wo 2013/071130 A1 [N I D000 00RO R0 O

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2013/071130 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

16 May 2013 (16.05.2013) WIPOIPCT
International Patent Classification:
HO4L 12/753 (2013.01)
International Application Number:
PCT/US2012/064479

International Filing Date:
9 November 2012 (09.11.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/557,722 9 November 2011 (09.11.2011) US
13/653,303 16 October 2012 (16.10.2012) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood
Shores, California 94065 (US).

Inventor: BOGDANSKI, Bartosz, Hoff Terrasse 15,
HO0203, N-0275 Oslo (NO).

Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP,
650 California Street, Fourteenth Floor, San Francisco,
California 94108 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SYSTEM AND METHOD FOR PROVIDING DEADLOCK FREE ROUTING BETWEEN SWITCHES IN A FAT-
TREE TOPOLOGY

FIGURE 1

(57) Abstract: A system and method can support routing packets between a plurality of switches in a middleware machine environ-
ment, thereby supporting Internet Protocol (IP) based management traffic via enabling IP over Infiniband (IPoIB) communication in
the middleware machine environment. The plurality of switches can perform routing for inter-switch tratfic in the middleware ma -
chine environment using a routing algorithm. Then, a switch in the middleware machine environment can be selected as a hub switch
for inter-switch traftic that can not reach destination using the routing algorithm. Furthermore, a routing table associated with the
hub switch can be updated when a path exists between a source switch and a destination switch via the hub switch.

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

SYSTEM AND METHOD FOR PROVIDING DEADLOCK FREE ROUTING BETWEEN
SWITCHES IN A FAT-TREE TOPOLOGY

Copyright Notice:
[0001] A portion of the disclosure of this patent document contains material which is subject to

copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and

Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Field of Invention:

[0002] The present invention is generally related to computer systems, and is particularly

related to supporting switch-to-switch communication in a middleware machine environment.

Background:
[0003] The fat-tree topology is used for high performance computing (HPC) clusters today, and

for clusters based on InfiniBand (IB) technology. For fat-trees, as with most other topologies, the
routing algorithm is beneficial for efficient use of the network resources. However, the existing
routing algorithms have a limitation when it comes to switch-to-switch communication. None of
the existing routing algorithms support deadlock free and fully connected switch-to-switch
communication which is beneficial for efficient system management. These are the generally

areas that embodiments of the invention are intended to address.

Summary:
[0004] Described herein are systems and methods that can support routing packets between a

plurality of switches in a middleware machine environment. The middleware machine
environment can support Internet Protocol (IP) based management traffic via enabling IP over
Infiniband (IPolB) communication in the middleware machine environment. The plurality of
switches can perform routing for inter-switch traffic in the middleware machine environment using
a routing algorithm. Then, a switch in the middleware machine environment can be selected as a
hub switch for inter-switch traffic that can not reach destination using the routing algorithm.
Furthermore, a routing table associated with the hub switch can be updated when a path exists
between a source switch and a destination switch via the hub switch.

[0005] In an exemplary embodiment of the present invention, a system is provided for
supporting inter-switch traffic routing in a middleware machine environment. The system may
comprises a plurality of switches, at least one of which may comprises a routing unit, a selecting
unit and an updating unit. The routing unit may perform routing for inter-switch traffic in the

middleware machine environment using a first routing algorithm; the selecting unit may select a

-1-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

switch in the middleware machine environment to be a hub switch for inter-switch traffic that can
not reach destination using the first routing algorithm; and the updating unit may serve to update
a routing table associated with the hub switch when a path exists between a source switch and a
destination switch via the hub switch.

[0006] Inanembodiment, the plurality of switches may form a fat-tree topology. A leaf switch in
the fat-tree topology may be selected by the selecting unit as the hub switch and the leaf switch
can reach a plurality of switch destinations in the fat-tree topology. In the fat-tree topology, the
first routing algorithm may use an up/down turn model to route the inter-switch traffic. When the
up/down turn model fails, the inter-switch traffic makes down/up turns, and all down/up turns are
localized to a single, deadlock free subtree with the hub switch as a subtree root node, in order
to prevent deadlock in the fat-tree topology.

[0007] In another embodiment, the at least one of the plurality of switches may further
comprise an iterating unit that iterate through a plurality of leaf switches in the fat-tree topology in
order to find one or more leaf switches that can reach a plurality of switches destinations in the
fat tree topology. In an example, the at least one of the plurality of switches may further comprise
a checking unit. The checking unit may check whether the hub switch has a sibling switch, and
whether a routing table associated with said sibling contains a path to the destination switch
when said path does not exist. In an example, the at least one of the plurality of switches may
further comprise a path setting unit for setting a path to the destination switch on the source
switch and the subtree root switch through said sibling switch when said sibling switch exists and
the routing table associated with said sibling switch contains a path to the destination switch. In
another example, the at least one of the plurality of switches may further comprise a port setting
unit for setting an output port for the destination switch to be same as an output port for the hub

switch.

Brief Description of the Figures:

[0008] Figure 1 shows an illustration of an exemplary scenario when a deadlock occurs in a
middleware machine environment.

[0009] Figure 2 shows an illustration of providing deadlock free routing between switches in a
single-core fat-tree topology in accordance with an embodiment of the invention.

[0010] Figure 3 shows an illustration of providing deadlock free routing between switches in a
multi-core fat-tree topology in accordance with an embodiment of the invention.

[0011] Figure 4 illustrates an exemplary flow chart for providing deadlock free routing between
switches in a fat-tree topology, in accordance with an embodiment of the invention.

[0012] Figure 5 illustrates an exemplary embodiment of a switch according to the present

invention.

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

Detailed Description:

[0013] Described herein are systems and methods that can support routing packets between a
plurality of switches in a middleware machine environment. The middleware machine
environment can support Internet Protocol (IP) based management traffic via enabling IP over

Infiniband (IPolB) communication in the middleware machine environment.

InfiniBand (IB) Network and Subnet Management

[0014] In accordance with an embodiment of the invention, IB networks can be referred to as
subnets, where a subnet consists of a set of hosts interconnected using switches and point-to-
point links. An IB fabric can constitute one or more subnets, each of which can be interconnected
using routers. Hosts and switches within a subnet are addressed using local identifiers (LIDs)
and a single subset is limited to 49151 LIDs.

[0015] An IB subnet can have at least one subset manager (SM), which is responsible for
initializing and bringing up the network, including the configuration of all the 1B ports residing on
switches, routers, and host channel adapters (HCAs) in the subnet. At the time of initialization,
the SM starts in a discovering state where the SM does a sweep of the network in order to
discover all switches and hosts. During the discovering state, the SM can discover other SMs
and can negotiate for who should be the master SM. When the discovering state is complete, the
SM enters a master state. In the master state, the SM proceeds with LID assignment, switch
configuration, routing table calculations and deployment, and port configuration. The subnet is up
and ready for use as soon as the master state is done, and the SM is responsible for monitoring
the network for changes after the subnet has been configured.

[0016] Additionally, the SM can be responsible for calculating routing tables that maintain full
connectivity, deadlock freedom, and proper load balancing between all source and destination
pairs. Routing tables can be calculated at network initialization time and this process can be
repeated whenever the topology changes in order to update the routing tables and ensure
optimal performance.

[0017] During the normal operation, the SM performs periodic light sweeps of the network to
check for topology change events, such as when a link goes down, when a device is added, or
when a link is removed. If a change event is discovered during a light sweep or if a message
(trap) signaling a network change is received by the SM, the SM can reconfigure the network
according to the changes discovered. This reconfiguration can also include steps used during ini-
tialization.

[0018] IBis alossless networking technology, where flow-control can be performed per virtual
lane (VL). VLs are logical channels on the same physical link with separate buffering, flow-
control, and congestion management resources. The concept of VLs makes it possible to build

virtual networks on top of a physical topology. These virtual networks, or layers, can be used for

-3-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

various purposes such as efficient routing, deadlock avoidance, fault-tolerance and service

differentiation.

Fat-tree Routing

[0019] In accordance with an embodiment of the invention, a fat-tree topology is a layered
network topology, e.g. a balanced fat-tree can have equal link capacity at every tier.
Furthermore, the fat-tree topology can be implemented by building a tree with multiple roots, e.g.
the m-port n-tree definition or the k-ary n-tree definition, which can be described using an XGFT
notation.

[0020] A fat-tree routing algorithm can exploit the available network resources. The fat-tree
routing algorithm can include two phases: the upward phase in which the packet is forwarded
from the source, and the downward phase when the packet is forwarded towards the destination.
The transition between those two phases occurs at the lowest common ancestor, which is a
switch that can reach both the source and the destination through its downward ports. Such a
routing implementation ensures deadlock freedom, and the implementation also ensures that
every path towards the same destination converges at the same root (top) node, such that all
packets toward that destination follow a single dedicated path in the downward direction. By
having a dedicated downward path for every destination, contention in the downward phase is
effectively removed (moved to the upward stage), so that packets for different destinations only
contend for output ports in half of the switches on their path. Additionally, the downward path in

oversubscribed fat-trees is not dedicated and can be shared by several destinations.

Switch-to-switch Communication

[0021] In addition to the communication between end-nodes, the fat-tree topology allows
switch-to-switch communication. When the switch-to-switch communication originates little
traffic, the switch-to-switch communication may be ignored, or in other words, |IB switches may
be considered as transparent devices that can be safely ignored from the point of view of the
routing algorithm.

[0022] On the other hand, the switch-to-switch communication traffic may not always be
negligible. In these cases, the fat-tree routing described in the previous section can be used to
route the switch-to-switch communication traffic with limitations, since the lowest common
ancestor may need to be found in order to find a path between any two switches so that the
traffic can be forwarded through the first available port. Moreover, the fat-tree routing scheme
does not provide connectivity between those switches which do not have a lowest common
ancestor, i.e. the fat-tree routing scheme described in the previous section may not provide full
connectivity in the fat-tree topology.

[0023] Full connectivity in the fat-tree topology, including both the end-nodes and the switches,

-4-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

can be beneficial for various reasons. For example, IB diagnostic tools rely on LID routing and
need full connectivity for basic fabric management and monitoring. Furthermore, advanced tools,
such as perftest used for benchmarking, may employ IPolB, which relies on the underlying LID
routing and needs full connectivity. IPolB is an encapsulation method that allows for running
TCP/IP traffic over an IB network. Moreover, IPolB may also be required by non-InfiniBand
aware management and monitoring protocols and applications like SNMP or SSH. Thus, full
connectivity between all the switches in a fabric can be beneficial since switches are able to
generate arbitrary traffic, can be accessed like any other end-node, and often contain an
embedded SM.

[0024] Deadlocks can occur in the fat-tree topology because network resources such as
buffers or channels are shared.

[0025] Figure 1 shows an illustration of an exemplary scenario when a deadlock occurs in a
middleware machine environment. As shown in Figure 1, a fat-tree topology 100 in the
middleware machine environment allows a mixed communication pattern with two switch-to-
switch communication pairs (switch 0 to switch 3, and switch 3 to switch 6) and two node-to-
node communication pairs (node B to node D, and node D to node A). Here, the traffic from
switch 0 to switch 3 is directed via switches 4, 8, and 5, and the traffic from switch 3 to switch 6
is directed via switches 7 and 9. Also, the traffic from node B to node D is directed via switches
8, 5, 3, 7, and 9, and the traffic from node D to node A is directed via switches 9, 6, 0, 4, and 8.
[0026] As shown in the dashed lines in Figure 1, a cycle credit dependency, or a credit
loop101, is created when the above mixed communication pattern exists in a fat-tree topology
100. Furthermore, a deadlock can happen when a cyclic credit dependency is created. This does
not mean that whenever a cyclic credit dependency is present, there will always be a deadlock.
In other words, the creation of a cyclic credit dependency makes the deadlock occurrence
possible. For example, when a routing algorithm such as minhop is used, a deadlock may occur
in a 3-stage fat-tree with node-to-node and switch-to-switch traffic. This is because minhop is
unable to solve a ring of 5 nodes or bigger in a deadlock free manner, and a 3-stage fat-tree may
contain a 6-node ring. Thus, there is a need for an algorithm that can provide deadlock free
routing in fat-tree topologies when switch-to-switch communication between all switches is
present.

[0027] Deadlocks can be avoided by using VLs that segment the available physical resources.
However, using VLs for implementing deadlock avoidance in fat-trees can be inefficient because
the additional VLs can be used for other purposes like quality of service (Q0S).

[0028] For example, the LASH algorithm for IB can support full connectivity and deadlock
freedom. The LASH algorithm uses VLs to break the credit loop 101, and provides full
connectivity between all the nodes in the fabric. LASH does not exploit the properties of the fat-

trees when assigning the paths, thus, allows worse network performance than ordinary fat-tree

-5-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

routing, and, additionally, LASH has a long routing time. DFSSSP is another routing protocol that
may be used to support all-to-all switch-to-switch communication in fat-trees. However, DFSSSP
does not break credit loops between non-HCA nodes, which means that switch-to-switch
communication may not be deadlock free.

[0029] Thus, when a deadlock occurs in an interconnection network, the deadlock can prevent
communication in part, or all, of the network. Therefore, from the system-wide perspective of an
interconnection network, full connectivity supported in a fat-tree topology is preferably deadlock

free.

Deadlock Free Routing in a Single-core Fat-tree Topology

[0030] In accordance with an embodiment of the invention, full connectivity can be supported
between the nodes in the middleware machine environment, and deadlock freedom can be
achieved for the whole fabric only using a single VL.

[0031] Figure 2 shows an illustration of providing deadlock free routing between switches in a
single-core fat-tree topology in accordance with an embodiment of the invention. As shown in
Figure 2, a single-core fat-tree topology 200 in the middleware machine environment can include
a plurality of switches. Furthermore, the middleware machine environment can include a plurality
of end-nodes 220, such as server nodes, that connect to the leaf switches 202 in the fat-tree
topology 200.

[0032] An up/down turn model can be used to provide fat-tree routing in the middleware
machine environment. For example, the switches A1 and A2 can have connectivity by going up
through X1 or X2. On the other hand, the up/down turn model may not be useful for the
communication between switches, e.g. A1 and B1, that do not have a lowest common ancestor.
[0033] In accordance with an embodiment of the invention, an alternative approach can be
employed to achieve connectivity between switches that can not establish communication using
the up/down turn model. As shown in Figure 2, an upside down tree, or a subtree 210 (shown in
shadowed area), can be created in the fat-tree topology 200. The subtree 210 can have a
subtree root node, Sn, or a hub switch 201, which is a leaf switch in the fat-tree topology 200.
Full connectivity can be established through the hub switch 201 in the fat-tree topology 200.
[0034] Within the subtree 210, the switches X1 and Y1 can communicate through the subtree
root, Sn 201, whereas X1 and X2 can communicate through switch A1. Furthermore, switches
external to the subtree 210 can communicate with other switches in the fat-tree topology 200
through the subtree 210, which leads to the usage of non-shortest (or suboptimal) paths. A
switch in the fabric that cannot reach another switch using the up/down turn model, can first send
the packets to the subtree 210. Then, the packets can be passed down in the subtree 210 until
they reach a switch that has a path to the destination switch. In other words, the packets make a

U-turn in the hub switch 201, i.e. a down to up turn followed by a up to down path towards the

-6-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

destination. The subtree 210 in the middleware machine environment can localize all the
down/up turns in a fabric to a single, deadlock free tree.

[0035] For example, when a request is received to route one or more packets from a first
switch, e.g. A1, to a second switch, e.g. B2, in the middleware machine environment, the system
can first determine whether a routing table associated with the subtree root switch, or the hub
switch 201, contains a path to the second switch, B2. As shown in Figure 2 in dashed lines, the
hub switch 201 can connect to the second switch, B2, via a path through B1, Y1 or Y2. Then, the
path to the second switch, B2, can be inserted into a routing table associated with the first
switch, A1. Additionally, in the routing table associated with A1, an output port for switch A2 can
set to be the same as the output port for the hub switch 201.

[0036] The root of the upside down subtree 210 can be any of the leaf switches. Furthermore,
all the switches in the fat-tree topology 200 can collectively choose a leaf switch for
communication, in order to achieve deadlock free full connectivity in the middleware machine
environment.

[0037] In accordance with an embodiment of the invention, the deadlock freedom can be
achieved in the fat-tree topology 200 by requiring that all U-turns take place only within the
subtree 210, and that any up to down turn will direct the traffic leaving the subtree 210.
Additionally, traffic leaving the subtree 210 may not be able to circulate back into the subtree
210, because no U-turn outside of the subtree 210 is allowed.

[0038] Thus, in a single-core fat-tree 200, there can always be a path that connects from a
source switch to a hub switch 201, and connects from the hub switch 201 to every destination
switch. Furthermore, the communication scheme for achieving connectivity through a leaf switch
in the topology does not change the upward to downward paths between the switches that can
reach each other using the fat-tree routing.

[0039] Attached is Appendix A that provides further information regarding supporting routing
between switches in a middleware machine environment and various aspects of the platform
described throughout this disclosure. The information in Appendix A is provided for illustration

purposes and should not be construed to limit all of the embodiments of the invention.

Deadlock Free Routing in a Multi-core Fat-tree Topology

[0040] In accordance with an embodiment of the invention, connectivity may not always exist
between two switches in a complex multi-core fat-tree, or an irregular fat-tree. A best-effort
approach can be employed in these cases to route switch-to-switch communication.

[0041] Figure 3 shows an illustration of providing deadlock free routing between switches in a
multi-core fat-tree topology in accordance with an embodiment of the invention. As shown in
Figure 3, a multi-core fat-tree topology 300 in the middleware machine environment can include

a plurality of switches. Furthermore, the middleware machine environment can include a plurality

-7-

10

15

20

25

WO 2013/071130 PCT/US2012/064479

of end-nodes 320, such as server nodes that connect to the leaf switches in the fat-tree topology
300.

[0042] Similarly, an upside down tree, or a subtree 310 (shown in shadowed area), can be
created in the fat-tree topology 300. The subtree 310 can have a subtree root node, Sn, ora hub
switch 301, which is a leaf switch in the fat-tree topology 300. Unlike in Figure 2, the subtree root
switch or the hub switch 301 may not have paths to all destinations.

[0043] Additionally, a sibling switch 302 can exist in the middleware machine environment and
can connect with the subtree root switch, Sn, or the hub switch 301 through a horizontal link 330.
[0044] In one example, a first switch, e.g. B2, can request to route one or more packets to a
second switch, e.g. B3, in the middleware machine environment. The subtree root switch 301
does not have a path connecting to B3, since B3 is located in a separate fat-tree that only
connects with the other nodes via a horizontal link.

[0045] The system can first check whether the subtree root switch 301 has a sibling switch 302
whose routing table contains a path to B3. Then, the system can set a path to the second switch,
B3, on the first switch, B2, and the subtree root switch 301 through said sibling switch 302. As a
result, the system can be configured to route a packet initiated from switch B2 to switch B3, for
example, via Y1 or Y2, B1, subtree root node 301, and its sibling node 302 (shown in dashed

lines).

SFTREE Algorithm

[0046] In accordance with an embodiment of the invention, a routing algorithm, i.e. the
SFTREE algorithm, can be used to achieve deadlock free full connectivity between the switches.
The SFTREE algorithm can include two steps: a first step to find the subtree root Sn, which can
be one of the leaf switches, and a second step to perform the switch-to-switch routing.

[0047] The following Algorithm 1 includes pseudo code for finding a subtree root and

establishes the subtree.

Algorithm 1 Select a subtree root function
Require: Routing table has been generated.
Ensure: A subtree root (sw,,,) is selected.
1: found = false
2: for swieer= 0 to max_leaf sw do
if found = = true then
break
end if
SWioor = SWieaf

4
5
6:
7: found = true
8.
9
0
1

W

for dst = 1 to max_dst_addr do
if sw,oonrouting table[dst] = =rno_path then
Jound = false

10:
11: break

10

WO 2013/071130 PCT/US2012/064479

12: end if
13: end for
14: end for

15: if found = false then
16: sW,o0 = get leaf (0)
17: end if

[0048] Algorithm 1 traverses all the leaf switches in the topology, and for each leaf switch
checks whether any of the switch destination addresses are marked as unreachable in its routing
table. If all the switch destinations in the routing table are marked as reachable, the first
encountered leaf switch is selected as a subtree root switch. Furthermore, there can be as many
potential subtrees in a fat-tree as there are leaf switches having full connectivity. Only one of
those leaf switches may be selected as the subtree root and there may be only one subtree with
a root in this particular leaf switch.

[0049] The following Algorithm 2 includes pseudo code for performing switch-to-switch routing

in the fat-tree topology.

Algorithm 2 Switch-to-switch routing function

Require: Subtree root (sw,,,)

Ensure: Each sw,,. reaches each swy,; at worst by sw,,,..
1: if found or sw,..routing table/dst] # no_path then
2: port = swy..routing table[sw,...addr]

3: swyerouting table[dst] = port
4: get path length (swy., null, dst, sW,q.,, hops)
5: set_hops (sWy., hops)

return true

: else if (swy, = get sibling sw(sw,,.,)) £ null then

if swy,.routing table[swg,.addr] # no_path then

9: if swy.routing table/dst] #no_path then

S

10: port = get_port_to_sibling (swg,)

11: SWoontouting table[dst] = port

12: hops = get_hops (swg,dst)

13: set_hops(sWyen hops + 1)

14: hops =0

15: port = swy,.routing table[sw.addr]
16: swyerouting table[dst] = port

17: get_path_length(swy,.., null, dst, sw,.., hops)
18: set_hops(sws., hops)

19: return true

20: endif

21: endif

22: end if

23: print ‘SW2SW failed for sw,. and swy,,.’
24: return false

[0050] When the switch-to-switch routing function is called, the first step is to determine
whether the routing table of the subtree root (sw,.) contains a path to the destination switch

(swyst) @s shown in Algorithm 2 in line 1. If it does, then the path to the destination switch is

-9-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

inserted into the routing table of the source switch (sws.) and the output port for the destination
switch is the same as the output port for the path to the subtree root (lines 2-6). Because the
switch-to-switch routing function is called for every switch, in the end, all the paths to each
unreachable destination switch will converge to the subtree. In other words, the selected subtree
root is the new target for all the unreachable destination switches. The down/up turn will take
place at the first possible switch located in the subtree, which can be the switch that has an
upward path both to the source switch and the destination switch.

[0051] The second part of Algorithm 2 (lines 7-24) addresses the cases of complex multi-core
or irregular fat trees, where the best-effort approach is employed and the subtree root does not
have paths to all the destinations. On the other hand, this second part of Algorithm 2 may be
skipped in a single-core fat-tree, since there can always be a path from the source switch to the
subtree root, and the subtree root may have a path to every destination switch.

[0052] Algorithm 2 checks whether the subtree root has a direct neighbor (line 7), to which they
are connected through horizontal links as shown in Figure 3. Next, Algorithm 2 checks whether
that neighbor, also called a sibling, has a path to the destination switch (line 8). If the sibling
exists and the sibling has a path to the destination switch, a path is set both on the subtree root
and the originating source switch to the destination switch through the sibling switch (lines 9-19).
In other words, the target for the unreachable destination switch may still be the subtree root,
and the subtree root can forward the packets to the destination switch via its sibling which.
[0053] The SFTREE Algorithm may fail to find a path between two switches if both previous
steps do not return from the function with a true value. For example, this can occur for topologies
on which it is not recommended to run the fat-tree routing due to multiple link failures or very
irregular connections between the nodes. An example of such a topology can be two fat-trees of
different sizes connected to each other in an asymmetrical manner, e.g. from a few middle-stage
switches on the larger tree to roots on the smaller one. Using various command-line parameters
in OpenSM, a fat-tree routing can be forced to run on these topologies. The SFTREE Algorithm
may give suboptimal routing not only in terms of performance, but also in terms of connectivity.
[0054] In accordance with an embodiment of the invention, OpenSM allows every path to be
marked with a hop count to the destination. The fat-tree routing algorithm can calculate the
number of hops using the switch rankings in the tree. Also, the counting can be done using a
simple counter in the main routing function. These counting approaches may be unreliable for
the possible zig-zag paths (i.e. paths not following the shortest hop path), when the switch-to-
switch routing is totally independent of the main routing done by the fat-tree algorithm.

[0055] A recurrence function for hop calculation, e.g. get_path_length (line 17), can be used
during the switch-to-switch routing. This function can iterate over the series of the switches that
constitute the path, and when this function reaches the node having a proper hop count towards

the destination, this function can write the hop count into the routing tables of the switches on the

-10-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

path.

[0056] Additionally, a subtree root can be selected in such a way that the subnet manager
node (the end-node on which the subnet manager is running) is not connected to the switch
marked as the subtree root. Thus, the switch-to-switch traffic can be drawn away from the subnet
manager, thus not creating a bottleneck in a critical location.

[0057] Figure 4 illustrates an exemplary flow chart for providing deadlock free routing between
switches in a fat-tree topology, in accordance with an embodiment of the invention. As shown in
Figure 4, at step 401, a middleware machine environment can perform routing for inter-switch
traffic in the middleware machine environment using a routing algorithm. Then, at step 402, the
middleware machine environment can select a switch in the middleware machine environment to
be a hub switch for inter-switch traffic that can not reach destination using the routing algorithm.
Furthermore, at step 403, the middleware machine environment can update a routing table
associated with the hub switch when a path exists between a source switch and a destination
switch via the hub switch.

[0058] Figure 5 illustrates an exemplary embodiment of a switch according to the present
invention, which may be included in any of the systems described above that supports inter-
switch traffic routing in a middleware machine environment and comprises a plurality of switches.
Referring to Figure 5, the exemplary switch 10 may include a routing unit 11, a selecting unit 13
and an updating unit 14 that are configured in accordance with the principles of the invention as
described above. The functional units of the switch 10, including but not limited to units 11, 13
and 14, may be implemented by hardware, software, or a combination of hardware and software
to carry out the principles of the invention. It is understood by persons of skilled in the art that the
functional blocks shown in Figure 5 each may be combined or separated into sub-units to
implement the principles of the invention as described above. Therefore, the description herein
may support any possible combination or separation or further definition of the functional blocks
described herein.

[0059] The routing unit 11 may perform routing for inter-switch traffic in the middleware
machine environment using a first routing algorithm as disclosed above. The selecting unit 13
may select a switch in the middleware machine environment to be a hub switch for inter-switch
traffic that can not reach destination using the first routing algorithm. When a path exists
between a source switch and a destination switch via the hub switch, the updating unit 14 may
update a routing table associated with the hub switch.

[0060] In an exemplary embodiment, the plurality of switches of the system form a fat-tree
topology. A leaf switch in the fat-tree topology may be selected by the selecting unit 13 as the
hub switch and the leaf switch can reach a plurality of switch destinations in the fat-tree topology.
The first routing algorithm may use an up/down turn model to route the inter-switch traffic in the

fat-tree topology. The inter-switch traffic makes down/up turns when the up/down turn model

-11-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

fails, and all down/up turns are localized to a single, deadlock free subtree with the hub switch as
a subtree root node, in order to prevent deadlock in the fat-tree topology.

[0061] Inan exemplary embodiment, the switch 10 may optionally comprise an iterating unit 12
for iterating through a plurality of leaf switches in the fat-tree topology in order to find one or
more leaf switches that can reach a plurality of switches destinations in the fat-tree topology.
Thus, the selecting unit 13 may select the hub switch from the one or more leaf switches.
[0062] In an exemplary embodiment, the switch 10 may further comprise a checking unit 15.
The checking unit 15 may check whether the hub switch has a sibling switch, and whether a
routing table associated with the sibling contains a path to the destination switch when the path
does not exist.

[0063] Inanexemplary embodiment, the switch 10 may further comprise a path setting unit 16.
When the sibling switch exists and the routing table associated with the sibling switch contains a
path to the destination switch, the path setting unit 16 may set a path to the destination switch on
the source switch and the subtree root switch through the sibling switch.

[0064] In an exemplary embodiment, the switch 10 may further comprise a port setting unit 17
for setting an output port for the destination switch to be same as an output port for the hub
switch.

[0065] The present invention may be conveniently implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable storage
media programmed according to the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software art.

[0066] In some embodiments, the present invention includes a computer program product
which is a storage medium or computer readable medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the
present invention. The storage medium can include, but is not limited to, any type of disk
including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or
optical cards, nanosystems (including molecular memory ICs), or any type of media or device
suitable for storing instructions and/or data.

[0067] The foregoing description of the present invention has been provided for the purposes
of illustration and description. It is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations will be apparent to the practitioner
skilled in the art. The variations may include any combination of the disclosed features and/or
elements. The embodiments were chosen and described in order to best explain the principles

of the invention and its practical application, thereby enabling others skilled in the art to

-12-

WO 2013/071130 PCT/US2012/064479

understand the invention for various embodiments and with various modifications that are suited
to the particular use contemplated. It is intended that the scope of the invention be defined by

the following claims and their equivalence.

-13-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

Appendix A

[0068] The following is a proof that demonstrates that the SFTREE algorithm is deadlock
free. The proof also contains exemplary definitions of the related terms.

[0069] Definition 1. By switch s,, we mean a switch with a rank n. Root switches
have rank n=0.

[0070] Definition 2. By a downward channel we mean a link between s,.; and s,
where the traffic is flowing from s,.s to s,. By an upward channel we mean a link between
s, and s,.s, where the traffic is flowing from s, to s,,.+.

[0071] Definition 3. A path is defined as a series of switches connected by
channels. It begins with a source switch and ends with a destination switch.

[0072] Definition.4. A U-turn is a turn where a downward channel is followed by an
upward channel.

[0073] Definition 5. A channel dependency between channel ¢; and channel ¢;
occurs when a packet holding channel c¢; requests the use of channel c;.

[0074] Definition 6. A channel dependency graph G = (V, E) is a directed graph
where the vertices V are the channels of the network N, and the edges E are the pairs of
channels (c;, ¢;) such that there exists a (channel) dependency from c; to c¢;.

[0075] Definition 7. By a subtree we mean a logical upside down tree structure
within a fat-tree that converges to a single leaf switch s, is the single root of the subtree.
A subtree expands from its root and its leaves are all the top-level switches in the fat-tree.
Any upward to downward turn will leave the subtree structure.

[0076] The following theorem states the sufficient condition for deadlock freedom of a

routing function.

[0077] THEOREM 1. A deterministic routing function R for network N is deadlock free if
and only if there are no cycles in the channel dependency graph G.
[0078] Next, the lemmas followed by the deadlock freedom theorem of the SFTREE

algorithm can be provided.

[0079] LEMMA 8. There exists at least one subtree within a fat-tree that allows
full switch-to-switch connectivity using only U-turns within that subtree.

[0080] PROOF. In a fat-tree, from any leaf we can reach any other node
(including all the switches) in the fabric using an up/down path or a horizontal sibling path.
This is because every end-node can communicate with every other end-node, and because
end-nodes are directly connected to the leaf switches, it follows that leaf switches are able to
reach any other node in the topology. Consequently, if it contains no link faults, any leaf switch
can act as the root of the subtree.

[0081] LEMMA 9. There can be an unlimited number of U-turns within a single subtree

-14-

10

15

WO 2013/071130 PCT/US2012/064479

without introducing a deadlock.

[0082] PROOF. A subtree is a logical tree structure and two types of turns can take
place within it: U-turns, i.e. downward to upward turns, and ordinary upward to downward
turns. The U-turns cannot take place at the top switches in a subtree (and fat-tree) because
these switches have no output upward ports. Any upward to downward turn will leave the
subtree according to Definition 7.

[0083] Because a subtree is a connected graph without any cycles, it is deadlock
free by itself. Any deadlock must involve U-turns external to the subtree since a U-turn is
followed by an upward to downward turn leaving the subtree. All the traffic going through an
up/down turn originating in the subtree will leave the subtree when the turn is made and
follow only the downward channels to the destination. Such a dependency can never enter
the subtree again and can never reach any other U-turn, and so, cannot form any cycle.
[0084] THEOREM 2. The SFTREE algorithm using the subtree method is deadlock free.
[0085] PROOF. Following Lemma 8 and Lemma 9, a deadlock in a fat-tree can only
occur if there are U-turns outside the subtree. Such a situation cannot happen due to the
design of the SFTREE algorithm where all U-turns take place within a subtree. The traffic
leaving a subtree will not circle back to it because once it leaves the subtree, it is forwarded
to the destination through downward channels only, and it is consumed, thus, no cyclic credit

dependencies will occur in the topology.

-15-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

Claims:

What is claimed is:

1. A method for supporting routing between a plurality of switches in a middleware machine
environment operating on one or more microprocessors, comprising:

performing routing for inter-switch traffic in the middleware machine environment using a
routing algorithm;

selecting a switch in the middleware machine environment to be a hub switch for inter-
switch traffic that can not reach its destination using the routing algorithm; and

updating a routing table associated with the hub switch when a path exists between a

source switch and a destination switch via the hub switch.

2. The method according to Claim 1, further comprising:
allowing the plurality of switches in the middleware machine environment to be in a fat-

tree topology.

3. The method according to Claim 2, further comprising:
allowing a leaf switch in the fat-tree topology to be the hub switch, wherein the leaf switch

can reach a plurality of switch destinations in the fat-tree topology.

4. The method according to Claim 2 or 3, further comprising:
using an up/down turn model in the routing algorithm to route the inter-switch traffic in the

fat-tree topology.

5. The method according to Claim 4, further comprising:
allowing the inter-switch traffic to make down/up turns when the up/down turn model fails,
and localizing all down/up turns to a single, deadlock free subtree with the hub switch as a

subtree root node, in order to prevent deadlock in the fat-tree topology.

6. The method according to any of Claims 2 to 5, further comprising:
iterating through a plurality of leaf switches in the fat-tree topology, in order to find one or

more leaf switches that can reach a plurality of switch destinations in the fat-tree topology.

7. The method according to any preceding Claim, further comprising:
checking whether the hub switch has a sibling switch and whether a routing table

associated with said sibling contains a path to the destination switch when said path does not

-16-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

exist.

8. The method according to Claim 7, further comprising:
when said sibling switch exists and the routing table associated with said sibling switch
contains a path to the destination switch, setting a path to the destination switch on the source

switch and the subtree root switch through said sibling switch.

9. The method according to any preceding Claim, further comprising:
allowing an output port for the destination switch to be same as an output port for the hub

switch.

10. The method according to any preceding Claim, further comprising:
using a recurrence function for hop calculation in inter-switch routing, wherein the

recurrence function iterates over one or more switches that constitute the path.

11. A computer program comprising program instructions that when executed by one or more
computer systems cause the one or more systems to perform the method of any preceding

claim.

12. A computer program product comprising a machine readable storage medium having the

computer program of claim 11 stored thereon.

13. A system for supporting inter-switch traffic routing in a middleware machine environment,
comprising:

a plurality of switches running on one or more microprocessors, wherein the plurality of
switches operates to perform the steps of:

performing routing for inter-switch traffic in the middleware machine environment using a
routing algorithm;

selecting a switch in the middleware machine environment to be a hub switch for inter-
switch traffic that can not reach its destination using the routing algorithm; and

updating a routing table associated with the hub switch when a path exists between a

source switch and a destination switch via the hub switch.

14. A non-transitory machine readable storage medium having instructions stored thereon
that when executed cause a system to perform the steps comprising:
performing routing for inter-switch traffic in the middleware machine environment using a

routing algorithm;

-17-

10

15

20

25

30

35

WO 2013/071130 PCT/US2012/064479

selecting a switch in the middleware machine environment to be a hub switch for inter-
switch traffic that can not reach its destination using the routing algorithm; and
updating a routing table associated with the hub switch when a path exists between a

source switch and a destination switch via the hub switch.

15. The non-transitory machine readable storage medium of claim 14, further having
instructions stored thereon that when executed cause a system to perform the step comprising:
allowing a plurality of switches in the middleware machine environment to be in a fat-tree

topology.

16. The non-transitory machine readable storage medium of claim 15, further having
instructions stored thereon that when executed cause a system to perform the step comprising:
allowing a leaf switch in the fat-tree topology to be the hub switch, wherein the leaf switch

can reach a plurality of switch destinations in the fat-tree topology.

17. The non-transitory machine readable storage medium of claims 15 or 16, further having
instructions stored thereon that when executed cause a system to perform the step comprising:
using an up/down turn model in the routing algorithm to route the inter-switch traffic in the

fat-tree topology.

18. The non-transitory machine readable storage medium of claim 17, further having
instructions stored thereon that when executed cause a system to perform the steps comprising:

allowing the inter-switch traffic to make down/up turns when the up/down turn model fails,
and localizing all down/up turns to a single, deadlock free subtree with the hub switch as a

subtree root node, in order to prevent deadlock in the fat-tree topology.

19. The non-transitory machine readable storage medium of any of claims 15 to 18, further
having instructions stored thereon that when executed cause a system to perform the step
comprising:

iterating through a plurality of leaf switches in the fat-tree topology in order to find one or

more leaf switches that can reach a plurality of switches destinations in the fat-tree topology.

20. The non-transitory machine readable storage medium of any of claims 14 to 19, further
having instructions stored thereon that when executed cause a system to perform the step
comprising:

checking whether the hub switch has a sibling switch, and whether a routing table

associated with said sibling contains a path to the destination switch when said path does not

-18-

10

WO 2013/071130 PCT/US2012/064479

exist.

21. The non-transitory machine readable storage medium of claim 20, further having
instructions stored thereon that when executed cause a system to perform the step comprising:

when said sibling switch exists and the routing table associated with said sibling switch
contains a path to the destination switch, setting a path to the destination switch on the source

switch and the subtree root switch through said sibling switch.

22. The non-transitory machine readable storage medium of any of claims 14 to 21, further
having instructions stored thereon that when executed cause a system to perform the step
comprising:

allowing an output port for the destination switch to be same as an output port for the hub

switch.

-19-

PCT/US2012/064479

WO 2013/071130

1/5

L 34NOI4

PCT/US2012/064479

WO 2013/071130

2/5

202
SOUINIMS JesT]

-

0cc
SBPON

0cc
SSPON

¢ 34NOI4

0ce
SBPON

0cc
SBPON

/\/ OLe

9211gng

PCT/US2012/064479

WO 2013/071130

3/5

0ce
SSPON

0ce
SSpOoN

0ce
SBPON

€ 34N9Oid

0ce 0ce 0ce
SapoN SBPON SSPON
c0¢
*0eg " P pugs
|
]
|
%S| eV

~/ oLe

2211gng

(=
(=
(op/

PCT/US2012/064479

WO 2013/071130

4/5

vy 34N9Id4

mov\/\

YoNMs gny sy} BIA Yo)l MS UOIeUIISSp B pUe YoIIMS 80IN0S B Usam]aq
sisixa Uied e usym Yo Ims gny sy} Yum pajeloosse siqe) Bunnos e Bunepdn

Nov\/\

wyoble
Bunnod 3saiy sY) Buisn uoljeuISSP Yoeal JoU UeD jey) e} Yojms-iajul 1o}
UoIMS gNny e aq 0} JUSWIUOJ IAUS BUIYDEW SIEeMS|pPIW By} Ul youms e Bunjos|es

Sv\/\

wiyuoBie Bu npnoi 1s11j e Buisn JUSWUOIIAUS
suIyoBeW alems|ppilw 8y} Ul d1el) yo)ms-Jajul Joj Buinos Buiwiopsd

WO 2013/071130

5/5

PCT/US2012/064479

10
11

12

13

14

15

16

17

FIGURE 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/064479

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L12/753
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

pages 508-525, XP011348911,

the whole document

X FRANK OLAF SEM-JACOBSEN ET AL:
Fault Tolerance in Fat Trees",
TEEE TRANSACTIONS ON COMPUTERS, IEEE
SERVICE CENTER, LOS ALAMITOS, CA, US,
vol. 60, no. 4, 1 April 2011 (2011-04-01),

ISSN: 0018-9340, DOI: 10.1109/7C.2010.97

"Dynamic 1-22

_/__

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannotbe
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

28 February 2013

Date of mailing of the international search report

14/03/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Plata-Andres, Isabel

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/064479

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Sem-Jacobsen, and E. G. Gran: "sFtree: A
fully connected and deadlock free
switch-to-switch routing algorithm for
fat-trees",

ACM Transactions on Architecture and Code
Optimization,

vol. 8, no. 4, 55,

14 January 2012 (2012-01-14), pages 1-20,
XP002692976,

DOI: DOI 10.1145/2086696.2086734
Retrieved from the Internet:
URL:http://simula.no/publications/Simula.s
imula.864

[retrieved on 2013-02-27]

the whole document

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A FRANK OLAF SEM-JACOBSEN ET AL: "Combining 1-22
Source Routing and Dynamic Fault
Tolerance",
COMPUTER ARCHITECTURE AND HIGH PERFORMANCE
COMPUTING, 2006. SBAC-PAD & AP0S;06. 18TH
INTERNATIONAL SYMPOSIUM ON, IEEE, PI,
1 October 2006 (2006-10-01), pages
151-158, XP031031909,
ISBN: 978-0-7695-2704-8
the whole document
A FRANK OLAF SEM-JACOBSEN ET AL: "Dynamic 1-22
Fault Tolerance with Misrouting in Fat
Trees",
PARALLEL PROCESSING, 2006. ICPP 2006.
INTERNATIONAL CONFERENCE ON, IEEE, PI,
1 August 2006 (2006-08-01), pages 33-44,
XP031016438,
ISBN: 978-0-7695-2636-2
the whole document
X,P B. Bogdanski, Sven-A. Reinemo, F. O. 1-22

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

