US 20190163449A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0163449 A1

HEIN et al. 43) Pub. Date: May 30, 2019
(54) METHOD AND SYSTEM FOR SIMULATING GO6F 8/41 (2006.01)
A CONTROL PROGRAM GOG6F 17/50 (2006.01)
(52) US. CL
(71) Applicant: dSPACE digital signal processing and CPC ... GOGF 8/34 (2013.01); GOG6F 17/5009
control engineering GmbH, Paderborn (2013.01); GO6F 8/41 (2013.01); GOGF 8/33
(DE) (2013.01)
(72) Inventors: Renata HEIN, Paderborn (DE);
Wolfgang TRAUTMANN, Paderborn (57) ABSTRACT
(DE); Sebastian HILLEBRAND,
Marsberg (DE)
A method for simulating a program modeled as one or more
(73) Assignee: dSPACE digital signal processing and blocks of a block diagram in a technical computing envi-
control engineering GmbH, Paderborn ronment. A block diagram is opened in a model editor.
(DE) Source code is generated for the one or more blocks of the
block diagram using the code generator. The program is
(21) Appl. No.: 15/827,196 configured from the source code using a predefined compiler
) in order to generate a binary executable file, and the program
(22) Filed: Nov. 30, 2017 is simulated, which comprises running at least one function
A . . in the auxiliary file in order to determine at least the width
Publication Classification of a basic data type corresponding to the enumeration
(51) Imt. ClL variable in the binary executable file, and allocating one or
GO6F 8/34 (2006.01) more variables based on the determined byte width in order
GO6F 8/33 (2006.01) to log the simulation results.
PC

TCE

DEB

SYS et ACT

OB 4= = = = = = =

Patent Application Publication = May 30, 2019 Sheet 1 of 4 US 2019/0163449 A1

PC CPU RAM
[|
|
BC
I
| I |
GPU usB "'" NC
DIS ES
NC Al
MC Si
Fig. 1
PC
0S
TCE
MOD SIM PCG
GEN MAT DDT
PCO DEB CMP

Fig. 2

Patent Application Publication

Blocks

+ S1: Transform

Hierarchical
Graphs

¢ S3: Translate

C Code

BLD

A 4

May 30, 2019 Sheet 2 of 4

> S2: Optimize

US 2019/0163449 Al

Fig. 3

RESP1

A 4

it

PCG

STIM

v

]

PCO

T

08Bl

A 4

101010101010101
101011010110101
110101011100101
000101100110011

\ 4

CMmP

RESP2

A 4

Fig. 4

Patent Application Publication

May 30, 2019 Sheet 3 of 4

PC
TCE DEB
SYS |e ACT
A
e |
—»:s-Fct.l
] 1
I
OB k=== - — =
PC
TCE
SYS | ACT
A
—»isFct. | OBJ
1 x
A\ 4
SIR |«
F 3
ES
\ 4
OBJ*

US 2019/0163449 Al

Fig. 5

Fig. 6

Patent Application Publication

May 30,2019 Sheet 4 of 4

$101: Open block diagram in
model editor

v

S$102: Generate source code and
store information in DDT

¥

$103: Generate auxiliary function

v

S$104: Build program and auxiliary
function

¥

$105: Transfer binary executable
to embedded system

v

S$106: Run auxiliary function and
store information in DDT

v

$107: Run program on embedded
system

¥

S$108: Receive request for variable
description

v

S$109: Retrieve information from
DDT

v

S110: Generate variable
description file

US 2019/0163449 Al

Fig. 7

US 2019/0163449 Al

METHOD AND SYSTEM FOR SIMULATING
A CONTROL PROGRAM

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a method and
computer system for automatically generating code from
block diagrams, the code being used in, for example, elec-
tronic control units.

Description of the Background Art

[0002] Electronic control units (abbreviated as ECUs) are
ubiquitous especially in automotive applications; generally,
they may contain a processor, in particular a microcontroller,
one or more sensor interfaces and one or more circuits to
control an actuator. Current parameters of a physical process
are preferably determined using the signals of the one or
more sensors connected to the sensor interfaces. Based on a
predefined control strategy, the processor may control the
one or more circuits to apply the actuators in order to
influence the physical process. For example, an ECU may be
used to perform anti-lock braking, with a sensor measuring
the wheel velocity and a magnetic valve reducing the
pressure in the corresponding wheel brakes.

[0003] In order to speed up the development process for
ECUs, control strategies are preferably developed using
block diagrams in a technical computing environment (ab-
breviated as TCE), which allows for tracing the temporal
behavior of a physical system described by one or more
blocks in the block diagram. One particular example of a
TCE is MATLAB/Simulink of The MathWorks.

[0004] The document “Production Quality Code Genera-
tion from Simulink Block Diagrams”, Proceedings of the
1999 IEEE International Symposium on Computer Aided
Control System Design, Kohala-Coast, Hawai’i, USA, by H.
Hanselmann et al. describes a system for automatically
generating production code based on a block diagram con-
taining one or more blocks that specify the functionality of
the program. The program may in particular be a control
program for an ECU, the control program implementing the
desired control strategy.

[0005] Generally, input signals or output signals of a
control program may be (quasi-)continuously varying; on
the other hand, some signals or parameters only take on a
finite number of predefined values. For improved readabil-
ity, such a signal or parameter may be modeled as an
enumeration. When a source code representation of the
program is generated and compiled for the desired target
platform, the enumeration variable is mapped to an a priori
unknown basic data type. Especially the C language stan-
dard leaves the choice of the basic data type to the compiler.
[0006] Thus, improved methods for generating source
code for a program containing enumeration variables are
needed; in particular, it would be desirable to determine the
underlying basic data type of an enumeration variable before
running a simulation of the program.

SUMMARY OF THE INVENTION

[0007] It is therefore an object of the present invention to
provide a method and computer system for automatically
generating source code from a block diagram comprising a
detailed implementation of the program.

May 30, 2019

[0008] In an exemplary embodiment of the invention, a
computer-implemented method for simulating a program is
provided, the program being modeled as one or more blocks
of a block diagram in a technical computing environment,
the one or more blocks comprising at least one signal or
parameter that is marked as an enumeration, the technical
computing environment comprising a model editor, a data
definition tool and a code generator. The method includes:
opening the block diagram in the model editor; generating
source code for the one or more blocks of the block diagram
using the code generator, wherein generating source code
comprises converting the at least one signal or parameter to
an enumeration variable in the source code and storing
information on the source code in the data definition tool, the
information comprising the defined type of the enumeration
variable in the source code; when the source code comprises
multiple enumeration variables, the stored information pref-
erably comprises the name and the corresponding defined
type of each enumeration variable; building the program
from the source code using a predefined compiler in order to
generate a binary executable file, wherein building the
program comprises generating an auxiliary file based on the
information in the data definition tool, wherein the auxiliary
file is built to be a standalone binary executable file or
integrated into the binary executable file of the program;
and/or simulating the program, wherein the simulating com-
prises running at least one function in the auxiliary file in
order to determine at least the byte width of a basic data type
corresponding to the enumeration variable in the binary
executable file, and allocating one or more variables based
on the determined byte width, preferably in order to log the
value of the enumeration variable.

[0009] In an embodiment of the invention, a method for
generating source code for a program is provided, the
program being modeled as one or more blocks of a block
diagram in a technical computing environment, the one or
more blocks of the model comprising at least one signal or
parameter that is marked as an enumeration, the technical
computing environment comprising a model editor, a data
definition tool and a code generator. The method includes:
opening the block diagram in the model editor; generating
source code for the one or more blocks of the block diagram
using the code generator, wherein generating source code
comprises converting the at least one signal or parameter to
an enumeration variable in the source code and storing
information on the source code in the data definition tool, the
information comprising the defined type of the enumeration
variable in the source code; when the source code comprises
multiple enumeration variables, the stored information pref-
erably comprises the name and the corresponding defined
type of each enumeration variable; building the program
from the source code using a predefined compiler in order to
generate a binary executable file, wherein building the
program comprises generating an auxiliary file based on the
information in the data definition tool, wherein the auxiliary
file is built to be a standalone executable or integrated into
the binary executable file of the program; simulating the
program, wherein the simulating comprises transferring the
binary executable file to the embedded system, running at
least one function in the auxiliary file in order to determine
the width of the basic data type corresponding to the
enumeration variable in the binary executable file, storing
information on the enumeration variable in the data defini-
tion tool, comprising the determined byte width or a deter-

US 2019/0163449 Al

mined basic data type or both, and running the binary
executable file on the target processor; receiving user input
indicating that a variable description file is to be generated;
and/or generating a variable description file for the program,
the variable description file comprising information on the
enumeration variable, wherein at least the determined byte
width or the determined basic data type is retrieved from the
data definition tool. When the predefined compiler is
adapted to the target microcontroller of the embedded sys-
tem and the compiler options are kept unchanged, the
variable description file generated for the processor-in-the-
loop simulation may also be used for the production soft-
ware, i.c. the binary executable firmware of a production
ECU. Thus, the variable description file may e.g. be used for
bypassing applications or calibrating parameters in the pro-
duction software.

[0010] The steps of the methods may be carried out by a
processor running different software components, such as
parts of the technical computing environment, on a host
computer, the software components preferably using the
mechanisms of the technical computing environment or of
the operating system of the host computer to exchange data
and/or cause the execution of one or more further software
components. The host computer may be realized as a single
standard computer comprising a processor, in particular a
high-speed general-purpose microprocessor, a display
device and an input device. Alternatively, the host computer
system may comprise one or more servers comprising one or
more processing elements, the servers being connected to a
client comprising a display device and an input device via a
network. Thus, the technical computing environment may be
executed partially or completely on a remote server, such as
in a cloud computing setup. A graphical user interface of the
technical computing environment may be displayed on a
portable computing device, in particular a computing device
with a touch screen interface. In this case, it is particularly
advantageous when the computations for executing the
block diagram are carried out on a remote server. The
technical computing environment may comprise a graphical
user interface for modifying the block diagram and a simu-
lation engine for executing the block diagram, so that the
dynamical system described by the block diagram can be
simulated. The block diagram may comprise multiple blocks
with input and/or output signals that are connected to output
and/or input signals of other blocks. Each block may be an
atomic functional unit or may be a hierarchical block that is
composed of a plurality of subordinate blocks.

[0011] The term program can refer to the functionality to
be performed by the electronic control unit; it may be
represented as a block diagram, a source code generated
from the block diagram, or as binary executable file resulting
from a compilation of the generated source code.

[0012] The source code generated for a signal marked as
an enumeration may resemble the following example:

typedef enum Days_ tag {
Monday = 0,
Tuesday = 1,
Wednesday = 2,
Thursday = 3,
Friday = 4,
Saturday = 5,
Sunday = 6
} Days; /* Description: C enum */
Days Sal_Monday;

May 30, 2019

[0013] When the generated source code is compiled, the
defined enumeration type is mapped to a basic data type. For
the C language, there is no fixed rule regarding the under-
lying basic data type of an enumeration variable; both signed
and unsigned integers of different byte width may be used.
The basic data type comprises information on the deter-
mined byte width and on the fact if signed integers or only
unsigned integers may be represented. Choice of the byte
width may depend on the size of words in the target
platform, such as 32 bit (4 byte) or 64 bit (8 byte), depending
on whether the processor of the target platform has a 32-bit
or a 64-bit architecture; further, it may depend on compiler
options. Thus, the basic data type cannot be derived from the
block diagram by the code generator. This holds true irre-
spective of whether the signal marked as an enumeration has
a constant value.

[0014] A simulation of the program in a software-in-the-
loop or processor-in-the-loop mode requires generating
code, compiling the generated code, linking the binary files
to a simulation application and transferring the simulation
application to the simulation platform, i.e. the host computer
or an embedded system. Prior to the long-term repeated
execution in the different time steps, the simulation appli-
cation may be initialized. Initializing a simulation by run-
ning a function in the auxiliary file allows for determining
the byte width before running the simulation using pre-
defined stimuli. Preferably, initializing the simulation com-
prises calculating the address for at least one input variable
or output variable that is to be logged.

[0015] By running a function in the auxiliary file, the
invention allows for an accurate determination of the current
byte width for the enumeration variables used in the block
diagram of the program. Because the byte width of the
enumeration variable is known, there is no need to allocate
additional memory “just in case”. This is particularly useful,
when a plurality of values is logged during a long-term
simulation and/or when a plurality of enumeration values is
used in the block diagram. An additional function may be
executed for multiple enumeration types in the auxiliary file;
the auxiliary file may contain multiple additional functions
or one additional function determining the basic data type
for multiple enumeration types.

[0016] Determining the byte width can comprise deter-
mining whether the basic data type is signed or unsigned.
Knowing if the basic data type is signed can be necessary for
instance in order to transform a logged variable to the
underlying physical quantity.

[0017] The method also comprises storing information on
the determined byte width, the determined basic data type or
both in the data definition tool. When the information on a
specific variable is stored and referenced to the identifier of
the signal or variable, any software component with an
interface to the technical computing may retrieve the infor-
mation. The basic data type, or at least the byte width, of an
enumeration variable is useful for logging that variable or
calculating the addresses of components of a structured
variable, such as an array or struct in the C language,
comprising at least one enumeration component.

[0018] Simulating the program can comprise executing
the built program on the host computer, logging or extracting
the values of one or more of the variables of the program
during execution, including at least one enumeration vari-
able, and displaying or storing the logged simulation results.
The determined byte width or the determined basic data type

US 2019/0163449 Al

may be used for calculating the address values of input/
output variables of the program and/or writing the new input
value to the program or reading the output values from the
program.

[0019] The predefined compiler can be adapted to generate
instruction for a target processor differing from the processor
of the host computer, and an embedded system comprising
a target processor is connected to the host computer. In this
use case, a processor-in-the-loop simulation, simulating the
program comprises transferring the binary executable file to
the embedded system, running the binary executable file on
the target processor, logging or extracting the values of one
or more of the variables of the program during execution,
including at least one enumeration variable, and storing or
displaying the logged values on the host computer.

[0020] When the enumeration variable is part of a struc-
tured variable, the method can further comprise calculating
or determining address offset values for accessing the dif-
ferent components of the structured variable, and storing the
address offset values in the definition tool. The source code
for a structured signal may resemble the following example:

typedef struct {
Int16 comp__1
Days comp_ 2
UlInt8 comp__3

} MyStruct

MyStruct StructVar;

[0021] Generally, a mapping file created when compiling
the source code only contains the start address of StructVar.
In order to access StructVar.comp_3, the byte width of the
enumeration variable is needed. The method provides a
comfortable way for determining this byte width before
simulating the program.

[0022] When the program comprises a structured variable,
the method comprises determining address offset values for
accessing the different components of the structured variable
and storing the determined address offset values in the data
definition tool or the variable description file. The auxiliary
file may also comprise at least a function for determining
information on structured variables. The additional function
for a structured variable type may comprise defining a
variable of the structured variable type and calculating or
determining address values for the different components of
the variable. The offsets for the components of the structured
variable may be stored in the data definition tool.

[0023] For the structured variable defined above, the addi-
tional function in the auxiliary file may comprise instruc-
tions such as:

unsigned int offset_ 2;
offset_2 = (unsigned int)&StructVar.comp_ 2 — (unsigned
int)&StructVar;

[0024] Depending on the selected options, the compiler
may or may not align the different components of a struc-
tured variable to words of the target processor. Using the
additional function, the address offsets can be determined
correctly without assumptions.

[0025] In an embodiment of the invention, a method for
simulating a program is provided, the program being mod-
eled as one or more blocks comprising at least one structured

May 30, 2019

signal or parameter with multiple components. When a
processor of the host computer generates code for the
program, the at least one signal or parameter is converted to
a structured variable in the source code and information on
the source code is stored in the data definition tool, the
information comprising the names of the components of the
structured variable in the source code; preferably the defined
type of the structured variable is also stored in the data
definition tool. The processor generates an auxiliary file
based on the information in the data definition tool, and
simulates the program. When initializing the simulation, the
processor runs at least one function in the auxiliary file in
order to determine address offset values for the components
of the structured variable in the binary executable file, and
accesses at least one component of the structured variable.
The method allows for determining address offsets of the
different components in the structured variable.

[0026] In an embodiment of the invention, a method for
generating source code for a program is provided, the
program being modeled as one or more blocks of a block
diagram in a technical computing environment, the one or
more blocks of the model comprising at least one structured
signal or parameter that comprises multiple components.
From the at least one signal or parameter, a processor of the
host computer generates a structured variable in the source
code and storing information in the data definition tool, the
information comprising the names of the components of the
structured variable; preferably the defined type of the struc-
tured variable is also stored in the data definition tool. The
processor builds the program from the source code for a
target microcontroller and generates an auxiliary file based
on the information in the data definition tool. The binary
executable file of the program is transferred to an embedded
system comprising the target microcontroller; the microcon-
troller runs at least one function in the auxiliary file in order
to determine address offset values for the components of the
structured variable in the binary executable file. The deter-
mined address offsets are transmitted to the host computer,
and information on the structured variable is stored in the
data definition tool, comprising the determined address
offset values of the components. When the processor gen-
erates a variable description file for the program, the variable
description file comprising information on the structured
variable, at least the address offsets of the components are
retrieved from the data definition tool. By keeping the
compiler options unchanged, the variable description file
generated for the processor-in-the-loop simulation may also
be used for the production software, i.e. the binary execut-
able firmware of a production ECU.

[0027] An embodiment of the invention also relates to a
non-transitory computer readable medium containing
instructions that, when executed by a microprocessor of a
computer system, cause the computer system to carry out the
method as described above or in the appended claims.
[0028] In an embodiment of the invention, a computer
system is provided which comprises a processor, a random
access memory, a graphics controller connected to a display,
a serial interface connected to at least one human input
device, and a nonvolatile memory, in particular a hard disk
or a solid-state disk. The nonvolatile memory comprises
instructions that, when executed by the processor, cause the
computer system to carry out the method.

[0029] The processor may be a general-purpose micropro-
cessor that is customary used as the central processing unit

US 2019/0163449 Al

of'a personal computer or it may comprise one or a plurality
of processing elements adapted for carrying out specific
calculations, such as a graphics-processing unit. In alterna-
tive embodiments of the invention, the processor may be
replaced or complemented by a programmable logic device,
such as a field-programmable gate array, which is configured
to provide a defined set of operations and/or may comprise
an IP core microprocessor.

[0030] Further scope of applicability of the present inven-
tion will become apparent from the detailed description
given hereinafter. However, it should be understood that the
detailed description and specific examples, while indicating
preferred embodiments of the invention, are given by way of
illustration only, since various changes, combinations, and
modifications within the spirit and scope of the invention
will become apparent to those skilled in the art from this
detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] The present invention will become more fully
understood from the detailed description given hereinbelow
and the accompanying drawings which are given by way of
illustration only, and thus, are not limitive of the present
invention, and wherein:

[0032] FIG. 1 is an exemplary diagram of a computer
system,
[0033] FIG. 2 is an exemplary diagram of software com-

ponents in a computer system;

[0034] FIG. 3 is an exemplary diagram of a method for
generating production code from a block diagram;

[0035] FIG. 4 is an exemplary diagram of a method for
testing the compliance of the executable with a model
specifying the desired behavior;

[0036] FIG. 5 is a schematic view of an exemplary
embodiment of a SIL simulation;

[0037] FIG. 6 is a schematic view of an exemplary
embodiment of a test environment that allows for switching
between a SIL simulation mode and a PIL simulation mode;
and

[0038] FIG. 7 is a schematic diagram of a method for
generating code according to the invention.

DETAILED DESCRIPTION

[0039] FIG. 1 illustrates an exemplary embodiment of a
computer system.

[0040] The shown embodiment comprises a host computer
PC with a display DIS and human interface devices such as
a keyboard KEY and a mouse MOU; further, an embedded
system ES is depicted, which may e.g. be used for a
processor-in-the-loop simulation.

[0041] The host computer PC comprises at least one
processor CPU with one or multiple cores, a random access
memory RAM and a number of devices connected to a local
bus (such as PCI Express), which exchanges data with the
CPU via a bus controller BC. The devices comprise e.g. a
graphics-processing unit GPU for driving the display, a
controller USB for attaching peripherals, a non-volatile
memory HDD such as a hard disk or a solid-state disk, and
anetwork interface NC. Preferably, the non-volatile memory
comprises instructions that, when executed by one or more
cores of the processor CPU, cause the computer system to
carry out a method according to one of the claims.

May 30, 2019

[0042] The embedded system ES comprises a network
interface NC, an actuator interface Al and a sensor interface
SI as well as a microcontroller MC. As an alternative or
addition to the microcontroller MC, the embedded system
ES may comprise a programmable logic device such as a
field-programmable gate array. The programmable logic
device may contain a hardwired digital signal processor and
it may be configured to comprise an IP core microprocessor.
Preferably, the embedded system ES is connected to the
personal computer PC via the network interface NC, which
may e.g. be of USB, RS-232 or Ethernet type. The embed-
ded system may comprise a non-volatile memory that com-
prises instructions to be carried out by the microcontroller or
a configuration to be loaded on the programmable logic
device.

[0043] In an embodiment, the host computer may com-
prise one or more servers comprising one or more process-
ing elements, the servers being connected to a client com-
prising a display device and an input device via a network.
Thus, the technical computing environment may be
executed partially or completely on a remote server, such as
in a cloud computing setup. A personal computer may be
used as a client comprising a display device and an input
device via a network. Alternatively, a graphical user inter-
face of the technical computing environment may be dis-
played on a portable computing device, in particular a
portable computing device with a touch screen interface or
a virtual reality device.

[0044] In an embodiment, the computer system does not
comprise an embedded system ES. While the embedded
system ES is useful for carrying out a processor-in-the-loop
simulation of a control program, the presence of an embed-
ded system may not be necessary for carrying out at least
some aspects of the present invention.

[0045] FIG. 2 displays an exemplary embodiment of the
software components being executed on a computer system,
which may be realized as a host computer PC with a
standard microprocessor that runs a standard operating sys-
tem OS such as Microsoft Windows or a Linux distribution.
[0046] On the host computer PC, a technical computing
environment TCE such as MATLAB/Simulink of The Math-
Works may be installed. Other examples of technical com-
puting environments comprise LabVIEW of National Instru-
ments or ASCET of ETAS. The technical computing
environment TCE comprises a plurality of software compo-
nents such as a model editor MOD and a simulation engine
SIM. Additionally, the TCE may comprise a mathematical
and/or script interpreter MAT that is adapted for carrying out
calculations or modifying data. The TCE comprises a pro-
duction code generator PCG that is adapted to produce
production code from a model; further, it comprises a
documentation generator and it may comprise a data defi-
nition tool DDT. The expression that a software component
is comprised in the TCE is intended to encompass the case
that the software component uses a specific mechanism of
the TCE such as an application-programming interface of
the TCE in order to exchange data and/or instructions with
other software components in the TCE. For example, a
software component may be realized as or comprise an
add-on such as a toolbox for the model editor.

[0047] The model editor MOD may provide a graphical
user interface for creating and modifying block diagrams
that preferably describe the temporal behavior of a dynamic
system. Additionally, blocks adapted for describing finite

US 2019/0163449 Al

states and conditions for transitions between states may be
used to model the dynamic system. A block may describe an
atomic operation, such as an arithmetic calculation or a logic
expression, or it may represent a subsystem that is described
in more detail by an additional or partial block diagram in a
subordinate hierarchical level. This need not imply that the
partial block diagram is stored in a separate file, but rather
that the functionality of a hierarchical block is defined by a
plurality of blocks in a subordinate level. Alternatively, it
may contain code in a higher-level programming language,
in particular a dynamic language intended for mathematical
programming, that realizes the block’s functionality. Mul-
tiple blocks may be connected by signals for the exchange
of data. For example, an initial block may receive a signal
of type single as input signal, may modify the signal e.g. by
adding a constant and may send an output signal of type
double to a further block. It may be said that the further
block is downstream of the initial block because they are
connected by a signal path so that data flows from the initial
block to the further block.

[0048] The simulation engine SIM may be adapted to
execute a block diagram created in the model editor MOD
in order to observe the temporal behavior of the dynamic
system described by the block diagram. The execution of a
block diagram may also be called a model-in-the-loop
simulation of the dynamic system and is preferably carried
out using high-precision operations in order to observe the
behavior more closely and to create reference data.

[0049] The production code generator PCG allows for
creating production code from one or more blocks in a block
diagram. Production code may be optimized for readability,
traceability, safety, low-energy consumption, execution
speed and/or memory requirements. Preferably, the code
generator provides a user interface for setting a plurality of
options for adapting the customization of the generated
code. Customization options may include target-specific
optimizations for the microcontroller of the embedded sys-
tem and enforcing compliance of the generated code to a
specific standard, such as the MISRA C guidelines. A
particularly preferred production code generator PCG is
TargetLink of dSPACE.

[0050] The data definition tool DDT provides a local or
remote database for storing definitions and parameters as
well as an application-programming interface for automatic
exchange of the data between different software compo-
nents. The term “database” is to be understood preferably in
a broad sense, so that a file with a tree structure may be
considered a database. A data definition tool allows for a
clean separation of the model of the dynamic system given
in the block diagram from implementation-specific details
stored in the database. When a complex model is structured
in different sub-models, data in different sub-models may be
linked. By storing corresponding information in the data
definition tool, these dependencies may be automatically
resolved. Additionally, by exchanging data with a software
architecture tool, such as SystemDesk of dSPACE, the data
definition tool DDT can be used as part of a higher-level tool
chain, in particular to generate product code compliant to the
AUTOSAR standard. A preferred data definition tool is
TargetLink Data Dictionary of dSPACE.

[0051] The documentation generator GEN is adapted to
traverse the block diagram and generate a documentation
based on the definitions in the documentation blocks. The

May 30, 2019

documentation may comprise information from the data
definition tool DDT and/or data from external data sources.
[0052] Other software components such as a production
code compiler PCO, a debugger DEB or a comparison tool
CMP may also be installed on the computer. These software
components may be interfaced to each other and/or the
technical computing environment using standard mecha-
nisms of the underlying operating system OS. The compiler
PCO may generate an executable for the microprocessor of
the PC or it may generate an object code for the microcon-
troller of the embedded system. Additionally, it may be
configured to generate additional debugging information
and to include it in the executable. In this way, the debugger
DEB can e.g. be used for observing the value of a signal
during a software-in-the-loop simulation of the generated
production code. Depending on the intended use, the
observed values may be directly displayed to the user and/or
they may be logged in a memory, e.g. in RAM, in a file or
a database.

[0053] FIG. 3 illustrates an exemplary embodiment of the
generation of production code from one or more blocks in a
block diagram. The following steps are preferably carried
out by a microprocessor on the host computer; alternatively,
a client server setup may be used so that computationally
expensive steps are carried on a remote server containing a
plurality of microprocessors.

[0054] In a first step S1, the selected one or more blocks
(or, if selected, the entire block diagram) and related input
data are transformed to an intermediate representation such
as one or more hierarchical graphs. These hierarchical
graphs may in particular comprise a data flow graph, a
control flow graph and/or a tree structure. Related input data
may e.g. be extracted from a database associated with the
block diagram. This may encompass situations where ele-
ments of the block diagram are created based on information
from a data definition tool, or where settings relevant for the
production code generation are retrieved from the data
definition tool.

[0055] In a second step S2, the hierarchical graphs are
optimized in order to reduce the number of variables
required and/or the number of operations or instructions to
be carried out. This optimization may comprise a plurality of
intermediate steps on further intermediate representations
between block level and production code level. In each step,
an initial set of hierarchical graphs or an intermediate
language is converted to a modified set of hierarchical
graphs or an intermediate language while applying one or
more optimization rules. A number of strategies such as
constant folding or elimination of dead code may be applied
during optimization.

[0056] In a third step S3, the optimized intermediate
representations such as optimized hierarchical graphs are
translated to code in a high-level or low-level programming
language, preferably C code. The code may be further
optimized in this step and restricted to a subset of the linear
or parallel programming language, the control and datatlow
structures may be restricted to precisely specified variants,
the scope of functions and data may be restricted according
to accurately specified rules. Alternatively or in addition,
additional information may be added to the code, e.g. in the
form of comments, to enhance readability or help in debug-
ging the code.

[0057] During or after the code generation, information on
the current block diagram or the code generation, especially

US 2019/0163449 Al

results of the code generation, may again be stored in a
database such as the data definition tool. This information
may e.g. be used to initialize the simulation engine, to
influence a compilation process with a production code
compiler, or to export production code information for use
in other tools/process, like e.g. calibration and measurement
information in ASAP2 format (in particular a variable
description file) or AUTOSAR XML information. Prefer-
ably, a documentation is generated automatically after pro-
duction code generation has been finished.

[0058] In alternative embodiments, hardware-level code
or a configuration for a programmable hardware device may
be created from the blocks describing the control program.
[0059] FIG. 4 displays an exemplary embodiment of a
method for compiling and testing a control program.
[0060] The model editor MOD of the TCE preferably
comprises a graphical user interface for modifying a block
diagram BLD, which may comprise a plurality of blocks
interconnected by signal paths. Each block may be an atomic
block providing a specific functionality or it may represent
a hierarchical block such as a subsystem, which comprise a
plurality of subordinate blocks that are shown in a lower
hierarchical level.

[0061] Blocks may be connected by signals which may be
of scalar or composite type and which can be represented by
arrows indication the direction of the data flow. In the shown
example, the block diagram comprises three blocks, an input
port for receiving an input signal and an output port for
sending an output signal. Preferably, the block diagram
describes the predetermined or intended behavior of a con-
trol program. Upon activation of the simulation engine in the
technical computing environment, the block diagram BLD is
executed and results are calculated for each time step. The
block diagram may be interpreted directly or it may be
converted to an intermediate form that allows for a faster
execution in the simulation engine.

[0062] Preferably, a number of test cases for the control
program have been deduced from the specification and
intended application of the control program. Advanta-
geously, a test case comprises a stimulus STIM sent as an
input signal to the control program and a corresponding
response RESP received as an output signal from the control
program. In the shown example, the stimulus STIM is
represented by a diagram depicted a particular temporal
behavior of the input signal. When the control program is
executed in the simulation engine on the host computer,
operations corresponding to the block diagram BLD are
carried out for a plurality of time steps. During each time
step, the current value of the stimulus STIM is fed to the
appropriate input ports of the block diagram, the block
diagram BLD is being executed in the simulation engine, so
that signals are being manipulated and a new internal state
of'the model may be reached. By simulating the model given
in the block diagram for a predetermined duration and by
recording the output signal, a response RESP1 can be
determined in a model-in-the-loop simulation. A model-in-
the-loop simulation mode may be used for verifying that the
block diagram executed in the simulation engine actually
describes the intended behavior of the control program. All
arithmetic calculations can be carried out with high-preci-
sion operations, e.g. using the floating-point data type
double for the variables. As a result, the simulation is
sufficiently accurate to use the recorded output signals as
reference data.

May 30, 2019

[0063] Once correctness of the model has been established
and reference data has been stored, the blocks corresponding
to the control program are converted to program code via the
production code generator PCG. The generated production
code is then compiled to object code or an executable using
the production code compiler PCO; an object code is binary
data that contains instructions for a particular processor.
When the object code is combined with additional informa-
tion for the operating system of the host computer, an
executable for the host computer is formed. Settings applied
during the code generation may comprise a conversion to
lower-precision operations that are computationally more
efficient, e.g. integer instructions for fixed-point calcula-
tions, so that the control program later can be executed in
real-time on the microcontroller of an embedded system.
[0064] In order to verify that the calculations of the
generated code are sufficiently accurate and match the
behavior of the blocks in the graphical model, a software-
in-the-loop simulation or a processor-in-the-loop simulation
may be carried out. The object code or the executable OBJ,
which may be in the form of a DLL, contains calculations
corresponding to the block diagram. During a predetermined
duration, a stimulus STIM is fed to the object code or
executable OBJ, and the output signals are recorded to
obtain a response RESP2. Generally, multiple variables may
be logged while running the simulation; this may comprise
adding log macros to the program code prior to the simu-
lation and determine a basic data type of an enumeration
signal when initializing the simulation.

[0065] The response RESP1 of the model-in-the-loop
simulation may be displayed on the host computer simulta-
neously with the response RESP2 of the generated code, so
that a visual comparison may be performed by the user.
Additionally or alternatively, the response RESP1 and
RESP2 may be compared in a comparison tool CMP, so that
a number of checks for compliance to predetermined con-
ditions may be carried out. Preferably, the output signals are
compared point by point; in particular, the absolute differ-
ence between a data point in RESP1 and the corresponding
data point in RESP2 may be calculated. By comparing the
differences to a threshold indicating a maximum permissible
difference, the correctness of the optimizations applied when
generating and compiling the code can be verified.

[0066] FIG. 5 illustrates an exemplary embodiment of a
software-in-the-loop simulation, i.e. a simulation for which
production code is generated and compiled, the resulting
executable then being run on the host computer. In a
software-in-the-loop simulation, the effects of converting
high-precision operations to lower-precision operations on
the accuracy of the control, such as quantization errors,
overflows or saturation effects, can be observed. As indi-
cated by the outermost rectangle, the simulation is carried
out by a processor of the host computer PC.

[0067] The technical computing environment TCE com-
prises a simulation engine for executing block diagrams; the
simulation engine may in particular comprise a solver. At
least one block or subsystem SYS corresponding to a model
of the plant, i.e. the dynamical system to be controlled, is
executed in the simulation engine. The plant model block
SYS may comprise an arbitrary number of subordinate
blocks. At least one signal, e.g. a sensor output, is sent from
the plant model block to a communication function S-Fct.,
which is integrated with the simulation engine of the tech-
nical environment. In the picture, signals are represented by

US 2019/0163449 Al

arrows from a sending block to a receiving block. The
communication function may advantageously replace in the
simulation engine the one or more blocks for which a
software-in-the-loop simulation mode has been selected and
provide a mechanism for exchanging signals. The commu-
nication function may be generated by the technical com-
puting environment, in particular based on the specification
of the one or more blocks with respect to input or output
ports and/or signals received or sent by these blocks.
[0068] The communication Function S-Fct. provides for
an exchange of signals, which may be represented by the
value of a variable, with an executable OBJ that was created
from the one or more selected blocks via the production code
generator PCG and the production code compiler PCO. The
executable OBJ containing the compiled production code
may e.g. be realized as a dynamic link library in the
operating system of the host computer. Input/Output signals
of the executable OBJ are sent/received by the communi-
cation function and transferred from/to the simulation envi-
ronment. When at least one of the exchanged signals is
marked as an enumeration, the corresponding basic data
type needs to be determined in order to exchange the signals
during the simulation. Also, other data interesting for analy-
sis during this testing process maybe collected and trans-
ferred from/to the executable OBJ, for example coverage
data. In the shown example, the block diagram comprises an
actuator model block ACT, which modifies the output sig-
nals of the executable OBJ and sends the resulting signal to
the plant model SYS. As a result, a closed-loop simulation
of the complete dynamical system comprising plant and
controller can be performed.

[0069] The executable OBIJ is external to the computing
environment, and thus may be analyzed by an arbitrary
debugger using mechanisms of the operating system of the
host computer PC unobstructed by components of the TCE
in between. In the shown example, the debugger DEB
indicated as a rectangle analyzes the executable OBJ, as
indicated by a dashed arrow. Thus, a software-in-the-loop
simulation allows for a fast and efficient testing of the
control program implemented in the production code.
[0070] FIG. 6 displays an exemplary embodiment of a test
environment that allows for switching between a software-
in-the-loop simulation mode and a processor-in-the-loop
simulation mode. An upper rectangle indicating the host
computer PC and a lower rectangle indicating an embedded
system ES are shown in the figure. The host computer PC
and the embedded system ES are connected via a dedicated
interface; the dedicated interface may restrict the data trans-
fer speed, so that only a limited number of signals or
corresponding variables may be exchanged without exces-
sive slowing of the simulation and thus the debugging
capabilities may be considerably limited.

[0071] As in the previous figure, the technical computing
environment TCE comprises a simulation engine which
executes a plant model SYS and may execute an actuator
model ACT. In the shown test environment, a communica-
tion function S-Fet. is adapted to provide for an exchange of
signals between the simulation engine in the TCE and the
signal router SIR.

[0072] The signal router SIR allows for exchanging sig-
nals between the simulation engine and/or one or more
executables; it is external to the technical computing envi-
ronment, so that it uses neither the modeling environment
MOD, nor the simulation engine SIM, nor the script inter-

May 30, 2019

preter MAT, but is only connected to the communication
function S-Fet. for a transfer of signals. The signal router
may be realized as a standalone executable or as a library
routine, in particular a DLL, in the operating system of the
host computer. When at least one of the exchanged signals
is marked as an enumeration, the corresponding basic data
type needs to be determined in order to exchange the signals
during the simulation. The signal router may comprise a
buffer and/or a logging mechanism for the one or more
signals to be exchanged.

[0073] The test environment comprises a host environ-
ment for executing the control program OBJ on the host
computer and a target environment for executing the control
program OBJ* on the embedded system. Preferably, the
signal router allows for static or on-the-fly switching
between a software-in-the-loop simulation and a processor-
in-the-loop simulation by redirecting the exchanged signals.
Further, it is possible to simulate several subsystems or
submodels in a software-in-the-loop or a processor-in-the-
loop simulation mode at once by the router routing the
corresponding signals for each.

[0074] When a processor-in-the-loop simulation is per-
formed, the production code is cross-compiled on the host
computer to create an executable OBJ* that is subsequently
being run on another processor, in particular a microcon-
troller of an embedded system. In a processor-in-the-loop
simulation, both the correctness of the code generator,
preferably configured according to a specific set of options,
and the correctness of the compiler for the target platform,
preferably also configured according to a specific set of
options, can be verified.

[0075] When a software-in-the-loop simulation is per-
formed, the effect of converting high-precision operations to
lower-precision operations on the accuracy of the control
can be observed in order to check the correctness of the code
generator. Using the mechanisms of the operating system of
the host computer, a plurality of dedicated programs such as
a stand-alone debugger may be interfaced to the executable
OBJ for a fast and extensive analysis of the control program
implemented in the production code.

[0076] FIG. 7 displays a schematic diagram of a method
for generating code according to the invention. The method
may be carried out by a processor of the host computer PC.
When the host computer is equipped with a multicore
processor, different software components may be run on
different processor cores; also each component may make
use of several processor cores for speed up of its execution.

[0077] In step S101, the processor opens the block dia-
gram in the model editor of the technical computing envi-
ronment. Opening the block diagram may comprise deter-
mining parameters of the model or converting blocks based
on predefined rules.

[0078] Based on the block diagram the code generator
produces source code in step S102; further, information on
the generated source code, such as names and enumeration
types of enumeration variables are stored in the data defi-
nition tool. When multiple enumeration variables are
defined in the block diagram, the names and corresponding
enumeration types are preferably stored for each defined
enumeration variable.

[0079] In step S103, an auxiliary function (or an auxiliary
file comprising at least one additional function) is generated

US 2019/0163449 Al

based on the information in the data definition tool. The
function in the auxiliary file may comprise source code such
as given in the listing below:

void GetEnumlInfo(Type, Size, Signed){
Size = sizeof(Type);
switch(Size){

case 1:
Signed = (Type) (UInt®)INT8MAX+1) < 0;
break;

case 2:
Signed = (Type) ((UInt16)INT16MAX+1) < 0;
break;

default:
Signed=-1; /* value indicates an error */

¥

¥
[0080] The expressions INTSMAX or INT16MAX refer

to predefined constants denoting the biggest positive value
that can be represented by an integer of 8 bit or 16 bit width
(i.e. a byte width of 1 or 2 bytes).

[0081] The program is built in step S104; building the
program comprises compiling the source code and linking
the resulting object files to generate an executable file. The
binary executable file may comprise the auxiliary function,
or the auxiliary file may be compiled and linked to a
standalone executable file.

[0082] The binary executable file (and, if present, the
standalone executable file comprising the auxiliary function)
is transferred to an embedded system connected to the host
computer in step S105.

[0083] In step S106, the auxiliary function is executed and
the resulting information is stored in the data definition tool
on the host computer.

[0084] The program is run on the embedded system in step
S107, in order to perform a processor-in-the-loop simula-
tion.

[0085] In step S108, the processor determines that a
request to generate a variable description file for the binary
executable file is received. The user input may be received
via a graphical user interface; alternatively, it may be
received in a further file previously stored by the user.
[0086] The processor retrieves information on variables
used in the program from the data definition tool in step
S109. This comprises information on at least one enumera-
tion variable for which the byte width and/or the basic data
type has been determined in an auxiliary function.

[0087] In step S110, the processor generates the variable
description file based on the retrieved information. The
variable description file may comprises address values or
address offsets for structured variables such as a C-language
struct or an array comprising at least one enumeration
variable. Because the variable description file has been
determined on the target platform with the corresponding
compiler options, the determined byte width or the deter-
mined basic data type as well as address offset values also
apply to the final ECU firmware.

[0088] Those skilled in the art will appreciate that the
order of at least some of the steps of the method may be
changed without departing from the scope of the claimed
invention. While the present invention has been described
with respect to a limited number of embodiments, those
skilled in the art will appreciate numerous modifications and
variations therefrom. It is intended that the appended claims

May 30, 2019

cover all such modifications and variations as fall within the
true spirit and scope of the present invention.

[0089] The invention being thus described, it will be
obvious that the same may be varied in many ways. Such
variations are not to be regarded as a departure from the
spirit and scope of the invention, and all such modifications
as would be obvious to one skilled in the art are to be
included within the scope of the following claims.

What is claimed is:

1. A method for simulating a program, the program being
modeled as one or more blocks of a block diagram in a
technical computing environment, the one or more blocks
comprising at least one signal or parameter that is marked as
an enumeration, the technical computing environment com-
prising a model editor, a data definition tool and a code
generator, the method being executed by at least one pro-
cessor of a host computer, the method comprising:

opening the block diagram in the model editor;

generating source code for the one or more blocks of the
block diagram using the code generator, including
converting the at least one signal or parameter to an
enumeration variable in the source code;

storing information on the source code in the data defi-
nition tool, the information comprising the defined type
of the enumeration variable in the source code;

building the program from the source code using a
predefined compiler in order to generate a binary
executable file;

generating an auxiliary file based on the information in
the data definition tool, wherein the auxiliary file is
built to be a standalone binary executable file or
integrated into the binary executable file of the pro-
gram; and

initializing a simulation by running at least one function
in the auxiliary file in order to determine at least a width
of a basic data type corresponding to the enumeration
variable in the binary executable file, and allocating

one or more variables based on the determined byte
width.

2. The method of claim 1, wherein determining the byte
width comprises determining whether the basic data type is
signed or unsigned.

3. The method of claim 1, further comprising: storing
information on the determined byte width, the determined
basic data type or both in the data definition tool.

4. The method of claim 1, wherein simulating the program
comprises:

executing the built program on the host computer;

logging or extracting the values of one or more of the
variables of the program during execution, including at
least one enumeration variable; and

displaying on a display or storing in a memory the logged

simulation results.

5. The method of claim 1, wherein the predefined com-
piler is adapted to generate instruction for a target processor
differing from the processor of the host computer, wherein
an embedded system comprising a target processor is con-
nected to the host computer, wherein simulating the program
comprises:

US 2019/0163449 Al

transferring the binary executable file to the embedded

system,

running the binary executable file on the target processor;

logging or extracting the values of one or more of the

variables of the program during execution, including at
least one enumeration variable; and

storing or displaying the logged values on the host com-

puter.

6. The method of claim 1, wherein the enumeration
variable is part of a structured variable, further comprising:

determining address values for accessing the different

components of the structured variable, and

storing the address values in the data definition tool.

7. A method for generating source code for a program, the
program being modeled as one or more blocks of a block
diagram in a technical computing environment, the one or
more blocks of the model comprising at least one signal or
parameter that is marked as an enumeration, the technical
computing environment comprising a model editor, a data
definition tool and a code generator, the method being
executed by at least one processor of a host computer, the
method comprising:

opening the block diagram in the model editor;

generating source code for the one or more blocks of the

block diagram using the code generator, including
converting the at least one signal or parameter to an
enumeration variable in the source code;

storing information on the source code in the data defi-

nition tool, the information comprising the defined type
of the enumeration variable in the source code;

building the program from the source code using a

predefined compiler in order to generate a binary
executable file;

generating an auxiliary file based on the information in

the data definition tool, wherein the auxiliary file is
built to be a standalone executable or integrated into the
binary executable file of the program;
initializing a simulation by transferring the binary execut-
able file to the embedded system and running at least
one function in the auxiliary file in order to determine
the width of the basic data type corresponding to the
enumeration variable in the binary executable file;

storing information on the enumeration variable in the
data definition tool, comprising the determined byte
width or a determined basic data type or both;

simulating the program by running the binary executable
file on the target processor;

receiving user input indicating that a variable description

file is to be generated; and

generating a variable description file for the program, the

variable description file comprising information on the
enumeration variable, wherein at least the determined
byte width or the determined basic data type is
retrieved from the data definition tool.

8. The method of claim 7, wherein the enumeration
variable is part of a structured variable, further comprising:

determining address offset values for accessing the dif-

ferent components of the structured variable; and
storing the address offset values in the variable descrip-
tion file.

9. The method of claim 7, wherein the at least one
function in the auxiliary file is executed when initializing the
simulation.

May 30, 2019

10. The method of claim 7, wherein determining the byte
width comprises determining whether the basic data type is
signed or unsigned.

11. The method of claim 10, wherein storing information
on the enumeration variable in the data definition tool
comprises storing if the basic data type is signed, an iden-
tifier of the determined basic data type or both in the data
definition tool.

12. A method for simulating a program, the program being
modeled as one or more blocks of a block diagram in a
technical computing environment, the one or more blocks
comprising at least one structured signal or parameter that
comprises multiple components, the technical computing
environment comprising a model editor, a data definition
tool and a code generator, the method being executed by at
least one processor of a host computer, comprising:

opening the block diagram in the model editor;

generating source code for the one or more blocks of the
block diagram using the code generator, including
converting the at least one signal or parameter to a
structured variable in the source code;

storing information on the source code in the data defi-

nition tool, the information comprising the names of
the components of the structured variable in the source
code;

building the program from the source code using a

predefined compiler in order to generate a binary
executable file;

generating an auxiliary file based on the information in

the data definition tool, wherein the auxiliary file is
built to be a standalone binary executable file or
integrated into the binary executable file of the pro-
gram;

initializing a simulation by running at least one function

in the auxiliary file in order to determine address offset
values for the components of the structured variable in
the binary executable file; and

simulating the program, including accessing at least one

component of the structured variable.

13. A method for generating source code for a program,
the program being modeled as one or more blocks of a block
diagram in a technical computing environment, the one or
more blocks of the model comprising at least one structured
signal or parameter that comprises multiple components, the
technical computing environment comprising a model edi-
tor, a data definition tool and a code generator, the method
being executed by at least one processor of a host computer,
comprising:

opening the block diagram in the model editor;

generating source code for the one or more blocks of the

block diagram using the code generator, including
converting the at least one signal or parameter to a
structured variable in the source code;

storing information on the source code in the data defi-

nition tool, the information comprising the names of
the components of the structured variable in the source
code;

building the program from the source code using a

predefined compiler in order to generate a binary
executable file;

generating an auxiliary file based on the information in

the data definition tool, wherein the auxiliary file is
built to be a standalone executable or integrated into the
binary executable file of the program;

US 2019/0163449 Al

initializing a simulation by transferring the binary execut-
able file to the embedded system, running at least one
function in the auxiliary file in order to determine
address offset values for the components of the struc-
tured variable in the binary executable file;

storing information on the structured variable in the data
definition tool, comprising the determined address off-
set values of the components;

simulating the program by running the binary executable
file on the target processor;

receiving user input indicating that a variable description
file is to be generated; and

generating a variable description file for the program, the
variable description file comprising information on the
structured variable, wherein at least the address offsets
of'the components are retrieved from the data definition
tool.

10

May 30, 2019

14. A non-transitory computer readable medium contain-
ing instructions that, when executed by a microprocessor of
a computer system, cause the computer system to carry out
the method according to claim 1.

15. A computer system comprising a host computer, the
host computer comprising a microprocessor, a random
access memory, a graphics controller connected to a display,
a serial interface connected to at least one human input
device, and a nonvolatile memory, a hard disk or solid state
disk, the nonvolatile memory comprising instructions that,
when executed by the microprocessor, causes the computer
system to carry out the method according to claim 1.

16. The computer system of claim 15, further comprising
an embedded system connected to the host computer, the
embedded system comprising a target processor.

#* #* #* #* #*

