US 20170060932A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0060932 A1

Wu et al. 43) Pub. Date: Mar. 2, 2017
(54) ACTION QUEUE FOR HIERARCHY (52) US. CL

MAINTENANCE CPC ..ocvvvvvvineerccnen GO6F 17/30362 (2013.01)

(71) Applicant: SAP SE, Walldorf (DE) (57) ABSTRACT
(72) Inventors: Zhigiang Wu, Shanghai (CN); A system includes reception of a first request for a lock on
Shichang Li, Shanghai (CN) a lock object, storage of a first entry associated with the first
request and the lock object in a queue, determination of a
(21) Appl. No.: 14/834,675 first queue position associated with the first entry based on
) a first priority level of the first request and on a priority level
(22) Filed: Aug. 25, 2015 of each of a plurality of entries in the queue associated with
L. . . the lock object, determination of whether a predetermined
Publication Classification expiration time associated with the first request has expired,
(51) Int. CL and, if it is determined that the predetermined expiration
GO6F 17/30 (2006.01) time has expired, deletion of the first entry from the queue.

100
\

140
Client
135
Application o 130
¥ J J
Application Server
120
DBMS —
110

Database

Patent Application Publication @ Mar. 2, 2017 Sheet 1 of 13 US 2017/0060932 A1

100
\

140
=

l-I' Application | 130
) w

Application Server

i

DBMS -

Database

FIG. 1

Patent Application Publication

Mar. 2,2017 Sheet 2 of 13

$210

Change
Hierarchy?

(

Add Corresponding
Entry To Buffer Table

Save Hierarchy?

Yes 240

4(

Flush Buffer Table To
Backend System

FIG. 2

US 2017/0060932 A1

Patent Application Publication @ Mar. 2, 2017 Sheet 3 of 13 US 2017/0060932 A1

300
N

340

342
346 344 348

ierarchy\ ,— . — { Action
L_a| HierarchyUl (X 3

R O OData HTTP

v 330
334 332
Hierarchy OData - -
. 336
Hierarchy API -
¥ RO 310

. 312 314 (>
Hler?\;z?éIData Action Queue

FIG. 3

Patent Application Publication @ Mar. 2, 2017 Sheet 4 of 13 US 2017/0060932 A1

f400
Hierarchy Editor
420

430

P
ID:1
ID: 2 G Q ID: 3

(Cancel) (Save)

FIG. 4

Patent Application Publication = Mar. 2, 2017 Sheet 5 of 13 US 2017/0060932 A1

400
Hierarchy Editor
420
L
430

Add Level

440

(Cancel) (Save)

FIG. 5

/600

Action Type Node ID | ParentID | Seq.No. | Old Value | New Value

{*node_name”

NEW_NODE 4 2 01 D7}

Patent Application Publication = Mar. 2, 2017 Sheet 6 of 13 US 2017/0060932 A1

{-400
Hierarchy Editor
Gy
Add Node
/410

Add Level

440

(Cancel) (Save)

FIG. 7

600
Action Type | Node ID | ParentID | Seq.No. | Old Value | New Value

{*node_name”
D"
{*node_name”
En

NEW_NODE 4 2 01

CHG_FIELDS 4

FIG. 8

Patent Application Publication @ Mar. 2, 2017 Sheet 7 of 13 US 2017/0060932 A1

400
Hierarchy Editor
420
L
430

Add Level

440

(Cancel) (Save)

FIG. 9

e 600

Action Type Node ID ParentID | Seq. No. | Old Value | New Value

NEW_NODE 4 2 01 {*node_name

D’}
CHG_FIELDS 4 { nOde?}ame
CHG_PARENT 4 2 01 3

FIG. 10

Patent Application Publication = Mar. 2, 2017 Sheet 8 of 13 US 2017/0060932 A1

1100\

(-81110
Receive Buffer Table Including A J

Plurality Of Entries Describing Changes
To A Hierarchy

rS1120

A

Save Copy Of Buffer Table To Database]

] rS1130

[Merge At Least One Of The Entries With]

At Least One Other Of The Entries

A

fs1140
Generate SQL Statement For Each j

Existing Entry

[~ S1150
Execute SQL Statements To Change J

A

Backend Hierarchy

FIG. 11

Patent Application Publication

Mar. 2,2017 Sheet 9 of 13

US 2017/0060932 A1

/600
Action Type | Node ID | ParentID | Seq.No. | Old Value | New Value
NEW_NODE 4 2 01 {“noq?ap}ame”
CHG _FIELDS 4 {“nod.?E%ame”
CHG_PARENT 4 2 01 3
FIG. 12
/600
Action Type | Node ID | ParentID | Seq.No. | Old Value | New Value
NEW_NODE 4 2 01 {“nodEE‘rj}ame”
CHG_PARENT 4 2 01 3
FIG. 13
/600
Action Type | Node ID | ParentID | Seq. No. | Old Value | New Value
NEW_NODE 4 3 01 {“nod_?ggame"
FIG. 14

Patent Application Publication @ Mar. 2, 2017 Sheet 10 of 13 US 2017/0060932 A1

f400
Hierarchy Editor
420
L
430

440
(Cancel) (Save)

FIG. 15

Patent Application Publication = Mar. 2, 2017 Sheet 11 of 13 US 2017/0060932 A1

/600
Action Type Node ID Parent ID | Seq. No. | Old Value | New Value
NEW_NODE 4 2 01 {“nod:fap}ame"
CHG_FIELDS 4 {“nodzfgp}ame”
CHG_PARENT 4 2 01 3
DEL_NODE 4
FIG. 16
/600
Action Type Node ID ParentID | Seq. No. | Old Value | New Value
NEW_NODE 4 2 01 {“nod:?E%ame"
CHG_PARENT 4 2 01 3
DEL_NODE 4
FIG. 17
/600
Action Type Node ID Parent ID | Seq. No. | Old Value | New Value
NEW_NODE 4 3 01 {“nod:fggame"
DEL_NODE 4
FIG. 18
/600

Action Type Node ID | ParentID | Seq. No. | Old Value | New Value

FIG. 19

Patent Application Publication

Mar. 2,2017 Sheet 12 of 13

US 2017/0060932 A1

Action Type | Node ID | ParentID | Seq. No. | Old Value | New Value
Key value pairs
CHG_NODE o in JSON format
CHG_PARENT XXX XXX XXX XXX
CHG_EDGE XXX XXX XXX
NEW_EDGE XXX XXX XXX
Key value pairs
NEW_NODE XXX XXX XXX in JSON format
DEL_NODE XXX
DEL_EDGE XXX XXX

FIG. 20

Patent Application Publication = Mar. 2, 2017 Sheet 13 of 13 US 2017/0060932 A1

—_—_——_———,e—_e— e, e, e, e, e, —— e e e e . o o — —— o — —— . — — — — — — — — — —

i |
I |
| |
, . . , Output I
: Input Device(s) Communication Device Device(s) :
i 2140 2120 2150 |
| 1 I
I |
I |
I |
| () I
I |
I |
I |
: » Processor(s) :
| |
| ‘ 210 |
| A A I
I |
I |
| Memory :
| 2160 :
I |
/ y \

: \ ‘ / :
! 2130 |
i U Applications 9131 :
: |
| Application Server 943, |
£los |

I |
i DBMS 2133 i
I |
! Hierarchy Model :
! Data A4 !
I |
! Action Queue) |
i Tables 2135 :
: |
|

| (Data M) i
: S 2100 :
I |

—E——ree e, —— — —— ————

FIG. 21

US 2017/0060932 Al

ACTION QUEUE FOR HIERARCHY
MAINTENANCE

BACKGROUND

[0001] Many aspects of business operations involve hier-
archies. For example, the relationships between business
employees (e.g., reporting and the geographical) are hierar-
chical. Since these relationships are best represented by
hierarchical data structures, a relational database system
operated by a business may be required to maintain hierar-
chical data and support queries thereof

[0002] Relational database systems typically store and
query hierarchical data based on data models which describe
the hierarchies. These systems may allow a user (e.g., a
database administrator) to effect changes to a data model
using a front-end graphical interface. In response to each
change, the changed data model is transmitted to a back-end
data model layer and buffered therein. Eventually, upon user
selection of a Save function, the last-buffered data model is
written to the back-end database.

[0003] Transmission of a complete hierarchical data
model in response to each user-initiated change is bandwidth
and resource-intensive. Moreover, some conventional sys-
tems provide stateless communication between a front-end
and a back-end and are therefore unable to support data
buffering as described above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG.1 is a block diagram of a database architecture
according to some embodiments.

[0005] FIG. 2 is a flow diagram of a process according to
some embodiments.

[0006] FIG. 3 is a block diagram of a runtime system
according to some embodiments.

[0007] FIG. 4 is an outward view of a user interface to
modify a hierarchy according to some embodiments.
[0008] FIG. 5 is an outward view of a user interface to
modify a hierarchy according to some embodiments.
[0009] FIG. 6 is a tabular representation of an action queue
table according to some embodiments.

[0010] FIG. 7 is an outward view of a user interface to
modify a hierarchy according to some embodiments.
[0011] FIG. 8 is a tabular representation of an action queue
table according to some embodiments.

[0012] FIG. 9 is an outward view of a user interface to
modify a hierarchy according to some embodiments.
[0013] FIG. 10 is a tabular representation of an action
queue table according to some embodiments.

[0014] FIG. 11 is a flow diagram of a process according to
some embodiments.

[0015] FIGS. 12 through 14 comprise tabular representa-
tions of portions of an action queue table according to some
embodiments.

[0016] FIG. 15 is a flow diagram of a process according to
some embodiments.

[0017] FIGS. 16 through 19 comprise tabular representa-
tions of portions of an action queue table according to some
embodiments.

[0018] FIG. 20 is a tabular representation of examples of
action queue table entries according to some embodiments.
[0019] FIG. 21 is a block diagram of an apparatus accord-
ing to some embodiments.

Mar. 2, 2017

DETAILED DESCRIPTION

[0020] The following description is provided to enable any
person in the art to make and use the described embodi-
ments. Various modifications, however, will remain readily
apparent to those in the art.

[0021] FIG. 1 is a block diagram of database architecture
100 according to some embodiments. Embodiments are not
limited to architecture 100 or to a database architecture.
[0022] Architecture 100 includes database 110, database
management system (DBMS) 120, application server 130,
applications 135 and clients 140. Generally, applications 135
executing within application server 130 receive queries from
clients 140 and provides results to clients 140 based on data
of database 110. Applications 135 executing within appli-
cation server 130 may also provide administrative functions
to clients 140, including but not limited to data model
editing as will be described below.

[0023] Application server 130 executes and provides ser-
vices to applications 135. Applications 135 may comprise
server-side executable program code (e.g., compiled code,
scripts, etc.) which provide functionality to clients 140 by
providing user interfaces to clients 140, receiving requests
from clients 140, retrieving data from database 110 based on
the requests, processing the data received from database 110,
and providing the processed data to clients 140. Applications
135 may be made available for execution by application
server 130 via registration and/or other procedures which are
known in the art.

[0024] Application server 130 provides any suitable inter-
faces through which clients 140 may communicate with
applications 135 executing on application server 130. For
example, application server 130 may include a HyperText
Transfer Protocol (HTTP) interface supporting a transient
request/response protocol over Transmission Control Proto-
col (TCP), a WebSocket interface supporting non-transient
full-duplex communications between application server 130
and any clients 140 which implement the WebSocket pro-
tocol over a single TCP connection, and/or an Open Data
Protocol (OData) interface.

[0025] One or more applications 135 executing on server
130 may communicate with DBMS 120 using database
management interfaces such as, but not limited to, Open
Database Connectivity (ODBC) and Java Database Connec-
tivity (JDBC) interfaces. These types of applications 235
may use Structured Query Language (SQL) to manage and
query data stored in database 110.

[0026] DBMS 120 serves requests to retrieve and/or
modify data of database 110, and also performs administra-
tive and management functions. Such functions may include
snapshot and backup management, indexing, optimization,
garbage collection, and/or any other database functions that
are or become known. DBMS 120 may also provide appli-
cation logic, such as database procedures and/or calcula-
tions, according to some embodiments. This application
logic may comprise scripts, functional libraries and/or com-
piled program code.

[0027] Application server 130 may be separated from or
closely integrated with DBMS 120. A closely-integrated
application server 130 may enable execution of server
applications 135 completely on the database platform, with-
out the need for an additional application server. For
example, according to some embodiments, application
server 130 provides a comprehensive set of embedded
services which provide end-to-end support for Web-based

US 2017/0060932 Al

applications. The services may include a lightweight web
server, configurable support for OData, server-side
JavaScript execution and access to SQL and SQLScript.
[0028] Application server 130 may provide application
services (e.g., via functional libraries) using which applica-
tions 135 may manage and query the data of database 110.
The application services can be used to expose the database
data model, with its tables, hierarchies, views and database
procedures, to clients. In addition to exposing the data
model, application server 130 may host system services such
as a search service.

[0029] Database 110 may store metadata regarding the
structure, relationships and meaning of the data stored
within database 110. This information may include data
defining the schema of database tables stored within data-
base 110. A database table schema may specify the name of
the database table, columns of the database table, the data
type associated with each column, and other information
associated with the database table.

[0030] Database 110 includes, among other data, hierar-
chical data. Hierarchical data may include any type of
hierarchical data that is or becomes known, not limited to the
employee-related data mentioned above. Both the content of
each node of hierarchical data and the structure of the
hierarchies defined by hierarchical data may change from
time to time. Some hierarchical data may be versioned, in
that one or more past versions of a hierarchy are persisted in
database 110.

[0031] Hierarchical data may be stored in relational tables,
in which each row of a “hierarchical” table corresponds to
a node in a hierarchy. According to some embodiments, the
schema of each hierarchical table includes columns which
specify, for each row (node) of the table, a lower bound, an
upper bound, and a level.

[0032] Database 110 may comprise any query-responsive
data source or sources that are or become known, including
but not limited to a structured-query language (SQL) rela-
tional database management system. Database 110 may
comprise a relational database, a multi-dimensional data-
base, an eXtendable Markup Language (XML) document, or
any other data storage system storing structured and/or
unstructured data. The data of database 110 may be distrib-
uted among several relational databases, dimensional data-
bases, and/or other data sources. Embodiments are not
limited to any number or types of data sources.

[0033] In some embodiments, the data of database 110
may comprise one or more of conventional tabular data,
row-based data, column-based data, and object-based data.
Moreover, the data may be indexed and/or selectively rep-
licated in an index to allow fast searching and retrieval
thereof Database 110 may support multi-tenancy to sepa-
rately support multiple unrelated clients by providing mul-
tiple logical database systems which are programmatically
isolated from one another.

[0034] Database 110 may implement an “in-memory”
database, in which a full database stored in volatile (e.g.,
non-disk-based) memory (e.g., Random Access Memory).
The full database may be persisted in and/or backed up to
fixed disks (not shown). Embodiments are not limited to an
in-memory implementation. For example, data may be
stored in Random Access Memory (e.g., cache memory for
storing recently-used data) and one or more fixed disks (e.g.,
persistent memory for storing their respective portions of the
full database).

Mar. 2, 2017

[0035] Each of clients 140 may comprise one or more
devices executing program code of a software application
for presenting user interfaces to allow interaction with
application server 130. The user interfaces may comprise
user interfaces suited for reporting, data analysis, data
modelling, and/or any other functions based on the data of
database 110.

[0036] Presentation of a user interface as described herein
may comprise any degree or type of rendering, depending on
the type of user interface code generated by application
server 130. For example, a client 140 may execute a Web
Browser to request and receive a Web page (e.g., in HTML
format) from application server 130 via HTTP, HTTPS,
and/or WebSocket, and may render and present the Web
page according to known protocols. One or more of clients
140 may also or alternatively present user interfaces by
executing a standalone executable file (e.g., an .exe file) or
code (e.g., a JAVA applet) within a virtual machine.
[0037] FIG. 2 comprises a flow diagram of process 200
according to some embodiments. Process 200 may facilitate
the editing of hierarchical data models according to some
embodiments.

[0038] In some embodiments, various hardware elements
of architecture 100 (e.g., one or more processors) execute
program code to perform process 200. Process 200 and all
other processes mentioned herein may be embodied in
processor-executable program code read from one or more
of non-transitory computer-readable media, such as a floppy
disk, a disk-based or solid-state hard drive, CD-ROM, a
DVD-ROM, a Flash drive, and a magnetic tape, and then
stored in a compressed, uncompiled and/or encrypted for-
mat. In some embodiments, hard-wired circuitry may be
used in place of, or in combination with, program code for
implementation of processes according to some embodi-
ments. Embodiments are therefore not limited to any spe-
cific combination of hardware and software.

[0039] Initially, at S210, it is determined whether a user
has changed a hierarchy data model. FIG. 3 is a block
diagram of architecture 300 to be used in the following
description of one example of process 200. Architecture 300
may comprise elements of an implementation of architecture
100. For example, database 310 may comprise an imple-
mentation of DBMS 120 and database 110, application suite
330 may comprise an implementation of application server
130 and browser 340 may comprise an implementation of a
client 340.

[0040] As shown, browser 340 executes hierarchy editor
application 342. Hierarchy editor application 342 includes
hierarchy Ul 344, which may consist of one or more
graphical user interfaces to view, edit and save a hierarchy
data model according to some embodiments. Hierarchy Ul
344 may present hierarchy data models from hierarchy
model store 346 and store hierarchy data models thereto.
[0041] FIG. 4 is an outward view of interface 400 of
hierarchy Ul 344 according to some embodiments. Interface
400 may be presented on any type of display apparatus (e.g.,
desktop monitor, smartphone display, tablet display) pro-
vided by any type of client device (e.g., desktop system,
smartphone, tablet computer). Interface 400 presents a
graphical representation of hierarchy data model 410, which
includes two levels and three nodes. Model 410 and its
constituent nodes A, B and C may represent any hierarchical
data. Interface 400 includes controls 420 and 430 for adding
a node and a level, respectively.

US 2017/0060932 Al

[0042] Returning to process 200, flow cycles between
S210 and S230 until a user changes hierarchy model 410 or
instructs application 342 to save hierarchy model 410. For
purposes of the present example, it will be assumed that the
user manipulates interface controls 420 and 430 to add a
level and a node to hierarchy model 410 as shown in FIG.
5. Any suitable Ul paradigm may be used to manipulate and
edit model 410 according to some embodiments.

[0043] Inresponse to the change, and as illustrated in FIG.
2, a corresponding entry is added to a local buffer table at
S220. Action queue 348 of FIG. 3 may implement such a
local buffer table according to some embodiments. FIG. 6 is
a tabular representation of buffer table 600 including the
entry added at S220 according to the present example.
Embodiments are not limited to the schema of table 600.
[0044] The entry of table 600 specifies an Action Type
related to the change (i.e., NEW_NODE: add a new node),
a node 1D corresponding to the Action Type (i.e., the ID of
the added node), a Parent ID corresponding to the Action
Type (i.e., the ID of the parent node of the added node), a
Sequence Number (i.e., the horizontal position of the node
under its parent node), an Old Value (inapplicable for the
Action Type NEW_NODE), and a New Value (i.e., the name
of the new node).

[0045] Flow continues to S230 to determine whether the
user has issued a command to save the hierarchy. If not, as
it will be assumed in the present example, flow returns to
S220 to cycle as before. Continuing the example, FIG. 7
illustrates changing of the name of the previously-added
node from “D” to “E”. As described, any suitable Ul
paradigm may be used to change the name of the node and
graphically illustrate the change within data model 410.
[0046] A corresponding entry is added to the buffer table
at S220. FIG. 8 illustrates the added entry, specifying an
Action Type related to the change (i.e., CHG_FIELDS:
change a field associated with the data model), a node ID
corresponding to the Action Type (i.e., the ID of the node
including the changed field), a Parent ID corresponding to
the Action Type (i.e., inapplicable/unneeded for the Action
Type CHG_FIELDS), a Sequence Number (i.e., inappli-
cable/unneeded for the Action Type CHG_FIELDS) an Old
Value (inapplicable/unneeded for the Action Type CHG_
FIELDS), and a New Value (i.e., the name of the field and
the new value).

[0047] It will be assumed that the user continues to change
data model 410, as now illustrated in FIG. 9. Specifically, the
user has issued an instruction to change the parent of node
E from node B to node C. Accordingly, the determination at
S210 is affirmative and an entry corresponding to the change
is added to the buffer table at S220. The added entry
according to some embodiments is shown in FIG. 10.
[0048] The added entry of FIG. 10 specifies an Action
Type (i.e., CHG_PARENT: change a parent associated with
anode), anode ID corresponding to the Action Type (i.e., the
ID of the node whose parent has changed), a Parent ID
corresponding to the Action Type (i.e., the ID of the parent
node of the node whose parent has changed), a Sequence
Number (i.e., the horizontal position of the node under its
parent node), an Old Value (not required for the Action Type
CHG_PARENT, but value of prior parent ID could be used),
and a New Value (i.e., the node ID of the new parent node).
[0049] It will now be assumed that the user selects Save
control 440 of interface 400. Flow therefore proceeds to
S240 to flush the buffer table to a back-end system. Notably,

Mar. 2, 2017

according to some embodiments, no changes are communi-
cated to the back-end system during the repeated execution
of S210, S220 and S230. With reference to system 100, a
client 140 transmits buffer table 600 to application server
130 at S240. In a more specific example of S240 according
to some embodiments, application 342 of system 300 trans-
mits action queue 348 to OData gateway 332 of application
suite 330 via the OData protocol.
[0050] Process 1100 of FIG. 11 may be executed by a
backend system to change a stored hierarchy data model
based on the received buffer table according to some
embodiments. Process 1100 may be executed by application
server 130 or by hierarchy API 336 of the present examples,
but embodiments are not limited thereto.
[0051] A buffer table is received at S1110. As described
above, the buffer table includes a plurality of entries describ-
ing changes to a hierarchical data model. At S1120, a copy
of the buffer table is saved to a database. FIG. 3 illustrates
action queues 314 saved within database 310 according to
some embodiments. A full copy of the received buffer table
may be saved at S1120 for compliance, archival or other
purposes.
[0052] At least one of the entries is merged with at least
one other of the entries at S1130. Merging the entries
reduces the number of database commands which must be
executed against the stored hierarchy data model in order to
conform the hierarchy data model to the user changes. For
example, if one entry specifies a change of an attribute from
X to y and another entry specifies a change of the attribute
from y to z, these entries may be merged into one entry
specifying a change in the attribute from x to z. In another
example, if one entry specifies creation of a node and
another entry specifies deletion of the node, the two entries
may be merged and deleted.
[0053] FIGS. 12-14 illustrate entry mergers at S1130
according to some embodiments. FIG. 12 shows table 600 of
FIG. 10. The first and second entries specify actions NEW_
NODE and CHG FIELDS on node ID 4. Accordingly, the
entries may be merged into a single NEW_NODE entry as
shown in FIG. 13, specifying a node name of “E”.
[0054] The remaining entries specify actions NEW_
NODE and CHG_PARENT on node ID 4. These entries may
be merged into one entry as shown in FIG. 14. The new
NEW_NODE entry specifying a parent node ID of “3”.
[0055] After merging of the entries, a Structured Query
Language (SQL) statement is generated for each existing
entry at S1140. Referring to table 600 of FIG. 14, the
following SQL statement may be generated at S1140:
[0056] INSERT INTO Hierarchy (NodelD, NodeName,
Seq Nr, ParentNode) VALUES (‘4’, ‘E’, ‘01°, ‘37)
[0057] Next, at S1150, the SQL statement(s) generated at
S1140 are executed against the database to change the
hierarchy data model stored in the back-end (e.g., hierarchy
data model 312).
[0058] Another example of S1130 and S1140 will now be
provided. It will be assumed that a user does not select save
control 440 after changing hierarchy data model 410 as
shown in FIG. 9. Rather, as shown in FIG. 15, node E is
deleted. The deletion results in the addition of a correspond-
ing entry in local buffer table 600, as shown in FIG. 16. The
entry specifies an Action Type (i.e., DEL_NODE: delete a
node), a node ID corresponding to the Action Type (i.e., the
ID of the deleted node), a Parent ID corresponding to the
Action Type (not required for Action Type DEL_NODE), a

US 2017/0060932 Al

Sequence Number (not required for Action Type DEL_
NODE) an Old Value (not required for Action Type DEL_
NODE), and a New Value (not required for Action Type
DEL_NODE).

[0059] Assuming that table 600 of FIG. 16 is received at
S1110 and copied at S1120, the first and second entries are
merged at S1130 as described above to result in table 600 of
FIG. 17. Similarly, the first and second entries of table 600
of FIG. 17 are merged as described above to result in table
600 of FIG. 18. Finally, because the remaining two entries
call from creation of a node and for deletion of the same
node, the entries are “merged” into an empty entry. That is,
no changes are to be made to hierarchy data model 312.
Accordingly, no SQL statements are generated at S1140 and
no SQL statements are executed to change hierarchy data
model 312 at S1150.

[0060] FIG. 20 illustrates action queue entries for various
Action Types according to some embodiments. The term
“Edge” refers to a connection between two nodes. The flag
“xxx” indicates whether a field is used for the particular
Action Type. According to some embodiments, only the
Node ID column is used for every Action Type.

[0061] FIG. 21 is a block diagram of apparatus 2100
according to some embodiments. Apparatus 2100 may com-
prise a general-purpose computing apparatus and may
execute program code to perform any of the functions
described herein. According to some embodiments, appara-
tus 2100 may comprise an implementation of application
server 130, DBMS 120 and database 110 of FIG. 1 and/or of
application suite 330 and database 310 of FIG. 3 in some
embodiments. Apparatus 2100 may include other unshown
elements.

[0062] Apparatus 2100 includes processor 2110 opera-
tively coupled to communication device 2120, data storage
device 2130, one or more input devices 2140, one or more
output devices 2150 and memory 2160. Communication
device 2120 may facilitate communication with external
devices, such as a client, or an external data storage device.
Input device(s) 2140 may comprise, for example, a key-
board, a keypad, a mouse or other pointing device, a
microphone, knob or a switch, an infra-red (IR) port, a
docking station, and/or a touch screen. Input device(s) 2140
may be used, for example, to enter information into appa-
ratus 2100. Output device(s) 2150 may comprise, for
example, a display (e.g., a display screen) a speaker, and/or
a printer.

[0063] Data storage device 2130 may comprise any appro-
priate persistent storage device, including combinations of
magnetic storage devices (e.g., magnetic tape, hard disk
drives and flash memory), optical storage devices, Read
Only Memory (ROM) devices, etc., while memory 2160
may comprise Random Access Memory (RAM), Storage
Class Memory (SCM) or any other fast-access memory.
[0064] Applications 2131, application server 2132 and
DBMS 2133 may comprise program code executed by
processor 2110 to cause apparatus 2100 to perform any one
or more of the processes described herein. Embodiments are
not limited to execution of these processes by a single
apparatus.

[0065] Hierarchy model data 2134, action queue tables
2135 and data 2136 (either cached or a full database) may be
stored in device 2130 as shown and/or in volatile memory
such as memory 2160. Data storage device 2130 may also
store data and other program code for providing additional

Mar. 2, 2017

functionality and/or which are necessary for operation of
apparatus 2100, such as device drivers, operating system
files, etc.

[0066] The foregoing diagrams represent logical architec-
tures for describing processes according to some embodi-
ments, and actual implementations may include more or
different components arranged in other manners. Other
topologies may be used in conjunction with other embodi-
ments. Moreover, each component or device described
herein may be implemented by any number of devices in
communication via any number of other public and/or
private networks. Two or more of such computing devices
may be located remote from one another and may commu-
nicate with one another via any known manner of network(s)
and/or a dedicated connection. Each component or device
may comprise any number of hardware and/or software
elements suitable to provide the functions described herein
as well as any other functions. For example, any computing
device used in an implementation of a system according to
some embodiments may include a processor to execute
program code such that the computing device operates as
described herein.

[0067] All systems and processes discussed herein may be
embodied in program code stored on one or more non-
transitory computer-readable media. Such media may
include, for example, a floppy disk, a CD-ROM, a DVD-
ROM, a Flash drive, magnetic tape, and solid state Random
Access Memory (RAM) or Read Only Memory (ROM)
storage units. Embodiments are therefore not limited to any
specific combination of hardware and software.

[0068] Embodiments described herein are solely for the
purpose of illustration. Those in the art will recognize other
embodiments may be practiced with modifications and
alterations to that described above.

What is claimed is:

1. A system comprising:

a memory storing processor-executable process steps; and

a processor to execute the processor-executable process

steps to cause the system to:

receive a first request for a lock on a lock object;

store a first entry associated with the first request and
the lock object in a queue;

determine whether a predetermined expiration time
associated with the first request has expired; and

if it is determined that the predetermined expiration
time has expired, delete the first entry from the
queue.

2. A system according to claim 1, wherein the processor
is further to execute the processor-executable process steps
to cause the system to:

determine a first queue position associated with the first

entry based on a first priority level of the first request
and on a priority level of each of a plurality of entries
in the queue associated with the lock object.

3. A system according to claim 2, wherein determination
of the first queue position associated with the first entry
comprises:

determination of a first number of the plurality of entries

which are associated with the lock object and either are
associated with a priority level equal to or greater than
the first priority level or associated with a queue
position of 0 and any priority level;

determination of a highest queue position of the first

number of the plurality of entries;

US 2017/0060932 Al

is
to

is
to

is
to

determination of a maximum number of (the highest
queue position+1) and the first number; and

determination of the first queue position associated with
the first entry as equal to the maximum number.

4. A system according to claim 3, wherein the processor

further to execute the processor-executable process steps

cause the system to:

determine a second number of the plurality of entries
which are associated with the lock object, are associ-
ated with a priority level equal to or greater than the
first priority level and a queue position of less than the
first queue position, or are associated with a queue
position of 0 and any priority level;

determine a highest queue position of the second number
of the plurality of entries;

determine a second maximum number of (the highest
queue position+1) and the second number;

determine whether the second maximum number is less
than the first queue position and none of the second
number of the plurality of entries is associated with a
priority level greater than the first priority level and a
queue position equal to the first queue position; and

if it is determined that the second maximum number is
less than the first queue position and none of the second
number of the plurality of entries is associated with a
priority level greater than the first priority level and a
queue position equal to the first queue position, deter-
mine the first queue position associated with the first
entry as equal to the second maximum number.

5. A system according to claim 4, wherein the processor

further to execute the processor-executable process steps

cause the system to:

receive a second request for the lock on the lock object,
the second request associated with a long-term lock;

store a second entry associated with the second request
and the lock object in the queue;

determine that a queue position of the second request is 0;

set the lock based on the second request based on the
determination that a queue position of the second
request is 0;

in response to setting of the lock, delete the second entry;

receive a third request for the lock on the lock object;

store a third entry associated with the third request and the
lock object in the queue;

determine that a queue position of the third request is 0;

receive a request to set the lock based on the third request
and based on the determination that a queue position of
the third request is 0;

in response to the request to set the lock based on the third
request, provide an error message and delete the third
entry.

6. A system according to claim 1, wherein the processor

further to execute the processor-executable process steps

cause the system to:

receive a second request for the lock on the lock object,
the second request associated with a long-term lock;

store a second entry associated with the second request
and the lock object in the queue;

determine that a queue position of the second request is 0;

set the lock based on the second request based on the
determination that a queue position of the second
request is 0;

in response to setting of the lock, delete the second entry;

receive a third request for the lock on the lock object;

Mar. 2, 2017

store a third entry associated with the third request and the
lock object in the queue;

determine that a queue position of the third request is 0;

receive a request to set the lock based on the third request
and based on the determination that a queue position of
the third request is 0;

in response to the request to set the lock based on the third
request, provide an error message and delete the third
entry.

7. A computer-implemented method comprising:

receiving a first request for a lock on a lock object;

storing a first entry associated with the first request and
the lock object in a queue;

determining a first queue position associated with the first
entry based on a first priority level of the first request
and on a priority level of each of a plurality of entries
in the queue associated with the lock object;

determining whether a predetermined expiration time
associated with the first request has expired; and

if it is determined that the predetermined expiration time
has expired, deleting the first entry from the queue.

8. A method according to claim 7, further comprising:

determining that the first queue position is 0; and

in response to the determination, setting the lock on the
lock object based on the first request.

9. A method according to claim 8, wherein determining

the first queue position associated with the first entry com-
prises:

determining a first number of the plurality of entries
which are associated with the lock object and either are
associated with a priority level equal to or greater than
the first priority level or are associated with a queue
position of 0 and any priority level;

determining a highest queue position of the first number
of the plurality of entries;

determining a maximum number of (the highest queue
position+1) and the first number; and

determining the first queue position associated with the
first entry as equal to the maximum number.

10. A method according to claim 9, further comprising:

determining a second number of the plurality of entries
which are associated with the lock object, are associ-
ated with a priority level equal to or greater than the
first priority level and with a queue position of less than
the first queue position, or are associated with a queue
position of 0 and any priority level;

determining a highest queue position of the second num-
ber of the plurality of entries;

determining a second maximum number of (the highest
queue position+1) and the second number;

determining whether the second maximum number is less
than the first queue position and none of the second
number of the plurality of entries is associated with a
priority level greater than the first priority level and a
queue position equal to the first queue position; and

if it is determined that the second maximum number is
less than the first queue position and none of the second
number of the plurality of entries is associated with a
priority level greater than the first priority level and a
queue position equal to the first queue position, deter-
mining the first queue position associated with the first
entry as equal to the second maximum number.

US 2017/0060932 Al

11. A method according to claim 10, further comprising:

receiving a second request for the lock on the lock object,

the second request associated with a long-term lock;
storing a second entry associated with the second request
and the lock object in the queue;
determining that a queue position of the second request is
0;

setting the lock based on the second request based on the
determination that a queue position of the second
request is 0;

in response to setting of the lock, deleting the second

entry;

receiving a third request for the lock on the lock object;

storing a third entry associated with the third request and

the lock object in the queue;
determining that a queue position of the third request is O;
receiving a request to set the lock based on the third
request and based on the determination that a queue
position of the third request is 0;

in response to the request to set the lock based on the third
request, providing an error message and deleting the
third entry.

12. A method according to claim 7, further comprising:

receiving a second request for the lock on the lock object,

the second request associated with a long-term lock;
storing a second entry associated with the second request
and the lock object in the queue;
determining that a queue position of the second request is
0;

setting the lock based on the second request based on the
determination that a queue position of the second
request is 0;

in response to setting of the lock, deleting the second

entry;

receiving a third request for the lock on the lock object;

storing a third entry associated with the third request and

the lock object in the queue;
determining that a queue position of the third request is O;
receiving a request to set the lock based on the third
request and based on the determination that a queue
position of the third request is 0;

in response to the request to set the lock based on the third
request, providing an error message and deleting the
third entry.

13. A non-transitory computer-readable medium storing
program code, the program code executable by a computer
system to cause the computer system to:

receive a first request for a lock on a lock object;

store a first entry associated with the first request and the

lock object in a queue;

determine whether a predetermined expiration time asso-

ciated with the first request has expired; and

if it is determined that the predetermined expiration time

has expired, delete the first entry from the queue.

14. A non-transitory computer-readable medium accord-
ing to claim 13, wherein the program code is further
executable by a computer system to cause the computer
system to:

determine a first queue position associated with the first

entry based on a first priority level of the first request
and on a priority level of each of a plurality of entries
in the queue associated with the lock object.

Mar. 2, 2017

15. A non-transitory computer-readable medium accord-
ing to claim 14, wherein determination of the first queue

position associated with the first entry comprises:

determination of a first number of the plurality of entries
which are associated with the lock object and either are
associated with a priority level equal to or greater than
the first priority level, or associated with a queue
position of 0 and any priority level;

determination of a highest queue position of the first

number of the plurality of entries;

determination of a maximum number of (the highest

queue position+1) and the first number; and
determination of the first queue position associated with
the first entry as equal to the maximum number.

16. A non-transitory computer-readable medium accord-
ing to claim 15, wherein the program code is further
executable by a computer system to cause the computer
system to:

determine a second number of the plurality of entries

which are associated with the lock object, are associ-
ated with a priority level equal to or greater than the
first priority level and a queue position of less than the
first queue position, or are associated with a queue
position of 0 and any priority level;

determine a highest queue position of the second number

of the plurality of entries;

determine a second maximum number of (the highest

queue position+1) and the second number;
determine whether the second maximum number is less
than the first queue position and none of the second
number of the plurality of entries is associated with a
priority level greater than the first priority level and a
queue position equal to the first queue position; and

if it is determined that the second maximum number is
less than the first queue position and none of the second
number of the plurality of entries is associated with a
priority level greater than the first priority level and a
queue position equal to the first queue position, deter-
mine the first queue position associated with the first
entry as equal to the second maximum number.

17. A non-transitory computer-readable medium accord-

ing to claim 16, wherein the program code is further
executable by a computer system to cause the computer

system to:

receive a second request for the lock on the lock object,
the second request associated with a long-term lock;

store a second entry associated with the second request
and the lock object in the queue;

determine that a queue position of the second request is 0;

set the lock based on the second request based on the
determination that a queue position of the second
request is O;

in response to setting of the lock, delete the second entry;

receive a third request for the lock on the lock object;

store a third entry associated with the third request and the
lock object in the queue;

determine that a queue position of the third request is 0;

receive a request to set the lock based on the third request
and based on the determination that a queue position of
the third request is 0;

in response to the request to set the lock based on the third
request, provide an error message and delete the third
entry.

US 2017/0060932 Al

18. A non-transitory computer-readable medium accord-
ing to claim 13, wherein the program code is further
executable by a computer system to cause the computer
system to:

receive a second request for the lock on the lock object,

the second request associated with a long-term lock;
store a second entry associated with the second request
and the lock object in the queue;

determine that a queue position of the second request is 0;

set the lock based on the second request based on the

determination that a queue position of the second
request is 0;

in response to setting of the lock, delete the second entry;

receive a third request for the lock on the lock object;

store a third entry associated with the third request and the
lock object in the queue;
determine that a queue position of the third request is 0;
receive a request to set the lock based on the third request
and based on the determination that a queue position of
the third request is 0;

in response to the request to set the lock based on the third
request, provide an error message and delete the third
entry.

Mar. 2, 2017

