
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2017/0060932 A1 

US 20170060932A1 

Wu et al. (43) Pub. Date: Mar. 2, 2017 

(54) ACTION QUEUE FOR HIERARCHY (52) U.S. Cl. 
MAINTENANCE CPC ............................... G06F 17/30362 (2013.01) 

(71) Applicant: SAP SE, Walldorf (DE) (57) ABSTRACT 

(72) Inventors: Zhiqiang Wu, Shanghai (CN); A system includes reception of a first request for a lock on 
Shichang Li, Shanghai (CN) a lock object, storage of a first entry associated with the first 

request and the lock object in a queue, determination of a 
(21) Appl. No.: 14/834,675 first queue position associated with the first entry based on 

a first priority level of the first request and on a priority level 
(22) Filed: Aug. 25, 2015 of each of a plurality of entries in the queue associated with 

O O the lock object, determination of whether a predetermined 
Publication Classification expiration time associated with the first request has expired, 

(51) Int. Cl. and, if it is determined that the predetermined expiration 
G06F 7/30 (2006.01) time has expired, deletion of the first entry from the queue. 

1OO 
N 

L Application 130 

Application Server 

120 

11 O 

  

    



Patent Application Publication Mar. 2, 2017 Sheet 1 of 13 US 2017/0060932 A1 

1OO 
N 

135 

130 L Application 
Application Server 

DBMS 

Database 

A/G. 1 

  

  



Patent Application Publication Mar. 2, 2017 Sheet 2 of 13 US 2017/0060932 A1 

200 ^ 

S210 

Change 
Hierarchy? 

Add Corresponding 
Entry To Buffer Table 

Save Hierarchy? 

Yes S240 

FuSh Buffer Table TO 
Backend System 

A/G 2 

  

  

  



Patent Application Publication Mar. 2, 2017 Sheet 3 of 13 US 2017/0060932 A1 

300 N 

346 344 348 

ierarchyY-N -N / Action S R Hierarchy U S R Queue 

O OData HTTP 

334 
Hierarchy OData 

Hierarchy AP 

a 
Hierarchy Data 

A/G 3 

  



Patent Application Publication Mar. 2, 2017 Sheet 4 of 13 US 2017/0060932 A1 

400 

Hierarchy Editor 
420 

1. 

Ga) ID: 1 
430 

410 

ID: 2 GB) GOID 3 

A/G. 4 

  



Patent Application Publication Mar. 2, 2017 Sheet 5 of 13 US 2017/0060932 A1 

400 

Hierarchy Editor 

Add Node 

430 
Add Level 

A/G. 6 

Action Type NOce ID Parent D Old Value 

A/G. 6 

  



Patent Application Publication Mar. 2, 2017 Sheet 6 of 13 US 2017/0060932 A1 

400 

Hierarchy Editor 

420 

430 

A/G 7 

Action Type Node ID Parent ID Old Value 

A/G. 8 

  



Patent Application Publication Mar. 2, 2017 Sheet 7 of 13 US 2017/0060932 A1 

400 

Hierarchy Editor 
420 

430 

A/G. 9 

New Value 

{"node name" 

{"node name" 

  



Patent Application Publication Mar. 2, 2017 Sheet 8 of 13 US 2017/0060932 A1 

S1110 

Receive Buffer Table including A 
Plurality Of Entries Describing Changes 

To A Hierarchy 

Save Copy Of Buffer Table To Database 

Merge At Least One Of The Entries With 
At Least One Other Of The Entries 

Generate SQL Statement For Each 
Existing Entry 

Execute SQL Statements To Change 
Backend Hierarchy 

A/G 11 

  



Patent Application Publication Mar. 2, 2017 Sheet 9 of 13 US 2017/0060932 A1 

-600 
Action Type Node ID | Parent ID Old Value 

New NoDE | 1 || 2 || 0 || ". 

A/G. 12 

Action Type Node ID Parent D Old Value 

New NODE | 4 || 2 || 0 | time 
CHG PARENT 4 || 2 || 0 || || 3 

Action Type NOde ID Parent D Old Value 

NEw NODE | 4 || 3 || 0 || "..." 
A/G. 14 

  



Patent Application Publication Mar. 2, 2017. Sheet 10 of 13 US 2017/0060932 A1 

400 

Hierarchy Editor 
420 

430 1. 

Ga) ID: 1 

410 

ID: 2GB) GOID 3 

440 

A/G 16 

  



Patent Application Publication Mar. 2, 2017. Sheet 11 of 13 US 2017/0060932 A1 

Action Type NOce D Parent D Old Value 

New NODE | 4 || 2 || 0 || "..." 
CHG FIELDs a | | | |"E" 

A/G 16 

New NODE | 4 || 2 || 0 || “..." 
CHG PARENT 4 2 01 3 
DEL NODE 4 

AF/G. 17 

Action Type NOde ID Parent D Old Value 

New NODE | 4 || 3 || 0 || ". 
DEL NODE 4 

A/G. 18 

Action Type NOde D Parent D Old Value 

A/G. 19 

  

  

  



Patent Application Publication Mar. 2, 2017. Sheet 12 of 13 US 2017/0060932 A1 

Action Type Node ID | Parent ID Old Value 
Key value pairs 

Key value pairs 

A/G. 20 

  



Patent Application Publication Mar. 2, 2017. Sheet 13 of 13 US 2017/0060932 A1 

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 

Input Device(s) COmmunication Device 

2140 2120 

Processor(s) 

2110 

Applications 

22 11 33 21 Application Server 

DBMS 2 1 3 3 

Hierarchy Model 
Data 2134 

Action Queue 
TableS 

H - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

    

  

    

  



US 2017/0060932 A1 

ACTION QUEUE FOR HIERARCHY 
MAINTENANCE 

BACKGROUND 

0001. Many aspects of business operations involve hier 
archies. For example, the relationships between business 
employees (e.g., reporting and the geographical) are hierar 
chical. Since these relationships are best represented by 
hierarchical data structures, a relational database system 
operated by a business may be required to maintain hierar 
chical data and Support queries thereof 
0002 Relational database systems typically store and 
query hierarchical databased on data models which describe 
the hierarchies. These systems may allow a user (e.g., a 
database administrator) to effect changes to a data model 
using a front-end graphical interface. In response to each 
change, the changed data model is transmitted to a back-end 
data model layer and buffered therein. Eventually, upon user 
selection of a Save function, the last-buffered data model is 
written to the back-end database. 
0003 Transmission of a complete hierarchical data 
model in response to each user-initiated change is bandwidth 
and resource-intensive. Moreover, Some conventional sys 
tems provide stateless communication between a front-end 
and a back-end and are therefore unable to Support data 
buffering as described above. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0004 FIG. 1 is a block diagram of a database architecture 
according to Some embodiments. 
0005 FIG. 2 is a flow diagram of a process according to 
Some embodiments. 
0006 FIG. 3 is a block diagram of a runtime system 
according to Some embodiments. 
0007 FIG. 4 is an outward view of a user interface to 
modify a hierarchy according to some embodiments. 
0008 FIG. 5 is an outward view of a user interface to 
modify a hierarchy according to some embodiments. 
0009 FIG. 6 is a tabular representation of an action queue 
table according to Some embodiments. 
0010 FIG. 7 is an outward view of a user interface to 
modify a hierarchy according to some embodiments. 
0011 FIG. 8 is a tabular representation of an action queue 
table according to Some embodiments. 
0012 FIG. 9 is an outward view of a user interface to 
modify a hierarchy according to some embodiments. 
0013 FIG. 10 is a tabular representation of an action 
queue table according to Some embodiments. 
0014 FIG. 11 is a flow diagram of a process according to 
Some embodiments. 
0015 FIGS. 12 through 14 comprise tabular representa 
tions of portions of an action queue table according to some 
embodiments. 
0016 FIG. 15 is a flow diagram of a process according to 
Some embodiments. 
0017 FIGS. 16 through 19 comprise tabular representa 
tions of portions of an action queue table according to some 
embodiments. 
0018 FIG. 20 is a tabular representation of examples of 
action queue table entries according to some embodiments. 
0019 FIG. 21 is a block diagram of an apparatus accord 
ing to Some embodiments. 

Mar. 2, 2017 

DETAILED DESCRIPTION 

0020. The following description is provided to enable any 
person in the art to make and use the described embodi 
ments. Various modifications, however, will remain readily 
apparent to those in the art. 
0021 FIG. 1 is a block diagram of database architecture 
100 according to some embodiments. Embodiments are not 
limited to architecture 100 or to a database architecture. 
0022 Architecture 100 includes database 110, database 
management system (DBMS) 120, application server 130, 
applications 135 and clients 140. Generally, applications 135 
executing within application server 130 receive queries from 
clients 140 and provides results to clients 140 based on data 
of database 110. Applications 135 executing within appli 
cation server 130 may also provide administrative functions 
to clients 140, including but not limited to data model 
editing as will be described below. 
0023 Application server 130 executes and provides ser 
vices to applications 135. Applications 135 may comprise 
server-side executable program code (e.g., compiled code, 
scripts, etc.) which provide functionality to clients 140 by 
providing user interfaces to clients 140, receiving requests 
from clients 140, retrieving data from database 110 based on 
the requests, processing the data received from database 110. 
and providing the processed data to clients 140. Applications 
135 may be made available for execution by application 
server 130 via registration and/or other procedures which are 
known in the art. 
0024 Application server 130 provides any suitable inter 
faces through which clients 140 may communicate with 
applications 135 executing on application server 130. For 
example, application server 130 may include a HyperText 
Transfer Protocol (HTTP) interface supporting a transient 
request/response protocol over Transmission Control Proto 
col (TCP), a WebSocket interface supporting non-transient 
full-duplex communications between application server 130 
and any clients 140 which implement the WebSocket pro 
tocol over a single TCP connection, and/or an Open Data 
Protocol (OData) interface. 
0025. One or more applications 135 executing on server 
130 may communicate with DBMS 120 using database 
management interfaces such as, but not limited to, Open 
Database Connectivity (ODBC) and Java Database Connec 
tivity (JDBC) interfaces. These types of applications 235 
may use Structured Query Language (SQL) to manage and 
query data stored in database 110. 
(0026 DBMS 120 serves requests to retrieve and/or 
modify data of database 110, and also performs administra 
tive and management functions. Such functions may include 
Snapshot and backup management, indexing, optimization, 
garbage collection, and/or any other database functions that 
are or become known. DBMS 120 may also provide appli 
cation logic, Such as database procedures and/or calcula 
tions, according to some embodiments. This application 
logic may comprise Scripts, functional libraries and/or com 
piled program code. 
0027 Application server 130 may be separated from or 
closely integrated with DBMS 120. A closely-integrated 
application server 130 may enable execution of server 
applications 135 completely on the database platform, with 
out the need for an additional application server. For 
example, according to some embodiments, application 
server 130 provides a comprehensive set of embedded 
services which provide end-to-end support for Web-based 



US 2017/0060932 A1 

applications. The services may include a lightweight web 
server, configurable support for OData, server-side 
JavaScript execution and access to SQL and SQLScript. 
0028 Application server 130 may provide application 
services (e.g., via functional libraries) using which applica 
tions 135 may manage and query the data of database 110. 
The application services can be used to expose the database 
data model, with its tables, hierarchies, views and database 
procedures, to clients. In addition to exposing the data 
model, application server 130 may host system services Such 
as a search service. 
0029 Database 110 may store metadata regarding the 
structure, relationships and meaning of the data stored 
within database 110. This information may include data 
defining the schema of database tables stored within data 
base 110. A database table schema may specify the name of 
the database table, columns of the database table, the data 
type associated with each column, and other information 
associated with the database table. 

0030 Database 110 includes, among other data, hierar 
chical data. Hierarchical data may include any type of 
hierarchical data that is or becomes known, not limited to the 
employee-related data mentioned above. Both the content of 
each node of hierarchical data and the structure of the 
hierarchies defined by hierarchical data may change from 
time to time. Some hierarchical data may be versioned, in 
that one or more past versions of a hierarchy are persisted in 
database 110. 

0031 Hierarchical data may be stored in relational tables, 
in which each row of a “hierarchical table corresponds to 
a node in a hierarchy. According to Some embodiments, the 
schema of each hierarchical table includes columns which 
specify, for each row (node) of the table, a lower bound, an 
upper bound, and a level. 
0032 Database 110 may comprise any query-responsive 
data source or sources that are or become known, including 
but not limited to a structured-query language (SQL) rela 
tional database management system. Database 110 may 
comprise a relational database, a multi-dimensional data 
base, an eXtendable Markup Language (XML) document, or 
any other data storage system storing structured and/or 
unstructured data. The data of database 110 may be distrib 
uted among several relational databases, dimensional data 
bases, and/or other data sources. Embodiments are not 
limited to any number or types of data sources. 
0033. In some embodiments, the data of database 110 
may comprise one or more of conventional tabular data, 
row-based data, column-based data, and object-based data. 
Moreover, the data may be indexed and/or selectively rep 
licated in an index to allow fast searching and retrieval 
thereof Database 110 may support multi-tenancy to sepa 
rately Support multiple unrelated clients by providing mul 
tiple logical database systems which are programmatically 
isolated from one another. 
0034. Database 110 may implement an “in-memory” 
database, in which a full database stored in Volatile (e.g., 
non-disk-based) memory (e.g., Random Access Memory). 
The full database may be persisted in and/or backed up to 
fixed disks (not shown). Embodiments are not limited to an 
in-memory implementation. For example, data may be 
stored in Random Access Memory (e.g., cache memory for 
storing recently-used data) and one or more fixed disks (e.g., 
persistent memory for storing their respective portions of the 
full database). 

Mar. 2, 2017 

0035 Each of clients 140 may comprise one or more 
devices executing program code of a Software application 
for presenting user interfaces to allow interaction with 
application server 130. The user interfaces may comprise 
user interfaces Suited for reporting, data analysis, data 
modelling, and/or any other functions based on the data of 
database 110. 

0036 Presentation of a user interface as described herein 
may comprise any degree or type of rendering, depending on 
the type of user interface code generated by application 
server 130. For example, a client 140 may execute a Web 
Browser to request and receive a Web page (e.g., in HTML 
format) from application server 130 via HTTP, HTTPS, 
and/or WebSocket, and may render and present the Web 
page according to known protocols. One or more of clients 
140 may also or alternatively present user interfaces by 
executing a standalone executable file (e.g., an .exe file) or 
code (e.g., a JAVA applet) within a virtual machine. 
0037 FIG. 2 comprises a flow diagram of process 200 
according to some embodiments. Process 200 may facilitate 
the editing of hierarchical data models according to some 
embodiments. 

0038. In some embodiments, various hardware elements 
of architecture 100 (e.g., one or more processors) execute 
program code to perform process 200. Process 200 and all 
other processes mentioned herein may be embodied in 
processor-executable program code read from one or more 
of non-transitory computer-readable media, such as a floppy 
disk, a disk-based or Solid-state hard drive, CD-ROM, a 
DVD-ROM, a Flash drive, and a magnetic tape, and then 
stored in a compressed, uncompiled and/or encrypted for 
mat. In some embodiments, hard-wired circuitry may be 
used in place of, or in combination with, program code for 
implementation of processes according to some embodi 
ments. Embodiments are therefore not limited to any spe 
cific combination of hardware and software. 
0039. Initially, at S210, it is determined whether a user 
has changed a hierarchy data model. FIG. 3 is a block 
diagram of architecture 300 to be used in the following 
description of one example of process 200. Architecture 300 
may comprise elements of an implementation of architecture 
100. For example, database 310 may comprise an imple 
mentation of DBMS 120 and database 110, application suite 
330 may comprise an implementation of application server 
130 and browser 340 may comprise an implementation of a 
client 340. 
0040. As shown, browser 340 executes hierarchy editor 
application 342. Hierarchy editor application 342 includes 
hierarchy UI 344, which may consist of one or more 
graphical user interfaces to view, edit and save a hierarchy 
data model according to some embodiments. Hierarchy UI 
344 may present hierarchy data models from hierarchy 
model store 346 and store hierarchy data models thereto. 
0041 FIG. 4 is an outward view of interface 400 of 
hierarchy UI 344 according to some embodiments. Interface 
400 may be presented on any type of display apparatus (e.g., 
desktop monitor, Smartphone display, tablet display) pro 
vided by any type of client device (e.g., desktop system, 
smartphone, tablet computer). Interface 400 presents a 
graphical representation of hierarchy data model 410, which 
includes two levels and three nodes. Model 410 and its 
constituent nodes A, B and C may represent any hierarchical 
data. Interface 400 includes controls 420 and 430 for adding 
a node and a level, respectively. 



US 2017/0060932 A1 

0042. Returning to process 200, flow cycles between 
S210 and S230 until a user changes hierarchy model 410 or 
instructs application 342 to save hierarchy model 410. For 
purposes of the present example, it will be assumed that the 
user manipulates interface controls 420 and 430 to add a 
level and a node to hierarchy model 410 as shown in FIG. 
5. Any suitable UI paradigm may be used to manipulate and 
edit model 410 according to some embodiments. 
0043. In response to the change, and as illustrated in FIG. 
2, a corresponding entry is added to a local buffer table at 
S220. Action queue 348 of FIG. 3 may implement such a 
local buffer table according to some embodiments. FIG. 6 is 
a tabular representation of buffer table 600 including the 
entry added at S220 according to the present example. 
Embodiments are not limited to the schema of table 600. 
0044) The entry of table 600 specifies an Action Type 
related to the change (i.e., NEW NODE: add a new node), 
a node ID corresponding to the Action Type (i.e., the ID of 
the added node), a Parent ID corresponding to the Action 
Type (i.e., the ID of the parent node of the added node), a 
Sequence Number (i.e., the horizontal position of the node 
under its parent node), an Old Value (inapplicable for the 
Action Type NEW NODE), and a New Value (i.e., the name 
of the new node). 
0045. Flow continues to S230 to determine whether the 
user has issued a command to save the hierarchy. If not, as 
it will be assumed in the present example, flow returns to 
S220 to cycle as before. Continuing the example, FIG. 7 
illustrates changing of the name of the previously-added 
node from “D” to “E”. As described, any suitable UI 
paradigm may be used to change the name of the node and 
graphically illustrate the change within data model 410. 
0046. A corresponding entry is added to the buffer table 
at S220. FIG. 8 illustrates the added entry, specifying an 
Action Type related to the change (i.e., CHG FIELDS: 
change a field associated with the data model), a node ID 
corresponding to the Action Type (i.e., the ID of the node 
including the changed field), a Parent ID corresponding to 
the Action Type (i.e., inapplicable/unneeded for the Action 
Type CHG FIELDS), a Sequence Number (i.e., inappli 
cable/unneeded for the Action Type CHG FIELDS) an Old 
Value (inapplicable/unneeded for the Action Type CHG 
FIELDS), and a New Value (i.e., the name of the field and 
the new value). 
0047. It will be assumed that the user continues to change 
data model 410, as now illustrated in FIG.9. Specifically, the 
user has issued an instruction to change the parent of node 
E from node B to node C. Accordingly, the determination at 
S210 is affirmative and an entry corresponding to the change 
is added to the buffer table at S220. The added entry 
according to some embodiments is shown in FIG. 10. 
0048. The added entry of FIG. 10 specifies an Action 
Type (i.e., CHG PARENT: change a parent associated with 
a node), a node ID corresponding to the Action Type (i.e., the 
ID of the node whose parent has changed), a Parent ID 
corresponding to the Action Type (i.e., the ID of the parent 
node of the node whose parent has changed), a Sequence 
Number (i.e., the horizontal position of the node under its 
parent node), an Old Value (not required for the Action Type 
CHG PARENT, but value of prior parent ID could be used), 
and a New Value (i.e., the node ID of the new parent node). 
0049. It will now be assumed that the user selects Save 
control 440 of interface 400. Flow therefore proceeds to 
S240 to flush the buffer table to a back-end system. Notably, 

Mar. 2, 2017 

according to Some embodiments, no changes are communi 
cated to the back-end system during the repeated execution 
of S210, S220 and S230. With reference to system 100, a 
client 140 transmits buffer table 600 to application server 
130 at S240. In a more specific example of S240 according 
to some embodiments, application 342 of system 300 trans 
mits action queue 348 to OData gateway 332 of application 
suite 330 via the OData protocol. 
0050. Process 1100 of FIG. 11 may be executed by a 
backend system to change a stored hierarchy data model 
based on the received buffer table according to some 
embodiments. Process 1100 may be executed by application 
server 130 or by hierarchy API 336 of the present examples, 
but embodiments are not limited thereto. 
0051. A buffer table is received at S1110. As described 
above, the buffer table includes a plurality of entries describ 
ing changes to a hierarchical data model. At S1120, a copy 
of the buffer table is saved to a database. FIG. 3 illustrates 
action queues 314 saved within database 310 according to 
some embodiments. A full copy of the received buffer table 
may be saved at S1120 for compliance, archival or other 
purposes. 
0.052 At least one of the entries is merged with at least 
one other of the entries at S1130. Merging the entries 
reduces the number of database commands which must be 
executed against the stored hierarchy data model in order to 
conform the hierarchy data model to the user changes. For 
example, if one entry specifies a change of an attribute from 
X to y and another entry specifies a change of the attribute 
from y to Z, these entries may be merged into one entry 
specifying a change in the attribute from X to Z. In another 
example, if one entry specifies creation of a node and 
another entry specifies deletion of the node, the two entries 
may be merged and deleted. 
0053 FIGS. 12-14 illustrate entry mergers at S1130 
according to some embodiments. FIG. 12 shows table 600 of 
FIG. 10. The first and second entries specify actions NEW 
NODE and CHG FIELDS on node ID 4. Accordingly, the 
entries may be merged into a single NEW NODE entry as 
shown in FIG. 13, specifying a node name of “E”. 
0054 The remaining entries specify actions NEW 
NODE and CHG PARENT on node ID 4. These entries may 
be merged into one entry as shown in FIG. 14. The new 
NEW NODE entry specifying a parent node ID of “3”. 
0055. After merging of the entries, a Structured Query 
Language (SQL) statement is generated for each existing 
entry at S1140. Referring to table 600 of FIG. 14, the 
following SQL statement may be generated at S1140: 
0056 INSERT INTO Hierarchy (NodeID, NodeName, 
Seq Nr. ParentNode) VALUES (“4”, “E', '01, 3) 

0057 Next, at S1150, the SQL statement(s) generated at 
S1140 are executed against the database to change the 
hierarchy data model stored in the back-end (e.g., hierarchy 
data model 312). 
0058 Another example of S1130 and S1140 will now be 
provided. It will be assumed that a user does not select save 
control 440 after changing hierarchy data model 410 as 
shown in FIG. 9. Rather, as shown in FIG. 15, node E is 
deleted. The deletion results in the addition of a correspond 
ing entry in local buffer table 600, as shown in FIG. 16. The 
entry specifies an Action Type (i.e., DEL NODE: delete a 
node), a node ID corresponding to the Action Type (i.e., the 
ID of the deleted node), a Parent ID corresponding to the 
Action Type (not required for Action Type DEL NODE), a 



US 2017/0060932 A1 

Sequence Number (not required for Action Type DEL 
NODE) an Old Value (not required for Action Type DEL 
NODE), and a New Value (not required for Action Type 
DEL NODE). 
0059 Assuming that table 600 of FIG. 16 is received at 
S1110 and copied at S1120, the first and second entries are 
merged at S1130 as described above to result in table 600 of 
FIG. 17. Similarly, the first and second entries of table 600 
of FIG. 17 are merged as described above to result in table 
600 of FIG. 18. Finally, because the remaining two entries 
call from creation of a node and for deletion of the same 
node, the entries are “merged into an empty entry. That is, 
no changes are to be made to hierarchy data model 312. 
Accordingly, no SQL statements are generated at S1140 and 
no SQL statements are executed to change hierarchy data 
model 312 at S1150. 
0060 FIG. 20 illustrates action queue entries for various 
Action Types according to Some embodiments. The term 
“Edge” refers to a connection between two nodes. The flag 
“XXX' indicates whether a field is used for the particular 
Action Type. According to some embodiments, only the 
Node ID column is used for every Action Type. 
0061 FIG. 21 is a block diagram of apparatus 2100 
according to some embodiments. Apparatus 2100 may com 
prise a general-purpose computing apparatus and may 
execute program code to perform any of the functions 
described herein. According to Some embodiments, appara 
tus 2100 may comprise an implementation of application 
server 130, DBMS 120 and database 110 of FIG. 1 and/or of 
application suite 330 and database 310 of FIG. 3 in some 
embodiments. Apparatus 2100 may include other unshown 
elements. 
0062) Apparatus 2100 includes processor 2110 opera 
tively coupled to communication device 2120, data storage 
device 2130, one or more input devices 2140, one or more 
output devices 2150 and memory 2160. Communication 
device 2120 may facilitate communication with external 
devices, such as a client, or an external data storage device. 
Input device(s) 2140 may comprise, for example, a key 
board, a keypad, a mouse or other pointing device, a 
microphone, knob or a Switch, an infra-red (IR) port, a 
docking station, and/or a touch screen. Input device(s) 2140 
may be used, for example, to enter information into appa 
ratus 2100. Output device(s) 2150 may comprise, for 
example, a display (e.g., a display screen) a speaker, and/or 
a printer. 
0063 Data storage device 2130 may comprise any appro 
priate persistent storage device, including combinations of 
magnetic storage devices (e.g., magnetic tape, hard disk 
drives and flash memory), optical storage devices, Read 
Only Memory (ROM) devices, etc., while memory 2160 
may comprise Random Access Memory (RAM), Storage 
Class Memory (SCM) or any other fast-access memory. 
0064. Applications 2131, application server 2132 and 
DBMS 2133 may comprise program code executed by 
processor 2110 to cause apparatus 2100 to perform any one 
or more of the processes described herein. Embodiments are 
not limited to execution of these processes by a single 
apparatus. 
0065 Hierarchy model data 2134, action queue tables 
2135 and data 2136 (either cached or a full database) may be 
stored in device 2130 as shown and/or in volatile memory 
such as memory 2160. Data storage device 2130 may also 
store data and other program code for providing additional 

Mar. 2, 2017 

functionality and/or which are necessary for operation of 
apparatus 2100. Such as device drivers, operating system 
files, etc. 
0066. The foregoing diagrams represent logical architec 
tures for describing processes according to some embodi 
ments, and actual implementations may include more or 
different components arranged in other manners. Other 
topologies may be used in conjunction with other embodi 
ments. Moreover, each component or device described 
herein may be implemented by any number of devices in 
communication via any number of other public and/or 
private networks. Two or more of Such computing devices 
may be located remote from one another and may commu 
nicate with one another via any known manner of network(s) 
and/or a dedicated connection. Each component or device 
may comprise any number of hardware and/or software 
elements suitable to provide the functions described herein 
as well as any other functions. For example, any computing 
device used in an implementation of a system according to 
Some embodiments may include a processor to execute 
program code Such that the computing device operates as 
described herein. 
0067 All systems and processes discussed herein may be 
embodied in program code stored on one or more non 
transitory computer-readable media. Such media may 
include, for example, a floppy disk, a CD-ROM, a DVD 
ROM, a Flash drive, magnetic tape, and solid state Random 
Access Memory (RAM) or Read Only Memory (ROM) 
storage units. Embodiments are therefore not limited to any 
specific combination of hardware and software. 
0068 Embodiments described herein are solely for the 
purpose of illustration. Those in the art will recognize other 
embodiments may be practiced with modifications and 
alterations to that described above. 
What is claimed is: 
1. A system comprising: 
a memory storing processor-executable process steps; and 
a processor to execute the processor-executable process 

steps to cause the system to: 
receive a first request for a lock on a lock object; 
store a first entry associated with the first request and 

the lock object in a queue; 
determine whether a predetermined expiration time 

associated with the first request has expired; and 
if it is determined that the predetermined expiration 

time has expired, delete the first entry from the 
queue. 

2. A system according to claim 1, wherein the processor 
is further to execute the processor-executable process steps 
to cause the system to: 

determine a first queue position associated with the first 
entry based on a first priority level of the first request 
and on a priority level of each of a plurality of entries 
in the queue associated with the lock object. 

3. A system according to claim 2, wherein determination 
of the first queue position associated with the first entry 
comprises: 

determination of a first number of the plurality of entries 
which are associated with the lock object and either are 
associated with a priority level equal to or greater than 
the first priority level or associated with a queue 
position of 0 and any priority level; 

determination of a highest queue position of the first 
number of the plurality of entries: 



US 2017/0060932 A1 

determination of a maximum number of (the highest 
queue position+1) and the first number, and 

determination of the first queue position associated with 
the first entry as equal to the maximum number. 

4. A system according to claim 3, wherein the processor 
is further to execute the processor-executable process steps 
to cause the system to: 

determine a second number of the plurality of entries 
which are associated with the lock object, are associ 
ated with a priority level equal to or greater than the 
first priority level and a queue position of less than the 
first queue position, or are associated with a queue 
position of 0 and any priority level; 

determine a highest queue position of the second number 
of the plurality of entries; 

determine a second maximum number of (the highest 
queue position+1) and the second number; 

determine whether the second maximum number is less 
than the first queue position and none of the second 
number of the plurality of entries is associated with a 
priority level greater than the first priority level and a 
queue position equal to the first queue position; and 

if it is determined that the second maximum number is 
less than the first queue position and none of the second 
number of the plurality of entries is associated with a 
priority level greater than the first priority level and a 
queue position equal to the first queue position, deter 
mine the first queue position associated with the first 
entry as equal to the second maximum number. 

5. A system according to claim 4, wherein the processor 
is further to execute the processor-executable process steps 
to cause the system to: 

receive a second request for the lock on the lock object, 
the second request associated with a long-term lock; 

store a second entry associated with the second request 
and the lock object in the queue; 

determine that a queue position of the second request is 0; 
set the lock based on the second request based on the 

determination that a queue position of the second 
request is 0; 

in response to setting of the lock, delete the second entry; 
receive a third request for the lock on the lock object; 
store a third entry associated with the third request and the 

lock object in the queue; 
determine that a queue position of the third request is 0; 
receive a request to set the lock based on the third request 

and based on the determination that a queue position of 
the third request is 0; 

in response to the request to set the lock based on the third 
request, provide an error message and delete the third 
entry. 

6. A system according to claim 1, wherein the processor 
is further to execute the processor-executable process steps 
to cause the system to: 

receive a second request for the lock on the lock object, 
the second request associated with a long-term lock; 

store a second entry associated with the second request 
and the lock object in the queue; 

determine that a queue position of the second request is 0; 
set the lock based on the second request based on the 

determination that a queue position of the second 
request is 0; 

in response to setting of the lock, delete the second entry; 
receive a third request for the lock on the lock object; 

Mar. 2, 2017 

store a third entry associated with the third request and the 
lock object in the queue; 

determine that a queue position of the third request is 0; 
receive a request to set the lock based on the third request 

and based on the determination that a queue position of 
the third request is 0; 

in response to the request to set the lock based on the third 
request, provide an error message and delete the third 
entry. 

7. A computer-implemented method comprising: 
receiving a first request for a lock on a lock object; 
storing a first entry associated with the first request and 

the lock object in a queue; 
determining a first queue position associated with the first 

entry based on a first priority level of the first request 
and on a priority level of each of a plurality of entries 
in the queue associated with the lock object; 

determining whether a predetermined expiration time 
associated with the first request has expired; and 

if it is determined that the predetermined expiration time 
has expired, deleting the first entry from the queue. 

8. A method according to claim 7, further comprising: 
determining that the first queue position is 0; and 
in response to the determination, setting the lock on the 

lock object based on the first request. 
9. A method according to claim 8, wherein determining 

the first queue position associated with the first entry com 
prises: 

determining a first number of the plurality of entries 
which are associated with the lock object and either are 
associated with a priority level equal to or greater than 
the first priority level or are associated with a queue 
position of 0 and any priority level; 

determining a highest queue position of the first number 
of the plurality of entries; 

determining a maximum number of (the highest queue 
position+1) and the first number, and 

determining the first queue position associated with the 
first entry as equal to the maximum number. 

10. A method according to claim 9, further comprising: 
determining a second number of the plurality of entries 

which are associated with the lock object, are associ 
ated with a priority level equal to or greater than the 
first priority level and with a queue position of less than 
the first queue position, or are associated with a queue 
position of 0 and any priority level; 

determining a highest queue position of the second num 
ber of the plurality of entries; 

determining a second maximum number of (the highest 
queue position+1) and the second number; 

determining whether the second maximum number is less 
than the first queue position and none of the second 
number of the plurality of entries is associated with a 
priority level greater than the first priority level and a 
queue position equal to the first queue position; and 

if it is determined that the second maximum number is 
less than the first queue position and none of the second 
number of the plurality of entries is associated with a 
priority level greater than the first priority level and a 
queue position equal to the first queue position, deter 
mining the first queue position associated with the first 
entry as equal to the second maximum number. 



US 2017/0060932 A1 

11. A method according to claim 10, further comprising: 
receiving a second request for the lock on the lock object, 

the second request associated with a long-term lock; 
storing a second entry associated with the second request 
and the lock object in the queue; 

determining that a queue position of the second request is 
0: 

setting the lock based on the second request based on the 
determination that a queue position of the second 
request is 0; 

in response to setting of the lock, deleting the second 
entry; 

receiving a third request for the lock on the lock object; 
storing a third entry associated with the third request and 

the lock object in the queue; 
determining that a queue position of the third request is 0; 
receiving a request to set the lock based on the third 

request and based on the determination that a queue 
position of the third request is 0; 

in response to the request to set the lock based on the third 
request, providing an error message and deleting the 
third entry. 

12. A method according to claim 7, further comprising: 
receiving a second request for the lock on the lock object, 

the second request associated with a long-term lock; 
storing a second entry associated with the second request 
and the lock object in the queue; 

determining that a queue position of the second request is 
0: 

setting the lock based on the second request based on the 
determination that a queue position of the second 
request is 0; 

in response to setting of the lock, deleting the second 
entry; 

receiving a third request for the lock on the lock object; 
storing a third entry associated with the third request and 

the lock object in the queue; 
determining that a queue position of the third request is 0; 
receiving a request to set the lock based on the third 

request and based on the determination that a queue 
position of the third request is 0; 

in response to the request to set the lock based on the third 
request, providing an error message and deleting the 
third entry. 

13. A non-transitory computer-readable medium storing 
program code, the program code executable by a computer 
system to cause the computer system to: 

receive a first request for a lock on a lock object; 
store a first entry associated with the first request and the 

lock object in a queue; 
determine whether a predetermined expiration time asso 

ciated with the first request has expired; and 
if it is determined that the predetermined expiration time 

has expired, delete the first entry from the queue. 
14. A non-transitory computer-readable medium accord 

ing to claim 13, wherein the program code is further 
executable by a computer system to cause the computer 
system to: 

determine a first queue position associated with the first 
entry based on a first priority level of the first request 
and on a priority level of each of a plurality of entries 
in the queue associated with the lock object. 

Mar. 2, 2017 

15. A non-transitory computer-readable medium accord 
ing to claim 14, wherein determination of the first queue 
position associated with the first entry comprises: 

determination of a first number of the plurality of entries 
which are associated with the lock object and either are 
associated with a priority level equal to or greater than 
the first priority level, or associated with a queue 
position of 0 and any priority level; 

determination of a highest queue position of the first 
number of the plurality of entries: 

determination of a maximum number of (the highest 
queue position+1) and the first number, and 

determination of the first queue position associated with 
the first entry as equal to the maximum number. 

16. A non-transitory computer-readable medium accord 
ing to claim 15, wherein the program code is further 
executable by a computer system to cause the computer 
system to: 

determine a second number of the plurality of entries 
which are associated with the lock object, are associ 
ated with a priority level equal to or greater than the 
first priority level and a queue position of less than the 
first queue position, or are associated with a queue 
position of 0 and any priority level; 

determine a highest queue position of the second number 
of the plurality of entries; 

determine a second maximum number of (the highest 
queue position+1) and the second number; 

determine whether the second maximum number is less 
than the first queue position and none of the second 
number of the plurality of entries is associated with a 
priority level greater than the first priority level and a 
queue position equal to the first queue position; and 

if it is determined that the second maximum number is 
less than the first queue position and none of the second 
number of the plurality of entries is associated with a 
priority level greater than the first priority level and a 
queue position equal to the first queue position, deter 
mine the first queue position associated with the first 
entry as equal to the second maximum number. 

17. A non-transitory computer-readable medium accord 
ing to claim 16, wherein the program code is further 
executable by a computer system to cause the computer 
system to: 

receive a second request for the lock on the lock object, 
the second request associated with a long-term lock; 

store a second entry associated with the second request 
and the lock object in the queue; 

determine that a queue position of the second request is 0; 
set the lock based on the second request based on the 

determination that a queue position of the second 
request is 0; 

in response to setting of the lock, delete the second entry; 
receive a third request for the lock on the lock object; 
store a third entry associated with the third request and the 

lock object in the queue; 
determine that a queue position of the third request is 0; 
receive a request to set the lock based on the third request 

and based on the determination that a queue position of 
the third request is 0; 

in response to the request to set the lock based on the third 
request, provide an error message and delete the third 
entry. 



US 2017/0060932 A1 

18. A non-transitory computer-readable medium accord 
ing to claim 13, wherein the program code is further 
executable by a computer system to cause the computer 
system to: 

receive a second request for the lock on the lock object, 
the second request associated with a long-term lock; 

store a second entry associated with the second request 
and the lock object in the queue; 

determine that a queue position of the second request is 0; 
set the lock based on the second request based on the 

determination that a queue position of the second 
request is 0; 

in response to setting of the lock, delete the second entry; 
receive a third request for the lock on the lock object; 
store a third entry associated with the third request and the 

lock object in the queue; 
determine that a queue position of the third request is 0; 
receive a request to set the lock based on the third request 

and based on the determination that a queue position of 
the third request is 0; 

in response to the request to set the lock based on the third 
request, provide an error message and delete the third 
entry. 

Mar. 2, 2017 


