

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2004-251882
(P2004-251882A)

(43) 公開日 平成16年9月9日(2004.9.9)

(51) Int.Cl.⁷

G21K 4/00
C09K 11/00
C09K 11/08
C09K 11/61
GO1T 1/00

F 1

G21K 4/00
G21K 4/00
C09K 11/00
C09K 11/08
C09K 11/61

C09K 11/61

テーマコード(参考)

L 2G083
M 2H013
B 4H001
A

審査請求 未請求 請求項の数 8 O L 外国語出願 (全 27 頁) 最終頁に続く

(21) 出願番号 特願2003-188144 (P2003-188144)
(22) 出願日 平成15年6月30日 (2003.6.30)
(31) 優先権主張番号 02100764.6
(32) 優先日 平成14年6月28日 (2002.6.28)
(33) 優先権主張国 欧州特許庁 (EP)

(71) 出願人 591023136
アグファ・ゲヴェルト・ナームロゼ・ベン
ノートチャップ
A G F A - G E V A E R T N A A M L O
Z E V E N N O O T S C H A P
ベルギー国モートゼール、セブテストラ
ト 27
(74) 代理人 100103816
弁理士 風早 信昭
(74) 代理人 100120927
弁理士 浅野 典子
(72) 発明者 ポール・ルブラン
ベルギー国モートゼール、セブテストラ
ト 27 アグファ・ゲヴェルト・ナーム
ロゼ・ベンノートチャップ内
最終頁に続く

(54) 【発明の名称】非晶質(a-C)炭素層を含む支持体を備えた結合剤のない貯蔵焼光体スクリーン

(57) 【要約】 (修正有)

【課題】支持体上に真空蒸着された焼光体層を含む結合剤のない貯蔵焼光体スクリーンにおいて、焼光体層の蒸着に適し、かつ高い機械的強度と透過放射線の低い吸収とを有する支持体を提供する。

【解決手段】支持体2は非晶質炭素層23を含む。所望により、非晶質炭素層より焼光体層1から遠いポリマー補助層24、非晶質炭素層と焼光体層の間の反射性補助層25、反射性補助層と焼光体層の間の保護補助層26の内の1以上の補助層を更に含む。

【選択図】図3

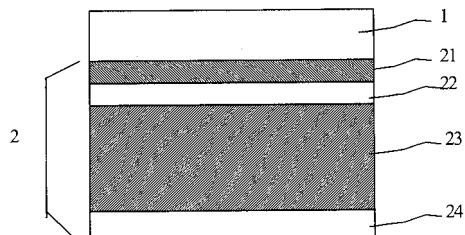


Figure 3

【特許請求の範囲】

【請求項 1】

支持体(2)上に真空蒸着された燐光体層(1)を含む結合剤のない貯蔵燐光体パネル又はスクリーンにおいて、前記支持体が非晶質炭素の層(23)を含むことを特徴とする結合剤のない貯蔵燐光体パネル又はスクリーン。

【請求項 2】

前記支持体が前記非晶質炭素の層より前記燐光体層から遠いポリマー補助層(24)をさらに含む請求項1に記載の結合剤のない貯蔵燐光体パネル又はスクリーン。

【請求項 3】

前記支持体が反射性補助層(22)をさらに含む請求項1又は2に記載の結合剤のない貯蔵燐光体パネル又はスクリーン。10

【請求項 4】

前記支持体が前記反射性補助層と前記燐光体層の間に保護補助層(21)をさらに含む請求項3に記載の結合剤のない貯蔵燐光体パネル又はスクリーン。

【請求項 5】

前記保護補助層がパリレンの層であり、前記パリレンがパリレンC、パリレンD及びパリレンHTからなる群から選択される請求項4に記載の結合剤のない貯蔵燐光体パネル又はスクリーン。

【請求項 6】

前記燐光体層が針状CsX:Eu燐光体を含み、XがBr及びClからなる群から選択されたハロゲン化物を表す請求項1~5のいずれか一つに記載の結合剤のない貯蔵燐光体パネル又はスクリーン。20

【請求項 7】

下記工程を含む、対象物をX線に露光するための方法：

- 70keV以下のエネルギーを有するX線を放出するために備えられたX線管、及び光度計に到達するX線量に従って前記X線管をオン及びオフに切り換えるために前記X線管に結合された光度計を含むX線装置を与える；
- 前記X線管と前記光度計の間に対象物を置く；
- 前記対象物と前記光度計の間に請求項1~6のいずれか一つに記載の結合剤のない貯蔵燐光体パネル又はスクリーンを置く；
- 前記光度計が前記X線管をオフに切り換えるまで前記対象物、前記カセット及び前記光度計を露光するために前記X線管を活性化する。

【請求項 8】

請求項1~6のいずれか一つに記載のスクリーン又はパネルのマンモグラフィにおける使用。

【発明の詳細な説明】

【0001】

発明の分野

本発明は非晶質炭素(a-C)層を含む支持体を有する結合剤のない燐光体スクリーンに関する。40

【0002】

発明の背景

燐光体の良く知られた用途はX線像の生成にある。従来の放射線写真システムではX線写真は対象物を像に従って透過しかついわゆる増感スクリーン(X線変換スクリーン)において対応する強度の光に変換されたX線によって得られ、そこでは燐光体粒子は透過されたX線を吸収し、写真フィルムがX線の直接衝撃に対してより敏感である可視光及び/又は紫外線にそれらを変換する。

【0003】

例えばU.S.-A. 3,859,527に記載されたX線パターンを記録及び再生する別 の方法によれば、光刺激性燐光体として知られる特別なタイプの燐光体が使用され、それはパネ50

ル又はスクリーンに混入され、パターンに従って変調されたX線ビームに露光され、その結果としてX線放射線パターンに含まれるエネルギーを一時的に貯蔵する。露光後ある間隔で、可視又は赤外光のビームがパネル又はスクリーンを走査して貯蔵されたエネルギーの光としての放出を刺激する。その光は検出されて逐次電気信号に変換され、その信号は処理されて可視像を生成することができる。この目的のため、熒光体は入射X線エネルギーをできるだけ多い量で貯蔵すべきであり、走査ビームによって刺激されるまで貯蔵されたエネルギーをできるだけ少なく放出すべきである。これは“デジタル放射線写真”又は“コンピュータ放射線写真(CR)”と称される。

【0004】

両方の種類の放射線写真において検査のために与えられる露光量は“光度計”によって調整されることが多い。“光度計”は対象物(患者)を通過する放射線量を測定するための放射計及び放射線写真像形成システム及び予め設定した線量に到達するとすぐに透過放射線源をオフに切り換えるための透過放射線の源に対する接続を含む。かかる光度計を使用するシステムでは十分に測定可能な線量が光度計中の放射計に到達することが重要である。なぜならば光度計に到達する線量が低すぎるとき、透過放射線の源をオフに切り換える再現可能性は像品質の見地からされるべきものではないからである。従って、像形成システムは良好なスピード及び像品質のために必要であるような程度まで透過放射線を吸収するにすぎず、従って-すぐに検査によって指示されかつできるだけ低い患者線量を用いて-放射計は透過放射線の源の再現可能なオフへの切り換えのために十分に高い露光線量によって達成される。

10

20

30

【0005】

実際のセッティングでは“光度計”に到達する放射線の量は対象物、貯蔵熒光体パネル又はスクリーンを含有するカセットの管側及びカセットの裏側による透過放射線の吸収によって決定される。貯蔵熒光体パネル又はスクリーンの吸収は使用される熒光体、熒光体の量及び支持体によって決定される。熒光体層中の吸収が高いほど、放射線写真像形成システムの像品質及びスピードに対して有利であり、従って熒光体層の厚さ(吸収)を増大することが必要であり、これは熒光体層及び支持体の全吸収がほとんど一定のままであるときになれることができるにすぎない。従って、熒光体層の厚さの増加は支持体中の透過放射線の吸収を低下することによって補償されなければならない。特に低いエネルギーの透過放射線が使用される放射線写真技術(例えばマンモグラフィ、一定の非破壊試験用途など)では、熒光体スクリーン又はパネル又はスクリーンの吸収に対する支持体の貢献を無視することができない。

30

【0006】

支持体による透過放射線の吸収の低下は支持体の厚さを低下すること、低吸収性の支持体を使用することなどによってなれることができる。他方、貯蔵熒光体パネル又はスクリーンの支持体は高い機械的強度、低い脆性を持つべきであり、その上に熒光体を真空蒸着する場合には蒸着中に遭遇される温度に耐えることができるべきである。従って、上で引用したようなしばしば両立しえない特性の間の良好な妥協を与える支持体に対する必要性がなお存在する。

40

【0007】

発明の目的及び概要

本発明の目的は熒光体の蒸着を適用するときに使用されることができ、かつ高い機械的強度を有する透過放射線の低い吸収を有する支持体を含む貯蔵熒光体パネル又はスクリーンを提供することである。

【0008】

本発明のさらなる目的は熒光体の蒸着を適用するときに使用されることができ、かつ高い機械的強度を有する70keV未満のエネルギーのX線吸収の低い吸収を有する支持体を含む貯蔵熒光体パネル又はスクリーンを提供することであり、そのパネル又はスクリーンはマンモグラフィに使用するために好適なものである。

【0009】

50

本発明の目的は請求項 1 に記載された貯蔵燐光体パネル又はスクリーンを提供することによって実現される。本発明の好ましい例についての特別な特徴は従属請求項に開示されている。

【 0 0 1 0 】

本発明のさらなる利点及び具体例は以下の記載から明らかになるだろう。

【 0 0 1 1 】

図面の簡単な記述

図 1 は本発明の貯蔵燐光体パネル又はスクリーンの一例を概略的に示す。

図 2 は本発明の貯蔵燐光体パネル又はスクリーンのさらなる例を概略的に示す。

図 3 は本発明の貯蔵燐光体パネル又はスクリーンの他例を概略的に示す。

10

【 0 0 1 2 】

発明の詳細な記述

真空での化学蒸着による結合剤のない燐光体スクリーンの製造では、燐光体が蒸着される支持体を約 400 の温度まで加熱することができる。従って、熱安定性支持体の使用が必要である。それゆえ、低い原子番号を有する元素だけを含有する支持体であっても、ポリマー支持体はあまり好適でない。支持体中に非晶質炭素フィルムを含むことは、たとえ貯蔵燐光体層がかなり高い温度で真空蒸着によって適用されたとしても、低い X 線吸収を有する支持体上に結合剤のない貯蔵燐光体スクリーンを生成するための見通しを開くことを見出した。本発明に使用するために好適な非晶質炭素フィルムは日本、東京の例えは Tokay Carbon Co., LTD, 日本、東京の Nissinbo Industries を通して商業的に入手可能であり、それらは“ガラス状炭素フィルム”、又は“ガラス状炭素”と称されている。

20

【 0 0 1 3 】

本発明による結合剤のない燐光体パネル又はスクリーンでは、非晶質炭素の層の厚さは 100 μm ~ 3000 μm の範囲であり、500 μm ~ 2000 μm の厚さが可撓性、強度及び X 線吸収の間の妥協として好ましい。

【 0 0 1 4 】

本発明の第一例

本発明の結合剤のない貯蔵燐光体スクリーンでは、貯蔵燐光体層は例えば非晶質炭素フィルム上に貯蔵燐光体を真空蒸着することによって非晶質炭素層に隣接して直接位置することができ、スクリーンはスクリーンへのさらなる層の追加なしに使用されることが可能、これは本発明の貯蔵燐光体スクリーンの極めて簡単な例である。この例は図 1 に示されており、そこでは支持体 (2) 上の貯蔵燐光体層 (1) は非晶質炭素層 (23) に隣接している。

30

【 0 0 1 5 】

本発明の第二例

本発明による貯蔵燐光体スクリーン又はパネルのさらなる例では、燐光体層から離れて面する非晶質炭素層の側でスクリーンに補助層を加えることができる。かかるスクリーンは図 2 に示されており、そこでは支持体 (2) 上の燐光体層 (1) が概略的に示され、支持体は非晶質炭素層 (23) 及び補助層 (24) を含む。この補助層は非晶質炭素層に積層されるポリマー層であることが好ましい。そうすることによって本発明のパネル又はスクリーンの機械的強度、特に脆性及び可撓性に関するものが増強される。極めて高い機械的強度に対する必要性が特に貯蔵燐光体パネルを利用する放射線写真システムに存在し、そこではパネルに貯蔵されるエネルギーの読み出し中、パネルはカセットから自動的に取り出され、しばしば波状の路を介してリーダを通して動かされ、次いでカセット中に戻される。かかるリーダでは非晶質炭素層上に積層された補助層を有する本発明のスクリーン又はパネルを使用することが極めて有利である。この補助層はいかなる公知のポリマーフィルム、例えばポリエステルフィルム、ポリ塩化ビニル、ポリカーボネート、シンタクチックポリスチレンなどであることができる。好ましいポリマーフィルムはポリエステルフィルム、例えばポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム

40

50

などである。補助層(24)の厚さは1μm~500μmであることができる。かなり薄い非晶質炭素フィルム(例えば400μm)を使用して、それに500μm厚の補助フィルムを積層すること、並びに厚い非晶質炭素フィルム(例えば2000μm厚)を使用して、それに6μm厚の薄いポリマーフィルムを積層することができる。非晶質炭素及びポリマーフィルムの相対的厚さは幅広く変化されることができ、燐光体層の蒸着中の非晶質炭素の必要な物理的強度及びパネルの使用中の必要な可撓性によって支配されるにすぎない。

【0016】

本発明の第三例

例えば2002年6月28日にこれと同時に出願されたヨーロッパ特許出願No.021000763.8では、燐光体層と非晶質炭素層の間に正反射層を加えることはスクリーン又はパネルの像品質とスピードの両方を増強することができる示されている。また本発明によるパネルでは、かかる正反射補助層の追加は有益であろう。かかる層が追加されるとき、それはそれに衝突する光の少なくとも80%を正反射で反射することができる。より好ましくは前記層は衝突する光の90%を正反射で反射する。かかる層は極めて薄い(厚さ20μm以下、好ましくは10μm以下)金属層であることが好ましい。本発明によるスクリーンまたはパネルでは正反射層が存在するとき、層が薄いアルミニウム層(好ましくは10μm以下、より好ましくは5μm以下の厚さ)であることが好ましい。かかる薄い金属層は極めて腐蝕感受性でありうるので、正反射金属層が本発明のパネル又はスクリーンに存在するとき、この層は反射補助層に到達する水及び/又は湿分を妨げるバリヤー層(さらなる補助層)でカバーされることが好ましい。かかるバリヤー層は公知のいかなる湿分バリヤー層であってもよいが、パリレンの層であることが好ましい。本発明のバリヤー層に使用するために最も好ましいポリマーは真空蒸着された、好ましくは化学的に真空蒸着されたポリ-p-キシリレンフィルムである。ポリ-p-キシリレンは10~10000の範囲の繰り返し単位を有し、各繰り返し単位は置換されている又はされていない芳香族核基を有する。塩基剤として商標“PARYLENE”の下でUnion Carbide Co.によって販売される商業的に入手可能なジ-p-キシリレン組成物が好ましい。バリヤー層のために好ましい組成物は置換されていない“PARYLENE N”、一塩素置換された“PARYLENE C”、二塩素置換された“PARYLENE D”及び“PARYLENE HT”(“PARYLENE N”的完全にフッ素置換されたタイプ；他の“パリレン”とは反対に、400の温度までの耐熱性、耐紫外線性をもつ；耐湿性は“PARYLENE C”的耐湿性とほぼ同じである)である。本発明のパネルにおけるバリヤー層の製造に使用するために最も好ましいポリマーはポリ(p-2-クロロキシリレン)、即ちPARYLENE Cフィルム、ポリ(p-2,6-ジクロロキシリレン)、即ちPARYLENE Dフィルム及び“PARYLENE HT”(PARYLENE Nの完全にフッ素置換されたタイプ)である。本発明のパネル又はスクリーンにおける湿分バリヤー層としてのパリレン層の利点は層の耐熱性であり、パリレン層の耐熱性はそれらが貯蔵燐光体を真空蒸着するために必要な温度に耐えうるようなものである。貯蔵燐光体スクリーンにおけるパリレン層の使用は例えばEP-A-1286362, 1286363, 1286364及び1286365に開示されている。

【0017】

前述のような本発明の第三例によるスクリーン又はパネル(図3)は燐光体層(1)及び支持体(2)を有し、そこでは支持体は非晶質炭素層(23)及び燐光体と非晶質炭素層の間で非晶質炭素層に隣接する正反射層(22)及び反射層の上のパリレン層(21)を含む。ポリマー層(24)は非晶質炭素層に積層される。本発明による好ましい例では前記反射補助層(22)は0.2μm~200μmの厚さを有するアルミニウム層である。

【0018】

本発明は下記工程を含む貯蔵燐光体パネルの製造方法をさらに含む：

- 非晶質炭素フィルムを与える；

10

20

30

40

50

- 前記非晶質炭素フィルム上に貯蔵燐光体層を真空蒸着する；
- 所望により、前記燐光体によってカバーされない前記非晶質炭素フィルムの側上にポリマーフィルムを積層する。

【0019】

本発明は下記工程を含む貯蔵燐光体パネルの製造方法をさらに含む：

- 非晶質炭素フィルムを与える；
- 前記非晶質炭素フィルム上に正反射層を適用する；
- 前記非晶質炭素フィルム上に貯蔵燐光体層を真空蒸着する；
- 所望により、前記燐光体によってカバーされない前記非晶質炭素フィルムの側上にポリマーフィルムを積層する。

10

【0020】

本発明は下記工程を含む貯蔵燐光体パネルの製造方法をさらに含む：

- 非晶質炭素フィルムを与える；
- 前記非晶質炭素フィルム上に正反射層を適用する；
- 前記正反射層の上部にパリレン層を化学的に真空蒸着する；
- 前記非晶質炭素フィルム上に貯蔵燐光体層を真空蒸着する；
- 所望により、前記燐光体によってカバーされない前記非晶質炭素フィルムの側上にポリマーフィルムを積層する。

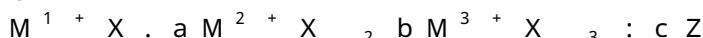
【0021】

本発明のスクリーン又はパネルは燐光体層の上部にいずれかの公知の保護層を含むことができる。使用のために特に好ましいものは E P - A 1 2 8 6 3 6 3 ; 1 3 1 6 9 6 9 及び 1 3 1 6 9 7 0 に開示された保護層である。湿分反発層が前記支持体と前記燐光体層の間に存在する、本発明によるスクリーン又はパネルが有利に使用され、さらに前記燐光体層に隣接して湿分反発層が最外層として被覆される、本発明によるスクリーン又はパネルがより好ましい。特に湿分反発パリレン層を有する前記スクリーン又はパネルが推奨される。前記燐光体層が二つの湿分反発パリレン層の間にサンドイッチされるスクリーン又はパネルは優れた保護を与える。

20

【0022】

本発明のスクリーン又はパネルは例えば U S - A 5 3 3 4 8 4 2 及び U S - A 5 3 4 0 6 6 1 に記載されているように補強縁を有することもできる。


30

【0023】

本発明のパネル又はスクリーンにおける燐光体層(1)の表面は燐光体層が支持体の縁に到達しないように支持体(2)の表面より小さく作られることができる。かかるスクリーンは例えば E P - A 1 2 8 6 3 6 3 に開示されている。

【0024】

本発明のパネル又はスクリーンに使用される貯蔵燐光体はアルカリ金属貯蔵燐光体であることが好ましい。かかる燐光体は U S - A 5 7 3 6 0 6 9 に開示され、下記式に相当する：

式中、 M^{1+} は Li, Na, K, Cs 及び Rb からなる群から選択された少なくとも一つの要素であり、 M^{2+} は Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu, Pb 及び Ni からなる群から選択された少なくとも一つの要素であり、 M^{3+} は Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Bi, In 及び Ga からなる群から選択された少なくとも一つの要素であり、Z は Ga¹⁺, Ge²⁺, Sn²⁺, Sb³⁺ 及び As³⁺ からなる群から選択された少なくとも一つの要素であり、X₁, X₂ 及び X₃ は同じであっても異なってもよく、各々は F, Br, Cl, I からなる群から選択されたハロゲン原子を表し、0 a 1, 0 b 1 及び 0 c 0.2 である。

40

【0025】

本発明のパネル又はスクリーンに使用するために特に好ましい燐光体は CsX : Eu 刺激 50

性燐光体であり、XはBr及びClからなる群から選択されたハロゲン化物を表し、その燐光体は下記工程を含む方法によって製造される：

- EuOX₁、EuX₂及びEuX₃（但し、XはF、Cl、Br及びIからなる群から選択された一つの要素である）からなる群から選択されたヨーロピウム化合物の10⁻³～5mol%と前記CsXを混合する；
- 前記混合物を450以上度で燃焼する；
- 前記混合物を冷却する；そして
- CsX：Eu燐光体を回収する。

【0026】

かかる燐光体はEP-A 1203394に開示されている。

10

【0027】

燐光体はEP-A 1113458及びEP-A 1118540に開示された条件下で支持体上に真空蒸着されることが好ましい。

【0028】

好ましい例では本発明によるパネル又はスクリーンは結合剤のない燐光体パネル又はスクリーンであり、そこでは前記燐光体層は針状CsX：Eu燐光体（但し、XはBr及びClからなる群から選択されたハロゲン化物を表す）を含む。

【0029】

本発明は下記工程を含むX線に対象物を露光するための方法をさらに含む：

- 70keV以下のエネルギーを有するX線を放出するために装備されたX線管、及び光度計に到達するX線量に従って前記管をオン及びオフに切り換えるための前記X線管に結合された光度計を含むX線装置を与える；
- 前記X線管と前記光度計の間に対象物を置く；
- 前記対象物と前記光度計の間に本発明による結合剤のない貯蔵燐光体パネル又はスクリーンを置く；及び
- 前記光度計が前記X線管をオフに切り換えるまで前記対象物、前記カセット及び前記光度計を露光するために前記X線管を活性化する。

【0030】

本発明は上述のような方法をさらに含み、そこでは前記X線管は40keV以下のエネルギーを有するX線を放出するために備えられている。

30

【0031】

本発明のスクリーン又はパネルは低いkeVを有するX線装置が使用されるマンモグラフィ及び特定の非破壊試験用途に使用するために極めて良く適している。

【0032】

部品リスト

- 1 燐光体層
- 2 支持体
- 2 1 補助層、湿分バリヤー層
- 2 2 補助層、正反射層
- 2 3 非晶質炭素層
- 2 4 補助層、ポリマー層

40

【0033】

実施例

本発明をその好ましい例と関連して以下に記載するが、本発明をそれらの例に限定することを意図しないことは理解されるだろう。

【0034】

燐光体スクリーン又はパネルを有するX線カセットを、Mo陽極（30μmMo、インターナン（intern）フィルタリング及びフィルタリングなしの各々）から28keVのエネルギーを有するX線で露光した。

【0035】

50

Agfa-Gevaert, Mortsel, ベルギーからの商品Mammory DetайлR(登録商標)スクリーンを比較用スクリーンとして使用した: そのシステムは(前述の詳細な記述で説明したようにX線露光エネルギーの吸収に対して)“光度計”的使用を認める。スクリーン又はパネルを有する全ての調査されたカセットに対する吸収は前述の比較用スクリーンに対して測定された吸収を超えるべきではない。

【0036】

カセットに到達する10mRのX線量(X線は4cmのポリメチルメタクリレートポリマー層を通過し、さらにカセット底(3mmのポリエチレン)、パネル又はスクリーン(以下で説明するように実験において組成を変化する)及びカセットカバー(4.1mmのポリエチレン)を連続的に通過する)から出発して、“光度計”的許容可能で正確な作用を得るために、患者に対するX線の極めて多い露光を避けるために0.75~0.85mRの範囲の線量が要求されることが測定された。

【0037】

パネル又はスクリーンでは、CsBr:Eu熒光体層(表1に示すように厚さ(μmで表示)を変化する)を、様々な厚さ(表1にμmで表示)を有する様々な支持体(アルミニウム、a-C“非晶質炭素”、ガラス及び鉄)上に被覆し、“光度計”に到達するX線エネルギー(線量mR)は調査されたパネル又はスクリーンの各々に対して表1にまとめられた。支持体の厚さとして、CsBr:Eu熒光体層の様々な厚さについて、X線がカセットを通過した後に光度計の位置に十分な線量をなす厚さを以下の表1に与えた。

【0038】

【表1】

表1

支持体材料及びその厚さ(μm)	CsBr:Eu熒光体層厚さ(μm)	光度計で検出された線量(mR)
Al 100 μm	150 μm	0.75
Al 400 μm	125 μm	0.78
Al 800 μm	100 μm	0.76
a-C 2000 μm	150 μm	0.73
a-C 2000 μm	125 μm	0.81
a-C 2000 μm	100 μm	0.91
ガラス 2000 μm	140 μm	0.95
ガラス 2000 μm	150 μm	0.85
ガラス 2000 μm	160 μm	0.76
Fe 100 μm	60 μm	0.55
Fe 100 μm	80 μm	0.44
Fe 100 μm	100 μm	0.36

【0039】

表1で得られた結果から、非晶質炭素(a-C)支持体は例えばFe(たった100μmの層厚さに対してでなくとも使用のために適さない)及びアルミニウム(100μmの薄い熒光体層に対して800μmまで使用に適する)と比較すると、ほとんど吸収を生じないので優れている: 非晶質炭素は最も厚い熒光体層(150μm)であっても光度計の位置に十分な線量を与え、2000μmの厚さは使用のために完全に適している。非晶質炭

10

20

30

40

50

素は図1に示されたようなガラスと匹敵しうるが、ガラスに対してより優れている。なぜならば非晶質炭素は本発明の発光体パネル又はスクリーンの製造に適用されるのにはずっと適しているからである。

【0040】

本発明の好ましい例を詳細に記載したが、添付の特許請求の範囲に規定された発明の範囲から逸脱せずに多数の変更をその中でなしうることは当業者に明らかであろう。

【図面の簡単な説明】

【0041】

【図1】本発明の貯蔵発光体パネル又はスクリーンの一例を概略的に示す。

【図2】本発明の貯蔵発光体パネル又はスクリーンのさらなる例を概略的に示す。

10

【図3】本発明の貯蔵発光体パネル又はスクリーンの他例を概略的に示す。

【図1】

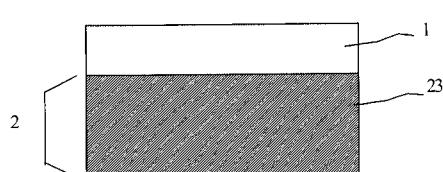


Figure 1

【図3】

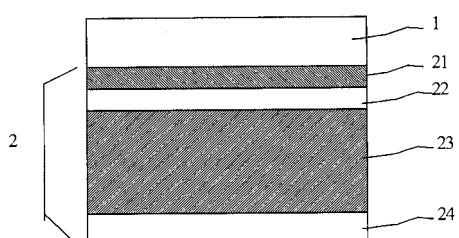


Figure 3

【図2】

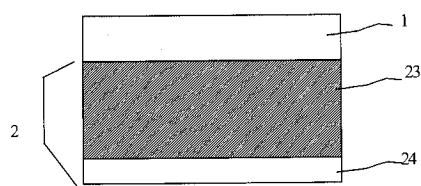


Figure 2

フロントページの続き

(51)Int.Cl. ⁷	F I	テーマコード(参考)
G 0 3 B 42/02	G 0 1 T 1/00	B
	G 0 3 B 42/02	B

(72)発明者 高林 敏雄

静岡県磐田郡豊岡村下神増314-5、浜松ホトニクス株式会社 豊岡製作所(電子管事業部)内
F ターム(参考) 2G083 AA03 BB01 CC01 CC02 CC03 CC04 CC05 CC07 CC08 DD01
DD02 DD11 DD16 DD17 DD19 EE07 EE08
2H013 AC01
4H001 CA02 CA04 CA08 CF01 XA17 XA35 XA55 YA63

【外国語明細書】

TITLE

A BINDERLESS STORAGE PHOSPHOR SCREEN COMPRISING A SUPPORT
INCLUDING AN AMORPHOUS (a-C) CARBON LAYER

[DESCRIPTION]

FIELD OF THE INVENTION

This invention relates to a binderless phosphor screen with a support including an amorphous carbon (a-C) layer.

BACKGROUND OF THE INVENTION

A well-known use of phosphors is in the production of X-ray images. In a conventional radiographic system an X-ray radiograph is obtained by X-rays transmitted image-wise through an object and converted into light of corresponding intensity in a so-called intensifying screen (X-ray conversion screen) wherein phosphor particles absorb the transmitted X-rays and convert them into visible light and/or ultraviolet radiation to which a photographic film is more sensitive than to the direct impact of X-rays.

According to another method of recording and reproducing an X-ray pattern disclosed e.g., in US-A-3 859 527 a special type of phosphor is used, known as a photostimulable phosphor, which being incorporated in a panel or screen, is exposed to incident pattern-wise modulated X-ray beam and, as a result thereof, temporarily stores energy contained in the X-ray radiation pattern. At some interval after the exposure, a beam of visible or infra-red light scans the panel or screen to stimulate the release of stored energy as light that is detected and converted to sequential electrical signals which can be processed to produce a visible image. For this purpose, the phosphor should store as much as possible of the incident X-ray energy and emit as little as possible of the stored energy until stimulated by the scanning beam. This is called "digital radiography" or "Computed Radiography" (CR).

In both kinds of radiography the amount of exposure given for an examination is often tuned by a "phototimer". A "phototimer" comprises a radiometer for measuring the radiation dose passing through the object (patient) and the radiographic imaging system and

a connection to the source of penetrating radiation for switching the penetrating radiation source off as soon as a pre-set dose is reached. In systems using such a phototimer it is important that a well measurable dose reaches the radiometer in the phototimer, since when the dose reaching the phototimer is too low, the reproducibility of the off-switching of the source of penetrating radiation is not what it should be from the point of view of image quality. Thus, the imaging system should itself only absorb penetrating radiation up to such an extent as is necessary for good speed and image quality so that - with a patient dose as low as possible and only dictated by the examination at hand - the radiometer is reached by a sufficiently high exposure dose for reproducible off-switching of the source of penetrating radiation.

In a practical setting the amount of radiation that reaches the "phototimer" is determined by the absorption of penetrating radiation by the object, the tube side of the cassette containing the storage phosphor panel or screen and the back side of the cassette. The absorption of the storage phosphor panel or screen is determined by the phosphor that is used, the amount of phosphor and the support. Higher absorption in the phosphor layer is advantageous for speed and image quality of the radiographic imaging system so there is a need to increase the thickness (the absorption) of the phosphor layer, this can only be done when the total absorption of phosphor layer and support remains almost constant. Thus increasing the thickness of the phosphor layer must be compensated by lowering the absorption of penetrating radiation in the support. Especially in radiographic techniques where penetrating radiation of low energy is used (e.g. mammography, certain non-destructive testing applications, etc.) the contribution of the support to the absorption of the phosphor screen or panel or screen can not be neglected.

The lowering of the absorption of penetrating radiation by the support can be done by lowering the thickness of the support, by using a support with low absorption, etc.. On the other hand the support of the storage phosphor panel or screen should have high mechanical strength, low brittleness and, in case of vacuum deposition of the phosphor on it, be able to withstand the

temperatures encountered during vapour deposition. Thus the need for a support giving a good compromise between often contradictory properties, as those cited above, remains present.

OBJECTS AND SUMMARY OF THE INVENTION

It is an object of the invention to provide a storage phosphor panel or screen including a support with low absorption of penetrating radiation that has high mechanical strength and that can be used when applying vapour deposition of a phosphor.

It is a further object of the invention to provide a storage phosphor panel or screen including a support with low absorption of X-ray radiation with an energy lower than 70 keV that has high mechanical strength and that can be used when applying vapour deposition of a phosphor, the panel or screen being well suited for use in mammography.

The object of the invention is realised by providing a storage phosphor panel or screen as claimed in claim 1. Specific features for preferred embodiments of the invention are disclosed in the dependent claims.

Further advantages and embodiments of the present invention will become apparent from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows schematically an embodiment of a storage phosphor panel or screen of this invention.

Figure 2 shows schematically a further embodiment of a storage phosphor panel or screen of this invention.

Figure 3 shows schematically an other embodiment of a storage phosphor panel or screen of this invention.

DETAILED DESCRIPTION OF THE INVENTION

In the production of binderless phosphor screens by means of chemical vapour deposition in vacuum, the support on which the phosphor is deposited can be heated up to a temperature of about 400°C. So use of a thermostable support is necessary. Therefore, though being a support containing only elements with low atomic number, a polymeric support is not the most suitable. It was now found that including an amorphous carbon film in the support did open perspectives in order to produce a binderless storage phosphor screen on a support with low X-ray absorption, even if the storage phosphor layer is applied by vacuum deposition at fairly high temperatures. Amorphous carbon films suitable for use in this invention are commercially available through, e.g., Tokay Carbon Co, LTD of Tokyo, Japan or Nisshinbo Industries, Inc of Tokyo, Japan, where they are termed "Glass-Like Carbon Film", or "Glassy Carbon".

In a binderless phosphor panel or screen according to the present invention, the thickness of the amorphous carbon layer can range from 100 μm up to 3000 μm , a thickness between 500 μm and 2000 μm being preferred as compromise between flexibility, strength and X-ray absorption.

A first embodiment of the invention

In a binderless storage phosphor screen of the present invention the storage phosphor layer can be directly positioned adjacent to the amorphous carbon layer, e.g., by vacuum depositing the storage phosphor on the amorphous carbon film, and the screen can be used without adding further layers to the screen, this is a very simple embodiment of a storage phosphor screen of the present invention. This embodiment is shown in figure 1 wherein a storage phosphor layer (1) on a support (2) is adjacent to an amorphous carbon layer (23).

A second embodiment of the invention

In a further embodiment of the storage phosphor screen or panel according to the present invention an auxiliary layer can be added to the screen at the side of the amorphous carbon layer facing away from the phosphor layer. Such a screen is shown in figure 2, wherein a phosphor layer (1) on a support (2) is schematically shown wherein the support includes an amorphous carbon layer (23) and an auxiliary layer (24). This auxiliary layer is preferably a polymeric layer that is laminated to the amorphous carbon layer. By doing so the mechanical strength, especially with respect to brittleness and flexibility, of the panel or screen of the present invention is enhanced. The need for very high mechanical strength is especially present in the radiographic systems making use of a storage phosphor panel wherein during reading of the energy stored in the panel, the panel is automatically removed from the cassette, moved through a reader, often via a sinuous path, and then put back in the cassette. In such a reader it is quite advantageous to make use of a screen or panel of the present invention with an auxiliary layer laminated on the amorphous carbon layer. This auxiliary layer can be any polymeric film known in the art, e.g. polyester film, polyvinylchloride, polycarbonate, syntactic polystyrene, etc.. Preferred polymeric films are polyester ester films, as e.g., polyethylene terephthalate films, polyethylene naphthalate films, etc.. The thickness of the auxiliary layer (24) can range from 1 μm to 500 μm . It is possible to use a fairly thin amorphous carbon film, e.g., 400 μm and laminate a 500 μm thick auxiliary film to it as well as to use a thick amorphous carbon film, e.g., 2000 μm thick with a thin, e.g., 6 μm thick, polymeric film laminated onto it. The relative thickness of the amorphous carbon and polymeric film can be varied widely and is only directed by the required physical strength of the amorphous carbon during deposition of the phosphor layer and the required flexibility during use of the panel.

A third embodiment of the invention

It has been shown, e.g. in the European Patent Application No. 02100763.8 concurrently filed herewith, June 28, 2002, that adding a specularly reflecting layer between the phosphor layer and the amorphous carbon layer can enhance both image quality and speed of the screen or panel. Also in a panel according to the present invention, the addition of such a specularly reflecting auxiliary layer may be beneficial. When such a layer is added, it preferably reflects at least 80 % of the light impinging on it in a specular way. More preferably said layer reflects 90 % of the impinging light specularly. Such layers are preferably very thin (thickness under 20 μm , preferably under 10 μm) metal layers. When in a screen or panel according to the present invention, a specularly reflecting layer is present, it is preferred that the layer is a thin aluminum layer (thickness preferably lower than or equal to 10 μm , more preferably lower than or equal to 5 μm). Since such a thin metal layer can be quite corrosion sensitive it is preferred that, when a specularly reflecting metal layer is present in a panel or screen of the present invention, that this layer is covered with a barrier layer (a further auxiliary layer) that impedes water and/or moisture of reaching the reflecting auxiliary layer. Such a barrier layer can be any moisture barrier layer known in the art, but is preferably a layer of parylene. Most preferred polymers for use in the barrier layer of the present invention are vacuum deposited, preferably chemical vacuum deposited poly-p-xylylene film. A poly-p-xylylene has repeating units in the range from 10 to 10000, wherein each repeating unit has an aromatic nuclear group, whether or not substituted. As a basic agent the commercially available di-p-xylylene composition sold by the Union Carbide Co. under the trademark "PARYLENE" is thus preferred. The preferred compositions for the barrier layer are the unsubstituted "PARYLENE N", the monochlorine substituted "PARYLENE C", the dichlorine substituted "PARYLENE D" and the "PARYLENE HT" (a completely fluorine substituted version of PARYLENE N, opposite to the other "parylenes" resistant to heat up to a temperature of 400°C and also resistant to ultra-violet radiation, moisture resistance being about the same as

the moisture resistance of "PARYLENE C"). Most preferred polymers for use in the preparation of the barrier layer in a panel of this invention are poly(p-2-chloroxylylene), i.e. PARYLENE C film, poly(p-2,6-dichloroxylylene), i.e. PARYLENE D film and "PARYLENE HT" (a completely fluorine substituted version of PARYLENE N. The advantage of parylene layers as moisture barrier layers in a panel or screen of the present invention layer is the temperature resistance of the layers, the temperature resistance of the parylene layers is such that they can withstand the temperature need for vacuum depositing the storage phosphor. The use of parylene layers in storage phosphor screens has been disclosed in, e.g., EP-A's 1 286 362, 1 286 363, 1 286 364 and 1 286 365.

Thus a screen or a panel according to this third embodiment of the invention as set forth hereinbefore has (Figure 3) a phosphor layer (1) and a support (2) wherein the support includes an amorphous carbon layer (23) and between the phosphor and the amorphous carbon layer a specularly reflecting layer (22) adjacent to the amorphous carbon layer and a parylene layer (21) on top of the reflecting layer. A polymeric layer (24) is laminated to the amorphous carbon layer. In a preferred embodiment according to the present invention said reflective auxiliary layer (22) is an aluminum layer with a thickness between 0.2 μ m and 200 μ m.

The invention moreover includes a method for producing a storage phosphor panel comprising the steps of :

- providing an amorphous carbon film,
- vacuum depositing a storage phosphor layer on said amorphous carbon film and
- optionally laminating a polymeric film on the side of the amorphous carbon film not covered by said phosphor.

The invention further includes a method for producing a storage phosphor panel comprising the steps of :

- providing an amorphous carbon film
- applying a specularly reflecting layer on said amorphous carbon film,
- vacuum depositing a storage phosphor layer on said amorphous

carbon film and

- optionally laminating a polymeric film on the side of the amorphous carbon film not covered by said phosphor.

The invention further includes a method for producing a storage phosphor panel comprising the steps of :

- providing an amorphous carbon film
- applying a specularly reflecting layer on said amorphous carbon film
- chemical vacuum depositing a parylene layer on top of said specularly reflecting layer,
- vacuum depositing a storage phosphor layer on said amorphous carbon film and, optionally,
- laminating a polymeric film on the side of the amorphous carbon film not covered by said phosphor.

The screen or panel of this invention can include on top of the phosphor layer any protective layer known in the art. Especially suitable for use are those protective layers disclosed in EP-A's 1 286 363, 1 316 969 and 1 316 970. Screens or panels according to the present invention, wherein a moisture-repellent layer is present inbetween said substrate and said phosphor layer are advantageously used, and, furtheron a screen or panel according to the present invention, wherein, adjacent to the said phosphor layer, a moisture-repellent layer is coated as an outermost layer is even more preferred. Especially said screens or panels having moisture-repellent parylene layers are recommended. Screens or panels, wherein said phosphor layer is sandwiched between two moisture-repellent parylene layers provides an excellent protection.

The screen or the panel of the present invention can also have reinforced edges as described in, e.g., US-A-5 334 842 and US-A-5 340 661.

The surface of the phosphor layer (1) in a panel or screen of the present invention can be made smaller than the surface of the support (2) so that the phosphor layer does not reach the edges of

the support. Such a screen has been disclosed in, e.g., EP-A 1 286 363.

The storage phosphor used in a panel or screen of the present invention is preferably an alkali metal storage phosphor. Such a phosphor is disclosed in US-A-5 736 069 and corresponds to the formula : $M^{1+}X.aM^{2+}X'_{2}bM^{3+}X''_{3}:cZ$

wherein: M^{1+} is at least one member selected from the group consisting of Li, Na, K, Cs and Rb,

M^{2+} is at least one member selected from the group consisting of Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu, Pb and Ni,

M^{3+} is at least one member selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Bi, In and Ga,

Z is at least one member selected from the group Ge^{2+} , Sn^{2+} , Sb^{3+} and As^{3+} ,

X , X' and X'' can be the same or different and each represents a halogen atom selected from the group consisting of F, Br, Cl, I and $0 \leq a \leq 1$, $0 \leq b \leq 1$ and $0 < c \leq 0.2$.

An especially preferred phosphor for use in a panel or screen of the present invention is a $CsX:Eu$ stimulable phosphor, wherein X represents a halide selected from the group consisting of Br and Cl, produced by a method comprising the steps of :

- mixing said CsX with between 10^{-3} and 5 mol % of a Europium compound selected from the group consisting of $EuOX'$, EuX'_{2} and EuX'_{3} , X' being a member selected from the group consisting of F, Cl, Br and I;
- firing said mixture at a temperature above 450 $^{\circ}C$;
- cooling said mixture and
- recovering the $CsX:Eu$ phosphor.

Such a phosphor has been disclosed in EP-A-1 203 394.

The phosphor is preferably vacuum deposited on the support under conditions disclosed in EP-A-1 113 458 and EP-A-1 118 540.

In a preferred embodiment the panel or screen according to the present invention is a binderless phosphor panel or screen, wherein said phosphor layer comprises a needle-shaped CsX:Eu phosphor, wherein X represents a halide selected from the group consisting of Br and Cl.

The present invention moreover includes a method for exposing an object to X-rays comprising the steps of :

- providing an X-ray machine including an X-ray tube equipped for emitting X-rays with an energy lower than or equal to 70 keV and a phototimer coupled to said X-ray tube for switching said tube on and off in accordance with an X-ray dose reaching said phototimer,
- placing an object between said X-ray tube and said phototimer
- placing a binderless storage phosphor panel or screen according to this invention between said object and said phototimer and
- activating said X-ray tube for exposing said object, said cassette and said phototimer until said phototimer switches said X-ray tube off.

The present invention further includes a method according as described just hereinbefore, wherein said X-ray tube is equipped for emitting X-rays with an energy lower than or equal to 40 keV.

A screen or panel of this invention is thus very well suited for use in mammography where X-ray machines with low keV are used, and in certain non-destructive testing applications.

Parts list

1. phosphor layer
2. support
- 21 auxiliary layer, moisture barrier layer
- 22 auxiliary layer, specularly reflecting layer
- 23 amorphous carbon layer
- 24 auxiliary layer, polymeric layer

Examples

While the present invention will hereinafter be described in connection with preferred embodiments thereof, it will be understood that it is not intended to limit the invention to those embodiments.

An X-ray cassette with a phosphor screen or panel was exposed with X-rays having an energy of 28 keV from a Mo-anode (30 μm Mo, intern filtering and without filtering, respectively).

A Mammory Detail R[®] screen, trade marketed product from Agfa-Gevaert, Mortsel, Belgium, was taken as a comparative screen: as that system just admits use of a "phototimer" (with respect to absorption of X-ray exposure energy as explained in the detailed description hereinbefore). Absorption for all examined cassettes with screens or panels should thus not exceed the absorption, measured for the comparative screen, set forth hereinbefore.

Starting from a 10 mR X-ray dose reaching the cassette, X-rays passing through 4 cm of a polymethyl methacrylate polymeric layer, further consecutively passing the cassette bottom (3 mm of polyethylene), the panel or screen (varying composition in the experiments as will be explained hereinafter) and the cassette cover (4.1 mm of polyethylene), it has been measured that a dose in the range from 0.75 up to 0.85 mR is required in order to get an acceptable and precise working of the "phototimer", in order to avoid too much exposure to X-rays for the patient.

In the panels or screens, CsBr:Eu phosphor layers (of varying thicknesses, expressed in μm and indicated in the Table 1) were coated on varying supports (aluminum, a-C "amorphous carbon", glass and iron), having varying thicknesses (expressed in μm in the Table 1) and X-ray energies (doses in mR) reaching the "phototimer" have been summarised in the Table 1 for each examined panel or screen. As a thickness of the support layer, the thickness still offering

enough dose at the position of the phototimer after the X-rays have passed the cassette, for differing thicknesses of the CsBr:Eu phosphor layer, have been given in the Table 1 hereinafter.

Table 1

Support material and its thickness (μm)	CsBr:Eu phosphor layer thickness (μm)	Dose detected at the phototimer (mR)
Al 100 μm	150 μm	0.75
Al 400 μm	125 μm	0.78
Al 800 μm	100 μm	0.76
a-C 2000 μm	150 μm	0.73
a-C 2000 μm	125 μm	0.81
a-C 2000 μm	100 μm	0.91
Glass 2000 μm	140 μm	0.95
Glass 2000 μm	150 μm	0.85
Glass 2000 μm	160 μm	0.76
Fe 100 μm	60 μm	0.55
Fe 100 μm	80 μm	0.44
Fe 100 μm	100 μm	0.36

From the results obtained in the Table 1, it is clear that the amorphous carbon (a-C) support is superior as little absorption occurs, if compared e.g. with Fe (not suitable for use, even not for a layer thickness of only 100 μm) and with aluminum (suitable for use up to 800 μm for a thinner phosphor layer of 100 μm): amorphous carbon provides enough dose at the position of the phototimer, even for the thickest phosphor layer (150 μm) and a thickness of 2000 μm is perfectly suitable for use! Amorphous carbon is comparable with glass as illustrated in Table 1, but it is superior with respect to glass as it is much more suitable to be applied in the manufacturing of phosphor panels or screens of the present invention.

Having described in detail preferred embodiments of the current invention, it will now be apparent to those skilled in the art that numerous modifications can be made therein without departing from the scope of the invention as defined in the appending claims.

[CLAIMS]

1. A binderless storage phosphor panel or screen comprising a vacuum deposited phosphor layer (1) on a support (2), characterised in that said support includes a layer of amorphous carbon (23).
2. A binderless phosphor panel or screen according to claim 1, wherein said support further includes a polymeric auxiliary layer (24) farther away from said phosphor layer than said layer of amorphous carbon.
3. A binderless phosphor panel or screen according to claim 1 or 2, wherein said support further includes a reflective auxiliary layer (22).
4. A binderless phosphor panel or screen according to claim 3, wherein said support further includes a protective auxiliary layer (21) between said reflective auxiliary layer and said phosphor layer.
5. A binderless phosphor panel or screen according to claim 4, wherein said protective auxiliary layer is a layer of parylene wherein said parylene is selected from the group consisting of parylene C, parylene D and parylene HT.
6. A binderless phosphor panel or screen according to any of the preceding claims wherein said phosphor layer comprises a needle shaped CsX:Eu phosphor, wherein X represents a halide selected from the group consisting of Br and Cl.
7. A method for exposing an object to X-rays comprising the steps of :
 - providing an X-ray machine including an X-ray tube equipped for emitting X-rays with an energy lower than or equal to 70 keV and a phototimer coupled to said X-ray tube for switching said tube on and off in accordance with an X-ray dose reaching said phototimer,
 - placing an object between said X-ray tube and said phototimer

- placing a binderless storage phosphor panel or screen according to any one of the claims 1 to 6, between said object and said phototimer and

- activating said X-ray tube for exposing said object, said cassette and said phototimer until said phototimer switches said X-ray tube off.

8. Use in mammography of a screen or panel according to any one of the claims 1 to 6.

[ABSTRACT]

A binderless storage phosphor screen comprising a vacuum deposited phosphor layer on a support, wherein the support includes a layer of amorphous carbon and optionally one or more auxilliary layers.

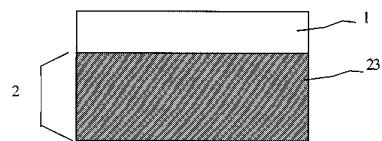


Figure 1

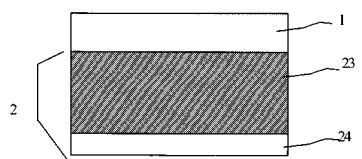


Figure 2

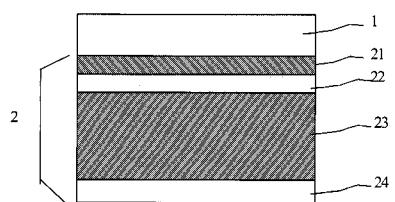


Figure 3