(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo o
1 rld Intellectual Property Organization 2 ey
(9) World Inclecual Property Organizaon /552 AN N OO AR 0
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
8 April 2010 (08.04.2010) PCT WO 2010/039887 A2
(51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
GO6F 13/14 (2006.01) GO6F 21/00 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
GO6F 9/22 (2006.01) GO6F 9/44 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. o ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(21) International Application Number: NO. NZ. OM. PE. PG. PH. PL. PT. RO. RS. RU. SC. SD
PCT/US2009/059105 SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
(22) International Filing Date: TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
30 September 2009 (30.09.2009) (84) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of regional protection available). ARIPO (BW, GH,
Lo . GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(26) Publication Language: English ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(30) Priority Data: TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
12/245,543 3 October 2008 (03.10.2008) US E/{Sé FI{/,HERI,\/I?B’I\I%RNI({)R,P EUI»)TIE»R IS» éTE L; ;‘(J sLl\\/i
(71) Applicant (for all designated States except US). MI- TR)Z OAI;I (B]é, BJ : CF, ,CG, ,CI, éM, &}A, ,GN: GQ: GWZ
CROSOFT CORPORATION [US/US]; One Microsoft ML, MR, NE, SN, TD, TG).
Way, Redmond, Washington 98052-6399 (US). .
Declarations under Rule 4.17:
(72) Inventors: OSHINS, Jacob; Microsoft Cororation, One . , .
Microsoft Way, Redmond, Washington 98052-6399 (US). ZS ZOZQ‘ZP(ZZ‘]’:;S ;’%jemem to apply for and be granted
ALLSOP, Brandon; Microsoft Cororation, One Mi- p ’
crosoft Way, Redmond, Washington 98052-6399 (US). — as to the applicant's entitlement to claim the priority of
THORNTON, Andrew John; Microsoft Cororation, One the earlier application (Rule 4.17(iii))
Microsoft Way, Redmond, Washington 98052-6399 (US). Published:
(81) Designated States (unless otherwise indicated, for every __

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: CONFIGURATION SPACE VIRTUALIZATION

FIG. 7

| 706 read and write operations comprise behaviors |

716 write of
one clears /
writc of zero
leaves alone

708 read
only

714 read-
write

710 always
zero on read

712 always
onc on read

718 write of
one sets /

720 write of
zero clears /

722 write of

ey || 22tcerto

zero after
[irst read

726 to onc
after first

wrilc ol onc
read

Icaves alone

wiile of zora || write ol anc

Icaves along (| leaves alone

(=)

(57) Abstract: Various aspects are disclosed herein for bounding the behavior of a non-privileged virtual machine that interacts
with a device by creating a description of the device which indicates to a privileged authority (1) which operations on the device
may have system-wide effects and (2) which operations have effects local to the device. The privileged authority may then permit
or deny these actions. The privileged authority may also translate these actions into other actions with benign consequences.

wo 2010/039887 A2 I 10K 0 0 000

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
1

CONFIGURATION SPACE VIRTUALIZATION

FIELD OF TECHNOLOGY

[0001] The presently disclosed subject matter relates to the field of computing, and more
particularly, to computer virtualization, although virtualization is merely an exemplary and
non-limiting field.

BACKGROUND

[0002] Most input/output (I/0) devices are designed with the assumption that there
exists one piece of trusted software that configures all of the I/O devices in the system. It
is also typically assumed that those 1/O devices are ultimately controlled by device drivers
that are plug-in modules that abstract individual device differences. Furthermore, it is
assumed that these drivers are all contained within a single kernel.

[0003] However, in the context of virtual machines, the above assumptions may no
longer be valid. Each virtual machine typically contains its own operating system kernel,
which may or may not be trusted by all the other kernels running in all the other virtual
machines. Configuring and controlling the devices within a physical host typically
involves some central authority that has the ability to enforce policies regarding how
actions from one virtual machine may affect other virtual machines. In some systems, this
central authority lies in a host operating system. In other systems the authority may lie in
a hypervisor, and in yet others, the authority may lie with one of the virtual machines
running on top of a hypervisor.

[0004] When building a virtualization system, one approach may be to maintain
complete control of all I/O devices within the above described central authority. Thus
when a virtual machine needs I/O services, the virtual machine may pass a request
(directly or indirectly) to the central authority that controls the I/O. This approach may
work but suffers from two problems. First, the I/O operates more slowly than it would
compared with an operating system running on physical hardware rather than a virtual
machine. Second, the range of I/0 devices expressed to the virtual machines may be
limited by the virtualization software. It would be desirable to assign each of the devices
within a physical computer to one or more of the virtual machines running within it. In
this way, the I/O would not suffer the performance penalty associated with indirection and
any device which can be plugged into the computer may be used by a virtual machine

without requiring that the virtualization layers completely understand its internal function.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
2

[0005] Accordingly, other techniques are needed in the art to solve the above described
problems.
SUMMARY
[0006] Various methods and systems are disclosed herein for bounding the behavior of a
non-privileged virtual machine (a virtual machine that does not own a system-wide policy
for the device) that interacts with a device by creating or receiving a description of the
device that indicates to a privileged authority (e.g., a hypervisor or other privileged aspect
of a virtualization system) (1) which operations on the device may have system-wide
effects and (2) which operations have effects local to the device. The privileged authority
may then permit or deny these actions. The privileged authority may also translate these
actions into other actions with benign consequences.
[0007] In an embodiment, for each device, a map of configuration space may be
constructed, wherein each bit within the configuration may have one or more of the
following properties:

i.. Read-only.

ii. Always-0 on read.

iii. Always-1 on read.

iv. Read-write.

v. Write of 1 clears, write of 0 leaves alone.

vi. Write of 1 sets, write of 0 leaves alone.

vii. Write of O clears, write of 1 leaves alone.

viii. Write of 0 sets, write of 1 leaves alone.

ix. Clear to 0 after first read.

X. Setto 1 after first read.
[0008] The above behaviors are exemplary, and additional behaviors may be included to
bound the actions allowed on memory locations. A map of MMIO space may also be
constructed, wherein each page may be mapped into the virtual machine. For pages that
are excluded from the virtual machine’s map, the privileged authority may choose to
populate that page with a static image that looks like the device. Alternatively, the
privileged authority may choose to receive intercepts and handle the intercepts using
configuration space with a map applied for these specific pages.
[0009] In further embodiments, a method for exchanging information for safely
containing a device is disclosed. In some embodiments a representation of the maps can

be embedded in a driver installation file. The installation files may be digitally signed by

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
3

the party that produces them. Accordingly, a machine administrator may allow the
privileged authority to process the installation files without actually installing a driver for
the device in the privileged authority. The driver can be installed in the virtual machine
and the device may be functional in the virtual machine and contained so that the device
does not affect other virtual machines or the privileged authority.

[0010] In addition to the foregoing, other aspects are described in the claims, drawings,
and text forming a part of the present disclosure. It can be appreciated by one of skill in
the art that one or more various aspects of the disclosure may include but are not limited to
circuitry and/or programming for effecting the herein-referenced aspects of the present
disclosure; the circuitry and/or programming can be virtually any combination of
hardware, software, and/or firmware configured to effect the herein-referenced aspects
depending upon the design choices of the system designer.

[0011] It should be noted that this Summary is provided to introduce a selection of
concepts in a simplified form that are further described below in the Detailed Description.
This Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The foregoing Summary, as well as the following Detailed Description, is better
understood when read in conjunction with the appended drawings. In order to illustrate
the present disclosure, various aspects of the disclosure are illustrated. However, the
disclosure is not limited to the specific aspects shown. The following figures are included:
[0013] Figure 1a illustrates a virtual machine environment, with a plurality of virtual
machines, comprising a plurality of virtual processors and corresponding guest operating
systems; the virtual machines are maintained by a virtualizing layer which may comprise a
scheduler and other components, where the vitualizing layer virtualizes hardware for the
plurality of virtual machines;

[0014] Figure 1b illustrates a diagram representing the logical layering of the hardware
and software architecture for a virtualized environment in a computer system;

[0015] Figure 1c depicts an example computer system wherein aspects of the present
disclosure can be implemented;

[0016] Figure 2 illustrates an exemplary virtualized computing system;

[0017] Figure 3 illustrates an alternative virtualized computing system;

[0018] Figure 4 depicts an exemplary system diagram illustrating 1O space and MMIO

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105

as it relates to PCI devices;

[0019] Figure S is an exemplary diagram illustrating an address space that RAM may
reside in;

[0020] Figure 6 illustrates an example of an operational procedure for managing the
global and local effects of transactions between a non-privileged virtual machine and an
I/0 device;

[0021] Figure 7 illustrates an example of an operational procedure for managing the
global and local effects of transactions between a non-privileged virtual machine and an
I/0 device;

[0022] Figure 8 illustrates an example of an operational procedure for managing the
global and local effects of a non-privileged virtual machine that interacts with a device;
[0023] Figure 9 depicts an exemplary operational procedure for bounding the behavior
of a non-privileged virtual machine that interacts with a device;

[0024] Figure 10 illustrates a computer readable medium bearing computer executable
instructions discussed with respect to Figs. 1-9, above.

DETAILED DESCRIPTION

Virtual Machines In General Terms

[0025] Certain specific details are set forth in the following description and figures to
provide a thorough understanding of various embodiments of the invention. Certain well-
known details often associated with computing and software technology are not set forth
in the following disclosure to avoid unnecessarily obscuring the various embodiments of
the invention. Further, those of ordinary skill in the relevant art will understand that they
can practice other embodiments of the invention without one or more of the details
described below. Finally, while various methods are described with reference to steps and
sequences in the following disclosure, the description as such is for providing a clear
implementation of embodiments of the invention, and the steps and sequences of steps
should not be taken as required to practice this invention.

[0026] It should be understood that the various techniques described herein may be
implemented in connection with hardware or software or, where appropriate, with a
combination of both. Thus, the methods and apparatus of the invention, or certain aspects
or portions thereof, may take the form of program code (i.e., instructions) embodied in
tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-
readable storage medium wherein, when the program code is loaded into and executed by

a machine, such as a computer, the machine becomes an apparatus for practicing the

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
5

invention. In the case of program code execution on programmable computers, the
computing device generally includes a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), at least
one input device, and at least one output device. One or more programs that may
implement or utilize the processes described in connection with the invention, ¢.g.,
through the use of an API, reusable controls, or the like. Such programs are preferably
implemented in a high level procedural or object oriented programming language to
communicate with a computer system. However, the program(s) can be implemented in
assembly or machine language, if desired. In any case, the language may be a compiled or
interpreted language, and combined with hardware implementations.

[0027] Figure laillustrates a virtual machine environment 100, with a plurality of
virtual machines 120, 121, comprising a plurality of virtual processors 110, 112, 114, 116,
and corresponding guest operating systems 130, 132. The virtual machines 120, 121 are
maintained by a virtualizing layer 140 which may comprise of a scheduler 142 and other
components (not shown), where the virtualizing layer 140 virtualizes hardware 150 for the
plurality of virtual machines 120, 121. The plurality of virtual processors 110, 112, 114,
116 can be the virtual counterparts of underlying hardware physical processors 160, 162.
[0028] Figure 1b is a diagram representing the logical layering of the hardware and
software architecture for a virtualized environment in a computer system. In Fig. 1b, a
virtualization program 180 runs directly or indirectly on the physical hardware architecture
182. The virtualization program 180 may be (a) a virtual machine monitor that runs
alongside a host operating system, (b) a host operating system with a hypervisor
component, where the hypervisor component performs the virtualization, (c) hardware, or
(d) micro-code. The virtualization program may also be a hypervisor which runs
separately from any operating system. In other words, the hypervisor virtualization
program need not run as part of any operating system, and need not run alongside any
operating system. The hypervisor virtualization program may instead run “under” all the
operating systems, including the “root partition.” The virtualization program 180
virtualizes a guest hardware architecture 178 (shown as dashed lines to illustrate the fact
that this component is a “partition” or a “virtual machine”), that is, hardware that does not
actually exist but is instead virtualized by the virtualizing program 180. A guest operating
system 176 executes on the guest hardware architecture 178, and a software application
174 can run on the guest operating system 176. In the virtualized operating environment

of Fig. 1b, the software application 174 can run in a computer system even if the software

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
6

application 174 is designed to run on an operating system that is generally incompatible
with a host operating system and the hardware architecture 182.

[0029] A virtual machine typically contains an entire operating system and a set of
applications, which together constitute many processes, the entirety of which may be
referred to as “workload” or “process” in the context of virtual machines. In the present
disclosure the terms “process” and “workload” may be used interchangeably in the context
of virtual machines, and those skilled in the art will readily understand that “process” may
refer to multiple processes including all of systems and applications that may be
instantiated in a virtual machine.

[0030] Next, Fig. 2 illustrates a virtualized computing system comprising a host
operating system (host OS) software layer 204 running directly above physical computer
hardware 202, where the host OS 204 provides access to the resources of the physical
computer hardware 202 by exposing interfaces to partitions A 208 and B 210 for the use
by operating systems A and B, 212 and 214, respectively. This enables the host OS 204 to
go unnoticed by operating system layers 212 and 214 running above it. Again, to perform
the virtualization, the host OS 204 may be a specially designed operating system with
native virtualization capabilities or, alternately, it may be a standard operating system with
an incorporated hypervisor component for performing the virtualization (not shown).
[0031] Referring again to Fig. 2, above the host OS 204 are two partitions, partition A
208, which may be, for example, a virtualized Intel 386 processor, and partition B 210,
which may be, for example, a virtualized version of one of the Motorola 680X0 family of
processors. Within each partition 208 and 210 are guest operating systems (guest OSs) A
212 and B 214, respectively. Running on top of guest OS A 212 are two applications,
application A1 216 and application A2 218, and running on top of guest OS B 214 is
application B1 220.

[0032] In regard to Fig. 2, it is important to note that partition A 208 and partition B 214
(which are shown in dashed lines) are virtualized computer hardware representations that
may exist only as software constructions. They are made possible due to the execution of
specialized virtualization software(s) that not only presents partition A 208 and partition B
210 to Guest OS A 212 and Guest OS B 214, respectively, but which also performs all of
the software steps necessary for Guest OS A 212 and Guest OS B 214 to indirectly interact
with the real physical computer hardware 202.

[0033] Figure 3 illustrates an alternative virtualized computing system where the

virtualization is performed by a virtual machine monitor (VMM) 204’ running alongside

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
7

the host operating system 204.” In certain cases, the VMM 204’ may be an application
running above the host operating system 204’ and interacting with the computer hardware
202 only through the host operating system 204°°. In other cases, as shown in Fig. 3, the
VMM 204 may instead comprise a partially independent software system that on some
levels interacts indirectly with the computer hardware 202 via the host operating system
204, but on other levels the VMM 204’ interacts directly with the computer hardware
202 (similar to the way the host operating system interacts directly with the computer
hardware). And yet in other cases, the VMM 204’ may comprise a fully independent
software system that on all levels interacts directly with the computer hardware 202
(similar to the way the host operating system interacts directly with the computer
hardware) without utilizing the host operating system 204 (although still interacting with
the host operating system 204’ in order to coordinate use of the computer hardware 202
and avoid conflicts and the like).

[0034] Figure 4 depicts an exemplary system diagram illustrating 10 space and MMIO
as it relates to PCI devices. The diagram include a system bus 400, physical memory 410,
processor 420, a PCI device 430 with register 460, and a host-PCI bridge device 440.
Attached to the host-PCI bridge device 440 is a PCI bus 450, and attached to the PCI bus
is the PCI device 430. The PCI device 430 contains at least one register 460 at a memory
location that must be read and written from the system processors in order to control the
device. It can be seen that the physical memory address spaces may be distinct from the
10 port space which may be a separate address space. 10 resources may be translated into
MMIO resources, which is one reason why 10 port address space may be mapped via
memory mapped 1O port accesses.

[0035] Referring to Figure 5, shown is a diagram illustrating the address space 500 that
RAM may reside in. As shown, memory mapped input/output (MMIO) areas 510 may
also reside in the same address space. Typical modern address-space-based hardware
control interfaces reside in the MMIO portion of this address space. System physical
address space generally refers to the physical address space 500 of the physical computer
system, as does “guest physical address space” which also refers to the “physical” address
space 500 of a virtual computer system. The physical memory address space 500 is
typically separate from the 10 port space. The separate 10 port space may be used to
control older devices, and may be also be used to set up and configure newer devices since
PCI configuration space is typically accessed via 1O port space. Furthermore, 1O port
space addresses are typically 16 bits rather than 32 bits or 64 bits.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
8

[0036] All of these variations for implementing the above mentioned partitions are just
exemplary implementations, and nothing herein should be interpreted as limiting the
disclosure to any particular virtualization aspect.

Configuration Space Virtualization

[0037] Most input/output (I/0) devices are designed with the assumption that there
exists one piece of trusted software that configures all of the I/O devices in the system. It
is also typically assumed that those 1/O devices are ultimately controlled by device drivers
that are plug-in modules that abstract individual device differences. Furthermore, it is
assumed that these drivers are all contained within a single kernel.

[0038] However, in the context of virtual machines, the above assumptions may no
longer be valid. Each virtual machine typically contains its own operating system kernel,
which may or may not be trusted by all the other kernels running in all the other virtual
machines. Configuring and controlling the devices within a machine typically involves
some central authority that has the ability to enforce policies regarding how actions from
one virtual machine may affect other virtual machines. In some systems, this central
authority lies in a host operating system. In other systems the authority may lie in a
hypervisor, and in yet others, the authority may lie with one of the virtual machines
running on top of a hypervisor.

[0039] When building a virtualization system, one approach may be to maintain
complete control of all I/O devices within the above described central authority. Thus
when a virtual machine needs 1/0 services, the virtual machine may pass a request
(directly or indirectly) to the central authority that controls the I/O. This approach may be
acceptable but suffers from two problems. First, the I/O operates more slowly than it
would compared an operating system running on physical hardware rather than a virtual
machine. Second, the range of I/0 devices expressed to the virtual machines may be
limited by the virtualization software. It would be desirable to assign each of the devices
within a physical computer to one or more of the virtual machines running within it. In
this way, the I/O would not suffer the performance penalty associated with indirection.
Furthermore, any device that can be plugged into the computer may be used by a virtual
machine without requiring that the virtualization layers completely understand its internal
functions.

[0040] For example, if a network interface controller (NIC) is plugged into a physical
machine, it may be reasonable to assume that the virtualization software can control and

manipulate the NIC. NICs are common and NIC vendors may desire to provide device

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
9

driver software both for popular operating systems and for virtualization systems. On the
other hand, if a more esoteric device is plugged into a computer, it is not likely that
corresponding virtualization software will be available. Thus it would be desirable to
allow a virtual machine to have direct access to the device even without any understanding
of how the virtual machine will use the device.

[0041] Unfortunately, configuration and setup of the esoteric device may have system-
wide consequences that may impact the function of other virtual machines. For example,
turning the device on may cause an in-rush current spike which may cause the whole
computer to brown-out if the in-rush occurs simultaneously with another in-rush spike. In
another example, configuring the device may involve instructing the device to claim
ranges of memory address space that may be occupied by other devices or main memory.
As a final example, a device may be packaged in a chip with many other devices. In terms
of the Peripheral Component Interconnect (PCI) specification, such devices are called
“functions” and the chip is called a “package.” The package may have one connection to
the bus (or in the case of PCI Express, a connection to the fabric) and each function within
the package may share some of the hardware associated with connecting to the rest of the
system. In this case, configuration of the lowest numbered function (#0) can often have
side effects visible in the operation of higher-numbered functions. If function 0 is under
control of a virtual machine, other functions in the same package can be impacted by
choices made in that virtual machine. This can cause other virtual machines to receive no
service or poor service from the functions that are under the control of other machines.
[0042] In various embodiments disclosed herein, the behavior of a non-privileged virtual
machine that interacts with a device may be bounded by creating a description of the
device that indicates to a privileged authority (e.g., a hypervisor or other privileged aspect
of a virtualization system) (1) which operations on the device may have system-wide
effects and (2) which operations have effects local to the device. A non-privileged virtual
machine refers to a virtual machine that does not own a system-wide policy for the system
or the device. In other words, a non-privileged virtual machine is not the hypervisor or a
parent/root/host OS. The privileged authority may then permit or deny these actions. The
privileged authority may also translate these actions into other actions with benign
consequences.

[0043] While it may be possible to implement some of the above methods by loading a
device’s driver into the context of the privileged authority, such an approach is typically

not desirable because of the additional code required in the privileged authority.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
10

Minimizing the amount of code within the privileged authority is often important for
making a virtualization system both secure and efficient.

[0044] Furthermore, when allowing an entire PCI function (rather than, for example, just
one subset of a device) to be under the control of a non-privileged virtual machine, there
may not exist any code within the privileged authority for sub-allocating the device’s
resources to many virtual machines. This sub-allocation process is common when sharing
a device among many virtual machines. In contrast, the present disclosure describes
methods for placing an entire discrete device under control of a virtual machine.

[0045] In an embodiment, cach PCI (or PCI-X, or PCI-Express) device may implement
two or three address spaces. The first address space may be described as memory-mapped
I/O space and may behave similarly to RAM addressing. Reads and writes to a device
may be performed like reads and writes to RAM but using different addresses. Referring
to Figure 5, RAM address space 520 may, for example, occupy the first 2GB of memory
address space with I/O devices occupying the address space 510 between 3GB (address
3221225472) and 4GB (address 4294967296). MMIO address space may be used for
moment-to-moment interaction with the device by the device driver. Access to MMIO
address space is typically quick, and usually performed by the device driver (which is
typically supplied by the device vendor) for the device. When the device is turned off, the
device typically does not decode any MMIO space.

[0046] The second address space that may be implemented is the configuration space
implemented by PCI devices. This configuration space may be populated with
mechanisms (e.g., registers) for configuring the device. Such mechanisms may include
turning the device off and on, assigning resources, and the like. The configuration space is
typically decoded whether the device is turned on or off. The PCI specification identifies
the behaviors of some of the registers within this space. The registers allow a generic
piece of configuration software (not supplied by the device vendor) to configure the
device, assign resources to the device (such as an assigned range of MMIO space
addresses), and turn the device on. Configuration space can and usually does contain
device-specific registers without the meaning defined by the PCI specification. Such
registers can typically only be manipulated by the device driver for the device. Lastly,
new features may be added to the PCI specification by defining new ranges in
configuration space called “capability structures.”

[0047] The third address space that a PCI device might use is called “I/O” space and is
mostly historical. Generally 1/O space has the properties of MMIO space.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
11

[0048] A privileged authority such as a hypervisor or other virtualization intermediary
may need to decide which parts of the configuration space can be placed under the control
of a non-privileged virtual machine. In the embodiments disclosed below, a hypervisor
will be described as the privileged authority. However, it should be readily apparent to
those skilled in the art that the disclosed embodiments may be implemented in connection
with any other virtualization intermediary.
[0049] The hypervisor may further attempt to contain the parts of MMIO and 1/O space
that the non-privileged virtual machine can access. In various embodiments the present
disclosure describes methods for containing the behavior of the non-privileged virtual
machine. In an embodiment, for each device a map of the configuration space may be
constructed, wherein each bit within the map has one or more of the following properties:

i.. Read-only.

ii. Always-0 on read.

iii. Always-1 on read.

iv. Read-write.

v. Write of 1 clears, write of 0 leaves alone.

vi. Write of 1 sets, write of 0 leaves alone.

vii. Write of O clears, write of 1 leaves alone.

viii. Write of 0 sets, write of 1 leaves alone.

ix. Clear to 0 after first read.

X. Setto 1 after first read.
[0050] The above behaviors are exemplary, and additional behaviors may be included to
bound the actions allowed on memory locations. Behaviors may also be mapped to
memory locations at higher levels of granularity such as bytes or larger segments of
memory such as pages.
[0051] A map of MMIO space may be constructed, wherein each page may either be
mapped into the virtual machine or not mapped into the virtual machine. The map may be
constructed with page granularity rather than with bit granularity. If bit granularity is
used, there may be potentially numerous bits of MMIO space, the result being that the map
may become unreasonably large. Furthermore, processors typically give the hypervisor
the ability to intercept only on page granularity, so constructing a bit-level map would
imply that the hypervisor would have to intercept every MMIO operation and apply the
proper filter implied by the map. Such constant interference with the operation of the

device would likely have a negative impact on device operation.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
12

[0052] Some devices may map registers from their configuration spaces a second time
into their I/O or MMIO spaces. This may be done because access to configuration space is
typically slow and it may be convenient to provide access to a register before the device is
configured, in which case the mapping should be in configuration space. Access to the
register should also be provided later at runtime via a lightweight path to the register, in
which case the mapping should also be in memory space. Accordingly, one of the
behaviors for a page of MMIO space is that the page may be configured as an alias of
configuration space, wherein any access to the page should be trapped and redirected to
the code that handles configuration space. In addition to mapping an entire page in this
manner, individual bits within a page may be marked as aliases of specific bits within
configuration space.

[0053] For a page that is excluded from the virtual machine’s map, the hypervisor may
choose to populate the excluded page with a static image that appears like the device.
Alternatively, the hypervisor may choose to accept intercepts and handle the intercepts
like configuration space with a map applied for these specific pages. In other words, a
map of MMIO space may have two levels. One level may be for the list of pages of the
device MMIO space that are mapped into the virtual machine. The second layer map may
optionally define the bits within the excluded pages.

[0054] 1/O space for the device may be treated like configuration space. Alternatively,
the 1/0 space may be excluded from the virtual machine.

[0055] As discussed above, the various disclosed embodiments may allow an authority
such as a hypervisor to safely contain a device for which it is not employing a device
driver. It is thus possible that the hypervisor does not have the information to populate
such a map. Therefore, a way to obtain this information from the device vendor is needed.
In an embodiment, a representation of the maps which can be embedded in a driver
installation file may be created. In one embodiment the driver installation file may be
called an INF. INFs may be contained within driver installation packages. The INFs may
further be digitally signed by the entity that produces the packages. Accordingly, a
machine administrator may decide to allow the hypervisor to process the INF supplied by
the device manufacturer without actually installing a driver for the device. The driver may
then be installed in the virtual machine and the device may become functional in the
virtual machine and contained so that the driver does not affect other virtual machines or

the hypervisor itself.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
13

[0056] The presently disclosed aspects can be implemented as systems, methods,
computer executable instructions residing in computer readable media, and so on. Thus,
any disclosure of any particular system, method, or computer readable medium is not
confined there to, but rather extends to other ways of implementing the disclosed subject
matter.

[0057] Figures 6 through 8 depict an example of an operational procedure for managing
communications between a virtual machine and an I/O device. The procedure may
include operations 600, 602, 604, 605 and 606. Referring to Figure 6, operation 600
begins the operational procedure and in operation 602 a representation of configuration
space may be constructed for the I/O device indicating actions that can be performed on
the 1/O device by the virtual machine. This configuration space may be populated with
mechanisms (e.g., registers) for configuring the device. A representation of memory
mapped I/0 space may be constructed 603 wherein each page of the memory mapped 1/0
space is mapped into the virtual machine or excluded from the virtual machine. Operation
604 illustrates controlling access to said I/O device in accordance with said representation
of configuration space and said representation of memory mapped 1/0 space. Operation
605 illustrates that said constructing a representation of configuration space further
comprises associating each bit within said representation of configuration space with at
least one read and write operation. Operation 606 illustrates that for any memory
excluded from said representation of configuration space or for any memory excluded
from said representation of memory mapped I/O space, populating said any memory with
data representative of said I/O device. For a page that is excluded from the virtual
machine’s map, for example, the hypervisor may choose to populate the excluded page
with a static image that appears like the device.

[0058] Referring to FIG. 7, operation 706 illustrates that the read and write operations
comprise: read only 708, always 0 on read 710, always 1 on read 712, read-write 714,
write of 1 clears / write of 0 leaves alone 716, write of 1 sets / write of 0 leaves alone 718,
write of 0 clears / write of 1 leaves alone 720, write of 0 sets / write of 1 leaves alone 722,
clear to 0 after first read 724, or sct to one after first read 726.

[0059] Referring to Figure 8, operation 802 illustrates defining bits within pages for the
excluded memory. Operation 804 illustrates receiving intercepts and processing the
intercepts using pages with defined bits. For example, the hypervisor may choose to
accept intercepts and handle the intercepts like configuration space with a map applied for

these specific pages. In one embodiment 806, information may be received for

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
14

constructing said maps, wherein said information is received in a file provided by a vendor
of said I/O device. In another embodiment, the file is digitally signed by said vendor 808.
Operation 810 illustrates constructing the representations in accordance the information
received from the vendor.

[0060] The managing may be performed by a virtualizing layer 813 using the pages with
defined bits. A driver may be installed in the virtual machine and the device may become
functional in the virtual machine and contained so that the driver does not affect other
virtual machines or the hypervisor itself.

[0061] In operation 814 a representation of I/O space is constructed. Operation 815
illustrates populating the representation of I/O space based on the received information.
Operation 825 illustrates controlling access to said 1/O device in accordance with the
representation of I/0 space. Operation 830 illustrates populating both said map of
configuration space and said map of memory mapped 1/O space based on the received
information. 1/O space from the virtual machine may be excluded in operation 835.
[0062] Figure 9 depicts an exemplary operational procedure for managing
communications between a virtual machine and a device including operations 900, 902,
904, 906, 908, 910, 912, and 914. Referring to Figure 9, operation 900 begins the
operational procedure and operation 902 illustrates receiving a description of the device,
the description comprising information regarding which operations on the device have
system-wide effects and which have effects that are local to the device. Operation 904
illustrates creating a representation of the description. Operation 906 illustrates
embedding the representation in an installation file for a driver for the device, wherein the
representation enables the construction of a map of configuration space for the device and
a map of memory mapped /O space, wherein the map of configuration space and the map
of memory mapped I/O space may be used to access the device.

[0063] Operation 908 illustrates that each bit within said map or page associated with
the map of configuration space and map of memory mapped 1/0 space comprises at least
one of the following properties: read only 910, always 0 on read 912, always 1 on read
914, read-write 916, write of 1 clears / write of 0 leaves alone 918, write of 1 sets / write
of 0 leaves alone 920, write of 0 clears / write of 1 leaves alone 922, write of 0 sets / write
of 1 leaves alone 924, clear to 0 after first read 926, or set to 1 after first read 928.
Operation 930 illustrates that the installation file is an INF, and operation 932 illustrates
digitally signing the INF.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
15

[0064] Any of the above mentioned aspects can be implemented in methods, systems,
computer readable media, or any type of manufacture. For example, per Fig. 10, a
computer readable medium can store thereon computer executable instructions for
controlling access to a PCI, PCI-X or PCI-Express device wherein the device is
communicatively coupled to a physical machine that hosts virtual machines. Such media
can comprise a first subset of instructions for receiving an installation file for the device,
wherein the installation file comprises information regarding which operations on the
device have system-wide effects and which have effects that are local to the device 1010; a
second subset of instructions for constructing at least one map of attributes for
configuration space, memory mapped I/0 space and 1/0 space for the device, wherein

cach page or each bit associated with the at least one map is mapped into the virtual
machine and wherein a static page of bits can be presented in a virtual machine as the state
of the device 1012; a third subset of instructions for populating the at least one map based
on said received installation file 1014, and a fourth set of instructions for using the at least
one map to manage access to the device 1016. It will be appreciated by those skilled in

the art that additional sets of instructions can be used to capture the various other aspects
disclosed herein, and that the three presently disclosed subsets of instructions can vary in
detail per the present disclosure.

[0065] For example, the instructions can further comprise instructions 1020 wherein each
bit within said map or page associated with the at least one map contains one of the
following properties: always 0 on read, always 1 on read, read-write, write of 1 clears / write
of 0 leaves alone, write of 1 sets / write of 0 leaves alone, write of 0 clears / write of 1 leaves
alone, write of 0 sets / write of 1 leaves alone, clear to 0 after first read, or set to 1 after first
read.

[0066] Again, by way of example, the instructions can further comprise instructions for:
populating said any memory with predetermined data for any memory excluded from the
map of configuration space or for any memory excluded from the map of memory mapped
1/0 space 1021; the predetermined data corresponds to a predetermined device 1022;
defining bits within pages for the excluded memory 1023; receiving intercepts and
processing the intercepts using the pages with defined bits 1024; and the installation file is
an INF provided by a vendor of the device and may optionally be digitally signed 1026.
[0067] As described above, aspects of the invention may execute on a programmed
computer. FIG. Ic and the following discussion is intended to provide a brief description

of a suitable computing environment in which the those aspects may be implemented.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
16

One skilled in the art can appreciate that the computer system of FIG. 1¢ can in some
embodiments effectuate various aspects of Figures 1a and 1b. In these example
embodiments, the server and client can include some or all of the components described in
FIG. 1c and in some embodiments the server and client can each include circuitry
configured to instantiate specific aspects of the present disclosure.

[0068] The term circuitry used through the disclosure can include specialized hardware
components. In the same or other embodiments circuitry can include microprocessors
configured to perform function(s) by firmware or switches. In the same or other example
embodiments circuitry can include one or more general purpose processing units and/or
multi-core processing units, etc., that can be configured when software instructions that
embody logic operable to perform function(s) are loaded into memory, ¢.g., RAM and/or
virtual memory. In example embodiments where circuitry includes a combination of
hardware and software, an implementer may write source code embodying logic and the
source code can be compiled into machine readable code that can be processed by the
general purpose processing unit(s).

[0069] FIG. 1c depicts an example of a computing system which is configured to with
aspects of the disclosure. The computing system can include a computer 20 or the like,
including a processing unit 21, a system memory 22, and a system bus 23 that couples
various system components including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic
routines that help to transfer information between elements within the computer 20, such
as during start up, is stored in ROM 24. The computer 20 may further include a hard disk
drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30
for reading from or writing to a removable optical disk 31 such as a CD ROM or other
optical media. In some example embodiments, computer executable instructions
embodying aspects of the invention may be stored in ROM 24, hard disk (not shown),
RAM 25, removable magnetic disk 29, optical disk 31, and/or a cache of processing unit
21. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are
connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive

interface 33, and an optical drive interface 34, respectively. The drives and their

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
17

associated computer readable media provide non volatile storage of computer readable
instructions, data structures, program modules and other data for the computer 20.
Although the environment described herein employs a hard disk, a removable magnetic
disk 29 and a removable optical disk 31, it should be appreciated by those skilled in the art
that other types of computer readable media which can store data that is accessible by a
computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli
cartridges, random access memories (RAMs), read only memories (ROMs) and the like
may also be used in the operating environment.

[0070] A number of program modules may be stored on the hard disk, magnetic disk 29,
optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and program data 38. A user may
enter commands and information into the computer 20 through input devices such as a
keyboard 40 and pointing device 42. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite disk, scanner or the like. These and other input
devices are often connected to the processing unit 21 through a serial port interface 46 that
is coupled to the system bus, but may be connected by other interfaces, such as a parallel
port, game port or universal serial bus (USB). A display 47 or other type of display device
can also be connected to the system bus 23 via an interface, such as a video adapter 48. In
addition to the display 47, computers typically include other peripheral output devices (not
shown), such as speakers and printers. The system of FIG. 1 also includes a host adapter
55, Small Computer System Interface (SCSI) bus 56, and an external storage device 62
connected to the SCSI bus 56.

[0071] The computer 20 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 49. The remote
computer 49 may be another computer, a server, a router, a network PC, a peer device or
other common network node, and typically can include many or all of the elements
described above relative to the computer 20, although only a memory storage device 50
has been illustrated in FIG. 1c. The logical connections depicted in FIG. 1 can include a
local area network (LAN) 51 and a wide area network (WAN) 52. Such networking
environments are commonplace in offices, enterprise wide computer networks, intranets
and the Internet.

[0072] When used in a LAN networking environment, the computer 20 can be
connected to the LAN 51 through a network interface or adapter 53. When used in a

WAN networking environment, the computer 20 can typically include a modem 54 or

10

15

20

25

WO 2010/039887 PCT/US2009/059105
18

other means for establishing communications over the wide area network 52, such as the
Internet. The modem 54, which may be internal or external, can be connected to the
system bus 23 via the serial port interface 46. In a networked environment, program
modules depicted relative to the computer 20, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that the network connections shown
are examples and other means of establishing a communications link between the
computers may be used. Moreover, while it is envisioned that numerous embodiments of
the invention are particularly well-suited for computer systems, nothing in this document
is intended to limit the disclosure to such embodiments.

[0073] The foregoing detailed description has set forth various embodiments of the
systems and/or processes via examples and/or operational diagrams. Insofar as such block
diagrams, and/or examples contain one or more functions and/or operations, it will be
understood by those within the art that each function and/or operation within such block
diagrams, or examples can be implemented, individually and/or collectively, by a wide
range of hardware, software, firmware, or virtually any combination thereof.

[0074] Lastly, while the present disclosure has been described in connection with the
preferred aspects, as illustrated in the various figures, it is understood that other similar
aspects may be used or modifications and additions may be made to the described aspects
for performing the same function of the present disclosure without deviating there from.
For example, in various aspects of the disclosure, various mechanisms were disclosed for
bounding the behavior of a non-privileged virtual machine that interacts with a device.
However, other equivalent mechanisms to these described aspects are also contemplated
by the teachings herein. Therefore, the present disclosure should not be limited to any
single aspect, but rather construed in breadth and scope in accordance with the appended

claims.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
19

What is Claimed:
1. A method for managing communications between a virtual machine (120) and an
1/0 device (430), comprising:

constructing (602) a representation of configuration space for the I/O device
indicating actions that can be performed on the I/O device by the virtual machine for
memory locations within said configuration space;

constructing (603) a representation of memory mapped 1/0O space, wherein each
page of the memory mapped I/O space is mapped into said virtual machine or excluded
from said virtual machine; and

controlling access (604) to said I/O device in accordance with said representation
of configuration space and said representation of memory mapped 1/0 space.
2. The method according to claim 1, wherein said constructing a representation of
configuration space further comprises associating each bit within said representation of
configuration space with at least one read and write operation (605).
3. The method according to claim 1, wherein for any memory excluded from said
representation of configuration space or for any memory excluded from said
representation of memory mapped I/O space, populating said any memory with data
representative of said I/0 device (606).
4. The method according to claim 2, wherein said read and write operations (706)
comprise: read-only, always zero on read, always one on read, read-write, write of one
clears / write of zero leaves alone, write of one sets / write of zero leaves alone, write of
zero clears / write of one leaves alone, write of zero sets / write of one leaves alone, clear
to zero after first read, and set to one after first read.
5. The method according to claim 3, further comprising;:

defining bits within pages for the excluded memory (802); and

receiving intercepts and processing the intercepts using pages with the defined bits
(804).
6. The method according to claim 1, further comprising receiving information (806)
for constructing said maps, wherein said information is received in a file provided by a
vendor of said 1/O device, and wherein said constructing a representation of configuration
space and said constructing a representation of memory mapped 1/O space further

comprises constructing the representations in accordance with said information.

10

15

20

25

30

WO 2010/039887 PCT/US2009/059105
20

7. The method according to claim 6, further comprising:

constructing a representation of I/0 space (815);

populating said representation of I/O space based on said received information
(815); and

controlling access to said I/0O device in accordance with said representation of I/O
space (825).
8. The method according to claim 6, further comprising populating both said map of
configuration space and said map of memory mapped 1/O space based on the received
information (830).
9. The method according to claim 1, further comprising excluding I/O space from
said virtual machine (835).
10. A system adapted to managing communications between a virtual machine (120)
and a device (430), comprising:

at least one processor; and

at least one memory communicatively coupled to said at least one processor, the
memory having stored therein computer-executable instructions capable of:

receiving a description of the device, the description comprising information
regarding which operations on the device have system-wide effects and which have effects
that are local to the device (902);

creating a representation of the description (904); and

embedding said representation in an installation file for a driver for said device,
wherein the representation enables the construction of a map of configuration space for the
device and a map of memory mapped I/O space, wherein said map of configuration space
and said map of memory mapped I/O space may be used to access the device (906).
11. The system of claim 10 wherein each bit within said map of configuration space
comprises at least one of the following properties (908): read-only, always zero on read,
always one on read, read-write, write of one clears / write of zero leaves alone, write of
one sets / write of zero leaves alone, write of zero clears / write of one leaves alone, write
of zero sets / write of one leaves alone, clear to zero after first read, or set to one after first

read.

10

15

20

25

WO 2010/039887 PCT/US2009/059105
21

12. A computer readable storage medium (1000) storing thereon computer executable
instructions for controlling access to a PCI, PCI-X or PCI-Express device wherein the
device is communicatively coupled to a physical machine that hosts virtual machines,
comprising instructions for:

receiving an installation file for the device, wherein the installation file comprises
information regarding which operations on the device have system-wide effects and which
have effects that are local to the device (1010);

constructing at least one map of attributes for the device’s configuration space,
memory mapped 1/O space and I/O space, wherein each page or each bit associated with
the at least one map is mapped into said virtual machine and wherein a static page of bits
can be provided to a virtual machine as the state of the device (1012);

populating the at least one map based on said received installation file (1014); and

using the at least one map to manage access the device (1014).
13. The computer readable storage medium of claim 12 wherein each bit within said
map or page associated with the at least one map contains one of the following attributes
(1020): read-only, always zero on read, always one on read, read-write, write of one clears
/ write of zero leaves alone, write of one sets / write of zero leaves alone, write of zero
clears / write of one leaves alone, write of zero sets / write of one leaves alone, clear to
zero after first read, or sct to one after first read.
14. The computer readable storage medium of claim 12 wherein for any memory
excluded from said map of configuration space or for any memory excluded from said
map of memory mapped I/O space, populating said any memory with predetermined data.
15. The computer readable storage medium of claim 12, further comprising
instructions for:

defining bits within pages for the excluded memory; and

receiving intercepts and processing the intercepts using the pages with defined bits.

PCT/US2009/059105

WO 2010/039887

1/12

el "'Old

291 N Jossadsoud |esisAyd

0GT 9@JempieH

097 L 10Ssa%0.d |edishAyd

:

V1 JoAe Buizijenjup

ZPT J9Inpayds

% 27
N Jossado.id | 10SS8904d
[enyIA [enpIA
F4"
SO
}sanco)
%4

N Bulydep jenjiA

001

JUSWIUOIIAUT SUIYD. [eNLIIA

:

41 ol
N J0ssado.d | 10SS98904d
[enjIp [enpIA

SO
(iT4%
| SUIYOB [enMIA

WO 2010/039887

174

2/12

PCT/US2009/059105

Software Application

176

Guest Operating System

178

Guest Hardware Architecture
(Partition / Virtual Machine)

180

Virtualization Program

(Hypervisor / Virtual Machine Monitor)

182

Physical Hardware Architecture

FIG. 1b

PCT/US2009/059105

WO 2010/039887

3/12

06 aAuQq Addoi4

9€
suoljeol|ddy
T

0¥ pieogAsy]

CoJE o JUJE I

Ee)

25 NYM
\V 12

Wwapo

LG NV

€G 4/l #OMISN

17
d/1Hod |enss

A

2 9sSho|y

21 "OId

62 obelo)g a|geroway

J¢ sbold
BYl0

8¢ Eled

weJlbold

gz onuQ Addold .,

Eel——

_ /T ®AIQ pIeH

A

A

e d
/1 ®AuQ [eandO

£¢ 4/l g
31s1Q onsubely

ze 4/
aAuQ ¥sia pleH

8¢ v1vd
NYHO0dd

A

A

A

29

ao1ne(q abelo)s

€z sng walsAg

y

\ 4

L& SNVHO0Hd
d3HIO

9¢ SNVHO0Hd
NOILVYOIddV

Ly Joyuop

1

96 sng ISOS >

11

Jaydepy 1SOH

117

1e)depy ospIA

¥4

nun Buisseosold

0z Jamnawo)

G¢ SO

(4
AVYY)

9¢ SOId

(b2 NOY)
t44

ATOUWB WaISAS

WO 2010/039887 PCT/US2009/059105

4/12
208 210
' Partition A i ' Partition B
i 216 218 i i 220
| App A1 App A2 i | App B1
212 W ﬁ i 214 W
 GuestOSA 3 GuestOSB

Host Operating System

202 ﬁ

PHYSICAL COMPUTER HARDWARE

FIG. 2

€ Old

PCT/US2009/059105

FJHVMALGVYH d31LNdNOD TVOISAHA

- B

5/12

WO 2010/039887

C‘_Ou_w\nw JOJIUOIN auIyoe enul
Bunesado 1SOH HUOIN SUIYJEIN [ENIA
«¥0C % 702
i g S0 1sen9 | m V SO 1sen9 m
m ﬁ# ne i 2z |
| lgddy | | gvddy v ddy |
| 0zz | i 81z oz |
| g uoned e v Lonhied |
““““““““““““ 0Lz 802

PCT/US2009/059105

WO 2010/039887

6/12

oLy

0

0

1%

¥ 'Old

\\
om#k\

8o0IAe(Qg
10d

Jaysibay

omv\

(0) sng 10d

oor
Aowsy
|eoisAyd
- abpug [Dd-1SOH
047
sng wajsAg
10SS920.1d 10SS920.1d
0ZP

PCT/US2009/059105

WO 2010/039887

712

00S 9@oedg ssalppy

G 'Old

———0000000000000000 X0

g9 z Ajrewixolddy _>_<W_
g9 ¢ A@jewixoiddy
—— g9 ¥ Avrewxoiddy OININ 419 ¢
ANV
—OININ H9 -¥9HEIS NVY JO pul
OININ 39 ¥9

—d44d44444444444444X O

02G @oeds
SSaIppyY
NVY

oLg
aoedg ssalppy Ol

PCT/US2009/059105

WO 2010/039887

8/12

<

9 'Old

901A9p pauTwIRIRpaId © 01 Surpuodsarrod eiep s Arowdw Aue pres gunendod g

uone1ddo MM pue peds
quO 38BI[18 M d0eds uoneInIuod Jo uoneIudsdIdar pres uryim 31q yoed Suneroosse 09

!

dords (/1 paddews Arowow Jo uoneiudsaidar pres pue dords uoneindyuod
JO uonejuasa1dal pres yim dOUBPIOIOE UI OOIAIP (/] Pres 0} $s900€ Jur[jonuod F(9

ouryorw
[BNIIA PIES WOLJ PAPNOXS JO dUIyoeW [BniIA pres ojul paddews st ooeds /1 paddewr Arowow
oy3 3o 23ed yord uraroym “oords (/1 paddew A1owow Jo uonejudsaidar unonnsuod §09

1

QUIYORW [eniIIA 3y} £q 991Ap)/ AYp U0 pawioytod oq ueo jey
Suonoe 3unedIPUI AJTAIP ()/[Y} 10J 2ords uoneN3Fuod Jo uoneIudsAIdar v JunonIsuod 709

1els
009

PCT/US2009/059105

WO 2010/039887

9/12

L 'Old

peal
JSIIJ I9)Je
duo0 01 97/

pearisiy
I9)Je 0I9Z
01 Jed[0 $ 7L

JUOT® S9ARI]
JUO JO dLIMm
/ $19S 019z
JOAUM TZL

JUOTe SOARI]
JUO JO LM
/ STed]0 019Z
Jo M 0ZL

QUO[® SOABI]
010Z JO 9)LIM
/ S198 dUO

JO M BTZ

JUOTe SOABI]
019Z JO d)LIM
/ STe3d[0 duo
Jo MM 9T,

ALIM
-pealI L.

PBA1 UO U0
skeme Z71Z

PBAI UO 019Z
skemye 012

ATuo
pea130/L

S101ABYQ(Q 9s1Idwod suone1ddo 9juum pue pedr 9.

<

WO 2010/039887 PCT/US2009/059105

10/12

802 receiving intercepts and processing the intercepts using pages with defined bits

Y

804 receiving intercepts and processing the intercepts using pages with the defined bits

!

806 information may be received for constructing said maps, wherein said information is
received in a file provided by a vendor of said I/O device

v

808 the file is digitally signed by said vendor

Y

810 constructing the representations in accordance with said information

Y

813 managing is performed by a virtualizing layer.

!

814 constructing a representation of 1/O space

Y

815 populating said representation of 1/0 space based on said received information

)

825 controlling access to said 1/0O device in accordance with said representation of 1/0
space

v

830 populating both said map of configuration space and said map of memory mapped 1/
O space based on the received information

!

835 excluding 1/0 space from said virtual machine

FIG. 8

PCT/US2009/059105

WO 2010/039887

11/12

6 Old

ANI 9y Surudis A[ensip 7¢6

)}

ANI UE SI 9] uone|[eIsul 3y} OT6

\

JUOTe SOARJ] || SUOTEe SOARJ] || SUOTR SOARI] || SUOTR SOARI]
peal pear sy
- Io1E 0107 JUO JO)LIM || SUO JO)1IM || 0I9Z JO LM || OIOZ JO I)LIM LM peaIuo Juo || peaI uo 019z KTuo
Mqomo m| o ‘:W 01> T5F / $19S 019Z || / STBJd 0JZ / $19S U0 / $Jed[0 U0 -peAIgTH skempe 716 || sAemie 716 pPeaI 016
P BCOL [V OTO N 16 oy 1776 |[30 a1 76 || 30 o1am 575 || 30 omam 376

:sonddoxd Surmorog a3 Jo duo 3889] 18 sastdwod dords uoneIndiyuod Jo dew pres urym 31q yoed 306

i

JOTAJP A} $SA99® 0} Pasn oq Aewr doeds (/1 paddewr L1owow
Jo dew pres pue oords uoneindyuod Jo dew pres urRIOYM 9oeds /1 poddewr Arowdw Jo dews e pue 20149p oy 10§ 9oeds uoneindyyuod jo dew
© JO UONONISUOD AU} SA[QRUS UONRIUISAIAAI OU} UTOIOYM ‘QOTAJD PIES J0J JOALIP B JOJ O[If UONB[[BISUI UB UI UONRIUISaIdal pres SUIppaquid 906

»

uondrosap ay3 Jo uoneudsaidar e unedo 106

A

OOIADP 2U) 0} [BOO] AIE Jey) SIOIJQ JARY YOIYM PUB S)OJJ0
OPIM-WASAS ABY II1AP 2y} uo suonerddo yomym Jurpredar uonewaoyur Jursudwod uondriosop ayp “901A9p oy Jo uondriosdp v SUIA10021 706

Mels

06

PCT/US2009/059105

WO 2010/039887

12/12

0L "'Old

veol
sjdeatsju] Buissaosoud

pue Buinlaoay
1o} suononjsuj

(2

ccol
eje(q 991A8Q
yum Aiowsy Buneindod
10} suolonsu|

(2
=/

(

€col
Aoway papnjox3
Jo} sjig Buluyeq
1o} suononjsuj

9201
4ANI Buialeoay

o} suolonasu|

&
]
D

120l
ejeq
psuluugispaid YIM
fowspy Bunendod
1o} suolonsu|

\—/
i
(e

0001
wnipsy ajqepeay 193ndwon

(2)

020l
soaladoid
YN sig Bunerdossy
10} suononIsu|

ss900Yy abeuepy o) depy
Buisn Jo4 suoionsu|

Lol
sonquURY
jo depy Bunonssuon
Joj suolonisu|

vi0lL
depy buejndog
1o} suolonsu|

vioiL

)
\—/
(5)

e/

a

0L0L
9|4
uonejjelsu| Buinleosy
Joj suolonsu|

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings

