,VY), (GD,VZ), (GD,WA), 65 (GD,WB), (GD,WC), (GE,VA), (GE,VB), (GE,VC), (GE, VD), (GE,VE), (GE,VF), (GE,VG), (GE,VH), (GE,VI),

(GE,VJ), (GE,VK), (GE,VL), (GE,VM), (GE,VN), (GE, VO), (GE, VP), (GE, VQ), (GE, VR), (GE, VS), (GE, VT), (GE, VU), (GE, VV), (GE, VW), (GE, VX), (GE, VY), (GE, VZ), (GE,WA), (GE,WB), (GE,WC), (GF,VA), (GF,VB), (GF,VC), (GF,VD), (GF,VE), (GF,VF), (GF,VG), (GF,VH), (GF,VI), (GF,VJ), (GF,VK), (GF,VL), (GF,VM), (GF,VN), (GF, VO), (GF, VP), (GF, VQ), (GF, VR), (GF, VS), (GF, VT), (GF,VU), (GF,VV), (GF,VW), (GF,VX), (GA,VY), (GF, VZ), (GF,WA), (GF,WB), (GF,WC), (GG,VA), (GG,VB), (GG, VC), (GG, VD), (GG, VE), (GG, VF), (GG, VG), (GG, VH), (GG,VI), (GG,VJ), (GG,VK), (GG,VL), (GG,VM), (GN,VN), (GG,VO), (GG,VP), (GG,VQ), (GG,VR), (GG, VS), (GG,VT), (GG,VU), (GG,VV), (GG,VW), (GG,VX), (GG, VY), (GG, VZ), (GG, WA), (GG, WB), (GG, WC), (GH, VA), (GH,VB), (GH,VC), (GH,VD), (GH,VE), (GH,VF), (GH,VG), (GH,VH), (GH,VI), (GH,VJ), (GH,VK), (GH, VL), (GH,VM), (GH,VN), (GH,VO), (GH,VP), (GH,VQ), (GH,VR), (GH,VS), (GH,VT), (GH,VU), (GH,VV), (GH, VW), (GH,VX), (GH,VY), (GH,VZ), (GH,WA), (GH,WB), (GH, WC), (GI, VA), (GI, VB), (GI, VC), (GI, VD), (GI, VE), (GI,VF), (GI,VG), (GI,VH), (GI,VI), (GI,VJ), (GI,VK), (GI,VL), (GI,VM), (GI,VN), (GI,VO), (GI,VP), (GI,VQ), (GI,VR), (GI,VS), (GI,VT), (GI,VU), (GI,VV), (GI,VW), (GI,VX), (GI,VY), (GI,VZ), (GI,WA), (GI,WB), (GI,WC), (GJ,VA), (GJ,VB), (GJ,VC), (GJ,VD), (GJ,VE), (GJ,VF), (GJ,VG), (GJ,VH), (GJ,VI), (GJ,VJ), (GJ,VK), (GJ,VL), (GJ,VM), (GJ,VN), (GJ,VO), (GJ,VP), (GJ,VQ), (GJ,VR), (GJ,VS), (GJ,VT), (GJ,VU), (GJ,VV), (GJ,VW), (GJ,VX), (GJ,VY), (GJ,VZ), (GJ,WA), (GJ,WB), (GJ,WC), (GK,VA), (GK, VB), (GK, VC), (GK, VD), (GK, VE), (GK, VF), (GK, VG), (GK,VH), (GK,VI), (GK,VK), (GK,VL), (GK,VM), (GK,VN), (GK,VO), (GK,VP), (GK,VQ), (GK, VR), (GK,VS), (GK,VT), (GK,VU), (GK,VV), (GK,VW), (GK,VX), (GK,VY), (GK,VZ), (GK,WA), (GK,WB), (GK, WC), (GL,VA), (GJ,VB), (GL,VC), (GL,VD), (GL,VE), (GL,VF), (GL,VG), (GL,VH), (GL,VI), (GL,VJ), (GL,VK), (GL,VL), (GL,VM), (GL,VN), (GL,VO), (GL,VP), (GL, VQ), (GL,VR), (GL,VS), (GL,VT), (GL,VU), (GL,VV), (GL,VW), (GL,VX), (GL,VY), (GL,VZ), (GL,WA), (GL, WB), (GL, WC), (GM, VA), (GM, VB), (GM, VC), (GM, VD), (GM, VE), (GM, VF), (GM, VG), (GM, VH), (GM, VI), (GM, VJ), (GM,VK), (GM,VL), (GM,VM), (GM,VN), (GM,VO), (GM, VP), (GM, VQ), (GM, VR), (GM, VS), (GM, VT), (GM, VU), (GM,VV), (GM,VW), (GM,VX), (GM,VY), (GM, VZ), (GM, WA), (GM, WB), (GM, WC), (GN, VA), (GN, VB), (GN, VC), (GN, VD), (GN, VE), (GN, VF), (GN, VG), (GN, VH), (GN,VI), (GN,VJ), (GN,VK), (GN,VL), (GN,VM), (GN,VN), (GN,VO), (GN,VP), (GN,VQ), (GN,VR), (GN, VS), (GN,VT), (GN,VU), (GN,VV), (GN,VW), (GN,VX), (GN, VY), (GN, VZ), (GN, WA), (GN, WB), (GN, WC), (GO, VA), (GO, VB), (GO, VC), (GO, VD), (GO, VE), (GO, VF), (GO,VG), (GO,VH), (GO,VI), (GO,VJ), (GO,VK), (GO, VL), (GO,VM), (GO,VN), (GO,VO), (GO,VP), (GO,VQ), (GO, VR), (GO, VS), (GO, VT), (GO, VU), (GO, VV), (GO, VW), (GO, VX), (GO, VY), (GO, VZ), (GO, WA), (GO, WB), (GO, WC), (GP, VA), (GP, VB), (GP, VC), (GP, VD), (GP, VE), (GP,VF), (GP,VG), (GP,VH), (GP,VI), (GP,VJ), (GP,VK), (GP,VL), (GP,VM), (GP,VN), (GP,VO), (GP,VP), (GP,VQ), (GP,VR), (GP,VS), (GP,VT), (GP,VU), (GP,VV), (GP,VW), (GP,VX), (GP,VY), (GP,VZ), (GP,WA), (GP,WB), (GP,WC), (GQ,VA), (GQ,VB), (GQ,VC), (GQ,VD), (GQ,VE), (GQ, VF), (GQ,VG), (GQ,VH), (GQ,VI), (GQ,VJ), (GQ,VK), (GQ,VL), (GQ,VM), (GQ,VN), (GQ,VO), (GQ,VP), (GQ, VQ), (GQ,VR), (GQ,VS), (GQ,VT), (GQ,VU), (GQ,VV), (GQ,VW), (GQ,VX), (GQ,VY), (GQ,VZ), (GQ,WA), (GQ, WB), (GQ,WC), (GR,VA), (GR,VB), (GR,VC), (GR,VD), (GR, VE), (GR, VF), (GR, VG), (GR, VH), (GR, VI), (GR, VJ),

VP), (GR,VQ), (GR,VR), (GR,VS), (GR,VT), (GR,VU),

(GR,VV), (GR,VW), (GR,VX), (GR,VY), (GR,VZ), (GR,

WA), (GR, WB), (GR, WC), (GS, VA), (GS, VB), (GS, VC),

(GS,VJ), (GS,VK), (GS,VL), (GS,VM), (GS,VN), (GS,

(GS,VD), (GS,VE), (GS,VF), (GS,VG), (GP,VH), (GP,VI), 5

VO), (GS,VP), (GS,VQ), (GS,VR), (GS,VS), (GS,VT), (GS,VU), (GS,VV), (GS,VW), (GS,VX), (GS,VY), (GS, VZ), (GS,WA), (GS,WB), (GS,WC), (GT,VA), (GT,VB), (GT,VC), (GT,VD), (GT,VE), (GT,VF), (GT,VG), (GT,VH), (GT,VI), (GT,VJ), (GT,VK), (GT,VL), (GT,VM), (GT,VN), (GT,VO), (GT,VP), (GT,VQ), (GT,VR), (GT,VS), (GT,VT), (GT,VU), (GT,VV), (GT,VW), (GT,VX), (GT,VY), (GT, VZ), (GT,WA), (GT,WB), (GT,WC), (GU,VA), (GU,VB), (GU,VC), (GU,VD), (GU,VE), (GU,VF), (GU,VG), (GU, 15 VH), (GU,VI), (GU,VJ), (GU,VK), (GU,VL), (GU,VM), (GU,VN), (GU,VO), (GU,VP), (GU,VQ), (GU,VR), (GU, VS), (GU,VT), (GU,VU), (GU,VV), (GU,VW), (GU,VX), (GU,VY), (GU,VZ), (GU,WA), (GU,WB), (GU,WC), (GV, VA), (GV,VB), (GV,VC), (GV,VD), (GV,VE), (GV,VF), 20 (GV,VG), (GV,VH), (GV,VI), (GV,VJ), (GV,VK), (GV,VL), (GV,VM), (GV,VN), (GV,VO), (GV,VP), (GV,VQ), (GV, VR), (GV,VS), (GV,VT), (GV,VU), (GV,VV), (GV,VW), (GV,VX), (GV,VY), (GV,VZ), (GV,WA), (GV,WB), (GV, WC), (GW,VA), (GW,VB), (GW,VC), (GW,VD), (GW,VE), 25 (GW,VF), (GW,VG), (GW,VH), (GW,VI), (GW,VJ), (GW, VK), (GW,VL), (GW,VM), (GW,VN), (GW,VO), (GW,VP), (GW, VQ), (GW, VR), (GW, VS), (GW, VT), (GW, VU), (GW, VV), (GW,VW), (GW,VX), (GW,VY), (GW,VZ), (GW, WA), (GW, WB), (GW, WC), (GX, VA), (GX, VB), (GX, VC), 30 (GX,VD), (GX,VE), (GX,VF), (GX,VG), (GX,VH), (GX,VE)VI), (GX,VJ), (GX,VK), (GX,VL), (GX,VM), (GX,VN), (GX,VO), (GX,VP), (GX,VQ), (GX,VR), (GX,VS), (GX, VT), (GX,VU), (GX,VV), (GX,VW), (GX,VX), (GX,VY), (GX,VZ), (GX,WA), (GX,WB), (GX,WC), (GY,VA), (GY, 35 VB), (GY,VC), (GY,VD), (GY,VE), (GY,VF), (GY,VG), (GY,VH), (GY,VI), (GY,VJ), (GY,VK), (GY,VL), (GY,VM), (GY,VN), (GY,VO), (GY,VP), (GY,VQ), (GY,VR), (GY, VS), (GY,VT), (GY,VU), (GY,VV), (GY,VW), (GX,VX), (GY,VY), (GY,VZ), (GY,WA), (GY,WB), (GY,WC), (GZ,40)VA), (GZ,VB), (GZ,VC), (GZ,VD), (GZ,VE), (GZ,VF), (GZ,VG), (GZ,VH), (GZ,VI), (GZ,VJ), (GZ,VK), (GZ,VL), (GZ,VM), (GZ,VN), (GZ,VO), (GZ,VP), (GZ,VQ), (GZ, VR), (GZ,VS), (GZ,VT), (GZ,VU), (GZ,VV), (GZ,VW), (GZ,VX), (GZ,VY), (GZ,VZ), (GZ,WA), (GZ,WB), (GZ, 45 WC), (HA, VA), (HA, VB), (HA, VC), (HA, VD), (HA, VE), (HA, VF), (HA,VG), (HA,VH), (HA,VI), (HA,VJ), (HA,VK), (HA,VL), (HA,VM), (HA,VN), (HA,VO), (HA,VP), (HA, VQ), (HA,VR), (HA,VS), (HA,VT), (HA,VU), (HA,VV), 50 (HA,VW), (HA,VX), (HA,VY), (HA,VZ), (HA,WA), (HA, WB), (HA, WC), (HB, VA), (HB, VB), (HB, VC), (HB, VD), (HB,VE), (HB,VF), (HB,VG), (HB,VH), (HB,VI), (HB,VJ), (HB,VK), (HB,VL), (HB,VM), (HB,VN), (HB,VO), (HB, VP), (HB,VQ), (HB,VR), (HB,VS), (HB,VT), (HB,VU), 55 (HB,VV), (HB,VW), (HB,VX), (HB,VY), (HB,VZ), (HB, WA), (HB, WB), (HB, WC), (HC, VA), (HC, VA), (HC, VB), (HC,VB), (HC,VC), (HC,VD), (HC,VE), (HC,VF), (HC, VG), (HC,VH), (HC,VI), (HC,VJ), (HC,VK), (HC,VL), (HC,VM), (HC,VN), (HC,VO), (HC,VP), (HC,VQ), (HC, 60 VR), (HC,VS), (HC,VT), (HC,VU), (HC,VV), (HC,VW), (HC,VX), (HC,VY), (HC,VZ), (HC,WA), (HC,WB), (HB,VX)WC), (HD,VC), (HD,VD), (HD,VE), (HD,VF), (HD,VG), (HD,VH), (HD,VI), (HD,VJ), (HD,VK), (HD,VL), (HD, VM), (HD,VN), (HD,VO), (HD,VP), (HD,VQ), (HB,VR), 65 (HD,VS), (HD,VT), (HD,VU), (HD,VV), (HD,VW), (HD, VX), (HD,VY), (HD,VZ), (HD,WA), (HD,WB), (HD,WC),

(HE,VA), (HE,VB), (HE,VC), (HE,VD), (HE,VE), (HE, VF), (HE, VG), (HE, VH), (HE, VI), (HE, VJ), (HE, VK), (HE, VL), (HE,VM), (HE,VN), (HE,VO), (HE,VP), (HE,VQ), (HE, VR), (HE, VS), (HE, VT), (HE, VU), (HE, VV), (HE, VW), (HE,VX), (HE,VY), (HE,VZ), (HE,WA), (HE,WB), (HE, WC), (HF, VA), (HF, VB), (HF, VC), (HF, VD), (HF, VE), (HF,VF), (HF,VG), (HF,VH), (HF,VI), (HF,VJ), (HF,VK), (HF,VL), (HF,VM), (HF,VN), (HF,VO), (HF,VP), (HF,VQ), (HF,VR), (HF,VS), (HF,VT), (HF,VU), (HF,VV), (HF,VW), (HF,VX), (HF,VY), (HF,VZ), (HF,WA), (HF,WB), (HF, WC), (HG,VA), (HG,VB), (HC,VC), (HG,VD), (HC,VE), (HG,VF), (HG,VG), (HG,VH), (HC,VI), (HG,VJ), (HG, VK), (HG,VL), (HG,VM), (HN,VN), (HG,VO), (HG,VP), (HG,VQ), (HG,VR), (HB,VS), (HG,VT), (HG,VU), (HG, VV), (HG,VW), (HG,VX), (HG,VY), (HG,VZ), (HG,WA), (HG, WB), (HG, WC), (HH, VA), (HH, VB), (HH, VC), (HH, VD), (HH,VE), (HH,VF), (HH,VG), (HH,VH), (HH,VI), (HH,VJ), (HH,VK), (HH,VL), (HH,VM), (HH,VN), (HH, VO), (HH,VP), (HH,VQ), (HH,VR), (HH,VS), (HH,VT), (HH.VU), (HH.VV), (HH.VW), (HH.VX), (HH.VY), (HH. VZ), (HH, WA), (HH, WB), (HH, WC), (HI, VA), (HI, VB), (HI,VC), (HI,VD), (HI,VE), (HI,VF), (HI,VG), (HI,VH), (HI,VI), (HI,VJ), (HI,VK), (HI,VL), (HI,VM), (HI,VN), (HI,VO), (HI,VP), (HI,VQ), (HI,VR), (HI,VS), (HI,VT), (HI,VU), (HI,VV), (HI,VX), (HI,VY), (HI,VZ), (HI, WA), (HI, WB), (HI, WC), (HJ, VA), (HJ, VB), (HJ, VC), (HJ,VD), (HJ,VE), (HJ,VF), (HJ,VG), (HJ,VH), (HJ,VI), (HJ,VJ), (HJ,VK), (HJ,VL), (HJ,VM), (HJ,VN), (HJ,VO), (HJ,VP), (HJ,VQ), (HJ,VR), (HJ,VS), (HJ,VT), (HJ,VU), (HJ,VV), (HJ,VW), (HJ,VX), (HJ,VY), (HJ,VZ), (HJ,WA), (HJ,WB), (HJ,WC), (HK,VA), (HK,VB), (HK,VC), (HK, VD), (HK,VE), (HK,VF), (HK,VG), (HK,VH), (HK,VI), (HK,VJ), (HK,VK), (HK,VL), (HK,VM), (HK,VN), (HK, VO), (HK,VP), (HK,VQ), (HK,VR), (HK,VS), (HK,VT), (HK, VU), (HK, VV), (HK, VW), (HK, VX), (HK, VY), (HK, VZ), (HK,WA), (HK,WB), (HK,WC), (HL,VA), (HL,VB), (HL,VC), (HL,VD), (HL,VE), (HL,VF), (HL,VG), (HL, VH), (HL,VI), (HL,VJ), (HL,VK), (HL,VL), (HL,VM), (HL,VN), (HL,VO), (HL,VP), (HL,VQ), (HL,VR), (HL, VS), (HL,VT), (HL,VU), (HL,VV), (HL,VX), (HL,VY), (HL,VZ), (HL,WA), (HL,WB), (HL,WC), (HM, VA), (HM,VB), (HM,VC), (HM,VD), (HM,VE), (HM,VF), (HM,VG), (HM,VH), (HM,VI), (HM,VJ), (HM,VK), (HM, VL), (HM,VM), (HM,VN), (HM,VO), (HM,VP), (HM, VQ), (HM,VR), (HM,VS), (HM,VT), (HM,VU), (HM,VV), (HM,VW), (HM,VX), (HM,VY), (HM,VZ), (HM,WA), (HM, WB), (HM, WC), (HN, VA), (HN, VB), (HN, VC), (HN, VD), (HN,VE), (HN,VF), (HN,VG), (HN,VH), (HN,VI), (HN,VJ), (HN,VK), (HN,VL), (HN,VM), (HN,VN), (HN, VO), (HN,VP), (HN,VQ), (HN,VR), (HN,VS), (HN,VT), (HN,VU), (HN,VV), (HN,VW), (HN,VX), (HN,VY), (HN, VZ), (HN,WA), (HN,WB), (HN,WC), (HO,VA), (HO,VB), (HO, VC), (HO, VD), (HO, VE), (HO, VF), (HO, VG), (HO, VH), (HO,VI), (HO,VJ), (HO,VK), (HO,VL), (HO,VM), (HO,VN), (HO,VO), (HO,VP), (HO,VQ), (HO,VR), (HO, VS), (HO,VT), (HO,VU), (HO,VV), (HO,VW), (HO,VX), (HO, VY), (HO, VZ), (HO, WA), (HO, WB), (HO, WC), (HP, VA), (HP,VB), (HP,VC), (HP,VD), (HP,VE), (HP,VF), (HP, VG), (HP,VH), (HP,VI), (HP,VJ), (HP,VK), (HP,VL), (HP, VM), (HP,VN), (HP,VO), (HP,VP), (HP,VQ), (HP,VR), (HP, VS), (HP,VT), (HP,VU), (HP,VV), (HP,VW), (HP,VX), (HP, VY), (HP,VZ), (HP,WA), (HP,WB), (HP,WC), (HQ,VA), (HQ,VB), (HQ,VC), (HQ,VD), (HQ,VE), (HQ,VF), (HQ, VG), (HQ,VH), (HQ,VI), (HQ,VK), (HQ,VL), (HQ,VM), (HQ,VN), (HQ,VO), (HQ,VP), (HQ,VQ), (HQ, VR), (HQ,VS), (HQ,VT), (HQ,VU), (HQ,VV), (HQ,VW), (HQ,VX), (HQ,VY), (HQ,VZ), (HQ,WA), (HQ,WB), (HQ,

WC), (HR,VA), (HR,VB), (HR,VC), (HR,VD), (HR,VE), (HR,VF), (HR,VG), (HR,VH), (HR,VS), (HR,VJ), (HR, VK), (HR,VL), (HR,VM), (HR,VN), (HR,VO), (HR,VP), (HR, VQ), (HR, VR), (HR, VS), (HR, VT), (HR, VU), (HR, VV), (HR,VW), (HR,VX), (HR,VY), (HR,VZ), (HR,WA), 5 (HR,WB), (HR,WC), (HS,VA), (HS,VB), (HS,VC), (HS, VD), (HS,VE), (HS,VF), (HS,VG), (HS,VH), (HS,VS), (HS,VJ), (HS,VK), (HS,VL), (HS,VM), (HS,VN), (HS, VO), (HS,VP), (HS,VQ), (HS,VR), (HS,VS), (HS,VT), (HS,VU), (HS,VV), (HS,VW), (HS,VX), (HS,VY), (HS, VZ), (HS,WA), (HS,WB), (HP,WC), (HT,VA), (HT,VB), (HT,VC), (HT,VD), (HT,VE), (HT,VF), (HT,VG), (HT,VH), (HT,VI), (HT,VJ), (HT,VK), (HT,VL), (HT,VM), (HT,VN), (HT,VO), (HT,VP), (HT,VQ), (HT,VR), (HP,VS), (HT,VT), (HT,VU), (HT,VV), (HT,VW), (HT,VX), (HT,VY), (HT, 15 VZ), (HT,WA), (HT,WB) (HT,WC), (HU,VA), (HU,VB), (HU,VC), (HU,VD), (HU,VE), (HU,VF), (HU,VG), (HU, VH), (HU,VS), (HU,VJ), (HU,VK), (HU,VL), (HU,VM), (HU,VN), (HU,VO), (HU,VP), (HU,VQ), (HU,VR), (HU, VS), (HU,VT), (HU,VU), (HU,VV), (HU,VW), (HU,VX), 20 (HU,VY), (HU,VZ), (HU,WA), (HU,WB), (HU,WC), (HV, VA), (HV,VB), (HP,VC), (HP,VD), (HV,VE), (HP,VF), (HP, VG), (HV,VH), (HV,VI), (HV,VJ), (HV,VK), (HV,VL), (HV, VM), (HV,VN), (HV,VO), (HV,VP), (HV,VQ), (HR,VR), (HV,VS), (HV,VT), (HV,VU), (HV,VV), (HX,VW), (HV, 25 VX), (HV,VY), (HV,VZ), (HX,WA), (HV,WB), (HV,WC), (HW,VA), (HW,VB), (HW,VC), (HW,VD), (HW,VE), (HW, VF), (HW,VG), (HW,VH), (HW,VI), (HW,VJ), (HW,VK), (HW, VL), (HW, VM), (HW, VN), (HW, VO), (HW, VP), (HW, VQ), (HW,VR), (HW,VS), (HW,VT), (HW,VU), (HW,VV), 30 (HW,VW), (HW,VX), (HW,VY), (HW,VZ), (HW,WA), (HW, WB), (HW, WC), (HX, VA), (HX, VB), (HX, VC), (HX, VD), (HX,VE), (HX,VF), (HX,VG), (HX,VH), (HX,VS), (HX,VJ), (HX,VK), (HX,VL), (HX,VM), (HX,VN), (HX, VO), (HX,VP), (HX,VQ), (HX,VR), (HX,VS), (HX,VT), 35 (HX,VU), (HX,VV), (HX,VW), (HX,VX), (HX,VY), (HX, VZ), (HX,WA), (HX,WB), (HX,WC), (HY,VA), (HY,VB), (HY,VC), (HY,VD), (HY,VE), (HY,VF), (HY,VG), (HY, VH), (HY,VI), (HY,VJ), (HY,VK), (HY,VL), (HY,VM), (HY,VN), (HY,VO), (HY,VP), (HY,VQ), (HY,VR), (HY, 40 VS), (HY,VT), (HY,VU), (HY,VV), (HY,VW), (HY,VX), (HY,VY), (HY,VZ), (HY,WA), (HY,WB), (HY,WC), (HZ, VA), (HZ,VB), (HZ,VC), (HZ,VD), (HZ,VE), (HZ,VF), (HZ,VG), (HZ,VH), (HZ,VS), (HZ,VJ), (HZ,VK), (HZ, VL), (HZ,VM), (HZ,VN), (HZ,VO), (HZ,VP), (HZ,VQ), 45 (HZ,VR), (HZ,VS), (HZ,VT), (HZ,VU), (HZ,VV), (HZ, VW), (HZ,VX), (HZ,VY), (HZ,VZ), (HZ,WA), (HZ,WB), (HZ,WC),

(IA,VA), (IA,VB), (IA,VC), (IA,VD), (IA,VE), (IA,VF), (IA,VG), (IA,VH), (IA,VI), (IA,VJ), (IA,VK), (IA,VL), 50 (IA,VM), (IA,VN), (IA,VO), (IA,VP), (IA,VQ), (IA,VR), (IA,VS), (IA,VT), (IA,VU), (IA,VV), (IA,VW), (IA,VX), (IA,VY), (IA,VZ), (IA,WA), (IA,WB), (IA,WC), (IB,VA), (IB,VB), (IB,VC), (IB,VD), (IB,VE), (IB,VF), (IB,VG), (IB,VH), (IB,VI), (IB,VJ), (IB,VK), (IB,VL), (IB,VM), (IB, 55 VN), (IB,VO), (IB,VP), (IB,VQ), (IB,VR), (IB,VS), (IB, VT), (IB,VU), (IB,VV), (IB,VW), (IB,VX), (IB,VY), (IB, VZ), (IB,WA), (IB,WB), (IB,WC), (IC,VA), (IC,VA), (IC, VB), (IC,VB), (IC,VC), (IC,VD), (IC,VE), (IC,VF), (IC, VG), (IC,VH), (IC,VI), (IC,VJ), (IC,VK), (IC,VL), (IC, 60 VM), (IC,VN), (IC,VO), (IC,VP), (IC,VQ), (IC,VR), (IC, VS), (IC,VT), (IC,VU), (IC,VV), (IC,VW), (IC,VX), (IC, VY), (IC,VZ), (IC,WA), (IC,WB), (IC,WC), (ID,VC), (ID, VD), (ID,VE), (ID,VF), (ID,VG), (ID,VH), (ID,VI), (ID, VJ), (ID,VK), (ID,VL), (ID,VM), (ID,VN), (ID,VO), (ID, 65 VP), (ID,VQ), (ID,VR), (ID,VS), (ID,VT), (ID,VU), (ID, VV), (ID,VW), (ID,VX), (ID,VY), (ID,VZ), (ID,WA), (ID,

WB), (ID, WC), (SE, VA), (IE, VB), (IE, VC), (SE, VD), (SE, VE), (SE,VF), (IE,VG), (IE,VH), (SE,VI), (IE,VJ), (SE, VK), (IE,VL), (IE,VM), (IE,VN), (SE,VO), (IE,VP), (SE, VQ), (IE,VR), (SE,VS), (IE,VT), (SE,VU), (IE,VV), (SE, VW), (IE, VX), (IE, VY), (IE, VZ), (IE, WA), (IE, WB), (IE, WC), (IF,VA), (IF,VB), (IF,VC), (IF,VD), (IF,VE), (IF,VF), (IF,VG), (IF,VH), (IF,VI), (IF,VJ), (IF,VK), (IF,VL), (IF, VM), (IF,VN), (IF,VO), (IF,VP), (IF,VQ), (IF,VR), (IF,VS), (IF,VT), (IF,VU), (IF,VV), (IF,VW), (IF,VX), (IF,VY), (IF, VZ), (IF,WA), (IF,WB), (IF,WC), (IG,VA), (IG,VB), (IG, VC), (IG,VD), (IC,VE), (IG,VF), (IG,VG), (IG,VH), (IG, VJ), (IG,VK), (IG,VL), (IC,VM), (IG,VN), (IG,VO), (IG, VP), (IG,VQ), (IG,VR), (IG,VS), (IG,VT), (IG,VU), (IG, VV), (IG,VW), (IG,VX), (IG,VY), (IG,VZ), (IG,WA), (IG, WB), (IG,WC), (IH,VA), (IH,VB), (IH,VC), (IH,VD), (IH, VE), (IH,VF), (IH,VG), (IH,VH), (IH,VI), (IH,VJ), (IH, VK), (IH,VL), (IH,VM), (IH,VN), (IH,VO), (IH,VP), (IH, VQ), (IH,VR), (IH,VS), (IH,VT), (IH,VU), (IH,VV), (IH, VW), (IH, VX), (IH, VY), (IH, VZ), (IH, WA), (IH, WB), (IH, WC), (II,VB), (II,VC), (II,VD), (II,VE), (II,VF), (II,VH), (II,VI), (II,VJ), (II,VM), (II,VO), (II,VP), (II,VQ), (II,VR), (II,VS), (II,VU), (II,VY), (II,VZ), (II,WB), (II,WC), (IJ, VA), (IJ,VB), (IJ,VC), (IJ,VD), (IJ,VE), (IJ,VF), (IJ,VG), (IJ,VH), (IJ,VI), (IJ,VJ), (IJ,VK), (IJ,VL), (IJ,VM), (IJ,VN), (IJ,VO), (IJ,VP), (IJ,VQ), (IJ,VR), (IJ,VS), (IJ,VT), (IJ, VU), (IJ,VV), (IJ,VW), (IJ,VX), (IJ,VY), (IJ,VZ), (IJ,WA), (IJ,WB), (IJ,WC), (IK,VA), (IK,VB), (IK,VC), (IK,VD), (IK,VE), (IK,VF), (IK,VG), (IK,VH), (IK,VJ), (IK,VK), (IK,VL), (IK,VM), (IK,VN), (IK,VO), (IK,VP), (IK,VQ), (IK,VR), (IK,VS), (IK,VT), (IK,VU), (IK,VV), (IK,VW), (IK,VX), (IK,VY), (IK,VZ), (IK,WA), (IK,WB), (IK,WC), (IL,VA), (IL,VB), (IL,VC), (IL,VD), (IL,VE), (IL,VF), (IL, VG), (IL,VH), (IL,VI), (IL,VJ), (IL,VK), (IL,VL), (IL,VM), (IL,VN), (IL,VO), (IL,VP), (IL,VQ), (L,VR), (IL,VS), (IL, VT), (IL,VU), (IL,VV), (IL,VX), (IL,VY), (IL, VZ), (IL,WA), (IL,WB), (IL,WC), (IM,VA), (IM,VB), (IM, VC), (IM, VD), (IM, VE), (IM, VF), (IM, VG), (IM, VH), (IM, VI), (IM, VJ), (IM, VK), (IM, VL), (IM, VM), (IM, VN), (IM, VO), (IM, VP), (IM, VQ), (IM, VR), (IM, VS), (IM, VT), (IM, VU), (IM,VV), (IM,VW), (IM,VX), (IM,VY), (IM,VZ), (IM, WA), (IM, WB), (IM, WC), (IN, VA), (IN, VB), (IN, VC), (IN,VD), (IN,VE), (IN,VF), (IN,VG), (IN,VH), (IN,VI), (IN,VJ), (IN,VK), (IN,VL), (IN,VM), (IN,VN), (IN,VO), (IN, VP), (IN, VQ), (IN, VR), (IN, VS), (IN, VT), (IN, VU), (IN,VV), (IN,VW), (IN,VX), (IN,VY), (IN,VZ), (IN,WA), (IN, WB), (IN, WC), (IO, VA), (IO, VB), (IO, VC), (IO, VD), (IO.VE), (IO.VF), (IO.VG), (IO.VH), (IO.VI), (IO.VJ), (IO. VK), (IO,VL), (IO,VM), (IO,VN), (IO,VO), (IO,VP), (IO, VQ), (IO,VR), (IO,VS), (IO,VT), (IO,VU), (IO,VV), (IO, VW), (IO, VX), (IO, VY), (IO, VZ), (IO, WA), (IO, WB), (IO, WC), (IP,VA), (IP,VB), (IP,VC), (IP,VD), (IP,VE), (IP,VF), (IP,VG), (IP,VH), (IP,VI), (IP,VJ), (IP,VK), (IP,VL), (IP, VM), (IP,VN), (IP,VO), (IP,VP), (IP,VQ), (IP,VR), (IP,VS), (IP,VT), (IP,VU), (IP,VV), (IP,VW), (IP,VX), (IP,VY), (IP VZ), (IP,WA), (IP,WB), (IP,WC), (IQ,VA), (IQ,VB), (IQ, VC), (IQ,VD), (IQ,VE), (IQ,VF), (IQ,VG), (IQ,VH), (Q,VI), (Q,VJ), (IQ,VK), (IQ,VL), (IQ,VM), (IQ,VN), (IQ, VO), (IQ,VP), (IQ,VQ), (IQ,VR), (IQ,VS), (IQ,VT), (IQ, VU), (IQ,VV), (IQ,VW), (IQ,VX), (IQ,VY), (IQ,VZ), (IQ, WA), (IQ,WB), (IQ,WC), (IR,VA), (IR,VB), (IR,VC), (IR, VD), (IR,VE), (IR,VF), (IR,VG), (IR,VH), (IR,VI), (IR,VJ), (IR,VK), (IR,VL), (IR,VM), (IR,VN), (IR,VO), (IR,VP), (IR,VQ), (IR,VR), (IR,VS), (IR,VT), (IR,VU), (IR,VV), (IR,VW), (IR,VX), (IR,VY), (IR,VZ), (IR,WA), (IR,WB), (IR, WC), (IS, VA), (IS, VB), (IS, VC), (IR, VD), (IS, VE), (IS,VF), (IS,VG), (IS,VH), (IS,VI), (IS,VJ), (IS,VK), (IS,

VL), (IS,VM), (IS,VN), (IS,VO), (IS,VP), (IS,VQ), (IS,

VR), (IS,VS), (IS,VT), (IS,VU), (IS,VV), (IS,VW), (IS, VX), (IS,VY), (IS,VZ), (IS,WA), (IS,WB), (IS,WC), (IT, VA), (IT,VB), (IT,VC), (IT,VD), AVE), (IT,VF), (IT,VG), (IT,VH), (IT,VI), (IT,VJ), (IT,VK), (IT,VL), (IT,VM), (IT, VN), (IT,VO), (IT,VP), (IT,VQ), (IT,VR), (IT,VS), (IT,VT), (IT,VU), (IT,VV), (IT,VW), (IT,VX), (IT,VY), (IT,VZ), (IT, WA), (IT, WB), (IT, WC), (IU, VA), (IU, VB), (IU, VC), (IU, VD), (IU,VE), (IU,VF), (IU,VG), (IU,VH), (IU,VI), (IU, VJ), (IU,VK), (IU,VL), (IU,VM), (IU,VN), (U,VO), (U,VP), (IU,VQ), (IU,VR), (IU,VS), (IU,VT), (U,VU), (U,VV), (IU,VW), (IU,VX), (IU,VY), (IU,VZ), (IU,WA), (IU,WB), (IU,WC), (IV,VA), (IV,VB), (IV,VC), (IV,VD), (IV,VE), (IV,VF), (IV,VG), (IV,VH), (IR,VI), (IV,VJ), (IV, VK), (IV,VL), (IR,VM), (IV,VN), (IV,VO), (IV,VP), (IV, VQ), (IV,VR), (IV,VS), (IV,VT), (IV,VU), (IV,VV), (IV, VW), (IV,VX), (IV,VY), (IV,VZ), (IV,WA), (IV,WB), (IV, WC), (IW,VA), (IW,VB), (IW,VC), (IW,VD), (IW,VE), (IW, VF), (IW,VG), (IW,VH), (IW,VI), (IW,VJ), (IW,VK), (IW, VL), (IW,VM), (IW,VN), (IW,VO), (IW,VP), (IW,VQ), (IW, VR), (IW,VS), (IW,VT), (IW,VU), (IW,VV), (IW,VW), (IW, 20 VX), (IW,VY), (IW,VZ), (IW,WA), (IW,WB), (IW,WC), (IX,VA), (IX,VB), (IX,VC), (IX,VD), (IX,VE), (IX,VF), (IX,VG), (IX,VH), (IX,VI), (IX,VJ), (IX,VK), (IX,VL), (IX,VM), (IX,VN), (IX,VO), (IX,VP), (IX,VQ), (IX,VR), (IX,VS), (IX,VT), (IX,VU), (IX,VV), (IX,VW), (IX,VX), 25 (IX,VY), (IX,VZ), (IX,WA), (IX,WB), (IX,WC), (IY,VA), (IY,VB), (IY,VC), (IY,VD), (IY,VE), (IY,VF), (IY,VG), (IY, VH), (IY,VI), (IY,VJ), (IY,VK), (IY,VL), (IY,VM), (IY,VN), (IY,VO), (IY,VP), (IY,VQ), (IY,VR), (IY,VS), (IZ,VT), (IY, VU), (IY,VV), (IY,VW), (IY,VX), (IY,VY), (IY,VZ), (IY, WA), (IY, WB), (IZ, WC), (IZ, VA), (IZ, VB), (IZ, VC), (IZ, VD), (IZ,VE), (IZ,VF), (IZ,VG), (IZ,VH), (IZ,VK), (IZ, VM), (IZ,VN), (IZ,VO), (IZ,VP), (IZ,VQ), (IZ,VR), (IZ, VS), (IZ,VT), (IZ,VU), (IZ,VV), (IZ,VW), (IZ,VX), (IZ, VY), (IZ,VZ), (IZ,WA), (IZ,WB), (IZ,WC), (JA,VA), (JA,VB), (JA,VC), (JA,VD), (JA,VE), (JA,VF), (JA,VG), (JA,VH), (JA,VI), (JA,VJ), (JA,VK), (JA,VL), (JA,VM), (JA,VN), (JA,VO), (JA,VP), (JA,VQ), (JA,VR), (JA,VS), (JA,VT), (JA,VU), (JA,VV), (JA,VW), (JA,VX), (JA,VY), (JA,VZ), (JA,WA), (JA,WB), (JA,WC), (JB,VA), 40 (JB,VB), (JB,VC), (JB,VD), (JB,VE), (JB,VF), (JB,VG), (JB,VH), (JB,VI), (JB,VJ), (JB,VK), (JB,VL), (JB,VM), (JB,VN), (JB,VO), (JB,VP), (JB,VQ), (JB,VR), (JB,VS), (JB,VT), (JB,VU), (JB,VV), (JB,VW), (JB,VX), (JB,VY), (JB,VZ), (JB,WA), (JB,WB), (JB,WC), (JC,VA), (JC,VA), 45 (JC,VB), (JC,VB), (JC,VC), (JC,VD), (JC,VE), (JC,VF), (JC,VG), (JC,VH), (JC,VI), (JC,VJ), (JC,VK), (JC,VL), (JC,VM), (JC,VN), (JC,VO), (JC,VP), (JC,VQ), (JC,VR), (JC,VS), (JC,VT), (JC,VU), (JC,VV), (JC,VW), (JC,VX), (JC,VY), (JC,VZ), (JC,WA), (JC,WB), (JC,WC), (JD,VC), 50 (JD,VD), (JD,VE), (JD,VF), (JD,VG), (JD,VH), (JD,VI), (JD,VJ), (JD,VK), (JD,VL), (JD,VM), (JD,VN), (JD,VO), (JD,VP), (JD,VQ), (JD,VR), (JD,VS), (JD,VT), (JD,VU), (JD,VV), (JD,VW), (JD,VX), (JD,VY), (JD,VZ), (JD,WA), (JD,WB), (JD,WC), (JE,VA), (JE,VB), (JE,VC), (JE,VD), 55 (JE,VE), (JE,VF), (JE,VG), (JE,VH), (JE,VI), (JE,VJ), (JE, VK), (JE, VL), (JE, VM), (JE, VN), (JE, VO), (JE, VP), (JE, VQ), (JE,VR), (JE,VS), (JE,VT), (JE,VU), (JE,VV), (JE, VW), (JE, VX), (JE, VY), (JE, VZ), (JE, WA), (JE, WB), (JE, WC), (JF,VA), (JF,VB), (JF,VC), (JF,VD), (JF,VE), (JF,VF), 60 (JF,VG), (JF,VH), (JF,VI), (JF,VJ), (JF,VK), (JF,VL), (JF, VM), (JF,VN), (JF,VO), (JF,VP), (JF,VQ), (JF,VR), (JF,VS), (JF,VT), (JF,VU), (JF,VV), (JF,VW), (JF,VX), (JF,VY), (JF, VZ), (JF,WA), (JF,WB), (JF,WC), (JG,VA), (JG,VB), (JG, VC), (JG,VD), (JG,VE), (JG,VF), (JG,VG), (JG,VH), (JG, 65 VI), (JG,VJ), (JG,VK), (JG,VL), (JG,VM), (JG,VN), (JG, VO), (JG,VP), (JG,VQ), (JG,VR), (JG,VS), (JG,VT), (JG,

VU), (JG,VV), (JG,VW), (JG,VX), (JG,VY), (JG,VZ), (JG, WA), (JG, WB), (JG, WC), (JH, VA), (JH, VB), (JH, VC), (JH, VD), (JH,VE), (JH,VF), (JH,VG), (JH,VH), (JH,VI), (JH, VJ), (JH,VK), (JH,VL), (JH,VM), (JH,VN), (JH,VO), (JH, VP), (JH,VQ), (JH,VR), (JH,VS), (JH,VT), (JH,VU), (JH, VV), (JH,VW), (JH,VX), (JH,VY), (JH,VZ), (JH,WA), (JH, WB), (JH, WC), (JI, VA), (JI, VB), (JI, VC), (JI, VD), (JI, VE), (JI,VF), (JI,VG), (JI,VH), (JI,VI), (JI,VJ), (JI,VK), (JI,VL), (JI,VM), (JI,VN), (JI,VO), (JI,VP), (JI,VQ), (JI,VR), (JI, VS), (JI,VT), (JI,VU), (JI,VV), (JI,VW), (JI,VX), (JI,VY), (JI,VZ), (JI,WA), (JI,WB), (JI,WC), (JJ,VA), (JJ,VB), (JJ, VC), (JJ,VD), (JJ,VE), (JJ,VF), (JJ,VG), (JJ,VH), (JJ,VI), (JJ,VJ), (JJ,VK), (JJ,VL), (JJ,VM), (JJ,VN), (JJ,VO), (JJ, VP), (JJ,VQ), (JJ,VR), (JJ,VS), (JJ,VT), (JJ,VU), (JJ,VV), (JJ,VW), (JJ,VX), (JJ,VY), (JJ,VZ), (JJ,WA), (JJ,WB), (JJ, WC), (JK,VA), (JK,VB), (JK,VC), (JK,VD), (JK,VE), (JK, VF), (JK,VG), (JK,VH), (JK,VI), (JK,VJ), (JK,VK), (JK, VL), (JK,VM), (JK,VN), (JK,VO), (JK,VP), (JK,VQ), (JK, VR), (JK,VS), (JK,VT), (JK,VU), (JK,VV), (JK,VW), (JK, VX), (JK,VY), (JK,VZ), (JK,WA), (JK,WB), (JK,WC), (JL, VA), (JL,VB), (JL,VC), (JL,VD), (JF,VE), (JL,VF), (JL, VG), (JL,VH), (JL,VI), (JL,VK), (JL,VL), (JL, VM), (JL,VN), (JL,VO), (JL,VP), (JL,VQ), (JL,VR), (JL, VS), (JL,VT), (JL,VU), (JL,VV), (JL,VW), (JL,VX), (JL, VY), (JL,VZ), (JL,WA), (JL,WB), (JL,WC), (JM,VA), (JM, VB), (JM,VC), (JM,VD), (JM,VE), (JM,VF), (JM,VG), (JM,VH), (JM,VS), (JM,VJ), (JM,VK), (JM,VL), (JM,VM), (JM,VN), (JM,VO), (JM,VP), (JM,VQ), (JM,VR), (JM,VS), (JM,VT), (JM,VU), (JM,VV), (JM,VW), (JM,VX), (JM, VY), (JM,VZ), (JM,WA), (JM,WB), (JM,WC), (JN,VA), (JN, VB), (JN, VC), (JN, VD), (JN, VE), (JN, VF), (JN, VG), (JN,VH), (JN,VI), (JN,VJ), (JN,VK), (JN,VL), (JN,VM), $(JN,VN),\ (JN,VO),\ (JN,VP),\ (JN,VQ),\ (JN,VR),\ (JN,VS),$ (JN,VT), (JN,VU), (JN,VV), (JN,VW), (JN,VX), (JN,VY), (JN,VZ), (JN,WA), (JN,WB), (JN,WC), (JO,VA), (JO,VB), (JO,VC), (JO,VD), (JO,VE), (JO,VF), (JO,VG), (JO,VH), (JO,VS), (JO,VJ), (JO,VK), (JO,VL), (JO,VM), (JO,VN), (JO, VO), (JO, VP), (JO, VQ), (JO, VR), (JO, VS), (JO, VT), (JO,VU), (JO,VV), (JO,VW), (JO,VX), (JO,VY), (JO,VZ), (JO,WA), (JO,WB), (JO,WC), (JP,VA), (JP,VB), (JP,VC), (JP,VD), (JP,VE), (JP,VF), (JP,VG), (JP,VH), (JP,VI), (JP, VJ), (JP,VK), (JP,VL), (JP,VM), (JP,VN), (JP,VO), (JP,VP), (JP,VQ), (JP,VR), (JP,VS), (JP,VT), (JP,VU), (JP,VV), (JP, VW), (JP,VX), (JP,VY), (JP,VZ), (JP,WA), (JP,WB), (JP, WC), (JQ,VA), (JQ,VB), (JQ,VC), (JQ,VD), (JQ,VE), (JQ, VF), (JQ,VG), (JQ,VH), (JQ,VI), (JQ,VJ), (JQ,VK), (JQ, VL), (JQ,VM), (JQ,VN), (JQ,VO), (JQ,VP), (JQ,VQ), (JQ, VR), (JQ,VS), (JQ,VT), (JQ,VU), (JQ,VV), (JQ,VW), (JQ, VX), (JQ,VY), (JQ,VZ), (JQ,WA), (JQ,WB), (JQ,WC), (JR, VA), (JR,VB), (JR,VC), (JR,VD), (JR,VE), (JR,VF), (JR, VG), (JR,VH), (JR,VI), (JR,VJ), (JR,VK), (JR,VL), (JR, VM), (JR,VN), (JR,VO), (JR,VP), (JR,VQ), (JR,VR), (JR, VS), (JR,VT), (JR,VU), (JR,VV), (JR,VW), (JR,VX), (JR, VY), (JR,VZ), (JR,WA), (JR,WB), (JR,WC), (JS,VA), (JS, VB), (JS,VC), (JS,VD), (JS,VE), (JS,VF), (JS,VG), (JS, VH), (JS,VI), (JS,VJ), (JS,VK), (JS,VL), (JS,VM), (JS,VN), (JS,VO), (JS,VP), (JS,VQ), (JS,VR), (JS,VS), (JS,VT), (JS, VU), (JS,VV), (JS,VW), (JS,VX), (JS,VY), (JS,VZ), (JS, WA), (JS, WB), (JS, WC), (JT, VA), (AVB), (QVC), (JT, VD), (JT,VE), (JT,VF), (JT,VG), (JT,VH), (JT,VI), (JT,VJ), (JT, VK), (JT,VL), (JT,VM), (JT,VN), (JT,VO), (JT,VP), (JT, VQ), (JT,VR), (JT,VS), (JT,VT), (JT,VU), (JT,VV), (GVW), (JT,VX), (JT,VY), (JT,VZ), (JT,WA), (JT,WB), (JT,WC), (JU,VA), (JU,VB), (JU,VC), (JU,VD), (JU,VE), (JU,VF), (JU,VG), (JU,VH), (JU,VI), (JU,VK), (JU,VK), (JU,VM), (JU,VN), (JU,VO), (JU,VP), (JU,VQ), (JU,VR), (JU,VS), (JU,VT), (JU,VU), (JU,VV), (JU,VW), (JU,VX),

(JU,VY), (JU,VZ), (JU,WA), (JU,WB), (JU,WC), (JV,VA), (JV,VB), (JV,VC), (JV,VD), (JV,VE), (JV,VF), (JV,VG), (JV,VH), (JV,VI), (JV,VJ), (JV,VK), (JV,VL), (JV,VM), (JV,VM)VN), (JV,VO), (JT,VP), (JV,VQ), (JV,VR), (JV,VS), (JV, VT), (JV,VU), (JV,VV), (JV,VW), (JV,VX), (JV,VY), (JV, 5 VZ), (JW,WA), (JW,WB), (JW,WC), (JW,VA), (JW,VB), (JW,VC), (JW,VD), (JW,VE), (JW,VF), (JW,VG), (JW,VH), (JW,VI), (JW,VJ), (JW,VK), (JW,VL), (JW,VM), (JW,VN), (JW,VO), (JW,VP), (JW,VQ), (JW,VR), (JW,VS), (JW,VT), (JW,VU), (JW,VV), (JW,VW), (JW,VX), (JW,VY), (JW, 10 VZ), (JW,WA), (JW,WB), (JW,WC), (JX,VA), (JX,VB), (JX,VC), (JX,VD), (JX,VE), (JX,VF), (JX,VG), (JX,VH), (JX,VI), (JX,VK), (JX,VL), (JX,VM), (JX,VN), (JX,VO), (JX,VP), (JX,VQ), (JX,VR), (JX,VS), (JX,VT), (JX,VU), (JX,VV), (JX,VW), (JX,VX), (JX,VY), (JX,VZ), (JX,WA), 15 (JX,WB), (JX,WC), (JY,VA), (JY,VB), (JY,VC), (JY,VD), (JY,VE), (JY,VF), (JY,VG), (JY,VH), (JY,VI), (JY,VJ), (JY, VK), (JY,VL), (JY,VM), (JY,VN), (JY,VO), (JY,VP), (JY, VQ), (JY,VR), (JY,VS), (JY,VT), (JY,VU), (JY,VV), (JY, VW), (JY,VX), (JY,VY), (JY,VZ), (JY,WA), (JY,WB), (JY, 20 WC), (JZ,VA), (JZ,VB), (JZ,VC), (JZ,VD), (JZ,VE), (JZ, VF), (JZ,VG), (JZ,VH), (JZ,VI), (JZ,VJ), (JZ,VK), (JZ,VL), (JZ,VM), (JZ,VN), (JZ,VO), (JZ,VP), (JZ,VQ), (JZ,VR), (JZ,VS), (JZ,VT), (JZ,VU), (JZ,VV), (JZ,VW), (JZ,VX), (JZ,VY), (JZ,VZ), (JZ,WA), (JZ,WB), (JZ,WC), (KA,VA), (KA,VB), (KA,VC), (KA,VD), (KA,VE), (KA, VF), (KA,VG), (KA,VH), (KA,VI), (KA,VJ), (KA,VK), (KA,VL), (KA,VM), (KA,VN), (KA,VO), (KA,VP), (KA, VQ), (KA,VR), (KA,VS), (KA,VT), (KA,VU), (KA,VV), (KA,VW), (KA,VX), (KA,VY), (KA,VZ), (KA,WA), (KA, 30 WB), (KA, WC), (KB, VA), (KB, VB), (KB, VC), (KB, VD), (KB,VE), (KB,VF), (KB,VG), (KB,VH), (KB,VI), (KB,VJ), (KB,VK), (KB,VL), (KB,VM), (KB,VN), (KB,VO), (KB, VP), (KB,VQ), (KB,VR), (KB,VS), (KB,VT), (KB,VU), (KB,VV), (KB,VW), (KB,VX), (KB,VY), (KB,VZ), (KB, 35 WA), (KB, WB), (KB, WC), (KC, VA), (KC, VA), (KC, VB), (KC,VB), (KC,VC), (KC,VD), (KC,VE), (KC,VF), (KC, VG), (KC,VH), (KC,VI), (KC,VJ), (KC,VK), (KC,VL), (KC,VM), (KC,VN), (KC,VO), (KC,VP), (KC,VQ), (KC, VR), (KC,VS), (KC,VT), (KC,VU), (KC,VV), (KC,VW), 40 (KC,VX), (KC,VY), (KC,VZ), (KC,WA), (KC,WB), (KC, WC), (KD,VC), (KD,VD), (KD,VE), (KD,VF), (KD,VG), (KD,VH), (KD,VI), (KD,VJ), (KC,VK), (KD,VL), (KD, VM), (KD,VN), (KD,VO), (KD,VP), (KC,VQ), (KD,VR), (KD,VS), (KD,VT), (KD,VU), (KD,VV), (KD,VW), (KD, 45 VX), (KD,VY), (KD,VZ), (KA,WA), (KD,WB), (KD,WC), (KE, VA), (KE, VB), (KE, VC), (KE, VD), (KE, VE), (KE, VF), (KE,VG), (KE,VH), (KE,VI), (KE,VJ), (KE,VK), (KE, VL), (KE,VM), (KE,VN), (KE,VO), (KE,VP), (KC,VQ), (KE, VR), (KE, VS), (KE, VT), (KE, VU), (KE, VV), (KE, 50 VW), (KE, VX), (KE, VY), (KE, VZ), (KE, WA), (KE, WB), (KE, WC), (KF, VA), (KF, VB), (KF, VC), (KF, VD), (KF, VE), (KC,VF), (KF,VG), (KF,VH), (KF,VI), (KA,VJ), (KF,VK), (KF,VL), (KF,VM), (KF,VN), (KF,VO), (KF,VP), (KF,VQ), (KF,VR), (KF,VS), (KF,VT), (KF,VU), (KF,VV), (KF,VW), 55 (KF,VX), (KF,VY), (KF,VZ), (KF,WA), (KF,WB), (KF, WC), (KG,VA), (KG,VB), (KG,VC), (KG,VD), (KG,VE), (KG,VF), (KG,VG), (KG,VH), (KG,VI), (KG,VJ), (KG, VK), (KG,VL), (KG,VM), (KG,VN), (KG,VO), (KG,VP), (KG,VQ), (KG,VR), (KG,VS), (KG,VT), (KG,VU), (KG, 60 VV), (KG,VW), (KG,VX), (KG,VY), (KG,VZ), (KG,WA), (KG,WB), (KG,WC), (KH,VA), (KH,VB), (KH,VC), (KH, VD), (KH,VE), (KH,VF), (KH,VG), (KH,VH), (KH,VI), (KH,VJ), (KH,VK), (KH,VL), (KH,VM), (KH,VN), (KH, VO), (KH,VP), (KH,VQ), (KH,VR), (KH,VS), (KH,VT), 65 (KH,VU), (KH,VV), (KH,VW), (KH,VX), (KH,VY), (KH, VZ), (KH,WA), (KH,WB), (KH,WC), (KI,VA), (KI,VB),

54

(KI,VC), (KI,VD), (KI,VE), (KI,VF), (KI,VG), (KI,VH), (KI,VI), (KI,VJ), (KI,VK), (KI,VL), (KI,VM), (KI,VN), (KI,VO), (KI,VP), (KI,VQ), (KI,VR), (KI,VS), (KI,VT), (KI,VU), (KI,VV), (KI,VW), (KI,VX), (KI,VY), (KI,VZ), (KI,WA), (KI,WB), (KI,WC), (KJ,VA), (KJ,VB), (KJ,VC), (KJ,VD), (KG,VE), (KJ,VF), (KJ,VG), (KJ,VH), (KJ,VI), (KJ,VJ), (KJ,VK), (KJ,VL), (KJ,VM), (KJ,VN), (KJ,VO), (KJ,VP), (KJ,VQ), (KJ,VR), (KJ,VS), (KJ,VT), (KJ,VU), (KJ,VV), (KJ,VW), (KJ,VX), (KJ,VY), (KJ,VZ), (KJ,WA), (KJ,WB), (KJ,WC), (KK,VA), (KK,VB), (KK,VC), (KK, VD), (KK,VE), (KK,VF), (KK,VG), (KK,VH), (KK,VI), (KK,VJ), (KK,VK), (KK,VL), (KK,VM), (KK,VN), (KK, VO), (KK,VP), (KK,VQ), (KK,VR), (KK,VS), (KK,VT), (KK,VU), (KK,VV), (KK,VW), (KK,VX), (KK,VY), (KK, VZ), (KK,WA), (KK,WB), (KK,WC), (KL,VA), (KL,VB), (KL,VC), (KL,VD), (KL,VE), (KL,VF), (KL,VG), (KL, VH), (KL,VI), (KL,VI), (KL,VK), (KL,VL), (KL,VM), (KL,VN), (KL,VO), (KL,VP), (KL,VQ), (KL,VR), (KL, VS), (KL,VT), (KL,VU), (KL,VV), (KL,VW), (KL,VX), (KL, VY), (KL, VZ), (KL, WA), (KL, WB), (KL, WC), (KM, VA), (KH,VB), (KM,VC), (KM,VD), (KM,VE), (KM,VF), (KM,VG), (KM,VH), (KM,VI), (KM,VJ), (KM,VK), (KM, VL), (KM,VM), (KM,VN), (KM,VO), (KM,VP), (KM, VQ), (KM,VR), (KM,VS), (KM,VT), (KM,VU), (KM,VV), (KM,VW), (KM,VX), (KM,VY), (KM,VZ), (KM,WA), (KM,WB), (KM,WC), (KN,VA), (KN,VB), (KN,VC), (KN, VD), (KN,VE), (KN,VF), (KN,VG), (KN,VH), (KN,VI), (KN,VJ), (KN,VK), (KN,VL), (KN,VM), (KN,VN), (KN, VO), (KN,VP), (KN,VQ), (KN,VR), (KN,VS), (KN,VT), (KN, VU), (KN, VV), (KN, VW), (KN, VX), (KN, VY), (KN, VZ), (KN,WA), (KN,WB), (KN,WC), (KO,VA), (KO,VB), (KO,VC), (KO,VD), (KO,VE), (KO,VF), (KO,VG), (KO, VH), (KO,VI), (KO,VJ), (KO,VK), (KO,VL), (KO,VM), (KO, VN), (KO, VO), (KO, VP), (KO, VQ), (KO, VR), (KO, VS), (KO,VT), (KO,VU), (KO,VV), (KO,VW), (KO,VX), (KO, VY), (KO, VZ), (KO, WA), (KO, WB), (KO, WC), (KP, VA), (KP,VB), (KP,VC), (KP,VD), (KP,VE), (KP,VF), (KP, VG), (KP,VH), (KP,VI), (KP,VJ), (KP,VK), (KP,VL), (KP, VM), (KP,VN), (KP,VO), (KP,VP), (KP,VQ), (KP,VR), (KP, VS), (KP,VT), (KP,VU, (KP,VV), (KP,VW), (KP,VX), (KP, VY), (KP,VZ), (KP,WA), (KP,WB), (KP,WC), (KQ,VA), (KQ,VB), (KQ,VC), (KQ,VD), (KQ,VE), (KQ,VF), (KQ, VG), (KQ,VH), (KQ,VI), (KQ,VJ), (KQ,VK), (KQ,VL), (KQ,VM), (KQ,VN), (KQ,VO), (KQ,VP), (KQ,VQ), (KQ, VR), (KQ,VS), (KQ,VT), (KQ,VU), (KQ,VV), (KQ,VW), (KQ,VX), (KQ,VY), (KQ,VZ), (KQ,WA), (KQ,WB), (KQ, WC), (KR,VA), (KR,VB), (KR,VC), (KR,VD), (KR,VE), (KR,VF), (KR,VG), (KR,VH), (KR,VI), (KR,VJ), (KR, VK), (KR,VL), (KR,VM), (KR,VN), (KR,VO), (KR,VP), (KR,VQ), (KR,VR), (KR,VS), (KR,VT), (KR,VU), (KR, VV), (KR,VW), (KR,VX), (KR,VY), (KR,VZ), (KR,WA), (KN, WB), (KR, WC), (KS, VA), (KS, VB), (KS, VC), (KS, VD), (KS,VE), (KS,VF), (KS,VG), (KS,VH), (KS,VI), (KS, VJ), (KS,VK), (KS,VL), (KS,VM), (KS,VN), (KS,VO), (KS,VP), (KS,VQ), (KS,VR), (KS,VS), (KS,VT), (KS,VU), (KS, VV), (KS, VW), (KS, VX), (KS, VY), (KQ, VZ), (KS, WA), (KS, WB), (KS, WC), (KT, VA), (KT, VB), (KT, VC), (KT,VD), (KT,VE), (KT,VF), (KT,VG), (KT,VH), (KT,VI), (KT,VJ), (KT,VK), (KT,VL), (KT,VM), (KT,VN), (KT,VO), (KT,VP), (KT,VQ), (KT,VR), (KT,VS), (KT,VT), (KT,VU), (KT,VV), (KT,VW), (KT,VX), (KT,VY), (KT,VZ), (KT, WA), (KT,WB), (KT,WC), (KU,VA), (KU,VB), (KU,VC), (KU,VD), (KU,VE), (KU,VF), (KU,VG), (KU,VH), (KU, VI), (KU,VJ), (KU,VK), (KU,VL), (KU,VM), (KU,VN), (KU,VO), (KU,VP), (KU,VQ), (KU,VR), (KU,VS), (KU, VT), (KU,VU), (KU,VV), (KU,VW), (KU,VX), (KU,VY), (KU, VZ), (KU, WA), (KU, WB), (KU, WC), (KV, VA), (KV,

VB), (KV,VC), (KV,VD), (KV,VE), (KV,VF), (KV,VG), (KV,VH), (KV,VI), (KV,VJ), (KV,VK), (KV,VL), (KV,VM), (KV,VN), (KV,VO), (KV,VP), (KV,VQ), (KV,VR), (KV, VS), (KV,VT), (KV,VU), (KV,VV), (KV,VW), (KV,VX), (KV,VY), (KV,VZ), (KV,WA), (KV,WB), (KV,WC), (KW, 5 VA), (KW,VB), (KW,VC), (KW,VD), (KW,VE), (KW,VF), (KW,VG), (KW,VH), (KW,VI), (KW,VJ), (KW,VK), (KW, VL), (KW,VM), (KW,VN), (KW,VO), (KW,VP), (KW,VQ), (KW,VR), (KW,VS), (KW,VT), (KW,VU), (KW,VV), (KW, VW), (KW,VX), (KW,VY), (KW,VZ), (KW,WA), (KW, 10 WB), (KW,WC), (KX,VA), (KX,VB), (KX,VC), (KX,VD), (KX,VE), (KX,VF), (KX,VG), (KX,VH), (KX,VI), (KX, VJ), (KX,VK), (KX,VL), (KX,VM), (KX,VN), (KX,VO), (KU,VP), (KU,VQ), (KX,VR), (KX,VS), (KX,VT), (KX, VU), (KX,VV), (KX,VW), (KU,VX), (KX,VY), (KX,VZ), (KU,WA), (KX,WB), (KX,WC), (KY,VA), (KY,VB), (KY, VC), (KY,VD), (KY,VE), (KY,VF), (KY,VG), (KY,VH), (KY,VI), (KY,VJ), (KY,VK), (KY,VL), (KY,VM), (KY,VN),(KY,VO), (KY,VP), (KY,VQ), (KY,VR), (KY,VS), (KY, VT), (KY,VU), (KY,VV), (KY,VW), (KY,VX), (KY,VY), 20 (KY,VZ), (KY,WA), (KY,WB), (KY,WC), (KZ,VA), (KZ, VB), (KZ,VC), (KZ,VD), (KZ,VE), (KZ,VF), (KZ,VG), (KZ,VH), (KZ,VI), (KZ,VJ), (KZ,VK), (KZ,VL), (KZ,VM), (KZ,VN), (KZ,VO), (KZ,VP), (KZ,VQ), (KZ,VR), (KZ, VS), (KZ,VT), (KZ,VU), (KZ,VV), (KZ,VW), (KZ,VX), 25 (KZ,VY), (KZ,VZ), (KZ,WA), (KZ,WB), (KZ,WC), (LA,VA), (LH,VB), (LN,VC), (LN,VD), (LA,VE), (LA, VF), (LN,VG), (LA,VH), (LA,VI), (LA,VJ), (LA,VK), (LN, VL), (LN,VM), (LA,VN), (LA,VO), (LG,VP), (LG,VQ), (LA,VR), (LA,VS), (LG,VT), (LA,VU), (LA,VV), (LA, 30 VW), (LA,VX), (LA,VY), (LA,VZ), (LA,WA), (LA,WB), (LL, WC), (LB, VA), (LH, VB), (LB, VC), (LN, VD), (LB, VE), (LB,VF), (LN,VG), (LB,VH), (LB,VI), (LB,VJ), (LB, VK), (LN, VL), (LN, VM), (LB, VN), (LB, VO), (LG, VP), (LB,VQ), (LB,VR), (LB,VS), (LG,VT), (LB,VU), (LB, 35 VV), (LB,VW), (LB,VX), (LB,VY), (LB,VZ), (LB,WA), (LL, WB), (LL, WC), (LC, VA), (LC, VA), (LC, VB), (LC, VB), (LB,VC), (LC,VD), (LC,VE), (LC,VF), (LC,VG), (LC,VH), (LC,VI), (LC,VJ), (LC,VK), (LC,VL), (LC,VM), (LC,VN), (LC,VO), (LC,VP), (LB,VQ), (LC,VR), (LC,VS), 40 (LC,VT), (LC,VU), (LC,VV), (LC,VW), (LC,VX), (LC, VY), (LC,VZ), (LC,WA), (LC,WB), (LC,WC), (LD,VC), (LD, VD), (LD, VE), (LD, VF), (LD, VG), (LD, VH), (LD, VI), (LD,VJ), (LD,VK), (LD,VL), (LD,VM), (LD,VN), (LD, VO), (LD,VP), (LD,VQ), (LD,VR), (LD,VS), (LD,VT), 45 (LD,VU), (LD,VV), (LD,VW), (LD,VX), (LD,VY), (LD, VZ), (LD,WA), (LD,WB), (LD,WC), (LE,VA), (LH,VB), (LN,VC), (LE,VD), (LE,VE), (LE,VF), (LE,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,VK), (LE,VL), (LE,VM), (LE,VN), (LE, VO), (LE, VP), (LE, VQ), (LE, VR), (LE, VS), (LE, VT), 50 (LE,VU), (LE,VV), (LE,VW), (LE,VX), (LE,VY), (LE, VZ), (LE,WA), (LL,WB), (LL,WC), (LF,VA), (LF,VB), (LF,VC), (LF,VD), (LF,VE), (LF,VF), (LF,VG), (LF,VH), (LF,VI), (LF,VJ), (LF,VK), (LF,VL), (LF,VM), (LF,VN), (LF,VO), (LF,VP), (LF,VQ), (LF,VR), (LF,VS), (LF,VT), 55 (LF,VU), (LF,VV), (LF,VX), (LF,VY), (LF,VZ), (LF,WA), (LF,WB), (LF,WC), (LG,VA), (LG,VB), (LG, VC), (LG,VD), (LG,VE), (LG,VF), (LG,VG), (LG,VH), (LG,VI), (LG,VJ), (LG,VK), (LG,VL), (LG,VM), (LG,VN), (LG, VO), (LG, VP), (LG, VQ), (LG, VR), (LG, VS), (LG, 60 VT), (LG,VU), (LG,VV), (LG,VW), (LG,VX), (LG,VY), (LG,VZ), (LG,WA), (LL,WB), (LL,WC), (LH,VA), (LH, VB), (LH,VC), (LH,VD), (LH,VE), (LH,VF), (LH,VG), (LH,VH), (LH,VI), (LH,VJ), (LH,VK), (LH,VL), (LH,VM), (LH,VN), (LH,VO), (LH,VP), (LH,VQ), (LH,VR), (LH, 65 VS), (LH,VT), (LH,VU), (LH,VV), (LH,VW), (LH,VX), (LH,VY), (LH,VZ), (LH,WA), (LH,WB), (LH,WC), (LI,

VA), (LI,VB), (LI,VC), (LI,VD), (LI,VE), (LI,VF), (LI, VG), (LI,VH), (LI,VI), (LI,VJ), (LI,VK), (LI,VL), (LI,VM), (LI,VN), (LI,VO), (LI,VP), (LI,VQ), (LI,VR), (LI,VS), (LI, VT), (LI,VU), (LI,VV), (LI,VX), (LI,VY), (LI, VZ), (LI,WA), (LI,WB), (LI,WC), (LJ,VA), (LJ,VB), (LJ, VC), (LJ,VD), (LJ,VE), (LJ,VF), (LJ,VG), (LJ,VH), (LJ, VI), (LJ,VJ), (LJ,VK), (LJ,VL), (LJ,VM), (LJ,VN), (LJ, VO), (LJ,VP), (LJ,VQ), (LJ,VR), (LJ,VS), (LJ,VT), (LJ, VU), (LJ,VV), (LJ,VW), (LJ,VX), (LJ,VY), (LJ,VZ), (LJ, WA), (LJ,WB), (LJ,WC), (LK,VA), (LH,VB), (LN,VC), (LN, VD), (LK, VE), (LK, VF), (LN, VG), (LK, VH), (LK, VI), (LK,VJ), (LK,VK), (LN,VL), (LN,VM), (LK,VN), (LK, VO), (LG,VP), (LG,VQ), (LK,VR), (LK,VS), (LG,VT), (LK,VU), (LK,VV), (LK,VW), (LK,VX), (LK,VY), (LK, VZ), (LK,WA), (LL,WB), (LL,WC), (LL,VA), (LL,VB), (LL, WC), (LL, VD), (LL, VE), (LL, VF), (LL, VG), (LL, VH), (LL,VI), (LL,VJ), (LL,VK), (LL,VL), (LL,VM), (LL,VN), (LL,VO), (LL,VP), (LL,VQ), (LL,VR), (LL,VS), (LL,VT), (LL,VU), (LL,VV), (LL,VW), (LL,VX), (LL,VY), (LL, VZ), (LL,WA), (LL,WB), (LL,WC), (LM,VA), (LM,VB), (LM, VC), (LM, VD), (LM, VE), (LM, VF), (LM, VG), (LM, VH), (LM,VI), (LM,VJ), (LM,VK), (LM,VL), (LM,VM), (LM,VN), (LM,VO), (LM,VP), (LM,VQ), (LM,VR), (LM, VS), (LM,VT), (LM,VU), (LM,VV), (LM,VW), (LM,VX), (LM, VY), (LM, VZ), (LM, WA), (LM, WB), (LM, WC), (LN, VA), (LH,VB), (LN,VC), (LN,VD), (LN,VE), (LN,VF), (LN,VG), (LN,VH), (LN,VI), (LN,VJ), (LN,VK), (LN,VL), (LN,VM), (LN,VN), (LN,VO), (LG,VP), (LG,VQ), (LN, VR), (LN,VS), (LN,VT), (LN,VU), (LN,VV), (LN,VW), (LN, VX), (LN, VY), (LN, VZ), (LN, WA), (LN, WB), (LN, WC), (LO,VA), (LO,VB), (LO,VC), (LO,VD), (LO,VE), (LO, VF), (LO, VG), (LO, VH), (LO, VI), (LO, VJ), (LO, VK), (LO,VL), (LO,VM), (LO,VN), (LO,VO), (LO,VP), (LO, VQ), (LO,VR), (LO,VS), (LO,VT), (LO,VU), (LO,VV), (LO,VW), (LO,VX), (LO,VY), (LO,VZ), (LO,WA), (LO, WB), (LO, WC), (LP, VA), (LP, VB), (LP, VC), (LP, VD), (LP, VE), (LP,VF), (LP,VG), (LP,VH), (LP,VI), (LP,VJ), (LP, VK), (LP,VL), (LP,VM), (LP,VN), (LP,VO), (LP,VP), (LP, VQ), (LP,VR), (LP,VS), (LP,VT), (LP,VU), (LP,VV), (LP, VW), (LP, VX), (LP, VY), (LP, VZ), (LP, WA), (LP, WB), (LP, WC), (LQ,VA), (LQ,VB), (LQ,VC), (LQ,VD), (LQ,VE), (LQ,VF), (LQ,VG), (LQ,VH), (LQ,VI), (LQ,VJ), (LQ,VK), (LQ,VL), (LQ,VM), (LQ,VN), (LQ,VO), (LQ,VP), (LQ, VQ), (LQ,VR), (LQ,VS), (LQ,VT), (LQ,VU), (LQ,VV), (LQ,VW), (LQ,VX), (LQ,VY), (LQ,VZ), (LQ,WA), (LQ, WB), (LQ,WC), (LR,VA), (LH,VB), (LN,VC), (LN,VD), (LR, VE), (LR, VF), (LN, VG), (LR, VH), (LR, VI), (LR, VJ), (LR,VK), (LN,VL), (LR,VM), (LR,VN), (LR,VO), (LG, VP), (LG,VQ), (LR,VR), (LR,VS), (LG,VT), (LR,VU), (LR,VV), (LR,VW), (LR,VX), (LR,VY), (LR,VZ), (LR, WA), (LL,WB), (LL,WC), (LS,VA), (LS,VB), (LS,VC), (LS,VD), (LS,VE), (LS,VF), (LS,VG), (LS,VH), (LS,VI), (LS,VJ), (LS,VK), (LS,VL), (LS,VM), (LS,VN), (LS,VO), (LS,VP), (LS,VQ), (LS,VR), (LS,VS), (LS,VT), (LS,VU), (LP,VV), (LS,VW), (LS,VX), (LS,VY), (LS,VZ), (LS,WA), (LS, WB), (LS, WC), (LT, VA), (LT, VB), (LT, VC), (LT, VD), (LT, VE), (LT, VF), (LT, VG), (LT, VH), (LT, VI), (LT, VJ), (LT, VK), (LT,VL), (LT,VM), (LT,VN), (LT,VO), (LT,VP), (LT, VQ), (LT,VR), (LT,VS), (LT,VT), (LT,VU), (LT,VV), (LT, VW), (LT,VX), (LT,VY), (LT,VZ), (LT,WA), (LT,WB), (LT, WC), (LU,VA), (LU,VB), (LU,VC), (LU,VD), (LU,VE), (LU,VF), (LU,VG), (LU,VH), (LU,VI), (LU,VJ), (LU,VK), (LU,VL), (LU,VM), (LU,VN), (LU,VO), (LU,VP), (LU, VQ), (LU,VR), (LU,VS), (LU,VT), (LU,VU), (LU,VV), (LU,VW), (LU,VX), (LU,VY), (LU,VZ), (LU,WA), (LU, WB), (LU, WC), (LV, VA), (LV, VB), (LV, VC), (LV, VD), (LV, VE), (LP,VF), (LV,VG), (LV,VH), (LV,VI), (LV,VJ), (LV,

VK), (LP,VL), (LV,VM), (LV,VN), (LV,VO), (LV,VP), (LV, VQ), (LV,VR), (LV,VS), (LV,VT), (LV,VU), (LV,VV), (LV, VW), (LV,VX), (LV,VY), (LV,VZ), (LV,WA), (LV,WB), (LV, WC), (LW, VA), (LW, VB), (LW, VC), (LW, VD), (LW,

VE), (LW,VF), (LW,VG), (LW,VH), (LW,VI), (LW,VJ), 5 (LW,VK), (LW,VL), (LW,VM), (LW,VN), (LW,VO), (LW, VP), (LW,VQ), (LW,VR), (LW,VS), (LW,VT), (LW,VU), (LW,VV), (LW,VW), (LW,VX), (LW,VY), (LW,VZ), (LW, WA), (LW,WB), (LW,WC), (LX,VA), (LX,VB), (LX,VC), (LX,VD), (LX,VE), (LX,VF), (LX,VG), (LX,VH), (LX,VI), 10 (LX,VJ), (LX,VK), (LX,VL), (LX,VM), (LX,VN), (LX, VO), (LX,VP), (LX,VQ), (LX,VR), (LX,VS), (LX,VT), (LX,VU), (LX,VV), (LX,VW), (LX,VX), (LX,VY), (LW, VZ), (LX,WA), (LX,WB), (LX,WC), (LY,VA), (LY,VB), (LY,VC), (LY,VD), (LY,VE), (LY,VF), (LY,VG), (LY,VH), 15 (LY,VI), (LY,VJ), (LY,VK), (LY,VL), (LY,VM), (LY,VN), (LY,VO), (LY,VP), (LY,VQ), (LY,VR), (LY,VS), (LY,VT), (LY,VU), (LY,VV), (LY,VW), (LY,VX), (LY,VY), (LY,VZ), (LY, WAX (LY, WB), (LY, WC), (LZ, VA), (LZ, VB), (LZ, VC), (LZ,VD), (LZ,VE), (LZ,VF), (LZ,VG), (LZ,VH), (LZ, 20 VI), (LZ,VJ), (LZ,VK), (LZ,VL), (LZ,VM), (LZ,VN), (LZ, VO), (LZ,VP), (LZ,VQ), (LZ,VR), (LZ,VS), (LZ,VT), (LZ, VU), (LZ,VV), (LZ,VW), (LZ,VX), (LZ,VY), (LZ,VZ), (LZ,WA), (LZ,WB), (LZ,WC), (MA,VA), (MA,VB), (MA,VC), (MA,VD), (MA,VE), (MA, 25 VF), (MA,VG), (MG,VH), (MA,VI), (MA,VJ), (MG,VK), (MA,VL), (MA,VM), (MA,VN), (MA,VO), (MA,VP), (MA, VQ), (MA, VR), (MA, VS), (MA, VT), (MA, VU), (MA, VV), (MA,VW), (MA,VX), (MA,VY), (MA,VZ), (MA, WA), (MA,WB), (MA,WC), (MB,VA), (MB,VB), (MB, 30 VC), (MB,VD), (MB,VE), (MB,VF), (MB,VG), (MB,VH), (MB,VI), (MB,VJ), (MB,VK), (MB,VL), (MB,VM), (MB, VN), (MB,VO), (MB,VP), (MB,VQ), (MB,VR), (MB,VS), (MB,VT), (MB,VU), (MB,VV), (MB,VW), (MB,VX),(MB,VY), (MB,VZ), (MB,WA), (MB,WB), (MB,WC), 35 (MC,VA), (MC,VA), (MC,VB), (MC,VB), (MC,VC), (MC, VD), (MC, VE), (MC, VF), (MC, VG), (MC, VH), (MC, VI), (MC,VJ), (MC,VK), (MC,VL), (MC,VM), (MC,VN), (MC, VO), (MC,VP), (MC,VQ), (MC,VR), (MC,VS), (MC,VT), (MC,VU), (MC,VV), (MC,VW), (MC,VX), (MC,VY), 40 (MC,VZ), (MC,WA), (MC,WB), (MC,WC), (MD,VC), (MD,VD), (MD,VE), (MD,VF), (MD,VG), (MD,VH), (MD,VI), (MD,VJ), (MD,VK), (MD,VL), (MD,VM), (MD, VN), (MD,VO), (MD,VP), (MD,VQ), (MD,VR), (MD,VS), (MD,VT), (MD,VU), (MD,VV), (MD,VW), (MD,VX), 45 (MD,VY), (MD,VZ), (MD,WA), (MD,WB), (MD,WC), (ME,VA), (ME,VB), (ME,VC), (ME,VD), (ME,VE), (ME, VF), (ME,VG), (ME,VH), (ME,VI), (ME,VJ), (ME,VK), (ME,VL), (ME,VM), (ME,VN), (ME,VO), (ME,VP), (ME, VQ), (ME,VR), (ME,VS), (ME,VT), (ME,VU), (ME,VV), 50 (ME,VW), (ME,VX), (ME,VY), (ME,VZ), (ME,WA), (ME, WB), (ME, WC), (MF, VA), (MF, VB), (MF, VC), (MF, VD), (MF,VE), (MF,VF), (MF,VG), (MF,VH), (MF,VI), (MF,VJ), (MF,VK), (MF,VL), (MF,VM), (MF,VN), (MF,VO), (MF, VP), (MF,VQ), (MF,VR), (MF,VS), (MF,VT), (MF,VU), 55 (MF,VV), (MF,VW), (MF,VX), (MF,VY), (MF,VZ), (MF, WA), (MF, WB), (MF, WC), (MG, VA), (MG, VB), (MG, VC), (MG,VD), (MG,VE), (MG,VF), (MG,VG), (MG,VH), (MG,VI), (MG,VJ), (MG,VK), (MG,VL), (MG,VM), (MG, VN), (MG,VO), (MG,VP), (MG,VQ), (MG,VR), (MG,VS), 60 $(MG,VT),\ (MG,VU),\ (ME,VV),\ (MG,VW),\ (MG,VX),$ (MG,VY), (MG,VZ), (MG,WA), (MG,WB), (MG,WC), (MH, VA), (MH, VB), (MH, VC), (MH, VD), (MH, VE), (MH, VF), (MH,VG), (MH,VH), (MH,VI), (MH,VJ), (MH,VK), (MH,VL), (MH,VM), (MH,VN), (MH,VO), (MH,VP), 65 (MH,VQ), (MH,VR), (MH,VS), (MH,VT), (MH,VU), (MH,

VV), (MH,VW), (MH,VX), (MH,VY), (MH,VZ), (MH,

58

WA), (MH, WB), (MH, WC), (MI, VA), (MI, VB), (MI, VC), (MI,VD), (MI,VE), (MI,VF), (MI,VG), (MI,VH), (MI,VI), (MI,VJ), (MI,VK), (MI,VL), (MI,VM), (MI,VN), (MI,VO), (MI,VP), (MI,VQ), (MI,VR), (MI,VS), (MI,VT), (MI,VU), (MI,VV), (MI,VW), (MI,VX), (MI,VY), (MI,VZ), (MJ, WA), (MI, WB), (MI, WC), (MJ, VA), (MJ, VB), (MJ, VC), (MJ,VD), (MJ,VE), (MI,VF), (MJ,VG), (MJ,VH), (MJ,VI), (MJ,VJ), (MJ,VK), (MJ,VM), (MJ,VN), (MJ,VO), (MJ,VP), (MJ,VQ), (MJ,VR), (MJ,VS), (MF,VT), (MJ,VU), (MJ, VV), (MJ,VW), (MJ,VX), (MF,VY), (MF,VZ), (MJ,WA), (MJ, WB), (MJ, WC), (MK, VA), (MK, VB), (MK, VC), (MK, VD), (MK,VE), (MK,VF), (MK,VG), (MK,VH), (MK,VI), (MK,VJ), (MK,VK), (MK,VL), (MK,VM), (MK,VN), (MK, VO), (MK, VP), (MK, VQ), (MK, VR), (MK, VS), (MK, VT), (MK,VU), (MK,VV), (MK,VW), (MK,VX), (MK, VY), (MK,VZ), (MK,WA), (MK,WB), (MK,WC), (ML, VA), (ML,VB), (ML,VC), (ML,VD), (ML,VE), (ML,VF), (ML,VG), (ML,VH), (ML,VI), (ML,VJ), (ML,VK), (ML, VL), (ML,VM), (ML,VN), (ML,VO), (ML,VP), (ML,VQ), (ML,VR), (ML,VS), (ML,VT), (ML,VU), (ML,VV), (ML, VW), (ML,VX), (ML,VY), (ML,VZ), (ML,WA), (ML,WB), (ML,WC), (MM,VA), (MM,VB), (MM,VC), (MM,VD), (MM,VE), (MM,VF), (MM,VG), (MM,VH), (MM,VI), (MM,VJ), (MM,VK), (MM,VL), (MM,VM), (MM,VN), (MM,VO), (MM,VP), (MM,VQ), (MM,VR), (MM,VS), (MM,VT), (MM,VU), (MM,VV), (MM,VW), (MM,VX), (MM, VY), (MM, VZ), (MM, WA), (MM, WB), (MM, WC), (MN,VA), (MN,VB), (MN,VC), (MN,VD), (MN,VE), (MN, VF), (MN,VG), (MN,VH), (MN,VI), (MN,VJ), (MN,VK), (MN,VL), (MN,VM), (MN,VN), (MN,VO), (MN,VP), (MN,VQ), (MN,VR), (MN,VS), (MN,VT), (MN,VU), (MN, VV), (MN,VW), (MN,VX), (MN,VY), (MN,VZ), (MN, WA), (MN, WB), (MN, WC)

As used herein, the "emesis, vomiting and/or constipation" includes nausea, emesis, vomiting and/or constipation which are induced by ingestion of a compound having the opioid receptor (particularly, opioid receptor) agonistic activity. Specifically, examples of the "compound having the opioid receptor agonistic activity" include morphine, oxycodone, fentanyl, methadone, codeine, dihydrocodeine, hydromorphone, levorphanol, meperidine, propoxyphene, dextropropoxyphen, tramadol, and a pharmaceutically acceptable salt, or a solvate thereof. Particularly, when the compound is morphine, oxycodone, or a pharmaceutically acceptable salt, or a solvate thereof, the present compound is particularly effective.

Influence of the present compound on emesis or vomiting can be confirmed, for example, by the following test.

At thirty minutes after ingestion of a diet, each test substance is administered to a ferret. The test compound is dissolved in 5% xylitol, and is administered at 5 mg/kg. At thirty minutes after administration of the test compound, 0.6 mg/kg of morphine was subcutaneously administered, and the vomiting symptom is observed visually until 30 minutes after administration of morphine.

For each of emesis (rhythmic constriction movement at an abdominal part) and vomiting (vomiting conduct of excreting a vomiting substance or a similar conduct), an appearance time, a latent time (time from morphine administration to initial appearance of vomiting symptom) and a sustaining time (time from initial vomiting to final vomiting) are collected.

In addition, influence of the present compound on constipation can be confirmed, for example, by the following

1) Preparation of Test Diet (Dye)

Using a 0.5 w/v % Evans Blue aqueous solution, a 2.5 w/v % carboxymethylcellulose salt solution is prepared, and this is used as a test diet.

2) Animal

For example, a Wistar male rat (6 to 7 week old) may be used. The animal is fasted from about 20 or more hours before test initiation, and water is given ad lib.

3) Test Compound and Medium

The test compound is dissolved in a solvent (DMAA/ 10 Solutol/5% meglumine=15/15/70).

DMAA: N,N-dimethylacetamide Solutol (registered trademark) HS15 Meglumine: D(-)-N-methylglucamine

Morphine hydrochloride is dissolved in a physiological 15 saline.

The test compound, the solvent and morphine are all administered at a liquid amount of 2 mL/kg.

4) Method

The test compound 0.03, 0.1, 0.3, 1 or 3 mg/kg (test 20 compound administration group) or the solvent (solvent administration group) is subcutaneously administered, and amount of 3 mg/kg of morphine is subcutaneously administered to all groups after 75 minutes. As a control group, the solvent is subcutaneously administered, and a physiological 25 saline is administered after 75 minutes.

The test diet 2 mL/rat is orally administered at 30 minutes after administration of morphine. At fifteen minutes after the test diet (at 120 minutes after administration of the test substance), the rats are isolated from esophagus to an 30 ileocecal part near a stomach cardia part. A distance from pyloric part of the stomach to an ileocecal part (full length of small intestine) and a distance until a dye reaching front part (dye movement distance) are measured.

5) Data Processing

Transport rate (%)=(dye movement distance (cm))/ full length of small intestine (cm))×100

M.P.E. (%)={(small intestine transport rate (%) of each individual of test compound administration group-average small intestine transport rate (%) of solvent administration group)/(average small intestine transport rate (%) of control group-average small intestine transport rate (%) of solvent administration group)}×100

An ED_{50} value is calculated by reverse estimation of regression a SAS program using % MPE and letting a value of a control group to be 100%.

The present compound has the opioid receptor (particularly, opioid 8 and μ receptors) antagonistic activity. There- 50 fore, the present compound is effective in treating and/or preventing digestive tract passage disorder which occurs by a cause such as acute dyspepsia, acute alcoholism, food poisoning, cold, stomach ulcer, duodenum ulcer, stomach cancer, ileus, appendicitis, peritonitis, cholelithiasis, hepa- 55 titis, liver inflammation, encephalitis, meningitis, increased brain pressure, head trauma, motion sickness, vomiting of pregnancy, side effect due to chemotherapy, side effect due to radiation therapy, side effect due to anti-cancer agent, pressure-stenosis of digestive tract, and intestinal tract 60 coalescence after operation, treating and/or preventing emesis and vomiting which occurs by a cause such as increase in brain pressure due to brain tumor-brain bleedingmeningitis-irradiation of brain with radiation, and treating and/or preventing acute constipation derived from a cause 65 such as ileus, duodenum ulcer or appendicitis, relaxing constipation derived from a cause such as nervous disorder,

60

low nutrient, general prostration, vitamin deficiency, anemia, sensitivity reduction or mechanical stimulation insufficiency, or convulsive constipation derived from a cause such as stress, in addition to emesis-vomiting-constipation induced by a compound having the opioid receptor agonistic activity.

Since the present compound has low brain transition, it exhibits the high alleviating effect on a side effect such as emesis, vomiting, constipation and the like induced by an opioid receptor agonistic activity almost without inhibiting the analgesic activity of a compound having the opioid receptor agonistic activity which is administered to the patient with a decease accompanying pain (e.g. cancerous pain (pain due to bone transition, nervous pressure, increased intracranial pressure, soft tissue infiltration, pain due to constipation or spasm of muscle, pain of internal organ, muscle, fascia, waist or shoulder joint periphery, chronic pain after operation), AIDS etc.). In addition, the present compound has pure antagonistic activity on an opioid receptor, and also has an advantage in safety point that the hERG channel inhibitory activity is low, there is no cardiac toxicity, and so on. Further, the present compound also has an advantageous characteristic in dynamics in a body such as high oral absorbability, high stability in human plasma, high bioavailability and the like, and is very effective as a medicament.

When the present compound is administered against emesis, vomiting, or constipation induced by a compound having the opioid receptor agonistic activity, the administration may be any of before, after or at the same time with administration of the compound having the opioid receptor agonistic activity. An administration interval between these two kinds of drugs is not particularly limited. For example, 35 when the present compound is administered after administration of the compound having the opioid receptor agonistic activity, if the administration is immediately after to in about 3 days, preferably immediately after to in about 1 day from administration of the compound having the opioid receptor agonistic activity, the present compound works more effectively. In addition, when the present invention is administered before administration of the compound having the opioid receptor agonistic activity, if the administration is immediately before to before about 1 day, preferably immediately before to before about 12 hours from administration of the compound having the opioid receptor agonistic activity, the present compound works more effectively.

When the present compound is administered as an agent for treating and/or preventing emesis, vomiting and/or constipation, it may be used jointly with other agent for treating and/or preventing emesis, vomiting and/or constipation. For example, it is possible to administer the agent jointly with ondansetrone hydrochloride, adrenal cortical steroid (methylprednisolone, prednisolone, dexamethasone etc.), prochlorperazine, haloperidol, thymiperone, perphenazine, metoclopramide, domperidone, scopolamine, chlorpromazine hydrochloride, droperidol, stimulating laxative (sennoside, picosulfate sodium etc.), osmotic laxative (lactulose etc.), or salt laxative (magnesium oxide etc.).

Alternatively, a combination agent between the present compound and a compound having the opioid receptor agonistic activity, or a combination agent between the present compound and other agent for treating and/or preventing emesis, vomiting and/or constipation can be administered.

When the present compound is administered to a human, it can be administered orally as powders, granules, tablets, capsules, pills, solutions, or the like, or parenterally as

injectables, suppositories, transdermal absorbable agents, absorbable agents, or the like. Oral agents are preferable.

In addition, the present compound can be formulated into pharmaceutical preparations by adding pharmaceutical additives such as excipients, binders, wetting agents, disintegrating agents, lubricants and the like, which are suitable for formulations and, an effective amount of the present compound.

The present compound may be formulated into medical mixtures in which a compound having the opioid receptor agonistic activity and/or other agent for treating and/or preventing emesis, vomiting and/or constipation and, if necessary, various pharmaceutical additives.

A dose is different depending on state of a disease, an administration route, and an age and a weight of a patient, and is usually 0.1 μ g to 1 g/day, preferably 0.01 to 200 mg/day when orally administered to an adult, and is usually 0.1 μ g to 10 g/day, preferably 0.1 to 2 g/day when parenterally administered.

Following Examples and Test Examples illustrate the present invention in more detail, but the present invention is 20 not limited by these Examples.

Example 1

Production of Compound (I-4)

[Chemical formula 11]

60

wherein Bn indicates benzyl, Et indicates ethyl, and Prindicates isopropyl.

(First step) 7-Ethoxycarbonylnaltrexone

To a suspension of 3-O-benzyl-7-ethoxycarbonylnaltrexone described in Non-Patent Literature 2 (11.16 g, 22.15 mmol) in ethyl acetate (50 mL) and methanol (50 mL) was added palladium hydroxide (Perlman's catalyst) (1.2 g), and the mixture was vigorously stirred for 2 hours under a hydrogen atmosphere. After filtration of the catalyst, the filtrate was concentrated, and the residue was crystallized from ethyl acetate and hexane to obtain 8.96 g (92%) of the title compound as colorless crystals.

NMR (300 MHz, CDCl₃)

 δ 0.14-0.17 (m, 2H), 0.55-0.58 (m, 2H), 0.86 (m, 1H), 1.23-1.29 (m, 3H), 1.67 (d, 1H, J=9.6 Hz), 2.02 (dd, 1H, J=1.2, 16.2 Hz), 2.20-2.79 (m, 8H), 3.08 (d, 1H, J=18.6 Hz), 3.24 (br, 1H), 4.12-4.20 (m, 2H), 4.96 (s, 1H), 5.17 (br, 1H), 6.59 (d, 1H, J=8.1 Hz), 6.72 (d, 1H, J=8.1 Hz), 12.12 (s, 1H).

Elemental analysis (C23H27NO6.0.2H2O) (Calculated value) C, 66.24; H, 6.62; N, 3.36. (Found value) C, 66.29; H, 6.50; N, 3.45.

(Second step) 7-Isopropylaminocarbonylnaltrexone

A solution of 7-ethoxycarbonylnaltrexone obtained in the first step (200 mg, 0.484 mmol), isopropylamine (0.412 mL, 4.84 mmol) and triethylamine (0.202 mL, 1.45 mmol) in 2-5 2-methoxyethanol (1.5 mL) was stirred at 180° C. for 45 minutes under microwave irradiation. After cooled to room temperature, 7 mL of 5 mol/L hydrochloric acid was added to the reaction mixture, and stirring was continued at 70° C. for 20 minutes. After the reaction solution was cooled, pH value was adjusted to 8.5 with aqueous ammonia, followed by extraction with ethyl acetate. The organic layer was washed with water, and dried, and the solvent was evaporated. The residue was purified by silica gel column chromatography (chloroform:methanol=99:1 to 94:6) to obtain 140 mg of the title compound at a yield of 68%.

NMR (300 MHz, d6-DMSO)

8 0.12-0.15 (m, 2H), 0.44-0.53 (m, 2H), 0.83 (m, 1H), 1.02 (d, 3H, J=6.6 Hz), 1.08 (d, 3H, J=6.6 Hz), 1.41 (d, 1H, J=11.4 Hz), 1.85 (d, 1H, J=15.6 Hz), 2.04-2.62 (m, 8H), 3.04 (d, 1H, J=18.6 Hz), 3.24 (m, 1H), 3.96 (m, 1H), 4.71 (s, 1H), 4.74 (s, 1H), 6.51 (d, 1H, J=8.4 Hz), 6.56 (d, 1H, J=8.4 Hz), 7.40 (br d, 1H, J=7.2 Hz), 9.16 (s, 1H), 14.50 (s, 1H).

Elemental analysis (C24H30N2O5.0.2H2O) (Calculated value) C, 67.02; H, 7.12; N, 6.51 (Found value) C, 67.02; H, 7.20; N, 6.49.

Example 2

Preparation of Compound (I-44)

[Chemical formula 12]

N

COOEt

Step 1

OH

wherein Bn indicates benzyl, Me indicates methyl, Et indicates ethyl, and Pr^J indicates isopropyl.

$\label{eq:First step} \mbox{(First step)} \\ \mbox{3-O-Benzyl-7-ethoxycarbonyl-6-O-methylnaltrexone}$

To a solution of 3-O-benzyl-7-ethoxycarbonylnaltrexone $_{40}$ described in Non-Patent Literature 2 (504 mg, 1 mmol) in tetrahydrofuran (10 mL) were successively added 1,1'-azodicarbonylpiperidine (379 mg, 1.5 mmol), tri-n-butyl-phosphine (370 μ L, 1.5 mmol) and methanol (41 μ l, 1 mmol), and the mixture was stirred at room temperature for 45 7 hours. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the title compound (421 mg, 81%) as colorless oil.

 $^{1}\mathrm{H}$ NMR (CDCl₃, δ ppm): 0.10-0.20 (m, 2H), 0.50-0.65 50 (m, 2H), 0.88 (m, 1H), 1.26 (t, J=6.6 Hz, 3H), 1.67 (d, J=11.4 Hz, 1H), 2.15-2.80 (m, 8H), 3.00-3.30 (m, 2H), 3.93 (s, 3H), 4.05-4.20 (m, 2H), 4.86 (br s, 1H), 5.15 (s, 2H), 5.18 (br s, 1H), 6.57 (d, J=8.1 Hz, 1H), 6.72 (d, J=8.1 Hz, 1H), 7.28-7.45 (m, 5H)

(Second step) 3-O-Benzyl-7-isopropylaminocarbonyl-6-O-methylnaltrexone

To a mixed solution of 3-O-benzyl-7-ethoxycarbonyl-6-O-methylnaltrexone obtained in the first step (145 mg, 0.28 mmol) in methanol (6 mL) and dioxane (2 mL) was added a 50% potassium hydroxide aqueous solution (2 mL), and the mixture was stirred at 50° C. for 30 minutes. The reaction solution was cooled to room temperature, and adjusted to pH=4 with 0.5M an aqueous citric acid solution,

followed by extraction with ethyl acetate. The organic layer was successively washed with water, brinebrine, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting crystalline residue, 3-O-benzyl-7carboxy-6-O-methylnaltrexone was used in the next reaction without purification. To a solution of the above residue in dimethylformamide (3 mL) were successively added 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydro-10 chloride (40 mg, 0.2 mmol), 1-hydroxybenzotriazole (27 mg, 0.2 mmol) and isopropylamine (16 µL, 0.182 mmol), and the mixture was stirred at room temperature for 15 hours. The reaction solution was poured into water and this was extracted with ethyl acetate, and the organic layer was washed with water, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/ methanol=9/1) to obtain the title compound (39 mg, 44%) as a colorless foam.

 $^{1}\mathrm{H}$ NMR (CDCl₃, δ ppm): 0.10-0.20 (m, 2H), 0.50-0.65 (m, 2H), 0.88 (m, 1H), 1.13 (d, J=2.1 Hz, 3H), 1.15 (d, J=1.8 Hz, 3H), 1.58 (d, J=11.4 Hz, 1H), 2.08-2.80 (m, 8H), 2.99-3.30 (m, 2H), 3.94 (s, 3H), 4.06 (m, 1H), 4.83 (br s, 1H), 5.14 (d, J=2.4 Hz, 2H), 5.23 (br s, 1H), 6.56 (d, J=8.4 Hz, 1H), 6.72 (d, J=8.4 Hz, 1H), 7.28-7.45 (m, 6H)

(Third step) 7-Isopropylaminocarbonyl-6-O-methylnaltrexone

To a solution of 3-O-benzyl-7-isopropylaminocarbonyl-6-O-methylnaltrexone obtained in the second step (33 mg, 0.073 mmol) in tetrahydrofuran (5 mL) was added palladium hydroxide (33 mg), and the mixture was stirred for 1 hour under a hydrogen atmosphere. The reaction solution was filtered with Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=9/1) to obtain the title compound (13 mg, 41%) as a colorless foam.

 $^{1}\mathrm{H}$ NMR (CDCl₃, δ ppm): 0.10-0.15 (m, 2H), 0.50-0.70 (m, 2H), 0.85 (m, 1H), 1.12 (d, J=0.9 Hz, 3H), 1.14 (d, J=0.9 Hz, 3H), 1.66 (d, J=11.4 Hz, 1H), 2.06-2.80 (m, 8H), 3.00-3.30 (m, 2H), 3.92 (s, 3H), 4.05 (M, 1H), 4.80 (br s, 1H), 5.26 (br s, 1H), 6.56 (d, J=8.1 Hz, 1H), 6.69 (d, J=8.1 Hz, 1H), 7.36 (d, J=7.8 Hz, 1H)

Example 3

[Chemical formula 13]

wherein Bn indicates benzyl, Me indicates methyl, and Et indicates ethyl. (First Step)

A solution of compound (1) (28.7 g, 57.0 mmol) in tetrahydrofuran (250 mL) was cooled to −10° C. and to the solution were 1,1'-azodicarbonylpiperidine (21.6 g, 85.5 mol), tri-n-butylphosphine (21.4 mL, 85.5 mmol) and benzyl alcohol (6.50 mL, 62.7 mmol) successively added, and the mixture was stirred at room temperature for 6 hours and 45 minutes. The reaction solution was filtered and the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform→chloroform/methanol=50/1) to obtain quantitatively the objective compound (2) (33.8 g) as a pale yellow oil.

¹H NMR (CDCl₃, δ ppm): 0.10-0.20 (m, 2H), 0.50-0.65 (m, 2H), 0.88 (m, 1H), 0.94 (t, J=7.2 Hz, 3H), 1.20-3.60 (m, 11H), 4.14 (q, J=7.2 Hz, 2H), 5.10-5.35 (m, 5H), 6.58 (d, J=8.1 Hz, 1H), 6.74 (d, J=8.1 Hz, 1H), 7.15-7.50 (m, 10H) (Second Step)

To a mixed solution of compound (2) obtained in the first step (33.8 g, 57.0 mmol) in methanol (130 mL) and dioxane

(43 mL) was added a 4N-potassium hydroxide aqueous solution (43 mL), and the mixture was stirred at 50° C. for 14 hours and 35 minutes. The reaction solution was cooled to room temperature, and concentrated under reduced pressure, and the residue was adjusted to pH=3 to 4 with ice-water and 2N-hydrochloric acid, followed by extraction with a mixed solution of ethyl acetate and tetrahydrofuran. The organic layer was successively washed with water, and brine, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was converted into a powder with ether to obtain the objective compound (3) (24.8 g, 77%) as a colorless powder.

¹H NMR (DMSO-d₆, δ ppm): 0.20-0.40 (m, 2H), 0.50-0.65 (m, 2H), 0.95 (m, 1H), 1.30-3.60 (m, 11H), 5.00-5.25 (m, 5H), 5.39 (s, 1H), 6.68 (d, J=8.1 Hz, 1H), 6.88 (d, J=8.1 Hz, 1H), 7.27-7.52 (m, 10H) (Third Step)

To a solution of compound (3) obtained in the second step (350 mg, 0.619 mmol) in tetrahydrofuran (4 mL) were successively added 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (142 mg, 0.743 mmol), 1-hydroxybenzotriazole (100 mg, 0.743 mmoL), dimethylglycine methyl ester hydrochloride (114 mg, 0.743 mmol) and N-methylmorpholine (82 μL, 0.743 mmol), and the mixture was stirred at room temperature overnight. The reaction solution was poured into ice-water and a saturated sodium bicarbonate aqueous solution, followed by extracted with ethyl acetate, and the organic layer was washed with brine, dried with anhydrous sodium sulfate, and concentrated under the reduced pressure. The residue was purified by silica gel column chromatography (chloroform/methanol=50/1) to obtain the objective compound (4) (300 mg, 73%) as a pale yellow foam.

¹H NMR (CDCl₃, δ ppm): 0.08-0.20 (m, 2H), 0.50-0.60 (m, 2H), 0.87 (m, 1H), 1.13 (s, 3H), 1.22 (s, 3H), 1.55-2.80 (m, 11H), 3.62 (s, 3H), 4.85 (br s, 1H), 5.13-5.40 (m, 5H), 6.58 (d, J=8.4 Hz, 1H), 6.76 (d, J=8.4 Hz, 1H), 7.26-7.48 (m, 10H), 7.94 (s, 1H) (Fourth Step)

To a solution of compound (4) obtained in the third step (290 mg, 0.436 mmol) in methanol (4 mL) was added palladium hydroxide (60 mg), followed by stirring for 3 hours under a hydrogen atmosphere. The reaction solution was filtered with Celite, and the filtrate was concentrated under reduced pressure. The residue was crystallized with hexane/ethyl acetate to obtain the objective compound (I-49) (181 mg, 86%) as colorless crystals.

¹H NMR (DMSO-d₆, δ ppm): 0.10-0.20 (m, 2H), 0.40-0.57 (m, 2H), 0.84 (m, 1H), 1.33 (s, 3H), 1.37 (s, 3H), 50 1.40-3.40 (m, 11H), 3.55 (s, 3H), 4.72 (s, 1H), 4.77 (br s, 1H), 6.52 (d, J=8.1 Hz, 1H), 6.57 (d, J=8.1 Hz, 1H), 7.68 (br s, 1H), 9.18 (br s, 1H), 13.78 (br s, 1H)

According to the same procedure, other compounds (I) can be synthesized. Structural formulas and physical constants are shown below.

In Tables, Me indicates methyl, Et indicates ethyl, Prindicates isopropyl, and Ph indicates phenyl.

In addition, in Tables,

[Chemical formula 14]

		1A	BLE 9
Compound No.	Chemical structure		NMR (1H-NMR (d6-DMSO) δ)
I-1	HO OH	Chiral	0.10-0.25 (m, 2H), 0.50-0.60 (m, 2H), 1.87 (m, 1H), 1.13 (t, J = 7.2 Hz, 3H), 1.68 (d, J = 11.4 Hz, 1H), 2.20-2.80 (m, 7H), 3.00-3.35 (m, 5H), 4.94 (s, 1H), 5.40 (m, 1H), 6.57 (d, J = 8.1 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 14.20 8br s, 1H)
1-2	HO OH	Chiral	0.10-0.20~(m,2H),0.40-0.60~(m,2H),0.85~(m,1H),1.41~(d,J=11.4~Hz,1H),1.90-3.40~(m,14H),4.71~(s,1H),4.73~(br~s,1H),6.50~(d,J=8.1~Hz,1H),6.55~(d,J=8.1~Hz,1H),7.77~(br~s,1H)
I-3	HO OH OH	Chiral	(61 c, 111), 6.57 (4, 5 = 6.7 112, 111), 1 1.21 (6, 111).
I-4	HO OH OH	CH ₃	$\begin{array}{l} 0.12\text{-}0.15\ (m,2H),0.44\text{-}0.53\ (m,2H),0.83\ (m,1H),1.02\ (d,3H,J=6.6\ Hz),1.08\ (d,3H,J=6.6\ Hz),1.41\ (d,1H,J=11.4\ Hz),1.85\ (d,1H,J=15.6\ Hz),2.04\text{-}2.62\ (m,8H),3.04\ (d,1H,J=18.6\ Hz),3.24\ (m,1H),3.96\ (m,1H),4.71\ (s,1H),4.74\ (s,1H),6.51\ (d,1H,J=8.4\ Hz),6.56\ (d,1H,J=8.4\ Hz),7.40\ (br\ d,1H,J=7.2\ Hz),9.16\ (s,1H),14.50\ (s,1H),1$
1-5	HO OH OH	Chiral OH	0.10-0.25 (m, 2H), 0.50-0.62 (m, 2H), 0.85 (m, 1H), 1.40-1.60 (m, 4H), 1.83-3.20 (m, 11H), 4.41 (br s, 1H), 4.72 (s, 1H), 4.74 (s, 1H), 6.51 (d, J = 8.7 Hz), 6.56 (d, J = 8.7 Hz, 1H), 7.70 (s, 1H), 9.15 (br s, 1H), 14.42 (s, 1H).

TABLE 9-continued

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-6	Chiral N CH ₃ CH ₃ OH OH	0.10-0.25 (m, 2H), 0.50-0.62 (m, 2H), 0.85 (m, 1H), 1.42 (d, J = 11.7 Hz, 1H), 1.83-2.64 (m, 10H), 2.10 (s, 6H), 3.00-3.18 (m, 3H), 4.72 (s, 1H), 4.74 (s, 1H), 6.51 (d, J = 8.7 Hz), 6.56 (d, J = 8.7 Hz, 1H), 7.65 (s, 1H), 9.10 (br s, 1H).
I-7	HO OH OH	0.10-0.25~(m,2H),0.50-0.60~(m,2H),1.90~(m,1H),1.57~(dd,J=2.4,12.6~Hz,2H),1.85-2.80~(m,10H),3.00-3.25~(m,3H),3.35-3.60~(m,3H),4.20~(m,1H),4.76~(brs,1H),5.85~(brs,1H),6.58~(d,J=8.1~Hz,1H),6.70~(d,J=8.1~Hz,1H)

Compound No.	Chemical structure		NMR (1H-NMR (d6-DMSO)δ)
I-8	HO	Chiral O	0.10-0.20 (m, 2H), 0.45-0.68 (m, 2H), 1.88 (m, 1H), 1.35 (d, J = 11.4 Hz, 1H), 1.65-2.20 (m, 4H), 2.30-3.60 (m, 13H), 4.29 (dd, J = 4.8, 12.6 Hz, 1H), 5.08 (s, 1H), 5.23 (br s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 8.1 Hz, 1H), 9.25 (br s, 1H)
I-9	HO OH OH	Chiral	(CDCl3) 0.10-0.25 (m, 2H), 0.50-0.62 (m, 2H), 0.85 (m, 1H), 1.62-2.77 (m, 6H), 3.07 (d, J = 18.6 Hz, 1H), 3.23 (d, J = 7.2 Hz, 1H), 4.42 (d, J = 5.4 Hz, 2H), 4.93 (s, 1H), 5.66 (br s, 1H), 6.55 (d, J = 8.7 Hz), 6.72 (d, J = 8.7 Hz, 1H), 7.22-7.39 (m, 5H), 14.15 (s, 1H).
I-10	HO OH OH	Chiral	0.10-0.24 (m, 2H), 0.45-0.60 (m, 2H), 0.89 (m, 1H), 1.45 (d, J = 11.1 Hz, 1H), 1.70-3.40 (m, 10H), 4.78 (s, 1H), 4.82 (s, 1H), 6.54 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H), 7.05 (m, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 9.14 (s, 1H), 9.24 (br s, 1H), 13.90 (br s, 1H)

TABLE 10-continued

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO)ð)
I-11	Chiral N N F	0.10-0.22 (m, 2H), 0.44-0.58 (m, 2H), 0.89 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 1.75-3.40 (m, 10H), 4.78 (s, 1H), 4.83 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H),7.13 (t, J = 8.7 Hz, 2H), 7.48-7.56 (m, 2H), 9.17 (s, 1H), 9.27 (br s, 1H), 13.90 (br (s, 1H)
I-12	HO OH OH	0.10-0.18 (m, 2H), 0.52-0.60 (m, 2H), 0.80-0.98 (m, 2H), 0.98-3.21 (m, 26H), 4.41 (br, s, 1H), 4.70 (d, J = 12.3 Hz, 1H), 6.55 (d, J = 8.1 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H)
I-13	HO OH OH	0.10-0.25 (m, 2H), 0.50-0.60 (m, 2H), 0.87 (m, 1H), 1.58 (d, J = 111.7 Hz, 1H), 2.05-2.50 (m, 6H), 2.55-2.90 (m, 5H), 3.00-3.30 (m, 2H), 4.42 (s, 1H), 4.81-4.87 (m, 2H), 5.55 (br s, 1H), 6.60 (d, J = 8.1 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 7.20-7.40 (m, 5H)
I-14	HO OH OCH3	0.10-0.22 (m, 2H), 0.45-0.60 (m, 2H), 0.90 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 2.10-3.40 (m, 10H), 3.78 (s, 3H), 4.96 (s, 1H), 6.36 (br s, 1H), 6.59 (d, J = 8.1 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.84 (d, J = 9.0 Hz, 2H), 6.98 (br s, 1H), 7.29 (d, J = 9.0 Hz, 2H), 14.00 (br s, 1H)

TABLE 11

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-15	Chiral O—CH ₃	0.05-0.20 (m, 2H), 0.45-0.60 (m, 2H),0.88(m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 2.00-3.35 (m, 10H), 3.78 (s, 3H), 4.34 (d, J = 5.1 Hz, 2H),4.91 (s, 1H), 5.61 (br s, 1H), 6.55 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 14.13 (brs, 1H)

TABLE 11-continued

	TABLE 11-continued		
Compound No.	Chemical structure		NMR (1H-NMR (d6-DMSO) δ)
I-16	HO OH OH	Chiral	0.10-0.25 (m, 2H), 0.40-0.60 (m, 2H), 0.90 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 4.77 (s, 1H), 4.84 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.30-7.38 (m, 2H), 7.53-7.60 (m, 2H), 9.17 (s, 1H), 9.28 (br s, 1H), 13.80 (br s, 1H)
I-17	HO OH OH	Chiral	0.10-0.25 (m, 2H), 0.40-0.60 (m, 2H), 0.89 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 13H), 4.77 (s, 1H), 4.82 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.20 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 9.17 (s, 1H), 9.27 (br s, 1), 13.90 (br s, 1H)
I-18	HO OH OH	hiral	0.10-0.25 (m, 2H), 0.40-0.60 (m, 2H), 0.89 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 1.85-3.40 (m, 10H), 3.80 (s, 3H), 4.81 (br s, 2H), 6.52 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 6.87 (m, 1H), 6.98-7.10 (m, 2H), 7.82 (m, 1H), 9.19 (s, 1H), 9.70 (br s, 1H), 12.90 (br s, 1H)
I-19			
	HO OH HN	SCH ₃	
I-20	N	hiral CH ₃	0.12-0.14 (d, J = 4.5 Hz, 2H), 0.46-0.52 (t, J = 8.3 Hz, 2H), 0.71-0.85 (m, 4H), 0.98-1.06 (dd, J = 6.8, 17.3 Hz, 4H), 1.35-1.45 (m, 4H), 1.82-1.92 (m, 2H), 2.44-2.61 (m), 3.04 (d, J = 18.9 Hz, 1H), 3.19-3.24 (m, 1H), 3.71-3.82 (m, 1H), 4.71-4.76 (m, 2H), 6.50-6.57 (dd, J = 8.1, 14.4 Hz, 2H), 7.31-7.38 (m, 1H), 9.15 (br s, 1H), 14.52 (br s, 1H)

TABLE 11-continued

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-21	Chiral CH ₃ CH ₃ OH OH	0.12-0.14 (d, J = 4.2 Hz, 2H), 0.49 (t, J = 8.1 Hz, 2H), 0.69-0.86 (m, 6H), 1.32-1.47 (m, 5H), 1.88 (d, J = 15.3 Hz, 1H), 2.06-2.30 (m, 4H), 2.45-2.61 (m), 3.04 (d, J = 18.0 Hz, 1H), 3.19-3.24 (m, 1H), 4.71-4.75 (m, 2H), 6.05-6.58 (dd, J = 8.8, 14.4 Hz, 2H), 7.24 (d, J = 7.8 Hz, 1H), 9.15 (br s, 1H), 14.55 (br s, 1H)

	TABLE 12	
Compound No.	Chemical structure	NMR (1H-NMR (d6-DMS O) δ)
I-22	Chiral HO OH OH	0.12-0.14 (d, J = 4.5 Hz, 2H), 0.49 (t, J = 8.1 Hz, 2H), 0.85 (m, 1H), 1.06 (m, 1H), 1.16-1.28 (m, 4H), 1.39-1.43 (d, J = 11.4 Hz, 1H), 1.54-1.70 (m, 6H), 1.84-1.89 (d, J = 15.6 Hz, 1H), 2.08-2.60 (m, 6H), 3.00-3.07 (d, J = 18.6 Hz, 1H), 3.17-3.24 (m, 1H), 3.60 (br s, 1H), 4.71-4.76 (m, 2H), 6.49-6.57 (dd, J = 8.1, 14.7 Hz, 2H), 7.37 (d, J = 9.0 Hz, 1H), 9.13 (br s, 1H), 14.47 (br s, 1H)
1-23	\sim	$\begin{array}{l} \text{(a)} \ 0.12\text{-}0.14 \ (d, J=4.5 \ Hz, 2H), 0.49 \ (t, J=7.8 \ Hz, 2H), 0.83\text{-}0.92 \ (m, 4H), \\ 1.19\text{-}1.70 \ (m, 9H), 1.83\text{-}1.93 \ (m, 1H), \\ 2.06\text{-}2.61 \ (m, 9H), 3.01\text{-}3.07 \ (d, J=18.3 \ Hz, 1H), 3.18\text{-}3.20 \ (d, J=4.2 \ Hz, 1H), 3.67 \ (m, 1H), 4.71\text{-}4.76 \ (m, 2H), \\ 6.52\text{-}6.55 \ (dd, J=8.1, 14.4 \ Hz, 2H), \\ 9.13 \ (br \ s, 1H), 14.48 \ (br \ s, 1H) \end{array}$
I-24	HO OH OH	0.12-0.14 (d, J = 4.5 Hz, 2H), 0.49 (t, J = 8.0 Hz, 2H), 0.83-0.87 (m, 1H), 1.34-1.55 (m, 12H), 1.84-1.89 (d, J = 15.6 Hz, 1H), 2.09-2.60 (m, 9H), 3.00-3.07 (d, J = 18.3 Hz, 1H), 3.17-3.19 (d, J = 6.0 Hz, 1H), 3.78-3.81 (m, 1H), 4.71-4.76 (m, 2H), 6.49-6.57 (dd, J = 8.1, 14.7 Hz, 2H), 7.39 (d, J = 8.1 Hz, 1H), 9.13 (br s, 1H), 14.46 (br s, 1H)
1-25	Chiral N OH OH	0.13-0.14 (d, J = 4.5 Hz, 2H), 0.49 (t, J = 7.8 Hz, 2H), 0.85 (m, 1H), 1.39-1.43 (d, J = 11.1 Hz, 1H), 1.56-1.64 (m, 2H), 1.85-2.32 (m, 12H), 2.43-2.61 (m), 3.01-3.07 (d, J = 18.3 Hz, 1H), 3.18-3.20 (d, J = 6.0 Hz, 1H), 4.16-4.27 (m, 1H), 4.72-4.73 (m, 2H), 6.50-6.57 (dd, J = 8.1, 18.9 Hz, 2H), 7.77 (d, J = 7.5 Hz, 1H), 9.12 (br s, 1H), 14.41 (br s, 1H)

TABLE 12-continued

Compound No	. Chemical structure	NMR (1H-NMR (d6-DMS O) δ)
I-26	Chiral CH ₃ HO OH OH	0.16-0.19 (m, 2H), 0.48-0.57 (m, 2H), 0.88 (m, 1H), 1.46 (d, J = 11.2 Hz, 1H), 1.92 (d, J = 15.6 Hz, 1H), 2.04-2.66 (m, 6H), 3.08 (d, J = 18.8 Hz, 1H), 3.17-3.40 (m, 6H), 3.24 (s, 3H), 4.77 (s, 1H), 6.55 (d, J = 8.0 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 7.76 (br t, 1H), 9.15 (s, 1H), 14.33 (s, 1H).
I-27	Chira NO CH	al 0.16-0.19 (m, 2H), 0.48-057 (m, 2H), 0.90 (m, 1H), 1.10 (t, J = 6.8 Hz, 3H), 1.46 (d, J = 11.2 Hz, 1H), 1.92 (d, J = 15.6 Hz, 1H), 2.04-2.66 (m, 6H), 3.08 (d, J = 18.8 Hz, 1H), 3.17-3.46 (m, 8H)? 4.77 (s, 1H), 6.55 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 7.77 (br, 1H), 9.15 (s, 1H), 14.32 (s, 1H).
I-28	Chiral CH ₃	0.16-0.17 (m, 2H), 0.50-0.63 (m, 2H), 0.89 (m, 1H), 1.46 (d, J = 12.0 Hz, 1H), 1.92 (d, J = 15.2 Hz, 1H), 2.06 (s, 3H), 2.06-2.70 (m, 6H), 3.08 (d, J = 18.4 Hz, 1H), 3.20-3.32 (m, 6H), 4.77 (s, 1H), 6.55 (d, J = 8.0 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 7.76 (brs, 1H), 9.16 (s, 1H), 14.31 (s, 1H).

TABLE 13

Compound No.	Chemical structure		NMR (1H-NMR (d6-DMSO) δ)
I-29	HO OH OH	Chiral	0.17-0.18 (m, 2H), 0.51-0.57 (m, 2H), 0.90 (m, 1H), 1.46 (d, J = 11.6 Hz, 1H), 1.93 (d, J = 16.0 Hz, 1H), 2.11-2.78 (m, 6H), 3.08 (d, J = 18.4 Hz, 1H), 3.21 (d, J = 6.0 Hz, 1H), 3.27-3.32 (m, 5H), 4.77 (s, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 7.19-7.32 (m, 5H), 7.86 (br s, 1H), 9.16 (s, 1H), 14.38 (s, 1H).
I-30	HO OH OH	Chiral	0.16-0.19 (m, 2H), 0.48-0.57 (m, 2H), 0.88 (m, 1H), 1.46, (d, J = 11.2 Hz, 1H), 1.94 (d, J = 15.6 Hz, 1H), 2.11-2.71 (m, 6H), 3.08 (d, J = 18.8 Hz, 1H), 3.49-3.51 (m, 2H), 3.96-4.4.05 (m, 2H), 4.79 (s, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.94-6.97 (m, 3H), 7.27-7.34 (m, 2H), 7.94 (br, 1H), 9.17 (s, 1H), 14.28 (s, 1H).

TABLE 13-continued

	TABLE 15 conducted	
Compound No.	. Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-31	Chiral HO N F F F	0.10-0.28 (m, 2H), 0.44-0.65 (m, 2H), 0.94 (m, 1H), 1.50 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 4.72 (br s, 1H), 4.86 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.54-7.80 (m, 4H), 9.16 (s, 1H), 9.32 (s, 1H), 13.90 (br s, 1H)
I-32	Chiral N OH OH	0.10-0.25 (m, 2H), 0.42-0.62 (m, 2H), 0.90 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 4.75 (br s, 1H), 4.84 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.41-7.54 (m, 4H), 9.17 (s, 1H), 9.28 (s, 1H), 13.85 (br s, 1H)
I-33	Chiral N O O O O O O O O O O O O O O O O O O	0.10-0.25 (m, 2H), 0.40-0.60 (m, 2H), 0.90 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 4.77 (s, 1H), 4.81 (s, 1H), 5.98 (s, 2H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 6.59 (m, 2H), 7.15 (d, J = 1.8 Hz, 1H), 9.16 (s, 1H), 9.26 (s, 1H), 13.98 (br s, 1H)
I-34	Chiral N OH	0.20-0.40 (m, 2H), 0.45-0.65 (m, 2H), 0.90 (m, 1H), 1.50 (m, 1H), 1.70-3.40 (m, 10H), 4.65 (br s, 1H), 4.88 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.59 (d, J = 8.1 Hz, 1H), 7.60-7.80 (m, 4H), 9.17 (s, 1H), 9.30 (s, 1H), 14.00 (br s, 1H)
1-35	Chin N O CI	0.10-0.20 (m, 2H), 0.50-0.82 (m, 2H), 0.88 (m, 1H), 1.65 (d, al J = 10.8 Hz, 1H), 2.00-3.80 (m, 14H), 3.78 (s, 3H), 4.93 (s, 1H), 5.46 (br s, 1H), 6.57 (d, J = 8.1 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.4 Hz, 2H), 13 7.06 (d, J = 8.4 Hz, 2H), 14.17 (br s, 1H)

TABLE 14

Chiral Chiral Chiral O—CH3 Chira	
0.88 (m, 1H), 1.45 (d, J = 10.8 l 1H), 1.70-3.40 (m, 10H), 3.71 (s 4.77 (s, 1H), 4.82 (s, 1H), 6.58 (d, J = 8.1 l 1H), 6.64 (m, 1H), 7.00-7.25 (m 9.17 (s, 1H), 9.27 (s, 1H), 13.90 l 1H) Chiral O.12-0.14 (d, J = 4.5 Hz, 2H), 0.8 (m, 1H), 1 l 1H), 1.39-1.62 (m, 18H), 1.84-1 l 1 = 15.6 Hz, 1H), 2.08-2.34 (m, 2.43-2.54 (m), 2.58-2.60 (d, J = 1H), 3.00-3.07 (d, J = 18.6 Hz, 3.18-3.20 (d, J = 6 Hz, 1H), 3.8 l 1H), 4.71-4.76 (m, 2H), 6.49-6.5 l 1H), 4.71-4.76 (m, 2H), 6.49-6.5 l 1H), 9.13 (br s, 1H), 14.47 (ll) l 1H) Chiral O.10-0.25 (m, 2H), 0.40-0.60 (m, 0.89 (m, 1H), 1.45 (d, J = 10.8 l 1H), 1.70-3.40 (m, 13H), 4.78 (e, J = 10.8 l 1H), 1.70-3.40 (m, 13H), 1.70-3.	
J = 8.1 Hz, 2H), 0.85 (m, 1H), 1 1H), 1.39-1.62 (m, 18H), 1.84-1 J = 15.6 Hz, 1H), 2.08-2.34 (m, 2.43-2.54 (m), 2.58-2.60 (d, J = 1H), 3.00-3.07 (d, J = 18.6 Hz, 3.18-3.20 (d, J = 6 Hz, 1H), 3.8' 1H), 4.71-4.76 (m, 2H), 6.49-6.5 J = 8.1, 14.7 Hz, 2H), 7.38 (d, J Hz, 1H), 9.13 (br s, 1H), 14.47 (n) 1H) Chiral O.10-0.25 (m, 2H), 0.40-0.60 (m) 0.89 (m, 1H), 1.45 (d, J = 10.8 I) 1H), 1.70-3.40 (m, 13H), 4.78 (d, M) 4.82 (s, 1H), 6.53 (d, J = 8.1 Hz)	Hz, , 3H), d, Hz, , 3H),
0.89 (m, 1H), 1.45 (d, J = 10.8 J 1H), 1.70-3.40 (m, 13H), 4.78 (s 4.82 (s, 1H), 6.53 (d, J = 8.1 Hz	.06 (m, 89 (d, 5H), 6.9 Hz, .H), 7 (br s, 7 (dd, = 7.8
HO N OH OH OH OH OH OH OH OH O	Hz, , 1H), , 1H), , Hz,
O.10-0.20 (m, 2H), 0.40-0.60 (m 0.87 (m, 1H), 1.45 (d, J = 10.8 l 1H), 1.70-3.40 (m, 16H), 4.76 (s 4.80 (s, 1H), 6.53 (d, J = 8.1 Hz 6.57 (d, J = 8.1 Hz, 1H), 6.65 (c J = 9.0 Hz, 2H), 7.29 (d, J = 9.0 2H), 9.10 (br s, 2H), 14.20 (br s	Hz, , 1H), , 1H), , Hz,
I-40 0.10-0.30 (m, 2H), 0.45-0.65 (m 0.90 (m, 1H), 1.48 (d, J = 10.8 1 H), 1.70-3.40 (m, 10H), 4.77 (s Chiral 4.85 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 7.25-7. 2H), 7.64 (d, J = 9.0 Hz, 2H), 9.1H), 9.29 (s, 1H), 13.90 (br s, HO) HO OH	Hz, , 1H), , 1H), 35 (m,

TABLE 15

TABLE 15			
Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)	
I-41		al 0.20-0.40 (m, 2H), 0.45-0.70 (m, 2H), 0.96 (m, 1H), 1.50 (m, 1H), 1.70-3.40 (m, 13H), 4.67 (br s, 1H), 4.88 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.59 (d, J = 8.1 Hz, 1H), 7.76 (s, I3, 4H), 9.18 (s, 1H), 9.31 (s, 1H), 14.00 (br s, 1H)	
I-42	HO OH OH	0.18 (br, s, 2H), 0.42-0.63 (m, 3H), 0.80-0.97 (m, 2H), 1.20-3.43 (m, 24H), 4.92 (s, 1H), 5.89 (br, s, 1H), 6.58 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 14.13 (br, s, 1H)	
I-43	Chiral CH ₃ OH HO OH OH	0.12-0.19 (m, 2H), 0.41-0.58 (m, 2H), 0.74 (d, J = 3.3 Hz, 6H), 1.43 (m, 1H), 1.88-3.41 4.65-4.80 (m, 2H), 6.50-6.62 (m, 2H), 7.51 (br, s, 1H), 9.13 (s, 1H), 14.23 (br, s, 1H)	
I-44	HO CONHPri	0.10-0.15 (m, 2H), 0.50-0.70 (m, 2H), 0.85 (m, 1H), 1.12 (d, J = 0.9 Hz, 3H), 1.14 (d, J = 0.9 Hz, 3H), 1.66 (d, J = 11.4 Hz, 1H), 2.06-2.80 (m, 8H), 3.00-3.30 (m, 2H), 3.92 (s, 3H), 4.05 (m, 1H), 4.80 (br s, 1H), 5.26 (br s, 1H), 6.56 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 8.1 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H)	
I-45			
	Chiral F N OH		

TABLE 16

TABLE 16		
Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-46	Chiral N N S F F F	0.15-0.35 (m, 2H), 0.45-0.70 (m, 2H), 0.92 (m, 1H), 1.50 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 4.72 (br s, 1H), 4.86 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.54-7.74 (m, 4H), 9.16 (s, 1H), 9.27 (s, 1H), 14.00 (br s, 1H)
I-47	Chiral N O O O C H O O O O C H O O O O O C H O O O O	0.10-0.20 (m, 2H), 0.40-0.60 (m, 2H), 0.86 (m, 1H), 1.42 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 3.61 (s, 3H), 3.82 (d, J = 5.7 Hz, 2H), 4.77 (s, 2H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 8.21 (br t, J = 5.7 Hz, 1H), 9.17 (s, 1H), 13.87 (br s, 1H)
I-48	Chiral HO OH HO OH H3C CH3 CH3 CH3	0.10-0.20 (m, 2H), 0.50-0.65 (m, 2H), 0.89 (m, 1H), 0.90 (d, J = 4.5 Hz, 3H), 0.94 (d, J = 4.5 Hz, 3H), 1.45 (s, 9H), 1.66 (d, J = 10.8 Hz, 1H), 2.10-3.40 (m, 11H), 4.43 (dd, J = 4.5, 8.1 Hz, 1H), 4.94 (s, 1H), 6.00 (d, J = 8.1 Hz, 1H), 6.58 (d,
I-49	CH ₃ CH ₃ CH ₃ CH ₃ OH OH	0.10-0.30 (m, 2H), 0.45-0.70 (m, 2H), 0.90 (m, 1H), 1.34 (s, 3H), 1.38 (s, 3H), 1.50-3.40 (m, 11H), 3.56 (s, 3H), 4.77 (br s, 2H), 6.58 (br s, 2H), 7.69 (br s, 1H), 9.20 (br s, 1H), 13.76 (br s, 1H)
I-50	Chiral N OH OH	0.10-0.20 (m, 2H), 0.40-0.60 (m, 2H), 0.88 (m, 1H), 1.44 (d, J = 11.7 Hz, 1H), 1.90-3.40 (m, 10H), 3.68 (d, J = 4.5 Hz, 2H), 4.77 (s, 1H), 6.52 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 8.00 (br, t, J = 4.5 hz, 1H), 9.18 (br s, 1H), 14.00 (br s, 1H)

	TABLE 17	
Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-51	HO	0.30-0.50 (m, 2H), 0.55-0.75 (m, 2H), 0.89 (d, J = 3.3 Hz, 3H), 0.91 (d, J = 3.3 Hz, 3H), 1.04 (m, 1H), 1.65 (d, J = 13.5 Hz, 1H), 2.00-3.92 (m, 11H), 4.10 (t, J = 6.6 Hz, 1H), 4.95 (s, 1H), 6.64 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 8.1 Hz, 1H), 7.53 (d, J = 7.8 Hz, 9.43 (s, 1H) 13.66 (br s, 1H)
I-52	HO N CH ₃	0.10-0.25 (m, 2H), 0.45-0.60 (m, 2H), 0.89 (m, 1H), 1.34 (s, 3H), 1.36 (s, 3H), 1.46 (d, J = 9.6 Hz, 1H), 1.90-3.40 (m, 10H), 4.75 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 6.59 (d, J = 8.1 Hz, 1H), 7.68 (s, 1H), 9.21 (br s, 1H), 14.11 (br s, 1H)
1-53	HO OH OH	0.13-0.14 (m, 2H), 0.47-0.49 (m, 2H), 0.88 (m, 1H), 1.30 (m, 1H), 1.63-2.10 (m, 6H), Chiral 2.30-2.70 (m, 4H), 2.96-3.58 (m, 6H), 4.06-4.23 (m, 3H), 5.04 (s, 1H), 5.23 (br, 1H), CH ₃ 6.54 (d, J = 8.0 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 8.08 (br, 1H), 9.23 (br, 1H)
1-54	HO OH OH	0.13-0.14 (m, 2H), 0.47-0.49 (m, 2H), 0.88 (m, 1H), 1.30 (d, J = 12.0 Hz, 1H), 1.63-2.12 (m, 6H), 2.28-2.70 (m, 4H), 2.97-3.53 (m, 6H), 4.06-4.23 (m, 3H), 5.06 (s, 1H), 5.22 (br, 1H), 6.54 (d, J = 8.0 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 6.4 Hz, 1H), 8.32 (s, 1H), 9.23 (br, 1H), 10.97 (s, 1H).

TABLE 18

	IABLE 18	
Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-55	Chiral NOH OH	0.10-0.25 (m, 2H), 0.40-0.60 (m, 2H), 0.90 (m, 1H), 1.45 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 4.42 (s, 2H), 4.77 (s, 1H), 5.12 (s, 1H), 6.55 (d, J = 8.1 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 9.20 (s, 1H), 9.28 (s, 1H), 14.00 (br s, 1H)
1-56		ral 0.10-0.40 (m, 2H), 0.45-0.70 (m, 2H), 0.92 (m, 1H), 1.29 (t, 1H), 1.70-3.40 (m, 10H), 4.26 (q, J = 7.2 Hz, 2H), 4.72 (br s, 1H), 4.86 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 6.59 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 9.0 Hz, 2H), 7.90 (d, J = 9.0 Hz, 2H), 9.18 (s, 1H), 9.29 (s, 1H)
I-57	Chiral OH OH OH	0.25-0.40 (m, 2H), 0.50-0.70 (m, 2H), 1.00 (m, 1H), 1.56 (d, J = 10.8 Hz, 1H), 1.70-3.40 (m, 10H), 4.87 (s, 1H), 4.92 (s, 1H), 6.59 (d, J = 8.1 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 9.33 (br s, 2H)
I-58	HO N N N N N N N N N N N N N N N N N N N	0.08-0.20 (m, 2H), 0.43-0.57 (m, 2H), 0.88 (m, 1H), 1.22-3.40 (m, 11H), 4.76 (s, 1H), 4.84 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 6.62-6.81 (m, 3H), 7.06-7.16 (m, 2H), 7.73 (s, 1H), 9.16 (s, 1H), 9.61 (s, 1H), 13.80 (br s, 1H)
1-59	Chiral N N N CH ₃ OH OH	0.08-0.10 (m, 2H), 0.38-0.58 (m, 2H), 0.86 (m, 1H), 1.22-3.40 (m, 17H), 4.71 (s, 2H), 6.51 (d, J = 8.1 Hz, 2H), 6.56 (d, J = 8.1 Hz, 1H), 8.58 (s, 1H), 9.15 (s, 1H), 14.30 (br s, 1H)

	IABLE 19	
Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-60	HO NOHO	Chiral 0.10-0.20 (m, 2H), 0.45-0.55 (m, 2H), 0.88 (m, 1H), 1.81 (t, J = 7.2 Hz, 3H), 1.20-3.75 (m, 20H), 4.07 (d, J = 7.2 Hz, 2H), 5.13 (s, 1H), 5.21 (br s, 1H), 6.53 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 9.21b (br s, 1H)
I-61	HO OH OH	Chiral 0.11-0.39 (m, 2H), 0.53-0.70 (m, 2H), 0.95 (m, 1H), 1.10-1.20 (m, 3H), 1.66-1.73 (m, 1H), 1.82-3.99 (m, 24H), 4.90 (s, 1H), 6.32 (br, s, 1H), 6.56 (d, J = 8.4 Hz, 1H), 6.68-6.73 (m, 1H), 14.03 (br, s, 1H)
I-62	HO OH OH	Chiral 0.10-0.18 (m, 2H), 0.42-0.56 (m, 2H), 0.85 (m, 1H), 1.03 (d, J = 6.9 Hz, 3H), 1.41 (m, 1H), 1.88 (d, J = 15.6 Hz, 1H), 2.04-2.31 (m, 4H), 2.42 2.62 (m, 6H), 3.04 (d, J = 18.0 Hz, 1H), 3.17-3.35 (m, 7H), 3.87 (m, 1H), 4.64 (t, J = 5.7 Hz, 1H), 4.72 (s, 1H), 6.50-6.57 (m, 2H), 7.27 (d, J = 8.1 Hz, 1H), 9.13 (s, 1H), 14.45 (s, 1H)
I-63	HO OH OH	Chiral 0.13 (d, J = 4.2 Hz, 2H), 0.43-0.55 (m, 2H), 0.85 (m, 1H), 0.98 (d, J = 6.9 Hz, 3H), 1.41 (d, J = 10.8 Hz, 1H), 1.89 (d, J = 15.9 Hz, 1H), 2.04-2.32 (m, 4H), 2.43-2.63 (m, 3H), 3.04 (d, J = 18.3 Hz, 1H), 3.19-3.40 (m, 11H), 3.86 (m, 1H), 4.72 (s, 1H), 6.50-6.58 (m, 2H), 7.24 (m, 1H), 9.14 (s, 1H), 14.41 (br, s, 1H)

TABLE 20

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-64	Chiral OH OH OH	0.13 (d, J = 4.8 Hz, 2H), 0.43-0.55 (m, 2H), 0.85 (m, 1H), 1.41 (d, J = 12.3 Hz, 1H), 1.92 (d, J = 16.2 Hz, 1H), 2.06-2.32 (m, 4H), 2.43-2.61 (m, 3H), 3.04 (d, J = 18.3 Hz, 1H), 3.20 (d, J = 6.6 Hz, 1H), 3.33-3.44 (m, 4H), 3.82 (m, 1H), 4.59 (t, J = 5.7 Hz, 1H), 4.68 (t, J = 5.7 Hz, 1H), 4.73 (s, 2H), 6.50-6.59 (m, 2H), 7.14 (br, s, 1H), 9.14 (s, 1H), 14.33 (br, s, 1H)

TABLE 20-continued

	Tribbe 20 continued	
Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-65	N CH	hiral 0.17-0.18 (m, 2H), 0.51-0.53 (m, 2H), 0.92 (m, 1H), 1.34 (m, 1H), 1.35 (br s, 9H), 1.71-3.49 (m, 14H), 3.95-4.20 (m, 3H), 5.10 (br, 1H), 5.26 (br, 1H), 6.57 (d, J = 8.4 Hz, CH ₃ 1H), 6.61 (d, J = 8.4 Hz, 1H), 7.10 (br, 1H), 8.35 (s, 1H), 9.24 (s, 1H).
I-66	F OH F OH OH Chiral	0.41 (m, 1H), 0.50 (m, 1H), 0.60 (m, 1H), 0.69 (m, 1H), 1.08 (m, 1H), 1.56 (m, 1H), 1.76-4.29 (m, 17H), 5.19 (s, 1H), 6.66 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 8.14 (br, 1H), 8.20 (br, 1H), 8.98 (br, 1H).
I-67	Chiral NH2 HO OH OH OH	0.41 (m, 1H), 0.50 (m, 1H), 0.59 (m, 1H), 0.69 (m, 1H), 1.09 (m, 1H), 1.30-4.29 (m, 18H), 5.19 (s, 1H), 5.75 (br, 1H), 6.66 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 8.21 (br, 1H), 8.26 (br, 1H), 8.99 (br, 1H).

TABLE 21

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-68	HO OH OH	Chiral 0.17-0.18 (m, 2H), 0.51-0.53 (m, 2H), 0.92 (m, 1H), 1.34 (m, 1H), 1.43 (br s, 9H), 1.71-2.03 (m, 5H), 2.18-2.74 (m, 4H), CH ₃ 2.92-3.69 (m, 5H), 3.95-4.20 (m, 2H), 5.07 (s, 1H), 5.26 (br, 1H), 6.57 (d, J = 8.0 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 7.20 (br, 1H), 9.25 (s, 1H).

TABLE 21-continued

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-69	Chiral H ₃ C O O O O O O O O O O O O O O O O O O O	0.10-0.26 (m, 2H), 0.42-0.60 (m, 2H), 0.90 (m, 1H), 1.47 (d, J = 10.5 Hz, 1H), 1.90-3.40 (m, 10H), 3.84 (s, 3H), 4.81 (br s, 1H), 6.52 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.80 (br s, 1H), 8.08 (br s, 1H), 9.18 (br s, 1H), 11.60 (br s, 1H)
1-70	O Chiral OH OH OH	0.10-0.20 (m, 2H), 0.40-0.55 (m, 2H), 0.88 (m, 1H), 1.30-4.35 (m, 20H), 5.13 (s, 1H), 6.52 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 9.20 (br s, 1H)
I-71	Chiral OH NO OH OH OH	0.25-0.45 (m, 2H), 0.45-0.70 (m, 2H), 0.97 (m, 1H), 1.64 (d, J = 11.1 Hz, 1H), 2.00-3.40 (m, 10H), 4.07 (br s, 1H), 4.97 (s, 1H), 6.63 (d, J = 8.1 Hz, 1H), 6.68 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 5.4 Hz, 1H), 7.80 (d, J = 5.4 Hz, 1H), 9.44 (br s, 1H), 13.40 (br s, 1H)
I-72	Chiral H ₃ C CH ₃ CH ₃ OH OH	0.14 (d, J = 4.5 Hz, 2H), 0.40-0.58 (m, 2H), 0.79-0.92 (m, 13H), 1.25 (br, s, 1H), 1.41 (m, 1H), 1.907 (s, 1H), 2.11-2.64 (m, 8H), 3.03 (m, 1H), 3.21-3.77 (m, 4H), 4.53 (br, s, 1H), 4.72-4.80 (m, 2H), 6.50-6.58 (m, 2H), 6.95-7.22 (m, 2H), 9.13 (s,

TABLE 22

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
1-73		111a1 0.14 (d, J = 4.5 Hz, 2H), 0.40-0.58 (m, 3H), 0.74-1.01 (m, 10H), 1.25-1.61 (m, 4H), 1.88 (m, 1H), 2.06-2.62 (m, 8H), 3.03 (m, 1H), 3.21 (d, J = 6.0 Hz, 1H), 3.45 (t, J = 5.4 Hz, 2H), 3.68 (m, 1H), 4.57 (m, 1H), 4.72 (s, 1H), 4.76 (br, s, 1H), 6.51-6.58 (m, 2H), 7.14-7.27 (m, 2H), 9.15 (s, 1H), 14.44 (s, 1H)

TABLE 22-continued

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-74	Chiral OH NOH OH	0.16-0.18 (m, 2H), 0.52 (br d, J = 7.6 Hz, 2H), 0.92 (m, 1H), 1.35 (d, J = 11.2 Hz, 1H), 1.72-3.48 (m, 16H), 4.11-4.29 (m, 3H), 4.73-5.25 (m, 2H), 6.57 (d, J = 8.0 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 9.23 (s, 1H), 11.16 (s, 1H).
1-75	Chiral N N N N N N N N N N N N N N N N N N N	0.14-0.15 (m, 2H), 0.43-0.57 (m, 2H), 0.87 (m, 1H), 1.44 (d, J = 11.2 Hz, 1H), 1.97 (d, J = 15.6 Hz, 1H), 2.08-3.22 (m, 10H), 4.15-4.48 (m, 2H), 4.76 (s, 1H), 6.55 (d, J = 8.0 Hz, 1H), 6.62 (d, J = 8.4 Hz, 1H), 7.23-7.29 (m, 2H), 7.75 (m, 1H), 8.48-8.54 (m, 2H).
I-76	Chiral O S NH ₂ HO OH OOH	0.16-0.17 (m, 2H), 0.50-0.56 (m, 2H), 0.89 (m, 1H), 1.43 (br d, 1H), 1.97 (d, J = 15.6 Hz, 1H), 2.11-3.21 (m, 10H), 4.30-4.46 (m, 2H), 4.77 (s, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 7.29 (s, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 8.42 (br, 1H), 9.17 (br, 1H), 14.19 (s, 1H).

TABLE 23

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-77	Chiral O CH3	0.10-0.25 (m, 2H), 0.44-0.60 (m, 2H), 0.88 (m, 1H), 1.45 (d, J = 11.1 Hz, 1H), 1.70-3.40 (m, 13H), 4.78 (s, 1H), 4.81 (s, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.46 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 9.0 Hz, 2H), 9.15 (s, 1H), 9.25 (s, 1H), 9.88 (s, 1H), 14.00 (br s, 1H)

TABLE 23-continued

Compound No.		NMR (1H-NMR (d6-DMSO) δ)
I-78	HO N CH ₃	0.10-0.25 (m, 2H), 0.44-0.60 (m, 2H), 0.89 (m, 1H), 1.17 (t, J = 7.2 Hz, 3H), 1.45 (d, J = 11.4 Hz, 1H), 1.70-3.40 (m, 10H), 3.60 (s, 2H), 4.06 (q, J = 7.2 Hz, 2H), 4.78 (s, 1H), 4.83 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.17 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.7 Hz, 2H), 9.16 (s, 1H), 9.26 (s, 1H), 13.95 (br s, 1H)
I-79	N OH	0.12-0.30 (m, 2H), 0.44-0.62 (m, 2H), 0.90 (m, 1H), 1.48 (d, J = 11.4 Hz, 1H), 1.70-3.40 (m, 10H), 3.51 (s, 2H), 4.81 (s, 1H), 6.55 (d, J = 8.1 Hz, 1H), 6.60 (d, J = 8.1 Hz, 11-1), 7.17 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 9.20 (s, 1H), 9.40 (br s, 1H), 14.00 (br s, 1H)
I-80	ОН	0.10-0.17 (m, 2H), 0.46-0.52 (m, 2H), 0.86 (m, 1H), 1.41 (d, J = 13.2 Hz, 1H), 1.87 (m, 1H), 2.09-2.64 (m, 8H), 3.00-3.50 (m, 15H), 4.57 (m, 1H), 4.73 (br, s, 2H), 6.50-6.57 (m, 2H), 7.73 (br, s, 1H), 9.14 (s, 1H), 14.38 (br, s,
I-81	N-	0.30-0.50 (m, 2H), 0.50-0.70 (m, 2H), 1.05 (m, 1H), 1.50-3.40 (m, 1HH), 4.58 (s, 1H), 5.39 (s, 1H), 6.52 (d, J = 6.0 Hz, 1H), 6.84 (br s, 1H), 7.26 (m, 1H), 7.38 (m, 1H), 9.15

TABLE 24

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
1-82	HO HN HN O	Chiral 1H-NMR (CDCl3 + CD3OD) d: 0.17 (brs, 2 H), 0.59 (brs, 2 H), 0.89 (brs, 1 H), 1.71 (d, J = 10.8 Hz, 1 H), 2.17 (d.d, J = 17.1 & 1.8 Hz, 1 H), 2.22- 2.57 (m, 4 H), 2.60-2.84 (m, 3 H), 3.06 (d, J = 15.6 Hz, 1 H), 3.24 (brs, 1 H), 4.07 (s, 3 H), 5.31 (s, 1 H), 6.56 (d, J = 8.4 Hz, 1 H), 6.67 (d, J = 8.4 Hz, 1 H), 7.02-7.10 (m, 1 H), 7.26-7.32 (m, 2 H), 7.39 (d.d, J = 8.4 & 0.9 Hz, 2 H), 9.61 (s, 1 H).

TABLE 24-continued

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
1-83	HO HN Chiral	1H-NMR (CDC13 +30 CD30D) d: 0.15 (brs, 2 H), 0.58 (brs, 2 H), 0.88 (brs, 1 H), 1.49 (t, J = 6.9 Hz, 3 H), 1.68 (d, J = 17.1 & 1.5 Hz, 1 H), 2.15 (d,d, J = 17.1 & 1.5 Hz, 1 H), 2.28 (brs, 2 H), 2.39 (brs, 2 H), 2.60-2.80 (m, 3 H), 3.06 (d, J = 18.3 Hz, 1 H), 3.26 (brs, 1 H), 4.29 (q, J = 6.9 Hz, 1 H), 4.48 (q, J = 6.9 Hz, 1 H), 5.27 (s, 1 H), 6.56 (d, J = 7.8 Hz, 1 H), 7.03-7.09 (m, 1 H), 7.26-7.31 (m, 2 H), 7.50 (d.d., J = 8.7 & 0.9 Hz, 2 H).
I-84	Chiral CH ₃ HO CH ₃ CH ₃	1H-NMR (CDCl3 + CD3OD) d: 0.16 (brs, 2 H), 0.57 (brs, 2 H), 0.86 (brs, 1 H), 1.13 (d, J = 6.6 Hz, 3 H), 1.14 (d, J = 6.6 Hz, 3 H), 1.39 (t, J = 6.9 Hz, 3 H), 1.66 (d, J = 9.0 Hz, 1 H), 2.08 (d.d, J = 17.1 & 1.5 Hz, 1 H), 2.21 (brs, 2 H), 2.38 (brs, 2 H), 2.58-2.77 (m, 3 H), 3.03 (d, J = 18.6 Hz, 1 H), 3.21 (brs, 1 H), 4.03 (quint, J = 6.6 Hz, 1 H), 4.20 (q, J = 6.9 Hz, 1 H), 4.40 (q, J = 6.9 Hz, 1 H), 5.19 (s, 1 H), 6.54 (d, J = 8.1 Hz, 1 H), 6.65 (d, J = 8.1 Hz, 1 H), 6.65 (d, J = 8.1 Hz, 1 H), 6.65 (d, J = 8.1 Hz, 1 H),

TABLE 25

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
1-85	Chiral N CH ₃ CH ₃ CH ₃	1H-NMR (CDCl3 + CD3OD) d: 0.14(brs, 2 H), 0.56 (brs, 2 H), 0.86 (brs, 1 H), 1.14 (d, J = 6.6 Hz, 3 H), 1.15 (d, J = 6.6 Hz, 3 H), 1.32 (d, J = 4.8 Hz, 1 H), 1.34 (d, J = 9.9 Hz, 1 H), 2.10 (d.d, J = 17.1 & 1.5 Hz, 1 H), 2.27 (brs, 2 H), 2.39 (brs, 2 H), 2.55-2.77 (m, 3 H), 3.04 (d, J = 18.3 Hz, 1 H), 3.22 (brs, 1 H), 4.03 (quint, J = 6.6 Hz, 1 H), 4.81 (quint, J = 6.0 Hz, 1 H), 5.10 (s, 1 H), 6.54 (d, J = 8.4 Hz, 1 H), 6.67 (d, J = 8.4 Hz, 1 H), 7.76 (d, J = 6.9 Hz, 1 H).
1-86	HO HN O HN O H3C	1H-NMR (CDCl3 + CD3OD) d: 0.16 (brs, 2 H), 0.568 (brs, 2 H), 0.87 (brs, 1 H), 1.67 (d, J = 9.9 Hz, 1 H), 2.14 (d.d, J = 18.3 & 1.2 Hz, 1 H), 2.27 (brs, 2 H), 2.41 (brs, 2 H), 3.05 (d, J = 18.6 Hz, 1 H), 3.25 (brd, J = 4.5 Hz, 1 H), 3.92 (s, 1 H), 4.46 (d, J = 5.7 Hz, 2 H), 5.23 (s, 1 H), 6.54 (d, J = 8.1 Hz, 1 H), 6.64 (d, J = 8.1 Hz, 1 H), 7.20-7.36 (m, 5 H), 8.03 (brt, J = 5.7 Hz, 1 H).

TABLE 25-continued

Compound No.	Chemical structure	NMR (1H-NMR (d6-DMSO) δ)
I-87	HO HN N	1 1H-NMR (CDCl3 + CD3OD) d: 0.26 (brs, 2 H), 0.63 (brs, 2 H), 0.94 (brs, 1 H), 1.72 (brd, J = 9.0 Hz, 1 H), 2.09-2.93 (m, 8 H), 3.15 (d, J = 18.9 Hz, 1 H), 4.97 (s, 1 H), 6.61 (d, J = 18.1 Hz, 1 H), 6.70 (d, J = 8.1 Hz, 1 H), 7.04-7.08 (m, 1 H), 7.69-7.75 (m, 1 H), 8.13 (d, J = 14.0 Hz, 2 H), 8.23 (d, J = 3.9 Hz, 1 H).

TABLE 26

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-89	Chiral N N N N N N N N N N N N N N N N N N N	m/z 462 [M + H] ⁺ 0.94 min	
I-90	Chiral CH ₃ CH ₃ CH ₃	m/z 511 [M + H]* 0.63 min	
I-91	Chiral NOH OH	m/z 500 [M + H] ⁺ 0.44 min	
I-92	Chiral N N N N N N N N N N N N N N N N N N N	m/z 462 [M + H] ⁺ 0.44 min	

TABLE 26-continued

Compound No.	Chemical structure		LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-93	MO	CH ₃	m/z 487 [M + H] ⁺ 0.50 min	

TABLE 27

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-94	Chiral Br OH OH	m/z 540 [M + H] ⁺ 1.07 min	
I-95	Chiral N OH OH	m/z 537 [M + H] ⁺ 1.12 min	
I-96	Chiral N O O O O O O O O O O O O O O O O O O	m/z 581 [M + H] ⁺ 1.15 min	
I-97	Chiral N OH OH	m/z 512 [M + H]* 0.50 min	

TABLE 27-continued

Compound No.	Chemical structure		LC/MS* ¹	NMR (1H-NMR (d6-DMSO) δ)
I-98	HO NO	CH ₃ CH ₃	m/z 531 [M + H] ⁺ 0.50 min	

TABLE 28

Compound	l Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-99	HO OH OH	m/z 537 [M + H] ⁺ 1.17 min	
I-100	HO OH	m/z 581 [M + H] ⁺ 1.15 min	
I-101	Chiral OHO OH	m/z 581 [M + H] ⁺ 1.03 min	

TABLE 28-continued

Compound No.	Chemical structure	÷	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-102	HO OH OH	Chiral	m/z 538 [M + H] ⁺ 0.85 min	
I-103	HO NOH	Chiral Br N	m/z 540 [M + H] ⁺ 1.05 min	

TABLE 29

Compoun No.	d Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
1-104	"	m/z 581 [M + H] ⁺ 1.12 min hiral DH	
	HO OH OH		
1-105	Chira	m/z 538 [M + H] ⁺ 0.90 min	
	HO OH N		

TABLE 29-continued

Compoun No.	d Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
1-106	Chiral N N OH OH	m/z 537 [M + H] ⁺ 1.05 min	
1-107	HO OH OH	m/z 581 [M + H] ⁺ 1.09 min	

TABLE 30

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-108	O—————————————————————————————————————	m/z 581 [M + H] ⁺ 1.03 min	
	HO OH OH		
I-109	Chiral CH ₃ CH ₃	m/z 488 [M + H] ⁺ 0.50 min	

TABLE 30-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-110	HO OH Chiral	m/z 518 [M + H] ⁺ 0.50 min	
I-111	Chiral N OH	m/z 518 [M + H] ⁺ 0.56 min	
I-112	HO OH OH	m/z 519 [M + H] ⁺ 0.50 min	

TABLE 31

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-113	Chiral NO OH OH	m/z 511 [M + H]* 0.50 min	
I-114	Chira N HO OH	1 m/z 486 [M + H] ⁺ 0.57 min	

TABLE 31-continued

Compound	. Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-115	Chiral N OH OH	m/z 462 [M + H] ⁺ 0.44 min	
I-116	, F	ul m/z 497 [M + H] ⁺ 0.63 min	
I-117		M m/z 513 [M + H] ⁺ 0.69 min	

TABLE 32

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-118	Chiral N Chiral N CH	m/z 493 [M + H] ⁺ 1.06 min	
I-119	Chiral N O O O O O O O O O O O O O O O O O O	m/z 469 [M + H] ⁺ 0.44 min	

TABLE 32-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-120	HO N Chiral	m/z 538 [M + H] ⁺ 0.94 min	
I-121	Chiral N S OH	m/z 559 [M + H] ⁺ 0.69 min	
I-122	Chiral N HO OH OH	m/z 559 [M + H] ⁺ 0.69 min	

TABLE 33

Compound No.	Chemical structure	LC/MS^{*1} NMR (d6-DMSO) δ)	
I-123	Chiral	m/z 555 [M + H] ⁺ 0.56 min	
	HO OH N S	С Н ₃	
I-124	Chiral	m/z 543 [M + H] ⁺ 0.63 min	
	HO OH OH	F	

TABLE 33-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-125	Chiral N CH3 CH3 CH3	m/z 425 [M + H] ⁺ 0.50 min	
I-126	Chiral Chiral On O O CH3	m/z 525 [M + H] ⁺ 0.56 min	
I-127	Chiral		(CDCl3 + CD3OD) d: 0.10-0.21 (m, 2 H), 0.48-0.63 (m, 2 H), 0.78-0.94 (m, 1 H), 1.67 (d, J = 9.6 Hz, 1 H), 2.10-2.50 (m, 6 H), 2.57-2.80 (m, 2 H), 3.06 (d, J = 18.6 Hz, 1 H), 3.27 (brs, 1 H), 5.10 (d, J = 1.7 Hz, 1 H), 6.31-6.40 (m, 1 H), 6.53 (d, J = 8.1 Hz, 1 H), 6.65 (d, J = 8.1 Hz, 1 H), 7.02-7.12 (m, 1 H), 7.22-7.34 (m, 2 H), 7.44-7.56 (m, 2 H).

TABLE 34

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-128	Chiral	m/z 553 [M + H] ⁺ 0.94 min	
	HO OH OH		
I-129	Chiral	m/z 559 [M + H] ⁺ 0.63 min	
	HO OH OH	•	

TABLE 34-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-130	Chiral Cl	m/z 529 [M + H] ⁺ 0.75 min	
I-131	HO OH OH	m/z 497 [M + H] ⁺ 0.63 min	
I-132	Chiral Cl	m/z 529 [M + H] ⁺ 0.88 min	

TABLE 35

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-133	HO OH OH	m/z 511 [M + H]* 0.97 min	$\begin{array}{l} 0.12\text{-}0.16 \ (m,\ 2\ H),\ 0.46\text{-}0.52 \ (m,\ 2\ H),\ 0.86 \ (m,\ 1\ H),\ 1.42 \ (d,\ J=10.5\ Hz,\ 1\ H),\ 1.86 \ (d,\ J=15.6\ Hz,\ 1\ H),\ 2.06\text{-}2.65 \ (m,\ 15\ H),\ 3.05 \ (d,\ J=18.3\ Hz,\ 1\ H),\ 3.26 \ (d,\ J=5.9\ Hz,\ 1\ H),\ 3.55 \ (s,\ 3\ H),\ 4.73 \ (s,\ 1\ H),\ 6.52 \ (d,\ J=8.1\ Hz,\ 1\ H),\ 7.76 \ (brs,\ 1\ H),\ 9.31 \ (brs,\ 1\ H),\ 13.8 \ (brs,\ 1\ H) \end{array}$
I-134	HO OH NO OH	m/z 498 [M + H]* 0.96 min	$\begin{array}{l} 0.13\text{-}0.16\ (m,\ 2\ H),\ 0.48\text{-}0.54\ (m,\ 2\ H),\ 0.87\ (m,\ 1\ H),\ 1.43\ (d,\ J=10.5\ Hz,\ 1\ H),\ 1.86\ (d,\ J=15.6\ Hz,\ 1\ H),\ 2.06\text{-}2.67\ (m,\ 15\ H),\ 3.06\ (d,\ J=18.6\ Hz,\ 1\ H),\ 3.27\ (d,\ J=6.0\ Hz,\ 1\ H),\ 4.73\ (s,\ 1\ H),\ 6.53\ (d,\ J=8.1\ Hz,\ 1\ H),\ 6.58\ (d,\ J=8.1\ Hz,\ 1\ H),\ 7.72\ (brs,\ 1\ H),\ 9.20\ (brs,\ 1\ H),\ 14.1\ (brs,\ 1\ H) \end{array}$

TABLE 35-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) 8)
I-135	HO OH OH	Chiral m/z 483 [M + H] ⁺ 0.87 min	0.12-0.14 (m, 2 H), 0.46-0.51 (m, 2 H), 0.85 (m, 1 H), 1.06-1.09 (m, 2 H), 1.35-1.36 (m, 2 H), 1.41 (d, J= 11.7 Hz, 1 H), 1.86 (d, J= 15.6 Hz, 1 H), 2.17-2.61 (m, 7 H), 3.03 (d, J= 18.3 Hz, 1 H), 3.17 (d, J= 6.0 Hz, 1 H), 3.56 (s, 3 H), 4.74 (s, 1 H), 4.77 (brs, 1 H), 6.51 (d, J= 8.1 Hz, 1 H), 6.56 (d, J= 8.1 Hz, 1 H), 9.17 (brs, 1 H), 14.1 (brs, 1 H)
I-136	HO OH N	Chiral m/z 469 [M + H]+ 0.89 min	0.12-0.16 (m, 2 H), 0.43-0.51 (m, 2 H), 0.85 (m, 1 H), 1.06-1.12 (m, 2 H), 1.35-1.36 (m, 2 H), 1.42 (d, J= 11.7 Hz, 1 H), 1.86 (d, J= 15.6 Hz, 1 H), 2.06-2.63 (m, 7 H), 3.02 (d, J= 18.3 Hz, 1 H), 3.13 (d, J= 5.4 Hz, 1 H), 4.76 (s, 1 H), 4.77 (brs, 1 H), 6.52 (d, J= 8.1 Hz, 1 H), 6.56 (d, J= 8.1 Hz, 1 H), 9.18 (brs, 1 H), 14.1 (brs, 1 H)

TABLE 36

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-137	Chiral O O O O O O O O O O O O O O O O O O O	m/z 539 [M + H] ⁺ 0.50 min	
I-138	Chira HO OH OH		

TABLE 36-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-139	HO OH OH	m/z 486 [M + H] ⁺ 0.44 min	
I-140	Chiral Cl N OH OH	m/z 520 [M + H] ⁺ 0.56 min	
I-141	Chiral CH ₃ HO OH OH	m/z 510 [M + H] ⁺ 0.75 min	

TABLE 37

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-142	HO OH OH	m/z 521 [M + H] ⁺ 0.50 min	
I-143	HO OH OH	m/z 553 [M + H] ⁺ 0.88 min	

TABLE 37-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-144	N Chiral CH ₃ HO OH	m/z 494 [M + H] ⁺ 0.57 min	
I-145	Chiral No.	m/z 469 [M + H] ⁺ 0.83 min	
I-146	Chiral N N N S	m/z 467 [M + H] ⁺ 1.01 min	

TABLE 38

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-147	Chiral	m/z 467 [M + H] ⁺ 1.00 min	
	HO OH OH		
I-148	Chiral CF ₃	m/z 559 [M + H] ⁺ 1.16 min**	
	HO OH OCH	3	

TABLE 38-continued

Compound No.	. Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-149	Chiral CF ₃ HO OH OH	m/z 598 [M + H] ⁺ 1.34 min**	
I-150	Chiral Cl	m/z 514 [M + H]* 0.50 min	
I-151	CH ₃ O Chiral HO OH OH	m/z 538 [M + H] ⁺ 0.63 min	

TABLE 39

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-152	Chiral CH ₃ HO OH OH	m/z 494 [M + H] ⁺ 0.56 min	
I-153	Chiral N N N N N N N N N N N N N N N N N N N	m/z 465 [M + H]* 0.90 min	

TABLE 39-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-154	HO OH Chiral	m/z 465 [M + H] ⁺ 0.96 min	
I-155	Chiral NOH OH	m/z 544 [M + H] ⁺ 1.00 min	
I-156	HO OH OH Chiral	m/z 483 [M + H] ⁺ 0.35 min	

TABLE 40

Compound No.	Chemical structure	LC/MS*1	NMR $(1\text{H-NMR} (\text{d6-DMSO})\delta)$
I-157	HO N CH ₃	iral m/z 510 [M + H] ⁺ 0.96 min	0.11-0.14 (m, 2H), 0.46-0.50 (m, 2H), 0.83 (m, 1H), 0.87 (t, J = 7.2 Hz, 1H), 0.99 (d, J = 4.2 Hz, 3H), 1.01 (d, J = 4.2 Hz, 3H), 1.08-1.43 (m, 5H), 1.95 (d, J = 17.1 Hz, 1H), 2.11-2.65 (m, 7H), 2.96-3.16 (m, 4H), 3.78 (q, J = 7.5 Hz, 1H), 4.78 (brs, 1H), 5.21 (s, 1H), 6.49 (d, J = 8.1 Hz, 1H), 6.55 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 5.1 Hz, 1H), 7.50 (d, J = 7.8 Hz, 12H), 9.02 (brs, 1H)

134

133

TABLE 40-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO)δ)
I-158	Chiral N CH ₃ CH ₃ CH ₃	m/z 496 [M + H] ⁺ 0.93 min	0.11-0.13 (m, 2H), 0.46-0.50 (m, 2H), 0.85 (m, 1H), 1.01 (d, J = 4.1 Hz, 3H), 1.02 (d, J = 4.2 Hz, 3H), 1.07 (d, J = 4.0 Hz, 3H), 1.09 (d, J = 4.0 Hz, 3H), 1.40 (d, J = 11.1 Hz, 1H), 1.95 (d, J = 17.1 Hz, 1H), 2.09-2.63 (m, 7H), 2.98 (d, J = 18.1 Hz, 1H), 3.13 (d, J = 5.4 Hz, 1H), 3.82 (q, J = 6.6 Hz, 1H), 3.88 (q, J = 6.9 Hz, 1H), 5.24 (brs, 1H), 5.76 (s, 1H), 6.50 (d, J = 7.5 Hz, 1H), 6.55 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 6.9 Hz, 1H), 9.01 (brs, 1H)
I-159	Chiral HO N CH ₃	m/z 536 [M + H]* 0.95 min	0.11-0.13 (m, 2H), 0.46-0.50 (m, 2H), 0.83 (m, 1H), 0.99 (d, J = 3.0 Hz, 3H), 1.01 (d, J = 3.0 Hz, 3H), 1.15-1.38 (m, 6H), 1.40 (d, J = 11.1 Hz, 1H), 1.52-1.80 (m, 4H), 1.97 (d, J = 17.1 Hz, 1H), 2.09-2.65 (m, 7H), 2.98 (d, J = 18.6 Hz, 1H), 3.13 (d, J = 5.7 Hz, 1H), 3.58 (m, 1H), 3.79 (q, J = 6.9 Hz, 1H), 5.23 (s, 1H), 6.50 (d, J = 7.8 Hz, 1H), 5.55 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 9.00 (brs, 1H)

TABLE 41

Compound No.	Chemical structure		LC/MS*1	NMR (1H-NMR (d6-DMSO)δ)
I-160	HO NO	CH ₃	m/z 522 [M + H]* 1.04 min	0.12-0.13 (m, 2H), 0.46-0.51 (m, 2H), 0.85 (m, 1H), 0.99 (d, J = 3.3 Hz, 3H), 1.01 (d, J = 3.3 Hz, 3H), 1.15-1.49 (m, 7H), 1.91 (d, J = 16.5 Hz, 1H), 2.08-2.65 (m, 7H), 2.98 (d, J = 17.5 Hz, 1H), 3.12 (d, J = 5.7 Hz, 1H), 3.16-3.34 (m, 4H), 3.79 (q, J = 6.9 Hz, 1H), 4.76 (brs, 1H), 5.01 (s, 1H), 6.54 (d, J = 7.8 Hz, 1H), 6.58 (d, J = 7.8 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 9.01 (brs, 1H)

TABLE 41-continued

Compound No.	Chemical structure		LC/MS*1	NMR (1H-NMR (d6-DMSO)δ)
I-161	HO NO	CH ₃	m/z 524 [M + H] ⁺ 0.92 min	0.12-0.14 (m, 2H), 0.46-0.51 (m, 2H), 0.86 (m, 1H), 0.99 (d, J = 3.3 Hz, 3H), 1.01 (d, J = 3.3 Hz, 3H), 1.41 (d, J = 11.1 Hz, 1H), 1.95 (d, J = 17.1 Hz, 1H), 2.08-2.67 (m, 11H), 2.98 (d, J = 17.5 Hz, 1H), 3.12 (d, J = 5.7 Hz, 1H), 3.49-3.60 (m, 4H), 3.82 (q, J = 6.9 Hz, 1H), 4.78 (brs, 1H), 5.01 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 9.13 (brs, 1H)
I-162	HO N N	CH ₃	m/z 530 [M + H]* 0.94 min	0.13-0.14 (m, 2H), 0.47-0.51 (m, 2H), 0.83 (m, 1H), 0.84 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 1.44 (d, J = 10.5 Hz, 1H), 2.02 (d, J = 16.8 Hz, 1H), 2.11-2.65 (m, 7H), 3.03 (d, J = 18.6 Hz, 1H), 3.17 (d, J = 5.7 Hz, 1H), 3.58 (m, 1H), 3.74 (q, J = 6.3 Hz, 1H), 4.86 (brs, 1H), 5.39 (s, 1H), 6.52 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 8.1 Hz, 1H), 7.03 (t, J = 7.2 Hz, 1H), 7.26 (t, J = 7.8 Hz, 2H), 7.56 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 9.01 (brs, 1H), 9.70 (brs, 1H)

TABLE 42

Compound No.	Chemical structure		LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-163	HO	Chiral	m/z 445 [M + H] ⁺ 0.83 min	
I-164	HO	ral H ₃		0.14-0.22 (m, 2H), 0.48-0.61 (m, 2H), 0.91 (m, 1H), 1.12 (d, J = 6.6 Hz, 6H), 1.53-1.66 (m, 1H), 2.15-2.22 (m, 2H), 2.23-2.30 (m, 2H), 2.35-2.49 (m, 2H), 2.70 (d.d, J = 18.9 & 6.6 Hz, 2H), 3.13 (d, J = 18.9 Hz, 1H), 3.27 (d, J = 6.6 Hz, 1H), 3.98 (quintet, J = 6.6 Hz, 1H), 4.99-5.04 (m, 1H), 6.32-6.36 (m, 1H), 6.53 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H).

TABLE 42-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-165	HO OH OH	m/z 543 [M + H] ⁺ 0.63 min	
I-166	Chiral N N N N	m/z 446 [M + H] ⁺ 0.94 min	

TABLE 43

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-167	Chiral N N N N N N N N N N N N N N N N N N N		(CD3OD) d: 0.12-0.22 (m, 2H), 0.48-0.63 (m, 2H), 0.82-1.00 (m, 1H), 1.63 (d, J = 8.1 Hz, 1H), 2.10-2.50 (m, 7H), 2.72 (d.d, J = 18.6 & 6.6 Hz, 2H), 3.15 (d, J = 18.6 Hz, 1H), 5.10 (brs, 1H), 6.50-6.65 (m, 3H), 7.67 (d.d, J = 4.8 & 1.5 Hz, 1H), 8.36 (d.d, J = 4.8 & 1.5 Hz, 1H).
I-168	Chiral N N S CH		
I-169	Chiral CH ₃ On the original of the original	m/z 541 [M + H] ⁺ 1.15 min	

TABLE 43-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-170	Chiral H ₃ C O H ₃ C	m/z 480 [M + H] ⁺ 0.37 min	
I-171	HO OH OH	m/z 509 [M + H] ⁺ 0.75 min	

TABLE 44

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-172	Chiral HO O N CH ₃ CH ₃	m/z 505 [M + H] ⁺ 0.97 min	0.11-0.13 (m, 2H), 0.46-0.50 (m, 2H), 0.84 (m, 1H), 0.98 (d, J = 3.1 Hz, 3H), 1.01 (d, J = 3.1 Hz, 3H), 1.37 (d, J = 10.8 Hz, 1H), 2.08 (d, J = 17.4 Hz, 1H), 2.11-2.24 (m, 2H), 2.35 (d, J = 6.6 Hz, 1H), 2.51-2.63 (m, 2H), 3.01 (d, J = 18.3 Hz, 1H), 3.13 (d, J = 5.7 Hz, 1H), 3.54 (s, 3H), 3.86 (q, J = 7.2 Hz, 1H), 4.98 (brs, 1H), 5.76 (s, 1H), 6.59 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 9.16 (brs, 1H)
I-173	Chiral HO N CH ₃ CH ₃	m/z 426 [M + H] ⁺ 0.90 min	0.12-0.14 (m, 2H), 0.46-0.52 (m, 2H), 0.85 (m, 1H), 0.97 (d, J = 6.6 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 1.03 (d, J = 10.2 Hz, 1H), 1.86 (d, J = 15.0 Hz, 1H), 2.02 (d, J = 15.0 Hz, 1H), 2.02 (d, J = 15.0 Hz, 1H), 2.10-2.17 (m, 2H), 2.28 (dd, J = 6.9, 6.9 Hz, 1H), 2.43 (dd, J = 6.9, 8.4 Hz, 1H), 2.54-2.62 (m, 2H), 3.01 (d, J = 18.3 Hz, 1H), 3.17 (d, J = 5.7 Hz, 1H), 3.58 (m, 1H), 3.88 (q, J = 7.2 Hz, 1H), 4.62 (brs, 1H), 4.68 (s, 1H), 6.47 (d, J = 8.1 Hz, 1H), 6.55 (d, J = 8.1 Hz, 1H), 6.94 (brs, 1H), 9.06 (brs, 1H)

TABLE 44-continued

Compound No.	Chemical structure	LC/MS* ¹	NMR (1H-NMR (d6-DMSO) δ)
I-174	HO OH OH	-ОН	(CD3OD) d: 0.10-0.25 (m, 2H), 0.48-0.63 (m, 2H), 0.83- 1.00 (m, 1H), 1.55 (d, J = 8.1 Hz, 1H), 2.01 (d, J = 15.6 Hz, 1H), 2.22-2.57 (m, 6H), 2.70 (d.d., J = 18.3 & 7.2 Hz, 2H), 3.12 (d, J = 18.3 Hz, 1H), 4.67 (s, 1H), 6.44-6.62 (m, 3H), 7.54 (d.d, J = 9.6 & 3.6 Hz, 1H), 8.00 (d, J = 3.6 Hz, 1H).

	TABLE 45					
Compound No	. Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)			
I-175	Chiral CH ₃	m/z 458 [M + H] ⁺ 0.86 min				
I-176	Chiral N CH	ESI: m/z 458 [M + H] ⁺				
I-177	HO NH ₂ Chiral	m/z 460 [M + H]* 1.20 min	0.13-0.17 (m, 2H), 0.47-0.50 (m, 2H), 0.87 (m, 1H), 1.41 (d, J = 10.5 Hz, 1H), 2.07 (d, J = 15.0 Hz, 1H), 2.10-2.25 (m, 2H), 2.32 (dd, J = 5.7, 6.9 Hz, 1H), 2.45 (dd, J = 5.7, 6.0 Hz, 1H), 2.63 (dt, J = 6.3, 11.7, 2H), 3.05 (d, J = 18.3 Hz, 1H), 3.19 (d, J = 6.0 Hz, 1H), 4.67 (brs, 1H), 4.75 (s, 1H), 6.51 (d, J = 8.1 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 8.4 Hz, 1H), 7.25 (d, J = 3.6 Hz, 2H), 7.52 (d, J = 7.5 Hz, 2H), 8.38 (brs, 1H), 9.07 (brs, 1H)			

TABLE 46

Compound No.	Chemical structure		LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-178	HO N N N N N N N N N N N N N N N N N N N	CH ₃	m/z 636 [M + H]* 1.11 min	0.11-0.13 (m, 2H), 0.46-0.51 (m, 2H), 0.86 (m, 1H), 0.95 (d, J = 6.6 Hz, 6H), 1.46 (d, J = 11.1 Hz, 1H), 1.87 (d, J = 18.0 Hz, 1H), 2.11-2.63 (m, 7H), 2.25 (s, 3H), 3.03 (d, J = 17.4 Hz, 1H), 3.18 (brs, 1H), 3.84 (q, 3 = 7.2 Hz, 1H), 4.71 (brs, 1H), 5.45 (brs, 1H), 6.50 (brs, 1H), 6.57 (brs, 1H), 7.61-8.19 (m, 4H), 9.03 (brs, 1H), 10.7 (brs, 1H), 12.7 (brs, 1H)
I-179	HO N N N N N N N N N N N N N N N N N N N	CH ₃	m/z 581 [M + H] ⁺ 1.06 min	0.11-0.13 (m, 2H), 0.46-0.51 (m, 2H), 0.86 (m, 1H), 0.95 (d, J = 6.6 Hz, 6H), 1.46 (d, J = 11.1 Hz, 1H), 1.87 (d, J = 18.0 Hz, 1H), 2.09 (s, 3H), 2.11-2.63 (m, 7H), 3.03 (d, J = 17.4 Hz, 1H), 3.18 (brs, 1H), 3.84 (q, J = 7.2 Hz, 1H), 4.69 (brs, 1H), 5.45 (brs, 1H), 6.48 (d, J = 7.2 Hz, 1H), 7.33 (brd, J = 5.4 Hz, 2H), 7.54 (brs, 1H), 7.74 (d, J = 7.5 Hz, 2H), 9.11 (brs, 1H), 12.3 (brs, 1H)

TABLE 47

	II IDE			
Compound No.	Chemical structure		LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-180	HO NO	CH ₃	m/z 597 [M + H] ⁺ 1.03 min	0.11-0.13 (m, 2H), 0.46-0.51 (m, 2H), 0.85 (m, 1H), 0.95 (d, J = 6.6 Hz, 6H), 1.46 (d, J = 9.9 Hz, 1H), 1.87 (d, J = 17.4 Hz, 1H), 2.11-2.62 (m, 7H), 3.01 (d, J = 17.7 Hz, 1H), 3.82 (s, 3H), 3.83 (q, J = 5.4 Hz, 1H), 4.67 (brs, 1H), 5.44 (s, 1H), 6.49 (d, J = 8.1 Hz, 1H), 7.04 (d, J = 8.4 Hz, 2H), 7.52 (brd, J = 9.3 Hz, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H), 9.12 (brs, 1H), 12.2 (brs, 1H)

TABLE 47-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-181	HO OH Chiral	m/z 502 [M + H] ⁺ 0.35 min	
I-182	Chiral O—CH ₃	m/z 553 [M + H]* 0.68 min	
I-183	Chiral OH O HO OH OOH OOH OOH OOH OOH OOH OOH	m/z 539 [M + H] ⁺ FAB-MS	

TABLE 48

Compound No.	Chemical structure		LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-184	HO OH OH	Chiral	m/z 458 [M + H] ⁺ 0.97 min	
I-185	HO OH OH	Chirs CH ₃	M / M / Z 519 [M + H] ⁺ 0.43 min	

TABLE 48-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-186	Chiral O—CH ₃	m/z 519 [M + H] ⁺ 1.67 min**	
I-187	Chiral OH OH OCI	m/z 539 [M + H] ⁺ 0.50 min	

TABLE 49

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-188	Chiral OH NOH OH OH OH OH OH OH OH OH	m/z 505 [M + H]+ 0.35 min	
I-189	Chiral OH NOHOOH	m/z 505 [M + H] ⁺ 0.42 min	
I-190	Chiral O—CH ₃ O HO OH OH OH	m/z 597 [M + H] ⁺ 0.77 min	

TABLE 49-continued

Compound No.	. Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-191	Chiral O HO OH OH	m/z 523 [M + H] ⁺ 1.20 min	
I-192	HO N Chiral N O	m/z 546 [M + H] ⁺ CH ₃ 1.00 min	

TABLE 50

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-193	Chiral N OH OH	m/z 580 [M + H]* 1.09 min	
I-194	Chiral CH ₃ HO N N N N N N N N N N N N N	m/z 474 [M + H] ⁺ 0.88 min	
I-195	Chiral N N N CH ₃	m/z 458 [M + H] ⁺ 1.08 min	

TABLE 50-continued

Compound No.	Chemical structure	LC/MS* ¹	NMR (1H-NMR (d6-DMSO) δ)
I-196	Chiral N O O CH ₃		0.12-0.16 (m, 2H), 0.46-0.55 (m, 2H), 0.88 (m, 1H), 1.43 (d, J = 12.4 Hz, 1H), 1.65-2.65 (m, 12H), 2.97-3.70 (m, 6H), 3.59 (s, 3H), 4.74 (s, 1H), 6.55 (d, J = 8.0 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 7.68 (brs, 1H), 9.16 (brs, 1H), 13.6 (brs, 1H)

TABLE 51

	IABLE 31		
Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-197	Chiral N OH OH		0.20-0.40 (m, 2H), 0.46-0.65 (m, 2H), 0.97 (m, 1H), 1.54 (d, J = 6.8 Hz, 1H), 1.80-2.10 (m, 3H), 2.31-3.69 (m, 15H), 4.83 (s 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 7.56 (brs, 1H), 9.29 (brs, 1H), 13.6 (brs, 1H)
I-198	HO Chiral O CH ₃ CH ₃ CH ₃	m/z 533 [M + H]* 0.95 min	0.11-0.13 (m, 2H), 0.46-0.52 (m, 2H), 0.86 (m, 1H), 1.03 (d, J = 6.3 Hz, 3H), 1.08 (d, J = 6.3 Hz, 3H), 1.46 (brd, J = 8.4 Hz, 1H), 1.94 (d, J = 17.7 Hz, 1H), 2.71-2.60 (m, 7H), 2.81 (s, 6H), 3.04 (d, J = 17.1 Hz, 1H), 3.18 (brs, 1H), 3.95 (q, J = 5.4 Hz, 1H), 4.77 (brs, 1H), 5.45 (s, 1H), 6.57 (d, J = 7.5 Hz, 1H), 6.57 (d, J = 7.5 Hz, 1H), 7.64 (brs, 1H), 9.14 (brs, 1H), 12.2 (brs, 1H)
I-199	Chiral NO OH OCH3	m/z 497 [M + H] ⁺ 0.97 min	0.13-0.15 (m, 2H), 0.48-0.52 (m, 2H), 0.86 (m, 1H), 1.41 (d, J = 11.4 Hz, 1H), 1.85 (t, J = 7.8 Hz, 2H), 1.93 (d, J = 16.5 Hz, 1H), 2.07-2.62 (m, 11H), 3.05 (d, J = 18.3 Hz, 1H), 3.21 (d, J = 6.0 Hz, 1H), 3.59 (s, 3H), 4.72 (s, 1H), 4.77 (brs, 1H), 6.53 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 8.1 Hz, 1H), 8.26 (brs, 1H), 9.15 (brs, 1H), 14.1 (brs, 1H)

TABLE 51-continued

Compound No.	Chemical structure	NMR LC/MS* ¹ (1H-NMR (d6-DMSO) δ)
I-200	Chiral O—CH ₃	m/z 553 [M + H]* 0.47 min

TABLE 52

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-201	N O O	Chiral m/z 601 CH ₃ [M + H]* 1.01 min	
HO I-202	OH OH OH	CH ₃ m/z 563 [M + H]* 0.58 min	
HO 1-203	OH Chiral OH	m/z 583	
HO I-204	OH Chiral	m/z 539 [M + H]* 0.33 min	

TABLE 52-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-205	HO OH Chiral	m/z 573 [M + H] ⁺ 0.62 min	

TABLE 53

	TABLE 53		
Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-206	Chiral OH O HO OH O OH	m/z 535 [M + H] ⁺ 0.41 min	
I-207	Chiral CH3 CH3 CH3 CH3 CH3	m/z 484 [M + H] ⁺ 0.32 min	
I-208	Chiral N N N N O O O O O O O O O O O O O O O	m/z 507 [M + H] ⁺ 1.05 min	
I-209	Chiral CH ₃	m/z 518 [M + H] ⁺ 1.14 min**	

TABLE 53-continued

Compound No.	Chemical structure	$\begin{array}{cc} & NMR \\ LC/MS^{*1} & (1H\text{-NMR (d6-DMSO) }\delta) \end{array}$
I-210	Chiral NOH OH	m/z 495 [M + H] ⁺ 1.64 min**

TABLE 54

	TABLE 54		
Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-211	Chiral CH ₃ N OH OH	m/z 503 [M + H]* 1.33 min**	
I-212	Chiral N N N N N N N N N N N N N N N N N N N	m/z 512 [M + H] ⁺ 1.67 min**	
I-213	Chiral CH ₃ HO OH OH N N N N N N N N N N N N N	m/z 500 [M + H] ⁺ 1.41 min**	
I-214	Chiral N N N N N N N N N N N N N N N N N N N	m/z 536 [M + H] ⁺ 1.69 min**	

TABLE 55

	IABLE 33		
Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-215	HO OH CH	m/z 485 [M + H]* 1.60 min**	
I-216	Chiral NO OH	m/z 565 [M + H] ⁺ 1.82 min**	
I-217	Chiral N CH ₃	m/z 548 [M + H]* 1.17 min**	
I-218	HO OH OH	m/z 512 [M + H]* 0.95 min**	
I-219	HO OH OH	m/z 512 [M + H]* 1.66 min**	

TABLE 55-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-220	Chiral O CH ₃	m/z 525 [M + H] ⁺ 1.60 min**	
I-221	Chiral OCH ₃ HO OH OH	m/z 521 [M + H] ⁺ 1.35 min**	

TABLE 56

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-222	HO OH Chiral	m/z 509 [M + H] ⁺ 1.57 min**	
I-223	HO OH Chiral	m/z 479 [M + H] ⁺ 1.50 min**	
I-224	Chiral Cl HO OH OH CH3	m/z 555 [M + H] ⁺ 1.76 min**	

	164
	164

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-225	Chiral O CH	m/z 519 [M + H] ⁺ 1.67 min**	
I-226	Chiral HO OH OH OCH	m/z 505 [M + H] ⁺ 1.53 min**	
I-227	Chiral CH ₃ Chiral OH CH ₃	m/z 505 [M + H] ⁺ 1.64 min**	
I-228	Chiral N CH	m/z 503 [M + H] ⁺ 1.38 min**	

TABLE 57

Compound No.	Chemical structure	$\begin{array}{cc} & NMR \\ LC/MS^{*1} & (1H\text{-}NMR \; (d6\text{-}DMSO) \; \delta) \end{array}$
I-229	CH ₃ Chiral N OH OH CH ₃ Chiral	m/z 626 [M + H]* 1.74 min**

TABLE 57-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
	Chiral OCH ₃ HO N OH OH	m/z 521 [M + H]* 1.56 min**	
I-231	HO OH OH	m/z 500 [M + H] ⁺ 1.40 min**	
I-232	Chiral OH OH CH CH	m/z 630 [M + H]* 1.72 min**	
I-233	Chiral N N N N N N N N N N N N N N N N N N N	m/z 501 [M + H] ⁺ 1.25 min**	
I-234	Chiral CH ₃ HO OH OH OH OH OH OH OH OH O	m/z 505 [M + H]* 1.46 min**	

TABLE 57-continued

Compound No.	Chemical structure	$\begin{array}{c} \text{NMR} \\ \text{LC/MS*}^1 & (\text{1H-NMR (d6-DMSO) }\delta) \end{array}$
I-235	Chiral F F F OH OH	m/z 515 [M + H] ⁺ 1.56 min**

TABLE 58

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-236	HO OH Chiral	m/z 565 [M + H]* 1.77 min**	
I-237	Chiral HO N OH OH	m/z 501 [M + H] ⁺ 1.17 min**	
I-238	HO OH OH	m/z 548 [M + H] ⁺ 1.29 min**	
I-239	Chiral N CH ₃	m/z 518 [M + H] ⁺ 1.21 min**	

TABLE 58-continued

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-240	Chiral HO OH OH	m/z 542 [M + H] ⁺ 1.31 min**	
I-241	Chiral N OH N OH	m/z 520 [M + H]* 1.50 min**	
I-242	HO N Chiral N N N OH		

TABLE 59

Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)
I-243	Chiral N HO OH HN N N N N N N H3C	m/z 493 [M + H] ⁺ 1.05 min	

TABLE 59-continued

Compound No.	Chemical structure	LC/MS* ¹	NMR (1H-NMR (d6-DMSO) δ)
I-244	HO NH CH ₃ HO NH CH ₃	m/z 601 [M + H] ⁺ 1.02 min	0.11-0.13 (m, 2H), 0.48-0.51 (m, 2H), 0.87 (m, 1 H), 0.95 (d, J = 6.6 Hz, 6H), 1.48 (d, J = 11.1 Hz, 1H), 1.88 (d, J = 18.0 Hz, 1H), 2.10 (s, 3H), 2.18-2.57 (m, 7H), 3.04 (d, J = 16.8 Hz, 1H), 3.19 (brs, 1H), 3.78 (q, J = 6.9 Hz, 1H), 4.68 (brs, 1H), 5.43 (brs, 1H), 6.49 (d, J = 6.6 Hz, 1H), 6.51 (d, J = 6.6 Hz, 1H), 7.35-7.37 (m, 2H), 7.54 (brs, 1H), 7.85 (d, J = 6.9 Hz, 2H), 9.09 (brs, 1H), 12.4 (brs, 1H)
I-245	Chiral O Cl	m/z 601 [M + H] ⁺ 0.76 min	
I-246	Chiral H ₃ C O HO OH OH	m/z 505 [M + H]* 1.38 min**	
I-247	Chiral H ₃ C — O O — CH	m/z 521 [M + H]+ 1.58 min**	

TABLE 60

TABLE 60				
Compound No.	Chemical structure	LC/MS*1	NMR (1H-NMR (d6-DMSO) δ)	
I-248	Chiral F CH ₃	m/z 493 [M + H] ⁺ 1.69 min**		
I-249	Chiral NO OH	m/z 479 [M + H] ⁺ 1.55 min**		
I-250	HO OH OH	m/z 519 [M + H]* 1.74 min**		
I-251	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	m/z 512 [M + H]* 0.38 min		
I-252	HO NH NH O CH	3	0.10-0.15 (m, 2H), 0.34-0.38 (m, 2H), 0.73 (m, 1H), 1.26 (d, J = 9.6 Hz, 1H), 1.93-2.54 (m, 10H), 2.94 (d, J = 18.4 Hz, 1H), 3.10 (d, J = 6.0 Hz, 1H), 3.67 (s, 3H), 3.72 (s, 3H), 4.58 (s, 1H), 4.84 (s, 1H), 6.42 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 8.0 Hz, 2H), 6.69 (d, J = 9.2 Hz, 2H), 7.56 (dd, J = 2.8, 8.8 Hz, 1H), 7.66 (dd, J = 2.8, 8.8 Hz, 1H), 8.00 (d, J = 2.4 Hz, 1H), 8.08 (d, J = 2.0 Hz, 1H), 8.76 (s, 1H), 8.97 (s, 1H), 10.78 (s, 1H).	

30

35

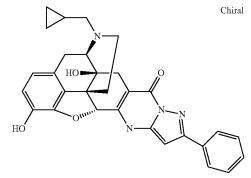
45

50

65

I-260

I-259 40


Com-

	. /	-	
TA	ΒI	Ε	61

Compound	Chemical structure	
I-253	HO N N N N	Chiral

I-255

TABLE 62 Com-pound No. Chemical structure I-258

178 LE 63-continued

	TABLE 62-continued	-		TABLE 6
Compound No.	Chemical structure	_ 5	Compound	d
I-261	Chiral N N N N N N N N N N N N N N N N N N N	10	I-255	HO HO
I-262	Chiral	20		но С
	HO N	25	Compound No.	Cho
	N N	30		HO
Com- pound	TABLE 63	_ 35		HO
No. I-253	Chemical structure Chiral	40	I-267	
	HONN	45		HO
	HO O CH ₃	50		HO
I-254	Chiral	55	I-268	N-
	HONN	60		HO

65

-СН3

180 TABLE 64-continued

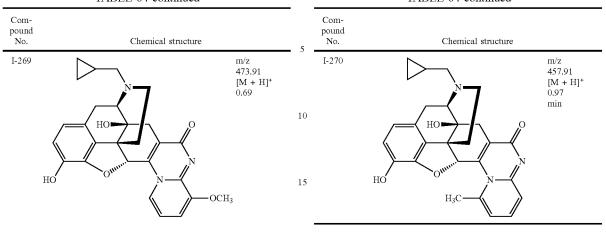


TABLE 65

	IABLE 03	
Compound No.	Chemical Structure	LC/MS*1
I-271	HO OH OH	m/z 520 [M + H]* 1.63 min**
I-272	Chiral CH ₃ C	m/z 513 [M + H] ⁺ 0.45 min
I-273	Chiral H3C CH3 CH3 CH3 CH3	m/z 513 [M + H] ⁺ 0.38 min
I-274	Chiral H3C CH3 CH3 CH3 OH OH	m/z 499 [M + H] ⁺ 0.38 min

TABLE 65-continued

Compound No.	Chemical Structure	LC/MS*1
1-275	Chiral CH ₃ CH ₃ CH ₃ NH O O S CH ₃	m/z 548 [M + H]* 0.38 min

	НО	ОН	CH	-3
		TABLE 66		
Compound No.		Chemical Structi	ıre	LC/MS*1
1-276	HO	HOOM	Chiral	m/z 559 [M + H]* 0.53 min
I-277	HO	OH OH	CH ₃ CH ₃ NH O S	m/z 610 [M + H] ⁺ 0.46 min
I-278	HO	HO OH	Chiral HN OH	m/z 545 [M + H] ⁺ 0.38 min

183
TABLE 66-continued

Compound No.	Chemical Structure	LC/MS*1
I-279	Chiral CH ₃ CH ₃ CH ₃ NH CN OH	m/z 495 [M + H]* 0.31 mm
I-280	Chiral O—CH ₃ O—CH ₃ O—CH ₃ O—CH ₃	m/z 545 [M + H]* 0.97 min

TABLE 67

Compound No.	Chemical Structure		LC/MS*1
I-281	HO OH OH	hiral -CH ₃ OCH ₃ -OH	m/z 531 [M + H]* 0.92 min
I-282	HO OH OH	Chiral	m/z 455 [M + H] ⁺ 0.87 min
I-283	HO OH OH	Chiral	m/z 469 [M + H] ⁺ 0.94 min

185TABLE 67-continued

Compound No.	Chemical Structure		LC/MS*1
I-284	N-	Chiral	m/z 571 [M + H] ⁺ 0.68 min
	HO OH OH HN	CH ₃ CH ₃ O N N N	
I-285	HO OH OH	Chiral CH ₃ CH ₃ O N N CH ₃	m/z 509 [M + H] ⁺ 0.32 min

TABLE 68

Compound No.	Chemical Structure	LC/MS*1
I-286	Chiral	m/z 471 [M + H] ⁺ 0.32 min
	HO OH CH ₃ CH ₃ CH ₃ CH ₃	
I-287	Chiral	m/z 455 [M + H] ⁺ 0.90 min
	HO OH CH ₃	

188

Compound No.	Chemical Structure		LC/MS*1
I-288	HO OH OH	Chiral O—C	m/z 501 [M + H] ⁺ 0.32 min
I-289	HO NH HN-O	Chiral CH ₃ CH ₃	m/z 584 [M + H]* 0.46 min

(LC/MS conditions of measurement)*1:

Column: Chromolith Flash ROD RP-18e.

 25×4.6 mm I.D.

Flow Rate: 2 ml/min

UV Detector: 280 nm

Solvent System:

[A] = H2O_0.05% HCOOH

[B] = MeOH_0.05% HCOOH

Gradient:

0 min; 90% [A]_10% [B]

0.2 min; 90% [A]_10% [B] 1.0 min; 10% [A]_90% [B]

1.80 min; 10% [A] 90% [B]

Proviso, values with symbol ** follow below conditions of measurement Column: Phenomenex Luna 5 u C18(2) 100A, size 50 × 4.60 mm

Gradient: 10%-100% Acetonitrile linear during 3.0 min at 3.0 mL/min

Test Example 1

Binding Assay of Opioid δ Receptor

1) Method of Preparing Membrane Specimen for Binding Assay

A rat cerebrum (Slc: SD) which had been stored at -80° C. was used. To a cerebrum which had been weighed was added a 20-fold amount of ice-cooled 10 mM Tris-HCl buffer (pH 7.0), and the mixture was homogenized (25000 rpm, 30 seconds) with Histocolon (NITI-ON), and centrifuged at 36600×g for 20 minutes. To the resulting pellet was added 15 ml of the same buffer, and the mixture was treated with Histocolon similarly, and centrifuged. This washing work was performed two times. After centrifugation, to the resulting pellet was added 15 mL of a 50 mM Tris-HCl buffer (pH 7.4), and this was treated with Histocolon, and finally resuspended in a 10-fold amount of the same buffer, which was used as a crude membrane fraction (Life Sci. 48,

111-116, 1991). The prepared membrane specimen was frozen and stored at -80° C., and at an assay, the specimen was rapidly thawed, and diluted to about 900 μg/mL with a 50 mM Tris-HCl buffer (pH 7.4) after the centrifugation and Histocolon treatment, and was used in an experiment. For measuring a protein concentration of the membrane specimen, Micro BCA Protein Assay Kit (PIERCE) was used.

2) Method of δ Receptor Binding Assay and Data Analysis

To a solution of 10 μl of the test compound diluted at 10-fold stage was added 10 μl of final 3 nM [³H]-DADLE (51.5 Ci/mmol: PerkinElmer) as a ligand. Into a tube was placed 480 μl of a rat cerebrum membrane fraction to which 100 mM choline chloride, 3 mM MnCl₂ and 100 nM DAMGO had been added, and this was incubated at 25° C. for 2 hours. After incubation, this was suction-filtered with a Whatman GF/C filter which had been pre-treated with 0.5% polyethyleneimine, and washed with 2.5 mL of an ice-cooled 10 mM Tris-HCl buffer (pH7.4) four times. After washing, the filter was transferred to a mini vial for liquid

scintillation counter, 5 mL of a scintillator (Cleasol I) was added, this was allowed to stand overnight, and the radioactivity was measured for 3 minutes with a liquid scintillation counter Tri-Carb 2200CA (PACKARD). DMSO was used for total binding (Total bound: TB) for data analysis, and 20 uM levallorphan was used for non-specific binding (Non-specific bound: NB), and a Ki value of the test compound was calculated using a KD value (2.93 nM) obtained in advance by Scatchard plot analysis.

Results are shown in Table 69.

TABLE 69

test compound	Ki (nM)	
I-3	8.76	
I-4	7.38	
I-7	7.4	
I-10	19.92	
I-13	5.02	
I-30	5.34	
I-39	41.8	
I-49	3.99	
I-92	5.23	
I-118	27.65	
I-133	9.85	
I-135	9.76	
I-145	13.87	
I-188	3.01	
I-199	12.77	
I-208	13.28	
I-229	5.9	
I-240	11.5	
I-243	5.2	
I-244	0.56	
I-267	41.46	
I-283	3.73	
I-284	0.91	
I-285	5.77	
I-286	2.46	
I-288	5.36	
I-289	0.47	

From the above results, it is seen that compound (I) has an affinity for an opioid δ receptor.

Test Example 2

Binding Assay to Opioid µ Receptor

1) Method of Preparing Membrane Specimen for Binding Assav

A rat cerebrum (Slc: SD) which had been stored at -80° C. was used. To a cerebrum which had been weighed was added a 20-fold amount of ice-cooled 10 mM Tris-HCl 50 buffer (pH 7.0), the mixture was homogenized (25000 rpm, 30 seconds) with Histocolon (NITI-ON), and centrifuged at 36600×g for 20 minutes. To the resulting pellet was added 15 ml of the same buffer, and the mixture was treated with Histocolon similarly, and centrifuged. This washing work 55 1) Preparation of Test Diet (Carbon Powder) was performed two times. After centrifugation, to the resulting pellet was added 15 mL of a 50 mM Tris-HCl buffer (pH 7.4), this was treated with Histocolon, and this was finally resuspended in a 10-fold amount of the same buffer, which was used as a crude membrane fraction (Life Sci. 48, 60 111-116, 1991). The prepared membrane specimen was frozen and stored at -80° C., and at a test, the specimen was rapidly thawed, and diluted to about 900 μg/mL with a 50 mM Tris-HCl buffer (pH 7.4) after the centrifugation and Histocolon treatment, and was used in an experiment. For 65 measuring a protein concentration of the membrane specimen, Micro BCA Protein Assay Kit (PIERCE) was used.

190

2) Method of μ Receptor Binding Assay and Data Analysis To a solution of 10 µl of the test compound diluted at 10-fold stage diluted test compound was added 10 µl of final 2 nM [³H]-DAMGO (51.5 Ci/mmol: PerkinElmer) as a ligand, further, 4800 of a rat cerebrum membrane fraction was placed into a tube, and this was incubated at 25° C. for 2 hours. After incubation, this was suction-filtered with a Whatman GF/C filter which had been pre-treated with 0.5% polyethyleneimine, and washed with 2.5 mL of an icecooled 10 mM Tris-HCl buffer (pH 7.4) four times. After washing, the filter was transferred to a mini vial for liquid scintillation counter, 5 mL of a scintillator (Cleasol I) was added, and this was allowed to stand overnight, and the radioactivity was measured for 3 minutes with a liquid scintillation counter Tri-Carb 2200CA (PACKARD). DMSO was used for total binding (Total bound: TB) for data analysis, and 20 μM levallorphan was used for non-specific binding (Non-specific bound: NB), and a Ki value of the test compound was calculated using a KD value (1.72 nM) obtained in advance by Scatchard plot analysis (Anal. Biochem. 107(1), 220-239, 1980).

Results are shown in Table 70.

TABLE 70

25	TAB	LE 70	
	test compound	Ki (nM)	
	I-4 I-10 I-39	5.18 4.05 0.33	
30	I-49 I-118 I-122 I-123 I-124	16.49 2.29 2.7 1.68 3.9	
35	I-124 I-133 I-135 I-138 I-145 I-188	3.9 4.99 1.58 15.53 28.09 17.27	
40	I-199 I-208 I-229 I-240 I-243 I-244	9.45 5.89 1.3 6.85 5.28 11.02	
45	I-267 I-283 I-284 I-285 I-286 I-288 I-289	0.84 20.14 1.13 7.29 13.98 14.38 12.95	

Test Example 3

Mouse Carbon Powder Transport Assay

Using a 10 w/v % arabic gum aqueous solution, a 5 w/v % active carbon solution was prepared, which was used as a test diet.

2) Animal

A ddY line male mouse (5 to 6 weeks old) was used. The mouse was fasted from about 20 or more hours before assay initiation, and water was given ad lib.

3) Test Compound and Medium

The test compound was dissolved in a solvent (DMAA/ Solutol/5% meglumine=15/15/70).

DMAA: N,N-dimethylacetamide

Solutol: Solutol (registered trademark) HS15

191

Meglumine: D(-)-N-methylglucamine

Morphine hydrochloride was dissolved in a physiological saline. The test compound, the above solvent and morphine were all administered at a liquid amount of 10 mL/kg.

4) Assay Method

The test compound 3 mg/kg (test compound administration group) or the solvent (solvent administration group) were subcutaneously administered and, after 15 minutes, amount of 3 mg/kg of morphine was administered to all groups. As a control group, the solvent was subcutaneously administered and, after 15 minutes, a physiological saline was administered.

The test diet 10 mL/kg was orally administered at 15 15 minutes after administration of morphine. At thirty minutes after administration of the test diet (60 minutes after administration of the test substance), all mice were isolated from esophagus to an ileocecal part near a stomach cardia part. A distance from pyloric part of the stomach to an ileocecal part 20 (full length of small intestine) and a distance until a carbon powder reaching front part (carbon powder movement distance) were measured. The antagonistic activity on the carbon powder transport of inhibitory activity by morphine was calculated as MPE (%) using the following equation. ²⁵ Results are shown in Table 71.

Transport rate (%)=(carbon powder movement distance)/full length of small intestine (cm))×100

M.P.E. (%)={(small intestine transport rate (%) of each individual of test compound administration group-average small intestine transport rate (%) of solvent administration group)/(average small intestine transport rate (%) of control groupaverage small intestine transport rate (%) of solvent administration group)}×100

TABLE 71

test compound	M.P.E. (%)	
I-39	52	
I-49	80	
I-118	55.6	
I-122	31.5	
I-123	44.1	
I-124	46.6	
I-133	106.9	
I-135	59.7	
I-138	55.8	
I-145	60.2	
I-188	74.6	
I-199	62.8	
I-208	81.2	
I-229	39.7	
I-240	36.3	
I-243	52.6	
I-244	71.6	
I-267	60	
I-283	63.7	
I-284	79.6	
I-285	82.5	
I-286	70.6	
I-288	101.3	
I-289	67	

192

Formulation Example 1

A granule containing the following ingredients is prepared.

Ingredient	
Compound represented by formula (I)	10 mg
Lactose	700 mg
Corn starch	274 mg
HPC-L	16 mg

The compound represented by the formula (I) and lactose are passed through a 60 mesh sieve. Corn starch is passed through a 120 mesh sieve. These are mixed with a V-type mixer. To a mixed powder is added a HPC-L (lower viscosity hydroxypropylcellulose) aqueous solution, the materials are kneaded, granulated (extrusion granulation, pore diameter 0.5 to 1 mm), and dried. The resulting dry granule is passed through a sieve using a vibration sieve (12/60 mesh) to obtain a granule.

Formulation Example 2

A granule for filling into a capsule containing the following ingredients is prepared.

Ingredient	
Compound represented by formula (I)	15 mg
Lactose	90 mg
Corn starch	42 mg
HPC-L	3 mg
	150 mg

The compound represented by the formula (I) and lactose are passed through a 60 mesh sieve. Corn starch is passed through a 120 mesh sieve. These are mixed, to a mixed powder is added a HPC-L solution, the materials are kneaded, granulated, and dried. The resulting dry granule is size-adjusted, 150 mg of which is filled into a No. 4 hard gelatin capsule.

Formulation Example 3

A tablet containing the following ingredients is prepared.

	Ingredient	
55	Compound represented by the formula (I) Lactose Microcrystalline cellulose CMC-Na Magnesium stearate	10 mg 90 mg 30 mg 15 mg 5 mg
60 _		150 mg

The compound represented by the formula (I), lactose, microcrystallinecellulose, CMC-NA (carboxymethylcellulose sodium salt) are passed through a 60 mesh sieve, and mixed. Into a mixed powder is mixed magnesium stearate to obtain a mixed powder for tabletting. The present mixed powder is compressed to obtain 150 mg of a tablet.

20

35

(I)

Formulation Example 4

The following ingredients are warmed, mixed, and sterilized to obtain an injectable.

Ingredient	
Compound represented by the formula (I)	3 mg
Nonionic surfactant	15 mg
Purified water for injection	1 ml

INDUSTRIAL APPLICABILITY

The present invention is useful as an agent for alleviating a side effect such as emesis, vomiting and/or constipation.

The invention claimed is:

1. A compound represented by the formula (I):

[Chemical formula 1]

$$R^{5}$$
 R^{1}
 R^{1}
 R^{2}
 R^{4}
 R^{3}

wherein R1 and R2 are each independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower alkylsulfonyl, optionally substituted acyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl, an optionally substituted heterocyclic group, optionally substituted arylsulfonyl, or R¹ and R² are taken together with the nitrogen atom to which they are attached to form optionally substituted heterocycle;

R³ is hydrogen, hydroxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted lower 50 alkoxy, mercapto, optionally substituted lower alkylthio, optionally substituted amino, optionally substituted carbamoyl, optionally substituted acyl, optionally substituted acyloxy, optionally substituted aryl, or an optionally substituted heterocyclic group; or

the group represented by the formula:

L(2) may be **∃** is selected from

194

-continued

$$(R^a)p$$
, or $(R^a)p$

$$R^b$$

wherein ring A and ring B are each independently optionally substituted nitrogen-containing heterocycle optionally containing additional nitrogen atom, oxygen atom, and/or sulfur atom in the ring;

a broken line indicates the presence or the absence of a

when a broken line indicates the presence of a bond, p is

when a broken line indicates the absence of a bond, p is 1:

R^a is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, or optionally substituted lower alkynyl;

and R^b is hydrogen or oxo;

R4 is hydrogen or lower alkyl; and

R⁵ is hydrogen, lower alkyl, cycloalkyl lower alkyl or lower alkenvl.

or a pharmaceutically acceptable salt, or a solvate thereof.

2. The compound according to claim 1, wherein R³ is hydroxy.

40 or a pharmaceutically acceptable salt, or a solvate thereof.

- 3. The compound according to claim 1, wherein R³ is optionally substituted amino, or a pharmaceutically acceptable salt, or a solvate thereof.
- 4. The compound in claim 1, wherein R¹ is hydrogen or lower alkyl, R² is optionally substituted lower alkyl, optionally substituted phenyl, optionally substituted cycloalkyl, or an optionally substituted heterocyclic group, and R⁵ is cyclopropylmethyl, or a pharmaceutically acceptable salt or a solvate thereof.
- 5. A pharmaceutical composition containing a compound in any one of claims 1 to 4, or a pharmaceutically acceptable salt, or a solvate thereof.
- 6. A composition having an opioid receptor antagonistic activity containing a compound in any one of claims 1 to 4, 55 or a pharmaceutically acceptable salt, or a solvate thereof.
 - 7. A composition for treating and/or preventing emesis, vomiting and/or constipation containing a compound in any one of claims 1 to 4, or a pharmaceutically acceptable salt, or a solvate thereof.
 - 8. A composition for alleviating, treating, and/or preventing a side effect induced by a compound having opioid receptor agonistic activity containing a compound in any one of claims 1 to 4, or a pharmaceutically acceptable salt, or a solvate thereof.
 - 9. A composition for alleviating, treating and/or preventing a side effect according to claim 8, wherein the side effect is emesis, vomiting and/or constipation.

10. A composition *for alleviating, treating and/or preventing a side effect* according to claim 9, wherein the compound having the opioid receptor agonistic activity is morphine, oxycodone, or a pharmaceutically acceptable salt, or a solvate thereof.

11. A method for alleviating, treating and/or preventing emesis, vomiting and/or constipation, comprising administering the compound in any one of claims 1 to 4, or a pharmaceutically acceptable salt, or a solvate thereof.

12. An analgesic composition containing

a compound having an opioid receptor agonistic activity, and an effective amount of compound according to any 15 one of claims 1 to 4, or a pharmaceutically acceptable salt, or a solvate thereof, for alleviating and/or prevent-

salt, or a solvate thereof, for alleviating and/or preventing a side effect induced by administration of the compound having an opioid receptor agonistic activity.

13. A method for alleviating, treating and/or preventing emesis, vomiting and/or constipation, comprising administering a compound, or a pharmaceutically acceptable salt, or a solvate thereof, wherein the compound is represented by the formula (I):

[Chemical formula 1]

$$\begin{array}{c}
R^{5} \\
N \\
R^{1} \\
N \\
R^{2}
\end{array}$$
(I)

wherein

R1 is hydrogen;

R² is selected from lower alkyl optionally substituted with lower alkoxy, lower alkoxycarbonyl, or a heterocyclic group optionally substituted with lower alkyl or phenyl; phenyl optionally substituted with lower alkyl, lower alkoxy, halogen, or cyano lower alkyl; cycloalkyl optionally substituted with lower alkoxycarbonyl or lower alkoxy lower alkyl; or a heterocyclic group optionally substituted with lower alkoxy or oxo;

R³ is hydroxyl;

R4 is hydrogen; and

R⁵ is cyclopropylmethyl;

or a pharmaceutically acceptable salt, or a solvate thereof.

14. A method for alleviating, treating and/or preventing emesis, vomiting and/or constipation, comprising administering a compound, or a pharmaceutically acceptable salt, or a solvate thereof, wherein the compound is represented by the formula (I):

[Chemical Formula 1]

$$\begin{array}{c}
R^{5} \\
N \\
R^{1} \\
N \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
N \\
R^{2}
\end{array}$$

wherein

R¹ is hydrogen;

R² is lower alkyl optionally substituted with lower alkoxy or with a heterocyclic group that is optionally substituted with aryl; phenyl optionally substituted with lower alkyl or with lower alkoxy; cycloalkyl substituted with lower alkylcarbonyl; or a heterocyclic group substituted with lower alkoxy or with aryl;

R³ is hydroxyl;

35

40

45

R4 is hydrogen; and

R⁵ is cyclopropylmethyl;

or a pharmaceutically acceptable salt, or solvate thereof.

15. A method for alleviating, treating and/or preventing emesis, vomiting and/or constipation, comprising administering

16. The method according to claim **15**, wherein the administered compound, or a pharmaceutically acceptable salt, or solvate thereof, is

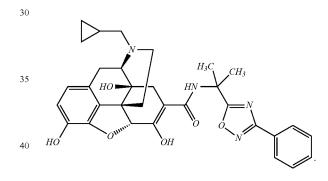
or a pharmaceutically acceptable salt, or a solvate thereof.

60

65

CH₃,

17. The compound according to claim 1 which is a pharmaceutically acceptable solvate of


18. The compound according to claim 17 wherein the pharmaceutically acceptable solvate is a hydrate.

19. The pharmaceutical composition according to claim 5 containing a pharmaceutically acceptable solvate of

10 15

20. The pharmaceutical composition according to claim $_{20}$ 19 in the form of a tablet.

21. The analgesic composition according to claim 12 wherein the compound for alleviating and/or preventing a side effect induced by administering of the compound having an opioid receptor agonistic activity is a pharmaceutically ²⁵ acceptable solvate of

22. The analgesic composition according to claim 21 or a pharmaceutically acceptable salt, or a solvate thereof. 45 wherein the compound having an opioid receptor agonistic activity is morphine, oxycodone, or a pharmaceutically acceptable salt thereof.

> 23. A method for alleviating, treating and/or preventing 50 emesis, vomiting and/or constipation comprising administering a compound of the formula

or pharmaceutically acceptable salt thereof.

10

15

25

30

40

24. A method for alleviating, treating and/or preventing emesis, vomiting and/or constipation comprising administering a compound of the formula

25. A method according to claim 23 wherein the compound administered is the p-toluene sulfonic acid salt of

26. A method for alleviating, treating and/or preventing emesis, vomiting and/or constipation comprising administering a pharmaceutically acceptable solvate of a compound of the formula

27. The method according to claim 23 wherein the compound is administered orally in the form of a tablet.

28. The method according to claim 25 wherein the compound is administered orally in the form of a tablet.

29. A method for treating opioid-induced constipation comprising administering a compound of the formula

or a pharmaceutically acceptable salt or solvate thereof. 30. A method for treating opioid-induced constipation comprising administering a compound of the formula

31. The method according to claim 29 wherein the compound administered is the p-toluene sulfonic acid salt of

32. The method according to claim 31 wherein the compound is administered orally in the form of a tablet.

33. The method according to claim 29 wherein the compound is administered in a dose of 0.01 mg to 200 mg/day.

34. The method according to claim 31 wherein the compound is administered in a dose of 0.01 mg to 200 mg/day.

35. The composition of claim 19 further comprising a compound having opioid receptor agonistic activity.

36. The composition of claim 35 wherein the compound having opioid receptor agonistic activity is morphine, oxycodone, or a pharmaceutically acceptable salt thereof.

37. The method of claim 25 wherein the compound is administered in a dose of 0.01 mg to 200 mg/day.

* * * * *