WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : WO 98/52153
GO6K 19/07 A2
19 November 1998 (19.11.98)

(11) International Publication Number:

(43) International Publication Date:

PCT/GB98/01411 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, F], GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent

(21) International Application Number:

(22) International Filing Date: 14 May 1998 (14.05.98)

(30) Priority Data:

60/046,514 15 May 1997 (15.05.97) UsS (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
60/046,543 15 May 1997 (15.05.97) uUs (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
09/075,975 11 May 1998 (11.05.98) Us (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).
(71) Applicant: MONDEX INTERNATIONAL LIMITED

[GB/GB]; 47-53 Cannon Street, London EC4M 5SQ (GB).
Published
Without international search report and to be republished
upon receipt of that report.

(72) Inventor: RICHARDS, Timothy, Philip; 32 Craig Mount,
Radlett, Herts WD7 7LW (GB).

(74) Agent: POTTER, Julian, Mark; D. Young & Co., 21 New Fetter
Lane, London EC4A 1DA (GB).

(54) Title: IC CARD WITH SHELL FEATURE

100 150 160 170 180
/ !
INPUT/
PROCESSING CONTROL TIMER SECURITY OUTRUT
UNIT LOGIC i
 [peinlnte sttt sl |
| | co-
: ROM EEPROM RAM : CROSRRSOR
| ! !
———————————————————— T - co—
*~110 190

(57) Abstract

There is provided an integrated circuit card having an associated operating mode. The integrated circuit card includes: a
microprocessor; a memory coupled to the microprocessor; data stored in the memory representative of the operating mode; an operating
system stored in the memory for processing selected information in a first IC card format; a shell application stored in the memory for
processing the selected information in a second IC card format; and means for routing the selected information to either the operating system
or the shell application responsive to the operating mode. The selected information may be a command, such as a file access command.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/52153 PCT/GB98/01411

IC CARD WITH SHELL FEATURE

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

BACKGROUND OF INVENTION

Integrated circuit (IC) cards are becoming increasingly used for many
different purposes in the world today, principally because they are ideal tools for
the delivery of distributed, secure information processing at a low cost. An IC
card, also called a “smart card,” is a card typically the size of a conventional credit
card, but which contains a computer chip on the card. The computer chip on the IC
card typically includes a microprocessor, read-only-memory (ROM), electrically
erasable programmable read-only-memory (EEPROM), a random access memory
(RAM), an input/output (I/O) mechanism, and other circuitry to support the
microprocessor in its operations. The computer chip can execute one or more
applications stored on the card. Examples of applications that IC cards are being
used to store and execute include credit/debit, electronic money/purse, telephone
calling card, and loyalty reward applications.

As the use and application of IC cards has increased, IC card
standards have been promulgated. For example, the International Organization for
Standardization (ISO) and the International Engineering Consortium (IEC) have
promulgated several industry-wide standards for IC cards, ISO/IEC 7816-1 through
ISO 7816-8. The ISO/IEC standards provide, for example, general guidelines for
file structures and referencing methods so that various applications and IC card
operating systems can understand one another and work in a cohesive manner.
Additionally, in the field of payment systems (such as credit and debit card
systems), the EMV ‘96 Integrated Circuit Card Specification for Payment Systems,
Version 3.0, June 30, 1996, available from MasterCard International Incorporated®,

2-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

specifies file structures and file referencing methods that are generally compliant
with ISO/IEC standards 7816-4 and 7816-57 Nonetheless, proprietary IC card
standards exist that are not compliant with ISO/IEC standards.

The existence of multiple IC card standards is problematic to the IC
card manufacturer, who is required to produce different versions of its IC cards,
with different operating systems that are compatible with the different standards.
Moreover, since operating systems are typically loaded into the ROM of an IC card
when it is initially produced, each time a standard is updated or a new standard is
adopted, an IC card manufacturer may be required to distribute new IC cards with
an updated operating system compatible with the new or updated standard.

It would advantageous to the card manufacturer, card issuer,
application provider, and card user if the operating system of an IC card was not
required to be updated each time a new or updated IC card standard was
promulgated. These and other technical problems are addressed by embodiments of
the present invention.

SUMMARY OF THE INVENTION

The present invention addresses the aforementioned technical
problems by introducing a “shell” application that executes “on top” of the
operating system and that handles the implementation of IC card standards that are
not compatible with the initially loaded operating system of the IC card.
Advantageously, the shell application supplements the IC card standards with which
the IC card is compatible. Thus, as standards change or new standards are adopted,
an IC card needs to be updated only with a new shell application, rather than

3-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

having to be updated with a new operating system.

According to a preferred embodiment of the present invention, there
is provided an integrated circuit card having an associated operating mode. The
integrated circuit card includes: a microprocessor; a memory coupled to the
microprocessor; data stored in the memory representative of the operating mode; an
operating system stored in the memory for processing selected information in a first
IC card format; a shell application stored in the memory for processing the selected
information in a second IC card format; and means for routing the selected
information to either the operating system or the shell application responsive to the
operating mode. The selected information may be a command, such as a file access
command. In addition, the selected information may be associated with a file
structure format,

In accordance with a further preferred embodiment of the present
invention, there is also provided a method of loading an application onto an IC
card, wherein the application has an associated file mode type and the IC card has
an associated operating mode. The method includes the steps of determining
whether the file mode type of the application is a predetermined file mode type, and
changing the operating mode of the IC card if the file mode type corresponds to the
predetermined file mode type. The predetermined file mode type is, for example, a
“shell” file mode type, and the operating mode of the IC card is, for example, either
“OS” or “shell.” Thus, when an application has an associated file mode type of
“shell,” the operating mode of the IC card is changed from “OS” to “shell.”

Preferably, a shell application is not loaded unless it is the first

4-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

application loaded. In this way, operability of the non-shell applications loaded
onto the IC card may be guaranteed. Thus, the method of loading an application
according to a further embodiment of the present invention preferably further
includes the steps of: determining whether any other applications have already been
loaded onto the IC card; loading the application onto the IC card if the file mode
type of the application corresponds to the predetermined file mode type and no
other applications have already been loaded onto the IC card; and changing the
operating mode of the IC card if the file mode type corresponds to the
predetermined file mode type and no other applications have already been loaded
onto the IC card.

In accordance with another preferred embodiment of the present
invention, there is also provided a method of routing a command by an operating
system of an IC card, wherein the IC card has an associated operating mode. The
method includes the steps of determining whether the operating mode of the IC card
is a predetermined operating mode; and routing the command directly to an
application if the operating mode of the IC card corresponds to the predetermined
operating mode. For example, assuming a SELECT FILE command is received by
an IC card from a terminal and the IC card has a shell application loaded thereon, if
the operating mode of the IC card and the predetermined operating mode are both
“shell,” the operating system would route the SELECT FILE command to the shell

application.

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

Preferably, the method of routing further includes the steps of: if the
operating mode of the IC card does not correspond to the predetermined operating
mode, determining whether the command is a select file command supported by the
operating system; and routing the command to an operating system routine
responsible for the select file command if the command is a select file command
supported by the operating system.

Preferably, the IC card further comprises a currently selected file
having an associated file type and the method of routing further comprises the steps
of: if the operating mode of the IC card does not correspond to the predetermined
operating mode, determining whether the file type of the currently selected file is
supported by the operating system; and routing the command to an operating system
routine responsible for the file type if the file type of the currently selected file is
supported by the operating system. If the file type of the currently selected file is
not supported by operating system, the method further comprises the step of routing
the command to an application.

In accordance with another preferred embodiment of the present
invention, there is also provided a method of delegating control between
applications by an operating system of an IC card, wherein the IC card is for use
with a defined IC card format and has an associated operating mode. The method
includes the steps of storing a shell application in the IC card for communicating
with the operating system and for processing information in a format compliant
with the defined IC card format; receiving a request by the operating system from a
first application for delegating control to a second application; determining whether

-6-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

the operating mode of the IC card is a predetermined operating mode; determining
whether the second application corresponds to the shell application; and failing the
request for delegating control if the operating mode of the IC card corresponds to
the predetermined operating mode and the second application corresponds to the
shell application.

In accordance with another preferred embodiment of the present
invention, there is also provided a method of initiating communication between an
IC card and a terminal, wherein the IC card comprises a microprocessor and a
memory, the memory having stored therein an operating system, a shell application,
and data representative of an operating mode of the IC card, the operating mode
representing whether selected information is to be routed to the operating system or
the shell application. The method of initiating includes the steps of receiving a
reset signal by the IC card from the terminal; and returning an answer-to-reset from
the IC card to the terminal based on the operating mode of the IC card.

Preferably, a plurality of answer-to-reset files are stored in the
memory of the IC card, and the step of returning an answer-to-reset comprises
selecting one of the answer-to-reset files based on the operating mode. The selected
information may be a command, such as a file access command. In addition, the

selected information may be associated with a file structure format.

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY8/01411

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments in accordance with the invention will now be
described by way of example only, with reference to the accompanying drawings, in
which:

Fig. 1 is a schematic representation of an IC card in accordance with
a preferred embodiment of the present invention;

Fig. 2 is a perspective view of an IC card and terminal in accordance
with a preferred embodiment of the present invention;

Fig. 3 is a functional block diagram of an IC card in accordance with
a preferred embodiment of the present invention;

Fig. 4 is an exemplary hierarchical file structure according to the
EMYV Specification;

Figs. 5A and 5B are flowcharts illustrating the steps for a load_file
command used in accordance with a preferred embodiment of the present invention;

Fig. 6 is a flowchart illustrating the steps for a delete_file command
used in accordance with a preferred embodiment of the present invention;

Fig. 7 is a flowchart illustrating the steps for a route command used
in accordance with a preferred embodiment of the present invention;

Fig. 8 is a flowchart illustrating the steps for a delegate request
command used in accordance with a preferred embodiment of the present invention;
and

Fig. 9 is a flowchart illustrating the steps for a
determine_ ATR_status command used in accordance with a preferred embodiment

-8-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 provides a schematic representation of a typical IC card 10
that can be used with the presently claimed invention. The IC card 10 includes an
integrated circuit 12 and one or more electrical contacts 14, connected to the
integrated circuit 12, for communication between the integrated circuit 12 and
devices outside the IC card 10.

Fig. 2 shows an example of a device with which the IC card 10
communicates. As used in this specification and the appended claims, the term
“terminal” shall be used to generically describe devices with which an IC card may
communicate. A typical terminal 20, as shown in Fig. 2, includes a card reader 22,
a keypad 24, and a display 26. The keypad 24 and the display 26 allow a user of
the IC card 10 to interact with the terminal. The keypad 24 allows the user to
select a transaction, to enter a personal identification number (“PIN™), and to enter
transactional information. The display 26 allows the user to receive informational
messages and prompts for data entry. Other types of terminals may include IC card
compatible ATM machines and telephones.

Fig. 3 provides a functional block diagram of the integrated circuit
12. At a minimum, the integrated circuit 12 includes a processing unit 100 and a
memory unit 110. Preferably, the integrated circuit 12 also includes control logic
150, a timer 160, security circuitry 170, input/output ports 180, and a co-processor
190. The control logic 150 provides, in conjunction with the processing unit 100,
the control necessary to handle communications between the memory unit 110 and

9.

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

input/output ports 180. The timer 160 provides a timing reference signal for the
processing unit 100 and the control logic ISQ. The security circuitry 170 preferably
provides fusible links that connect the input/output ports 180 to internal circuitry for
testing during manufacturing. The fusible links are burned after completion of
testing to limit later access to sensitive circuit areas. The co-processor 190 provides
the ability to perform complex computations in real time, such as those required by
cryptographic algorithms.

The memory unit 110 may include different types of memory, such
as volatile and non-volatile memory and read-only and programmable memory. For
example, as shown in Fig. 3, the memory unit 110 may include read-only memory
(ROM), electrically erasable programmable read-only memory (EEPROM), and
random-access memory (RAM).

The memory unit 110 stores IC card data such as secret
cryptographic keys and a user PIN. The secret cryptographic keys may be any type
of well-known cryptographic keys, such as the private keys of public-key pairs.
Preferably, the secret cryptographic keys are stored in a secure area of ROM or
EEPROM that is either not accessible or has very limited accessibility from outside
the IC card.

The memory unit 110 also stores the operating system of the IC card.
The operating system loads and executes IC card applications and provides file
management and other basic card services to the IC card applications. Preferably,
the operating system is stored in ROM.

In addition to the basic services provided by the operating system,

-10-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY98/01411

10

15

20

the memory unit 110 may also include one or more IC card applications. For
example, if the IC card is to be used as an electronic cash card, an application
called MONDEX™ PURSE might be included on the IC card, which loads an
electronic value of a certain currency from a user’s account in a financial
institution onto the IC card. An application méy include both program and data
files, which may be stored in either ROM or EEPROM.

To enable the inter-operability of different terminals with different IC
cards and applications, standards have been promulgated with respect to the
organization of files stored on an IC card. For example, in the payment systems
industry, the EMV ‘96 Integrated Circuit Card Specification for Payment Systems,
Version 3.0, June 30, 1996, available from MasterCard International Incorporated®
(hereinafter the “EMV Specification”), incorporated herein by reference in its
entirety, sets forth a hierarchical tree structure for accessing files, which is generally
compliant with the ISO/IEC 7816-4 and 7816-5 standards. An illustrative example
of such a hierarchical tree structure is provided in Fig. 4.

In Fig. 4, there are shown four types of file categories: the Directory
Definition File (DDF), the Directory File (DIR), the Application Definition File
(ADF), and the Application Elementary File (AEF). According to the EMV
Specification, each DDF contains one DIR. Each DIR may contain one or more
ADF and/or DDF. Each ADF contains one or more AEF, which are files
containing data related to a particular application.

According to the EMV Specification, files are referenced either by a
unique name or by a short file identifier (SFI). A DDF or ADF is referenced by its

-11-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

unique name using a SELECT command. Once a particular DDF or ADF is
selected, a corresponding DIR or AEF is referenced with an SFI using a READ
RECORD command. In the case of a DIR, the SFI is in the range of 1 to 10. In
the case of an AEF, the SFI is in the range 1 to 30. The EMV Specification sets
forth at least one mandatory DDF with a unique name of “1PAY.SYS.DDF01.”

The format for a SELECT command for selecting a DDF or ADF
according to the EMV Specification is shown in Table 1. In response to a SELECT
command for a DDF, an IC card returns the SFI of the DIR attached to the DDF.
When an ADF is selected, an IC card returns information that the terminal may use,
in conjunction with other commands, to retrieve the SFI of AEFs related to the
ADF.

Once the SFI of a DIR or AEF is known, a terminal may use the
READ RECORD command to read the records of the DIR or AEF. The format of

the READ RECORD command according to the EMV Specification is shown in

Table 2.

-12-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

TABLE 1: SELECT Command Format

Byte Number Value
1 Hexadecimal “00”
5 |2 Hexadecimal “A4”
3 Hexadecimal “04”
4 Hexadecimal “00”
5 Length of File Name (Hexadecimal “05”
- “10”)
6-21 File Name (number of bytes variable
depending on length of file name)
10 | Last Hexadecimal “00”
TABLE 2: READ RECORD Command Format
Byte Number Value
15 1 Hexadecimal “00”
2 Hexadecimal “B2”
3 Record Number
4 SFI
5 Hexadecimal “00”
20

Although the EMV Specification sets a standard for file organization

within the payment systems industry, other IC card file organization standards may

-13-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

exist in other industries. Some may be proprietary and may not be generally
compatible with the EMV Specification or ISO/IEC 7816-4 or 7816-5.

Typically, an IC manufacturer who desires to produce IC cards
compatible with the EMV Specification and other proprietary specifications must
produce IC cards with different operating systems to implement the different file
structures and different file referencing and access methods defined by the various
specifications. According to embodiments of the presently claimed invention,
however, a manufacturer may produce an IC card with a single operating system
and execute different shell applications to implement the different standards.

Figs. 5A to 9 are flowcharts illustrating a preferred embodiment of
IC card operating system routines capable of supporting a shell application. In the
embodiment of Figs. 5A to 9, the operating system is a multiple application
operating system that runs on IC cards, such as the MULTOS™ operating system
from Mondex International Limited. Such an operating system includes routines for
loading and deleting applications, routines for routing commands to appropriate
operating system processes or applications, routines for handling delegation of
processing between applications, and routines for handling the answer-to-reset
(ATR) message.

In the embodiment of Figs. SA to 9, only one shell application can
be loaded onto an IC card at any one time. Once the shell application is loaded, it
is valid for all applications loaded on the IC card. Preferably, the operating system
has a delegation feature, such as the delegation feature described in the United
States patent application entitled “Multi-Application IC Card with Delegation

-14-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

Feature,” by Everett et al., filed April 23, 1998, which is hereby incorporated by
reference to Annex A attached hereto. When the shell application receives a
command from the operating system, it interprets the command and/or delegates
control to the application associated with the command. If control is delegated to
an application, when the application is finished, it returns control to the shell
application. The shell application then returns any response to the operating system
in the proper format for transmission to the terminal.

Although for the sake of simplicity the preferred embodiment loads
only a single shell application at a time, the present invention is not limited to such
an embodiment. It is within the scope of embodiments of the present invention for
multiple shell applications to be loaded onto an IC card and to be used with
different sets of applications.

As a matter of notation, the data elements referred to in the
flowcharts of Figs. SA to 9 follow a dot notation convention where the data element
following the dot (“.”) is a component of the data element preceding the dot. For
example, the data element file_mode includes two components: file_mode_type and
application_id. In the dot notation used, the first component data element is
referred to as file_mode.file_mode_type and the second component data element is
referred to as file_mode.application _id.

Figs. 5A and 5B are flowcharts illustrating the implementation of a
file loading routine by an operating system capable of supporting a shell

application. In step 510, the routine receives the file loading command

-15-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

load_file_command from the security manager of the operating system,
OS_Security_Manager. In step 520, after receiving the command, the routine
checks whether the application identification number associated with the command,
load_file_command.application_id, is present in the operating system control
information, os_control_info.application_id. 1f the application identification number
is already present, in step 521, the routine sets the response status
load_file_response.status to “failed” and sets the error description
load_file_response.error_cause to “duplicate application id.” This error response
indicates that the application is already loaded and cannot be loaded again. The
error response load_file_response is then returned to the OS Security Manager.

If the application identification number of the application to be
loaded is not present, in step 530, the routine checks the file mode type of
load_file_command. The file mode type may be, for example, “shell” or “non-
shell.” A “shell” file mode type indicates that the application to be loaded is a shell
application, while a “non-shell” file mode type indicates that the application to be
loaded is not a shell application.

If the application to be loaded is a shell application, the routine
further checks whether os_control_info is empty. If os_control_info is not empty,
then one or more applications have already been loaded onto the IC card. If this is
the case, in step 531, the routine sets the response status Joad file_response.status to
“failed” and sets the error description load_file_response. error_cause to “application

already loaded.” This error response is a result of the restriction that the shell

-16-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

PCT/GB98/01411

application is to be valid for all applications loaded onto the IC card. To ensure
that all applications will operate correctly with the shell application, the shell
application must be the first application loaded onto the IC card.

Assuming that an error condition has not been triggered in steps 520
and 530, the directory file and os_control_info are updated with the appropriate
application information in steps 540 and 550.

With reference to Fig. 5B, in step 560, the file mode type of
load_file command is checked once again. If the file mode type is “shell,” then in

step 570, the file_mode and the selected file data elements are updated. The

10 file_mode data element contains both the file_mode_type of the IC card and the

15

20

application_id of the shell application. The file_mode.file_mode_ type variable
represents the operating mode of the IC card and, thus, may also be referred to as
the “operating mode.” The operating mode of the IC card may be, for example,
either “OS” or “shell.” “OS” mode indicates that a shell is not loaded, while
“shell” mode indicates that a shell is loaded. The selected file data element
contains the application_id and the file_type of the currently selected file.

In step 570, file_mode.file_mode type is set to “shell.” The
file_mode.file_mode_type represents the operating mode of the IC card and, thus, is
also referred to as the “operating mode.” In addition, the application identification
number of the currently selected file is set to the application identification number
of the shell application. The file_type of the selected file is set to “dedicated file,”

indicating that file commands are not to be handled by the operating system.

-17-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

In step 580, the response status load file response.status is set to
“success” and is returned to the OS Security Manager.

Fig. 6 is a flowchart illustrating the implementation of a file deleting
routine by an operating system capable of supporting a shell application. In step

5 610, a delete_file_command is received from the OS Security Manager. In step
620, checking is performed to verify that the application being deleted exists in
os_control_info ____ i.e., that the application is loaded on the IC card. If the
application identification number is not in os_control_info, then in step 670, the
response status delete_file response.status is set to “failed” and the error description

10 delete_file response.error_cause is set to “application not loaded.”

If the application is loaded on the IC card, in step 630 checking is
performed to determine whether the file mode type of the application being deleted,
delete_file_command.file_mode_type, is equal to “shell.” Checking is also
performed to determine whether the application identification number of the

15 application being deleted, delete file command.application_id, is equal to the
application identification number assigned to the file mode of the IC card,
file_mode.application_id. In short, checking is performed to determine whether a
loaded shell application is being deleted.

If a loaded shell application is being deleted, in step 680,

20 file_mode file_mode_type is set to “OS” and selected file.file type is set to the

default file type for the IC card, i.e., “master file.”

In step 640, the directory file record corresponding to the application

-18-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

is deleted from the directory in which it is stored. In step 650, the application
identification number of the application is deleted from os_control_info. In step
660, delete_file_response.status is set to “success” and the response status is
returned to the OS Security Manager.
5 Fig. 7 is a flowchart illustrating the implementation of a command

routing routine by an operating system capable of supporting a shell application. In
step 710, the route routine receives a command from the cardholder ___ i.e., a
command from outside of the IC card. In step 720, checking is performed to
determine the operating mode of the IC card. If file_mode.file_mode_type is not

10 equal to “OS,” a shell application has been loaded onto the IC card. Thus, the
command from the cardholder is sent directly to the currently selected application
or applications. In the typical case, the currently selected application will be the
shell application. It may be the case, however, that the shell application has
delegated control to another application and that that application receives and

15 processes the command directly.

If the operating mode of the IC card is equal to “OS,” the various

conditions defined in steps 730 to 750 are checked. In step 730, if the command is
a select_file command, the command is sent to the select file routine of the
operating system. In step 740, if the file type of the currently selected file is

20 “master file,” the command is sent to the provide_card_facilities routine of the

operating system, which handles commands associated with the master file type.

Similarly, in step 750, if the file type is “directory file,” the command is sent to the

-19-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB9Y8/01411

10

15

20

read_card-level_data_files routine of the operating system, which handles
commands associated with the directory file type. If none of the conditions in steps
730 to 750 are satisfied, then the selected file must be an application. Therefore,
the command is sent to the currently selected applications.

Fig. 8 is a flowchart illustrating a delegate request checking routine
that is necessary if an operating system supports both a shell application and a
delegate feature. In step 810, a delegate_request is received from an application.
In step 820, checking is performed to determine whether the operating mode of the
IC card is “shell” and whether the application identification number of the delegated
application (the application to which control is being sought to be transferred) is the
same as the application identification of the shell application of the IC card. If both
conditions are true, then an application is attempting to delegate control to the shell
application. Since the shell application is the first application loaded and selected,
and thus delegates control to all other applications, such a delegation would be
recursive. Recursive delegation is not allowed. In step 830, therefore,
delegate_response.status is set to “failed” and delegate response.error cause is set
to “recursive shell delegation.” The delegate response is returned to the delegator
applications. In step 820, if it is determined that the delegator application has
submitted a proper, non-recursive delegate request, the request is processed in
accordance with the operating system's delegate handling procedures.

When an IC card is inserted into a terminal, it receives a reset signal.

To initiate communication with the terminal, the IC card must respond to the reset

20-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

signal with an appropriate answer-to-reset (ATR) message. Fig. 9 is a flowchart
illustrating an ATR routine for an IC card operating system that supports a shell
application.

In step 910, the operating mode of the IC card is checked. If the

5 file_mode.file_mode_type is equal to “OS,” in step 920, the file type of selected file

10

15

20

is set to the default “master file” and s ATR_status is set to “default ATR.”
Otherwise, if the operating mode of the IC card is “shell,” in step 930, the file type
and application identification number of the selected file are set to “dedicated file”
and file_mode.application_id, respectively. s ATR status is set to “shell ATR.” In
both cases, s_ATR_status is returned to the control ATR routine of the operating
system. Using s ATR_status, the control ATR routine responds with the
appropriate ATR to the reset signal from the terminal. The appropriate ATR may
be stored in different files on the IC card, which are selected based on

s ATR status.

Although the present invention has been described with reference to
certain preferred embodiments, various modifications, alterations, and substitutions
will be known or obvious to those skilled in the art without departing from the
spirit and scope of the invention, as defined by the appended claims.

The scope of the present disclosure includes any novel feature or
combination of features disclosed therein either explicitly or implicitly or any
generalisation thereof irrespective of whether or not it relates to the claimed

invention or mitigates any or all of the problems addressed by the present invention.

21-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

The application hereby gives notice that new claims may be formulated to such
features during the prosecution of this applic;ation or of any such further application
derived therefrom. In particular, with reference to the appended claims, features
from dependant claims may be combined with those of the independent claims in

5 any appropriate manner and not merely in the specific combinations enumerated in

the claims.

20

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

PCT/GB98/01411

MR A TOTHE DRSCRITION

ANNEX A

MULTI-APPLICATION IC CARD WITH DELEGATION FEATURE

-23-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ARNER A TOTHE BESCRIPTIOH

BACKGROUND OF INVENTION

Integrated circuit (“IC”) cards are becoming increasingly used for
many different purposes in the world today. An IC card (also called a smart card)
typically is the size of a conventional credit card which contains a computer chip
including a microprocessor, read-only-memory (ROM), electrically erasable
programmable read-only-memory (EEPROM), a random access memory (RAM), an
Input/Output (I/0) mechanism and other circuitry to support the microprocessor in
its operations. An IC card may contain a single application or may contain multiple
independent applications in its memory. MULTOS™ is a multiple application
operating system which runs on IC cards, among other platforms, and allows
multiple applications to be executed on the card itself. The multiple application
operating system present on the IC card allows a card user to run many programs
stored in the card (for example, credit/debit, electronic money/purse and/or loyalty
applications) irrespective of the type of terminal (i.e., ATM, telephone and/or POS)
in which the card is inserted for use.

A conventional single application IC card, such as a telephone card
or an electronic cash card, is loaded with a single application card and only
executes that one application when inserted into a terminal. For example, a
telephone card could only be used to charge a telephone call and could not be used
as a credit/debit card. If a card user desires a variety of application functions to be
performed by single application IC cards issued to him or her, such as both an

electronic purse and a credit/debit function, the card user would be required to carry

24-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ANEX A T0 THE DESCRTION

multiple physical cards on his or her person, which would be quite cumbersome and

inconvenient. If an application developer or card user desired two different
applications to interact or exchange data with each other, such as a purse
application interacting with a frequent flyer loyalty application, the card user would
be forced to swap multiple cards in and out of the card-receiving terminal during
the transaction, making the transaction difficult, lengthy and inconvenient.
Therefore, it is beneficial to store multiple applications on the same
IC card. For example, a card user may have both a purse application and a
credit/debit application on the same card so that the user could select which type of
payment (by electronic cash or credit card) to use to make a purchase. Multiple
applications could be provided to an IC card if sufficient memory exists and an
operating system capable of supporting multiple applications is present on the card.
The increased flexibility and power of storing multiple applications
on a single card create new challenges to be overcome concerning the integrity and
security of the information (including application code and associated data)
exchanged between the individual card and the application provider as well as
within the entire system when communicating information between applications.
For instance, the existence of multiple applications on the same card
allows for the exchange of data between two applications, while one of the
applications is being executed. As stated above, a frequent flyer loyalty program
may need to be accessed during the execution of an electronic purse application. If
data is passed between applications in an insecure manner, it may be possible for a
third party monitoring the transaction to determine the contents of the transferred

25-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

INEE A TTE TN

data or even other private data associated with one or both of the applications.

Thus, it would be beneficial to provide an application architecture and memory
organization which protects an application’s data from being discovered by a third
party when it is exchanged with other applications present on the IC card.

Accordingly, it is an object of the invention to provide an application
architecture and memory organization which provides for a secure data interaction
between applications and allows multiple applications to be accessed while

performing a desired task or function.

SUMMARY OF THE INVENTION

The present invention provides for a multiple application architecture
for an IC card called an application abstract machine (AAM) and a method for
implementing that architecture. The processing of multiple applications is
accomplished by generating for at least one application (the “first application”) a
data memory space including at least two segments, a volatile memory segment and
a non-volatile memory segment, commencing the execution of the first
application’s instructions; delegating or switching execution from the first
application to the delegated application and in so doing, saving any data generated
by the first application in the logical data memory space associated with the first
application; executing the second application’s instructions; retrieving the saved

data and completing with this data the execution of the first application’s

instructions.

26-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ANREX A TOTHE DESCRIPTION

Additional delegation commands can be issued by the second

application or other subsequent applications. The command delegated is interpreted
by a delegated application in the same manner as a selection command being issued
directly by a terminal and therefore each application performs the security functions
at the same level as if a terminal is issuing the command.
The volatile memory segment can further be separated into public

(“Public”) and dynamic (“Dynamic”) portions. Data can be exchanged between a
plurality of applications and/or a terminal when stored in the Public region of the
data memory. The Dynamic memory region can be used solely as temporary work

space for the specific application being executed.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention will become
apparent from the following detailed description taken in conjunction with the
accompanying figures showing illustrative embodiments of the invention, in which

Fig. 1 is block diagram illustrating the data memory space segment
and associated registers for an IC card application using the AAM organization;

Fig. 2 is a block diagram illustrating the code memory and the data
memory spaces for an IC card application using the AAM architecture;

Fig. 3 is a flow diagram illustrating the steps of performing a request
for a delegation function by one application to another;

Fig. 4 is a flow diagram illustrating the steps of performing a return

27

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

AREL A TOTHT RECRIPTION

delegation control function for a delegate application to a delegator application;

Fig. 5 is a flow diagram illustrating the steps of performing an
inquire delegator ID request of a delegation function;

Fig. 6 is a block diagram of an IC card chip which can be used as a
platform in accordance with the invention; and

Figures 7A, 7B and 7C illustrate multiple delegation calls made
between three applications.

Throughout the figures, the same reference numerals and characters,
unless otherwise stated, are used to denote like features, elements, components or
portions of the illustrated embodiments. Moreover, while the subject invention will
now be described in detail with reference to the figures, it is done so in connection
with the illustrative embodiments. It is intended that changes and modifications can
be made to the described embodiments without departing from the true scope and

spirit of the subject invention as defined by the appended claims.

-28-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ARER A TOTHE DESCRIFTION

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides for a method and apparatus for
processing multiple application programs with associated data stored on an IC card
which can be accessed and executed. An application stored on the card can be
selected by a terminal, or other interface device, or another application. Each
application program which is stored on the IC card when executed is allocated a
memory space organized by the program’s software code (instructions which are
executed by a processor located on the IC card) and the associated data which the
application stores and uses during execution of the program.

For example, a multi-application card may store a purse application,
or an electronic money application, and a specific loyalty application such as a
frequent flyer awards application. Each application has software code and
associated data to support the execution of that software code. Each application is
allocated a memory space when executed. In this example, there is interaction
between the two applications stored on the card. For each dollar electronically
spent to make a purchase, the user may be entitled to one frequent flyer mile which
is stored and processed by the frequent flyer program. The purse application need
not be aware of the specific loyalty program stored on the card, but instead may
contain an instruction to communicate with any loyalty program stored on the card.
The loyalty program will require input data representative of the amount of a
particular electronic value so that it can update its own stored data of current

frequent flyer miles for the user of the card.

29-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ANNEK A 10 THE DESCRIPTION

When two applications need to communicate during the same

transaction, a system architecture is required to process both applications in an
efficient and secure manner. One approach could be a windows type model where
both applications could be running at the same time. Presently, however, IC card
platforms are not powerful enough to simultaneously operate multiple programs
efficiently. Also, transferred data may be exposed to unwanted third party access.
The solution to this problem, provided by the current invention, which is described
in greater detail below, is to selectively interrupt the execution of applications in a
secure manner. This allows the integrity of the applications’ data to be maintained
and allows the best utilization of the available memory space in the IC card.

An efficient architecture for processing multi applications in an IC
card is termed an Application Abstract Machine (AAM) architecture and is
described herein. The AAM Architecture applies to any platform independent of its
hardware and enables developers to write applications to store on the IC cards
which are portable across many different types of platforms (e.g., IC cards built by
different manufacturers with different processor configurations) without the need for
knowledge about the specific hardware of the platform.

An application abstract machine (AAM), a term for the memory
allocation and organization for the data stored and used by each application, is
created for each application stored on the IC card which is executed by the
processor on the card. In order to ensure data integrity and security when data is
transferred between applications which are executed on the IC card, only one
application on the IC card is allowed to be executed at a time. Each application has

-30-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY98/01411

10

15

20

ANNEK R TOTHE DESCRIPTION

a data memory space which is virtually allocated and mapped onto the physical

memory addresses available in the IC card memories. Data is then passed between
two or more applications within a specified memory location and in a manner
consistent with transferring data to an external terminal or device with which the IC
card is securely interacting. At a general level, each AAM space created for each
application being executed includes two separate address spaces, one for the
program code itself and one for the program data which is stored and/or used by the
application. The program data address space is effectively divided into three
segments: a Static segment, a Dynamic segment and a Public segment which are
described in more detail in conjunction with Figure 1. As stated above, the Static,
Dynamic and Public segments are logically mapped to the physical memory; they
are virtual memory segments as opposed to physical memory segments. The AAM
data address space is preferably addressed and processed using seven different
address registers and two control registers.

Figure 1 shows an illustrative diagram of a logical data space
allocation 101 created for an application used in conjunction with the present
invention. The AAM data portion 101 includes a Static data space 103, a Public
data space 105 and a Dynamic data space 107. Also shown are a series of address
registers: the Static base address register 109, the Static top address register 111,
the Public base address register 113, the Public top address register 115, the
Dynamic base address register 117, the Dynamic top address register 121 and local
base address register 119 which serves as a local stack frame pointer in the
Dynamic data space when the application is being executed. The address registers

31-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

A e

1

can contain physical memory addresses but preferably contain offset addresses for
the various data address spaces in order to be hardware independent. An example
of the overall address space is 64K bytes, although the size varies with the
applicable platform and the available memory size. The registers can also be

5 considered pointers or can be any other conventional addressing mechanism.

Within the allocated AAM data space 101, the Static portion of the
memory is non-volatile which is not erased after power is removed from the IC
card (such as EEPROM), the Dynamic space is volatile (such as RAM) which may
be erased after power is removed from the card and the Public space is also volatile

10 (such as RAM). An IC card can receive power from a terminal after it is interfaced
into the terminal. Although an IC card may contain a battery to maintain some
power for memory and circuitry, volatile memory will typically be erased after the
IC card is removed from its power source.

The defined AAM data space has bytes in each segment which are

15 contiguous, so that applications can perform pointer and offset arithmetic. For
example, if the segment addresses “1515” and “1516,” or any other pair of
sequential numbers, are both valid and are present within the same segment, then
they address adjacent bytes. This allows offset values stored in registers to
determine the location of a desired memory address. The segment address of the

20 first byte of the Static segment is zero, so that the segment address of a given
location within the Static region is equal to its offset.

Pointers to other specific regions of the Static data area can be stored
in the Static data because the Static region is non-volatile. For example, if the card

-32-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ANBEK A TOTHEBESCRIFTION

user’s name is stored in the Static memory of a credit/debit application, the

application will know the card user’s name will always be stored in the 5" memory
location above the starting point for the Static portion of memory. The location can
be noted as SB[5] or the 5" byte above the Static Bottom. Since the Static memory
is non-volatile, it will not be erased after each transaction and the application will
always know of its location relative to the Static segments’ address registers.

On the other hand, the segment address of any location in the
Dynamic or Public segments is not always equal to a particular offset from the
beginning of the respective segment because the contents of those segments change
for each operation. The fourth location in the Dynamic segment will be different
for each operation performed by the application. The address of a memory location
of Dynamic or Public segment is fixed preferably only for the duration of one
command-response pair operation. Because segment addresses in Dynamic or
Public are not fixed, MULTOS Executable Language (MEL)™ instructions (or any
other program instructions) cannot refer to data using only segment addresses.
Instead, a tagged address preferably is used to identify data which is to be retrieved,
manipulated, transferred and/or stored with the IC card system.

A tagged address is a nineteen bit value consisting of a three bit tag
(address register number) and a sixteen bit offset. Each of the seven address
registers for the AAM data space contain a segment physical address. For instance,
the address registers SB 109 and ST 111 point to the boundaries of the Static, the
address registers PB 113 and PT 115 point to the boundaries of the Public and the
address registers DB 117 and DT 121 point to the boundaries of the Dynamic. For

-33-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

A T SCETON

each segment, the top register points to the byte immediately after the last valid

byte. For example, the last valid byte of the Static is ST[-1]. Register LB
functions as a stack frame pointer. It points to a location in the Dynamic segment
to indicate a specific byte of local data for the currently executing application.

Referring to Figure I, the allocated Static segment 103 contains the
application’s non-volatile data. Static data includes data which is associated with
each application for every transaction such as the card user’s name, account
number, PIN value and address. Static data also includes variable data which is
stored for use in future transactions using the application. For example, in a purse
transaction, the electronic value data would be read from the Static segment and
later saved in the Static segment at the end of the transaction. Additionally,
transaction information data or available credit limits in the case of a credit/debit
application would be stored in Static data.

The Static data is addressed using register SB (Static Base) and the
register ST (Static Top) as offset registers. These registers contain the offset value
from a physical address in a memory on the IC card. The individual memory
location is then further offset from these starting points such as SB[3] or ST[-5].
SB is defined as zero and ST is equal to the size of the application’s Static data
which is set when the application is loaded onto the IC card. The multiple
application operating system ensures that no other application can read or write the
data stored in the Static segment of a particular application. Using current
technology, the Static segment is preferably mapped onto an EEPROM (Electrically
Erasable Programmable Read-Only Memory) which is non-volatile.

-34-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ARNER A T THE DESCRIPTION

The Dynamic segment 107 contains the application’s volatile or

temporary data. Dynamic data includes data which is temporarily used during the
execution of an application such as intermediate values used in calculations or
working variables. For example, a purse application may temporarily store the
value of a transaction in order to reduce the amount of the value in the purse. The
temporary data is used much like conventional computer programs use RAM to
perform their assigned operations. The Dynamic segment preferably is divided into
two parts, the session data portion and the stack data portion. The size of the
session data is a constant for each application and is determined when the
application is loaded. The stack holds variable data which is unique to the
particular transaction being executed. The stack data portion stores data in a last-in-
first-out manner. The stack is initially empty, but expands and contracts during
execution of the application.

The Dynamic data is addressed from the register DB 117 to register
DT 121. Register LB 119 serves as a local stack frame pointer to particular
memory locations in the Dynamic segment for delegate commands or function calls.
Register LB 119 is used to address the topmost frame, that of the currently
executing function’s session data. Register DT 121 serves as an address offset for
the stack pointer. A one byte data item at the top of the stack is addressed as DT[-
1], the next byte below is addressed by DT[-2], and so on. A push operation
increments the relative value of DT for each item on the stack and a pop operation
decrements the relative value of DT for each item on the stack. For example, a
data element located at DT[-5] will be located at DT[-6] after an additional data

-35-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ANREX A TO THE DESCRIPTION

item is placed on the stack.

When an application is being executed, the Dynamic segment created
for that application also contains the application’s session data which is used in
performing the assigned task(s) or operation(s). The multiple application operating
system ensures that no other application can read or write the data stored in the
Dynamic segment of a particular application. The session data is set to zero upon
the start of the execution of the application. Stack data will be saved in the stack if
the application delegates a task or operation to another application.

A delegation function occurs when one application selects another
application to process a command instead of processing the command itself. An
example of a delegation function occurs when a delegator application receives a
command that it does not recognize or is not programmed to process. The selected
application should not reject the command and provide an error response to the
interface device (IFD), but instead should pass the command to the appropriate
receiver, or delegated application. In order to perform a delegation, the delegator
calls the Delegate primitive. The Delegate primitive is a subroutine recognized by
the multiple application operating system which is executed when the operating
system interprets the Delegate instruction. Primitives can be stored as part of the
operating system itself, loaded as a separate routine when the operating system is
installed. Primitives are preferably written in machine executable language so that
they can be executed quickly although they could be written in a higher level
language. When a Delegate command is executed, execution of the delegating
application is suspended, and the delegated application is executed instead. The

-36-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

BAEL A TOTHE HSCRITION

delegated application then generates its own data memory space according to the

AAM architecture. The data stored in the Public memory space of the first
application (stored in RAM) is sent to the Public memory space of the second
application (which could be physically the same memory but is allocated separately
for each application) so that data can be passed between the applications. The
Dynamic memory space is also shared although data is saved in a stack for the
delegator and the other portions initialized before the delegated application is
executed because the Dynamic data is secret.

In most cases, the delegated application processes the command
exactly as though the command has arrived directly from an interface device.
When the delegated application has finished processing the command, and has
written a response into the allocated Public memory segment, it exits as normal.
The delegator then resumes execution at the instruction address following the
executed instruction which called the Delegate primitive. The response generated
by the delegated application is retrieved or accessed from the allocated Public
memory space. The delegator application may simply exit in turn, thus sending the
response to the IFD, or may carry out further processing before exiting.

Another example of a delegation operation occurs when two
applications need to share data. If an application A always returns a data item N
when processing a command B, then another application which also returns data
item N in response to a command can delegate the function B to application A in
order to reduce the need for duplicate codes stored on the IC card. For example, if
a PIN needs to be checked before an application is executed, an application stored

-37-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

AtED AT TRE BESCRIFTION

on the card can delegate the “retrieve PIN function” to a PIN application which

returns a stored universal PIN for the card.

Preferably, a new session begins whenever the IFD, e.g. a terminal,
successfully selects an application, even if the application has been previously
selected during the transaction. For example, if a card user goes to a terminal and
transfers twenty dollars of electronic cash using a purse application, charges thirty
dollars using a credit/debit application and then transfers ten dollars using the purse
application again, three separate sessions will have occurred even though only two
applications were used during the entire transaction. Each time an application
delegates a task or function to another application, the delegated application treats
the delegate function as if the IFD devices had selected the application to perform
the task or function. However, performing a delegation function as described below
has a different effect on session data.

The following examples will help explain when the session data is
imtialized (i.e., erased) versus when it is saved to be used in further operations. If
application A is selected by an IFD device, and receives commands X, Y and Z
from the terminal, application A may delegate all three commands to application B.
For example, delegations may occur in response to delegation commands in the
program code. Both applications A and B will have their session and stack data in
their respective Dynamic segments initialized (set to zero) when they receive
command X, but the stack will not be initialized when they receive the subsequent
commands Y and Z.

In a second example, application A is selected, and receives

-38-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY98/01411

10

15

20

L

commands X, Y and Z from the terminal. Application A processes X itself, but

delegates Y and Z to application B. Application A will have its session and stack
data initialized when it receives X, but not when it receives the subsequent
commands Y and Z. Application B will have its session and stack data initialized
when it receives Y, but not Z.

One example of a use of session data is to support the use of a
session Personal Identification Number (PIN). The application could reserve one
byte of session data to support the PIN-receiving flag. On receiving the PIN check
command, the selected delegated application could update the flag as follows: if
the PIN command is received and the inputted PIN is equal to the stored pin, then
it will set the session data DB[0] to 1. If not, the application will check if the PIN
flag is already set by checking the value in DB[0]. In either of the above cases, the
application will process the rest of the commands in the session because the PIN
has been verified. If neither of the cases is true, then the application will not
process the command because the PIN is not proper. The PIN checking function
could be a delegated function from the selected application to a PIN checking
application.

The Public segment 105 is used for command and response data
being passed between an IFD and an application. During a delegate command, the
Public segment contains the data passed between two applications, the delegator
(the application initiating the delegation) and the delegated application (the
application which performs the delegated function). An application may also use
the Public segment as a further temporary working storage space if required. The

-39-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ANNEE A TOTHEDESCRIFTION

Public data is addressed using offsets stored in register PB 113 as a starting address,

to register PT 115 as an ending address. Rggister PB 113 and Register PT 115 are
fixed for the duration of a command-response pair being initiated by the IFD or
delegator. Public data can include data inputted into or supplied by a terminal such
as a transaction amount, vendor identification data, terminal information,
transmission format or other data required or used by an application resident on the
IC card. Public data can also include data which is to be transmitted to an IFD
device or other application such as an electronic doliar value, card user information
transmission format or other data required or used by the terminal or other
delegated application.

The multiple application operating system ensures that the data stored
in the Public segment remains private to the application until the application exits
or delegates. Preferably, the data in the Public segment is then made available to
other entities as follows: (1) if the application delegates, the whole of the Public
segment becomes available to the delegated application; (2) if the application exits,
and is itself delegated by another, the whole of the Public segment becomes
available to the delegator; or (3) if the application exits, and is not itself delegated,
then a portion of the Public segment containing the I/O response parameters and
data are made available to the IFD.

An application may write secret data into the Public memory segment
during execution of the application, but the application must make sure it overwrites
the secret portion of the Public segment before delegating or exiting. If the
application abnormally ends (abends), then the operating system on the IC card

-40-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY98/01411

10

15

20

ANNEX A TOTRE EESCRIPTION

preferably overwrites all of the data in the Public segment automatically so that no

unwanted entities can have access to the secret data. If the MULTOS carrier device
(MCD) is reset, the operating system overwrites data in the Public segment
automatically, so that no secret data is revealed. A portion of the Public memory
segment is also used as a communications buffer. The I/O protocol data and
parameters are preferably stored at the top of the Public memory space. In another
preferred embodiment, the top seventeen bytes are reserved for the communications
protocol between the IFD device and the IC card application. However, additional
or less bytes can also be used depending upon the particular application and
operating system being utilized.

The spaces shown between the memory segments in Figure 1 will
vary depending upon the specific application and commands being processed.

There could be no memory space between the memory segments so that the
memory segments are contiguous.

Figure 2 shows an extended illustration of the AAM implemented
architecture. Data memory space 201 includes the three segments Static, Public and
Dynamic as previously described. Code memory space 203 contains the program
instructions for an application stored on the IC card. The application instructions
are preferably stored in an executable form which can be interpreted by the resident
operating system but can also be stored in machine executable form. Instruction
205 is stored at one location in the code memory space 203. Additional instructions
are stored in other locations of memory space 203. Two additional registers 207
and 209 are used in the AAM architecture. A code pointer (CP) register 207

41-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

K A TOTHE DESCRIFION

indicates the particular code instruction to be next executed. In the figure, the

register indicates, e.g., through an offset or pointer means, that instruction 205 is
the next to be executed. Condition Control Register 209 contains eight bits, four of
which are for use by the individual application and four of which are set or cleared
depending upon the results of the execution of an instruction. These condition
codes can be used by conditional instructions such as Branch, Call or Jump. The
condition codes can include a carry bit, an overflow bit, a negative bit and a zero
bit.

All address and control registers are set to defined values prior to
executing the selected or delegated application. The values are set either when the
application is first loaded onto the card and the size of the code and non-volatile
data can be ascertained or at the moment when the application passes control to the
application. When the application is loaded, SB is set to zero and ST is equal to
the number of bytes in the application’s Static database. The other address
registers are initialized when the application is given control. CP 207 is set to zero
and all eight bits in CCR 209 are cleared at the start of executing the application.

A communications interface mechanism is present between the IFD
and an application which includes the use of the Public data segment as a
communications buffer for command-response parameters. A command-response
parameter means an application is given a command to perform and returns a
response to the entity issuing the command. Applications interact with an IFD by
receiving commands, processing them and returning responses across the IFD-
Application Interface. When an application has completed executing a command,

-42-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

AER A TOTHEM=scnpron

the application will place the response into the Public segment starting at PB[0]

-y

which can be read by the IFD device and will set the proper interface parameters in
the reserved Public space relative to PT[0].

While an application can be called directly from an IFD and return a
response directly to an IFD, it can also delegate a request to another application
where appropriate. The subsequently-called application will then process the
request on behalf of the first application. The delegation can be directly in
response to a received command in which the delegator acts as a controller for
delegating commands or subcommands to other appropriate applications.
Alternatively, the delegated command can be embedded in an application’s code
which delegates control of the processor when the first application needs to interact
with another application during its execution, such as updating frequent flyer miles
or verifying a PIN.

Figure 3 shows a flow chart of the steps which are performed when a
delegate request is executed. Step 301 sets the parameter named
delegator_application_id (delegator ID) to be equal to the
selected_file.application_id (selected ID). The selected ID indicates the current
application which is selected and which is currently being executed. The delegator
ID indicates the application which delegates a function to another delegated
application stored on the IC card. Step 303 then pushes (stores) the delegator ID
onto the top of the delegate_id stack (delegate stack). The data referenced in the
Dynamic portion of allocated memory is saved so that the current application can
complete its execution after the delegated function is complete. Data which is to be

-43-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

ANEL A T0 THEDESCRIPTION

shared with the delegated application is referenced in the Public portion of allocated

memory. The delegate stack is preferably stored outside of an application’s AAM
memory space and keeps track of which applications have delegated functions.
Each application is suspended when it delegates a function so the delegate stack can
act in a Last-In-First-Out (LIFO) manner so that if a number of applications are
suspended due to delegation requests, the proper application is started in the right
order. The delegate stack thus keeps track of which application was the last
delegator when multiple layered delegation functions are performed. The delegate
stack preferably operates in a LIFO manner although different stack schemes could
be used as appropriate.

Step 305 then sets the selected ID to the delegate_request.delegate
application_id (delegate ID) value. This step selects the application which will be
called to perform the delegated function or functions. The identities of the
delegated application can be specifically called by the delegator application or a
particular function can be matched up with an application in a look up table. For
example, a PIN match operation may be delegated to different applications
depending upon which applications are present on the card. Step 307 then sets the
application_command parameter to the value stored in the
delegate_request.application_command parameter. This step specifies the command
to be delegated to the delegate application. Applications typically have the ability
to process many different commands. Alternatively, the entire application could be
executed to perform one or more functions. The delegator application can choose
which command it is delegating to another application. Step 309 then sends the

-44-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

B A T TERTION

application_command to the AAM operating system for execution by the delegatee

application. The delegator application is then suspended (or interrupted). Any data
that is required to pass between the applications is transferred via the Public
memory space.

Figure 4 is a flow chart of the steps for performing a “return
delegation control” command by the delegatee application. This command is
executed by the operating system when a delegated application has completed its
delegated function. Step 401 gets application_responses from the Public memory
space of the delegated AAM. The response data is passed in the Public memory
segment of the delegatee AAM. Step 403 then sets the delegate response.status
variable to a success condition. This means that a delegation operation has been
successfully completed. Step 405 sets the delegate response.application_responses
parameter to the application_responses values which were stored in the Public
segment of the delegatee application.

Step 407 sets the delegate _response.delegate application id parameter
to selected_file.application_id (the delegatee application ID). Step 409 pops the top
(ie., reads the last data stored in the stack) delegate application_id from the
delegate id_stack. This information indicates the identity of the delegator
application for the command which was just delegated and completed by the
delegated application. Step 411 sets the select_file.application_id value to the
delegator_application_id value. This selects the delegator application which was
identified from the delegate ID stack as the current application which will resume
running. The Dynamic data for the delegator application will be retrieved for the

-45.

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY98/01411

10

15

20

RRER A T0 THE ESCRIPTION

delegator application from its stored location so that the application will continue to

execute where it left off with all data intact but will also have the response
information from the delegated function. In step 413, the delegate response data is
sent to the current application for further processing. The response data is passed
through the Public data space which could be the same physical RAM memory
location because all applications share the physical volatile memory space.

Figure 5 shows a flow chart of the steps involved for inquiring about
a delegator ID when a delegate command is received by a delegated application.
The delegated application may need to know the identity of the delegator because it
may perform operations differently for different delegator applications. For
example, an airline loyalty program may need to know if awarded frequent flyers
will be based on actual dollars processed or a lump sum award for some other
activity such as performing a bill payment operation. This information could be
passed to the delegated application as a variable or could be ascertained using an
inquiry. The delegator inquiry operation could be implemented as a primitive as
previously described.

Step 501 receives the delegator_id enq_request from the AAM
operating system. The request is used to identify the identity of the delegator. Step
503 checks if the delegate_id_stack is empty. If the stack is empty, then no
delegation operations have occurred and no applications have been suspended.

Thus step 511 sets the delegator_id_enq_response.status parameter to a failure
indicator. Step 513 then sets the value of delegator_is_enq_request.error_cause to a
value indicating “no delegator application.” There is no delegator application. The

-46-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY98/01411

10

15

20

ANREK 10 THE SESCRiPTION

process then continues with step 509.

If the delegate id_stack is not empty, than one or more delegations
have occurred. In that case, step 505 sets the delegator_id_enq response.status
parameter to a value indicating “success”. Step 507 then sets the
delegator_id enq response.delegator application_id parameter to the value stored
in delegate_id_stack.delegator application_id. This sets the inquiry response to
indicate the delegator application ID at the top of the stack. As explained above,
the stored data at the top of the stack indicates the last delegator application to call
a delegate function. Step 509 then sends the delegator_id_enq response back to
the AAM operator system which delivers the information to the application or IFD
entity requesting the information.

Figure 6 shows an example of a block diagram of an integrated
circuit located on an IC card chip which can be used in conjunction with the
invention. The integrated circuit chip is located on a chip on the card. The IC chip
preferably includes a central processing unit 601, a RAM 603, a EEPROM 603, a
ROM 607, a timer 609, control logic 611, I/O ports 613 and security circuitry 615,
which are connected together by a conventional data bus 617 or other conventional
means.

Control logic 611 in the smart card provides sufficient sequencing
and switching to handle read-write access to the card’s memory through the
input/output ports 612. CPU 601 in conjunction with control logic 611 can perform
many different functions including performing calculations, accessing memory
locations, modifying memory contents, and managing input/output ports. Some IC

47

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

20

AMNER A T0 THE DESCRIPTION

cards also include a coprocessor for handling complex computations like

cryptographic algorithms. Input/output ports 613 are used for communication
between the card and an IFD which transfers information to and from the card.
Timer 609 (which generates and/or provides a clock pulse) drives the control logic
611, CPU 601 and other components requiring a clock signal through the sequence
of steps that accomplish functions including memory access, memory reading and/or
writing, processing, and data communication. Security circuitry 615 (which is
optional) preferably includes fusible links that connect the input/output lines to
internal circuitry as required for testing during manufacture, but which are
destroyed upon completion of testing to prevent later access. The Static memory
space is preferably mapped to memory locations in EEPROM 605 which is non-
volatile. The Dynamic memory space is preferably mapped to RAM 603 which is
volatile memory which has quick access. The Public memory space is also
preferably mapped to RAM 603 which is volatile memory. The Dynamic data and
Public data will be stored in different portions of RAM 603, while RAM is
identified as a preferred non-volatile memory and EEPROM is identified as a
preferred volatile memory. Other types of memory could also be used with the
same characteristics.

Figures 7A, 7B and 7C illustrate an example of a delegation function
being performed in order to process multiple applications on an IC card. Figure 7A
shows a first application being executed as denoted with a double ringed circle 701.
At some point during the execution of the first application, a delegation function
702 is called to delegate an operation to the second application which is indicated

-48-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ARREX A 10 THe DESCRIPTION

by circle 703. Also shown in Figure 7A is an empty delegator ID stack 705. Since

the stack is empty, there is no data associated with it and it is shown only for
illustrative purposes.

The multiple application operating system receives the delegate

5 command and interrupts the execution of the first application 701 and gives control

of the integrated circuit to application 703 as shown in Figure 7B. The execution
of the second application 703 is illustrated with a double ringed circle. The term
“gives control” means that the microprocessor and other circuitry on the card will
process the instructions and allocate memory space for the application which is

10 delegated. When the delegate command is processed, the delegator ID 707 is
placed on top of the stack 705. The delegator ID stack is operated in a LIFO
manner. Also shown in Figure 7B is a third application 709 resident on the card.
At some point during the execution of the second application, a delegate function
711 is called to delegate the operation to the third application.

15 The multiple application operating system receives the delegate
command 711 shown in Figure 7B interrupts the execution of the second
application 703 and gives control of the integrated circuit to the third application
709 as shown in Figure 7C. When the delegate command is processed, the
delegator ID 713 of the second application is pushed onto the delegator ID stack

20 705. The delegator ID 707 of the first application whose execution is still
interrupted is pushed down in the stack consistent with a LIFO stack management.
Thus when the third application has finished its execution, the delegator ID at the
top of the stack is popped to indicate that execution of the second application

-49-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

15

ARNEX A TOTHE DESCRIPTION

should be resumed first. The delegator ID 707 from the first application will then

be at the top of the stack so that when the second application is finished executing,
the first application will resume its execution.

Additional applications can be managed by the delegator ID stack in
a similar manner. By interrupting the execution of the applications when a delegate
command is processed and keeping track of the order of delegations, the security
and integrity of the data for each individual application can be maintained which is
important because IC cards will store data for applications which is private to the
card user such as account numbers, social security number, address and other
personal information.

The foregoing merely illustrates the principles of the invention. It
will thus be appreciated that those skilled in the art will be able to devise numerous
apparatus, systems and methods which, although not explicitly shown or described
herein, embody the principles of the invention and are thus within the spirit and

scope of the invention.

-50-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

ANREX 10 THE DESCRIPTiON

WE CLAIM:

L. An integrated circuit card comprising:
a microprocessor; a volatile memory coupled to said

microprocessor; a non-volatile memory coupled to said microprocessor; and a
plurality of applications stored in said non-volatile memory, wherein upon execution
of each said application, said microprocessor allocates for each said executing
application an associated data memory space comprising at least a volatile memory
segment for referencing temporary data and a non-volatile memory segment for
referencing static data; and further comprising means for delegating the performance

of a function from a first executing application to a second executing application.
2. The integrated circuit card of claim 1, wherein said non-volatile
memory segment is divided into at least two regions, including a public region and

a dynamic region.

3. The integrated circuit card of claim 2, wherein said public region is

used to share data between said first and second applications.

4. The integrated circuit card of claim 2, wherein said dynamic region

is used to reference temporary data utilized during an application’s execution.

-51-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ANRER A TOTHE DESCRIPTION

1 5. The integrated circuit card of claim 1, further comprising at least one
2 register coupled to said microprocessor which is used to determine the starting

3 locations of each of said segments.

1 6. The integrated circuit card of claim 5, further comprising at least one
2 register coupled to said microprocessor which is used to determine the top locations

3 of each of said segments.

1 7. The integrated circuit card of claim 6, further comprising at least one

2 register coupled to said microprocessor which is used as a local dynamic pointer.

1 8. The integrated circuit card system of claim 1, wherein each said
2 application comprise a plurality of program instructions and wherein at least one of
3 said program instructions when executed causes said memory referenced by said

4 volatile memory segment to be accessed.

1 9. The integrated circuit card of claim 1, wherein said volatile memory

2 segment references RAM and said non-volatile memory segment references

3 EEPROM.

1 10. A method for processing a plurality of applications stored in a

2 memory of an integrated circuit:

3 selecting a first application for execution;

-52-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

11

12

ANNER A TO THEDESCRIPTION

allocating a data space for said first application including at
least two memory segments comprising a volatile memory segment for referencing
temporary data and a non-volatile memory segment for referencing static data;

executing said first application, interrupting execution of said
first application and saving data referenced by said volatile memory segment;

executing a second application;

utilizing said saved data from said volatile memory segment
for execution of said first application; and

completing said execution of said first application.

11. The method of claim 10, wherein said first application’s identity is

stored in a data stack during said delegation step.

12. The method of claim 11, wherein said data stack is accessed

following said completion of said second application.

13. The method of claim 12, further including the step of inquiring said

first application’s identity by accessing said delegator stack.

14. The method of claim 10, wherein said non-volatile memory segment

is divided into at least two regions, including a public region and a dynamic region.

-53-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

AHEE A TO Tr DESCRIPTION

1 15. The method of claim 14, wherein said public region is used to share

2 data between said first application and said second application.

1 16. The method of claim 14, wherein data referenced by said dynamic

2 region is utilized during the execution of said first application.

1 17. The method of claim 10, further including the step of allocating a
2 second data space including at least two memory segments for said second

3 application.

1 18. The method of claim 17, wherein said second data space’s segments
2 comprise a volatile memory segment for referencing temporary data and a non-

3 volatile memory segment for referencing static data.

1 19. The method of claim 18, wherein said second application’s non-
2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 20. The method of claim 19, wherein said second application’s public

2 region is used to share data between said first and second applications.

-54-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ANNRK A TOTHE DESCRIPTION

1 21. The method of claim 19, wherein said data referenced by second

2 application’s dynamic region is utilized during said execution of said second

3 application.

1 22. The method of claim 10, further including the step of delegating use

2 of said microprocessor from said second application to a third application stored on

3 said IC card.

1 23. The method of claim 22, wherein a third data space for said third
2 application is allocated which includes a volatile memory segment for referencing
3 temporary data and non-volatile memory segment for referencing static data,

4 wherein said third application’s volatile segment includes a public and dynamic

5 portion.

1 24 An apparatus for processing a plurality of applications stored in a

2 memory of a single integrated circuit card comprising:

3 means for allocating a data space comprising at least a non-

4 volatile memory segment for referencing static data and a volatile memory segment
5 for referencing temporary data; means for executing a first application; means for

6 interrupting execution of said first application, means for saving data from at least a
7 portion of said volatile memory segment; and means for executing a second

8 application; means for retrieving said saved data; and means for completing said

9 execution of said first application.

-55-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ANNEK A TOTHE DESCRIPTION

1 25. The apparatus of claim 24, further including means for storing said

2 first application’s identity on a data stack.

1 26. The apparatus of claim 25, further including means for inquiring of

2 said first application’s identity.
1 27. The apparatus of claim 24, wherein said first application’s non-
2 volatile memory segment is divided into at least two regions, including a public

3 region and a dynamic region.

1 28. The apparatus of claim 27, wherein said public region references

2 random access memory.

1 29. The apparatus of claim 27, wherein said dynamic region references

2 random access memory.

1 30. The apparatus of claim 24, further including means for allocating a

2 second data space including at least two segments for said second application.
1 31. The apparatus of claim 30, wherein said second data space includes a
2 volatile memory segment for referencing temporary data and a non-volatile memory

3 segment for referencing static data.

-56-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ANNEX A T0 THE ESCRIPTION

1 32. The apparatus of claim 31, wherein said second data space’s non-

2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 33. The apparatus of claim 32, wherein said public region references

2 random access memory.

1 34. The apparatus of claim 32, wherein said dynamic region references

2 random access memory.

1 35. The apparatus of claim 24, further including means for delegating
2 operation of said IC card from said second application to a third application stored

3 on said IC card.

1 36. The apparatus of claim 35, wherein a third data space for said third
2 application is allocated which includes a volatile memory segment for referencing
3 temporary data and non-volatile memory segment for referencing temporary data,
4 wherein said third application’s volatile memory segment includes a public and

5 dynamic portion.

1 37. A system for processing a plurality of applications stored on an IC
2 card comprising:
3 a non-volatile memory coupled to a databus;

-57-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

11

12

13

14

15

ANEK A 10 Th ootRIFTION

a volatile memory coupled to said databus;

a first and second application program stored in said non-volatile
memory, wherein each application has an associated identifier;

a data stack accessible by said databus for storing said applications’
identifier if said application is interrupted during its execution;

processor means for executing instructions from said application
programs wherein said processor means allocates a data memory space for said
application which is being executed and said data memory space is mapped to at
least one address in said non-volatile memory and at least one address in said
volatile memory; and

wherein said processor means interrupts said first application at least

once during its execution to execute said second application.

38. The system of claim 37, wherein data memory space comprises at
least a volatile memory segment for referencing temporary data stored in said
volatile memory and a non-volatile memory segment for referencing static data

stored in said non-volatile memory.

39. The system of claim 37, further including means for storing said first

-application’s identity on a data stack.

40. The system of claim 39, further including means for inquiring of said
first application’s identity.

-58-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ANNEK A TO THE DESCRIPTION

1 41. The system of claim 38, wherein said first application’s non-volatile

2 memory segment is divided into at least two regions, including a public region and

3 a dynamic region.

1 42. The system of claim 41, wherein said public region references

2 random access memory.

1 43. The system of claim 41, wherein said dynamic region references

2 random access memory.

1 44. The system of claim 37, further including means for allocating a

2 second data space including at least two segments for said second application.

1 45. The system of claim 44, wherein said second data space comprises at
2 least a volatile memory segment for referencing temporary data and a non-volatile

3 memory segment for referencing static data.

1 46. The system of claim 45, wherein said second data space’s non-
2 volatile segment is divided into at least two regions, including a public region and a

3 dynamic region.

1 47. The system of claim 46, wherein said public region references

2 random access memory.

-59.

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ANNEK A TOTHE ESCRIPTIN

1 48. The system of claim 46, wherein said dynamic region references

2 random access memory.

1 49. The system of claim 37, further including means for delegating use
2 of said processor means from said second application to a third application stored

3 on said IC card.

1 50. The system of claim 49, wherein a third data space for said third
2 application is allocated which includes a volatile memory segment for referencing
3 temporary data and non-volatile memory segment for referencing temporary data,
4 wherein said third application’s volatile memory segment includes a public and

5 dynamic portion.

1 51. An integrated circuit card comprising:

2 a plurality of applications and a microprocessor for controlling
3 execution of said applications wherein execution of at least one first application is

4 interrupted and execution is transferred to another second application, further

5 comprising means for sharing data by said first and second applications and means
6 for resuming execution of said first application at the appropriate location at least

7 after completion of execution of said second application.

-60-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

o

-

ANREX A T0THE SSERIPTI

52. The integrated circuit card of claim 51, further comprising means for
allocating a data memory space comprises at least a volatile memory segment for
referencing temporary data stored in said volatile memory and a non-volatile

memory segment for referencing static data stored in said non-volatile memory.

53. The integrated circuit card of claim 51, further including means for

storing said first application’s identity on a data stack.

54. The integrated circuit card of claim 53 further including means for

inquiring of said first application’s identity.

55. The integrated circuit card of claim 52, wherein said first
application’s non-volatile memory segment is divided into at least two regions,

including a public region and a dynamic region.

56. The integrated circuit card of claim 55, wherein said public region

references random access memory.

57. The integrated circuit card of claim 55, wherein said dynamic region

references random access memory.

-61-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

ARREL A TO THE CESCRIPTION

1 58. The integrated circuit card of claim 52, further including means for

2 allocating a second data space including at least two segments for said second

3 application.

1 59. The integrated circuit card of claim 58, wherein said second data
2 space comprises at least a volatile memory segment for referencing temporary data

3 and a non-volatile memory segment for referencing static data.
1 60. The integrated circuit card of claim 58, wherein said second data
2 space’s non-volatile segment is divided into at least two regions, including a public

3 region and a dynamic region.

1 61. The integrated circuit card of claim 58, wherein said public region

2 references random access memory.

1 62. The integrated circuit card of claim 60, wherein said dynamic region

2 references random access memory.

i 63. The integrated circuit card of claim 51, further including means for
2 delegating use of said processor means from said second application to a third

3 application stored on said IC card.

-62-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

10

PCT/GB98/01411

ARNEX A 70 THEDESCRIPTION

ABSTRACT OF THE DISCLOSURE

A multi-application IC card which processes two or more

applications using an Application Abstract Machine architecture. The AAM

architecture only allows one application to be executed at a time and allows for

shared processing by performing a delegation function to a second application. A

data space for each application is allocated when the application is selected to be

executed. The data space includes a volatile and non-volatile region. The

delegation function temporarily interrupts the execution of the first application,

saves the temporary data of the first application, shares any data needed with the

second application and the second application is executed until the delegated task is

competed. The first application then retrieves the saved data and completes its

execution. A delegator stack is used to keep track of the delegator’s identity when

multiple delegations occur. The AAM model allows for a high level of security

while transferring data between applications.

-63-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

CLAIMS

I CLAIM:
1 1. An integrated circuit card having an associated operating
2 mode, comprising:
3 a microprocessor;
4 a memory coupled to said microprocessor;
5 data stored in said memory representative of said operating
6 mode;
7 an operating system stored in said memory for processing

8 selected information in a first IC card format;

9 a shell application stored in said memory for processing said
10 selected information in a second IC card format; and
11 means responsive to said operating mode for routing said

12 selected information to either said operating system or said shell application.

1 2. The integrated circuit card of claim 1, wherein said second IC

2 card format is different than said first IC card format.

1 3. The integrated circuit card of claim 1 or claim 2, wherein said

2 selected information is a command.

-64-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

11

12

4. The integrated circuit card of claim 3, wherein said command

is a file access command.

5. The method of any preceding claim, wherein said selected
information is associated with a file structure format.
6. The integrated circuit card of any preceding claim, further
comprising:
a non-shell application stored in said memory;
means for receiving a request by said operating system from
said non-shell application for delegating control to a delegated application;

means for determining whether said operating mode of said
IC card is a predetermined operating mode;

means for determining whether said delegated application
corresponds to said shell application; and

means for failing the request for delegating control if the
operating mode of said IC card corresponds to said predetermined operating mode

and said delegated application corresponds to said shell application.

7. A method of loading an application onto an IC card, wherein
said application has an associated file mode type and said IC card has an associated

operating mode, comprising the steps of:

-65-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

('S

determining whether the file mode type of said application is
a predetermined file mode type; and
changing the operating mode of said IC card if said file mode

type corresponds to said predetermined file mode type.

8. The method of claim 7, further comprising the step of
determining whether any other applications have already been loaded onto the IC

card before the step of changing the operating mode.

9. The method of claim 7 or claim 8, further comprising loading
said application onto the IC card if the file mode type of said application
corresponds to the predetermined file mode type and no other applications have

already been loaded onto the IC card.

10. The method of claim 8, wherein the changing step comprises
changing the operating mode of said IC card if said file mode type corresponds to
said predetermined file mode type and no other applications have already been

loaded onto the IC card.

11. A method of routing a command by an operating system of an
IC card, wherein said IC card has an associated operating mode, comprising the

steps of:

-66-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

4 determining whether the operating mode of said IC card is a
5 predetermined operating mode; and
6 routing the command directly to an application if the

7 operating mode of said IC card corresponds to the predetermined operating mode.

1 12. The method of claim 11, further comprising the steps of:

2 if the operating mode of said IC card does not correspond to
3 the predetermined operating mode, determining whether said command is a select
4 file command supported by said operating system; and

5 routing said command to an operating system routine

6 responsible for said select file command if said command is a select file command

7 supported by said operating system.

1 13. The method of claim 11 or claim 12, wherein the IC card

2 further comprises a currently selected file having an associated file type, the method
3 further comprising the steps of:

4 if the operating mode of said IC card does not correspond to
5 the predetermined operating mode, determining whether the file type of said

6 currently selected file is supported by said operating system; and

7 routing said command to an operating system routine

8 responsible for said file type if the file type of said currently selected file is

9 supported by said operating system.

-67-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

1 14, The method of claim 13, if the file type of said currently
2 selected file is not supported by said operating system, further comprising the step

3 of routing said command to an application.

1 15. A method of delegating control between applications by an
2 operating system of an IC card, wherein said IC card is for use with a defined IC
3 card format and has an associated operating mode, comprising the steps of:

4 storing a shell application in said IC card for communicating
5 with said operating system and for processing information in a format compliant

6 with said defined IC card format;

7 receiving a request by said operating system from a first

8 application for delegating control to a second application;

9 determining whether the operating mode of said IC card is a
10 predetermined operating mode;
11 determining whether said second application corresponds to
12 said shell application; and
13 failing the request for delegating control if the operating mode
14 of said IC card corresponds to said predetermined operating mode and said second

15 application corresponds to said shell application.

1 16. A method of initiating communication between an IC card
2 and a terminal, wherein said IC card comprises a microprocessor and a memory,
3 said memory having stored therein an operating system, a shell application, and data

-68-

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

10

representative of an operating mode of said IC card, said operating mode
representing whether selected information is to be routed to said operating system
or said shell application, said method comprising the steps of:

receiving a reset signal by said IC card from said terminal;
and

returning an answer-to-reset from said IC card to said terminal

based on said operating mode of said IC card.

17. The method of claim 16, wherein a plurality of answer-to-
reset files are stored in said memory of said IC card, and said step of returning an
answer-to-reset comprises selecting one of said answer-to-reset files based on said

operating mode.

18. The method of claim 16 or claim 17, wherein said selected

information is a command.

19. The method of claim 18, wherein said command is a file

access command.

20. The method of claim 16, wherein said selected information is

associated with a file structure format.

-69-

SUBSTITUTE SHEET (RULE 26)

PCT/GB98/01411

WO 98/52153

/10

1/14

B, I S

FIG. 1

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/GB98/01411

WO 98/52153

2/14

. o__,w.
) it —— _
| |
d0SS300dd | vy NeEEE NOX _
02
| I
e - i - T - - — |
S1¥0d
01901 1INN
1NdLNO ALIMND3S yINIL oINGS ONISSHO0M
/ 1NN
/ / / / !
08l 0lL 09l 05l 00l

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

3/14

DDF1

DIR

PCT/GBY98/01411

ADF1

ADF2

DDF2

<

ADF3

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

4/14

START:
Load_File_Command
Routme

YES

PCT/GBY8/01411

/521

YES

SET load_file_response.status =
“failed"
SET load_file_response.error_cause =
"duplicate application id"

L

510 —
RECEIVE !oad_file_command FROM
OS_Security_Manager
A4
20 —
S IS load_file_command.application_id =
ANY OF
os_control_info.application_id ?
NO
A
30 ~1
5 IS load_file_command.file_mode_type
= "shell" AND IS os_control_info NOT
EMPTY ?
) 4 NO
540 —|
ADD the directory file record TO the
directory file
v
550 ~

ADD load_file_command.application_id
TO os_control_info

SET load_file_response.status =
“failed"
SET load_file_response.error_cause =
“application already loaded"

J

531 <
\ 4

SEND load_file_response TO
OS_Security_Manager

FIG. 5A

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GBY8/01411

5/14

560 -
NO

IS load_file_command._file_mode_type ="shell"?

v ES
570~ SET file_mode.file_mode_type = "shell"
SET file_mode.application_id = load_command.application_id
SET selected_file file_type = "dedicated file"
SET selected_file.application_id = load_command.application_id

580~

SET load_file_response.status = "success”

\ 4
SEND load_file_response TO
0OS_Security_Manager

FIG. 5B

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

6/14

START:
Delete_File_Command
Routine

PCT/GB98/01411

670

,

SET delete_file_response.status =
“failed”
SET delete_file_response.error_cause
= "application not loaded"

l

SET file_mode.file_mode_type = "OS8"
SET selected_file file_type = "master

file"
J

680

610
~—1| RECEIVE delete_file_command FROM
0S_Security_Manager
A
620
~— IS delete_file_command.application_id NO N
IN os_control_info i’
! YES
630 IS
~—1| delete_file_command.file_mode_type = YES
"shell" AND file_mode.application_id = '
delete_file_command.application_id ?
NO
A 4
640
~—1 DELETE directory file record FROM |,
directory file
\ 4
650
~ DELETE
delete_file_command.application_id
FROM os_control_info
A
660
S—

SET delete_file_response.status =
“success”

h 4

SEND delete_file_response
0OS_Security_Manager

A

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

7/14

START:
Route Routine

PCT/GBY98/01411

710 ~

RECEIVE cardholder_command FROM
Cardholder

720~

IS file_mode file_type + "0OS" ?

NO

SEND cardholder_command
TO Application(s)

g

YES

730 ~

IS cardholder_command = select_file
command ?

T

YES [SEND cardholder_command
TO select_file routine

NO

h 4

740 ~

(S selected_file file_type = ‘master
file" ?

YES

A

SEND cardholder_command
TO provide_card_facilities
routine

NO

750

IS selected_file fite_type = "directory
file" ?

SEND cardholder_command
TO read_card-level_data_files
routine

YE

¥

\ 4 NO

SEND cardholder_command
TO Application(s)

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411
8/14
START:
Delegate_Request
Routine
810 ~
RECEIVE delegate_request FROM Delegator F l G . 8
application(s)
820 1 |5 file_mode file_mode_type = "shell" AND | NO
delegate_request.delegatee_application_id = PROCESS delegate_request
file_mode.application_id ?
YES
Y
830 ~ I
SET delegate_response.status = "failed YES [SEND delegate_response TO
SET delegate_response.error_cause = Delegator Ap_plication(s)
"recursive shell delegation”
START:
Determine_ATR_Status
Routine
A
910~ VES
. ! Qo | SET selected_file.file_type = "master file"
IS file_mode.file_mode_type = "0S" ? > SET s ATR status Z rdefault ATR"
NO /
l 920

930 ~—

SET selected_file file_type = "dedicated file"
SET selected_file.application_id =
file_mode.application_id
SET s_ATR_status = "shell ATR"

o

A

SEND s_ATR_status TO
Control_ATR Routine

)

FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/GBY98/01411
WO 98/52153

| M A 10 TR TGS

9/14
A)
r
12— pT \///////////// / 107
119~ g DYNAMIC —
L \:
"7~ pB ///////////// / 105
PUBLIC —
M5~ p7
113~ pB ///////////// /—/103
LS STATIC
109~ gB
FIG. 1
D 207
200 CF’/
=)
CCR
/
S 209
R R
FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 98
/52153 PCT/GB98/01411

10/14 ANNEX A 7O THE DRAWINGS

START

SET DELEGATOR_APPLICATION_ID TO SELECTED_FILE. /301
APPLICATION_ID
A
303

PUSH DELEGATOR_APPLICATION_ID ON TO DELEGATE_ID_STACK | “/

A

SET SELECTED_FILE_APPLICATION_ID TO DELEGATE_REQUEST. 305

DELEGATE_APPLICATION ID L
A
SET APPLICATION_COMMAND TO DELEGATE_REQUEST. _j07
APPLICATION_COMMAND PARAMETER
A
309

SEND APPLICATION_COMMAND TO AAM OPERATING SYSTEM |-/

END FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 98/52153

PCT/GB98/01411

11/14 ANNEK & T0 THE DRAWINGS

START

A

GET APPLICATION_RESPONSES FROM DELEGATEE

401

Y

SET DELEGATE_RESPONSE_STATUS TO "SUCCESS"

403
|/

A 4

TO

APPLICATION_RESPONSES

SET DELEGATE_RESPONSE_APPLICATION_RESPONSES | 405

Y

TO

SELECTED_FILE_APPLICATION_ID

SET DELEGATE_RESPONSE_DELEGATE_APPLICATION_ID 407

\ 4

POP DELEGATE_APPLICATION_ID

FROM
DATA STOCK

409

\4

SET SELECT_FILE_APPLICATION_ID

TO

DELEGATE_APPLICATION_ID

411

\ 4

SEND

DELEGATE_RESPONSE_DATA
TO CURRENT APPLICATION

413

D FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

12/14

ANNEK A0 THE DRAWNGS

501~
RECEIVE DELEGATE
ID REQUEST
511
/
503
IS ID STACK SET STATUS TO
EMPTY ? FAILURE
505 v
SET STATUS TO
"SUCCESS" SET RESPONSE TO
"NO DELEGATOR
l APPLICATION"
507)
~ RETRIEVE DATA 513
FROM STACK AND
SET RESPONSE TO
DELEGATOR ID
\ 4
509 -
SEND RESPONSE TO <
OPERATING SYSTEM

END

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

13/14

ANKEK A 70 THE DRAWINGS

617 | - 601
~— ~____1 CPU

_-611
' CONTROL
—— LOGIC

609
::::% " TIMER

607
_/
—__ ROM

- 605

— EEPROM

———’J—_—-—__——_,/603
-——-.1 RAM

- 615

— " SECURITY

/0
A

613

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 98/52153 PCT/GB98/01411

O | ANNEE A TOTHE GRAWINGS

705
702 ~

(
DELEGATE

®

<«

703

O

FIG. 7A

./701 707—| APP 1
-
705
703 7/“ 709
DELEGATE
FIG. 7B
./701 713—| APP2
APP 1
707"
—
705
703 709
FIG. 7C 'ﬁ

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

