Title: QUICK-DRAIN FILTER

Abstract: An apparatus, system, and method for a quick-drain filter (100) includes a filter housing (102), a clean fluid passage (110) disposed axially in the housing (102), and a service drain passage (160) disposed at an axial end of the housing (102) and spaced radially away from the clean fluid passage (110). A protrusion (120) extending radially from a stand pipe (109) defining the clean fluid passage (110), disposed axially in the housing (102), defines the inner radius of the drain passage (160), and a housing member (136) defines the outer radius. A plug (126) extends axially from a filter cartridge (103) to plug the drain passage (160) when the cartridge (103) is installed in the housing.
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
1

QUICK-DRAIN FILTER

BACKGROUND OF THE INVENTION

PRIORITY CLAIM

This application claims priority to provisional patent application No. 60/821,804, filed 8
August 2006, for 'Quick Drain Filter' incorporated herein in its entirety.

FIELD OF THE INVENTION

This invention relates to the field of filter cartridges, elements, and complete filters for
fluids flowing in hydraulic motors or apparatuses, and in particular to those filters whose
elements need to be replaced from time to time.

DESCRIPTION OF THE RELATED ART

Fluid filters are used in a wide variety of applications. For example, in the automotive
and general engine industry, they are used to filter fuel, coolant, oil and other lubricants, water,
and other fluids, in various components of the engine. One example of a filter might be a typical
cylindrical filter cartridge composed of a filter medium that can be constructed of, e.g., paper,
cardboard, felt, melt-spun, or other media, often a material which can be incinerated when the
element is replaced to reduce waste. End plates typically constructed of plastic, are usually
joined to the element.

Such filter cartridges are installed inside filter feed troughs or housings, often in such a
way as to cooperate with a center tube or standpipe, which can consist of one or more pieces. In
order to ensure sealing during filtration, elastomeric sealing rings are often arranged between
center tube and flanges.

Problems often arise during replacement of the element/cartridge, given that fluid still
resides in the filter housing and in empty volumes within the cartridge (such as the hollow center
of a cylindrical element) and in the element media itself. This often results in dripping when the
element is removed, splashing of fluid when a new cartridge is installed, and mixture of dirty
fluid with clean fluid.

The present state of the art yields some designs in which the filter opens a port or valve to
allow fluid to drain out of the housing when the filter is removed. The drained fluid flows to
another reservoir, such as the fuel tank, oil sump, coolant reservoir, etc. One problem with
current designs is a slow drain rate and expense of the large gaskets or complex valves needed to
implement the system. A design is needed in which the drain rate is increased through a more
open flow path, at reduced cost and complexity.

SUMMARY OF THE INVENTION
The present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available designs. Accordingly, the present invention has been developed to provide an apparatus, system, and method for a quick-drain filter that overcome many or all shortcomings in the art.

In one aspect of the invention, a quick drain filter apparatus includes a filter housing, a clean fluid passage disposed axially in the housing, and a service drain passage disposed at an axial end of the housing and radially away from the clean fluid passage when the filter cartridge is installed in the housing.

In a further aspect of the invention, a quick drain fluid filter apparatus includes a filter cartridge, an interior volume disposed axially through the cartridge, and a plug protrusion extending axially from an axial end of the cartridge and spaced radially away from a stand pipe extending into the interior volume when the cartridge is installed in a housing.

In a further aspect of the invention, a quick drain filter system includes a cylindrical filter element, a cylindrical interior volume disposed axially through the element, an end plate disposed on an axial end of the element, a housing configured to house the element and end plate, the housing and element having a common axis, a clean fluid passage disposed axially in the housing, a service drain passage disposed at an axial end of the housing adjacent the end plate and spaced radially away from the clean fluid passage, and an annular plug extending axially from the end plate and plugging the drain passage.

In a further aspect of the invention, a method of servicing a quick drain filter apparatus includes providing a housing, a cylindrical filter cartridge disposed in the housing, a cylindrical clean fluid passage disposed axially through the housing and cartridge, an annular service drain passage disposed at an end of the housing and radially away from the clean fluid passage, and a drain passage plug disposed in and plugging the drain passage, removing the cartridge and plug, and installing a second cartridge and plug.

Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
The described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention. These features and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:

FIG. 1 is a schematic cross-sectional view of an embodiment of a quick-drain filter apparatus according to the present invention;
FIG. 2 is a schematic, cross-sectional, perspective view of the apparatus of FIG. 1;
FIG. 3 is a bottom plan schematic view of another embodiment of a quick-drain filter apparatus according to the present invention;
FIG. 4 is a partial cross-sectional view of the apparatus of FIG. 1;
FIG. 5 is a partial cross-sectional view of the apparatus of FIG. 1, showing pressure direction;
FIG. 6 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention;
FIG. 7 is a partial cross-sectional view of the apparatus of FIG. 6, showing pressure direction;
FIG. 8 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention;
FIG. 9 is a perspective view of the stand pipe of the apparatus of FIG. 8;
FIG. 10 is a bottom plan view of the stand pipe of the apparatus of FIG. 8;
FIG. 11 is a partial, cross-sectional, perspective view of the apparatus of FIG. 8;
FIG. 12 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention;
FIG. 13 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention;

FIG. 14 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention;

FIG. 15 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention;

FIG. 16 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention;

FIG. 17 is a partial cross-sectional view of another embodiment of a quick-drain filter apparatus according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations. The following more detailed description of the embodiments of the apparatus, system, and method of the present invention is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention.

Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases 'in one embodiment' or 'in an embodiment' in various places throughout this specification are not necessarily all referring to the same embodiment.

The described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of materials, fasteners, sizes, lengths, widths, shapes, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.

FIGS. 1 and 2 show a quick-drain filter apparatus 100 according to the invention in which a cylindrical housing 102 is configured to house a cylindrical filter cartridge 103. The filter cartridge 103 comprises a filter element 105, a top end plate 106, and a bottom end plate 108. A cylindrical interior volume or chamber 110 is formed through the element 105 in an axial
direction. Many filters have center posts defining and strengthening the center volume. Further
detail of the end plate 108 is described below.

The housing 102 comprises a cylindrical wall, a lid 104, an inlet chamber 116 (extending
throughout the housing on the outside of the cartridge 103), a service drain sump 112, and a
service drain port 114. A stand pipe 109 extends into the interior volume 110. In operation,
dirty fluid, such as fuel from a fuel tank, coolant from a reservoir, water, or other fluid, enters the
filter 100 through an inlet (not shown), enters the inlet chamber 116, and, pressurized, is forced
through the element 105 (often including a center post). Now filtered, the clean or filtered fluid
enters the stand pipe 109, the interior of which serves as a clean fluid passage, and down through
a clean fluid outlet IIIFrom there the fluid is transported to an engine, fuel injectors, cooling
system, or other clean fluid application.

When the element 105 becomes plugged or otherwise due for replacement, the lid 104 is
removed and the cartridge 103 is lifted out of the housing 102. That action opens a drain passage
such that much of the fluid left in the cartridge 103 and housing 102 drains into the sump 112
and thence to the drain port 114. Given that most or all of such fluid left in the housing and
element being replaced will be dirty, and any clean fluid will become contaminated through
contact with the dirty fluid, the drain port 114 will lead back to the fuel tank or other source of
dirty fluid, as will be apparent to those skilled in the art in light of this disclosure.

FIG. 3 shows a bottom view of a filter apparatus according to the present invention
functionally equivalent to the apparatus 100, with a housing 102, stand pipe 109, clean fluid
outlet 111, and drain port 114.

FIG. 4 shows a portion of the apparatus 100 in more detail. As shown, an annular plate
120 extends radially from the stand pipe 109 directly beneath the end plate 108. The plate 120
may be considered part of the stand pipe 109, since it is integral therewith, though for definition
purposes the two are considered separately here. The shelf 120 bends at right angles into a
flange 122, which serves as the inner edge of an annular drain passage 160 defined on the radial
inside edge by the flange 122 and on the radial outside edge by a housing member 136. The
annular drain passage 160 is spaced radially away from the stand pipe 109, giving the passage a
greater circumference and thus greater flow area (recall that this area increases with the square of
the radius). This opens up the passage 160 and aids the drain rate of the fluid from the housing
102 when the cartridge 103 is removed from the housing (FIGS. 1, 2). The flow rate is thus
limited by the diameter of the drain port 114 and associated plumbing, rather than the interface
geometry.
'Radial' and 'Radius' as used herein mean not only radii in cylindrical applications, but any distance from an axis. The radius of the passage 160 and other components of the apparatus may or may not be constant, i.e., their shape may be irregular.

When the filter cartridge 103 is in place in the housing 102, the drain passage 160 should be plugged or sealed for the filter to function properly, as will be apparent to those skilled in the art in light of this disclosure. In the embodiment shown in FIG. 4, this is done by means of an annular plug arrangement comprising an annular barb 124 attached to or integral with the end plate 108 and extending axially into the drain passage 106. An annular gasket 126 constructed of rubber or other flexible material is attached to the barb 124. In this embodiment, the gasket 126 contains four protrusions or lobes 128 which install relatively easily over the barb 124. Upon installation of the cartridge 103 into the housing 102, the lobes 128 press against the flange 122 and member 136, plugging and sealing the passage 160, preventing drainage during filter operation as well as sealing the clean side of the filter from the dirty side.

As can be seen in FIG. 4, the barb 124 is thicker at its edge (a ball end) to enhance mechanical attachment to the gasket 126, which fits tightly onto the barb 124 to prevent it from coming off the barb 124 during cartridge removal or due to pressure in the housing 102. As will be apparent to those skilled in the art in light of this disclosure, various other arrangements are possible, such as making the barb a straight axial protrusion from the end plate 108 and fastening a gasket to it through adhesion and/or pressure. As described below, the axial protrusion itself may comprise the plug, filling the entire passage without additional gasket material. Other arrangements are possible while remaining within the scope of the invention, including separating the drain passage plug from the end plate and attaching it thereto, or removing it from the drain passage separately when the cartridge is removed, as discussed below.

The annular plate 120 can also be modified in various ways and given various shapes, to the point of comprising one or more elongated protrusions from the stand pipe rather than an annular structure (one embodiment of which is described below). The precise structure of the protrusion extending from the stand pipe, or even its existence, matters less than that at least a portion of the drain passage is located away from the center axis of the filter apparatus. As will be apparent to those skilled in the art in light of this disclosure, the concept has wide application in a variety of filters, which need not necessarily be cylindrical or have a stand pipe, simply that they have or be given an axis and that the drain passage, be it an annular passage, one or more holes, or other structure, be spaced from the axis to increase its flow area.
The four-lobe gasket 126 provides effective sealing both in pressure and suction filter applications. The arrows 161 in FIG. 5 show the forces acting on the gasket 126, and particularly its upper lobes 128, in a pressure filter application. The pressures are different in a vacuum filter application, as described below, with the lower lobes 128 taking the brunt of the force.

The gasket 226 shown in FIG. 6, having only two lower lobes 228, may be used for vacuum filter applications, dispensing with upper lobes since the force in such an application, as shown by the arrows 163 in FIG. 7, primarily impacts the lower lobes 228.

In some high-pressure applications, a significant force will act on the gasket plugging the drain passage such that it may tend to be dislodged from the drain passage. Though the barb/gasket plug arrangement shown in FIG. 4, and other plug or gasket constructions, are capable of preventing the dislodging of the plug in many cases, the addition of structure supporting the plug can be beneficial for higher pressures.

FIGS. 8-10 show one embodiment of such support structure, in this case a support shelf 323, which extends from a flange 322, equivalent to the flange 122, to underlie and provide support to the barb 324 and gasket 326 (FIG. 8). The annular plate 320, together with the flange 322 and 323, are supported in their turn by a plurality of ribs 330, which extend radially from the stand pipe 309.

Alternatively, the support shelf 323 may be eliminated, with the ribs 330 themselves providing support for the plug. The number of ribs may have to be increased to lessen the space between them for support purposes. Other support structures are possible while remaining within the scope of the invention, including making them part of the housing rather than extending from the stand pipe, allowing standard-shape standpipes to be used.

FIG. 8 also shows a secondary gasket or grommet 334 which is placed on the interior edge of the end plate 308 in sealing engagement with the stand pipe 309. The gasket 334 further improves clean-to-dirty side sealing, and also provides a stand pipe wiping function, i.e., remaining in contact with the stand pipe 309 from top to bottom as the filter cartridge is installed into the housing, wiping and cleaning debris off the stand pipe 309. A protrusion 336 extends axially from the end plate 308 to support the plate, given that space between the end plate 308 and plate 320 is required to accommodate the gasket 334.

A debris cap 304, shown in FIG. 11, can be installed on the top of the stand pipe to prevent dirt and other debris from falling into the clean fluid passage of the stand pipe during a change of the filter cartridge. The debris cap 304 can be radially co-extensive or slightly less extensive than the stand pipe to allow the wiping function of gasket 334.
FIG. 12 shows another embodiment of a plug 424, which comprises an axial extension or protrusion from the end plate 408 itself, extending into and plugging the drain passage 460 without the addition of a gasket. The plug 424 contains sealing fins 430 to assist in sealing the passage 460. The fins 430 are thin and flexible protrusions directed upwardly or downwardly, and the flange 422 and housing member 436 are angled slightly to improve the seal. This type of seal is generally more appropriate for coarser filters, where slight by-pass of fluid through the drain passage 460 does not result in significant impairment of filter operation. If the secondary gasket 434 is used, as shown, to further seal the clean from the dirty side, a slight bypass will not effect particle separation efficiency, but simply result in bleeding off a small volume of fluid back to the dirty fluid source.

FIG. 13 shows another embodiment of a plug according to the present invention, comprising an annular protrusion 524 extending axially from the end plate 508, containing recesses for placement of o-rings 526, disposed on the inner and outer sides of the protrusion 524, which seal it against the housing member 536 and flange 522. This type of configuration may be appropriate in low-pressure designs, and can use standard o-rings.

FIG. 14 shows another embodiment of the gasket 626, in that it combines the plug and secondary sealing gaskets, such as the gaskets 326 and 334 shown in FIG. 8. The gasket 626 eliminates the need for a protrusion such as the protrusion 336 shown in FIG. 8, since the gasket 626 itself fills the space between the end plate 608 and plate 620 created by the secondary gasket seal.

FIG. 15 shows another embodiment of the plug, in which a protrusion 724 extending from the end plate 708 fills and plugs the drain passage 760 without the assistance of fins or gaskets. This can be done, for example, with a urethane foam end plate, which is sometimes used in air and liquid filtration and is molded directly over the end of the element 705, serving to seal the media pleats, if the element 705 is pleated, and create the end plate structure. Such material, or other similar material, is compliant enough to seal directly to the stand pipe and filter housing, and may provide a wiping function similar to that provided by the gasket 334. Other shapes of the protrusion 724 are possible while remaining within the scope of the invention.

Other embodiments of the invention might include a filter cartridge that does not use end plates at all, having media solid enough to retain structural integrity on its own, in which case the plug can be partially or completely formed from the element itself.

FIG. 16 shows an embodiment of the invention in which the drain passage plug 824 is separate from the filter cartridge, enabling standard filter cartridges with flat end plates, or other shapes not containing the drain plug, to be used in the inventive apparatus. In this embodiment,
the plug 824 contains a flange 837 having a sealing gasket 838 against the stand pipe 809, with the end plate 808 sealing against the flange 837 with an o-ring 840 or other seal. FIG. 17 shows an embodiment where the separate plug 825, this one not containing a sealing flange, is clipped to the end plate 808 with an integral clip 841 to clip and seal the end plate 808 directly to the plug 825. The seal could be an o-ring, other elastomeric seal, adhesive seal or snapped with a line-on-line fit to form an interference-fit type seal. Alternatively the clip 841 could simply retain the plug 825 to the endplate 808, and the endplate 808 in turn seals to the standpipe 809. The seal between the endplate 808 and standpipe 809 could be attached to the housing, in which case it remains in place when the filter is removed, or attached to the endplate which comes out with the filter.

The embodiments shown in FIGS. 16 and 17 show the drain passage being plugged separately from the cartridge. If desired, the drain may be plugged at any point along the drain path, either at the drain passage, sump, port, or other location. For purposes of this disclosure and as used herein, any such plug may functionally be considered a plug of the drain passage, since the effect is the same.

The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. For example, embodiments of the invention that do not require a seal against a stand pipe may be used in filters that do not require a stand pipe to function. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
CLAIMS

1. A quick drain filter apparatus comprising:

 a filter housing;

 a clean fluid passage disposed axially in the housing;

 a service drain passage disposed at an axial end of the housing and spaced radially away from the clean fluid passage.

2. The apparatus of claim 1, further comprising a radial protrusion extending radially from the clean fluid passage, the outer end of the protrusion comprising a radial inner edge of the drain passage.

3. The apparatus of claim 2, wherein the protrusion comprises an annular plate.

4. The apparatus of claim 2, wherein the protrusion comprises a support rib.

5. The apparatus of claim 2, wherein the clean fluid passage is disposed within a stand pipe axially disposed in the housing, and wherein the protrusion extends from the stand pipe.

6. The apparatus of claim 5, further comprising a debris cap disposed on an end of the stand pipe.

7. The apparatus of claim 1, further comprising a drain plug configured to plug the drain passage.

8. The apparatus of claim 7, further comprising a seal disposed on the axial end of the housing, sealing the clean fluid passage against a filter cartridge installed in the housing.

9. The apparatus of claim 8, further comprising a clip configured to clip the drain plug to the filter cartridge.

10. The apparatus of claim 7, further comprising a shelf disposed beneath and at least partially supporting the drain plug.

11. The apparatus of claim 7, wherein the plug is configured to seal against a filter cartridge installed in the housing.

12. A quick drain fluid filter apparatus comprising:
a filter cartridge;
an interior volume disposed axially through the cartridge;
a plug protrusion extending axially from an axial end of the cartridge and spaced radially away from a stand pipe extending into the interior volume when the cartridge is installed in a housing.

13. The apparatus of claim 12 wherein the filter element and the interior volume are cylindrical and the plug protrusion is annular.

14. The apparatus of claim 13, wherein the plug protrusion is configured to directly plug a drain passage in a housing when the cartridge is installed in the housing.

15. The apparatus of claim 14, further comprising a sealing fin disposed on the plug protrusion.

16. The apparatus of claim 13, further comprising an annular gasket disposed on the plug protrusion.

17. The apparatus of claim 16, wherein the annular gasket comprises at least one o-ring.

18. The apparatus of claim 16, wherein the cartridge comprises an element and an end plate and wherein the annular gasket extends radially inward from the plug protrusion to an inner radius of the end plate, the gasket being configured to seal the cartridge against the stand pipe and wipe the stand pipe when the cartridge is installed into the housing.

19. The apparatus of claim 16, wherein the cartridge comprises an element and an end plate, and further comprising a secondary annular gasket disposed around an inner radius of the end plate, the secondary gasket being configured to seal the cartridge against the stand pipe and wipe the stand pipe when the cartridge is installed into the housing.

20. The apparatus of claim 16, wherein the plug protrusion is shaped as a barb in cross section.

21. The apparatus of claim 20, wherein the gasket has a plurality of lobes in cross section.

22. The apparatus of claim 20, wherein the gasket has four lobes in cross section.
23. The apparatus of claim 20, wherein the gasket has two lobes in cross section, the lobes being disposed axially beneath the plug protrusion.

24. The apparatus of claim 20, wherein the gasket has two lobes in cross section, the lobes being disposed upwardly on either side of the plug protrusion.

25. A quick drain filter system comprising:
 a cylindrical filter element;
 a cylindrical interior volume disposed axially through the element;
 an end plate disposed on an axial end of the element;
 a housing configured to house the element and end plate, the housing and element having a common axis;
 a clean fluid passage disposed axially in the housing;
 a service drain passage disposed at an axial end of the housing adjacent the end plate and spaced radially away from the clean fluid passage;
 an annular plug extending axially from the end plate and plugging the drain passage.

26. The system of claim 25, further comprising a stand pipe disposed axially in the housing and extending through the interior volume, the clean fluid passage disposed at least partially in the stand pipe, and a plate extending radially from the stand pipe, the outer portion of the plate defining the inner edge of the service drain passage.

27. The system of claim 26, wherein the plate comprises a flange extending axially at the outer edge of the plate, the plug being configured to seal against the flange.

28. The system of claim 27, further comprising a support shelf extending radially from the flange and supporting the plug.

29. A quick drain filter apparatus comprising:
 means for filtering a fluid;
 means for housing the filtering means;
drainage means for preventing drainage when the filtering means is housed in the housing
means and allowing drainage when the filtering means is not housed in the
housing means, the drainage means being spaced from an axis.

30. A method of servicing a quick drain filter apparatus, the method comprising:

provide a housing, a cylindrical filter cartridge disposed in the housing, a cylindrical
clean fluid passage disposed axially through the housing and cartridge, an annular
service drain passage disposed at an end of the housing and radially away from
the clean fluid passage, and a drain passage plug disposed in and plugging the
drain passage;

removing the cartridge and plug;

installing a second cartridge and plug.

31. The method of claim 30, wherein the cartridge and plug are integral with each other and are
removed simultaneously.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 07/75508

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - E03F 5/06 (2007.10)
USPC - 210/163

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8):E03F 5/06 (2007.10)
USPC: 210/163

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC: 210/433, 1,95,166,416 4,443,448, 277/530

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST(USPT,PGPB,EPAB,JPAB); Google

Search Terms Used filter, filtration, drain, plug, gasket, seal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2004/0206682 A 1 (Bassett et al.) 21 October 2004 (21.10.2004) Fig. 6</td>
<td>1, 2</td>
</tr>
<tr>
<td>X</td>
<td>US 2005/0279958 A 1 (Baumann) 22 December 2005 (22.12.2005) Fig. 4</td>
<td>20-22</td>
</tr>
<tr>
<td>Y</td>
<td>US 6,910,692 B2 (Malone et al.) 28 June 2005 (28.06.2005) Fig. 2</td>
<td>23, 24</td>
</tr>
<tr>
<td>A</td>
<td>US 2003/0127384 A 1 (Kapur) 10 July 2003 (10.07.2003) Fig. 1, 2</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US 6,068,762 A (Stone et al.) 30 May 2000 (30.05.2000) Fig. 1</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US 4,619,764 A (Church et al.) 28 October 1986 (28.10.1986) Fig. 1, 4</td>
<td>1-31</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

03 December 2007 (03.12.2007)

Date of mailing of the international search report

27 DEC 2007

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P O Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk 571-272-4300
PCT OSP 571-272-7774

Form PCT/ISA/210 (second sheet) (April 2007)